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Abstract

There is a growing interest in individual-level causal questions to enable personalized
decision-making. For example, what happens to a particular patient’s health if we
prescribe a drug to them, or what happens to a particular consumer’s behavior if
we recommend a product to them? Conducting large-scale randomized experiments
to answer such questions is impractical—if not infeasible—due to cost, the level of
personalization, or ethical concerns. Observational data offer a valuable alternative, but
their lack of explicit randomization makes statistical analysis particularly challenging.

In this thesis, we exploit the richness of modern observational data to develop
methods for personalized causal inference. In the first part, we introduce a framework
for causal inference using exponential family modeling. In particular, we reduce
answering causal questions to learning exponential family from one sample. En route,
we introduce a computationally tractable alternative to maximum likelihood estimation
for learning exponential family. In the second part, we leverage ideas from doubly
robust estimation to enable causal inference with black-box matrix completion under a
latent factor model.
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Chapter 1

Introduction

This thesis focuses on questions in causal inference arising in applications such as
healthcare, e-commerce, and finance. In particular, we are interested in individual-level
what-if questions. For example, what happens to a patient’s health if we prescribe them
a drug, or what happens to a consumer’s behavior if we expose them to a product?
These personalized inferential tasks, i.e., determining what happens to an individual’s
outcome if we do an intervention/action, are foundational for personalized data-driven
decision-making, and complement conventional causal inference methods that focus
on population-level inference, e.g., what happens to the outcome averaged across the
population if we do an intervention?

Experimental data: Experimental data, collected through controlled trials where
interventions are systematically assigned to subjects, are the gold standard for causal
inference. As the interventions are systematically assigned, often through randomization,
the differences between groups can typically be attributed directly due to the intervention.
However, while controlled trials are fundamental in the natural and social sciences, they
are becoming increasingly costly in engineering and operational contexts. For example,
when treatments are continuous and/or high-dimensional, the sheer number of feasible
choices limits experimentation. Likewise, as the level of personalization now required
grows, conducting experiments is becoming increasingly impractical. For example, the
diversity of individuals and their unique contexts would require an enormous number of
trials to cover all possible combinations of individual characteristics and interventions.
Moreover, assigning actions at random may be ethically concerning in certain domains.
For example, it may be unethical to expose individuals to interventions with uncertain
risks merely for the sake of experimentation. These considerations make it necessary
to explore alternative approaches, such as using observational data, i.e., data acquired
without researcher manipulation.

Observational data: Observational data presents its own challenges. The key
challenge in deriving causal insights from such data is what is known as confounding.
To illustrate this, consider the classic example of Simpson’s Paradox. Focusing on the
context of diabetes, we are interested in the relationship between insulin dosage and
blood sugar levels, as in Figure 1.1. Doctors anticipate that a higher insulin level should
lead to lower blood sugar levels. In reality, if you collect raw data and try to fit a

12



Blood sugar Blood sugar
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(a) Relationship without grouping data by (b) Relationship after grouping data by the
the type of diabetes. type of diabetes.

Figure 1.1: Hlustration of Simpson’s Paradox in insulin dosage and blood sugar levels.
(a) Relationship without grouping data by the type of diabetes, showing a positive
association. (b) Relationship after grouping data by the type of diabetes (Type 0 and
Type 1), revealing the expected negative association within each group.

standard ordinary least squares, you would get a plot as shown in Figure 1.1a, which
is entirely counter-intuitive. If you examine the data more carefully, you realize that
there are two different clusters representing the two types of diabetic patients. Fitting
ordinary least squares separately for these two types, indeed recovers the expected
behavior, as shown in Figure 1.1b. This is such a paradox because we reach totally
opposite conclusions by simply dividing the data into groups.

In short, there was ‘confounding’ due to the type of diabetes. That is, the type
of diabetes introduces spurious associations, as it leads doctors to prescribe different
insulin levels and also leads to different responses from patients. If we always know such
confounders, then causal inference is simply a prediction problem after appropriately
dividing the data into groups. However, in most real-life applications, there are hidden
or unobserved confounders, as the reasons for intervention assignment are unknown. In
other words, unobserved factors can create spurious associations between interventions
and outcomes. This necessitates an emphasis on the principle that correlation is not
causation, as we can never be certain of recording all the relevant factors. Consequently,
we need principled methods to answer causal questions from observational data.

Data-Rich Environments: This thesis builds methods for personalized causal
inference, overcoming challenges of observational data by harnessing modern data-rich
environments. We define modern data-rich environments as those featuring many out-
come measurements across a wide range of units. Our interest in data-rich environments
stems from the emergence of digital platforms (e.g., internet retailers, social media
companies, and ride-sharing companies), electronic medical records systems, IoT devices,
and other real-time digitized data systems, which gather economic and social behavior
data with unprecedented scope and granularity.

Consider the following example from mobile health, a personalized healthcare
technology, that is gaining prominence lately. Companies like Apple and Fitbit use

13



smart watches to collect massive amounts of observational data. For example, these
companies record the exercise routine of individuals over a period of days. Every day,
the smartwatch records the exercise performed and the amount of calories burned by
an individual. One of the goals of these companies is to provide accessible personalized
care to users. For example, there is a growing demand to build systems that recommend
personalized workout routines. Considering the exercise sequence as the intervention
and the corresponding calories burned as the outcome, a key question that needs to
be addressed to build such systems is as follows: what happens to an individual’s
calorie count if we recommend them a different sequence of exercises? This is an
individual-level what-if question as before, but the interventions and the outcomes have
naturally become high-dimensional.

The individual’s exercise choices and the calories burned are influenced by many
factors. For example, stress levels, diet, sleep quality, heart-rate. It turns out that
some of these factors, such as stress levels and diet are not recorded by default, and
hence act as unobserved confounders. To develop intuition on how such repeated
measurements could help perform personalized causal inference in the presence of
unobserved confounding, suppose only the (binarized) stress level acts as the unobserved
confounder. Consider two simple scenarios. In the first, stress level is fixed over days,
say always high. In the second, stress varies with day, say high with probability 1/2
and low with probability 1/2. If we only have one measurement of (exercise, calories)
from each of these scenarios, then statistically speaking, it is not easy to distinguish
between them. But, if we have repeated measurements of (exercise, calories) from
each of these scenarios, then we can actually distinguish the two scenarios. In fact,
the more measurements we have, the easier it becomes. In other words, even if the
confounder is unobserved, but has some structure to it, it can be exploited with repeated
measurements, or in high-dimensions.

In this thesis, we consider scenarios where the amount of variation in the unobserved
confounders is appropriately controlled and leverage the availability of many outcome
measurements in data-rich environments. Repeated measurements represent just one
aspect of modern data’s richness. For example, companies like Apple and Fitbit collect
extensive smartwatch data across many individuals. Our hope is to extract insights from
such data by observing that oftentimes individuals behave in a similar fashion. Finally,
we also want to draw power from auxiliary information recorded by the smartwatch,
such as sleep-quality and heart-rate. In summary, the depth and breadth of modern
observational data offer a timely opportunity to develop methods for personalized causal
inference.

Below, we provide an overview of the contributions of this thesis. Primarily, we
exploit two different modeling structures to account for the unobserved confounding,
namely exponential family modeling and latent factor modeling. In the next chapter
(i.e., Chapter 2) of this thesis, we consider the classical problem of learning exponential
family distributions in a computationally efficient manner. The resulting estimator lies
at the heart of the methodology developed in Chapter 3, where we use exponential
family modeling to perform personalized causal inference in scenarios with sequential
dependence between interventions and outcomes. In the last chapter (i.e., Chapter 4) of
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this thesis, we use latent factor modeling to perform doubly robust personalized causal
inference.

1.1 Thesis Overview

1.1.1 Computationally Efficient Learning of Exponential Family:
Chapter 2

An exponential family is a set of parametric probability distributions, first introduced by
Fisher (1934), and later generalized by Darmois (1935), Koopman (1936), and Pitman
(1936). Exponential families play an important role in statistical inference and arise in
many diverse applications for a variety of reasons. Indeed, they are analytically tractable,
arise as the solution to several natural optimization problems on the space of probability
distributions, and have robust generalization properties; see, e.g., Barndorff-Nielsen
(2014); Brown (1986).

Consider the classical problem of learning the natural parameters of a k-parameter
exponential family in a computationally and statistically efficient manner. We focus
on the setting where the support as well as the natural parameters and statistics are
appropriately bounded. The obvious approach for learning these parameters from
independent, identically distributed samples is to use the maximum likelihood estimator
(MLE). While MLE has many attractive asymptotic properties such as consistency,
asymptotically normality, and asymptotically efficiency, it is not directly applicable in
high dimensions due to the computational intractability of calculating the partition
function (i.e., the normalization constant) (Jerrum and Sinclair, 1989; Valiant, 1979). In
fact, even approximating the partition function, up to a multiplicative error, is NP-hard
in general (Sly and Sun, 2012).

Via a novel loss function we develop a computationally and statistically efficient
estimator that is consistent as well as asymptotically normal under mild conditions. At
the population level, we show that the methodology can be viewed as the maximum
likelihood estimation of a re-parameterized distribution belonging to the same class
of exponential families. We show further that the estimator can be interpreted as a
solution to minimizing a particular Bregman score as well as an instance of minimizing
the surrogate likelihood of Jeon and Lin (2006). We provide finite sample guaran-
tees to achieve an ¢y error of o in the parameter estimates with sample complexity
O(poly(k)/a?). Moreover, the method achieves the order-optimal sample complexity
O(log(k)/a*) when tailored for node-wise sparse Markov random fields (Shah et al.,
2021d; Vuffray et al., 2016a, 2022a). A preliminary version of this work appeared in
Shah et al. (2021a) and the full version appeared in Shah et al. (2024).

1.1.2 Causal Inference via Exponential Family Modeling: Chap-
ter 3

Given an action-outcome pair, counterfactuals reveal the potential outcome, i.e., the
outcome if an intervention (with a different action) had been implemented. Consider a
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movie streaming platform interacting with a customer, over many days, who watches a
movie on the platform daily based on observed and unobserved factors. Given historical
data of many customers, the platforms seeks to maximize every customer’s viewing
time and asks: what would have happened to each customer’s viewing time if they were
exposed to a different sequence of movies? In addition to the spurious associations
caused by the unobserved factors, this task is challenging as each customer’s viewing
time could sequentially depended on prior interactions in addition to the ongoing
interaction. Further, each customer provides only a single interaction trajectory and
the customers could be heterogeneous in that they may have different responses to same
sequence of movies.

The econometrics literature on panel data, where one observes multiple outcomes for
each unit, investigates such questions, representing potential outcomes as a tensor with
units (individuals), measurements (days), and interventions (movies) as different axes.
For linear panel data settings, a common approach is factor modeling, where potential
outcomes and interventions (binary or multi-ary) are assumed to be independent
conditional on some latent factors. See, e.g., difference-in-difference methods (Angrist
and Pischke, 2009; Bertrand et al., 2004), synthetic control (Abadie et al., 2010a;
Abadie and Gardeazabal, 2003a), its variants (Arkhangelsky et al., 2021; Dwivedi et al.,
2022b), and extensions to multi-ary interventions in synthetic interventions (Agarwal
et al., 2020). For non-linear panel data settings, the most commonly used models
include probit, logit, Poisson, negative binomial, proportional hazard, and tobit models
(see Fernandez-Val and Weidner (2018) for an overview) where some parametric model
characterises the distribution of the outcomes conditional on the unobserved covariates,
the observed covariates, and the interventions. However, these works do not allow
outcomes and interventions to explicitly depend on past outcomes and interventions.

We use exponential family to estimate the potential outcome tensor and accom-
modate (a) sequential dependence of outcomes and interventions on past outcomes
and interventions, and (b) unseen interventions from a compact set. We model the
conditional distribution of outcomes as an exponential family and reduce learning the
potential outcome tensor (with n units and p measurements) to learning parameters
of n different distributions from the same exponential family, each with only one p-
dimensional sample. Our convex estimator jointly learns all n parameter vectors and
results in finite sample recovery rate of O(p~'/?) for individual-level mean of outcomes.
Our framework extends some of the widely used panel data models from economet-
rics. In particular, we allow for dynamics in the outcomes, the interventions, and
the observed covariates for the linear and logistic unit fixed effect models as well as
the linear and logistic time fixed effect models. Further, we allow the causal effect to
vary with unit and time for the unit fixed effect models, and the effect to vary with
time for the time fixed effect models. Our framework also enables imputing sparsely
missing unobserved factors and denoising data with sparse measurement errors. En
route, we derive sufficient conditions for compactly supported distributions to satisfy
the logarithmic Sobolev inequality. Methodologically, our work generalizes prior work
of (a) Dagan et al. (2021); Kandiros et al. (2021) on learning Ising models (and their
extensions to discrete, continuous, or mixed variables) from a single sample, where we
learn the dependencies between variables and (b) Shah et al. (2021d); Vuffray et al.
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(2016a, 2022a) on learning Markov random fields (a sub-class of exponential family)
from multiple independent samples, where we allow the samples to be non-identically
distributed. This work is currently under review and a preprint version can be found at
Shah et al. (2022).

1.1.3 Causal Inference via Latent Factor Modeling: Chapter 4

In causal inference, model-based and design-based are two complementary identifi-
cation strategies. The former employs restrictions on the process that determines
how observed /unobserved factors affect potential outcomes, while the latter employs
restrictions on the process that determines how observed/unobserved factors affect
intervention assignments. Thus, the two primary approaches to estimating treatment
effects are methods based on modeling outcomes and those based on modeling assign-
ments. Consider the example of an internet-retail platform where customers interact
with various product categories. For each consumer-category pair, the platform makes
decisions to either offer a discount or not, and records whether the consumer purchased
a product in the category. Outcome-based methods operate by imputing the missing
potential outcomes for each consumer-product category pair. This process involves
predicting whether a consumer, who received a discount, would have made the purchase
without the discount (i.e., the potential outcome without discount), and conversely, if
a consumer who did not receive the discount would have purchased the product had
they received the discount (i.e., the potential outcome with discount). In contrast,
assignment-based methods estimate the probabilities of consumers receiving discounts in
each product category and adjust for missing potential outcomes by weighting observed
outcomes inversely to the probability of missingness.

A substantial body of literature has explored outcome-based methods, particularly
in settings where all confounding factors are measured (see, e.g., Abadie and Imbens,
2006; Angrist, 1998; Cochran, 1968; Rosenbaum and Rubin, 1983b, among many others).
Imputing potential outcomes in the presence of unobserved confounders poses a more
complex challenge. In this context, a commonly adopted framework is the synthetic
control method and its variants (see, e.g., Abadie et al., 2010a; Abadie and Gardeazabal,
2003a; Arkhangelsky et al., 2021; Cattaneo et al., 2021). An alternative but related
approach to outcome imputation under unobserved confounding is the latent factor
framework (Bai, 2009; Bai and Ng, 2002; Xiong and Pelger, 2023), wherein each element
of the large-dimensional outcome vector is influenced by the same low-dimensional vector
of unobserved confounders. Matrix completion methods (see, e.g., Agarwal et al., 2023;
Athey et al., 2021; Bai and Ng, 2021; Chatterjee, 2015; Dwivedi et al., 2022a) which have
found widespread applications in recommendation systems and panel data models, are
closely related to latent factor models. Similarly, existing assignment-based procedures
to estimate treatment effects rely on the assumption of no unmeasured confounding
(see, e.g., Hirano et al., 2003; Robins et al., 2000; Wooldridge, 2007), common trends
restrictions (Abadie, 2005), or the availability of an instrumental variable (Abadie,
2003; Sloczynski et al., 2024). Doubly robust estimators (see Bang and Robins, 2005;
Chernozhukov et al., 2018; Robins et al., 1994) combine model-based and design-based
strategies to provide estimators that remain consistent as long as either of the two sets
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of restrictions is correct. In settings with no unobserved factors, these relationships are
often estimated using machine learning, a technique known as double machine learning.
However, despite their popularity, doubly robust estimators are unavailable for settings
with unobserved factors, such as the panel data setting described earlier.

We propose a doubly-robust estimator of treatment effects in the presence of
unobserved confounding by leveraging information on both the outcome process and
the intervention assignment mechanism under a latent factor framework. The core
identification concept is that if each element of a high-dimensional outcome vector is
influenced by a common low-dimensional vector of unobserved confounders, it becomes
possible to remove the influence of the confounders and identify treatment effects.
Our method combines outcome imputation and inverse probability weighting with
a new cross-fitting approach for matrix completion. We show that the proposed
doubly-robust estimator has better finite-sample guarantees than alternative outcome-
based and assignment-based estimators. Furthermore, the doubly-robust estimator is
approximately Gaussian, asymptotically unbiased, and converges at a parametric rate,
under provably valid error rates for matrix completion, irrespective of other properties
of the matrix completion algorithm used for estimation. This work is currently under
review and a preprint version can be found at Abadie et al. (2023).
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Chapter 2

Computationally Efficient Learning of
Exponential Family

2.1 Introduction

Consider a random vector x = (xq, - - - , x,) with support X C R?. An exponential family
is a set of parametric probability distributions with probability densities of the following
canonical form

fx(x:;0) eXp(OTqb(m) + /B(m)), (2.1)

where & € X is a realization of the underlying random variable x, & € R is the natural
parameter, ¢: X — RF is the natural statistic, k denotes the number of parameters,
and  is the log base function. The family is specified by fixing X', ¢, and (5, and 6 is
varied to obtain different distributions within the family.

We focus on exponential families with bounded support as introduced by Hogg
and Craig (1956). These so-called “truncated” exponential families share the same
parametric form with their non-truncated counterparts up to a normalizing constant,
and naturally arise in applications due to limitations of data acquisition.

As we will develop, of interest are families in which there are constraints on the
(convex) parameter set @ that can, in general, be expressed in terms of a matrix norm
bound. Accordingly, for k = k1ky we express (2.1) in the convenient form?

fx(x;©) exp((@, <I>(33)>)7 ®coO,

where ©® = [©,;] € R"** is the natural parameter, ® = [®;;]: X — RM**2 is the
natural statistic, and <@, <I>($)> denotes the matrix inner product, i.e.,

(0,8(x)= > 0P

i€lk1],7€k2]

IFor brevity, we absorb the log base function 3 into the natural statistics and let the corresponding
entry of the natural parameter be 1.
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We restrict attention to exponential families that are minimal so that the parameters
are identifiable. This means there does not exist a nonzero matrix U € R¥1**2 such
that (U, ®(x)) is equal to a constant for all & € X. Any non-minimal family can be
reduced to a minimal one by eliminating components of the natural statistic.

If the natural statistic ® and the support X are known, then learning a distribution
in the exponential family is equivalent to learning the corresponding natural parameter
©.

The obvious approach for learning these parameters from independent, identically
distributed (i.i.d.) samples is to use the maximum likelihood estimator (MLE) for
fx(;©). Given iid. data ... 2™ the MLE of f,(-; ®) minimizes the loss function

-3 o(0.8() +1n [ exp((0.8(a)) do (23

The MLE has many attractive asymptotic properties: a) consistency (Ferguson, 2017,
Theorem 17), i.e., as the sample size goes to infinity, the bias in the estimated parameters
goes to zero; b) asymptotic normality (Ferguson, 2017, Theorem 18), i.e., as the sample
size goes to infinity, normalized estimation error coverges to a Gaussian distribution;
and c) asymptotic efficiency (Ferguson, 2017, Theorem 20), i.e., as the sample size goes
to infinity, the variance in the estimation error attains the minimum possible value
among all consistent estimators.

However, the MLE computation is computationally hard (Jerrum and Sinclair, 1989;
Valiant, 1979). Indeed, evaluating the objective function (2.3) is generally infeasible due
to the presence of the log partition function. In fact, even approximating the partition
function, up to a multiplicative error, is NP-hard in general (Sly and Sun, 2012).

As such, the MLE is typically unsuitable for practical use in high-dimensional settings.
Accordingly, the focus of this work is on establishing—by construction—the existence
of computationally and statistically efficient methods for learning the parameters in
such settings.

2.1.1 Some Basic Notation

We use the set notation [t] = {1,...,t} for any natural . Random variables are denoted
using sans-serif fonts; e.g., v, and deterministic quantities are denoted using serifed
fonts; e.g., v. Vectors are denoted using bold face; e.g., v. We use v; to denote the ith
element of v, so, e.g., v = (vy,...,v;). We use

¢ 1/q
MMé(Z]wﬂ
=1

to denote the ¢, norm of v € R for ¢ > 1, and

o/l 2 maxiu
1€[t]
to denote the /., norm.
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Matrices are denoted using upper-case bold face; e.g., M. For a matrix M € R**?
we denote the element in ith row and jth column by M;;, and the singular values of
the matrix by o;(M) for i € [min{u, v}]. We denote the matrix maximum norm by

IM||max = max | M,
]

i€lul,j€v

the entry-wise L, , norm by

a2 (S (Simr))

JE] “Nigy]

the Schatten p-norm by

DY af’(M)>1/p,

t€[min{u,v}]
and the operator norm by

M, £ max [[My],.

y: [lyllp=1

For convenience, we denote the Frobenius norm by || M]||r £ [[M]|29, the nuclear norm
by [|[M|* £ [|[M]|%, and the spectral norm by [[M]| £ ||M]||z.
We denote the Frobenius or trace inner product of matrices M, N € R**? by

(M|N) & Y M;;N;.

i€[ul,jE€[v]

More generally, we use R(M) to denote a generic matrix norm, and R*(M) £

supn{(M,N): R(N) < 1} to denote the corresponding dual norm.

We denote the vectorization of a matrix M € R**” by vec(M) € R“*!  the ordering
of the elements within which is not important as long as it is consistent. We use
0 € R***2 to denote the matrix whose entries are all zero. Finally, we use B,(b) to
denote a p-dimensional ¢, ball of radius b centered at 0 € R?, for ¢ € {1,2}.

2.1.2 Outline

The remainder of this chapter is organized as follows. Section 2.2 provides, for conve-
nience, a concise summary of the chapter’s contributions, and Section 2.3 contains a
summary of related work as context for the present development. In Section 2.4, we
formulate the problem of interest and provide examples. In Section 2.5, we describe the
proposed learning methodology, and in Section 2.6, we provide our analysis and key
results including the connections to the MLE of of a re-parameterized distribution, and
our development of consistency, asymptotic normality, and finite sample guarantees.
In Section 2.7, we provide our empirical findings. Finally, Section 2.8 contains some
concluding remarks.

21



2.2 Summary of Contributions

The contributions of this chapter include the following.

2.2.1 Estimator

Given samples V), ..., ™ from f,(-; ®*) for ®* € @, we develop and analyze learning
a member of the exponential family (2.2) with parameter set @ via the estimator

0, € argmin L,(0) (2.4a)
0co
with the convex loss function
1 n
L,(0)=— exp(—(©, B(z))), 2.4b
(©) = 3 exp(~(8.#(=")) (2.4)
where

D(-) £ B() — Eyy, [D()] (2.4c)

are the centered statistics,®> with Uy denoting the uniform distribution on X. We
establish that ©,, is consistent and (under mild further restrictions) asymptotically
normal (see Theorem 2.2 in Section 2.6.4). We show that the loss function in (2.4b) is
a smooth function of © (see Proposition 2.1 in Section 2.5) and satisfies a restricted
strong convexity property (see Proposition 2.2 in Section 2.5). This implies, using
Agarwal et al. (2010), that an e-optimal solution ©,,, can be obtained in O(log(1/e))
iterations. In addition, we provide rigorous finite sample guarantees for ©,, to achieve an
error of « (in the Frobenius norm) with respect to the true natural parameter @* with
O(poly(kiks)/a?) samples (see Theorem 2.3 in Section 2.6.5). We note the loss function
in (2.4b) is a generalization of the loss functions proposed in Shah et al. (2021d); Vuffray
et al. (2022b, 2016b) for learning node-wise-sparse Markov random fields (MRFs). In
particular, Theorem 2.3 can be specialized to recover the natural parameters of sparse
MRFs with O(log(kks) /o) samples (see Remark 2.3 in Section 2.6.5). Beyond local
structure on @ (of node-wise-sparsity) as in MRFs, our framework can capture various
forms of global structure on O, e.g., bounded maximum norm, bounded Frobenius
norm, bounded nuclear norm (see Section 2.4.1).

2.2.2 Connections

We establish relationships between our method and various existing methods in the
literature. First, we show that the estimator that minimizes the population version of
the loss function in (2.4b), viz.,

L(©) =E[exp(—(©,®(x)))], (2.5)

2This centering plays a key role in ensuring that our loss function is proper.
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is equivalent to the estimator that minimizes the Kullback-Leibler (KL) divergence
D(Ux ()| fx(:©" = ©)),

(see Theorem 2.1 in Section 2.6.1). Accordingly, at the population level, the method
can be viewed as the MLE of the parametric family fx(-; ©* — @). It follows from this
divergence relation that £(©) is minimized if and only if ® = ©*, which in turn implies
that £(©) is a proper loss function. This connection provides intuitive justification
for the estimator (2.4). Second, we demonstrate that the estimator in (2.4) can be
interpreted as a solution to minimizing a particular Bregman score, and thus connect
our method with score-based methods (see Proposition 2.4 in Section 2.6.2). Phrased
differently, we show that optimizing a specific separable Bregman score is equivalent to
the learning task of interest. And as a result, our work establishes the computational
tractability of this score. Finally, we show that our estimator can be viewed as an
instance of the surrogate likelihood estimator proposed by Jeon and Lin Jeon and
Lin (2006), and thus draw connections with nonparametric density estimation (see
Proposition 2.5 in Section 2.6.3).

2.3 Background and Related Work

First, there are two broad lines of approaches to overcome the computational hardness
of the MLE: approximating the MLE; and selecting a surrogate objective. In the sequel,
we provide a summary of representative examples; further discussion is deferred to
Appendix 2.A.

2.3.1 Approximating the MLE

Techniques in this category typically approximate the MLE by approximating the log-
partition function. Examples include: approximating the gradient of log-likelihood with
a stochastic estimator by minimizing the contrastive divergence (Hinton, 2002); upper
bounding the log-partition function by an iterative tree-reweighted belief propagation
algorithm (Wainwright et al., 2003); and using Monte Carlo methods like importance
sampling for estimating the partition function (Robert and Casella, 2013). Since these
methods approximate the partition function, they come at the cost of an approximation
error or result in a biased estimator.

2.3.2 Selecting a surrogate objective

This approach avoids the partition function computation by selecting a surrogate objec-
tive that is easier to compute. One class of examples are pseudo-likelihood estimators,
which approximate the joint distribution with the product of conditional distributions,
each of which only represents the distribution of a single variable conditioned on the
remaining variables (Besag, 1975a). Another class are score-matching estimators, which
minimizes the Fisher divergence between the true log density and the model log density
(Hyvérinen, 2007; Hyvérinen and Dayan, 2005). Even though score-matching does not
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require evaluating the partition function, it is computationally expensive as it requires
computing third order derivatives for optimization. And yet another class are estimators
based on kernel Stein discrepancy, which measures the kernel mean discrepancy between
a data distribution and a model density using Stein’s identity (Chwialkowski et al.,
2016; Liu et al., 2016). This measure is directly characterized by the choice of the kernel;
see Appendix 2.A.2 for further discussion.

Next, there are a variety of methods for learning classes of exponential families with
specific structure. Representative examples are as follows.

2.3.3 Learning the Gaussian distribution

The literature on learning exponential family distributions with unbounded support has
been largely restricted to Gaussian distributions. Moreover, learning such distributions
has commonly focused on those described by sparse graphical models. Examples include
the neighborhood selection scheme (Meinshausen et al., 2006), graphical lasso (Friedman
et al., 2008), and constrained ¢;-minimization for inverse matrix estimation (CLIME)
(Cai et al., 2011). However, finite sample analysis of these methods requires various
conditions that are hard to verify in practice, such as the incoherence assumption
(see Jalali et al. (2011); Wainwright et al. (2006)) and the precision matrix having
bounded condition number. In a recent work, Misra et al. (2020) provides the first
polynomial-time algorithm whose sample complexity matches the information-theoretic
lower bound of Wang et al. (2010) without the aforementioned conditions. A faster
alternative to Misra et al. (2020), for a specific subclass of Gaussian graphical models,
is proposed in Kelner et al. (2020).

