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Abstract—Motivated by the ubiquity of mobile devices and
their potential capabilities as distributed systems (e.g., for local-
ization), we consider a time-delay estimation (TDE) problem in
which there are two non-colocated sensors and communication
constraints between them. When the communication bandwidth
is particularly limited, there is a need for compression techniques
that are specifically tailored for the TDE application. For
the discrete-time version of this problem, we propose such a
joint compression-estimation strategy based on what we term
“extremum encoding”, whereby the (time-) index of the maximum
of the observed signal in a finite observation window is sent from
one sensor to another. Subsequent joint processing of the encoded
message with the locally observed, time-delayed, noisy signal
gives rise to our proposed time-delay “maximum-index”-based
estimator. We analyze the performance of the proposed scheme in
the asymptotic regime of large message size and delay spread, but
with their ratio fixed. We derive the error probability exponent
for this estimator, and its consistency. We validate the analysis
via simulations, and further demonstrate the performance gains
over traditional alternatives.

Index Terms—Time-delay estimation, compression, distributed
estimation, compression for estimation, max-index estimator.

I. INTRODUCTION

T
IME-DELAY estimation (TDE) is a fundamental problem

that is found at the core of numerous important appli-

cations in various scientific fields and physical domains (i.e.,

acoustic, optics, radiofrequency). Examples, among others, in-

clude localization, tracking, communication, sensor calibration,

medical imaging and more [1], [2], [3], [4]. In this respect, it is

perhaps one of the most important problems in signal process-

ing, and as such, it has been extensively studied in past decades.

For a collection of important results, which nevertheless by no
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means serves as an exhaustive survey, see [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17].

Notwithstanding the foregoing, the aspect of data compres-

sion for TDE, namely compression whose sole objective is

accurate TDE (in contrast to the traditional objective of signal

reconstruction), which is highly motivated by recent technolog-

ical developments [18], has only been comparatively sparsely

addressed. A brief, but relatively comprehensive summary of

past efforts on this front is given in what follows.

A. Data Compression for TDE: Motivation and Prior Art

As mentioned above, TDE is a necessary (algorithmic) build-

ing block in many systems for various applications. A classical

example is that of passive radar/sonar, which served as a driver

for some of the most important theoretical findings on this prob-

lem (e.g., the best attainable performance [8], [9]). However,

in these classical settings, which involve two data-acquiring

sensors, it is typically assumed that the central computing unit

has access to both of the received signals. This is a fairly solid

assumption when the two sensors are co-located or when there

are (essentially) no constraints on the relevant communication

links for sending the received signals.

In contrast, for some of the modern emerging applications,

this is no longer the case. Consider, for example, the problem

of passive acoustic indoor localization [19], building on power-

and communication-limited “smart” devices. We envision that

for such applications, these devices would opportunistically be

used as ad-hoc sensors that could measure an acoustic signal

and—with limited resources—convey a corresponding message

for the purpose of TDE (e.g., for range estimation).

In such scenarios, it is not only desirable, but is necessary to

reduce as much as possible the resources requirements on the

spatially distributed devices that serve as the sensors. Note that,

clearly, the sensors in this case are not co-located. Moreover,

the assumption of an essentially unlimited communication link

is weak in some cases, and unrealistic in others. Similar con-

straints arise in sensor networks [20], [21], which by design

consist of a large number of small, low-power, untethered de-

vices that measure a common signal for the collective purpose

of some inference task (e.g., [22]).

This motivation, that is relevant for other systems as well

(e.g., mobile platforms), has led to several works focused on

compression techniques that are specifically designed for TDE.

In the early 1980s, Matthiesen and Miller [23] considered the

fundamental two-receiver passive TDE problem, and proposed
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two “simple, robust data transfer reduction techniques” for the

approximated computation of the standard cross-correlation-

based estimator (CCE). They considered a rate-distortion (RD)

benchmark, wherein the signal to be sent is RD-optimally com-

pressed for the square error loss with respect to the signal

itself. The authors’ approach in [23] therefore differs from a

potentially more TDE-oriented framework, where the bits sent

aim solely to maximize TDE fidelity, and may thus be oblivious

to most of the features of the received signal that carry less

information about the desired time-delay.

Two consistent lines of work on this more involved variant of

the TDE problem are due to Fowler et al. [24], [25], [26], [27],

[28], [29], [30] and Vasudevan et al. [31], [32], [33], [34]. In

the first one, Fowler’s general approach for compression is to

maximize the Fisher information (FI) for TDE, which is derived

for uncompressed data, for a given number of bits. In this case,

the objective to be maximized (namely, the FI) is not necessarily

informative for compressed observations. In the second line

of work, a so-called maximum mutual information (MaxMI)

quantizer is developed, where an approximation of the maxi-

mum a posteriori objective function for the quantized signals

is maximized. In this approach, the MaxMI quantizer relies on

available training data in order to estimate the signals’ distri-

butions, which are then used for numerical computation of the

quantizer. In particular, the MaxMI is designed (only) for tem-

porally white signals, and requires the noise level to be known

or estimated. In both of these approaches, the quantizers do not

admit closed-form expressions, and specifically, it is not clear

how to optimally choose the number of quantization levels.

B. Contributions

Motivated by the potential applications and the limitations of

previously proposed methods mentioned above, and inspired by

information-theoretic ideas of using the asymptotic statistical

properties of a maximum random variable (RV) presented in

recent work by Hadar and Shayevitz [35] and Kochman and

Wang [36], we propose a new method for distributed TDE with

communication constraints. While the present work is focused

on a specific signal model, the conceptual insight stemming

from it is of both theoretical and practical value for the design

of compression methods for TDE in other different settings.

Specifically, our main contributions are the following:

• A method for joint compression-TDE for distributed sys-

tems: We propose a compression-estimation method that

is superior to existing alternatives in terms of the inherent

trade-off between compression rate and estimation fidelity.

Our proposed method is based on sending only the in-

dex of the maximal observed value in some prescribed

range, a notion of what we term “extremum encoding”.

Consequently, both our compressor and estimator admit

closed-form expressions, they are computationally simple,

and can be interpreted intuitively. Moreover, our method

is universal, in the sense that it is agnostic to the noise

level, hence it does not require prior knowledge, unlike

other previously proposed methods (e.g., [32]).

• Performance Analysis: We analyze the error probability

of our proposed estimator, and derive its error exponent

Fig. 1. A simplified illustration of the distributed discrete-TDE problem.

(Theorem 1) for white Gaussian signals. As a simple

implication, it follows that it is consistent in the

communication sense (i.e., with respect to the number of

bits sent). Our analysis can be used to guide the design of

systems that involve distributed TDE (e.g., networks of

smart devices). We further analyze our proposed method

for signals that are arbitrarily correlated, and derive the

asymptotic error exponent for this case. We also provide

exponentially tight lower and upper bounds on the

estimation error absolute moments (e.g., mean-absolute

error and mean-square error).

The rest of the paper is organized as follows. The remainder

of this section is devoted to an outline of our notation. In Sec-

tion II we present the problem of TDE for distributed systems

depicted in Fig. 1, and formulate the joint compression-TDE

problem considered in this work, where one of the sensors is

co-located with the computing unit. In Section III we present

our proposed compression-estimation strategy, followed by in-

terpretations of its operation, performance analysis, and a dis-

cussion on computational complexity. We provide simulation

results in Section IV that corroborate our analysis and demon-

strate that our method is superior to relevant existing alterna-

tives. Concluding remarks are given in Section V.

C. Notation

We use lowercase letters with standard font and sans-serif

font, e.g., x and x, to denote deterministic and RVs,1 respec-

tively. Similarly, we use x and x for deterministic and ran-

dom vectors, respectively. The uniform distribution over a set

D is denoted as U(D), the standard normal distribution as

N (0, 1), and
iid∼ for an independent, identically distributed (iid)

random process. We use E[·] and Var(·) to denote the expec-

tation and variance operators, respectively, and P(A) for the

probability of the event A. The entropy of a discrete RV x

is denoted by H(x). The indicator function 1A is equal to

one if A is true and zero otherwise. The natural logarithm is

denoted by log(·), and Q(x),
∫∞
x

1√
2π

e−t2/2dt is the standard

Q-function. We use the standard order notation; let f and g be

positive functions with discrete or continuous domain. We write

f = o(g) to indicate that lim f/g = 0, and f =O(g) to indicate

that lim sup f/g <∞, where the arguments and implied limits

should be clear from the context.

1In some cases, Greek letters would be used as RVs as well.
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II. JOINT COMPRESSION AND TIME-DELAY ESTIMATION

We consider a simplified signal model (as in [31], [32], [33],

[34]) for the classical TDE problem, where the delay is in

discrete-time. In particular, consider the observed discrete-time

signals2

r1[n] = s[n] + z1[n], (sensor 1)

r2[n] = s[n− d] + z2[n], (sensor 2) (1)

defined for all n ∈ Z, where

• r1[n], r2[n] are the signals observed by the first and

second sensors, respectively, which are assumed to be

time-synchronized;

• s[n]
iid∼N (0, 1) is the common (unobservable) signal to

both sensors with a relative time-delay d ∈ D, where D ,

{−dm, . . . , dm} is the “uncertainty interval” (or the “delay

spread”) with cardinality D , |D|= 2dm + 1, and dm ∈
N is the maximum (absolute) delay; and

• z1[n]
iid∼N (0, σ2

1) and z2[n]
iid∼N (0, σ2

2) are statistically

independent white Gaussian noise processes, that are also

statistically independent of s[n].
We assume for simplicity that the parameters σ2

1 and σ2
2 are

known. However, it will become clear that our proposed scheme

is agnostic to them.