There has also been a similarly long history of learning truncated Gaussian distribu-
tions dating back to Galton (1898), Pearson (1902); Pearson and Lee (1908), Lee (1914),
and Fisher (1931). More recently, Daskalakis et al. (2018) shows that it is possible to
learn, in polynomial time, the mean vector and the covariance matrix of a p-dimensional
truncated Gaussian distribution, up to an £y error of o with O(p?/a?) samples—i.e.,
with a sample complexity of the same order as when there is no truncation.

2.3.4 Learning sparse MRFs

MRFs are an important class of exponential family distributions, and often arise out of
maximum entropy formulations; see, e.g., Wainwright and Jordan (2008). A popular
method for learning node-wise sparse MRFs is estimating node-neighborhoods (i.e.,
fitting conditional distributions of each node conditioned on the rest of the nodes).
More recent work considers a subclass of node-wise sparse pairwise continuous MRFs
in which the node-conditional distribution of x; € &; for every i € [p] arises from the
exponential family

ol xop( 6 3 00(ay)|ot) ). (26)

JElpl.g#i
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where ¢(x;) is the natural statistics and

Oit Y Oy dlz)

JElpl.i#i

is the natural parameter.> Yang et al. (2015) show that only the joint distribution

fu(x) o exp (Z ©; ¢(x:) + > Oy dlx:) (b(xj)> : (2.7)

i€[p] J#i

is consistent with the node-conditional distributions (2.6). In turn, to learn the distribu-
tion (2.7) for linear ¢(-), Yang et al. (2015) proposes an ¢, regularized node-conditional
log-likelihood. However, the associated finite sample analysis requires the following
conditions: incoherence, dependency (see Jalali et al. (2011); Wainwright et al. (2006)),
bounded moments of the variables, and local smoothness of the log-partition function.

Tansey et al. (2015) extend the approach in Yang et al. (2015) to vector-space MRFs
(i.e., vector natural parameters and natural statistics) and nonlinear ¢(-). In partiular,
they propose a sparse group lasso (Simon et al., 2013), regularized node-conditional log-
likelihood, and an alternating direction method of multipliers (ADMM) based approach
for solving the associated optimization problem. However, the analysis continues to
require the conditions of Yang et al. (2015).

While node-conditional log-likelihood has been a natural choice for learning ex-
ponential family MRFs of the form (2.7), M-estimation (Shah et al., 2021d; Vuffray
et al., 2022b, 2016b) and maximum pseudo-likelihood estimation (Dagan et al., 2021;
Ning et al., 2017; Yang et al., 2018) have recently gained popularity. The objective
function in M-estimation is a sample average and the estimator is generally consistent
and asymptotically normal. Shah et al. (2021d) propose the following M-estimation
(inspired by Vuffray et al. (2022b, 2016b)) for vector-space MRFs and nonlinear ¢(-):

n

o1
mmﬁzexp(—@w?))— 3 @m?))so(a:g%),
t=1 JElpl,i#i
with
ola) 2 b(as) — / o) Un, () A,

An entropic descent algorithm (borrowed from Vuffray et al. (2022b)) is used to solve
the optimization of (2.8), and the associated finite-sample bounds rely on the bounded
domain of the variables and a variance lower condition (which is naturally satisfied by

linear ¢(-)).

Yuan et al. (2016) consider sparse pairwise exponential family MRFs of the form

Jx(@) oc exp (Z ©; ¢(zi) + Z Oy ¢ (@i, xj))7 (2.9)

i€[p) J#i

3Under node-wise sparsity, > (o], 1(©;; # 0) is bounded by a constant for every i € [p].

VS
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which is a broader class than those described by (2.7). For this class, they propose
an {y; regularized joint likelihood and an /3, regularized node-conditional likelihood.
They further develop Monte-Carlo approximations via proximal gradient descent. The
correpsonding finite-sample analysis requires restricted strong convexity (of the Hessian
of the negative log-likelihood of the joint density) and bounded moment-generating
function of the variables.

Building upon Shah et al. (2021d); Vuffray et al. (2022b, 2016b), Ren et al. (2021)
study the learning of continuous exponential family distributions through a series of
numerical experiments. They consider unbounded distributions and allow for terms
corresponding to multi-wise interactions in the joint density. They assume local structure
on the parameters as in MRFs and their estimator is defined via a series of node-wise
optimization problems. Notably, Ren et al. (2021) reports that among the methods
described above, those based on M-estimation have superior numerical performance
compared to the ones based on pseudo-likelihood estimation.

Likewise, motivated by causal inference applications and building upon Shah et al.
(2021d) and Dagan et al. (2021), Shah et al. (2022) consider learning the node-conditional
distribution corresponding to the joint distribution in (2.7) when certain variables remain
unobserved, and provide finite sample guarantees for learning the counterfactual means.

We emphasize that the above developments are limited to scenarios in which the
natural parameters are node-wise sparse, and so none apply to setting in which the
natural parameters have, e.g., a bounded nuclear norm (corresponding to a convex
relaxation of a low-rank constraint). Such constraints are among those of interest in
the present work.

2.3.5 Score-based method

Score-based methods are also applicable to learning exponential families. A scoring rule
S(zx, Q) is a numerical score assigned to a realization @ of a random variable x and it
measures the quality of a predictive distribution @ (for which the probability density is
q(+)). If P is the true distribution of x, the divergence associated with a scoring rule is
defined as

Ds(P|Q) = Ep[S(x,Q) — S(x, P)].

Within this framework, the MLE is an example of a scoring rule with the choice
S(-,Q) = —logq(-) and the resulting divergence is the KL divergence.

To avoid the intractability of MLE, Hyvérinen (2007); Hyvérinen and Dayan (2005)
propose the scoring rule

2
27

S(.Q) = Alogg() + 5|V loga()

where A is the Laplacian operator and V is the gradient. This method is called
score-matching and the resulting divergence is the Fisher divergence. Score-matching is
widely used for estimating unnormalized probability distributions because computing
the scoring rule S(+, Q) does not require knowing the partition function. Despite the
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flexibility of this approach, it is computationally expensive in high dimensions since it
requires computing the trace of the unnormalized density’s Hessian (and its derivatives
for optimization). Additionally, it breaks down for models in which the second derivative
grows very rapidly.

Truncated exponential family distributions are learned using the principle of score-
matching in Liu et al. (2022). This work builds on the framework of generalized
score-matching (Hyvérinen, 2007) and proposes a novel estimator that minimizes a
weighted Fisher divergence. It is shown that the estimator is a special case of the one
minimizing a Stein discrepancy. However, the associated finite sample analysis also relies
on assumptions that are hard to verify—e.g., the assumption that the optimal parameter
is well-separated from other neighboring parameters in terms of the population objective.

2.3.6 Nonparametric density estimation

Finally, exponential families can also be learned via approaches based on nonpara-
metric density estimation. Goodd and Gaskins (1971) introduce the idea of penalized
log-likelihood for nonparametric density estimation. The logistic density transform
methodology, commonly used today for nonparametric density estimation, was intro-
duced by Leonard (1978) to incorporate the positivity (fx(-) > 0) and normalization
([y fx(x) dz = 1) constraints. They considered densities of the form

fu() oc exp(n(a)), (2.10)

with some constraints on 7(-) for identifiability, and propose to estimate 7(-) by mini-
mizing the penalized log likelihood

% Z n(x;) + log/xexp(n(w)) dx + \J(n), (2.11)

where A > 0 is a smoothing parameter and J(7) is a penalty functional.

While this method has been successful in low dimensions, it scales poorly in higher
dimensions. In high-dimensional problems, the main difficulty is in computing the
requisite multidimensional integral in (2.11), which does not decompose in general. To
circumvent this computational limitation, Jeon and Lin (2006) propose a penalized
M-estimation (surrogate likelihood) method that minimizes (over 7)

% Z exp(—n(x;)) + /X p(x) n(zx) de + X J(n), (2.12)

where 7(+) lies in a reproducing kernel Hilbert space (RKHS) and p(-) is some fixed
known density with the same support as the unknown density (2.10). The resulting
density estimate in this formulation is fy(z) o p(a) exp(i(z)). It is shown that with
appropriate choices of p(-), the integral [, p(x)n(x)dx can be decomposed into sums
of products of one-dimensional integrals, allowing faster computation. However, the
selection of A that delivers reasonable performance requires the evaluation of the
normalization [, p(x)exp(n(x))dx. Additionally, the properties of the estimator in
(2.12) are generally not yet known.

27



2.4 Problem Formulation

To start, we let x = (xq, ..., x,) represent a p-dimensional vector of continuous random
variables.? For any i € [p|, we use X; to denote the support of x;, which is a bounded
measurable subset of R. And @ = (zy,...,1,) € X £ Xy x -+ x X, denotes a realization
of x.

With ©* denoting the true natural parameter, the learning task is as follows. Given
n independent samples =, ... ™ from f,(z;©*) of the form (2.2), compute an
estimate © of ©* in polynomial time such that ||©* — ©||p is arbitrarily small.

In this formulation, the family (2.2) is minimal and truncated, and both the natural
statistic @ and the support X are known. In the sequel, we describe additional
constraints we impose on the natural parameter and statistic.

2.4.1 Natural parameter ©

We restrict our attention to convex parameter sets @ such that a suitable norm of the
natural parameter ® € R¥***2 is bounded. Examples include bounded maximum norm
|®||max, bounded Frobenius norm ||®||r, and bounded nuclear norm ||®||*.

Assumption 2.1 (Bounded norm of ©).
e {9: R(O) < 7“},
where R: R¥>*k2 5 R, is a norm and r is a known constant.

Assumption 2.1 provides flexibility in the problem specification; a practitioner has
the option to choose from a variety of constraints on the natural parameters (that
can be handled by our framework). For example, in some applications every entry of
the parameter is bounded while in some other case the sum of singular values of the
parameter matrix is bounded (convex relaxation of low-rank parameter matrix).

Remark 2.1. We note that p is not assumed to be a constant. Instead, we think of ky
and ko as implicit functions of p. Typically, for an exponential family, the quantity of
interest is the number of parameters, i.e., k = kiks, and this quantity scales polynomially
inp, e.g., k=0(p") for t-wise MRFs over binary alphabets (see Section 2.7).

2.4.2 Natural statistic ®

We further restrict our attention to suitably bounded natural statistic ®(x): X —
RF1xk2 We combine two notions of boundedness. First, we assume that the dual norm
(defined with respect to R used in the definition of the parameter set in Assumption 2.1)
of the natural statistic is bounded:®

4Even though we focus on continuous variables, our framework applies equally to discrete or mixed
variables.

5This enables us to bound the matrix inner product between the natural parameter ® and the
natural statistic ®(-).
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Assumption 2.2 (Bounded dual norm of ®). The dual norm R* of the natural statistic
® is bounded by a constant 7. Formally,

R (®(x)) <T,
for any x € X.

Examples of dual norms include the L;; norm ||®(x)|11, the Frobenius norm
|®(x)||r, and the spectral norm ||® ()|, when the underlying norm R is the maximum
norm ||®||max, the Frobenius norm ||®||r, and the nuclear norm ||®||*, respectively.
While we require this assumption for our analysis, our empirical findings (later in
Section 2.7) suggest that the assumption may not be a strict requirement in practice.

Second, we require that the maximum norm of the natural statistic ®(-) also be
bounded:

Assumption 2.3 (Bounded maximum norm of ®). For any x € X,

1@ (@) lmax < Pmas,

where Gmax 1S a constant.

Examples of natural statistics and their support satisfying Assumptions 2.2 and
2.3 include both polynomial and trigonometric statistics; see Appendix 2.B for further
discussion.

Finally, we further restrict attention to the case in which the autocorrelation matrix
of vec(®(x)) has positive eigenvalues.

Assumption 2.4 (Positive definite @ autocorrelation). The minimum eigenvalue Ay,
of Ex[vec(®(x)) vec(P(x))] is positive.

2.5 Learning Algorithm

Our learning algorithm (2.4) draws inspiration from the recent advancements in learning
sparse MRFs Shah et al. (2021d); Vuffray et al. (2022b, 2016b). The loss function
L, (0), defined in (2.4b), is an empirical average of the inverse of the functional of x to
which the probability density fy(@;©®) in (2.2) is proportional (with centered natural
statistic (2.4c)). As defined in (2.4a), the associated estimator ©,,, minimizes £, (©)
over all ® satisfying Assumption 2.1.

Note that (2.4) is a convex optimization problem, i.e., we are minimizing a convex
function £,, over a convex set @. Moreover, the loss function £,,(®) has key additional
structure. First, £,(©) obeys the following smoothness property, which we verify in
Appendix 2.C.

Proposition 2.1 (Smoothness of £,,). Consider any ® € @. Under Assumptions 2.1,
2.2, and 2.3, L,(0) is a 4k1kood smooth function of ©.

2 2rr
max®

Second, L, (©) obeys the following restricted strong convexity property with high
probability, which we verify in Appendix 2.D.
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Proposition 2.2 (Restricted strong convexity of L,,). Suppose Assumptions 2.1, 2.2,
2.3, and 2.4 are satisfied. Define

A [ M]]1,1
Me40\{0} |M]|g

Yk, ka) = (2.13)

Consider any © € RF>**2 such that A = © — O* satisfies A € 40. Then, for any fived
d € (0,1) and provided

12804 ky, ko)? 2k2 k2
n> 8¢max7< 1, 2) lOg( 1 2)’

)\r2nin 5
the residual loss
L, (A, ) £ L,(0"+A)—L,(0") —(VL,(O"),A) (2.14)
satisfies
A e—QTF
A ) > min A 2

with probability at least 1 — 9.

As a result of the properties established by Propositions 2.1 and 2.2, there exist
efficient implementations for finding an e-optimal solution of ©,.5 In particular, from
(Agarwal et al., 2010, Theorem 1), the run-time of such an implementation scales as
O(log(1/€)) under these properties. Furthermore, from Slater’s condition (which holds
because int(©) # ), we can express ©,, as a solution to the following unconstrained
optimization:

~

®, € argmin £,(0) + A\, R(O), (2.15)

G)ERkl X ko

where ), is a regularization penalty. As we develop in Section 2.6, ©,, is close to O
(in Frobenius norm) when )\, is appropriately chosen. In particular, from (Negahban
et al., 2012, Corollary 1), this is possible whenever the loss function satisfies restricted
strong convexity and the regularization penalty is such that A, > 2R*(VL,(©*)). We
note that, as required, the addition of the regularization preserves restricted strong
convexity of the optimization in (2.15) due to convexity of norms. In turn, to choose
an appropriate \,, we define
R*(M)

ki, ko) = max _ 2.16
g( 1 2) MeRF1 ¥k2\ {0} HMHmax ( )

Then, it suffices to bound ¢(-,-) and the maximum norm of the gradient of £, (©),
evaluated at the true natural parameter. We bound the former in Section 2.6 and the
latter below, with a proof in Appendix 2.E.

6Recall that éem is an e-optimal solution of ®,, if En(és,n) < En(@n) + € for any € > 0.
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Proposition 2.3 (Bounded [|VL,,(©*)||max). Suppose Assumptions 2.1, 2.2, and 2.3
are satisfied. Fiz any e >0 and § € (0,1). Then provided

. 8¢12nax exp(4rT) log ( 2k, ko ) |
€2 )

we have’
VL, (O7)][max < ¢,
with probability at least 1 — 6.

In our implementation, we obtain the e-optimal solution ée,n using projected gradient
descent under the assumption that r is known, i.e., we perform the optimization in
(2.4). Alternatively, one could obtain (:)e,n by performing the optimization in (2.15),
where the appropriate choice of A, needs the knowledge of a lower bound on r7; see
Section 2.6 for details.

Remark 2.2. While (2.15) is a convex optimization problem, computing the loss
function as well as its gradient requires centering of the natural statistics. If the natural
statistics are polynomaials or trigonometric, centering them is relatively straightforward
since the expectation (2.4c) can be evaluated in closed-form in these cases. Such statistics
are prevalent in a broad segment of the literature, including studies on Ising models and
MRFs more generally. For other statistics, centering may be more difficult. Examples
include functions featuring exponentials of random wvariables which do not yield a
tractable integral, or functions with discontinuities or other behaviors that preclude
straightforward analytical integration and necessitate specialized numerical techniques.
Alternatively, one might require assuming the existence of computationally efficient
sampling or that obtaining approrimately random samples of x is computationally
efficient, as in Diakonikolas et al. (2021).

2.6 Analysis and Main Results

In this section, we develop the properties of the learning algorithm of Section 2.5 and
interpret its structure.

2.6.1 Connection with MLE of f(-; ©* — ©)

First we establish the following interpretation of the population version (2.5) of the loss
function (2.4b).

Theorem 2.1 (Minimizing population loss function <= minimizing KL divergence).
We have

argmin £(0©) = arg min D(Ux(+)|| fx(; ©F — O)).
OcO OcO

Moreover, ®* is the unique minimizer of L(©).

"Ideally, one would consider the gradient of £,,(vec(@®)). However, for the ease of the exposition we
abuse the terminology.
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Proof of Theorem 2.1. We have

fi(z;0" —©) = exp((©° - 0,2(z))) @ exp((©° -0, P(x)))
o Jrexp((©*—©,®(y)))dy  [exp((©* — ©,B(y))) dy
0 fu(@;©7) exp(—(
Jy Fu(@;©%) exp(—(O,
(©) ) fx(x; ©F) exp( <G),
L(©)

/\

where (a) follows because Ey, [®(x)] is a constant, (b) follows by dividing the numerator
and the denominator by the constant | e exp(<@)*, @(y)>) dy and using the definition
of fx(x;©*), and (c) follows from definition of £(@®). In turn, we have

Mo —on @ e, o Un()£(©)
DU 07 = ©)) = Busy _1 g(fx( 9*)e>_<p(—<9745(->>))}
Og,, 1og(%> +Eyy, [(@,gp(-)ﬂ +log £(©)
9 B o 55 )| + (@ B @) + 10w £(©)
@Eux 10g<f2/(lx( ) )> +log L(©), (2.18)

where (a) follows from (2.17) and the definition of KL divergence, (b) follows because
log(abc) = loga + logb + log c and £(®) is a constant, (c¢) follows from the linearity of
the expectation, and (d) follows because Ey, [@(x)] = 0 for centered natural statistics.
Now the first term in (2.18) does not depend on O, so

arg min DUy ()| fx(; ©* — ©)) = argminlog £(©) 2 arg min £(©),
cO OcO QcO

where (a) follows because log is a monotonic function. Further, the KL divergence
between Uy (-) and fx(-; ©* — @) is uniquely minimized when Ux(-) = fx(-; O — O).
Recall that the natural statistics are such that the exponential family is minimal.
Therefore, Ux(-) = fx(+; ©®* — ©) if and only if ® = ©*. Thus, ©* € arg ming.o £(0O),
and it is the unique minimizer of £(®). O

2.6.2 Connections to Bregman score

We now interpet (2.4) as optimizing a particular Bregman score. Specifically, we show
that the term exp(—(©,®(x))) in the loss function is a Bregman scoring rule.

First, score-based estimators are defined as follows. Let ¢(-; ®) be a measurable
function parameterized by ® € @. Let x be a random variable whose distribution
is proportional to ¢(-; ®*) for ®* € @. A scoring rule S(zx, q(x; ®)) (Gneiting and
Raftery, 2007) is a numerical score assigned to a realization @ of x and it measures the
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quality of the predictive function ¢(-; ®). Given samples ™), ... 2™ of x, an optimal
score estimator ©,, ¢ for ®* with scoring rule S is

@n € arg min — S(x ®.@)). 2.19
s eamgmin 3 S(al", (o5 ) (2.19)

Furthermore, a scoring rule is proper when E[S(x, ¢(x; ®))] is uniquely minimized at
© = ©*. Finally, the (separable) Bregman scoring rule (Griinwald and Dawid, 2004)
associated with a convex and differentiable function ¢): RT — R and a baseline measure
p is given by

Syp(®,q(x;0)) = = (q(x; ©)) — Ej[i(q(z; ©)) — q(x;0©) ¢/ (q(x;:©))].  (2.20)
With this framework, we have the following relationship.

Proposition 2.4 (Loss function is equivalent of a Bregman score). Let ¢(-) = —log(-),
p(-) =Ux(), and q(-;©) = eXp(<@, @()>) Then

Si/ap('a q(;©)) = eXp(—<(~),45(.)>) —1
and

O,s,, = O,

Proof of Proposition 2.4. With ¢(-) = —log(-), the Bregman scoring rule in (2.20)
simplifies to

Spp(x, q(x;0)) = 1/q(x; ©) + E,[log(¢q(x; ©)) — 1].

In turn, with ¢(-;©) = exp({©,®(:))) and p(-) = Ux(-), we have

Su.p(@, q(@; ©)) = exp(—(0, B(x))) + By, [(©, 8(x))] ~ 1
 exp(—(0,8(2))) + (©, Euy [#(x)]) — 1
Y exp(—(©, B(x))) — 1, (2.21)

where (a) follows from the linearity of the expectation and (b) follows because Ey,, [®(x)] =

0 for centered natural statistics. The equivalence between @n sy, and ©,, follows by
plugging (2.21) in (2.19). O

We note that by the choice ¢(-; ©) = exp(<(~), 43()>), we inherently make use of the
extension of Bregman scoring rule beyond the probability simplex (Painsky and Wornell,
2019). Further, having established that exp(—(©, ®(x))) is a Bregman scoring rule,
it immediately follows that the loss function is proper, since this is a property of all
Bregman rules (Gneiting and Raftery, 2007).
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2.6.3 Connections to nonparametric density estimation

We now interpret the loss function in (2.4) as an instance of the surrogate likelihood
proposed by Jeon and Lin (2006). As described in Section 2.3, to bypass the computa-
tional hardness of the MLE, Jeon and Lin (2006) propose using the following surrogate
likelihood [cf. (2.12)] for learning nonparametric densities of the form fy(x) o< exp(n(x)):

n

1

Tun) = 1 S ew(-n(@?) + [ ple)n(e)da. (2.22)
t=1 X

where p(+) is some fixed known density with the same support X as the unknown density

fx(x). The following proposition establishes that the loss function in (2.4) is a surrogate

likelihood for a specific choice of p(-).

Proposition 2.5 (Loss function is an instance of the surrogate likelihood). Let p(-) =
Ux() and n(-) = (©,D(-)). Then J,(n) = n(@)

Proof of Proposition 2.5. Using p(-) = Ux(-) and n(- <(~) D(- > in (2.22), we have

n

() = 3" exp(~(©, (")) + / 2)(0.8(x)) do
® +<®,/Z/{X(:c)d5(w)dzc> Y .o,

where (a) follows from (2.4b) and because the integral of a sum is equal to the sum of
the integrals and (b) follows because Ey,, [@(x)] = 0 for centered natural statistics. [

2.6.4 Consistency and normality

To start, we note that the asymptotic theory of MLE cannot be invoked to establish
consistency and asymptotic normality of ©,. Indeed, from Theorem 2.1 we have
the population version of ©,, is equivalent to the maximum likelihood estimate of
fx(+;0©* —O), not fi(+;O). And, as such, there is no direct connection between O, and
the finite sample maximum likelihood estimate of fi(-;®) or f«(-; ®* — ®). Instead,
we establish consistency and asymptotic normality of the proposed estimator O, by
invoking the asymptotic theory of M-estimation.

Let A(©*) denote the covariance matrix of vec(®(x) exp(— <@* P (x )>)) Let B(©*)
denote the cross-covariance matrix of vec(®(x)) and vec(P(x) exp(—(©*, ®(x)))). Let
N(u, X) represent the multi-variate Gaussian distribution with mean vector g and
covariance matrix 3.

Theorem 2.2 (Consistency and asymptotic normality). Let Assumptions 2.1, 2.2,
and 2.3 be satisfied. Let ©, be a solution of (2.4). Then ©, -2 ©* as n — oc.
Further, assuming ©* € int(®) and B(©*) is invertible, we have \/n vec(®,, — ©*) N
N (vec(0), B(@*)'A(©*) B(©*)™!).

The proof of Theorem 2.2 is provided in Appendix 2.F. The proof is based on two

key observations: (a) ©,, is an M-estimator (which follows from (2.4b)) and (b) £(©)
is uniquely minimized at ®* (which follows from Theorem 2.1).
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2.6.5 Finite sample guarantees

Theorem 2.3 below shows that, given sufficiently many samples, ©,, is close to the true
natural parameter ®* in the Frobenius norm with high probability.

Theorem 2.3 (Finite sample guarantees). Let Assumptions 2.1, 2.2, 2.3, and 2.4 be
satisfied. Define

a R(M)
X —_—.
Meo\{o} ||M]||r

\If(kl, kQ) -

Let ©,, be a minimizer of the optimization in (2.15). Then for any o > 0 and ¢ € (0,1),
we have ||©,, — OF||p < « with probability at least 1 — & as long as

n =9 (max{’)/(kla k2)47 .Zg\]zla k2)2\:[](k51, k2)2} ) log (4k§k§)> ’
o

min

(2.23)

where (-, ) and g(+,-) are defined in (2.13) and (2.16), respectively.

The proof of Theorem 2.3, provided in Appendix 2.G, builds on techniques in
Negahban et al. (2012); Shah et al. (2021d); Vuffray et al. (2022b, 2016b) and is based
on two key properties of the loss function £,(©): with sufficiently many samples,
a) the loss function £, (®) naturally obeys the restricted strong convexity with high
probability (which we established in Proposition 2.2); and b) ||VL,,(©*)||max is bounded
with high probability (which we established in Proposition 2.3). The proof also reveals
the dependence of the sample complexity on r,7 and ¢,.x, where the regularization
penalty A, is chosen as

o O-/Amin

An — .
(].2 + 487’F) 62”’\1/(1{;1, kg)

The sample complexity in (2.23) depends on the functions (k1 k2), g(ki1, k2), and
U(ky, ko), which in turn depend on the choice of the norm R. For the entry-wise
L, , norms, the Schatten p-norms, and the operator norms, the sample complexity is
bounded as follows, with a proof in Appendix 2.H.

Corollary 2.1. For any p,q > 1, if R(®) = [|O||,4, R(®) = [|®[f5, or R(O) = ||O]|,,
the sample complexity in (2.23) simplifies to

21.2
n = Q(pdy“;lké) 10g<4k1k2>>.
«a )

For certain norms, tighter bounds can be obtained on the sample complexity. The
following corollary (whose straightforward proof we omit) provides a formal version of
our finite sample guarantees for the examples in Section 2.4, viz., when the underlying
norm R is either the maximum norm, the Frobenius norm, or the nuclear norm. We
note that Theorem 2.3 can be specialized for other norms as well.
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Corollary 2.2. If R(©) = ||O|max, R(®) = ||O]|r, or R(O®) = [|®|*, the sample
complezity in (2.23) simplifies to

k22 4k k2
n = Q< i3 1og(#)).
Q@ )

Remark 2.3. The result in Theorem 2.3 can also be specialized for learning node-wise-
sparse pairwise MRFs. Under this setting, as is typical, the machinery developed could
be applied to the node-conditional distribution of x;, i.e., the conditional distribution in
(2.6), for every i € [p], one at a time. Then with ky = p and ko = 1, the parameter set
@ is defined as the set of all r-sparse p-dimensional vectors where r is assumed to be a
constant. To enforce the sparsity, R is chosen to be the {1 norm resulting in R* being
equal to the mazimum norm. Then it is easy to see that v(p) and ¥(p) are O(\/T), and
g(p) = 1. As a result, the sample complexity in (2.23) can be simplified to

o{ue(2)

The logarithmic dependence on p is consistent with the literature on binary, discrete,
Gaussian as well as continuous MRFs Daskalakis et al. (2018); Shah et al. (2021d);
Vuffray et al. (2022b, 2016b). The 1/a? dependence on the error tolerance is consistent
with the literature on binary and Gaussian MRFs Daskalakis et al. (2018); Vuffray et al.
(2016b) and is an improvement over the literature on discrete and continuous MRFs

Shah et al. (2021d); Vuffray et al. (2022b).

2.7 Simulations

In this section, we demonstrate our experimental findings on the three examples from
Section 2.4 using synthetic data. Specifically, we consider the Frobenius norm constraint
on the parameters in the first example, the maximum norm constraint in the second
example, and the nuclear norm constraint (which is a relaxation of the low-rank
constraint) in the third example. For each of these examples, we make certain choices
of the natural statistics and the natural support, with details in Appendix 2.B on how
Assumptions 2.2 and 2.3 hold.

2.7.1 Frobenius norm constraint

We consider the random vector x belonging to X for two different choices of X: (a)
X = Bi(b) and (b) X = [—b,b]P for some b € R,. We let ky = ko = p and let the
natural statistics be polynomials of degree two i.e., ®;; = w;x; for all i € [p],j € [p].
Summarizing, the family of distributions considered is as follows:

fx(x; ®) ox exp ( Z @ijxixj), (2.24)
i,5€[p]
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where x € X and ||®||r < r for some constant 7. As in Section 2.4, let fy(x; ©*) denote
the true distribution of x and ®* denote the true natural parameter of interest such
that ||©*||p < r. Further, we have @ = {® € RP*?: ||O||r < r}.

For our first choice of X, i.e., X = By(b), the family of distributions in (2.24) satisfies
Assumption 2.2 with 7 = (1 + b)? and Assumption 2.3 with ¢y, = max{1,b*}. For
our second choice of X, i.e., X = [—b,b]P, the family of distributions in (2.24) satisfies
Assumption 2.3 with ¢, = max{1,b*}. In contrast, the constant 7 in Assumption 2.2
scales quadratically in p. As a result, the analytical bound on the sample complexity
from Corollary 2.2 suggests an exponential dependence on p (see equation (2.43) in the
proof of Theorem 2.3 for the dependence on 7). However, we see that the empirical
bound on the sample complexity scales only polynomially in p, i.e., it is in agreement
with Corollary 2.2, suggesting that Assumption 2.2 may not be a strict requirement
in practice. For brevity, we only provide results with X = B;(b). The results with
X = [—b, b]P are analogous.

We choose b = 1 and let the true natural parameter ®* be as follows:

@2}: 1/\/1_9 ifizl'orjzlori:j, (2.95)
0 otherwise.

This choice ensures that ||@*||p < r, i.e., 7 = 1. Further, the choice also ensures that
the maximum node-degree in the underlying undirected graphical model is p and the
total number of edges scale linearly with p. This is easy to see as the undirected graph
is a star graph with x; as the center of the star. We note that this is in contrast
with the literature on node-wise-sparse pairwise MRFs (see Section 2.3) where the
total number of edges scale linearly with p but the maximum node-degree does not
depend on p. Therefore, the techniques developed to learn the parameters of such
MRFs are not useful here. We also note that the 1/,/p scaling in (2.25) is consistent
with the Sherington-Kirkpatrick model (Sherrington and Kirkpatrick, 1975). Finally,
to draw high-quality samples from (2.24), we employ brute-force sampling using fine
discretization with 100 bins per dimension.

In Fig. 2.1a, we plot the scaling of errors in our estimates for ©* i.e., ||©, — O*||p
as a function of the number of samples n for various p. Likewise, we present how the
error scales as the dimension p grows for various n in Fig. 2.1b. We plot the averaged
error across 100 independent trials along with 1 standard error (the standard error is
too small to be visible in our results). To help see the error scaling, we display the best
linear fit (fitted on the log-log scale) and mention an empirical decay rate in the legend
based on the slope of that fit, e.g., for a slope of —0.47 for estimating ®* when p =7,
we report an empirical rate of n=%47 for the averaged error.

2.7.2 Maximum norm constraint

We consider the same model as in Section 2.7.1 except for the choices of ®@* and X'. We
let the true natural parameter ®* be as follows:

05 =-01-04-1(=4)—02-1(|i — j|=1) - 0.1-1(|i — j| = 2).
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Figure 2.1: Error scaling for Frobenius norm constraint (in a and b), maximum norm
constraint (in ¢ and d), and the nuclear norm constraint (in e and f) with number of
samples n for various p or ky (in a, ¢, e) and with number of parameters p or k; for
various n (in b, d, f).

This choice ensures that ||@*||pax < 7, i.e., 7 = 0.5. Further, the choice also ensures that
the maximum node-degree in the underlying undirected graphical model is p and the
total number of edges scale quadratically with p. This is easy to see as the undirected
graph is a complete graph as every entry of ©* is non-zero. Further, we also note
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the choice of ®* ensures that the inverse of ®* is positive semi-definite. Therefore,
the distribution of x is equivalent to a Gaussian with mean equal to zero and inverse
covariance equal to ©* but the support truncated to X'. Then we use the tmvtnorm
package (Wilhelm and Manjunath, 2010a) to generate samples from (2.24) via rejection
sampling, and choose X = [—b, b]P (with b = 1) for a higher acceptance probability.

In Fig. 2.1c, we plot the scaling of errors in our estimates for ®*, i.e., ||©, — ©*||¢
as a function of the number of samples n for various p. Likewise, we present how the
error scales as the dimension p grows for various n in Fig. 2.1d.

2.7.3 Nuclear norm constraint

For this constraint, we let X = By(b). We consider the dimension p = 2 and vary the
number of natural parameters k = k1ks. We let the natural statistics be polynomials
of varying degree, i.e., ®;; = zix) for all i € [k],j € [ky]. Summarizing, the family of
distribution considered is as follows:

Jx(x;©) < exp ( Z @Z-inxg), (2.26)

i€[k1),j€ k2]

where x € X and |[|©@W]||* = r for some constant r. As in Section 2.4, let fi(x; ©*)
denote the true distribution of x and ®* denote the true natural parameter of interest
such that ||©*|* < r. Further, we have @ = {© € RF*k2: ||@[* < r}.

In our simulations, we fix ks = 2 and vary k; from 1 to 5. For k; = 1, we let the
true natural parameter ®* be as follows:

e =1 08].
This choice ensures that [|©*||* < r, i.e., r = 1. To ensure that r = 1 for k4 > 1,
we let ©F;, = ©7 /2 i.e., we let every row of © to be a multiple of its first row.

To draw high-quality samples from (2.26), we employ brute-force sampling using fine
discretization with 100 bins per dimension.

In Fig. 2.1e, we plot the scaling of errors in our estimates for ©, i.e., ||©, — O*||p
as a function of the number of samples n for various k. Likewise, we present how the
error scales as the dimension k; grows for various n in Fig. 2.1f.

2.7.4 Results

We observe that the error ||®, — ©* ||, for all three constraints, admits a scaling of
between 170 and n=%4 for various p. These empirical rates indicate a parametric

error rate of y/1/n, which is consistent with the theoretical rate. For the Frobenius

norm constraint, the error [|©, — ©*||p admits a scaling of between p*!* and p*2 for
different n. These empirical rates indicate a parametric error rate of p?log p, which is
an improvement over the theoretical rate of p*log p suggested by Corollary 2.2. For
the maximum norm constraint, the error |, — ©*||p admits a scaling of between
pt6* and pt% for different n. These empirical rates indicate a parametric error rate

of plog p, which is an improvement over the theoretical rate of p*log p suggested by
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Corollary 2.2. Lastly, for the nuclear norm constraint, the error ||@n — O*||r admits
a scaling of between k}'! and k{-'7 for different n. These empirical rates indicate a
parametric error rate of k% log k1, which matches the theoretical rate from Corollary 2.2
(when ks is treated as a constant).

2.8 Concluding Remarks

In this work, we develop a computationally efficient alternative to the MLE for learning
distributions in a k-parameter exponential family from i.i.d. samples. While our
estimator is consistent and asymptotically normal, it is not asymptotically efficient.
Focusing on node-wise-sparse pairwise exponential family MRFs, which is a special case
of the setting considered in our work, (Shah et al., 2021d, Appendix U.2) provides one
such example where the asymptotic covariance matrix of ©,, from Theorem 2.2 does not
coincide with the inverse of the Fisher information matrix. Investigating the possibility
of a single estimator that achieves computational and asymptotic efficiency for the class
of exponential family in our work could be an interesting future direction.

We emphasize that the focus of our work includes but is not limited to exponential
families associated with node-wise-sparse MRFs, i.e., undirected graphical models,
and towards general exponential families. The former focuses on local assumptions
on the parameters such as node-wise-sparsity, and the sample complexity depends
logarithmically on the parameter dimension i.e., O(log(k)). In contrast, our work can
handle local as well as global structures on the parameters, e.g., a maximum norm
constraint, a Frobenius norm constraint, or a nuclear norm constraint (see Section
2.7), and our loss function in (2.4b) is a generalization of the interaction screening
objective (Vuffray et al., 2016b) and generalized interaction screening objective (Shah
et al., 2021d; Vuffray et al., 2022b). Similarly, for node-wise-sparse MRFs there has
been a lot of work to relax the assumptions required for learning (see the discussion on
Assumption 2.4 below). Since our work focuses on global structures associated with the
parameters, we leave the question of relaxing the assumptions required for learning as
an open question.

It is also worth commenting on Assumption 2.4. For node-wise-sparse pairwise
exponential family MRFs (e.g., Ising models), which is a special case of the setting
considered in our work, Assumption 2.4 is proven (e.g., Shah et al. (2021d, Appendix T.1)
provides one such analysis for a condition that is equivalent to Assumption 2.4 for sparse
continuous graphical model). However, such analysis typically requires a bound on the
/1 norm of the parameters associated with each node as in MRFs. Since the focus of
our work is beyond the exponential families associated with node-wise-sparse MRFs, we
view Assumption 2.4 as an adequate condition to rule out certain singular distributions
(as evident in the proof of Proposition 2.2 where this condition is used to effectively
lower bounds the variance of a non-constant random variable). Therefore, we expect
this assumption to hold for most real-world applications. Further, we highlight that
the MLE in (2.3) remains computationally intractable even under Assumption 2.4. To
see this, one could again focus on node-wise-sparse pairwise exponential family MRFs
where Assumption 2.4 is proven and the MLE is still known to be computationally
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intractable.

Finally, while truncated exponential families are important classes of distributions, it
requires boundedness of the support and does not capture a few widely used non-compact
distributions, i.e., distributions with infinite support (e.g., Gaussian distribution, Laplace
distribution). While, conceptually, most non-compact distributions could be truncated
by introducing a controlled amount of error, we believe this assumption could be lifted
as for exponential families: P(|x;| > dlogy) < ¢y™° where ¢ > 0 is a constant and
~v > 0. Alternatively, the notion of multiplicative regularizing distribution from Ren
et al. (2021) could also be used. We believe extending our work to the non-compact
setup could be a valuable direction for future work.
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Appendix

2.A  Further Related Work

In this section, we expand on Section 2.3, summarizing additional examples of work
on learning sparse MRFs, score-based methods, and nonparametric density estimation,
including the related literature on Stein discrepancy.

2.A.1 Learning sparse MRFs

Additional investigations into learning sparse exponential family MRFs beyond those
discussed in Section 2.3.4 include the following.

Following Yang et al. (2015), Suggala et al. (2017) propose an ¢;-regularized node-
conditional log-likelihood to learn the node-conditional density in (2.6) for nonlinear
¢(+). They use an alternating minimization technique with proximal gradient descent
to solve the resulting optimization problem. However, the analysis requires restricted
strong convexity, bounded domain of the variables, nonnegative node parameters, and
some assumptions on gradient of the population loss that are hard to verify.

Yang et al. (2018) introduce a nonparametric component to the node-conditional
density in (2.6) while focusing on linear ¢(-); specifically,

fx(x) o< exp <Z ni(x;) + Z G),-j:v,wj>,

i€[p] J#i

where 7;(-) is the nonparametric node-wise term. They propose a node-conditional
pseudo-likelihood (introduced in Ning et al. (2017)) regularized by a nonconvex penalty
and use an adaptive multi-stage convex relaxation method to solve the resulting
optimization problem. However, their finite-sample bounds require bounded moments of
the variables, a sparse eigenvalue condition on their loss function, and local smoothness
of the log-partition function.

Sun et al. (2015) investigate an infinite dimensional sparse pairwise exponential
family MRFs where they assume that the node and the edge potentials lie in an
RKHS. They use a penalized version of the score-matching objective of Hyvarinen and
Dayan (2005). However, the associated finite-sample analysis requires incoherence and
dependency conditions (see Jalali et al. (2011); Wainwright et al. (2006)).

Lin et al. (2016) consider the joint distribution in (2.9), while restricting the variables
to be nonnegative. They propose a group lasso regularized score-matching objective
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(Hyvérinen, 2007), with a focus on nonnegative data. However, the associated finite-
sample analysis requires the incoherence condition.

2.A.2 Score-based and Stein discrepancy methods

Additional developments of score-based methods beyond those discussed in Section 2.3.5
include those based on Stein discrepency.

A Stein discrepancy is a quantitative measure of how well a predictive distribution,
(), matches a distribution of interest, P, based on a generalization of the classical
Stein’s identity to multivariate distributions (Gorham and Mackey, 2015). Stein’s
identity defines an infinite number of identities indexed by a critic function f and,
like the score-matching method, does not require evaluation of the partition function.
By focusing on Stein discrepancies constructed from a RKHS, Liu et al. (2016) and
Chwialkowski et al. (2016) independently propose the kernel Stein discrepancy as a test
statistic to access the goodness-of-fit for unnormalized densities.

In contemporaneous work, Gorham and Mackey (2017) develop kernel Stein dis-
crepancies as tools for explicitly measuring and comparing sample quality (e.g., for
judging which sample approximation offered a better fit to P). In particular, Gorham
and Mackey (2017) provides a criteria for selecting a suitable kernel and recommends
the rational quadratic kernel (a particular form of inverse multiquadric kernel) as a
simple default choice.

In addition to the kernel Stein discrepancies, one can also use non-kernel Stein
discrepancies as surrogate objective functions for estimation, as the Stein discrepancy
objectives are convex in the natural parameters of an exponential family (Barp et al.,
2019). For instance, the computable spanner graph Stein discrepancy (Gorham and
Mackey, 2015), which has no tuning parameters (such as a kernel), can be used if
kernel selection is a concern. In Barp et al. (2019) it is demonstrated that the Fisher
divergence, the minimization criterion used by the score-matching method, can be
viewed as a special case of a non-kernel Stein discrepancy with a non-kernel Stein set of
test functions. It is also showed that other methods, including contrastive divergence
(Hinton, 2002), can be viewed as Stein discrepancies with respect to a different class of
critic functions.

Dai et al. (2019) leverage the primal-dual formulation of the maximum likelihood
estimator (MLE) to avoid estimating the normalizing constant, at the cost of intro-
ducing dual variables that must be jointly estimated. They demonstrate that many
other methods, including contrastive divergence Hinton (2002), pseudo-likelihood Be-
sag (1975a), score-matching (Hyvérinen and Dayan, 2005), and the minimum Stein
discrepancy estimator (Barp et al., 2019), are special cases of their estimator. However,
this approach leads to expensive optimization problems, as it relies on adversarial
optimization (see Rhodes et al. (2020) for details). Liu et al. (2019) propose an inference
method for unnormalized models known as the discriminative likelihood estimator. This
estimator follows the KL divergence minimization criterion and is implemented via
density ratio estimation and a Stein operator. However, this method requires certain
hard-to-verify conditions. Ryu et al. (2024) provide a unified framework encompassing
various estimators for learning exponential family, based on noise-contrastive estimation
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(Gutmann and Hyvérinen, 2010, 2012).

2.A.3 Nonparametric density estimation

Additional investigations into approaches based on nonparametric density estimation
beyond those in Section 2.3.6 include the following.

Silverman (1982) proposes to estimate the log density, n(-) = log fx(-), which
eliminates the positivity constraint, and augmented Leonard’s formulation in (2.11)
by introducing a functional [, exp(n(x)) de, effectively enforcing the unity constraint.
The properties of the following penalized estimator are studied,

— min % Z n(x;) + /Xexp(n(w)) dx + \J(n), (2.27)

in the setting where 7(-) lies in a RKHS. The formulation in (2.27) is further analyzed by
O’Sullivan (1988), who provides a practical algorithm with cross-validated A\. However,
similar to the formulation of Leonard (1978), the formulation in Silverman (1982) scales
poorly in high-dimensional settings.

More generally, the formulation in Leonard (1978) in (2.11) evolved through a series
of works. Gu and Qiu (1993) investigate the properties of the estimator in (2.11) over a
RKHS, although they use a finite-dimensional function space approximation (composed
of the linear span of kernel functions) to the RKHS. Gu (1993) provides a practical
algorithm with cross-validated A for the estimator analyzed in Gu and Qiu (1993). Gu
and Wang (2003) further improve upon the algorithm in Gu (1993) by offering a direct
strategy for cross-validation. However, this function-space approximation lacks strong
statistical guarantees.

Gu et al. (2013) provide a practical method for selecting a cross-validated A for the
formulation of Jeon and Lin (2006) in (2.12), using the function-space approximation
in Gu and Qiu (1993). However, their algorithm struggles in high-dimensional settings,
where accurate estimation becomes challenging.

2.B Examples of Natural Statistics

Examples of natural statistics and their support satisfying Assumptions 2.2 and 2.3
including the following.

2.B.1 Polynomial statistics

Consider natural statistics that are polynomials in x of maximum degree [, i.e.,
I1 =" (2.28)
i€[p]

such that [; € [I] U {0} for all i € [p] and }_, ., i <[ for some [ < p. Furthermore,

A

suppose X C X, = [—b,b]P for some b € R,. Then, Assumptions 2.2 and 2.3 are
verified as follows for some representative matrix norms.
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First, we have

| @ () [|max = [Py ()| < max{l, bl}'

max
u€lki],velks]

so Assumption 2.3 holds with ¢pa = max{1,b'}.
Next, we verify Assumption 2.2 under each of maximum, Frobenius, and nuclear
norms.

2.B.1.1 Maximum norm

For maximum norm, the natural support is X = B;(b) C A.. The dual norm R* is the
matrix L; 1, so Assumption 2.2 holds since

(a

=

R (@) = @@ < Y [l <O+ ]=ll) < (1+0), (2.29)
Lie[llu{0}: ic[p]
2 lisl

where (a) follows because x € B;(b).

2.B.1.2 Frobenius norm
For the Frobenius norm, the natural support is X = B;(b) C X;. The dual norm R* is
the Frobenius norm itself, so Assumption 2.2 holds since
. (a) ) l

R (®(z)) = |®(x)|lr < |®(x)]l11 < (1+0),
where (a) follows because Frobenius norm is bounded by matrix L;; norm and (b)
follows from (2.29).
2.B.1.3 Nuclear norm

Finally, for the nuclear norm, the natural support is X = By(b) C X,. Consider
[ = 2. The dual norm R* is the matrix spectral norm, and we have ®(x) = xx* where
x=(1,x,...,%,). Hence, ®(x) is a rank-1 matrix and the spectral norm is equal to
the sum of the diagonal entries. Accordingly, Assumption 2.2 holds since

—

R'(@(@)) = @) < (1+ 2l < (1+5),

where (a) follows because x € By (b).

2.B.2 Trigonometric statistics

Now consider natural statistics that are sines and cosines of x with [ different frequencies,
ie.,

sin (Z lzmi) and coS (Z lizxi> (2.30)

i€[p] i€(p]
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such that [; € [[]U {0} for all i € [p]. Furthermore, let X C R? be arbitary. Assump-
tions 2.2 and 2.3 are verified as follows for a representative matrix norm.
First, for any & € X, we have

P(x)||pmax = max [Py (x)| < 1,
@) = _gmax [@un(a)
so Assumption 2.3 holds with ¢.c = 1
Second, for the L; ; norm, the dual norm R* is the matrix maximum norm. Accord-
ingly, for any « € X', Assumption 2.2 holds since

R (®(x)) = |P(@)[lmax < Pmax = 1.

2.B.3 Combinations of polynomial and trigonometric statistics

Now consider natural statistics that are combinations of polynomials of x with maximum
degree [—as in (2.28)—and sines and cosines of x of [ different frequencies—as in (2.30).
Furthermore, consider the support X = X, = [—b, bJP for b € R;. Assumptions 2.2 and
2.3 are verified as follows for the case of a representative norm.

First, from Appendices 2.B.1 and 2.B.2, it is straightforward to verify that Assump-
tion 2.3 holds with ¢ya = max{1,b'}.

Second, for the case of the L;; norm, since R* is the matrix maximum norm it
follows that

R (®(2)) = [|B()|lmax < Pmax = max{1,0'},

so Assumption 2.2 holds.

2.C Proof of Proposition 2.1: Smoothness of L,

To show the desired smoothness of £,(0®), we show that the largest eigenvalue of the
Hessian® of £,(©) is upper bounded by 4k;ko? . e*T. First, we simplify the Hessian
of £,(©), i.e., V2L, (0). The component of the Hessian of £, (0) corresponding to
Ouyv; and O,,,, for some uy, uy € [k} and vy, vy € [ko] is given by

0L, (
. Ao (t) . o (t)
8@ulv18@u2v2 n z_: Dy () Doy () exp( <@’ b(x )>)

From the Gershgorin circle theorem, we know that the largest eigenvalue of any matrix
is upper bounded by the largest absolute row sum or column sum. Let Ayax(VZL,(©))
denote the largest eigenvalue of V2L, (©). We have the following

2
)\max(v2£n(@)) < max Z ’%

8Ideally, one would consider the Hessian of £,,(vec(®)). However, we abuse the terminology for the
sake of clarity and simplicity in the exposition.
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= max E
u2,v2

u1,v1

% i Bu (@) B (@) - exp( (0, 2("))) ‘ (2.31)

t=

To bound (2.31), we bound the absolute inner product between ® and @, i.e.,
for any £ € X. We have

(©,P(x))]

INE

(0.9(x))| < RO)R'(#(2) < r (R (®()) + R (B, [2(x)

INZ

r(R*(q)(a:)) + By, [R*(@(x))]) Qo (2.32)

where (a) follows from the definition of a dual norm, (b) follows from the definition
of centered natural statistics, the triangle inequality, and because R(®) < r, (c¢)
follows from convexity of norms, and (d) follows from Assumption 2.2. Likewise, using
Assumption 2.3, we can bound || P () ||max DY 20max for any x € X. Using these bounds
in (2.31), we have

Amax (V2L (©)) < max Y~ 4¢7,, 0”7 = 4kikyl, ™.
u2,v2

max
u1,v1

Therefore, £,(©) is a 4k1kyd?,,.e*™ smooth function of ©.

2.D Proof of Proposition 2.2: Restricted strong con-
vexity of L,

The following lemma is useful in our analysis.

Lemma 2.1. For uy,us € [ki] and vy, vy € [ky], let

Hoyvguze, = E[@mm (%) Py (X)}, (2.33)
and
. 1
Hu VLUV £ - gpu v ® gpu v ® . 2.34
1U1U202 n tzl 1 l(m ) 2 Q(m ) ( )

Fiz any € >0 and § € (0,1). Then if Assumption 2.5 is satisfied and

202 2k2k2
n>3¢;naxlog( 1 2)’
€ 0

we have
|HU1111U2112 - HU1v1u2112| <€,

with probability at least 1 — .
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Proof of Lemma 2.1. Fix uy,us € [k1] and vy, v9 € [ks]. The random variable defined as
Yaroruges = Puyor (X) Py, (X) satisfies |V, v upes| < 402, (from the definition of centered
natural statistics, triangle inequality, convexity of norms, and Assumption 2.3). Using
the Hoeffding inequality we get

~

n€2
]P(‘Huunuzw - Hul““?v?’ > 6) < 2€Xp 32¢max .

The proof follows by using the union bound over all uy,us € [k1] and vy, vy € [ko]. O

We now proceed to establishing Proposition 2.2. First, we simplify the gradient of
L,(0)? evaluated at ©*. For any u € [k1] and v € [ky], the component of the gradient
of £,(0) corresponding to O, evaluated at ®* is given by

a%@uv Z% )exp(—(©7, B(x"))). (2.35)

We now provide the desired lower bound on the residual. Substituting (2.4b) and
(2.35) in (2.14), we have

SL.(A,©%) = Zexp ~(©",8(x)) - |exp(~(A, B(@"))) — 1+ (A, &(2)]

n

3 [exp(—<A,!15(a:(t))>) 1+ <A,Sl5(:c(t))>}

t=1
e 2T Iy (A, B(z0))[
no= 24 (A, @)

() —2rr

e 1<
S § (t)
= 24 8T n (A B

> k1 ko k1 ko
S 05 1) 0) Y

ur=1v1=1us=1wvo=1

(a) e—27‘r
>

V=

—27’7"

1 2 1 2
2 + 8rr § E § AUIUI ' ’U«l’U1U2’U2 + HU1U1U2U2 - HU1U1’U«2'U2]AU2’UQ7

ur=1vi=1us=1v3=1

where (a) follows because —(©*, ®(x)) > —2r7 for every & € X from (2.32), (b) follows
because

22

e —14+2>
— 24+ |7

, z € R,

(c) follows because —(A, ®(x)) > —8rT for every € X and A € 40 from arguments
similar to (2.32), and (d) follows from (2.34).

91deally, one would consider the gradient of £, (vec(®)). However, we abuse the terminology for
the sake of clarity and simplicity in the exposition.
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Let the number of samples satisfy

128 axy (k1 ko)t 2kTkS
> 2 log( 5 )

min

Using Lemma 2.1 with € <=+ A\pin/[27%(k1, k2)], 0 <= d, and the triangle inequality, we
have the following with probability at least 1 — 9

ki ka2 k1 ko

i )\min
OLn(5,©7) 2 + &7 Z Z Z Z |:Au1”1Hul'U1U2'U2Au2v2 - MHAH%,I]
u1=1v1=1ug2=1v2=1 )
(a) - ki ka k1 ke )\
SRR =YY [AHA - THAH%]
ur=1v1=1us=1v2=1
= il [VeC(A)E[VeC(QS(X)) vec(®(x))] vec(A)T — Amin ||A||2}
2+ 8rr 5 2
() 6727'? )\ .
> . 2 Z\min 2]
2 5o [l vee )l - 22
(d) e—2r? )\min

where (a) follows because [|[All11 < (K1, k2)||Al|r, (b) follows from (2.33), (c) follows
from the Courant-Fischer theorem (because E[vec(®(x)) vec(®(x))?] is a symmetric
matrix) and Assumption 2.4, and (d) follows because || vec(A)||2 = [|A||r.

2.E  Proof of Proposition 2.3: Bounded ||V L,,(©*)||max

The following lemma is useful in our analysis.
Lemma 2.2. For any u € [k] and v € [ky], define the random variable

Xup = —Pyy(x) exp(—(O*, D (x))). (2.36)
Then, we have E[x,,] = 0, where the expectation is with respect to fy(x; ©*).