For ease of notation, we begin with the following proposition

regarding the simplification of the signal model, whose proof

appears in Appendix A.

Proposition 1: Model (1) is statistically equivalent (up to

scaling coefficients) to the observation model

x[n], (sensor 1, “encoder”)

y[n] = ρx[n− d] + ρ̄z[n], (sensor 2, “decoder”) (2)

where x[n]
iid∼N (0, 1) and z[n]

iid∼N (0, 1) are statistically in-

dependent, ρ ∈ (0, 1] is the (Pearson) correlation coefficient

between x[n] and y[n+ d] that is related to the signal-to-noise

ratios (SNRs) of (1), i.e., to 1/σ2
1 and 1/σ2

2 , and ρ̄,
√
1− ρ2.

Notice that equivalence up to scaling is sufficient, since any

scheme may apply these factors, which are a function of the

known parameters. Therefore, we will henceforth work with

model (2), and accordingly, we shall refer to the quantity SNR,
ρ2

ρ̄2 = ρ2

1−ρ2 as the SNR.3 For the relation between SNR and

1/σ2
1 , 1/σ

2
2 (SNRs in model (1)), see Appendix A.

In (2), one sensor (the “encoder”) observes4 x[n] and needs

to produce a message m ∈ {0, 1}k×1 of length k ∈ N bits to

be sent to the central computing unit, where the second sensor

(the “decoder”) is located. The latter observes y[n], a noisy

version of (the ρ-scaled) x[n], delayed by d samples. The goal

of the central computing unit is to estimate5 d based on the

2Notice that possible attenuation to the common signal is implicitly taken
into account via the variances of the processes.

3Observe that SNR
ρ→1
−−−→∞ and SNR

ρ→0
−−−→ 0, as desired, and also that

ρ2 = 1
1+SNR−1 is in fact what is (usually) known as the “Wiener coefficient”.

4With a slight abuse of notation, we write that “one observes x[n]” when
we mean that one observes the entire process {x[n]}n∈Z or a snippet of it.

5Despite d being from a discrete set in this formulation, we will persist with
“estimate” rather than “detect” to conform with TDE classical terminology.

Fig. 2. Equivalent representation of the problem considered in this work.
The encoder observes the signal x[n] and generates a message of length k
bits m ∈ {0, 1}k×1. The decoder observes the signal y[n] and receives the

message m, from which it constructs the estimator d̂(m, y) of d, where y ,

[y[1] . . . y[N ]]T.

signal y[n] and the received message m. The problem setup is

illustrated in Fig. 2.

Without communication constraints between the sensors,

one can let k →∞, and m
6 would simply be the observed

signal x[n]. In that case, assuming for example that d is

deterministic unknown, the (well-known) maximum likelihood

estimator (MLE) would correspond to a CCE [37]. However,

when k is finite and limited, it is no longer trivial (or even

clear) how to develop a good7 joint compression-estimation

strategy. After formulating the problem, we shall propose such

a strategy, that is inherently different from any of the other

previously proposed methods mentioned above in Section I-A.

For clarity, we elaborate on this difference in Section III-A

only after presenting our method at the outset of Section III.

We note in passing that the Gaussian signal model, while only

approximating the underlying statistical models of signals en-

countered in practice, is still a well-adopted one in the literature

(e.g., [38], [39]). Beyond lending itself to amenable analysis

(e.g., [40]), which frequently leads to insightful observations,

the Gaussian model oftentimes yields robust, functioning algo-

rithmic solutions even for non-Gaussian signals.8

A. Problem Formulation

Formally, we consider the problem above when described in

a Bayesian setting, where we assume a simple non-informative

prior d∼ U(D), as follows. For a given number of bits k and

an observation interval of length N samples (possibly letting

N →∞), consider the minimum attainable risk over all mes-

sages of length k and corresponding estimators:

ǫ∗k , inf
m:{x[n]|n∈{1,...,N}}→{0,1}k×1

d̂:{y[n]|n∈Z}×m→D

ǫ
(
d̂ (y[n],m)

)
, (3)

where the estimator-dependent risk ǫ
(
d̂
)
, E

[
ℓ(d̂, d)

]
is de-

fined for some loss function ℓ :D ×D → R+, and the expec-

tation is taken with respect to all sources of randomness, i.e.,

x[n], z[n] and d. A pair (mo, d̂o) that attains (3) is called an

“optimal strategy”. The problem that naturally arises from this

formulation can be concisely stated as follows:

Problem: Given a message length of k bits and a loss function

ℓ(·, ·), find an optimal strategy for TDE.

6In the limit, an infinite sequence rather than a finite-dimensional vector.
7The sense of “goodness” in this work is to be defined in Section II-A.
8This can be shown analytically for certain cases, see [41, Thm. 1].
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We are interested in the trade-off between the number of

transmitted bits k and its associated optimal risk ǫ∗k. Since in

this work we assume a discrete time-delay, we focus on the error

loss ℓ(a, b) = 1a 6=b that yields the error probability risk.

To the best of our knowledge, a solution to this simplified,

though fundamental problem is currently unknown. However,

and while we have not been able to find such a solution, this

work proposes a new type of a solution strategy that constitutes

an achievability result, which is (asymptotically) superior to

existing TDE methods in terms of the trade-off (3). Moreover,

and importantly, our proposed strategy warrants a rethinking of

the communication efficiency in the context of this specific, but

ubiquitous task. We will later discuss how our proposed solution

to this basic problem, formulated in discrete-time, leads to new

ideas for localization methods that are attractive in scenarios

with limited communication resources.

III. THE ‘‘MAXIMUM-INDEX’’-BASED ESTIMATOR

Inspired by [35], [36], our proposed strategy is as follows.

Extremum Encoding: The encoder observes a sequence of

length N = 2k,9 namely XN , {x[n]}N−1
n=0 , and sends as the

message m the index of the maximum sample among XN ,

j, arg max
0≤n≤N−1

x[n], (4)

where m ∈ {0, 1}k×1 is the binary representation of j.

Maximum-Index-Based Estimation: The decoder, which in

particular observes YD
N , {y[n]}N−1+dm

n=−dm
, upon receiving m,

constructs the “maximum-index”-based estimator (MIE),

d̂MIE , argmax
ℓ∈D

y[j+ ℓ]. (5)

Put simply, the message to the decoder dictates the center of its

search (discrete) interval, whose size is the delay spread, i.e.,

D = 2dm + 1. The estimated time-delay is then chosen to be

the shift (in the opposite direction) relative to that center, for

which the observed signal at the decoder is maximized.

Notice that both the encoder and decoder depend on the

observed sequences via maximizers of subsequences. Since

such statistics are invariant to positive multiplicative constant

factors, the performance is not affected by the scaling factors

of Proposition 1. Thus, the scheme is universal for any positive

correlation parameter ρ. Of course, the correlation still needs

to be known in order to choose an adequate message size k.

A. Interpretation of the MIE

The underlying logic of (5) is in fact quite clear and intuitive.

Let us first consider the maximum a posteriori estimator of d,

which, in our case, coincides with the MLE since d∼ U(D),
and can be easily shown to be given by

d̂MIE = argmax
ℓ∈D

1

N

N−1∑

n=0

x[n]y[n+ ℓ], argmax
ℓ∈D

ρ̂MIE(ℓ). (6)

Although by different means, the MIE (5) is doing exactly what

the MLE (6) is doing without communication constraints, which

9This assumption is merely for notational convenience, and can of course
be relaxed, in the sense that N can be any natural number.

is simply trying to identify the time-lag at which the cross-

correlation between x[n] and y[n] is maximized. To see this

more clearly, we recall the following useful result, by Hadar and

Shayevitz [35, Theorem. 1]: Consider model (2) with d≡ 0, i.e.,

{x[n]} and {y[n]} are zero-mean unit-variance white Gaussian

processes with a correlation coefficient ρ. Let ρ̂MIE ,
y[j]

E[x[j]] .

Then ρ̂MIE is an unbiased estimator of ρ with

Var (ρ̂MIE) =
1

k

(
1− ρ2

2 log(2)
+ o(1)

)
=

1− ρ2

2 log(N)
+ o(1). (7)

Moreover, ρ̂MIE is asymptotically efficient10 given (x[j], y[j]).
A natural extension (/application) of the above is to define

ρ̂MIE(ℓ),
y[j+ ℓ]

E [x[j]]
, ∀ℓ ∈ Z, (8)

which is of course an unbiased, asymptotically efficient esti-

mator of ρ when ℓ= d, and of 0 when ℓ 6= d. This is simply

because, for any shift ℓ, we end up with exactly the same

formulation considered in [35], but for a different correlation

coefficient, since E[y[n]x[n− ℓ] | d] = ρ · 1ℓ=d. We will return

to this point later when considering a generalization of model

(2) that we currently focus on.