Proof of Lemma 2.2. Fix any u € [ki] and v € [ko]. Using (2.36), we have

Efx,,] = — /X fu(@;0°) By () exp(— (07, B(2))) da

@ —fX(IBM(a:) dz ®) 0
[rexp((0%,®(y)))dy

where (a) follows from the definition of fy(x; ®*) and because Fy, [®(x)] is a constant,
and (b) follows because [, @(x)dx = 0 for centered natural statistics. O

We now proceed to establishing Proposition 2.3.
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Proof of Proposition 2.3. Fix u € [k;] and v € [ks]. We start by simplifying the gradient
of the £,(0) evaluated at ®*. The component of the gradient of £, (®) corresponding
to O, evaluated at ©*, is given by

P2 -l e (" 2w

Each term in the above summation is distributed as per the random variable x,,
(see (2.36)). The random variable x,, has zero mean (see Lemma 2.2) and satisfies
|Xuv| < 20max €xp(277) (from Assumption 2.3 and arguments similar to (2.32)). Using
the Hoeffding’s inequality, we have

oL, (%) —ne?
]P’(‘—a@w > e) < 2€Xp(8¢max exp(4r?)>' (2.37)

The proof follows by using (2.37) and the union bound over all u € [k1] and v € [kq]. O

2.F Proof of Theorem 2.2: Consistency and asymp-
totic normality

We prove Theorem 2.2 using the theory developed for M-estimation. In particular,
observe that @n is an M-estimator i.e., @n is a sample average. Then, we invoke
Theorem 4.1.1 and Theorem 4.1.3 of Amemlya (1985) to prove the consistency and the
asymptotic normality of @n, respectively.

We divide the proof in two parts.

We first show that ©,, is asymptotically consistent by applying Amemiya (1985,
Theorem 4.1.1), viz.,

Theorem 2.4. Let zy,...,z, be i.i.d. samples of a random variable z. Let q(z;0) be
some function of z parameterized by 6 € Y. Let 6* be the true underlying parameter.

Define

n

Qn(0) = - Zq(zt; 0) and 0, € argmin Q,,(0).

Py e
Suppose the following conditions hold:
(a) Y is compact,
(b) Qn(0) = Q(8) uniformly for some nonstochastic Q(-),
(c) Q(0) is continuous, and
(d) Q(0) is uniquely minimized at 6*.
Then, 0, is consistent for 6% i.e., 0, 25 0% as n — .

To apply Theorem 2.4, we let z £ x, § £ ©, 6, 2 O, 0" 2 e, T =0,
q(z;0) = exp(—(©,D(x))), and Q,(0) = L£,(©). With these choices, we verify the

theorem’s conditions as follows.
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Condition (a) Wehave ® = {®: R(©) < r} which is bounded and closed. Therefore,

© is compact.

Condition (b) To verify that £,(©) —+ £(0©) uniformly for £(©) in (2.5), we apply
(Jennrich, 1969, Theorem 2), viz.,

Theorem 2.5. Let 21,..., 2, be i.i.d. samples of a random variable z. Let g(z;6) be a
function of z parameterized by 6 € Y. Then, n~! Zte[n] g(z,0) = E[g(z,0)] uniformly
of

(i) YT is compact,
(i1) g(z,0) is continuous at each 6 € T with probability one,
(iii) g(z,0) is dominated by a function G(z) i.e., |g(z,0)| < G(z), and
() E[G(z)] < oo.
Using Theorem 2.5 with z £ x, 0 £ ©, T £ O, g(z,0) = exp(—<®,§li(az)>), and
G(z) £ exp(2r7), along with (2.32), we conclude that £,(©) - £(®) uniformly.

Condition (c) Note that exp(—(©,®(x))) is a continuous function of © € @ and
that fx(a; ©*) is not a function of ®. Therefore, £(®) is continuous for all @ € O.

Condition (d) From Theorem 2.1, we have that £(®) is uniquely minimized at ©*.
Since conditions (a)—(d) are satisfied, the consistency of @,, follows.

We next show that O, is asymptotically normal by applying Amemiya (1985,
Theorem 4.1.3), viz.:

Theorem 2.6. Let zy,...,z, be i.i.d. samples of a random variable z. Let q(z;0) be
some function of z parameterized by 0 € Y. Let 60* be the true underlying parameter.

Define
Qn(0) = - ;q(zt; 0) and 6, € argerjrrlin Qn(0).
Suppose the following conditions hold:
(a) 6, is consistent for 0*.
(b) 6% € int(Y).
(c) Q, is twice continuously differentiable in an open and convex neighbourhood of 0*.
(d) VIV Qu(0)lo=g- ~= N(0, A(6)).

(e) V?Qn(0)|p_s. 25 B(6*) with B(#) finite, nonsingular, and continuous at 6*.
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Then, v/n(6, — 0*) - N'(0, B1(0*)A(6")B~1(6%)).

~

To apply Theorem 2.6, we let z £ x, 0 2 ©, 6, £ ©,, * 2 O, T = 0O,
q(z;0) = exp(—(©,B(x))), and Q,(0) = L£,(©). With these choices, we verify the

theorem’s conditions as follows.
Condition (a) We established ©,, is consistent for ©@* in the first part of the proof.
Condition (b) We have assumed ©* € int(©®).

Condition (c¢) Fix uy,us € [k1] and vy, vy € [ko]. We have

0L, (
oo~ —Z% o (20 - exp(— (O, B("))).

Hence, 92L,,(0)/00 y,4,00.,., exists. Using the continuity of $(-) and exp(—(©, P(-))),
we see that 0°L,,(©)/00.,,4,00.,y, is continuous in an open and convex neighborhood
of ®*.

Condition (d) For any u € [k;] and v € [ks], define the random variable

Xuw = _(puv(m) exp(—<®*, @($)>) :

The component of the gradient of £, (vec(®)) corresponding to ©,,, evaluated at ©*,
is given by

858— == Z@w eXp <@* )>)

Each term in the above summation is distributed as per the random variable x,,. The
random variable x,, has zero mean (see Lemma 2.2). Using this, and the multivariate
central limit theorem (Van der Vaart, 2000, Example 2.18), we have

ViYL, (vee(8))|o-e- > N(0, A(E7)),
where A(©*) is the covariance matrix of vec(®(x) exp(—(©*, $(x)))).
Condition (e) Finally, we verify that
V2L (vec(©))]g_e, — B(O)
with B(®) finite, nonsingular, and continuous at ®*. We start by showing that

V2L, (vec(®)) lo—6, L V2L (vee(0))]o—o-- (2.38)
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Using the uniform law of large numbers (Jennrich, 1969, Theorem 2) for any © € @
results in

V2L, (vec(©)) & V2L (vec(@®)). (2.39)
Using the consistency of @n, and the continuous mapping theorem, we have
V2£(Vec(®))\@:@n TN V2L (vec(©))|o—e- (2.40)

Let uy,us € [k1] and vy, v9 € [ko]. From (2.39) and (2.40), for any € > 0 and 6 > 0,
there exists integers ny, ng such that for n > max{nj, ny}, we have

9L,(0,) 9?L(0,) e\ o
P - >-) <=
904,0,00u,0,  09u,0,00u, | 2) 2
and
2 - 2 *
p(| _PLO,)  2PLO) |« 9
90u,0,00u0,  090,0,00 000, | 2) 2

Now for n > max{ny, ny}, we have, using the triangle inequality,

Y
< 4=
>€>_2+ )

P ’Li(©,)  PL(OY)
a@ulvlagug’uz a®u1v1a®U2U2

[\]

Hence, we have (2.38). Using the definition of £(®), we have
O*L(0") /00110, 00130, = E[Puy0, (%) Py (x) exp(—(©, B(x)))]
D E[ 0, (x)B s (x) exp(— (7, B(x)))]
- E[@ulvl( )]E[@UTL}Q( exp( <®* )>)]
= Cov (¢U1v1 (x)v @uzvz( eXp( <®* >))’

where to obtain (a) we have used that, from Lemma 2.2,
E [y, (X) exp(—(©*, B(x)))] =0
for us € [k;1] and vy € [k, whence
VQEn(VeC(@m@:@n TN B(®"),

where B(©*) is the cross-covariance matrix of Vec(d5(x)) and vec(®D(x) exp(—(O©*, P(x)))).
Finiteness and continuity of ®(x) and $(x) exp(—(©*,®(x))) implies the finiteness
and continuity of B(®*). By assumption, the cross-covariance matrix of vec(®(x)) and
vec(®P(x) exp(— (O, P(x)))) is invertible.

Since conditions (a)-(e) are satisfied, the asymptotic normality of ©,, follows.
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2.G  Proof of Theorem 2.3: Finite sample guarantees

We establish our result by applying Negahban et al. (2012, Corollary 1), viz.:

Theorem 2.7. Let z1,...,z, be i.i.d. samples of a random variable z. Let q(z;60) be
some convex and differentiable function of z parameterized by 6 € Y. Define

R 1 <&
0, € arg min — zi:0) + \R(0),
g1 n;CI( ) (0)

where N\, 1s a reqularization penalty and R is a norm. Let 6* be the true underlying
parameter, i.e., 0* € argming.r E[q(z;0)]. Suppose the following conditions hold:

(a) The reqularization penalty is such that A\, > 2R*(V L, (6%)) where R* is the dual
norm of R.

(b) The loss function satisfies a restricted strong convezity condition with curvature
k>0, d.e, 0L, (A 0%) > k||Al3, where 0L, (A, 0*%) is the residual of the first-order

Taylor expansion.

Then én 1s such that
16, — 0%||» < 3&1/@) where U(T) = R(v)
K veT\{0} ||v]|2
To apply Theorem 2.7, we let z £ x, § £ O, b, £ ©,, 0 2 0, T = o,
q(z:0) £ exp(—(©, B(x))),

205)\min
An = = , 2.42
(24 + 9617) 27U (o, ko) (242a)
and
P e—ZTF
L — 2.42b
N 16 (2.42b)

While Theorem 2.7 is a deterministic result, we use probabilistic analysis to show that
the necessary conditions hold, resulting in a high probability bound. Towards that, let
the number of samples satisfy

n > max{ny,na},

where
A 128¢fnax7(k17 k2)4 4]€%k§
e Az log 5 )
and

A 8@5%1&)((24 + 967’?)2 e&"F g(k’l, k’2)2 \Il(k'l, k2)2 4]{?1k’2
ng = 3 : log< >
a?) o

min

(2.43)

In other words, we have (2.23). With these choices, we verify the theorem’s conditions
as follows.
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Condition (a) To establish this, we need to show that the choice of A, in (2.42a)
upper bounds R*(VL,(©*)). From (2.16) in Section 2.6, we have R*(VL,(©*)) <
g(k1, k2) ||V L, (0%)||max- Then, using Proposition 2.3 with ¢ <= 6/2 and

Oé)‘min
(24 + 967’F) ez’”?g(kl, kg)\DUCl, kg) ’

as long as n > ny, we have 2R*(VL,(0%)) < 2g(ky, ko) € = A, with probability at least
1-4/2.

€ <

Condition (b) Let A = @, — ©*. Then, Lemma 1 of Negahban et al. (2012) implies
that A is such that R(A) < 4R(©*), i.e., A € 4@. Then, using Proposition 2.2 with
§ <+ d/2 and k as in (2.42b), as long as n > ny, we have 6L,(A, ©%) > x||Al|% with
probability at least 1 — §/2.

Putting everything together in (2.41), we have ||©, — ©*||r < a with probability at
least 1 — 9.

2.H Proof of Corollary 2.1

To provide a poly(k;1k2) dependence on the sample complexity, we show that each of
the functions «y(ky, k), g(k1, ko), and W(kq, k2) can be bounded by a poly(kiks) term.

First, it is easy to see
Y(k1, k2) <V kika,

for any @. Next, we note that any bound on g(ky, k2) is a bound on W(ky, k2) because
a) ||M||max < HMHF for any M and b) each of the entry-wise L, , norms, the Schatten

p-norms, and the operator p-norms are closed under the dual operation. Below, we
provide a bound on g(ky, ko) for each of these family of norms.

2.H.1 Entry-wise L, , norms

For any matrix M € R¥ k2 we have

iy = (32 (3 ) (s

j€ ko] j€[ka]

q/p\ 1/q
(X M) )
1€[k1]

Ry M e
1/pyl/a
Therefore, g(ki, ko) < k' k5.

2.H.2 Schatten p-norms

For any matrix M € R¥1**2 et r denote its rank. We have

1/P b)
™[ = (Za ) <Zo—z < V/rk1ks | M| imax

i€lr] 1€[r]
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(c)
S \/min{k‘l, kg}kleHMHmaxa

where (a) follows because of the monotonicity of the Schatten p-norms, (b) follows
because ||M|]* < v/rkiks||M||max, and (¢) follows because r < min{ky, ko}. Therefore,
g(l{?h k?g) S \/min{k‘l, k’g}k’lk’g.

2.H.3 Operator p-norms

Define ¢ = p/(p — 1). For any matrix M € RF**k2 et [M]; denote the ith row of M for
i € k1. We have

(a)
IM[l, = max [[Myll, < k" max [|[My]

y: [lyllp=1 y: [lyllp=1

) 1p

1
< k7 max max |[[M]lgllyll,

y: |yllp=1i€lk1]
1
< ky/? max M5

© 1/p1 1/py1-1
< kg [Mifloe = 7™M

where (a) follows because ||v|, < m!'/P||v||, for any vector v € R™ and p > 1, (b)
follows from the definition of the infinity norm of a vector and using the Hélder’s
inequality, and (c) follows because |[v||, < m!/9||v||s for any vector v € R™ and ¢ > 1.
Therefore, g(k1, ko) < k}/pk:;_l/p.
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Chapter 3

Causal Inference via Exponential
Family Modeling

3.1 Introduction

We are interested in the problem of unit-level counterfactual inference owing to the
increasing importance of personalized decision-making in many domains. As a motivating
example, consider an observational dataset corresponding to an interaction between
a recommender system and a user over time. At each time, the user was exposed
to a product based on observed demographic factors as well as factors that are not
observed in the dataset, e.g., user’s energy level (i.e., whether they're feeling energetic
or tired). Additionally, at each time, the user’s engagement level, which could have
sequentially depended on the prior interaction in addition to the ongoing interaction,
was also recorded. Also, the system could have sequentially adapted its recommendation.
Given such data of many heterogeneous users (e.g., a movie recommender system for a
streaming media platform), we want to infer each user’s average engagement level if it
were exposed to a different sequence of products while the observed and the unobserved
factors remain unchanged. This task is challenging since: (a) the unobserved factors
could give rise to spurious associations, (b) the users could be heterogeneous in that
they may have different responses to same sequence of products, and (c) each user
provides a single interaction trajectory.

More generally, to address counterfactual problems of this kind, we consider an
observational setting where a unit undergoes multiple interventions (or treatments)
denoted by a. We denote the outcomes of interest by y, and allow the interventions a
and the outcomes y to be confounded by observed covariates v as well as unobserved
covariates z. The graphical structure shown in Figure 3.1.1 captures these interactions
for a unit and is at the heart of our problem. In the recommender system example above,
a unit corresponds to a user, a corresponds to the products recommended, y corresponds
to the engagement levels, v corresponds to the observed demographic factors, and
z corresponds to the unobserved energy levels (see Figure 3.1.2). More generally, a
unit may comprise of one or more users/individuals. We consider n heterogeneous
and independent units indexed by i € [n] & {1,---,n}, and assume access to one
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(0—Q)

a y

Figure 3.1.1: A generic model covered by our methodology. Directed arrows denote
causation and undirected arrows denote association. All directed arrows denote high-
level causal links,; i.e., aggregated low-level causal links. For example, the high-level
causal link between a and y captures all low-level causal links between any element of a
and any element of y. Our methodology does not assume knowledge of any low-level
causal link and is applicable to any graphical model with high-level causal links between
variables as in this model.

Figure 3.1.2: An example graphical model for a sequential recommender system (consis-
tent with the model in Figure 3.1.1) interacting with a user at 3 time points where z;,
v;, a, and y; denote the user’s unobserved energy levels, observed demographic factors,
the product exposed to the user, and the user’s engagement level, respectively, at time
t. The left subplot illustrates the high-level dependency between the variables (with
thick arrows) while the right subplot expands on it for time 1 and 2 (with thin arrows).

observation per unit with (v, a”, y) denoting the realizations of (v, a, y) for unit .
We operate within the Neyman-Rubin potential outcomes framework (Neyman, 1923,;
Rubin, 1974) and denote the potential outcome of unit ¢ € [n] under interventions a by

y(a). Given the realizations {(v(i), a®, y(i))}ll, our goal is to answer counterfactual

(2
questions for these n units. For example, what would the potential outcomes y® (a®)
for interventions @ # a be, while the observed and unobserved covariates remain
unchanged? Under the graphical model in Figure 3.1.1 and the stable unit treatment
value assumption (SUTVA), i.e., the potential outcomes of unit i are not affected by
the interventions at other units!, learning unit-level counterfactual distributions is
equivalent to learning unit-level conditional distributions

n

{Fazw(y =la =20 0N} (3.1)

1We note that the potential outcomes of a user can be affected by other users in the same unit (if a
unit comprises of multiple users) but not by users in a different unit (see Figure 3.3.1).
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Here, the i-th distribution represents the conditional distribution for the outcomes y
as a function of the interventions a, while keeping the observed covariates v and the
unobserved covariates z fixed at the corresponding realizations for unit 7, i.e., v® and
2z respectively.

Such questions cannot be answered without structural assumptions due to two key
challenges: (a) unobserved confounding and (b) single observation per unit. First,
the unobserved covariates z introduce spurious statistical dependence between in-
terventions and outcomes, termed unobserved confounding, which results in biased
estimates. Second, we only observe one realization, namely the outcomes y(i)(a(i))
under the interventions a?, that is consistent with the unit-level conditional distribu-
tion fya,v(yla, 29, v¥). As a result, we need to learn n heterogeneous conditional
distributions while having access to only one sample from each of them.

In this work, we model the conditional distribution of the outcomes of interest
conditioned on the unobserved covariates, the observed covariates, the intervention as
an exponential family distribution motivated by the principle of maximum entropy.?
With this model structure, we show that both the aforementioned challenges can
be tackled. In particular, we show that the n unit-level conditional distributions in
(3.1) lead to n distributions from the same exponential family, albeit with parameters
that vary across units. The parameter corresponding to the i** unit, for brevity in
terminology denoted by ¥ (defined later), captures the effect of 2V and helps tackle
the challenge of unobserved confounding. However, the challenge still remains to learn
n heterogeneous exponential family distributions with one sample per distribution.

This challenge has been addressed in two specific scenarios in the literature: (a) if
the unobserved confounding is identical across units, i.e., the parameters {y®}7_, were
all equal, then the challenge boils down to learning parameters of a single exponential
family distribution from n samples, which has been well-studied (cf. Shah et al. (2021b)
for an overview); (b) if v, a, and y take binary values and have pairwise interactions,
then the challenge boils down to learning parameters of an Ising model (a special
sub-class of exponential family defined later) with one sample. This specific challenge
has been studied under restricted settings: (i) where the dependencies between the
variables are known (e.g., Kandiros et al. (2021); Mukherjee et al. (2021)) and (ii) where
a specific subset of the parameters are known (Dagan et al., 2021). In this work, we
consider a generalized setting where v, a, and y can be either discrete, continuous,
or both, and do not assume that the underlying dependencies or a specific subset of
parameters are known.

3.1.1 Summary of contributions

This work introduces a method to learn unit-level counterfactual distributions from
observational studies, in the presence of unobserved confounding, with one sample per
unit, using exponential family modeling. For every unit i € [n], we reduce learning its
counterfactual distribution to learning the unit-specific parameter v with access to one

2Exponential family distributions are the maximum entropy distributions given linear constraints
on distributions such as specifying the moments (see Jaynes (1957)).
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sample (v, a®, y@) from unit i. Here, {1, --- 4™} are parameters of n different
distributions from the same exponential family. The specific technical contributions are
as follows:

1.

We introduce a convex (and strictly proper) loss function (Definition 3.1) that
pools the data {(v(i),a(”),y(i))}?:1 across all n samples to jointly learn all n

parameters {y®}7_,.

. For every unit i, we prove that the mean squared errors of our estimates of

(a) v (Theorem 3.1) and (b) the expected potential outcomes under alternate
interventions (Theorem 3.2) scale linearly with the metric entropy of the underlying
parameter space. For instance, when ~() is s-sparse linear combination of k known
vectors (Corollary 3.1), the error—just with one sample—decays as O(slogk/p,),
where p, is the dimension of the outcome y.

Our framework extends some of the widely used panel data models from econo-
metrics. In particular, we allow for dynamics in the outcomes, the actions, and
the observed covariates for the linear and logistic unit fixed effect models as well
as the linear and logistic time fixed effect models. Further, we allow parameters
to vary with unit and time for the unit fixed effect models, and the parameters to
vary with time for the time fixed effect models.

. We apply our method to impute missing covariates when they are sparse. Formally,

we consider a setup (with no systematically unobserved covariates) where the
observed covariates are entirely missing for some fixed fraction of the units.
Specifically, for unit 7 with missing covariates, only (a®,y®) is observed. For
every such unit, we show that our method can recover the missing covariates with
the mean squared error decaying as O(p,/p,), where p, and p, are the dimensions
of v and y, respectively (Proposition 3.4).

. Methodologically, our work advances two threads: (a) learning Ising models (and

their extensions to discrete, continuous, or mixed variables) from a single sample,
where we learn the dependencies between variables, generalizing prior work Dagan
et al. (2021); Kandiros et al. (2021) and (b) learning Markov random fields (a
sub-class of exponential family) from multiple independent but non-identical
samples, generalizing prior work Shah et al. (2021c); Vuffray et al. (2016a, 2022a).

In our analysis, we (a) derive sufficient conditions for a continuous random
vector supported on a compact set to satisfy the logarithmic Sobolev inequality
(Proposition 3.5) and (b) provide new concentration bounds for arbitrary functions
of a continuous random vector that satisfies the logarithmic Sobolev inequality
(Proposition 3.6). These results may be of independent interest.

Outline. Section 3.2 discusses background and related work. We discuss our formulation
and algorithm in Section 3.3 and present their analysis in Section 3.4. We provide some
extensions of our model in Section 3.5 and provide some connections to panel data
models in Section 3.6. We develop an application of our methodology to impute missing
covariates in Section 3.7. We sketch the proof of our main result in Section 3.8 with
detailed proofs deferred to the appendices. We conclude with a discussion in Section 3.9.
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Notation. For any positive integer n, let [n] := {1,--- ,n}. For a deterministic
sequence uq, - - - , Uy, we let w == (uy,- -+ ,u,). For a random sequence uy,--- , u,, we
let u:= (uy, -+, u,). For a vector u € RP, we use u,; to denote its t* coordinate and
u_; € RP7! to denote the vector after deleting the " coordinate. We denote the ¢,
l; (¢ > 1), and £ norms of a vector v by ||v||o, ||v||,, and [|v]/~, respectively. For a
matrix M € RP*?, we denote the element in t* row and u'* column by M,,, the t'
row by M;, and the vector obtained after deleting My, from M, by M, _,. Further,
we denote the matrix maximum norm by |M|pax, the Frobenius norm by |[M|g, the
spectral norm (operator 2-norm) by |M|,p, the induced 1—norm (operator 1-norm)
by |M];, the induced oo-norm (operator co-norm) by |[M|, and the (2, 00)-norm
by [M]s2,.. For any matrix M, let Apax (M) and Apin (M) denote the largest and the
smallest eigenvalues of M, respectively. Finally, for vectors uw € R? and u € R?, the
mean squared error between 4 and @ is defined as MSE(u, ) = p~! D tepp (W — )%

3.2 Background and Related Work

This work builds on two vast bodies of literature: exponential family learning and unit-
level counterfactual inference with unobserved confounding. For a detailed literature
overview of the former, we refer the readers to Bresler (2015); Klivans and Meka (2017);
Shah et al. (2021c); Vuffray et al. (2022a) (for a special sub-class, Markov random fields
(MRFs)?) and Shah et al. (2021b) for general exponential families. For an introduction
to counterfactual inference, see the books Hernan and Robins (2020); Imbens and Rubin
(2015b) for settings with no unobserved confounding and Pearl (2009); Pearl et al. (2016)
for settings with known causal mechanism (in the form of a causal graph).

3.2.1 Exponential family learning

There is a series of works for learning Ising models, a special MRF with binary variables
and an instance of a pair-wise exponential family, from a single sample. Such a model
has two distinct sets of parameters capturing the contribution of nodes and edges in
the underlying undirected graph, referred to as the external field and the interaction
matrix.* Many strategies exist for learning such a model when the interaction matrix
is known up to a constant and under varying assumptions on the external field; see,
e.g., Bhattacharya and Mukherjee (2018); Chatterjee (2007); Daskalakis et al. (2019);
Ghosal and Mukherjee (2020); Kandiros et al. (2021); Mukherjee et al. (2021). More
recently, Dagan et al. (2021) provide guarantees for learning the interaction matrix from
a single sample when the external field is known. Kandiros et al. (2021) and Mukherjee
et al. (2021) extend the tools in Dagan et al. (2021) to learn the external field for an
Ising model with a known interaction matrix (up to a scalar multiple). Notably, all of
these works are based on the pseudo-likelihood estimation (Besag, 1975b). Our work

3MRFs can be naturally represented as exponential family distributions with certain sparsity
constraints on the parameters via the principle of maximum entropy (Wainwright et al., 2008).

4E.g., in our model (defined later in Eq. (3.2)), ¢ and ®®¥) correspond to the external field and
the interaction matrix, respectively.
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extends the techniques and results from Dagan et al. (2021) to learn the external field
from one sample of continuous variables with an estimated interaction matrix.

Vuffray et al. (2016a) introduced a novel M-estimation-based loss function for
learning Ising models from many independent and identically distributed samples.
Vuffray et al. (2022a) and Shah et al. (2021c) generalize it to learn general MRFs with
multi-ary discrete and continuous variables, respectively. Ren et al. (2021) showed that
this loss function has superior numerical performance compared to the ones based on
pseudo-likelihood. We contribute to this line of work by generalizing that loss function
further to learn MRFs with discrete, continuous, and mixed variables with independent
but not identically distributed samples.

For settings closer to our work, namely, exponential families with unobserved
variables, the two common modeling approaches include restricted Boltzmann machines
(Bresler and Buhai, 2020; Bresler et al., 2019; Goel, 2020) and latent variable Gaussian
graphical models; see, e.g., Chandrasekaran et al. (2012); Ma et al. (2013); Vinyes and
Obozinski (2018); Wang et al. (2023). While the former assumes a bipartite structure
with edges only across observed and unobserved variables, the latter imposes a Gaussian
generative model. In this thread, most related to our set-up is the work by Taeb et al.
(2020) as they model the conditional distribution of the observed variables conditioned
on the unobserved variables as an exponential family similar to us. They provide
empirically promising results for recovering the underlying graph and the number of
unobserved variables (assumed to be small), albeit with limited theoretical guarantees.
In contrast, here we provide parameter estimation error in the presence of unobserved
variables (notably, we cover all the models they considered).

3.2.2 Unit-level counterfactual inference

Recent years have seen an active interest in developing different strategies for unit-level
inference with unobserved confounding.

For the settings with univariate outcomes for each unit, a common approach to deal
with unobserved confounding is the instrumental variable (IV) method (Imbens and
Angrist, 1994) when one has access to a variable—the IV—that induces changes in
intervention assignment but has no independent effect on outcomes allowing causal effect
estimation. Recent works for IV methods with unit-level inference include Athey et al.
(2019); Hartford et al. (2017); Semenova and Chernozhukov (2021); Singh et al. (2019);
Syrgkanis et al. (2019); Wang et al. (2022); Xu et al. (2020). Another approach for
univariate outcomes, called causal sensitivity analysis (Rosenbaum and Rubin, 1983a),
estimates the worst-case effect on the causal estimand as a function of the extent of
unobserved confounding in a given dataset under varying assumptions on the generative
model. For such analysis with unit-level guarantees, see, e.g., Jesson et al. (2021); Jin
et al. (2023); Kallus et al. (2019); Yadlowsky et al. (2022); Yin et al. (2022). In another
related thread, Arkhangelsky and Imbens (2018) use an exponential family to model
the unit-wise distribution of the observed covariates and interventions conditioned on
the unobserved covariates. They connect this model to the commonly used unit fixed
effects model for the outcomes (Angrist and Pischke, 2009), and provide estimates
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for the average treatment effect given multiple units with the same set of unobserved
covariates. By contrast, our work uses an exponential family to model the unit-wise
distribution of the outcomes conditioned on the interventions, the observed covariates,
and the unobserved covariates. Further, we allow each unit to have a different set of
unobserved covariates while the intervention and the outcome can be high-dimensional,
and provide the first unit-level counterfactual inference guarantee with an exponential
family model.

Closer to our work are those on panel or longitudinal data settings, where one observes
multiple outcomes for each unit. For linear panel data settings, a common approach is
factor modeling, where potential outcomes and interventions (binary or multi-ary) are
assumed to be independent conditional on some latent factors. See, e.g., difference-in-
difference methods (Angrist and Pischke, 2009; Bertrand et al., 2004), synthetic control
(Abadie et al., 2010b; Abadie and Gardeazabal, 2003b), its variants Arkhangelsky
et al. (2021); Dwivedi et al. (2022b), and extensions to multi-ary interventions in
synthetic interventions (Agarwal et al., 2020) and sequential experiments (Dwivedi
et al., 2022a). For non-linear panel data settings, the most commonly used models
include probit, logit, Poisson, negative binomial, proportional hazard, and tobit models
(see Fernandez-Val and Weidner (2018) for an overview) where some parametric model
characterises the distribution of the outcomes conditional on the unobserved covariates,
the observed covariates, and the interventions. Notably, these works on linear and non-
linear panel data directly estimate effects (averaged over all observed and unobserved
covariates or unit-level for given observed and unobserved covariates) for finitely many
interventions when the intervention assignment has special structure, while we focus
on learning the counterfactual distributions while allowing for multi-ary discrete and
continuous interventions without any special structure. Our work also generalizes some
of these models by allowing for dynamics in the outcomes, the actions, and the observed
covariates.

3.3 Problem Formulation and Algorithm

This section formalizes the problem, specifies our model, and defines the inference tasks
of interest.

3.3.1 Underlying causal mechanism and counterfactual distri-
butions

We consider a counterfactual inference task where units go through p, > 1 interventions.
For every unit, we observe p, > 1 outcomes of interest. The interventions and the
outcomes could be confounded by p, > 0 observed covariates as well as p, > 0 unob-
served covariates. Additionally, the observed covariates and the unobserved covariates
could be arbitrarily associated. We denote the random vector associated with the
interventions, the outcomes, the observed covariates, and the unobserved covariates
by a £ (a1, - ,a3y,) € Ay = (i, ,¥p,) € Y, v E (v, ,v,) € VP, and
z 2 (z,-- ,Zz,,) € 2P, respectively, where A,Y,V, and Z denote the support of
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Figure 3.3.1: A graphical model for a single unit in the network setting with 4 users;
arrows have same meaning as in Figures 3.1.1 and 3.1.2. Here v, z, a;, and y; denote
user t’s observed factors, unobserved factors, exposed product, and engagement level,
respectively. The left plot illustrates the high-level dependency between the variables of
different users in the network, and the right plot expands on it for (user 1, user 2) pair.
Analogous dependencies exist for (user 1, user 3), (user 2, user 4), and (user 3, user 4)
pairs.

interventions, outcomes, observed covariates, and unobserved covariates, respectively.
We allow these sets to contain discrete, continuous, or mixed values.

Causal mechanism. We summarize the causal relationship between the random
vectors z, v, a, and y in Figure 3.1.1 where we denote the arbitrary association between
z and v by an undirected arrow, and the causal association between (i) (z,v) and a,
(ii) (z,v) and y, and (iii) @ and y by directed arrows. More generally, we are interested
in any setup where the high-level causal links are consistent with the graphical model
in Figure 3.1.1 . We assume access to n independent realizations indexed by i € [n]:
v®, a® and y® denote the realizations of v, a, and y for unit 4, respectively. For
every realized tuple (v, a®,y®), there is a corresponding realization z of the
unobserved covariates z that is unobserved. Next, we discuss some examples covered by
our framework.

Examples: sequential and network settings. While Figure 3.1.1 exhibits the
high-level causal links between z, v, a, and y, there could be complex low-level causal
links between elements of these vectors. We do not assume any knowledge of such
low-level causal links. In Figure 3.1.2 , we provide an instance of a sequential setting
covered by our work where every unit’s (i) a;y1 depends on a; in addition to v, and
z, and (ii) y;41 depends on a; and y; in addition to a;11, v;;1 and z. Another classical
example covered by our framework includes the network setting where a single unit
represents a social network where multiple users are linked to each other by interpersonal
relationships as shown in Figure 3.3.1. Similar to the sequential recommender system,
every user was exposed to a product based on observed demographic factors as well
as certain unobserved factors, and the user’s engagement level was recorded. The
engagement level of user ¢, i.e., y;, depended its observed demographic factors v, its
unobserved factors z, its exposed product a; as well as on the product exposed to its
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neighbor u, i.e., a,. Further, y; could have been associated with y,. The users in the
same unit affect each other but the users in different units do not affect each other.

Unit-level counterfactual distributions. We denote the Neyman-Rubin potential
outcomes of unit i € [n] under interventions a € AP by y¥(a). We make the stable
unit treatment value assumption (SUTVA) (Rubin, 1980) for the observed outcome,
ie, y¥ = y®(a@®) for all units i € [n]. For independent units with the causal
mechanism and SUTVA assumed here, the unit-level counterfactual distributions are
equivalent to certain unit-level conditional distributions as we now argue. Consider
unit ¢ € [n] and fix the observed covariates and the unobserved covariates at v(®
and z, respectively. Then, let §* be a realization of y when a = a¥. We are
interested in the distribution of the potential outcomes of unit i for interventions a®,
i.e., the distribution of y(a®”) given v = v z = 2(). Under the causal framework
considered here (see Figure 3.1.1 ), it is equivalent to the distribution of y®(a®)
given a = a,v = v z = 2 since (z,v) satisfy ignorability (Imbens and Rubin,
2015b; Pearl, 2009), i.e., the potential outcomes are independent of the interventions
given (z,v). Further, under SUTVA, it is equivalent to the distribution of g® given
a=a" v=0v92z=20 ie, fav.(y="-la=a" z" v®) Therefore, our goal is to
learn the n unit-level conditional distributions in Eq. (3.1). Now, we proceed to the
modeling details.

3.3.2 Exponential family modeling and its consequences

We start by parameterizing the conditional distribution fyjay . With parameters oW €
RPv*! and ®®¥) € RP«*Py for all u € {z,v,a,y}, and natural statistics y and yy' so
that

Hyawa(yla, v, z)ocexp ([0 +22T 001207000 120 B0 |y +y DUy ), (3.2)

where z £ (217... ,sz% v & (Ula"' ’Upu)7 a & (ah... ’a’pa)v and y £ (yh... 7ypy)
denote realizations of z, v, a, and y, respectively. Here, the parameter ®(“¥) captures
the interaction between u and y, for all u € {z,v,a,y}. ° Without loss of generality, we
can assume ®¥¥) to be a symmetric matrix. We note that the conditional distribution
fylayz being an exponential family puts no restrictions on the marginal distribution
fzv.a of the unobserved covariates, the observed covariates, and the interventions as
is the case with semi-parametric causal models (Kennedy, 2016). We provide various
examples of panel data models consistent with (3.2) in Section 3.6.

We make two key observations: (a) the term ®(*¥) Tz captures the effect of unobserved
covariates z on fyav.(y=:la=-, v, z) and (b) the task of learning fya..(y = -|la =", v, 2)
in Eq. (3.2) as a function of a reduces to learning

(i) oW 420V 2 4 20V Ty, (ii) @@¥  and (i) @@¥.  (3.3)

°The exponential family in Eq. (3.2) is same as the one considered in Taeb et al. (2020, Equation
1.3).
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That is, learning the unit-level conditional distribution for unit ¢ is equivalent to learning
7(i) — {¢(y) + 2pEUT 5 (9) + 2¢,(v,y)TU(i)7 q)(avy), cp(y,y)}’

where the notation 4 is the same as in Section 3.1.
Next, we note that learning the three quantities in Eq. (3.3) is subsumed in learning
the parameters 6(z) € RP»*! and © € RP**P where p = p, + p, + Do,

0(z) 2 ¢(y)+2q)(z,y)Tz and © £ [@(%y)’@(y,a)’@(y,v)}’
with @) = ¢@av)’ ¢ RPvxPa and W) = dw)" € RPv*Pe. To exploit this, we observe
that the (unit-level) conditional distribution fyav, in Eq. (3.2) can be reparameterized
as follows:

Tyla,z (y|a, v, z;0(z), @) X exp ([Q(z)]Ty + 2vT<I>(”’y)y+2aTCI>(“’y)y+yTCI>(y’y)’y>.
(3.4)

Given some estimates for §(z) and ©, using their appropriate components also yields an
estimate of the three quantities in Eq. (3.3) for any v = v. To summarize, the spurious
associations or unobserved confounding between a and y introduced due to unobserved
z are fully captured by ®*¥ Tz or equivalently by 0(z); thereby, learning unit-level
counterfactual distributions require us to learn these unit-level parameters.

3.3.2.1 Reduced inference task and modeling constraints

Let fy‘amz( a,v, z;0%(z), @*) denote the true distribution of y conditioned on a = a,
v=w,and z = z as in Eq. (3.4). Then, for all i € [n], the realization (y®, a®¥, v®) is
consistent with the conditional distribution fy|a7v7z( a®, v 2@ (2®), @*) where
we do not observe z(?. Our primary goal is to learn the n unit-level counterfactual
distributions, which as noted above simplifies to estimating the following parameters:

(i) Unit-level 0*9 £ 6*(29) for i € [n], and (ii) Population-level ©*. (3.5)

Our secondary goal is to estimate the expected potential outcomes for any given unit ¢
(with v = v®, z = 2)) and an alternate intervention a”:

p0@") 2 Bl @)y = v,z = 2, (36)

where y®(a”) denotes the potential outcomes for unit i € [n] under interventions
a e Are.

For ease of exposition, we consider compact continuous sets V, A, and ) with
V=A=Y2X = [~Tmax, Tmax] fOr a given .. It is straightforward to extend the
analysis when V # A # ). In Section 3.5.2, we consider compact discrete and mixed
sets. Throughout this paper, it is convenient to further constrain the model as follows:
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Assumption 3.1 (Bounded and sparse parameters). The true model parameters Eq. (3.5)
satisfy

00 c Ay 2 {6 € RPv*! HQHOO <a} forallié€ [n], (3.7)
0" € Ao 2 {@:[q)(%y)’ @(y,a)7 (p(yvv)] € RPv*D . (1)(3/731):<I>(y,y)T7 10 e <1, ||9||oo§/3}
(3.8)

While Eq. (3.7) bounds the unit-level parameters (a necessary condition for model
identifiability (Santhanam and Wainwright, 2012)), Eq. (3.8) bounds the ¢; norm of
the interaction of each y; € y with the vector x £ (y,a,v) in Eq. (3.4). As a result,
Assumption 3.1 implies that the exponential family in Eq. (3.4) corresponds to MRFs
(see Section 3.2), also known as undirected graphical models (defined in Section 3.H).
We note that Assumption 3.1 is standard in the literature on learning MRFs (Bresler,
2015; Klivans and Meka, 2017; Shah et al., 2021c; Vuffray et al., 2016a, 2022a). We are
now ready to state our algorithm.

3.3.3 An efficient algorithm via a convex objective

We first describe our strategy to estimate the parameters in Eq. (3.5). Then, we use
the estimated parameters to estimate the expected potential outcomes in Eq. (3.6). We
remark that for exponential families considered here, maximum likelihood for parameter
estimation is not computationally tractable (Shah et al., 2021b; Wainwright et al.,
2008). As a result, we resort to an alternative objective function inspired by the convex
loss functions used in Shah et al. (2021c); Vuffray et al. (2016a, 2022a) as they do not
depend on the partition function of the distribution. These loss functions are designed
in a specific way (see below for details): (i) the sufficient statistics of the conditional
distribution of a variable given all other variables are centered by adding appropriate
constants, (ii) the loss function is an empirical average of the sum of the inverses of
all of these conditional distributions (without the partition function) with centered
sufficient statistics.

3.3.3.1 Parameter estimation

Our convex objective function jointly learns all the parameters of interest by pooling
the observations across all n units and exploiting the exponential family structure of y
conditioned on a = a, v = v, and z = z in Eq. (3.4), i.e., the objective explicitly utilizes
the fact that the population-level parameter ©* is shared across units. In particular,
we use the following two steps.

Centering sufficient statistics of the conditional distribution of a variable.
With x = (y,a,v), we have x;, = y; and x_; = (y_4,a,v) for every ¢ € [p,]. Then,
consider the conditional distribution fy,x_, . of the random variable x; conditioned on
x_; =x_; and z = z for any t € [p,]:

Faaxrz(Te]T_t, 2, 0:(2), ©;) ox exp ([Qt(z) + 2@;@_4 Ty + @ttxtz) (3.9)
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where 6;(2) is the ¢! element of 6(2), ©; is the t'" row of ©, Oy is the t'" element of
Oy, and O; _; £ 0,\ 04 € R is the vector obtained after deleting Oy from ©,. Then,
the sufficient statistics in Eq. (3.9), namely x; and x?, are centered by subtracting their
expected value with respect to the uniform distribution on X resulting in

2

Fralx_s.z (l't‘il?—t; z;0,(2), @t) X exp <[9t(z) + 2@,14504}%5 + Oy (x? — %)), (3.10)

as the integral of x; and x? with respect to the uniform distribution on X is 0 and
x2 . /3, respectively. As we see later (in Proposition 3.1), this centering ensures that our
loss function is a proper loss function as well as leads to connections with the surrogate
likelihood (Shah et al., 2021c, Proposition. 4.1). We emphasize that the term z2, /3
inside the exponent in Eq. (3.10) is vacuous (as it is a constant) and the distribution in
Eq. (3.10) is equivalent to the one in Eq. (3.9).

Constructing the loss function. Next, the loss function (defined below) is designed
to be an empirical average of the sum over ¢ € [p,] of the inverse of the term in the
right hand side of Eq. (3.10).

Definition 3.1 (Loss function). Given the samples {w(i)}ie[n], the loss £ : RPy*(n+P)
R s given by

2

1 i i i i max
L£(©) == Z Zexp (— [Gt( )—1—2@;,533(_“ :Cﬁ )—@tt<[$§ )]2 — %)) where

t€lpy] i€[n]
GT
=1
ol . Py X (n+D) ; A o) (n) n+p
%] i |eR™ , with ©,2{6;",---,6,"”,0,} eR"*. (3.11)
@T
—Pp

Our estimate of ©* (defined analogous to ©) is given by

© € argmin L(9). (3.12)

@EAZXA@
We note Eq. (3.12) is a convex optimization problem, and a projected gradient descent
algorithm (see Section 3.A.2) returns an e-optimal estimate where O, is said to be an

e-optimal estimate if E(@e) < E(@) + € for any € > 0. The loss function £ admits a
notable property (see Section 3.A.1 for the proof).

Proposition 3.1 (Proper loss function). The loss function L is strictly proper, i.e.,
Q* = arg min@eAgXAe Ey‘a,‘,,z |:£ (@)} .

Proposition 3.1 shows that the solution of the idealized convex program mineearxae
Eyjav,z [E (Q)] is unique and equal to ©*. In this idealized convex program, conditioned
on the realized values of the unobserved covariates of the n units 2z, ... 2 the
observed covariates of the n units v, .-, v, and the interventions of the n units
a®, ... a™, the loss function is averaged over all the randomness in the outcomes.
In other words, for every i € [n], the idealized convex program has infinite samples
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from fyjav. with unobserved covariates z, observed covariates v, and interventions
a conditioned to be 2, v® and a®, respectively. Thus, the convex program in
Eq. (3.12) can be seen as a single sample version of this idealized program, thereby
providing an intuitive justification of our loss function (instead of a maximum likelihood
objective, which is not tractable here). As we show later in our proofs (see Section 3.8
for an overview), different partial averages on the RHS of Eq. (3.11) also admit useful
properties and are critical to our analyses.

We note that loss function in Eq. (3.11) is a generalization of the loss functions used
in Shah et al. (2021c); Vuffray et al. (2016a, 2022a). In particular, if the unobserved
confounding is identical across units, i.e., *() = ... = #*) then E(@) in Eq. (3.11)
can be decomposed into p, independent loss functions, one for every ¢ € [p,]. These
decomposed loss functions are identical to the ones used in these prior works.

3.3.3.2 Causal estimate

Given the estimate ©, our estimate of the expected potential outcome p@(@®) under
an alternate intervention a¥ € AP Eq. (3.6) is derived as follows: First, we identify
d(wy) € RP«*Py o be the component of @) corresponding to u and y for all u € {v,a,y}.
Next, we estimate the conditional distribution of y for unit ¢ as a function of the
interventions a, while keeping v = v and z = 2 fixed as

]/E}IZ; (yla) x exp ([5@ + 20070 4 2a,TEI\>(a’y)}y + yTa(y’y)y)- (3.13)

Finally, we estimate p(?(a®) as the mean under the above conditional distribution,
given by

aY@) £ Ejolyla = a'], (3.14)
which can be computed by standard algorithms for estimating marginals of graphical
models, e.g., via the junction tree algorithm (Wainwright et al., 2008) or message-passing
algorithms.

In general, estimating the marginals exactly is computationally hard for undirected
graphical models. While the junction tree algorithm works well for graphical models
with small treewidth (Wainwright et al., 2008, Section. 2.5), e.g., for trees or chains as
in hidden Markov models or state-space models, message-passing algorithms are the
default choice for computing approximate marginals for complex graphs, especially with
cycles. However, message-passing algorithms may induce additional approximations,
which we do not discuss here. For the linear panel data models, estimating the expected
potential outcome u?(a”) is equivalent to parameter estimation as we will see in
Section 3.6.

3.4 Analysis and Main Results

In this section, we analyze our estimates. First, we provide our guarantee on estimating
the unit-level and the population-level parameters in Section 3.4.1. Next, we provide
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our guarantee on estimating the causal estimand of interest in Section 3.4.2. Before
stating our main results, we define a standard notion of complexity of the sets Ay and
Ag, namely metric entropy (defined below) that our guarantees rely on.

Definition 3.2 (e-covering number and metric entropy). Given a set S C RP**P2 gnd
a scalar € > 0, we use C(S,¢) to denote the e-covering number of S with respect to
|-, i.e., C(S,¢e) denotes the minimum cardinality over all possible subsets T C S
that satisfy S C UperB(T;€), where B(T;e) £ {S € RP*P2 1 |T — S|y, < e}. We let
Mo(e) £ logC(Ae,e) denote the metric entropy of Ae C RP»*P | My(e) £ log C(Ag, €)
denote the metric entropy of Ng C RP»*1 and My, (g) = nMgy(ne) denote a scaled
version of the latter.

Next, we state two settings with upper bounds on the metric entropy of Ay, and we
use them as running examples to unpack our general results throughout this paper.

Example 3.1 (Linear combination). Consider a set Ay containing vectors with bounded
entries that are also a linear combination of k known wvectors in RPv collected as
D e Rk je., Ap = {Dc:c€R" ||Dc|s < a}. Then, Dagan et al. (2021, Lemma.
11) implies that Mg(n) = O(klog (1 + %)) Further, Mg, (n) = O(<£).

n

Example 3.2 (Sparse linear combination). Consider a set Ay containing vectors with
bounded entries that are also a s-sparse linear combination of k known vectors in RPv
collected as D € RW** e, Ay = {Dc : ¢ € R* |la||, < s,[Dellsc < a}. Then
Dagan et al. (2021, Corollary. 4) implies that My(n) = O(s log k log (1 + %)) Further,

MG,n(n) = O<%) .

n

3.4.1 Guarantee on quality of parameter estimate

Our non-asymptotic guarantees use an assumption of a lower bound on the smallest
eigenvalue of a suitable set of autocorrelation matrices.

Assumption 3.2. For any z € ZP>, v € V?*, a € AP, and t € [p,], let Anin(2, v, a,t)
denote the smallest eigenvalue of the matriz Eyj, [3? x'|lz = z,v = v,a = a}
where X £ (%, 2%_yx¢, xF — x2,,/3) € RPFY with x = (y,a,v). We assume Apin =

MiN,ezr- veyre acAre telp,] Amin(Z, U, @, 1) is strictly positive.

We note that all eigenvalues of any autocorrelation matrix are non-negative implying
Amin(2,v,a,t) > 0 for all z € 2P, v € VP, a € AP, and t € [p,]. Assumption 3.2
requires Amin(2,v,@,t) > 0 for all z € 272, v € VP a € AP, and t € [p,], and serves
as a sufficient condition to rule out certain singular distributions (Shah et al., 2021b,
Section. 5). Essentially, we use this assumption to lower bound the variance of a
non-constant random variable (Section 3.B.1).

We are now ready to state our main result that characterizes a high probability
bound on the estimation error for the estimate © computed via Eq. (3.12). To simplify
the presentation, we use ¢ and ¢ to denote universal constants or constants that depend
on the parameters o, Tp.y, and Ay, and can take a different value in each appearance.
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Theorem 3.1 (Guarantee on quality of parameter estimate). Suppose Assumptions 3.1
and 3.2 hold. Fiz ane >0 and § € (0,1), and define

R(s,5)émax{ceclﬂ\/log(logpy/é)—i—/\/lg(ce*dﬁ) ey} with v= ma ” Ol (3.15)
006/\9”0 0|2

and
2

Mo n(e,8)2 M, (%) + My (R2(z,0)). (3.16)

Then, with probability at least 1 — 0, the estimates (:), (/9\(1), e ,(/9\(”) defined in Eq. (3.12)
satisfy

cecﬂpy<log + Mo(e )+M9,n(€2)>

et

||@—@*||2,Oo <e when n > , (3.17)

and

cecﬂp (log py-f—Me( )+M0n( E))

et

~ . )
max [|§© — @ ||, < R(e, —> when n >
n

i€[n]

(3.18)

We split the proof into two parts: First, we establish the bound Eq. (3.17) in Section 3.B,
which we then use to establish the bound Eq. (3.18) in Section 3.C.

We note that Mg(e?) = O(8%p,log ). Therefore, our guarantee in Eq. (3.17)
provides a non-asymptotic error bound of order

p2(py log \/np, + Mg, (n=1/2))

nl/a ’

(where we treat § as a constant) for estimating ©* although the n samples have different
unit-level parameters {0*®}”_ . On the other hand, after squaring both sides and
dividing by p,, the guarantee Eq. (3.18) for the unit-level parameters can be simplified

as follows:® whenever n > e~ *p2p*(p, log B4 Mon(£%/P) + Mg(c)), we have

, Ma(c)+log(log &) }

MSE(#® 9*’) <max<e
(0,6") <max {<* >

(3.19)
where we use v < /p in Eq. (3.15) and treat 3 as a constant. For large n so that ¢ is
small, this error scales linearly with the metric entropy My—the error becomes worse
as the unit-level parameter set Ay becomes more complex.

The next corollary (stated without proof) provides a formal version of the population-
level guarantee in Eq. (3.17) and the unit-level guarantee in Eq. (3.19) for the two
examples discussed earlier. We treat [ as a constant and note that the dependence is
exponential as in Theorem 3.1.

SWe replace §/n in Eq. (3.18) by § as we do not require a union bound over i € [n] for unit-wise
guarantees.
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Corollary 3.1 (Consequences for examples). Suppose Assumptions 3.1 and 3.2 hold.
Then, for any fized ¢ > 0 and 6 € (0,1), the following results hold with probability at
least 1 — 9.

(a) Linear combination: If Ay is as in Example 3.1, then for all i € |n],

~ cp?(p, log 24+ &
|©0—0%|200 <e for n> 7,y iéaz =)
b, Bk
MSE(@M 0 < max {52 c(k+log(log %))} for n> cpyp’ (py log %7%’_2)‘
b —_— ) py — 64

(b) Sparse linear combination: If Ay is as in Example 3.2, then for all i € [n

7
slogk
2

2 Dy
~ cpi(py log =%
166" <= for iz DB EEHTE)
p | splogk
MSE(F06°9) <max{ = (s log k+log(log %>)} for >l (Pylog BEHTET)
Y — ) py — 84

Corollary 3.1 states that, as long as n is polynomially large in (p,, p), our strategy learns
the unit-level parameters (on average in terms of mean square error across coordinates)
for each user if p, is large compared to either the number of vectors k (Example 3.1) or
the sparsity parameter s (Example 3.2).

Sharpness of guarantees and generalization of prior results. The exponential
dependence on S in Theorem 3.1 is unavoidable given the lower bounds for learning
exponential families even with i.i.d. samples (Santhanam and Wainwright, 2012).
Regarding the dependence on error tolerance e, prior works with suitable analogs of
our loss function provide two different error scaling: (i) 1/&* in Shah et al. (2021b,c);
Vuffray et al. (2022a) and (ii) 1/¢* in Vuffray et al. (2016a) and Shah et al. (2023).
The works in category (ii) use techniques from Negahban et al. (2012), and it remains
an interesting future direction to see whether similar ideas could be used to sharpen
the error scaling of 1/¢* to the parametric rate of 1/&2 in Theorem 3.1. We note that
improving the dependence on ¢ in Eq. (3.17) improves the dependence on ¢ as well
as p, in Eq. (3.18) (see the proof in Section 3.C for details). In the special case of
equal unit-level parameters (6*(1) = ... = §*(™) the analysis in Section 3.B to establish
the bound Eq. (3.17) can be modified to recover (up to constants) prior guarantee
(Shah et al., 2021c, Lemma. 9.1) on learning exponential family from 7 i.i.d. samples.
Further, the guarantee Eq. (3.18) recovers the prior guarantee (Kandiros et al., 2021,
Theorem. 6) as a special case where the authors consider learning an Ising model from
one sample when the population-level parameter is known up to a scaling factor.

3.4.2 Guarantee on quality of outcome estimate

Our non-asymptotic guarantee on outcome estimate assumes that the following matrices
are suitably stable under small perturbation in the parameters: (i) the covariance
matrix of y conditioned on a, v, and z and (ii) the cross-covariance matrix of y and y;y
conditioned on a, v, and z for all ¢ € [p,].
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Assumption 3.3. For any set B containing 0,0, there exists a constant C'(B) such
that

Sup max {”COVG,@ (ya y|a’a v, z) ||0p’ max “COVG,G (yv yty|a'7 z, ’U) ”013} < C(B)7 (320)
0,0cB t€(py)

almost surely. The expectation in Eq. (3.20) is with respect to the distribution of y
conditioned on a = a, v =v, and z = z which is fully parameterized by 0 and ©, and
can be obtained from Eq. (3.4) after replacing 6(z) by 6.

In Section 3.D.2, we show that C'(B) is a constant for a class of distributions. We note
that this assumption is common in the literature on learning Gaussian graphical models
to rule out singular distributions (Ma and Michailidis, 2016; Won and Kim, 2006; Zhou
et al., 2011).

We are now ready to state our guarantee for the estimate 11V (a®) (see Eq. (3.14))
of the expected potential outcomes for any unit i € [n] under an alternate intervention
a € AP+, We assume p, = p, = py = p for brevity. See the proof in Section 3.D where
we also state a more general result.