With (8), we can revisit (5), and using the fact that E[x[j]] is

constant with respect to the optimization index ℓ, we have

d̂MIE = argmax
ℓ∈D

y[j+ ℓ]

E [x[j]]
= argmax

ℓ∈D
ρ̂MIE(ℓ). (9)

Indeed, it is now evident that the MIE (9) (for limited commu-

nication) and the MLE (6) (for unlimited communication) are

similar in nature—both are choosing the hypothesized delay at

which the empirical cross-correlation is maximized.

A further insightful interpretation of (5) is the following. Re-

sorting again to the MLE so as to focus on the conceptual nature

of the cross-correlation operation, the time-delay estimate is

chosen as the one for which the two (relatively-)shifted versions

of the two received signals are the “most similar” to each other.

Therefore, if we apply some signal compression method that

would preserve11 this similarity under the correct time-delay,

we would be able (and most likely need) to use an estimation

procedure that implements the same concept.

With this in mind, consider the (coarse) signal compression

method, that zeros all the samples below the highest threshold

possible, such that only the largest sample, namely the maxi-

mum, passes and is left uncompressed. In the ideal noiseless

case, when the two received signals are merely two differently

time-shifted versions of the same waveform, the specific form of

similarity discussed above is indeed preserved. Consequently, a

sensible time-delay estimator would look for the hypothesized

time-delay for which the (relatively-)shifted versions of the

two received signals are, again, the “most similar” to each

other. An illustration of this concept is given in Fig. 3. Loosely

speaking, since the maximum of an N -sample long realization

of a white Gaussian process has a vanishing variance (see, e.g.,

[42]), it becomes asymptotically (almost) deterministic, and

this is exactly what happens when we send its position on the

time axis; its magnitude and sign are already known with high

10An unbiased estimator that attains the Cramér-Rao lower bound.
11Possibly (only) with high probability.
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Fig. 3. Illustration of the compression-estimation strategy that is indirectly performed by the proposed extremum encoding and MIE. Here, xc[n] and
yc[n] denote the compressed versions of x[n] and y[n], respectively. When the noise is sufficiently small, the (relative) location in time of the maximum
is unchanged, and the delay can be identified even after this crude compression. Since the maximum of a finite-length Gaussian sequence is asymptotically
deterministic (see, e.g., [42]), only its location in time needs to be sent.

probability. This intuition generalizes to the noisy case, since

the instantaneous SNR of the sample y[j+ d] is ever growing

as k →∞ (⇒N →∞).12

Due to the asymptotic concentration of x[j]—the max-

imum of a finite-length realization of a white Gaussian

process—around its mean (see, e.g., [42]), the intuitive interpre-

tation of (9) can also be rigorously justified, as we show next.

B. Performance Analysis

We now analyze the performance of our proposed method.

In particular, we derive an explicit upper bound on the error

probability of (5) that decays exponentially as a function of

the number of bits sent. As a result, this also shows that (5)

is consistent in the communication sense. We further show that

the exponential behavior of the bound is tight for our scheme.

In contrast to our recent work [43], where the parameter dm
controlling the delay spread was considered to be fixed, we now

focus on the regime k →∞, where the rate of this problem,

defined as,

R,
k

log2 (D)
=

k

log2 (2dm + 1)
, (10)

12This will be shown rigorously, and in detail, throughout the proofs of our
analysis in Section III-B.

namely the message length in bits over the (shortest) binary

description length of the delay spread, is kept fixed.13 In other

words, R is the information conveyed relative to the minimal

information required for description of d. This implies that for

a given (non-zero) rate R, we have dm →∞ at an appropriate

rate. Thus, [43] addresses a special case of the more general

framework considered in this work. We note that our definition

(10) to the rate is not the standard one (i.e., in bits per sample)

that is used in the context of classical compression. Rather, (10)

is in message length in bits per the delay spread (“uncertainty”)

in bits. This way, the rate of an “oracle” encoder, that somehow

knows the (unknown) delay and would have simply sent it to the

decoder, is R= 1. Since we focus on asymptotics, we ignore

rounding issues in (10).

Before we proceed to the analysis of our proposed encoding-

estimation strategy, we present a general result that pertains

to the fundamental limitations of any encoding-estimation

strategy. In particular, it states that the number of bits to be

conveyed (/transmitted) from the encoder to the decoder has

to be larger than the (minimal) number of bits that is required

13Generally, per the definition (10), only the cardinality of D, D, matters
for our results (rather than the maximum delay dm). However, since dm
represents a meaningful quantity—the maximum delay spread in samples—in
the TDE problem, we will occasionally use 2dm rather than D − 1.
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for the description of any possible delay from the delay spread.

Formally, we have the following proposition.

Proposition 2 (Lower bound on rate): Let k be the number

of bits that is allocated in order to send the message m, and d̂

an estimator of d based on y[n] and m. Then, for any encoding-

estimation strategy, namely any pair
(
d̂,m

)
,

lim
k→∞

P

(
d̂ 6= d

)
= 0 =⇒ R≥ 1. (11)

Proof: Say that you give the encoder as genie information

the sequence y[n] and the delay d, and now it needs to convey

the delay to the decoder. First, the encoder can throw away

x[n], since, having the delay d, it can always create locally a

signal that is statistically equivalent (i.e., that has the same joint

distribution with y[n]). Now, in order to convey the delay to the

decoder, the number of bits it must use is

k ≥H (d | y[n]) =H(d) = log2 (D) , (12)

where we have used the fact that y[n] is independent of d, and

that d∼ U(D). Thus, R= k/ log2 (D)≥ 1.

C. Main Results

In order to establish our main result—the exact error expo-

nent of the MIE (5)—we first prove two propositions, from

which our main theorem is readily obtained. Specifically, we

will derive exponentially tight upper and lower bounds that will

facilitate the main theorem.

We start by upper bounding the error probability of (5).

Proposition 3 (Threshold rate and upper bound): Consider

the loss ℓ(a, b) = 1a 6=b, which yields the error probability risk

ǫ, P

(
d̂MIE 6= d

)
, and let R be as defined in (10). Then, a

sufficient condition for a vanishing error probability, i.e., that

ǫ→ 0 as k →∞ while R is kept fix, is

R>R0 ,
1

ρ2
= 1 +

1

SNR
, (13)

where R0 is the threshold rate. Furthermore, for any rate above

R0 and any ρ ∈ (0, 1],14 namely any SNR> 0, we have

ǫ≤ ǭ(k, ρ, dm) (1 + o(1)) , (14)

where

ǭ(k, ρ, dm)

,Q

(√
2k log(2)
1−ρ2

(
ρ− 1√

R

))
+ 2dmQ

(
ρ
√

2k log(2)
2−ρ2

)
.

(15)

Proof: See Appendix B.

Remark 1: When ρ→ 1 (the “high SNR regime”),

ǭ(k, ρ, dm)
ρ→1−−−−−→

Noiseless
case

2dm
2k

. (16)

Therefore, if the bound is tight, then even for ρ= 1, the error

probability is not zero for a finite observation interval.15 This is

14The case ρ= 0 is less interesting, and trivial to analyze, since both
sensors observe (purely) statistically independent white Gaussian noise.

15And this is due to the finite sample size available for estimation of ρ.

because for finite intervals, the maximum has a nonvanishing

variance, and one of the samples (or more) that are observed

by the decoder at the “edges” (due to the inherent time-delay

uncertainty), but not by the encoder, can be greater than the

one reported by the encoder. This behavior is what one would

expect from the true error probability, and thus it is reassuring

(as a “sanity check”) that the upper bound reflects it.

Remark 2: Further to Remark 1, in the infinite SNR (or,

equivalently, the noiseless) regime, viz ρ= 1, in the limit k →
∞ when R is held fixed, we have R0 = 1. Thus, in this case the

lower bound on the rate R for our (realizable) method coincides

with the genie lower bound (11) of Proposition 2.

Remark 3: Although in this work we consider a discrete

time-delay, hence focusing on the error loss ℓ(a, b) = 1a 6=b,

with Proposition (3) we can also obtain an upper bound on the

q-th absolute moments of the estimation error, E
[∣∣∣d̂MIE − d

∣∣∣
q]

(for any q ∈ Z), which is given in (S58), Appendix SI, in the

supplementary materials.

Remark 4: While we have chosen to model the delay d as

random, and specifically as a uniform RV, it follows from our

derivation (specifically, from (58)) that our upper bound holds

even when d is not uniformly distributed.

An immediate corollary of Proposition 3 is the following.

Corollary 1 (Communication consistency): Under the

same conditions of Proposition 3, the MIE (5) is consistent,

namely,

lim
k→∞

P

(
d̂MIE 6= d

)
= 0. (17)

This also implies that limk→∞ P

(
d̂MIE 6= d

)
= 0 for a fixed dm

(as in [43]). Furthermore, note that d̂MIE is also consistent (in

the “standard” sense) with respect to the number of samples

that need to be used, N , i.e., limN→∞ P

(
d̂MIE 6= d

)
= 0.

Proof: We trivially obtain (17) by taking the limit k →∞
of ǭ in (15), with which the upper bound in (14) vanishes.

Remark 5: For Corollary 1, R need not be fixed, and it is

only required that dm = o
(
2kρ

2/(2−ρ2)
)

, namely the uncer-

tainty interval grows “sufficiently slow” with k (and N ). This

case, wherein R and dm are not fixed, can be thought of as

the intermediate regime between the one we focus on here (R
fixed), and the one previously considered in [43] (R→∞).

Next, we present the second key ingredient for our main

result—a lower bound on the error probability of the MIE (5).

Proposition 4 (Threshold rate and lower bound): Under the

same conditions of Proposition 3, in the limit k →∞ with R
fixed, we have

ǫ≥ ǫ(k, ρ, dm)(1 + o(1)), (18)

where

ǫ(k, ρ, dm)

,max

{
Q

(√
2k log(2)
1−ρ2

(
ρ− 1√

R

))
, 2dmQ

(
ρ
√

2 log(2)k
2−ρ2

)}
,

(19)

and a necessary condition on the rate R for the lower bound

(19) to approach zero is (13).
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Fig. 4. Error exponent EMIE(R) (21) of the MIE vs. R for a fixed ρ= 0.7.
The vertical red dashed line is located at the threshold rate R0, and the
vertical green dashed line is located at the critical rate R1. The horizontal
dashed blue line is the asymptotic value limR→∞ EMIE(R). The red shaded

region corresponds to rates at which P

(
d̂MIE 6= d

)
cannot vanish for ρ= 0.7.

Proof: See Appendix C.

Our main result can now be readily obtained.

Theorem 1 (Exact error exponent of the MIE): For R>R0,

in the limit k →∞, we have

−1

k
log2 (ǫ) = EMIE(R) + o(1), (20)

where

EMIE(R),





(
√
R−

√
R0)

2

R(R0−1) , R0 <R<R1

R−2R0+1
(2R0−1)R , R1 <R

, (21)

and where R1 ,

(
2−ρ2

ρ

)2
is the critical rate. Furthermore, it

follows that (13) is necessary and sufficient for ǫ to approach

zero in the limit k →∞ for a fixed R.

Proof: See Appendix D.

Theorem 1 provides an exact characterization of the asymp-

totic rate of decay of the error probability of the MIE. Specifi-

cally, it determines the exact threshold rate R0 above which the

MIE has a vanishing error probability. Moreover, it shows that

there exists a critical rate R1, below and above which the error

exponent changes its functional form. It further shows that as

R grows, the error exponent approaches the limit

lim
R→∞

EMIE(R) =
ρ2

2− ρ2
=

SNR

2 + SNR
. (22)

Thus, the SNR conditions—encapsulated here by ρ—effect the

performance of the MIE even when R→∞. Fig. 4 shows

the error exponent (21) vs. the rate R for a fixed correlation

(SNR-encapsulating) coefficient ρ= 0.7. The red shaded area

corresponds to rates at which the error probability of the MIE

ǫ cannot vanish for this value of ρ (i.e., this SNR level).

In addition, Theorem 1 has an important practical implica-

tion, which pertains to the relation between the SNR and the

observation length, stated concisely as follows:

Given the SNR conditions in both sensors, (13) quantifies

the relative minimal observation (discrete-) time interval that

is required for TDE with d̂MIE at a desired estimation fidelity.

D. Extension to the Generally Correlated Signal Case

Thus far, we have considered the model (2) in which the sig-

nals are white, namely, the cross-correlation between x[n] and

y[n] is a scaled (Kronecker) delta function. If we think of these

discrete-time signals as sampled versions of some bandlimited,

continuous-time signals (say, x(t) and y(t)), then model (2) is

accurate when their cutoff frequency is identical, the time-delay

is an integer multiplication of the sampling period,16 and the

sampling rate is exactly their Nyquist rate.

However, when this is not the case, e.g., when the sampling

rate is above (the maximum between) their Nyquist rate, the

sampled signals x[n], y[n] will generally be temporally corre-

lated. In fact, for such systems, the physical justification for

the assumption that the true time-delay can be modeled suffi-

ciently well as an integer multiplication of the sampling period

becomes even stronger. Therefore, the extension to the case

of general correlation structures, beyond white signals, is an

important and relevant one from a practical standpoint.

Motivated by the above, we have the following result.

Proposition 5 (Upper bound, general autocorrelation): Let

x[n] be a zero-mean unit-variance stationary Gaussian process

with an autocorrelation Cxx[ℓ], E [x[n]x[n− ℓ]], such that y[n]
(as in (2)) and x[n] are (conditionally) jointly Gaussian with a

(conditional) cross-correlation E [y[n]x[n− ℓ]|d] = ρ · Cxx[ℓ−
d], ρ(ℓ). Then, a sufficient condition for a vanishing error

probability of the MIE (5), i.e., that ǫ→ 0 as k →∞ with a

fixed rate R, is

R>R0(ℓ
∗),R0 ·

1

(1− ε∗0)
2δ(ℓ∗)

, (23)

where

ℓ∗ , arg max
ℓ∈Z\{0}

Cxx[ℓ], δ(ℓ∗), 1− Cxx[ℓ
∗], (24)

ε∗0 , inf
{
ε0

∣∣∣ε0 ∈ (0, 1), (1−δ(ℓ∗))(ρ−ρ(ℓ∗))2

2−ρ2−ρ2(ℓ∗) <
ε20

(1−ε0)2

}
.

(25)

Furthermore, for any rate above R0(ℓ
∗) and any ρ ∈ (0, 1],

ǫ≤
[
Q

(√
2 log(N)
1−ρ2

(
ρ(1− ε∗0)

√
δ(ℓ∗)− 1√

R

))
(26)

+ 2dmQ

(
(1−ε∗0)

√
2 log(N)δ(ℓ∗)(ρ−ρ(ℓ∗))2√

2−ρ2−ρ2(ℓ∗)

)]
(1 + o(1)).

(27)

Proof: See Appendix SII (supplementary materials).

Similarly to the iid case (Section III-C), a direct consequence

of Proposition 5 is the following corollary, whose proof is

identical to that of Corollary 1, and is therefore omitted.

Corollary 2 (Communication consistency, general autocor-

relation): Under the same conditions of Proposition 5, the MIE

(5) is consistent in the communication sense, namely,

lim
k→∞

P

(
d̂MIE 6= d

)
= 0, (28)

16If this is not the case, then the discrete-time-delay is an approximation.
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This implies limk→∞ P

(
d̂MIE 6= d

)
= 0 for a fixed dm, which,

in turn, implies limN→∞ P

(
d̂MIE 6= d

)
= 0, i.e., consistency (in

the classical sense) with respect to the sample size.

Remark 6: Similarly to Corollary 1, for Corollary 2, R need

not be fixed, and it is only required that

dm = o

(
2
k
(1−ε∗0)

2δ(ℓ∗)(ρ−ρ(ℓ∗))2

2−ρ2−ρ2(ℓ∗)

)
, (29)

i.e., the uncertainty interval can grow, but “sufficiently slow”

with k (and consequently with N ).

While the upper bound already establishes the performance

guarantees for the general autocorrelation case, we further pro-

vide the following lower bound, which is informative for the

high-rate asymptotic regime.

Proposition 6 (Lower bound, general autocorrelation): Un-

der the conditions of Proposition 5, but in the regime where

k,R→∞, we have

ǫ≥Q

(
(1−ε∗0)

√
2 log(N)δ(ℓ∗)(ρ−ρ(ℓ∗))2√

2−ρ2−ρ2(ℓ∗)

)
(1 + o(1)). (30)

Proof: See Appendix SIII (supplementary materials).

The lower bound (30) is exponentially tight in the asymptotic

regime k,R→∞, namely when dm is either fixed or growing

sufficiently slow relative to k. Indeed, from (30) and (27), we

have the following theorem.

Theorem 2 (Asymptotic error exponent of the MIE, general

autocorrelation): Under the same conditions of Proposition 6,

−1

k
log2(ǫ) =

(1− ε∗0)
2δ(ℓ∗)(ρ− ρ(ℓ∗))2

2− ρ2 − ρ2(ℓ∗)
+ o(1), (31)

where in (31) the little-o is with respect to k and R.

The (simple) proof of Theorem 2, based on Propositions

5 and 6, follows exactly the same reasoning as the one for

Theorem 1, and is therefore omitted. As a “sanity check”, if

Cxx[ℓ
∗] = 0, it follows that Cxx[ℓ] = 0 for all ℓ ∈ Z\{0} and

that δ(ℓ∗) = 1, ρ(ℓ∗) = 0 and ε∗0 → 0. In this case, observe that

the right-hand side of (31) coincides with (21) for R→∞,

i.e., (22).

Remark 7: Although we assume throughout this work that

d∼ U(D), our specific analysis technique is such that in large

parts we condition on a particular value d= d. Hence, it can be

relevant for other prior distributions, and it is rather simple to

derive similar results in a non-Bayesian formulation, where the

delay is assumed to be deterministic and unknown.

While other extensions are deferred to future work, we end

this section by emphasizing that our compression-estimation

strategy indeed generalizes beyond the (seemingly) simplistic

iid model to a less trivial setting. We consider this aspect a key

element in the contribution of our proposed method.