Theorem 3.2 (Guarantee on quality of outcome estimate). Suppose Assumptions 3.1
to 3.3 hold. Then for any fized ¢ > 0 and 6 € (0,1), the estimates {1 (a™)}_, defined
in Bq. (3.14) for any {@¥) € A<} satisfy

cePp* (log % + Mo () + Mo(z, £))

et

O (@ — 7@ (g® 5

Y

(3.21)

with probability at least 1 — &, where R(e,§) was defined in Eq. (3.15), .//\ng(e, J) was
defined in Eq. (3.16), C(B) was defined in Eq. (3.20), and

* (% 6 *
B, 2 {0 €Ag: |00, < R(e, H>} x {© € Ag : max 160,672 < e}

Repeating the algebra as in Eq. (3.19) and treating C(B;) as a constant, the
bound Eq. (3.21) yields the following simplified bound for the MSE of our mean
outcome estimate p®(a®) for unit i € [n] under treatment a¥ € AP¢: whenever

n > de tpt(plog % + Mo (e2/p) + Mo(c)), we have
M (c)+log(log §)

MSE(u® @), i (@) <+ ; |

This bound is of the same order as in Eq. (3.19) and can be formalized for the two
examples (Examples 3.1 and 3.2) by deriving a suitable analog of Corollary 3.1. In a
nutshell, in both settings, the unit-level expected potential outcomes can be estimated
well when the total number of units n is large and the observations for each unit are
high dimensional compared to the number of vectors k£ in Example 3.1 or the sparsity
parameter s in Example 3.2. We omit a formal statement for brevity.
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Finally, we also note that as in Theorem 3.1, the exponential dependence on (3 is
expected to be unavoidable due to the principle of conjugate duality (Wainwright et al.,
2008), i.e., the existence of a unique mapping from the parameters to the means and
vice versa for the exponential family. Moreover, as in the discussion after Corollary 3.1,
the sharpness of the rate of 1/&* is left for future work. Improving the dependency on &
in Eq. (3.21) would also improve the dependency on p.

3.5 Possible Extensions

We now discuss how to extend our theoretical results with various relaxations of the
exponential family modeling.

3.5.1 Higher order terms in the conditional exponential family

In Section 3.3.2, we described how our framework and results apply when the conditional
distribution fyjav, is modeled as the exponential family distribution in Eq. (3.2) where
the term inside the exponent is linear in (z,v,a) and quadratic in y. We now describe
how our framework and results are applicable when the conditional distribution fyjay.,
is modeled as the following exponential family distribution

Tylav,z(yla, z,v) o exp (qq>('v, a, y))exp (2zT<I>(Z’y)y), (3.22)

where ¢¢(v, @, y) is some bounded degree polynomial in (v, a,y) parameterized by P,
i.e., the term inside the exponent is linear in z and arbitrary bounded degree polynomial
in (v,a,y). We note that every term in ¢¢(v,a,y) needs to depend on y for it to
contribute to fyav. in Eq. (3.22). For convenience, hereon, we ignore any dependence
on v, and abuse notation to let go(a,y) = ¢s(v, @, y). Then, in Eq. (3.2), ¢s(a,y) was
a polynomial of degree 2 | i.e.,

go(a,y) = ¢ (a,y) 2 Sum(cb(y) Oy+20Y 06 (avy)+ 2" o (yo y)>,

where ® denotes the Hadamard product, ® denotes the Kronecker product, & =
(W), dlaw) W) with dW¥) being symmetric, and Sum(s; + - - - + 55) € R sums, over
all 7 € [h], all the entries of s; which could be a real number/vector/matrix/tensor. To
explain how the loss function in Eq. (3.11) needs to be modified for general ¢s(a,y),
we consider a polynomial of degree 3:

7s(a,y) = qg)(a, y) + Sum( Z Cur i * P2 O (ug ® Uy ® y)),
(ul’UQ)E{(‘I?&):(avy)v(yuy)}

where ¢,, = ¢4, = 3, ¢,, = 1 are constants chosen for consistency, and ®(1:42¥) ¢
RPu1¥Pu2 %Py ig symmetric with respect to indices that are repeated for every (uy,us) €
{(a,a), (a,y), (y,y)}. We illustrate the two steps from Section 3.3.3.1 below.

Centering sufficient statistics of the conditional distribution of a variable The
conditional distribution fy,y_, a, of the random variable y; conditioned ony_; = y_;,
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a=a, and z = z for every ¢ € [p,] is given by
f}’t|Y—t7a,Z (yt|y—t7 a, Z) X

exp (Sum( [gzﬁt(z) + Z 2 (wu) @ g + Z cul,uzq)(“l’“?’yt) ® (’u,l ® ug)]yt

ue{y*tva} (ul7u2)6{(‘17@)7(@73}*07(y7tay7t)}

5(12
+ [0l 4 37 et o y) (4 - M) q><yf:ytvw>y?)), (3.23)
u€{y—t,a}

where ¢;(z) & ¢W) 4+ 20 © 2z, ¢, . =3, and ¢, , = 6. Let ®; denote the
concatenation of all the remaining parameters in Eq. (3.23). As in Eq. (3.10), the term
x2 /3 inside the exponent is vacuous and centers the sufficient statistics y2. The other
sufficient statistics, i.e., y; and y?, are naturally centered as their integrals with respect
to the uniform distribution on X are both zeros.

Constructing the loss function Now, it is easy to see that the corresponding loss £
is given by

1
L=—3> >
t€[py] i€ln]

exp( — Sum( [gbgl) + Z 20 (wut) @ 4 4 Z cm?w@(ul,uwt) o (u(li) ® ugi))] yt(i)

ue{y*tva} (Ul7“2)6{(‘17@)»(‘1794)7(y7t,y—t)}

U, Yt Yt i )72 ZL‘?naX Yt Yt )73
+ [@(yt,yt) +€{yz ?q)( Yout) @ 44 )} ([%5 )} _ T) 4 oy [y§ )} >>7
uc{y_¢,a

and minimizing this convex loss results in the estimates of {gbgi)}ie[n] and {®¢}1ep, -
Consequently, the guarantees in Section 3.4 continue to hold as long as Assumptions 3.1
to 3.3 are appropriately generalized.

Tilting the base distribution. We note that the exponential family in Eq. (3.2) can
be rewritten as

Fyave(yla, z,v) o exp (22T W y) exp (207 @V y) exp (20 ©“Vy)
exp (0@ y + y oW Vy),

where exp (gzﬁ(y)Ty—FyTCI)(y’y)y) stands for a base distribution on y which is exponentially
tilted by z, v, and a, i.e., by exp (22T ®*¥y), exp (20T ®¥y), and exp (2 ®*Vy),
respectively. Then, generalizing the exponential family in Eq. (3.2) to the one in
Eq. (3.22) is equivalent to saying that our approach and results continue to apply when
(a) the base distribution on y is an exponential family distribution where the term
inside the exponent is arbitrary bounded degree polynomial (instead of quadratic) and
(b) the exponent of the exponential tilting of this base distribution by (v, a) is arbitrary
bounded degree polynomial (instead of linear).
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3.5.2 Discrete and mixed variables

In Section 3.3.2, we described how our framework and results are applicable when the
support of v, a, and y are bounded continuous sets, i.e., V = A =Y = [~ Zax, Tmax-
Since we only model the conditional distribution fyjay . as an exponential family distri-
bution, we only need boundedness as a restriction on the support of v and a. Now, we
describe how to adapt our loss function when y = (y1,---,¥,,) € Vi X - x ), where
Y, is either a discrete compact set or a continuous compact set for ¢ € [p,].

We note that the conditional distribution f,|y_,va. of the random variable y;
conditioned ony_; =y_4, v=v, a=a, and z = z for every t € [p,] is still consistent
with the conditional distribution f,x_,, in Eq. (3.9). However, the constants used
to center the sufficient statistics in Eq. (3.10) may change. More precisely, for any
t € [p,], the sufficient statistics y; and y}? are centered by subtracting [, [yt] and
Ey, [yf], respectively where U; denotes the uniform distribution supported over ).
Consequently, the loss function in Eq. (3.11) as well as Assumption 3.2 can be adapted,
and the guarantees in Section 3.4 continue to hold.

3.6 Connections to Panel Data Models

We now describe how the framework of exponential family can be applied to extend
some of the common panel data models from econometrics. For simplicity, we let
Py = Pa = Py = p. Consider the following generic model: for all ¢ € [p] and i € [n]

o = (=L vl w10, (321

where ugzl £ (uy, - ,u) forallu € {z,v,a,y}, {nfi)}ie[n]vte[p} is the idiosyncratic error,
and ¢ is a link function. The most commonly used panel data models are special cases

of the model in Eq. (3.24) as illustrated below.

Example 3.3 (The linear unit fixed effects model). The linear unit fized effects model
1s a non-dynamic model with a time-constant unobserved component and a linear link
function as below: for allt € [p] and i € |n]

y) = Ba) + BV 4 20 4 ).

Here, the unobserved covariate is constant across times but introduces heterogeneity
. . 7 ; .
across units, i.e., zt() =20 where 2V, ... 2" are known as unit effects.

Example 3.4 (The linear time fixed effects model). The linear time fized effects model
1s a non-dynamic model with a unit-constant unobserved component and a linear link
function as below: for allt € [p] and i € |n]

40 = B9 + B0 4,4

Here, the unobserved covariate is constant across units but introduces heterogeneity
across times, 1i.e., zt() = 2, where z1, -+ , z, are known as time effects.
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Example 3.5 (The non-linear unit fixed effects model). The non-linear unit fized
effects model is a non-dynamic model with a time-constant unobserved component and a
non-linear link function as below: for all t € [p] and i € |n]

u? = 1(89af!) + B0 4 20 4y 7).

Here, as in Example 3.3, the unobserved covariate is constant across times but introduces
. . . 7 ; .
heterogeneity across units, i.e., zg) =20 where 2V, ... 2 are known as unit effects.

Example 3.6 (The non-linear time fixed effects model). The non-linear time fized
effects model is a non-dynamic model with a unit-constant unobserved component and a
non-linear link function as below: for all t € [p| and i € [n]

u? = 1(8af + B 4 2, 4 9?).

Here, as in Example 3.4, the unobserved covariate is constant across units but introduces
heterogeneity across times, i.e., zp = 2, where z1,--- , 2, are known as time effects.

In Examples 3.3 to 3.6, the outcome at time t depends only on the unobserved
covariate, the observed covariate, and the intervention at time ¢. Further, the slopes
corresponding to observed covariates and interventions, ) and 3@, are constant
across units and times. Therefore, for the linear models in Examples 3.3 and 3.4, the
causal effect is equal to 8@ for all units and all times. Likewise, for the non-linear
models in Examples 3.5 and 3.6, the heterogeneity in the causal effect (across units or
times) is driven only by the unobserved covariate.

In this section, we show how to incorporate dynamics in Examples 3.3 to 3.6, i.e.,
we allow the current outcome to also depend on the previous observed covariates,
interventions, and outcomes. Further, for the unit fixed effects models in Examples 3.3
and 3.5, we show how to incorporate a slope varying across units and times in an
additive manner (i.e., 3@ = 8% + 8 and B® = B + B for unit i and time ¢), and
for the time fixed effects models in Examples 3.3 and 3.5, we show how to incorporate
a slope varying across times. Towards that, we consider the following extensions of
Examples 3.3 to 3.6.

Example 3.7 (The dynamic linear unit fixed effects model with additive slopes). The
dynamic linear unit fized effects model with additive slopes is a model with a time-
constant unobserved component and a linear link function as below: for all t € [p] and
i € [n]

t t t—1
i = B0+ 3 a0+ B+ Y A+ 3 A+ 20+
j=t—d j=t—d j=t—d

(3.25)

This model recovers the model in Example 3.3 when d = 0, Bi(a) + ﬁéi) = B9 and
B + 6 = 6.
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Example 3.8 (The dynamic linear time fixed effects model). The dynamic linear time
fixed effects model is a model with a unit-constant unobserved component and a linear
link function as below: for all t € [p] and i € [n]

Zﬁt(l;)J + Z/Btj ] + Zﬂtjyj +zt+77t()

j=t—d j=t—d j=t—d

This model recovers the model in Example 3.4 when d = 0, Bt(i’) = B and ﬁtt = ),

Example 3.9 (The dynamic non-linear unit fixed effects model with additive slopes).
The dynamic non-linear unit fived effects model with additive slopes is a model with a
time-constant unobserved component and a non-linear link function as below: for all

t € [p| and i € [n]

t
GRS SRS ANIED S TN S SRR )
jmt—d j=t—d j=t—d
This model recovers the model in Example 3.5 when d = 0, ﬁi( t(cz) = ', and

B 4 g = g

Example 3.10 (The dynamic non-linear time fixed effects model). The dynamic non-
linear time fized effects model is a model with a unit-constant unobserved component
and a non-linear link function as below: for all t € [p] and i € [n]

v =1( Z B%al + Z Bijv + Zﬁﬁﬁ)yﬁ ).

j=t—d j=t—d Jj=t—d

This model recovers the model in Example 3.6 when d = 0, ﬁi( Btt = B and
B + 6 = 5.

To represent the slopes varying across times in Examples 3.7 to 3.10, we define the
following upper-triangular matrices

0 if to <t or tg—t1>d

B® € RP*?  such that Bg}’)tQ = _ (3.26)
Bt%tl otherwise

0 if to <t or tg—t1>d

B@ € RP*?  such that B,Ef?m = { (3.27)

Bt%tl otherwise
0 if to <ty or to—1t; >d
B € R™? such that BY, =¢ -1 if t,=1t . (3.28)
Btz t, otherwise
To be able to recover the unknown time Varylng slope matrices B®, B and

B®, as well as the unknown unit varying slopes {B ﬁi(a)}le[n], we make the following
assumptlons. First, we assume that these slopes and the unobserved covariates are

bounded.
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Assumption 3.4 (Bounded slopes and unobserved covariates).

(a) The unobserved covariates in Examples 5.7 and 3.9 is such that |29| < zyax for
all i € [n],

(b) The slopes varying across units and times are such that Hlax{]ﬁi(“)L IBO| pax } <
Bmax for all i € [n] and u € {v,a}. Further, |B™ |max < Brax = Max{1, Bmax}.

Next, we impose certain distributional assumptions on the idiosyncratic errors. In
particular, for the linear models in Examples 3.7 and 3.8, we assume the these errors are
coming from zero-mean truncated Gaussian distribution and for the non-linear models
in Examples 3.9 and 3.10, we assume the these errors are coming from zero-mean logistic
distribution.

Assumption 3.5 (Different error models).

(a) The idiosyncratic errors {n® = (ngi), e ,nz(;i))}ie[n] are independently distributed
as per f(n) o« exp (nTEn) where B € RP*P 4s a symmetric matrix such that

IE|s < B akin to Assumption 3.1.

(b) The idiosyncratic errors {nt(i)}ie[n“e@] are independently distributed as per a
logistic distribution with location parameter 0 and scale parameter 1.

Finally, we assume bounded eigenvalues for certain matrices.

Assumption 3.6 (Bounded eigenvalues). Let &%) £ BWEBYWT ¢ RP*? for every
u € {v,a,y} where E is as in Assumption 3.5(a). Let o) = (l,v(i),a(i)) € RP*3 for
every i € [n].

(a) The eigenvalues of ®WVTOWY) are lower bounded by ky for some k1 > 0.

(b) For every i € [n] and u € {v,a,y}, the eigenvalues of 0T NPT ol) gre
lower bounded by kop for some kg > 0.

(c) For every i € [n], the eigenvalues of 0 T0 are lower bounded by rsp for some
k3 > 0.

The following result, proven in Section 3.E.1, provides guarantees for recovering the
unknown slopes for the linear models in Examples 3.7 and 3.8.

Proposition 3.2 (Guarantees for Examples 3.7 and 3.8). Suppose the idiosyncratic
errors are as in Assumption 3.5(a). Suppose Assumption 3.2, Assumption 3.4, As-
sumption 3.6(a), and Assumption 3.6(b) hold. Fix any e > 0 and 6 € (0,1). Define
BW =1, z = {y,a,v}, ﬁi(z) £ 20 fori € [n] for Evample 3.9 and z = (21, -+ , z,) for
Example 3.10. For any u € z, if B® = —pWI with |f™)| > Buw, then there exists
estimates {ﬁ(w)}wem\{u}, {(5»(1’),51»(“),51-(‘1’))}?:1, and Z such that, the following results

)

hold with probability at least 1 — 4.
(a) Linear Unit Fixed Effects Model: For the model in Example 3.7,

4 P p
N cp®(log & + plog -
max |B® —B®W|, <& for n> (loe = 1)
) 8 4
wea\{u} R

, (3.29)
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log(log “2
max ’6§w)|2 < ;(5%3 + M) for n >
] I{Q(l —8)

cp’(log i+ 5523)

wef{z,v,a},i€[n p 64/{%
(3.30)
(b) Linear Time Fixed Effects Model: For the model in Example 3.8,
. cplog \/%
max |B® —B®W|, <& for n> — (3.31)
wez\{u} ’ E1k1
3 p
~ ~ cp® log 4=
max {||Z — z[l, max [B®™ —B®™|,, }<e for n>——2 (332
we{v,a,y} ' €1kK1

Proposition 3.2 shows that the unknown parameters can be recovered as long as there
is no dynamics in either the outcomes, the interventions, or the observed covariates.

The following result, proven in Section 3.E.2, provides guarantees for recovering the
unknown slopes for the linear models in Examples 3.9 and 3.10.

Proposition 3.3 (Guarantees for Examples 3.9 and 3.10). Suppose the idiosyncratic
errors are as in Assumption 3.5(b). Suppose Assumption 3.2, Assumption 3.4, Assump-
tion 3.6(a), and Assumption 3.6(c) hold. Fiz anye >0 and § € (0,1). Define ﬁl(z) £ 0
for i € [n] for Example 3.9 and z = (2, - , z,) for Example 3.10. Then, there exists
estimates {]/?\)(“)}ue{vya’y}, {(ﬁf”),ﬁfa),ﬂi(y))}::l, and z such that, the following results
hold with probability at least 1 — 0.

(a) Non-linear Unit Fixed Effects Model: For the model in Example 3.9,

. cp?(logZ + plog %+
we{v,a,y} £
w 1 clog(log & cp*(logt + &
max |ﬁ2( )}2§—max{52,M} for n> b ( gf 52).
we{z,v,a},i€[n] K3 e

(b) Non-linear Time Fixed Effects Model: For the model in Example 3.10,

clog\%
—

max{HE— z||2, max Hﬁ(w) _ B(w)”%o} <e for n>
5

we{v,a,y}

We emphasize that our methodology also recovers the unobserved covariates {z(i)}ie[n]
for Examples 3.7 and 3.9 and z for Examples 3.8 and 3.10.

3.7 Application: Imputing Missing Covariates
Consider a setting with no systematically unobserved covariates z; instead, elements of

(v,a,y) are missing or have measurement error for some fraction of the units. Our goal is
to impute these missing values or denoise the measurement error in the observed values.
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For the ease of exposition, we assume the observed covariates v can have measurement
error but the interventions and the outcomes do not have any measurement error. Our
analysis remains the same (i) when observed covariates v are missing instead of having
measurement error or (ii) when interventions / outcomes have measurement error / are
missing. We note that our analysis also applies to the scenario where the unobserved
covariates z are observed for some fraction of the units and need to be imputed for the
remaining fraction of the units.

Problem setup. For every unit i € [n], along with the interventions a®¥) and the
outcomes y@, we observe 7¥ = v® + Av® instead of true covariates v® where
Av® denotes (unobserved) bounded measurement error. We assume that a certain
number of units (known to us) have no measurement error: say, Av¥ = 0 for all
ie{n/24+1,--- ,n}.

Questions of interest. Besides counterfactual estimates, our goal is to estimate Av®
for units with measurement error.

3.7.1 A theoretical guarantee

Our methodology can be applied to estimate these measurement errors when the
conditional distribution of the observed outcomes y € XPv given the interventions
a € AP+ and the true covariates v.€ XP* can be modeled as an exponential family,
parameterized by a vector ¢ € RPv*! and matrices ®*¥) € RP«*Pv for all u € {v,a,y}

Hian(yla, v) o exp ([qb(yf +207 00V 4 20T Py 4 qu><yry>y> (3.33)

where v £ (vy,- -+ ,v,,), @ = (a1, ,a,,), and y = (y;, - , Yp,) denote realizations of
v, a, and y, respectively. To estimate the counterfactual distribution, we decompose v
into v and Av, and obtain the distribution of the outcome y conditioned on (a, v, Av) =
(a,v, Av) as follows

fylav,av(yla, v, Av) o exp ([¢(y)T+2AvT<b(“’y) +20 @Y 4 20T |y + qu)(y’y)y)
(3.34)

As in Section 3.3.2; to estimate the counterfactual distribution, it suffices to learn
0(Av) £ W 4+200YTAy and © £ [@WY) e )], (3.35)

with @@ = @lav)’ ¢ RPv*pa apd $W2) = )’ € RevxPo, Here, we also aim to learn
Av.

Let fyjan(-; @, v; »™)", ©*) denote the true data generating distribution of y condi-
tioned on (a,v) = (a,v) in Eq. (3.33) and let fyagav( - |a, ¥, Av;§*(Av), ©*) denote
the true distribution of y conditioned on (a,v,Av) = (a,7,Av) in Eq. (3.34). We
assume (a) maX{HAvHOO, W ||, 10 max } < @ and (b) |[©*]o < 5 analogous to As-
sumption 3.1 where the row-wise ¢; sparsity in (b) is assumed to be induced by row-wise
{y sparsity, i.e., H@:HO < B/a for all t € [p]. Then, given realizations {y, a® v},
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consistent with {fy|a7v7Av (y(i)|a(i),ﬁ(i), Av®; 9*(Av®), @*) }?:1 first, we estimate the
parameters ¢ and ©* using the realizations for units {n/2 + 1,--- ,n}. Next, we
exploit the structure in the problem to show that 6*) = #*(Av() can be written as a
linear combination of known vectors with some error, for every unit i € {1,--- ,n/2}.
Then, we use the loss function in Eq. (3.12) to estimate {#*®}"_ and obtain estimates
of {Av} | as by-products. In particular, the estimate of the coefficients associated
with the aforementioned linear combination for *) turn out to be our estimate of
the measurement error Av® for every i € {1,--- ,n/2}. Fori € {n/2+1,--- n},
estimating 6*® and Av® is straightforward since §*@ = ¢®" and Av® = 0. We
provide our guarantee on estimating ©*, 6*) for i € [n], and Av" for i € [n] below
with a proof in Section 3.F.

Proposition 3.4 (Impute missing covariates). Suppose the eigenvalues of D' D are
lower bounded by kp for some k > 0 where D= [¢(y)*, 2(I>(y’”)*] e RP*®otD)  Then, for

any fized €1 > 0 and § € (0,1), there exists estimates O and {@\(i)}?zl such that, with
probability at least 1 — 9,

. ce® P log 2L
|© — 0200 < &1 for n> Vs

g2 '
and
A ce'P (p,+log(log “2u cePp? (log Y2 4,
S0 < e, O ETRENED
i€ln py 2

Further, for any fived e5 > 0, if 5 < L. /-2 there exist estimates {&J(Z)}ZL: such

8 p'u+1 ’ 1
that,

—( ‘ ce®P (p, +log(log "L 4e2
max HA’U( ) . A’U(Z)H% S (p g( g K )) + EoR
i€[n) Pyk Dy

Y

with probability at least 1 — &, whenever n > ceclﬁli_%;?(pv—l—l)pyﬁ?(log ‘/\%’y + pv).

The above guarantees can be simplified as follows by treating 5 and  as constants
as well as ignoring the constants, and the logarithmic factors in n and § (denoted by =

and 7): for any &; > 0 and %,/]% > g9 >0

~ 1
(e when n )z —2Pv (3.36)
&1
. : p?(1
max MSE(A", %)) < max {g%, &} when n 2z al ngé" +pv)’ (3.37)
and
(i ) 2 ~2 1
max ||A'v( ) Av®|2 < Bo y 2 when n PopyP”( 0g2py +pv). (3.38)
i€[n] Dy Dy €5
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For large n, whenever, max {&?, i—: = Z—Z and max {;2 , i” = v the guarantees in
Egs. (3.37) and (3.38) can be written as
o~ . p*p, (1
max MSE(8®, §*%)) < Do when n 2z Dy (0g py +pv)7 (3.39)
i€[n] Dy Do
and
Tax 150" — Av)3 5 22 when n 7 p,P(logp, +p.).  (3.40)
€N Dy

Remark. The measurement errors can be recovered well as long as enough units with
no measurement error are observed (i.e., n/2 is large) and the observation per unit is
high dimensional (i.e., p, is large compared to p,).

3.7.2 Simulations

We now present some simulation results to empirically evaluate the error scaling of our
parameter estimates with three key aspects of the application above: number of units
n, total dimension p, and dimension p, of covariates with measurement error.

3.7.2.1 Data generation

We choose & = [—1,1] and p, = p, = (p — p,)/2. The true joint distribution of (v, a,y)
is set as a truncated Gaussian distribution with the parameters ¢* = 1 € R? and a
positive definite ®* € RP*P generated using sklearn package (Pedregosa et al. 2011)
such that o = 6, 8 = 4, and k = 0.15. We draw n i.i.d. samples {y®, a®, 0@}

from this true distrbutlon using tmoutnorm package (Wilhelm and Manjunath, 2010b).
Next, we generate Av® uniformly from [0.9, 1]P* for units i € {1,---,n/2} while
setting Av(® = 0 for other units. Combining {y(Z a®, v} and {Av®}" | vields

{y,al B}, (see Eq. (3.34)).

3.7.2.2 Plot details

In Figure 3.7.1, we plot the scaling of errors in our estimates for ©* in the top row,
{617 in the middle row, and {Av®}" | in the bottom row. In particular, we present
how the error scales as the number of units n grows for various p and p,. We plot the
averaged error across 50 independent trials along with +1 standard error (the standard
error is too small to be visible in our results).

To help see the error scaling, we provide the least squares fit on the log-log scale (log
error vs log x-axis). We display the best linear fit and mention an empirical decay rate
in the legend based on the slope of that fit, e.g., for a slope of —0.56 for estimating ©*
when p = 16 and p, = 4, we report an empirical rate of n=°® for the averaged error. In
the middle row and the bottom row of Figure 3.7.1, the rates vary from n%% to n=%17,

and we omit these weak dependencies in the legend to reduce clutter.
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Figure 3.7.1: Error scaling with number of units n, for various p and p,,, for our estimates
of ©* (top row), {#*®}7_, (middle row), and {Av®}, (bottom row).

3.7.2.3 Error scaling for e

From the first row of Figure 3.7.1, we observe that the error H@—@*Hgm admits a
scaling of between n~% and n~"* for various p and p,. These empirical rates indicate
a parametric error rate of n=%5 for |©—0*|, ., consistent with the scaling of €72 in

Eq. (3.36). Further, as expected, the error |© —©*|3 does not depend on p, but
increases with an increase in p.

3.7.2.4 Error scaling for o

In the middle row of Figure 3.7.1, we see the error max;ep, MSE(é\(i), 0*@)) has a weak
dependence on n for a fixed p and p,, decreases with an increase in p for any fixed n
and p,, and increases with an increase in p, for any fixed n and p. This is consistent
with Eq. (3.37) when max {7, 2} =2 = 222 (see Eq. (3.39)). Further, we note that

Py p—p
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the decay of the error with p is slower for smaller n (cf. n = 2 vs n = 2'). This is

expected from Eq. (3.37) where the n required to ensure max {e?, %} =P increases
Y Yy
with an increase in p,, and therefore p. As a result, for larger p, €7 comes into the

picture explaining the increased dependence of the error on n (cf. p = 16 vs p = 128).

3.7.2.5 Error scaling for Z;(z)

The trends in max;ep, H&J(Z)—Av(i)ﬂg are similar to max;ep, MSE(a(i), 6*@)). In the
bottom row of Figure 3.7.1, we see max;cy] H&J(l) —Av@||2 has a weak dependence on
n for a fixed p and p,, decreases with an increase in p for any fixed n and p,, and
increases with an increase in p, for any fixed n and p. This is consistent with Eq. (3.38)
2
when max {2, 22} =2 = 2P» (gee Eq. (3.40)). For the same reason mentioned in the
Py’ Py Py P—DPv N

previous paragraph, we see a slower decay in the error with p for smaller n (cf. n = 2!
vs n = 2) and a higher dependence of the error on n for larger p (cf. p = 16 vs
P =128).