E. Computational Complexity

Beyond its performance in terms of the trade-off between ac-

curacy and communication efficiency, another appealing prop-

erty of the MIE (5) is its computational complexity, in particular

relative to standard CCEs, such as the MLE (6). For such stan-

dard CCEs, computing the empirical cross-correlation at D =

2dm + 1 time-lags based on N samples amounts to O(Ndm)
operations. In contrast, the MIE simply requires two searches

for the maximum of two arrays of sizes N (encoder) and D
(decoder), hence its computational complexity is O(N + dm).
It is therefore evident that our proposed method is not only more

efficient in terms of communication, but is also attractive in

terms of the required computational resources.

IV. SIMULATION RESULTS

In our simulation experiments presented in this section, we

generate the signals according to the model (2) and compare

our proposed method (MIE) with the following benchmarks:

• The CCE (6) where x[n] is replaced by x̂RD[n],
17 a RD-

optimally compressed version thereof, where the distortion

measure is the squared error (x[n]− x̂RD[n])
2
. This is the

lower bound considered in [23, Figure 10];

• The CCE (6) where x[n] is replaced by x̂1−bit[n],
sign(x[n]). This compression method is used, e.g., in [22,

Section 4.1], and has recently gained renewed interest for

various related tasks [45], [46], and specifically also in the

context of time-delay-based localization [47], [48], [49];

In this numerically evaluated part of the paper, for fairness, we

compare our method to benchmarks that are also universal, i.e.,

that do not require knowledge of the SNR. All empirical results

were obtained by averaging 106 independent trials.

A. White Signal

In each independent trial of this simulation experiment, we

generate 2k-samples long realizations of standard iid Gaussian

processes for x[n] and z[n], draw d uniformaly from D, and

compute y[n], as depicted in Fig. 2, for a fixed ρ. For x̂RD[n],
we use a compression rate k/N = k/2k bits per sample, such

that {x[n]}N−1
n=0 is compressed into a message of k bits. For

x̂1−bit[n], we take the signs of the first k samples as the

message.

Fig. 5 presents the error probability vs. k, the size of the mes-

sage m in bits, for fixed SNR= 15dB and dm = 250. Evidently,

our proposed method is able to achieve superior performance

relative to the alternatives, where the gain is most significant

at high rates (higher k for a fixed dm). Furthermore, a good

empirical fit is reflected between the error probability of the

MIE and our (logarithmically shifted18) error exponent curve

(21), which corroborates our analytical derivations.

Next, we fix k = 12 bits (as well as the sample size N = 212),

and we vary dm for a fixed SNR= 20dB. Fig. 6 presents the

error probability vs. the rate R. Here, rather than presenting the

error exponent (21), we present the upper and lower bounds,

(15) and (19), respectively. It is observed that, even in this non-

asymptotic regime, the upper and lower bounds closely track

the true error probability curve. In addition, it is observed that,

except for low rates near R0, our method outperforms the two

benchmark alternatives.

17In this case, this is the still MLE (after the said RD compression), since
x̂RD[n] is Gaussian [44, Ch. 10.3.2], and x̂RD[n], y[n] are jointly Gaussian.

18For details on how it was vertically shifted, see the caption of Fig. 5.
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Fig. 5. Error probability vs. number of transmitted bits, for SNR= 15dB

and dm = 250. The green dashed line is ĉ · 2−k·EMIE(R), where ĉ is the
best least-squares-fitted constant for the empirical curve of the MIE. The
performance of the MIE, whose exponential behavior is accurately predicted
by our analysis, becomes increasingly favorable relative to the alternatives as
k grows.

Fig. 6. Error probability vs. the rate, as defined in Proposition 3, for
SNR= 20dB and k = 12 bits. The error probability of the MIE rapidly drops
below the two benchmarks when departing from R0 (on the left edge), and
is contained within the margin between the upper and lower bounds.

In Fig. 7 we consider the same setting, with k = 12 fixed, but

we now vary the SNR, and present four curves corresponding

to different values of dm (alternatively, to different rates). From

condition (13), we see that given a fixed rate R, we have a con-

dition for the minimal SNR above which the error probability

asymptotically vanishes,

SNR>
1

R− 1
=

log2(2dm + 1)

k − log2(2dm + 1)
, SNRthr(dm), (32)

where SNRthr(dm) is the threshold SNR value for a given k.

As can be observed from Fig. 7, all methods exhibit unac-

ceptable performance at low SNRs. However, the SNR from

which the MIE outperforms the benchmarks methods decrease

as the rate increases. Additionally, while the benchmark meth-

ods exhibit a “saturation”-like trend already above 10−1, our

Fig. 7. Error probability vs. the SNR, for k = 12 bits and four different de-
lay spreads dm, namely four different rates. For a given rate R, (13) provides
the minimal SNR above which the error probability asymptotically vanishes,

where SNRthr(dm) = 1
R−1

=
log2(2dm+1)

k−log2(2dm+1)
is the threshold SNR.

method continues to improve, and it will saturate only at the

asymptotic level (16).19

B. Correlated Signal

We repeat the first simulation experiment described in Sec-

tion IV-A, but this time with the signal

x[n] =

M−1∑

m=0

hmx̃[n−m], (33)

where x̃[n]
iid∼N (0, 1) and {hm}M−1

m=0 is a finite impulse re-

sponse filter, such that
∑M−1

m=0 h2
m = 1. It follows that Cxx[ℓ] =∑M−1

m=0 hℓ+mhm,20 and x[n] is (still) unit-variance. Since we as-

sume that knowledge regarding the correlation structure Cxx[ℓ]
is unknown, x̂RD[n] is still compressed as if it is white, namely

at a rate R= 1
2 log2

(
Cxx[0]/ξ

2
)
=− 1

2 log2
(
ξ2
)
, where ξ2 de-

notes the mean-square error distortion of x̂RD[n].
21

Fig. 8 shows the error probability vs. k for SNR= 5dB and

the correlated signal (33) with the filter (of order M = 4)

{
h̃0, h̃1, h̃2, h̃3

}
= {1,−0.2, 0.3, 0.1} , hm =

h̃m

‖h̃m‖2
, (34)

in two different operational regimes, where dm is computed as

detailed in Table I. In the first regime, the rate R is below R0

(13), which is obviously lower than the threshold rate for the

non-iid case, whereas in the second R is above R0(ℓ
∗) (23).

Fig. 8 corroborates our result in Proposition 5, and demonstrates

that it is sufficient to operate at a (fixed) rate R above R0(ℓ
∗)

to have ǫ→ 0 when k →∞. The curves of the first regime (at

a rate below R0), however, suggest that there indeed exists a

19The upper and lower bounds are not presented in Fig. 7 to enhance clarity,
and since the asymptotic analysis is less relevant for k = 12, rendering the
bounds less informative relative to an extensive empirical comparison.

20Here, hm = 0 for all m /∈ {0, . . . ,M − 1}.
21When the autocorrelation Cxx[ℓ] is known, x̂RD[n] can be better com-

pressed so as to obtain the optimal RD trade-off of the (memoryless) optimal
prediction error of x[n] (aka “innovation process”) from its past samples [50].
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Fig. 8. Error probability vs. number of transmitted bits for the temporally
correlated signal (33) at SNR= 5dB. Two regimes are considered, as detailed
in Table I. For a rate above R0(ℓ∗), the error probability vanishes as k →∞.

TABLE I
DIFFERENT RATE-OPERATION REGIMES AT SNR= 5dB

Regime 1: R<R0 = 1.3162 Regime 2: R>R0(ℓ∗) = 2.9404

dm = 2⌊
k

1.3 ⌋ =⇒ R≤ 1.3 dm =
⌊
2

k
3
−1

⌋
=⇒ R≥ 3

threshold rate below which the error probability cannot van-

ish asymptotically. As in (13) for the iid case, we expect this

threshold rate to be SNR-dependent. However, we also expect

it to depend on the autocorrelation Cxx[ℓ].
22

We note in passing that the results for the first regime also

show that there exist a rate below R0 for which extremum

encoding with the MIE is not an optimal strategy (with respect

to the criterion (3)), at least for correlated signals, and at least in

the non-asymptotic regime. Hence, theoretically, it is possible

to devise an improved “hybrid” strategy that uses the “standard”

RD signal compression below the rate at which it is superior to

our scheme (if such a rate exists). Nevertheless, it should be

emphasized that such a strategy would not be realizable, since

it would be based on the impractical implementation of optimal

RD signal compression.

V. CONCLUDING REMARKS

In the broad context of distributed systems, we present a

realizable joint compression-TDE method that, to the best of our

knowledge, currently constitutes the state-of-the-art asymptotic

performance in terms of the trade-off between communication

resources and TDE accuracy. Our method is universal in the

sense that it does not require knowledge about the SNR condi-

tions at either of the sensors. Furthermore, it reduces the overall

computational complexity, and specifically the computational

load from the central computing unit. For white Gaussian pro-

cesses, we derive the exact error exponent of our method,

thus providing an accurate characterization of its asymptotic

22Since (31) is obtained for the regime where k,R→∞, which in
particular renders it inaccurate for parameter values amenable for simulation
experiments, we exclude such corresponding empirical results from Fig. 8.

performance. We further show that our method extends to

correlated processes, and demonstrate by simulations its supe-

riority over two benchmark alternatives.

While our method was developed for a simplified signal

model, its underlying conceptual framework holds promise for

thedevelopmentof techniquesapplicable tomorecomplexsignal

models in practical systems. This opens the door to several

exciting research directions associated with our work that remain

to be explored. One key avenue is extending (or adapting) the

method to account for continuous time-delays, which is the more

realistic, and at the same time the technically more challenging

one.Additionally,ourworknaturallypavesthewayforinnovative

localization approaches in distributed systems. Since some of

the most popular localization methods rely on estimated time-

differences-of-arrival (TDOAs), our proposed method could

serve as the fundamental step of TDOA estimation for such

localization solutions in contemporary distributed networks,

such as IoT-based sensor networks composed of interconnected

“smart” devices, operating in an ad-hoc manner [51]. Further

research on these important extensions, alongside additional

ones, is underway [52] and will be addressed in future work.

APPENDIX A

PROOF OF PROPOSITION 1

We shall show that the joint distribution of r1[n] and r2[n] is

identicaltothatofx[n]andy[n].Forthis,wefirstconditionond= d
(and henceforth omit the notation of this condition for brevity).

Now, since Var(r1[n]) and Var(r2[n]) are known, and since

s[n], z1[n] and z2[n] are all mutually statistically independent,

zero-mean white Gaussian processes, r1[n]/
√

Var(r1[n]) and

r2[n]/
√

Var(r2[n])arezero-mean,unit-variancejointlyGaussian

withacross-correlationfunction
E[r2[n]r1[n−ℓ]]√

Var(r1[n])Var(r2[n])
= ρ · 1ℓ=d,

with ρ, 1√
(1+σ2

1)(1+σ2
2)

.

Now, for (2), again condition on d= d. Clearly, since x[n]
and z[n] are mutually statistically independent, zero-mean white

Gaussianprocesses,byconstructionofy[n],x[n]andy[n]arezero-

mean, unit-variance jointly Gaussian with a cross-correlation

function E [y[n]x[n− ℓ]] = ρ · 1ℓ=d. Since the conditional joint

distributions of r1[n] and r2[n], and x[n] and y[n] are identical,

andsince thedependenceond (via thecross-correlation function)

is identical, re-introducing the (uniform) randomness of d does

not change the statistical equivalence of the two models.

We note that the correlation parameter ρ encapsulates the

SNR conditions in both sensors. That is, although (2) seemingly

suggests that only the decoder observes a noisy signal, we recall

the mapping ρ= 1√
(1+σ2

1)(1+σ2
2)

, which reflects the translation

between model (1) and model (2). Therefore, it suffices, for

example, that only σ1 →∞ (or σ2 →∞) in order to approach

the zero correlation regime. Conversely, for ρ→ 1, we must

have that σ1, σ2 → 0, as expected.

APPENDIX B

PROOF OF PROPOSITION 3

In order to prove the proposition, we shall use the following

key lemma, whose proof is given below.
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Lemma 1 (Lower tail upper bound of max): For any τ ∈ R+,

P(x[j]< τ)≤ e
−2k

(
τ

1+τ2

)
1√
2π

e−
τ2

2

. (35)

Furthermore, if we choose τ∗(k),
√

2 log(2)k(1− ε(k)) =√
2 log(N)(1 + o(1)), where ε(k), 1√

k
= o(1), we obtain

P(x[j]< τ∗(k)) = o
(
2−k

)
. (36)

Proof of Lemma 1: For τ > 0, we have

P(x[j]< τ) = P

(
max

0≤n≤N−1
x[n]< τ

)
(37)

= P(x[0]< τ, . . . , x[N − 1]< τ) (38)

= P(x[0]< τ)
N

(39)

= (1−Q(τ))
N

(40)

≤
(
1−

(
τ

1 + τ2

)
1√
2π

e−
τ2

2

)N

(41)

≤ e
−N

(
τ

1+τ2

)
1√
2π

e−
τ2

2

, (42)

where we have used:

• Q(x)≥ x
(1+x2)

1√
2π

e−
x2

2 for x > 0 in (41) [53, Eq. (10)];

and

• 1− x≤ e−x ⇒ (1− x)N ≤ e−xN in (42).

Choosing τ = τ∗(k) gives, after simplifying,

P(x[j]< τ∗(k))≤ e
−2

√
k· 1√

2π

( √
2 log(2)k(1−ε(k))

1+2 log(2)k(1−ε(k))

)

, (43)

which establishes (36). �

Proof of Proposition 3: Our proof strategy is as follows. We

first obtain an upper bound on the conditional error probability,

whenconditioningon thedelaydand themaximalvalueobserved

by the encoder, namely x[j]. We then show that:

1) Theconditionalupperboundisindependentofd.Therefore,

since d is uniformly distributed, averaging with respect

to it does not affect the bound; and

2) The randomness in x[j] is asymptotically negligible with

respect to the randomness in z[j+ d] (see Lemma 1), so

that we can replace x[j] with E[x[j]] to obtain an upper

bound on the unconditional error probability.

We begin by upper bounding the aforementioned conditional

error probability. For this, let v ∼N (0, 1) and denote a ∧ b,
min(a, b) for brevity. With these notations, we have,

P

(
d̂ 6= d

∣∣ d, x[j]
)

(44)

= P



⋃

ℓ∈D
ℓ 6=d

ρ̂(d)< ρ̂(ℓ)

∣∣∣∣∣∣∣
d, x[j]


 (45)

≤E
[
1∧
(
2dm ·P

(
ρ̂(d)<ρ̂(ℓ)

∣∣ d, x[j], z[j+d]
))∣∣d, x[j]

]
(46)

≤E
[
1∧
(
2dm ·P

(
y[j+d]<v

∣∣d, x[j], z[j+d]
))∣∣d, x[j]

]
(47)

≤ P(z[j+ d]< zm| d, x[j]) (48)

+ 2dmP
(
y[j+ d]< v

∣∣ d, x[j], z[j+ d]≥ zm
)

(49)

· P
(
z[j+ d]≥ zm

∣∣ d, x[j]
)
, (50)

where:

• In (46), we have used the union bound;

• In (47), replacing y[j+ ℓ] by v can only increase the

probability. To see this more clearly, we first recall that ρ̂(ℓ)
is merely a scaled version of y[j+ ℓ]. Then, we observe that

y[j+ ℓ] = ρx[j− d+ ℓ] + ρ̄z[j+ ℓ]isaconvexcombination

ofa(possibly)one-sided(upperbounded)truncatedstandard

Gaussian RV (x[j− d+ ℓ])23 and a standard Gaussian RV

(z[j+ ℓ]), which are independent. Since v can be thought

of as a convex combination with the same coefficients of

two independent standard Gaussian RVs, it is interpreted

as replacing the truncated Gaussian x[j− d+ ℓ] with a

standard Gaussian, which can only increase the probability

that y[j+ d]< y[j+ ℓ];
• The inequality (48) holds for any zm ∈ R, since below

(respectively above) zm we bound the minimum by its first

(respectively second) argument.

We are now left with the task of judicially choosing zm, and

evaluating or bounding the probabilities in (48)–(50). To this

end, let

zm =

√
2 log(D)− ρx[j]√

1− ρ2
, (51)

where we recall that (48)–(50) is conditioned on x[j] (and d).

Now the probability in (48) is readily given by

P
(
z[j+ d]< zm

∣∣ d, x[j]
)
=Q

(
ρx[j]−

√
2 log(D)√

1− ρ2

)
, (52)

which is independent of d. As for the probability in (49), we

have,

P
(
y[j+ d]< v

∣∣ d, x[j], z[j+ d]≥ zm
)

(53)

= P

(
ρx[j]< v −

√
1− ρ2z[j+ d]

∣∣ d, x[j], z[j+ d]≥ zm

)

(54)

≤ P

(
ρx[j]< v −

√
1− ρ2z[j+ d]

∣∣ d, x[j]
)

(55)

=Q

(
ρx[j]√
2− ρ2

)
(56)

where in (55), by removing the lower bound of z[j+ d], we have

only increased the probability that ρx[j]< v −
√

1− ρ2z[j+ d],
and in (56), we have used the independence of (the standard

Gaussian RVs) v and z[j+ d]. We further note that, similarly to

(52), (56) is independent of d. At this point, upper bounding

the probability (50) by 1, and further using (52) and the upper

bound (56), we arrive at,

P

(
d̂ 6= d

∣∣∣ d, x[j]
)

(57)

≤Q

(
ρx[j]−

√
2 log(D)√

1− ρ2

)
+ 2dmQ

(
ρx[j]√
2− ρ2

)
. (58)

Since the error probability is nothing but the expectation of

the conditional error probability, we obtain,

P

(
d̂ 6= d

)
= E

[
P

(
d̂ 6= d

∣∣ d, x[j]
)]

(59)

23Recall that, if x[j− d+ ℓ] ∈ XN then x[j− d+ ℓ]< x[j] and is therefore
truncated from above, and if x[j− d+ ℓ] /∈ XN then x[j− d+ ℓ]∼N (0, 1).
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≤ P(x[j]< τ∗(k)) + P

(
d̂ 6= d

∣∣ d, x[j] = τ∗(k)
)

(60)

=

[
Q

(√
2 log(N)
1−ρ2 ·

(
ρ
√
1− ε(k)− 1√

R

)2
)

+ 2dmQ

(√
2 log(N)
2−ρ2 · ρ2(1− ε(k))

)]
(1 + o(1)) (61)

=

[
Q

(√
2 log(N)
1−ρ2 ·

(
ρ− 1√

R

)2
)

+ 2dmQ

(√
2 log(N)
2−ρ2 · ρ2

)]
(1 + o(1)) , (62)

which gives (15) with N = 2k, where we have used

P(x[j]≥ τ∗(k))E
[
P

(
d̂ 6= d

∣∣∣ d, x[j]
) ∣∣ x[j]≥ τ∗(k)

]

≤ P

(
d̂ 6= d

∣∣∣ d, x[j] = τ∗(k)
)

(63)

and (58) with x[j] = τ∗(k) in (60) and Lemma 1, particularly

(36), in (62).