3.8 Proof Sketch for Theorem 3.1

Our proof of Theorem 3.1 proceeds in two stages (see Figure 3.8.1 for an overview).
First, we establish Eq. (3.17) for estimating ©*. Next, we use this guarantee to establish
the unit-level guarantee Eq. (3.18) for each of {0*(1), e ,9*(")} by substituting © = &)
in Eq. (3.12), i.e., analyzing the following convex optimization problem:

{5(1)’,” 7§(n)} €  argmin E(@,G(l), . ’g(n)). (3.41)
{6 ... 9(M) }e A

3.8.1 Estimating the population-level parameter

In the first part, we show that all points © € Ag x A}, such that ||©; — O}||2 > ¢ for at
least one t € [p,], uniformly satisfy

B2
ce®’p;

L(©) > L£(6%) + Q(c?) for n >

- (10g 5%’2 + Mo (£%) + Mg, (52)>, (3.42)

4

with probability at least 1 — . Then, we conclude the proof using contraposition.
To prove Eq. (3.42), we first decompose the convex (and positive) objective £(O)
in Eq. (3.11) as a sum of p, convex (and positive) auxiliary objectives £;, namely,

E(Q) - Zte[py] Et (@t) Whel”e

1 3 7 7 7 max
£0©,) 2 =Y exp (=07 +20]_2ef) — 0 o) - Z=]). (3.43)
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Next, for any fixed ¢ € [p,], € > 0, and © € A} x Ag with ||©; — O] > ¢, we show
(see Lemma 3.1)

ce”?log v

L£,(0,) > L(6]) +Qe?) — 1 whenever n > : (3.44)

el
and then establish the same bound uniformly for all ¢ € [p,] with probability 1 — .
Taking a sum over ¢ on both sides of Eq. (3.44), we conclude that for any fixed © with
|1©: — OF|]2 > ¢ for some t € [p,],

B 2 oo P
L(©) > L(©%) +Q(e*) whenever n > e Py 08 s

i : (3.45)
with probability at least 1—§ where we substituted £, =ce?/p,. Finally, we conclude
Eq. (3.42) by using Eq. (3.45), the Lipschitzness of £ (see Lemma 3.2), and a covering
number argument (see Section 3.B).

We establish Eq. (3.44) (Lemma 3.1) via Lemma 3.3, which provides suitable con-
centration and anti-concentration results for the first-order and second-order derivatives,
respectively, for the auxiliary objective £; in Eq. (3.43). We prove Lemma 3.3 by
extending the results from Shah et al. (2021c) to the setting with non-identical but
independent samples {y® ~ fyay. (- a®, v 20;65(z()), ©%)}r .

3.8.2 Estimating the unit-level parameters

In the second part, we decompose the convex optimization problem in Eq. (3.41) into n
convex optimization problems:
i i i A i i N i xfna .
£O(0D) 2 3 exp (= [0 + 28] @]l — By (2" - TX)> for i € [n].
t€[py]

(3.46)

Noting that the set A} places independent constraints on the n unit-level parameters,
namely @) € Ay, independently for all i € [n] and combining Egs. (3.11) and (3.41), we
find that

. 346 1 o . L
min_ £(6,00, ... 4m) T LD 2N iy £0(90) — 0 € argmin £0) (99),
{60, ,0m}eAy M icm €N OIS

for each i € [n]. Next, we establish that with probability at least 1 — 9,

c4

LD(6W) > £9(6*") + R?(¢,6) when n >

Y

(3.47)

uniformly for all points %) € Ay with [|§®) — 6*@)||, > R(e,0) (see Eq. (3.15)). We
conclude the proof by contraposition with the basic inequality £& (%)) < £ (6*)
and a standard union bound over all i € [n].
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Lemma 3.18: Lemma 3.16 + Lemma 3.17:

Reverse-Pinkser Appr'oxil'nate i Proposition 3.5:
inequality tensorization of LSI for weakly
entropy for weakly dependent RVs

Extend Marton (2015) dependent RVs _—

to continuous RVs

A

. Proposition 3.6:
Corollary 3.2 Tail bounds
under LSI

Theorem 3.1: Part II: Lemma 3.8:

Proof of Eq. (3.18) for unit-level
parameters {6*11_

Concentration of
gradient and Hessian of
loss functions {£®}7,

TLcmma 3.9

(i) Lemma 3.6
(ii) Lemma 3.7

Extend Shah et al. (2021c) [ Theorem 3.1: Part I:
to non-identical samples { Proof of Eq. (3.17) for population-

Proposition 3.7:
Identifying weakly
dependent RVs in
exponential family

level parameter ©*

Extend Dagan et al. (2021)
to continuous RVs

Figure 3.8.1: Sketch diagram of the results and the proof techniques for Theorem 3.1.
First, we establish Eq. (3.17) for estimating ©* by extending Shah et al. (2021c¢, Proposi-
tion I.1, Proposition 1.2) for i.i.d. data to non-identical samples. Next, we use Eq. (3.17)
to establish Eq. (3.18) for the unit-level parameters {6*)}" | via suitable concentration
results for derivatives of the auxiliary loss functions in kEq. (3.46). En route, we
establish three results of independent interest: (i) Proposition 3.5 that shows that
weakly dependent and bounded random variables satisfy logarithmic Sobolev inequality
(LSI) by both extending Marton (2015, Theorem. 1, Theorem. 2) and establishing
a reverse-Pinkser inequality to continuous random vectors; (ii) Proposition 3.6 that
extends the tail bounds Dagan et al. (2021, Theorem. 6) to continuous distributions
satisfying LSI; and (iii) Proposition 3.7 that extends the conditioning trick Dagan et al.
(2021, Lemma. 2) for identifying a weakly dependent subset to continuous random
vectors.

The proof of Eq. (3.47) mimics the same road map as that for Eq. (3.42). Lemma 3.6
shows that for any fixed 8@ € Ay, if 69 is far from 0*), then with high probability
£ (9“)) is significantly larger than £ (9“”). We prove Lemma 3.6 via concentration
of derivatives of £) Eq. (3.46) in Lemma 3.8, this objective’s Lipschitznes in Lemma 3.7,
and a covering number argument (see Section 3.C).

The proof of Lemma 3.8 involves several novel arguments: First, for a 7-Sparse
Graphical Model (Definition 3.8), i.e., a generalization of the random vector y in
Eq. (3.4), Proposition 3.7 identifies a subset that satisfies Dobrushin’s uniqueness
condition (Definition 3.4) after conditioning on the complementary subset. Second,
Proposition 3.5 shows that a bounded and weakly dependent continuous random vector
(defined using Dobrushin’s uniqueness condition) satisfies the logarithmic Sobolev
inequality (LSI). Third, Proposition 3.6 establishes tail bounds for arbitrary functions
of a continuous random vector that satisfies LSI. Putting together these results and a
robustness result (Lemma 3.9) while invoking concentration results to account for the
estimation error for ©*, yields Lemma 3.8.
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3.9 Concluding Remarks

We introduce an exponential family approach to learn unit-level counterfactual dis-
tributions from a single sample per unit even when there is unobserved confounding.
By conditioning on the latent confounders and using a novel convex loss function, we
estimate the parameters of unit-level counterfactual distributions given the information
about what actually happened. The resulting estimates of unit-level counterfactual
distributions enable us to estimate any functional of each unit’s potential outcomes
under alternate interventions. We analyze each unit’s expected potential outcomes
under alternate interventions, thereby providing a guarantee on unit-level counterfac-
tual effects, i.e., individual treatment effects. We note that our approach makes only
macro-level assumptions about the underlying causal graph and does not assume the
knowledge of the micro-level causal graph.

A side product of our results is a strategy for answering interventional questions,
e.g., to estimate average treatment effects. These questions are equivalent to estimating
distributions of the form fyqo()(y|do(a = a)) where the do-operator (Pearl, 2009)
forces a to be a@. Under the causal framework considered (Figure 3.1.2, we have
fyldota)(y|do(a = a)) = Ey,[fyazv(y|a, v, z)]. Consequently, the mixture distribution
n! > icin] Ji(ri(ym) with fy‘?.(y|a) defined in Eq. (3.13), serves as a natural estimate
via our strategy. Investigating the efficacy of this estimator is an interesting future
direction.

In this work, the conditional exponential family distribution of y in Section 3.3.2 or in
Section 3.5.1 was such that the effect of unobserved covariates z—after conditioning on
them—was captured by a first-order interaction term varying with the realized value of z
for each unit, e.g., {6(z®)}7, for the conditional distribution in Section 3.3.2. Focusing
on Section 3.3.2, the conditional distributions could also have higher-order interaction
terms that vary with z. Focusing on Section 3.5.1, the exponent of the exponential
tilting of the base distribution of the outcomes by the unobserved covariates could have
higher-order terms. For such cases, while our analysis for population-level parameters
(Theorem 3.1 Part I's proof in Section 3.B) is likely to extend easily, new arguments for
analyzing quadratic (or higher-order) interaction terms that vary for each unit seem
necessary. Developing these results, e.g., suitable analogs of Dobrushin’s condition for
higher-order exponential family, present an exciting future venue for research.

Our methodology can be useful for a class of multi-task learning problems (Caruana,
1997), e.g., when we have multiple logistic regression tasks with some commonalities. For
a logistic regression task, the exponential family model Eq. (3.4) has been used by Dagan
et al. (2021) to allow dependencies between the labels via the parameter © (instead
of assuming independence between the labels), e.g., for spatio-temporal data. They
consider a single regression task and assume that the dependency matrix © is known up
to a constant and learn a task-specific parameter 6(z) (where z denotes a task). Our
model and methodology apply to the case of fully unknown © given multiple datasets
that share the same dependency parameter © but have varying task-specific parameters
0(z); and provide a tractable way to estimate all these parameters together. In fact,
our framework and results also apply beyond the quadratic dependencies captured by
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O as described in Section 3.5.1. Analyzing whether our methodology can be extended
beyond logistic regression models for multi-task learning is a question worthy of further
investigation.

89



Appendix

3.A Proper loss function and projected gradient de-
scent

In this section, we prove Proposition 3.1 showing that the loss function in Eq. (3.11) is
a proper loss function. We also provide an algorithm to obtain an e-optimal estimate of

©.

3.A.1 Proof of Proposition 3.1

Fix any z € 277, v € V', and a € AP, and recall x = (y,a,v). Fix any ¢ € [p,] and
define the following parametric distribution

fy|a,v,z (y|a'7 v, z; 0*(,2), 6*)
fxt|x_t,z(xt|w—ta zZ; et(z)a @t) 7

where fyjavz(yla, v, z;0%(2), %) is as defined in Eq. (3.4) and fy,x_, »(z¢|@_¢, 2; 0,(2), ©;)
is as defined in Eq. (3.10). Letting 7, £ 2? — 22, /3 and using Eq. (3.10), we can write
uy|a7v7z(y]a,v,z;@t(z),@t) in Eq. (3.48) as

(3.48)

uy|a,v,z (y|a'7 v, z; Qt(z)7 ®t) X

Uylayz(Y]a, v, 2;61(2),0;) X fyavz(yla, v, z;0%(2), 0%)-
exp (= [0:(2) + 20/ _x_)w, — OuTy).

Then, we have
Uylay,z (y|a, v, z;0,(2), @t)
Tyla,z (y|a, v, z;0*(2), @*) exp (— [Gt(z)+2@Zﬁtw_t]xt—@ttft)
:fyeypy fylawz(yla, v, z;07(2), 0%) exp (= [6:(2) +20] _@_]z,— 0,7 dy
o fylav.z (y\a,, v, 2;0%(2), @*) exp ( — [0u(2) + 2@Z_tw,t]xt - @ttTt)
Eyjavz | exp (= [0:(2) +20]_@ ]z, — 047)) | '

(3.49)

For 6,(z) = 0;(2), and ©, = O}, we can write an expression for uyjay . (yla, v, z; 07 (2), O;)
which does not depend on y; functionally. From Egs. (3.10) and (3.48), we have

Uylav,z (y|a, v, z;0;(2), @:) X fy_i|avz (y_t|a, v, z;0%(2), @*) ) (3.50)
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Now, consider the difference between the following KL divergences:

KL (uy|a,v,z( : |a'7 v, z; ‘9;(‘2)7 9:) Huy|a,v,z( : |CL, v, z; Ht(z), Gt))
— KL (tyjayz( - @, v, 2,05 (2),07) || fyanz( - |, v, 2;0%(2),0%))
(a) * % fy|a,v,z (y|a'v v, z; 9*(2:)7 @*)
= a,v,z y Uy ’9 7@ 1
/yeygyﬂ Vs (y|a’ v,z t(z) t) og Uy\a,v;(y‘a,'v,Z;et(z);gt)

Eviavs —[0,(2) +20]_,x_ ]z, — O,T
(:)/ Uyjavz(Yla, v, z; 0 (2), O) log sawa P (~[6,(2) - @l _twt”
yEYPY exp ( — [Qt(z) + 2@757_7533_,5]1),5 — @ttzt)

dy
= IOg Ey|a,v,z [exp ( - [Ht(z) + QG)thw_t]xt - @ttft)]

- / uy|a,v,z (y’a’v v, Z; 9;(2), @:) ([et(z) + 2@;,rftw7t]mt + @ttft)dy
Yy

eYyPy

(;) log ]Ey|a,v,z [exp ( — [et(Z) + 2@;—_tw—t]xt — @ttft>:|7 (351)

where (a) follows from the definition of KL-divergence, (b) follows from Eq. (3.49), and
(c) follows because integral is zero since uyjay . (y|a, v, z;0; (), ©;) does not functionally
depend on y; = z; as in Eq. (3.50), and fxteX xidr, = 0 and fxzeX Zidxy = 0. Now, from
Egs. (3.11) and (3.51) we can write

Eyjav. [ﬁ(@)} = % Z Z exp (

t€[py] i€[n]

KL (ttyjaz( - [a®, 0D, 20 07(29), 67) [Juyane( - [ 0@, 20 6,(2), 0,))
— KL (s (- [@®, 0@, 20 05 (20, 07) || fyan (- [a®, 0D, 20 6%(2)), ©7)) )
(3.52)

We note that the parameters only show up in the first KL-divergence term in the right-
hand-side of Eq. (3.52). Therefore, it is easy to see that Eyay,[£(©)] is minimized
uniquely when 6;(z) = 6(2®) and ©, = O} for all t € [p,] and all i € [n], i.e., when
6=0"

3.A.2 Algorithm

In this section, we provide a projected gradient descent algorithm to return an e-optimal
estimate of the convex optimization in Eq. (3.12). We note that alternative algorithms
(including Frank-Wolfe) can also be used.

We note that, in general, projecting onto the space Aj x Ag may not be easy
depending on the specific form of Ay. For Examples 3.1 and 3.2, projecting on Ay
is equivalent to projecting onto the k-dimensional vector a. For Example 3.2, the
ly-sparsity is relaxed to ¢, sparsity. We also do not focus on any issues that may arise
due to the choice of the step size 7.
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Algorithm 1: Projected Gradient Descent
Input: number of iterations 7, step size 7, €, parameter sets Ay and Ag
Output: e-optimal estimate O,
Initialization: 0 =0
1 for j=0,---,7do
L Ut arg Milgeap A, 18V —pvL(e9) - 9|,

3@ <—@T+1

3.B Proof of Theorem 3.1 Part I: Recovering population-
level parameter

To prove this part, it is sufficient to show that all points © € Ag x Ay, such that
|1©: — OF]2 > ¢ for at least one t € [p,], uniformly satisfy

B2
£(©) > £(07) + () for n > — 2 (log 4 Mo () +Me,n(€2)>, (3.53)

with probability at least 1 — 0. Then, the guarantee in Theorem 3.1 follows from
Eq. (3.12) by contraposition.

To that end, we decompose £(©) in Eq. (3.11) as a sum of p, convex (and positive)
auxiliary objectives £,(0,), i.e., L(©) = Zte[py] L,(0,) where

0,2 Zexp( 490, tm_t]x@—@ﬂg“), (3.54)

ze[n

with 7\ = [xf)]Q — 22, /3 and ©, = {Qt(l), 0, ©.} as defined in Eq. (3.11). The
lemma below, proven in Section 3.B.1, shows that for any fixed and feasible ©,, if ©; is
far from ©7, then with high probability £, (Qt) is significantly larger than £, (@:) The
lemma uses the following constants that depend on parameters 7 2 (, 3, Tmax):

C’lvTéa+2ﬁxmaX and C, 2 exp (Tmax (@ + 2B%max))- (3.55)

Lemma 3.1 (Gap between the loss function for a fixed parameter). Consider any
O € A} x Ao. Fiz any § € (0,1). Then, we have uniformly for all t € [p,]

Auinl |00 = O], _ for n > 7 108(0/9)

Ly (@t) > Ly (@:) + 20, = 2 ;

with probability at least 1 — &, where C, . was defined in Eq. (3.55).

Next, we show that the loss function £ is Lipschitz (see Section 3.B.2 for the proof).
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Lemma 3.2 (Lipschitzness of the loss function). Consider any Q,é € Ao. Then, the
loss function L is 22 C, ,-Lipschitz in a suitably-adjusted £y norm:

max

~ ~ 1 ~. .
1£(e) - £(9)| < 2:61%1“02,7( Z] 160 =l + = > 16 — 9<l>||1), (3.56)

t€[py i€[n]
where the constant C, . was defined in Eq. (3.55).

Given these lemmas, we now proceed with the proof.

Proof strategy. We want to show that all points © € Ag x A}, such that ||©; — OF]|2 >
¢ for at least one t € [p,], uniformly satisfy Eq. (3.53) with probability at least 1 —9. To
do so, we consider the set of feasible © such that the distance of O, from O is at least
£ > 01in ¢ norm for some t € [p,], and denote the set by Ag x A} (see Eq. (3.57) and
Eq. (3.7)). Then, using an appropriate covering set of A3 x A} and the Lipschitzness of
L, we show that the value of £ at all points in Ag x A} is uniformly Q(¢?) larger than
the value of £ at ©* with high probability.

Arguments for points in the covering set. Define the set

)T

AS é{@: [q)(yyy)’ P q;(y»v)] e RPv¥P . o) — puy
Ol 0,101 < A 07 - €2 . (350

Let U(AG,€") be the &'-cover of smallest size for the set Ag with respect to ||-||; (see
Definition 3.2) and let C(Ag,¢’) = [U(AG, )| be the £'-covering number. Similarly, let
U(AG,€") be the £”-cover of the smallest size for the set A} with respect to ||-||; and let
C(Ay,€") = |U(Ag,€")| be the £”-covering number. We choose

2
7 A )\mlng n
— —2.
C(2,7'

= —AminEQ and €
3222, C3 3212

max max

. (3.58)

Now, we argue by a union bound that the value of £ at all points in U(Ag, ") xU (A}, ")
is uniformly Q(£?) larger than £(©*) with high probability. For any © € U(Ag, ') X
U(A},€"), we have

(@)
D167 =63 > <, (3.59)
t€[py]
where (a) follows because U(Ag, ') € Ag. Now, applying Lemma 3.1 with £ <«

Amine®/4C, .py and & <= 6/(C(Ag,€") + C(Ay, ")) and summing over ¢ € [p,], we find
that

)\min”@t - @:”2 )\min52
L(8,) > (Lt (©7) + 2 —
tez[py] ! tez[py] ! 202,7 402,7171/
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— £(0) > £(6%) + Jumin 3l — 6 - mmg

2 T te] p ] 2,7
Eq. (3.59) N )\mlng
o)+

with probability at least 1 —0/(C(Ag, ") + C(Ay,<”)) whenever

s 108 ((C(6.) X (NG ") - y/9)
jel /\2 )

mll’l

(3.60)

By applying the union bound over U (Ag, ") x U(A}, "), as long as n satisfies Eq. (3.60),
we have
)\min82

402,7’

L(©) > L(e") +

uniformly for every © € U(Ag, ') x U(Ay,e"),  (3.61)

with probability at least 1 — 9.

Arguments for points outside the covering set. Now, we establish the claim Eq. (3.53)
for an arbitrary © € AS x AJ conditional on the event that Eq. (3.61) holds. Given a
fixed © € A x AZ, let © be (one of) the point(s) in the cover U(A%, ') x U(AZ, ")
that satisfies -, | 16; — ©y]|; < & and el 16 — 9@||, < &” (there exists such a
point by Definition 3.2). Then, the choices Eq. (3.58) and Lemma 3.2 put together
imply that

‘C(é> > E(Q)_ T max 2T< Z ||9t Ol + — Z ||9( g || )
t€lpy]
, '\ PFa (3.58) Amine? Ea- (3.61) . AminE>
> £(©) — 2220y, (¢ + =) cO) - 2 L)

Bounding n. Using Ag C Ag and the outer product definition of 6", we find that
C(Ag,e") <C(Ao,e') and C(Ay,e") = (C(Ag,e"))". (3.62)
Putting together Egs. (3.58) and (3.62), the lower bound Eq. (3.60) can be replaced by

ce ﬁp2 )\mm 2 )\minng2
n> A?mni (log : —l—logC(A@, e >+nlogC<A9,ceT>),
which yields the claim immediately after noting that

AInin 2 )\min 2 Amm AInin 2
logC<A@, ceT;> =Me <7§) and 10gC<A9, —TL;) =My <—n5>
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3.B.1 Proof of Lemma 3.1: Gap between the loss function for a
fixed parameter

Fixany ¢ > 0, any 6 € (0,1), and t € [p,]. Consider any direction £, = {wt(l), e wi™, O}
€ R™*? along the parameter ©,, i.e.,

Qt = Qt — Q;, and Qt = @t — @: (363)

We denote the first-order and the second-order directional derivatives of the loss function
L; in Eq. (3.54) along the direction €, evaluated at ©, by 0o, £:(©,) and 8?235,5(@,),
respectively. Below, we state a lemma (with proof divided across Section 3.B.1.1
and Section 3.B.1.2) that provides us a control on dg £;(6,) and 8é?£t(@t). The

assumptions of Lemma 3.1 remain in force.

Lemma 3.3 (Control on first and second directional derivatives). For any fived £1,e9 >
0, 61,02 € (0,1), t € [py], © € A} x Ao defined in Eq. (3.11) and §2; defined in Eq. (3.63),

we have the following:

(a) Concentration of first directional derivative: with probability at least 1 — 4y,

2py

2 2
80 C(2 T max 61

log

‘39 L(O )’ <e forn> and uniformly for all t € [p,].

51

(b) Anti-concentration of second directional derivative: with probability at least 1 — ds,

| 3201 at, log 22
Amlgl77t||2 . fOT’rLZ lT max og 0o

0 and uniformly for all t € [p,].
€3 2,7

8;; L£:(9,)>

Given this lemma, we now proceed with the proof. Define a function g : [0, 1] — R"+?
g(a) £ 67 +a(0, — ©).

Notice that g(0) = ©; and g(1) = ©, as well as

dLy(g(a)) d*L4(g(a)) 5
T 8Q ‘Ct |® =g(a) and T = aéfﬁt(Qt) |@t:g(a)' (364)
By the fundamental theorem of calculus, we have
dLy(g(a)) _ dLi(g(a)) - d*Ly(g(a))
> _ . .
da - da |a:0 + aareI%(l)%) da? (3.65)
Integrating both sides of Eq. (3.65) with respect to a, we obtain
dLi(g(a)) at - d*Ly(g(a))
Li(g(@) = Lu(9(0) = a== == g+ 5 min = 7=
2
Eq. (3.64) a
= CLaQ ['t ‘@ —g(0) + 3 ag%(l)I}) aQQLt |® —g(a)
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2
(a) *
= alo, L4(07) + 3 afe%fi) 3Q2£t(9 >‘Qt:g(a)

b) o2
> —a|0o, L:(07)| + ? min 392£t(@ )a (3.66)

ac(0,1) = 9;=9(a)’

where (a) follows because ¢g(0) = ©F and (b) follows by the triangle inequality. Plugging
ina=11in Eq. (3.66) as well as using g(0) = Q: and g(1) = ©,, we find that

E (@ ) Ct(@ —‘89 Et @ ‘ + 161%(1)1}) 8Q2£t {@ —g(a)’

Now, we use Lemma 3.3 with

) )
€1 H%, (51 <—|§, Eg9 <€, and (52H§
B 0
Thus for n > « 0g2(py/ ) we have
€

* 5 mlnHQtH2 _)\mmHQtHz

uniformly for all ¢ € [p,], with probability at least 1 — .

3.B.1.1 Proof of Lemma 3.3(a): Concentration of first directional derivative

For every ¢ € [p,| with £, defined in Eq. (3.63), we claim that the first-order directional
derivative of the loss function defined in Eq. (3.54) is given by

1 7 ~(3 7 7 7 —(2
00,L(0) = —— Y ([Ag & >> exp ( — 6 +20] a2 — 0,7 >), (3.67)

i€[n]
o (%)

. Ly
where A 2 Q ,| € RP*! and 2

lI>

2220 | € RPF! for all i € [n] with
Qtt ‘IE )
7, = [xgi)f — 22 /3. We provide a proof at the end.

Next, we claim that the mean of the first-order directional derivative evaluated at the
true parameter is zero. We provide a proof at the end.

Lemma 3.4 (Zero-meanness of first directional derivative). For every t € [p,] with Q,
defined in Eq. (3.63), we have E[0g, L£,(07)] =

Given these, we proceed to show the concentration of the first-order directional derivative
evaluated at the true parameter. Fix any ¢ € [p,]. From Eq. (3.67), we have

o Eq. 367) 1 i *(i . i) G % —(i
90, L£:(67) t= “n Z <[A( i > exXp < [et( - 2@t,—£tw(—3§]$£ ) — Gttajg )>-
i€[n]
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Each term in the above summation is an independent random variable and is bounded
as follows

) ([Agi)]Ti(i)> X exp < — [9*(1 4 2@:Ttw z)] (@) @nggi)> ‘
(a)

( Va Z) + 20 tm txt e Qtt$t > X exp ( - [Qf(i) + 2@::1@2]%?) - @t*tfzgi)> ‘
TN i «(i N i
< w1+ 20120112 oc] X Zmax x exp (18] +2H@t|\1||w<>uoo)xmax)

(e)
S (20( + 46xmax) X XTmax X €XP ((O./ + Z/B'Tmax)xmax> Eq . 20 0277—xmaxa

where (a) follows by plugging in Aﬁ") and ™, (b) follows from triangle inequality,
Cauchy-Schwarz inequality, and because || ||oc < Zpay for all i € [n], and (c) follows
because *) € Ay for all i € [n], ©* € Ag, w¥ € 2Ay for all i € [n], Q € 2Ag, and
29|00 < Tmax for all i € [n].

Further, from Lemma 3.4, we have E[ﬁgtﬁt(@:ﬂ = (. Therefore, using the Hoeffding’s
inequality results in

]P’<|<9Qt£t(@:)‘ > 51) < 2exp < ﬁ)

The proof follows by using the union bound over all ¢ € [p,].

3.B.1.1.1 Proof of Eq. (3.67): Expression for first directional derivative
Fix any ¢ € [p,]. The first-order partial derivatives of £; with respect to entries of ©,
defined in Eq. (3.54) are given by

1 , N ,
0LO,) = Txiz) exp <— [«9151)—1—2@2_@(_11]33?—9”@(51)) for all i € [n], and

a6"
aL,(0,) =2 > icl] 22 exp (— [Qt(i)—FQGZ_tmgi]in) —@ttfgi)> for all w € [p]\{t}.
e[S — > icin] Tgi) exp <— [Ggi)+2@z,tw@]x§i) -0 txt ) for u =t.