Finally, we observe that in order to have a vanishing upper

bound, the Q-function’s argument in (62) must be positive.

Writing this inequality explicitly gives

ρ >
1√
R

=⇒ R>
1

ρ2
, (64)

thus establishing (13). �

APPENDIX C

PROOF OF PROPOSITION 4

To prove the proposition, we shall use the following lemmas,

whose proofs are given in Appendix E.

Lemma 2: For any R>R0,

P


ρ̂(d)< ρ̂(ℓ)

⋂{ ⋂

k∈D
k 6=d,ℓ

ρ̂(k)< ρ̂(ℓ)
}



= P(ρ̂(d)< ρ̂(ℓ)) (1 + o(1)). (65)

Lemma 3: For any ℓ ∈ D\{d},

P(ρ̂(d)< ρ̂(ℓ))≥Q

(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)). (66)

Lemma 4: Let q=maxℓ∈D\{d} y[j+ ℓ], as defined in (75)

(below). Then, for any fixed ρ ∈ (0, 1),

P(ρx[j]> q)≥
(
1− 1

N
1−ε(k)

R0
− 1

R

)
(1 + o(1)). (67)

Lemma 5: For brevity, let q=maxℓ∈D\{d} y[j+ ℓ], as defined

in (75) (below). Then,

E

[
Q

(
q−ρx[j]√

1−ρ2

)∣∣∣∣ ρx[j]> q

]
(68)

≥Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
(1 + o(1)). (69)

Proof of Proposition 4: We will bound ǫ from below in two

different ways, and then take the maximum between the two

resulting lower bounds.

For the first lower bound, we have

P

(
d̂ 6= d

)
= P



⋃

ℓ∈D
ℓ 6=d

ρ̂(d)< ρ̂(ℓ)


 (70)

≥ P



⋃

ℓ∈D
ℓ 6=d

{
ρ̂(d)< ρ̂(ℓ)

⋂{ ⋂

k∈D
k 6=d,ℓ

ρ̂(k)< ρ̂(ℓ)
}}

 (71)

=
∑

ℓ∈D
ℓ 6=d

P


ρ̂(d)< ρ̂(ℓ)

⋂{ ⋂

k∈D
k 6=d,ℓ

ρ̂(k)< ρ̂(ℓ)
}

 . (72)

Using Lemma 2 in (72) for each summand, we obtain

P

(
d̂ 6= d

)
≥ 2dm · P (ρ̂(d)< ρ̂(ℓ)) (1 + o(1)) (73)

≥ 2dm ·Q
(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)), (74)

where we have used Lemma (3) in (74), thus establishing the

second argument of the max operator in (19).

For the second lower bound, for brevity in the following

derivation, let

q, max
ℓ∈D\{d}

y[j+ ℓ], (75)

with which we have,

P

(
d̂ 6= d

)
≥ P

(
ρ̂(d)< max

ℓ∈D\{d}
ρ̂(ℓ)

)
(76)

= P(y[j+ d]< q) (77)

= E

[
P

(
z[j+ d]< q−ρx[j]√

1−ρ2

∣∣∣∣ q, x[j]
)]

(78)

= E

[
Q

(
q−ρx[j]√

1−ρ2

)]
(79)

≥ P(ρx[j]> q)E

[
Q

(
q−ρx[j]√

1−ρ2

)∣∣∣∣ ρx[j]> q

]
, (80)

where, in fact, all the transitions above are trivial.

Now, first, for any fixed ρ ∈ (0, 1),24 from Lemma 4,

P(ρx[j]> q)≥
(
1− 1

N
1−ε(k)

R0
− 1

R

)
(1 + o(1)) (81)

⇒ P(ρx[j]< q)<
1 + o(1)

N
1−ε(k)

R0
− 1

R

= o(1), (82)

where (82) holds for R>R0.

As for the expectation in (80), using Lemma 5,

E

[
Q

(
ρx[j]−q√

1−ρ2

)∣∣∣∣ ρx[j]> q

]
(83)

≥Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
(1 + o(1)). (84)

24The cases ρ= 0 and ρ= 1 can be addressed and analyzed separately
and easily.
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Thus, using (81) and (84) in (80) readily gives us

P

(
d̂ 6= d

)
≥Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
(1 + o(1)). (85)

Taking the maximum between (85) and (74) gives the lower

bound ǫ(k, ρ, dm) in (19), which completes the proof. �

APPENDIX D

PROOF OF THEOREM 1

We first obtain the upper bound

ǫ̃(k, ρ, dm),

[
2
−k

(
√

R−
√

R0)
2

R(R0−1) + 2
−k

R−2R0+1

(2R0−1)R

]
≥ ǭ(k, ρ, dm),

(86)

using the notation of the threshold rate R0. For this, with

R> 1/ρ2 =R0, the first term in (15) can simply be further

upper bounded using Q(x)≤ e−
x2

2 , ∀x > 0, as

Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
≤ exp



− log(N)

(
ρ− 1√

R

)2

1−ρ2




(87)

= 2
−k

(
ρ− 1√

R

)2

1−ρ2 = 2
−k

(
√

R−
√

R0)
2

R(R0−1) ,
(88)

where we have used N = 2k. Similarly, for the second term,

2dmQ

(
ρ
√

2 log(N)
2−ρ2

)
≤ 2dm2

−k ρ2

2−ρ2 = 2
−k

R−2R0+1

(2R0−1)R , (89)

which readily gives (86).

Next, we obtain the lower bound

ǫ
˜
(k, ρ, dm),max





c1(k,R,R0)

2
k
(
√

R−
√

R0)
2

R(R0−1)

,
c2(k,R0)

2
k

R−2R0+1

(2R0−1)R



 (90)

≤ ǫ(k, ρ, dm), (91)

with

c1(k,R,R0),

√
R(R0−1)

4π log(2)k(
√
R−R0)

2 , (92)

c2(k,R0),
√

2R0−1
4π log(2)k , (93)

which is similar in form to (86), and is obtained as follows.

Using a lower bound on the Q-function [54, Eq. (13)],

2dmQ

(
ρ
√

2 log(N)
2−ρ2

)
≥ 2dm

√
2−ρ2

4πρ2 log(N)e
− ρ2

2−ρ2 log(N)

(94)

= 2dm

√
2−ρ2

4πρ2 log(N) · 2
−k ρ2

2−ρ2 (95)

=
√

2R0−1
4π log(2)k · 2−k

R−2R0+1

(2R0−1)R , (96)

and similarly,

Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
(97)

≥
√

(1−ρ2)R

4π log(N)(ρ
√
R−1)

2 · e
− log(N)

(
1√
R0

− 1√
R

)2

1− 1
R0 (98)

=

√
R(R0−1)

4π log(2)k(
√
R−R0)

2 · 2−k
(
√

R−
√

R0)
2

R(R0−1) , (99)

which gives (91).

Now, by sandwiching the left-hand side of (20) with

− 1
k log2 (ǫ̃(k, ρ, dm)) and − 1

k log2(ǫ˜
(k, ρ, dm)) from below

and above, respectively, and taking the limit k →∞ for any

fixed R>R0, we obtain

EMIE(R) =





(ρ−1/
√
R)

2

1−ρ2 , 1
ρ2 <R<

(
2−ρ2

ρ

)2

ρ2

2−ρ2 − 1
R ,

(
2−ρ2

ρ

)2
<R

. (100)

The form (21) is obtained by straightforward algebra using the

definitions of the rate R, the threshold rate R0 and the critical

rate R1.

APPENDIX E

PROOFS OF LEMMAS 3, 2, 4 AND 5

To prove Lemma 2, we shall use the following auxiliary

lemma, whose proof is given below.

Lemma 6: For any k 6= ℓ 6= d, where k, ℓ, d ∈ D,

P(ρ̂(k)> ρ̂(d)|ρ̂(d)< ρ̂(ℓ))

=Q

(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)) = o(1). (101)

Proof of Lemma 6: Let v ∼N (0, 1) be independent of the

process y[n]. Then,

P(ρ̂(k)> ρ̂(d)|ρ̂(d)< ρ̂(ℓ)) (102)

= P(y[j+ k]> y[j+ d]|y[j+ d]< y[j+ ℓ]) (103)

=
P(y[j+ k]> y[j+ d], y[j+ d]< y[j+ ℓ])

P(y[j+ d]< y[j+ ℓ])
(104)

≤ P(v > y[j+ d], y[j+ d]< y[j+ ℓ])

P(y[j+ d]< y[j+ ℓ])
(105)

=
E [P(v > y[j+ d], y[j+ d]< y[j+ ℓ]| y[j+ d])]

P(y[j+ d]< y[j+ ℓ])
(106)

= 1
P(y[j+d]<y[j+ℓ])

[
E [P(v > y[j+ d]| y[j+ d])]

× E [P(y[j+ d]< y[j+ ℓ]| y[j+ d])]︸ ︷︷ ︸
=P(y[j+d]<y[j+ℓ])

]

(107)

= E [P(v > y[j+ d]| y[j+ d])] = P(v > y[j+ d]) (108)

= E [P(v − ρ̄z[j+ d]> ρx[j]| x[j])] (109)

= E

[
Q

(
ρx[j]√
2−ρ2

)]
≤Q

(
ρ
√

2 log(N)(1−ε(k))
2−ρ2

)
(1+o(1)),

(110)

=Q

(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)), (111)

where we have used:

• The definition of ρ̂(ℓ) in (103);

• Bayes’ rule in (104);
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• The fact that y[j+ k] is a convex combination of a one-sided

truncated normal RV (x[j+ k − d], which is upper bound

by x[j]) and a normal RV (z[j+ k]), whereas v can be

viewed as a convex combination with the same coefficients

but of two independent normal RVs. Thus, when replacing

y[j+ k] by v (105), the integration interval increases, and

the probability cannot be decreased;

• The independence of v of the process y[n] in (107); and

• In (110), Lemma 1, particularly (36). �

Proof of Lemma 2: For brevity, defineA, {ρ̂(d)< ρ̂(ℓ)} and

B ,

{⋂
k∈D
k 6=d,ℓ

ρ̂(k)< ρ̂(ℓ)

}
. Since P(A ∩ B) = P(A)P(B|A),

it suffices to show that P(B|A) = 1− o(1) or, equivalently,

P
(
B|A

)
= o(1), which is what we show next.

Focusing on this conditional probability, we have,

P
(
B|A

)
(112)

= P



⋃

k∈D
k 6=ℓ 6=d

ρ̂(k)> ρ̂(ℓ)| ρ̂(d)< ρ̂(ℓ)


 (113)

≤ (2dm − 1)P( ρ̂(k)> ρ̂(ℓ)| ρ̂(d)< ρ̂(ℓ)) (114)

≤ (2dm − 1)P( ρ̂(k)> ρ̂(d)| ρ̂(d)< ρ̂(ℓ)) (115)

≤ (2dm − 1)Q

(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)) (116)

⇒ P
(
B|A

)
= o(1) ⇒ P(B|A) = 1− o(1), (117)

where we have used the union bound in (114), the fact that

replacing ρ̂(ℓ) by ρ̂(d) can only increase the probability in (115),

Lemma 6 in (116), and (117) is for any R>R0. �

To prove Lemma 3, we shall use the following lemma, whose

proof is given below.

Lemma 7: Let v, z∼N (0, 1) be independent, and u,

min(v, V ), for some V ∈ R. Then, for any a ∈ R,

P(a < ρu+ ρ̄z)≥ P(a < v)−Q(V ). (118)

Proof of Lemma 7: We have,

P(a < ρu+ ρ̄z) (119)

= E [P(a < ρu+ ρ̄z | z)] (120)

= E

[
P

(
a−ρ̄z
ρ < u | z

)]
(121)

= E

[
1

1−Q (V )

∫ V

a−ρ̄z
ρ

1√
2π

e−
x2

2 dx

]
(122)

≥ E

[∫ ∞

a−ρ̄z
ρ

1√
2π

e−
x2

2 dx−
∫ ∞

V

1√
2π

e−
x2

2 dx

]
(123)

= E

[
P

(
a−ρ̄z
ρ < v | z

)]
−Q(V ) (124)

= P(a < v)−Q(V ), (125)

where (123) is from [1−Q(V )]−1 > 1, and (125) follows from

the fact that ρ2 + ρ̄2 = 1 and that v and z are independent. �

Proof of Lemma 3: For brevity, in the following derivation let

v1 ∼N (0, 1) be independent and denote t, x[j+ ℓ− d]. With

these notations, we have,

P( ρ̂(d)< ρ̂(ℓ)| d, x[j]) (126)

= E [P(y[j+ d]< ρt+ ρ̄v1| d, x[j], z[j+ d], v1)| d, x[j]]
(127)

≥ E [P(y[j+ d]< v1| d, x[j], z[j+ d], v1)| d, x[j]]−Q(x[j])
(128)

= P(y[j+ d]< v1| d, x[j])−Q(x[j]) (129)

= P(ρx[j]< v1 − ρ̄z[j+ d]| x[j])−Q(x[j]) (130)

=Q

(
ρx[j]√
2−ρ2

)
−Q(x[j]), (131)

where (128) is from Lemma 7 and that fact that t can either be

standard Gaussian or (a one-sided) truncated standard Gaussian

with an upper bound x[j], and in (130) we removed the condition

on d since the noise z[n] is white.

Now, using Lemma 1, we have,

P(ρ̂(d)< ρ̂(ℓ)) = E [P( ρ̂(d)< ρ̂(ℓ)| d, x[j])] (132)

≥Q

(
ρ
√

2 log(N)
2−ρ2

)
(1 + o(1)). (133)

�
Proof of Lemma 4:

P(ρx[j]> q)≥ P

(
ρx[j]> max

1≤ℓ≤2dm

vℓ

)
(134)

= E

[
P

(
ρx[j]> max

1≤ℓ≤2dm

vℓ

∣∣∣∣ x[j]
)]

(135)

= E

[
(1−Q(ρx[j]))

2dm

]
(136)

≥ E

[
(1−Q(ρx[j]))

D
]

(137)

≥ E



(
1− e−

ρ2x2[j]
2

)N
1
R


 (1 + o(1)) (138)

≥
(
1− e−ρ2 log(N)(1−ε(k))

)N 1
R

(1 + o(1))

(139)

≥
(
1− N

1
R

Nρ2(1−ε(k))

)
(1 + o(1)) (140)

=

(
1− 1

N
1−ε(k)

R0
− 1

R

)
(1 + o(1)), (141)

where we have used:

• {vℓ} are iid standard normal RVs independent from x[j],
and the inequality (134) follows from the fact that we

replaced one-sided (upper bounded) truncated normal RVs

with (unbounded) standard normal RVs, thus increasing

their support, so the probability can only be decreased;

• D > 2dm ⇒ γ2dm ≥ γD for any γ ∈ [0, 1] in (137);

• ∀x≥ 0 :Q(x)≤ e−
x2

2 , D =N
1
R (by (10)) in (138);25

• Lemma 1 in (139); and

• (1− ε)n ≥ 1− nε [55] in (140), which holds for any

0≤ ε≤ 1 and n ∈ R+ (recall N1/R =D ∈ R+). �

25The 1 + o(1) factor is due to the fact that P(x[j]> 0) = 1−
(
1
2

)2k
.
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Proof of Lemma 5: As for the expectation in (80), using

Jensen’s inequality,

E

[
Q

(
ρx[j]−q√

1−ρ2

)∣∣∣∣ ρx[j]> q

]
≥Q

(
ρE[ x[j]|ρx[j]>q]−E[ q|ρx[j]>q]√

1−ρ2

)
,

(142)

since the expectation is conditioned on ρx[j]> q, which implies

that the Q-function’s argument is positive, and the Q-function

is convex on R+. Proceeding, we have,

E [x[j]| ρx[j]> q] =
E [x[j]]− P(ρx[j]< q)E [x[j]| ρx[j]< q]

P(ρx[j]> q)
(143)

≤ E [x[j]]

P(ρx[j]> q)
= E [x[j]] (1 + o(1)), (144)

where we have used (141), and that (143) is positive, in (144).

Furthermore, we have,

E [q| ρx[j]> q] =
E [q]− P(ρx[j]< q)E [q| ρx[j]< q]

P(ρx[j]> q)
(145)

≥
√

2 log(D)(1 + o(1)), (146)

sinceE [q] =
√
2 log(2dm)(1 + o(1)) =

√
2 log(D)(1 + o(1))

and

P(ρx[j]< q)E [q| ρx[j]< q] (147)

= P(ρx[j]< q)E [E [q| ρx[j]< q, q< x[j], x[j]]| ρx[j]< q]
(148)

≤ P(ρx[j]< q)E [x[j]| ρx[j]< q] (149)

≤ P(ρx[j]< q)E [x[j]] (150)

≤
√
2 log(N)

N
1−ε(k)

R0
− 1

R

(1 + o(1)) = o(1), (151)

where we have used (82) and E [x[j]] =
√

2 log(N)(1 + o(1))
in (151).

Therefore, with (141) and (146), we obtain,

E

[
Q

(
ρx[j]−q√

1−ρ2

)∣∣∣∣ ρx[j]> q

]
(152)

≥Q

(
ρE[x[j]]−

√
2 log(D)√

1−ρ2
(1 + o(1))

)
(153)

=Q

(√
2 log(N)
1−ρ2

(
ρ− 1√

R

))
(1 + o(1)). (154)

�
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