Now, we can write the first-order directional derivative of L, as

Li(9, + h8y) — L4(0,) _ Z wgi) 0L(9,) Z i 0L4(9,)

d,L:(0,) = 1im

(4)

h—0 h i o0, e 00y,

-1 i (i (i

" Z( ® ( ) Z Qtux( ) (Z)+Qttx >exp (—[015 )+2@I_tm£2}:c§ )—@ttxg )>
i€[n] u€[p]\{t}

-1 7 7 7 © [ 7 —(2
— KZ ( § )+2Q tajt )+Qttxt )>exp ( [«9 )+2@Z_t93£t)}x§ )—G)ttazg )>

i€[n]

a)—1 1T (i i i)y (i (i
D3 (1a7E0) exp (< 1672002l 04" ).
i€[n]

where (a) follows from the definitions of A§“ and z
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3.B.1.1.2 Proof of Lemma 3.4: Zero-meanness of first directional derivative
Fix any t € [p,|. From Eq. (3.67), we have

[aQ ct(@*)]
L S B | (18FT79) exp (-~ 6 + 20172l - 01)]

ze [n]

= __Z ZEamw)zu){ Al

i€[n]ue[p+1]

00 0 200 [51(3‘) exp <_ 07 (2 ) +20; T, 2]l _@:@9)” )

where (a) follows by linearity of expectation and by plugging in 6; @ = 0 (z"). Now to
complete the proof, we show that for any i € [n],u € [p+1], ') € AP=, v € VP and
z() € ZP: we have
Ey(i)|a(i)7,u(i)7z(i) [53) exp ( [9*( ) + 2@:Ttm_t] @;ﬁy )] =0.
Fix any i € [n],u € [p+ 1], a® € AP=, v € VP and 2 € ZP=. We have
Eyoja 000 20 | 20 exp (= [07(z) + 207 @]l - 077"

:/Ez(f) exp( [0*( )"’2@ tm—t]xt) ttxt )fy\avz( )|a, ) ’U() ())d’y(z)

ped
:/%1(,:) eXp( [9*( )+2@ tw—t] () tt'xt )fy t|avz( g,)g’a(l),’v(l),z(l))x
XPp

Fap oz (@129, 20, 07 (29), OF) dy
(_)/ TV fy ane (Y] a®, 0, 20) dy
[y exp ([0*( )—1-2@th:13 N2t + oxz! )dxgi)

xp
= / |:/ %(i)dx(i)} fy t\aVZ( Zt|a(i) 'U(i) z(i))dy(l)
u t .
i L Jeexp (16:(2) +20: L@ el + Op71" ) df”
v,

where (a) follows by plugging in fy,x_, . (acgl)]w(_l%, 205 (2"),07) from Eq. (3.10) and
(b) follows because [, 2Vdzl) =0 and [ v zVda = 0.

3.B.1.2 Proof of Lemma 3.3(b): Anti-concentration of second directional
derivative

We start by claiming that the second-order directional derivative can be lower bounded
by a quadratic form. We provide a proof at the end.
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Lemma 3.5 (Lower bound on the second directional derivative). For every t € [p,]
with , defined in Eq. (3.63), we have

1 DT~ 2
O £4(©,) > A)TE0)
2 i€[n]
e | AN
where AV 2 Q| € R and 2 £ 222 | € RPFFL for all i € [n] with
Quy T

7\ = [$§i):|2 — x2,,/3 and the constant C, . was defined in Eq. (3.55).

Given this, we proceed to show the anti-concentration of the second-order directional
derivative. Fix any t € [p,] and any © € A} x Ag. From Lemma 3.5, we have

. A\ 2
02:L1(0,) > (NER (3.68)

T e(n]

: A2
First, using the Hoeffding’s inequality, let us show concentration of = el ([Ag’) ]T’m“(l)>

around its mean. We observe that each term in the summation is an independent
random variable and is bounded as follows

(A8 2 (02l + 202! + )’

b) ; ; 9 ( ) 2 Eq. (3.55)
S (|wt()’+2”QtH1Hw()”OO) 'Tl?nax — (204“‘46331113)() 1211ax ! - 40127' max?

where (a) follows by plugging in Af) and £, (b) follows from triangle inequality,
Cauchy-Schwarz inequality and because ||2®]|o < Zmax for all i € [n], and (c) follows
because Q € 2Ag, w? € 2Ay, and |27V < Tmax for all i € [n]. Then, from the
Hoeflding’s inequality, for any € > 0 we have

P( % 3 (mgz')]rgg(n)z _ % ZE[([A@]%@)Z]
‘ =N

1en
Applying the union bound over all ¢ € [p,], for any 0 € (0,1) and uniformly for all
t € [py], we have

2

ne
>€><2€Xp 326’4—x4 .

1,7 max

N (DT E{( ﬂ—a, (3.60)

1€[n] i€n

.

with probability at least 1 — § as long as

3201 @ 2py
e i ()

99



‘ 2
Now, we lower bound E[([AEZ)]T%")> ] for every t € [p,] and every ¢ € [n]. Fix any

t € [p,] and ¢ € [n]. We have

) )2 i ~(1) =@ i i
Ew(i)7z(i) {([Agl)]Ti(l)) ] = Ea(i)7v(i)7z(i) {[Ag )]TEy(i)la(i)’,u(i),z(i) [CE( ) )T |Z( )} AE )}
(a) ()12 (b) 9
> Aminaio 020 | 1A81] = Amin 2113, (3.70)

where (a) follows from Assumption 3.2 and (b) follows from the definition of AW
Combining Egs. (3.68) to (3.70), for any § € (0,1) and uniformly for all ¢ € [p,], we
have

1
Bi©) = g (Ml ),

2,7

with probability at least 1 — § as long as

320 [T o [ 2P
— 10 — .
g2 & )

Choosing € = ,C, ;. and § = d; yields the claim.
3.B.1.2.1 Proof of Lemma 3.5: Lower bound on the second directional

derivative For every t € [p,] with ©, defined in Eq. (3.63), we claim that the
second-order directional derivative of the loss function defined in Eq. (3.54) is given by

1 NT~60) )2 i i)y, (i —(
02:L(0) = = > (IA@0) exp (= 07 +20,_ @l — 0y, (371)

n
1€[n]
e N
where AY 2 10T | € RP* and 9 2 |29, | e R for all i € [n] with

t

=0 _ [ (i)]Q — 22, /3. We provide a proof at the end.

t = [Tt max

Given this claim, we proceed to prove the lower bound on the second directional
derivative. Fix any ¢ € [p,]. From Eq. (3.71), we have

2

8§f£t(@t) = % Z <[A§Z)]T‘%(i)> X eXp ( - [et(l) + 262—7533(—135]%5@) - @ttfgl)>

i€[n]

@1 Tz () ()

> =3 (1IA07&@9) xexp (= (107] + 2010012 oc) T )
i€[n]

b . 2

e % (IAP173D) " x exp (= (@ + 28200 T )
1€[n]
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Eq. (3.55) 1 Z<[A§i)]T5(i)>2

where (a) follows from triangle inequality, Cauchy—Schwarz inequality and because
|2 | oo < Zmax for all i € [n], and (b) follows because 0% € Ay for all i € [n], © € Ae,
and ||2®]|o < Tpax for all i € [n].

3.B.1.2.2 Proof of Eq. (3.71): Expression for second directional derivative
Fix any t € [p,]. The second-order partial derivatives of £, with respect to entries of
O, defined in Eq. (3.11) are given by

% = %[zil)]Q exp ( — [0, 0 4 2@ ta:_t]x(i) — @ttz@) for all € [n],
E > i) [xf)fng)xq(f) exp (— [Qﬁi)—l—Q@Z_tw@]in) —@ttfgi))
for all u,v € [p]\{t}.
2 zle[n] xt xt D exp ( [9§i)+2®;tw@]x£i) —@@E“)
O’L(0,) for all u € [p]\{t} and v=t.
EECHE %Zie[n] fgi)xgi)q:q(f) exp (— [Qt(i)—i-Z@Z,twg]in) —@@E“)
for all v € [p]\{t} and u=t.

%Zie[n] [fl(ti)f exp <_ [6@4—2@;%;3( ] @tt_(l )
L for v=t and u=t.
(%[:cg)] ) exp( [(9 —1—2@ ta:_t]:ct —OuT, >
D’L(O,) 0°Ly(O,) for all 4 € [n],u € [p]\{t} .

00,600 0000, xg%,S’exp( 09+20] 2! @tt—“)

for all i € [n],u =t.

\

Now, we can write the second-order directional derivative of £; as

B, £1(0; + h$ )—aQ £.(9,)

aégct(@ ) £ lim

h—0
28 £t 8 Lt (9 ﬁt @ )
- Z [ l):|2 + Z Z Qtthv a@tu@tv + 2 Z Z Ble) 9(1)
i€[n] u€[p] ve[p] i€[n] ue[p] tu
]_ (2 7
Z( wt xt +4ZQUI x’)z va xz)+4§2 )Zmet x,, +[Qttfg )}2
ZG[n] uwe[p\{t} ve[p]\{t} we[p]\{t}
+4w§i)x§i) Z Qtuwgi)a:ff)—i—wai)xy) [Q@,E“]) xexp(— [9 —1—2@ t:r;_t]:ct @tta;t )>
uwe[p\{t}
1 D) (i i iy (i (i
= =3 (@il +20]_ 20! + Qua?) exp (- 07 +20]_2)af” - 0ua”)
i€[n]
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(a) 1 i ~(3 2 i i i (i
203 (187E0) exp (- 107 + 2002 l)el? — 0u7”).
where (a) follows from the definitions of Agi) and £

3.B.2 Proof of Lemma 3.2: Lipschitzness of the loss function

Consider any direction §2 = © — ©. Now, define the function g : [0,1] = R as follows
g(a) = L(©+a(© - 0)). (3.72)
Then, the desired inequality in Eq. (3.56) is equivalent to

(1) — 4(0)] < 203, Co (S Il + = 37 Jl?]).

te(p] i€[n]

From the mean value theorem, there exists a’ € (0,1) such that

q(d) | Eq. 3. dﬁ(@—l—a(@ 9)) | Bq. 364
(1) g(0)] = |42 P L7 | EELER I B g )|
(3.73)
Using Eq. (3.67) in Eq. (3.73), we can write
\q(l)—Q(O)}
ZZ( T (z) X €Xp <_ [(99 +a/((’9vt(i)_9£i)))+
tG[P] i€[n]

Z(Gt’_t + a/(étv—t_@tﬁt))Tm@] mii) - (@tt + a/(étt - @tt))ff)> ‘

HAEUEDI

(2 exp (([(1 a)a+ad'a] +2[(1—a')f+d B Tmax xmax)

te[pli€n]
) 2 max 27 i
< Zmnar S S A0 2 202, G (Il + - 3 1),
te[p] i€[n] te(p] i€[n]

where (a) follows from triangle inequality, Cauchy-Schwarz inequality, §®) «9 @) € Ay,

O, O € Ap, and 2] < xmax for all i € [n], (b) follows from Eq. (3.55), the triangle
1nequahty, and because |2 ||so < Zax for all i € [n], and (c) follows from the definition
of A

3.C Proof of Theorem 3.1 Part 1I: Recovering unit-
level parameters

To analyze our estimate of the unit-level parameters, we use the estimate O of the
population-level parameter ©* along with the associated guarantee provided in Theo-
rem 3.1 Part I. We note that the constraints on the unit-level parameters in Eq. (3.12)
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are independent across units, i.e., 8% € Ay independently for all i € [n]. Therefore, we
look at n independent convex optimization problems by decomposing the loss function
L in Eq. (3.11) and the estimate © in Eq. (3.12) as follows: For i € [n], we define

£O09) 2 3" exp (- 07 +20]_ 22" - Byl
t€[py]
and 0 £ argmin £® (6@). (3.74)
9“>€A9
Now, fix any i € [n]. From Eq. (3.74), we have £ (é\(i)) < LO(6*™). Using contrapo-
sition, to prove this part, it is sufficient to show that all points #®) € A, that satisfy
10©) — 6*@ ||y > R(e, ) also uniformly satisfy
ce” P p2p? (log + Me(5 %) + Monle, 6)>

LO(6D) > £D(6*D) + R?*(¢,6) when n > "

Y

(3.75)

with probability at least 1 — § where R(e, d) was defined in Eq. (3.15) and Mve,n(é, J)
was defined in Eq. (3.16). Then, the guarantee in Theorem 3.1 follows by applying a
union bound over all i € [n].

To that end, the lemma below, proven in Section 3.C.1, shows that for any fixed %) € Ay,
if 0@ is far from 6*®, then with high probability £® (Q(i)) is significantly larger than
L) (9*(1‘)) )

Lemma 3.6 (Gap between the loss function for a fixed parameter). Fiz any € > 0,
§ € (0,1), and i € [n]. Then, for any 0% € Ay such that |0 — 6Dy, > ey (see
Eq. (3.15) ), we have

) (90 > £ (9700 1 2 B Tmax 1066y _ guti) 2

£74 H’L >£74 6*74 max 92_9*2

(0) 2 £0 ) + 2o )

cePp? (log B + Mo(5) + Myn(%))
o4

with probability at least 1 — § — cB%logp, - exp(—e~P)|0@ — 0*D|12) where C,, was

defined in Eq. (3.55).

for n >

i

Note. When we invoke Lemma 3.6, we ensure that c¢3%log p, - exp(—e~¢?[|0®) — =) ||2)
is of the same order as ¢.

Next, we show that the loss function £ is Lipschitz (see Section 3.C.2 for the proof).

Lemma 3.7 (Lipschitzness of the loss function). Consider any i € [n|. Then, the loss
function L9 is Lipschitz with respect to the {1 norm ||-||, and with Lipschitz constant
TmaxCsq 7 -€.,

1LD(0D) — LO(OD)| < T Co 0D — 0Dy for all 99,09 € Ag,  (3.76)
where the constant Cy . was defined in Eq. (3.55).
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Given these lemmas, we now proceed with the proof.

Proof strategy. We want to show that all points 8% € Ay, that satisfy |0 — 0*@ ||, >
R(e, d), uniformly satisfy Eq. (3.75) with probability at least 1 —4. To do so, we consider
the set of points A, C Ay whose distance from ¢*() is at least r > 0 in £, norm. Then,
using an appropriate covering set of A} and the Lipschitzness of £, we show that the
value of £ at all points in A} is uniformly Q(r?) larger than the value of £ at §*()
with high probability. Finally, we choose r small enough to make the failure probability
smaller than ¢.

Arguments for points in the covering set Consider any 7° > e (where 7 is
defined in Eq. (3.15)) and the set of elements A} £ {0) € Ay : [|[0*D — 0D, > r}. Let
U(A},€") be the £'-cover of the smallest size for the set A}, with respect to ||-||; (see
Definition 3.2) and let C(A},€’) be the &’-covering number where

2v/2 3 2

oA —fﬁxglaxr (3.77)

meCy .

Now, we argue by a union bound that the value of £ at all points in U(A}, &) is

uniformly Q(r?) larger than £@(0*@¥) with high probability. For any 0¢) € U(Aj, '),
we have

@
16 — 695 > 7, (3.78)

where (a) follows because U (A}, ") C Aj. Now, applying Lemma 3.6 with € <+ ¢ and
d < 0/2C(A},€"), we have

4\/—ﬁxmax ||9* 9(@) ||2 Eq. (3.78) i i 4\/55513?“3){7’2
5 _ T Trmax

(i) () (i) (g*() (i) (g*()
LYW > £D(6*") + e i > LY(0) + reCh

Y
T

with probability at least 1—3/2C(Aj, €’) — 4% log p, - exp(—e~¢?||0®) — §*)||2) whenever

n> - : (3.79)

By applying the union bound over U(Aj, £'), as long as n satisfies Eq. (3.79), we have

4 \/—B‘Imax

7eC3, uniformly for every 8% € U(A}, <),  (3.80)

£ (Q(i)) > £ (9*(%’)
with probability at least 1 — §/2 — ¢32C(A}, €’) log p, - exp(—e~¢?(|0®) — 6*)||2) which
can lower bounded by 1 — §/2 — ¢82C(A}, &')logp, - exp(—e~¢Pr?) using Eq. (3.78).

Arguments for points outside the covering set. Next, we establish the claim
Eq. (3.75) for an arbitrary 6V € A} conditional on the event that Eq. (3.80) holds.

Given a fixed 6) € A}, let 0% be (one of) the point(s) in the U(A}, ') that satisfies
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10©) — 00|, < & (there exists such a point by Definition 3.2) Then, the choices
Eq. (3.77) and Lemma 3.7 put together imply that

£ (’6“(7;)) >0 (6(7;)) _xmaxcw”g(i) —5@H1Z £ (9(1’)) _ xmaXCQ,TEI
ra S'm £ (6 2V 2B}

meCs
Eq. (3.80) ) ) 4 2
"L 0 (gr0) 1 2V 2T
meCsy .

It remains to bound sample size n and the failure probability §.

Bounding n. Using Aj C Ay, we find that

(a)
C(Ap, &) < C(Ag,e). (3.81)

Putting together Eq. (3.77) and Eq. (3.81), the lower bound Eq. (3.79) can be replaced
by

cecﬁp <log —i—./\/l@( )—l—./\/le( )+M0,n(%)>

et

n =
Bounding §. To bound the failure probability by ¢, it is sufficient to chose r such that
6> 6/2+ cB*C(A}, ") logp, - exp(—e “Pr?). (3.82)

From Eq. (3.81) and Eq. (3.82), it is sufficient to chose r such that
0 > 6/2+ cB*C(Ng, ") logp, - exp(—e “Pr?). (3.83)

Re-arranging and taking logarithm on both sides of Eq. (3.83) and using Eq. (3.77), we
have

2
logd > c{log (62 logpy) + Mg(C;ﬁTﬂ) — 6_6157“2:|. (3.84)

Finally, Eq. (3.84) holds whenever

2
ﬁ 6gpy +M (Ce c’,@)

Recalling that the choice of r was such that r > v completes the proof.

r > ceP1/log

3.C.1 Proof of Lemma 3.6: Gap between the loss function for a
fixed parameter

Fix any € > 0, any 6 € (0,1), and any 4 € [n]. Consider any direction w® € R?» along
the parameter 9, i.e

w® =g — g, (3.85)
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We denote the first-order and the second-order directional derivatives of the loss
function £%) in Eq. (3.74) along the direction w® evaluated at 6% by 9, (L®(0D))
and 8a(i>}2£(i)(9(i)), respectively. Below, we state a lemma (with proof divided across
Section 3.C.1.1 and Section 3.C.1.2) that provides us a control on 9, (L£®(6*")) and
a@(i)Pﬁ(i)(e@). The assumptions of Lemma 3.6 remain in force.

Lemma 3.8 (Control on first and second directional derivatives). For any fived £1,c9 >
0,6, € (0,1), i € [n], 89 € Ay with w® defined in Eq. (3.85), we have the following:

(a) Concentration of first directional derivative: We have

|80 ( M| < erllw? i +eallw?)3  for
cecﬁpyp <log + Mg(2 )+M9n(~))
n Z )
el

: ” 2 —e3llw® |3
with probability at least 1 — 6, — O| B log p, exp —ar | )
GC
(b) Anti-concentration of second directional derivative: We have

32v/2 mmax "

aw() ‘C (9 ) 6025

HQ?
-

[

with probability at least 1 — <62 log p, exp (Lﬁ>> where Cy, - was defined
eC )
in Eq. (3.55).

Given this lemma, we now proceed with the proof. Define a function ¢ : [0,1] — RPv as
follows

g(a) = "D 4+ a(8D — *1).

Notice that g(0) = 0*@ and g(1) = 6@ as well as

AL (g(a)) i) (P d*L(g(a))
o = Ou (LOON [0y and == = L Oy
(3.86)
By the fundamental theorem of calculus, we have
dLY(g(a)) _ dL(g(a)) LY (g(a))
> — '
T A AL 8

Integrating both sides of Eq. (3.87) with respect to a, we obtain

dLD(g(a)) a’> . d*L9(g(a))
e lezo T g min o

L£9(g(a))~L(9(0)) > a

106



Eq. (3.86) DG a . i) (DG
B2 40,0 (LD (§D)) Fo—g0) T g i O L (D) |5

2
2 0,0 (OO )+ 5 min 3R L0@)

2 a€(0,1) () =g(a)

®) A , a? N~
> _alaw(“(ﬁ(z)w*(z)))‘_"E min a[w( )]25(1)(9(1))

a€(0,1)

5o —gtay (3:88)

where (a) follows because g(0) = 6*®, and (b) follows by the triangle inequality. Plugging
in a =1 in Eq. (3.88) as well as using g(0) = 0*@ and g(1) = %, we find that

LOOD) — LD (D) > 9,0 (LD (0*D) \+— min &2 . LO 0D~
2 ag(0,1) @]

9=g(a)

Now, we use Lemma 3.8 with 1 <= 4v/28x} e/meC3 ., €2 <+ 8V2Bxh,. /meCs ., and
w12
01 <+ 0. Therefore, with probability at least 1 — 4 — O (62 log p, exp (M>) and

e'B
as long as
ce Ppp? (log + Mo(5 )+ Mo (S ))
TLZ 9
54
we have
- 3oty < 220P N 235 8h 245324
E(z) 9(1) _E(z) 9*(7,) max& @ _ max i) max 7)]12
(09)~£0(r0) 2 = ) Lm0 4 20
225ﬁxmax || H 2355xmax|| (z’)||2
“wecy, T Tedy, ?
Be (19 92980t o o 2Bk
L T ZWETT
e 2,7 2,7
@ 2% 56 max (z) 2 2> 56"L‘max (%) 112 2> 5meax (z) 2
e R
e 2,7 2,7 2,7

where (a) follows because ||w® ||y = [|0® — 0*@||, > 7 according to the lemma state-
ment.

3.C.1.1 Proof of Lemma 3.8(a): Concentration of first directional derivative

Fix some i € [n] and some 0% € Ay. Let w® be as defined in Eq. (3.85). We claim that
the first-order directional derivative of £® defined in Eq. (3.74) is given by

Oy (L £® 9(2 Z wt xt exp< [9,@ + 2@;1@( ] @tt_(z ) (3.89)

te(py]

We provide a proof at the end. For now, we assume the claim and proceed.
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We note that the tuple of random vectors (y, a, v, z) corresponds to a T-SGM (see
Definition 3.8) with 7 £ («, 8, 8, Tmax, ©). To show the concentration, we use Propo-
sition 3.7 (see Section 3.H) with A\ = W, decompose 9, (LY (6*))) as a sum

of L = 10245%z%, log4dp,, and focus on these L terms. Consider the L subsets

max

Si,+++, S € [p,] obtained from Proposition 3.7 with A = - f -— and define

Tmax

V(@ W) £ Z w2 exp (— [Qf(i)+2éz_tm@t]x§i)—@ttff)> for every u € L.
teS.,

(3.90)

Now, we decompose 0, (L?(0*)) as a sum of the L terms defined above. More
precisely, we have

8,0 (L") . Z wt xt exp( [9*(2 +2@ tw—t] 2 _éttfgi)>

t€[py]
(@ 1 q i ~ @) A =
- Z Z Wy )x,(f exp ( [9:( ) + 2@Z_tm(,i]x§ ) @ttxg )>
u€[L] tESy
Eq. 3.90) 1 ; ;
PS5 D (i), (3.91)
u€[L]

where (a) follows because each t € [p,] appears in exactly L' = [L/32v/2822,.] of the
sets Sp, -+, 5L according to Proposition 3.7(a) (with A = m) Now, we focus on
the L terms in Eq. (3.91).

Consider any u € [L]. We claim that conditioned on ac(f)su and 2z, the expected value
of 1, (x®;w®) can be upper bounded uniformly across all u € [L]. We provide a proof
at the end.

Lemma 3.9 (Upper bound on expected 1,,). Fize >0, § E (0,1),14 € [n] and 89 € Ay.
Then, with w® defined in Eq. (3.85) and given 2 and z" g, for all u € [L], we have

maxE [pu(a;9) | 20% 2] <l for

cec’ﬁp <log +./\/l9( )+./\/l9n( ))

TLZ 84 )

with probability at least 1 — 9.
Consider again any u € [L]. Now, we claim that conditioned on :c(f)su and 2z,

Py (2®;w") concentrates around its conditional expected value. We provide a proof at
the end.

Lemma 3.10 (Concentration of 1,). Fiz e >0, i € [n], u € [L], and 0%) € Ay. Then,
with W defined in Eq. (3.85) and given 2z and a:(_l)su, we have

Yu(@®; ) ~ Effu(@;00) | 2%, 20| <,
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2

with probability at least 1 — exp ,;2 .
eI flw®|3

Given these lemmas, we proceed to show the concentration of 9, (L®(#*®)). To that
end, for any u € [L], given a:(_l)su and z®| let £, denote the event that

Yu(@;w?) < E[gu(@?; 0|2, , 2] + 2l ® 3. (3.92)

32 \/_/8 max 2

Since F, in an indicator event, using the law of total expectation results in

) ) (a) _220,,@) 12
P(E,) = E[P(Eu\w%u, z“))] > 1—exp (—gzl,ag ”2).

el w3

\/—ﬂ T max

bound over all u € [L] where L = 10243%x% log 4p,, we have

C2)146) 12
IP’( ﬂ Eu> > 1—O(ﬁ210gpyexp (%))

uel

where (a) follows from Lemma 3.10 with ¢ <+ ———=——*—. Now, by applying the union

Now, assume the event N, F, holds. Whenever this holds, we also have

’a (Z) 0*(1 ) Z ’wu (7). ‘W (3) |

u€[L]
392 .
3 Bl 0)la,, 20 + &2 w3
u€[L] 32\/_6 Lax
(3.93)

Where L' = [L/32v/2B22,]. Further, using Lemma 3.9 in Eq. (3.93) with &

and ¢ <4 07, whenever

32\/_meax
cecﬁp (1og —l—./\/l@( )—l-./\/len( ))
n Z 3
€l
with probability at least 1 — d;, we have,
1 . .
CRIEIGENES=SS (el + = 32f5 — 2w ]3)

E[L 32\/_ﬂ L max

(a) ) )
1w ® 1 +e2]jw@ 13 ) < &]|w® |1 +ea|w@ 3,

32\/‘5 22 I <

where (a) follows because L' = [L/32v/2322,].
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3.C.1.1.1 Proof of Eq. (3.89): Expression for first directional derivative
Fix any i € [n]. The first-order partial derivatives of £ (defined in Eq. (3.74)) with
respect to the entries of the parameter vector §) are given by

Now, we can write the first-order directional derivative of £ as

o @) (p0) @Y _ 6 (96 oA
8@(5(’)(9“)))%1&115 (6% + ha') = L2(0") Zw@aﬁ—(e)

w ()
h—0 h te[py] agt

=— Z w,’ xti exp ( [19(Z + 2@ ]SUt Gttxt >

te[py]

3.C.1.1.2 Proof of Lemma 3.9: Upper bound on expected ), Fix any i € [n],
u € [L], and %) € Ay. Then, given w(_zg and z*, we have

E[%(sc@;w(”) | w“)su,z“’]

D B[ wlal? exp 6 + 267 @ al? ~ Bl | 2]

teSy

® Zwt [mt exp( 07 @ 4 2@ Z] @ _ (:)ttfgi)> ‘ :c(_lg ,z(i)}

teSy

(sztl [ [a:t exp(—[0;"+20]_,x")]at"— 6,7\ )‘a;@’z(i}

teSy

x| z(")l . (3.94)

where (a) follows from the definition of 1, (2¥; w®) in Eq. (3.90), (b) follows from linear-
ity of expectation, and (c) follows from the law of total expectation, i.e., E[E[Y|X, Z]|Z] =

E[Y|Z] since az(_zzgu C «"). Now, we bound E[mii)exp(— [Qf(i)qL 2@Z_twgi]x§i)— (:)ttfgi)) |
"), z(i)} for every t € S,. We have
E[w%i)exp(—[e +2@ Z] gi)—(:)ttff)) ’w(li, ()}

_ / wexp (~ [0 20,2 ot 04T") fup oz (2821, 29 07 (D), ©F) dx”
X

@ Jyxt” oxp (2007, — O, T2y + [0, — Oulz;”)d)”
fx exp ( [0F (2 )+2@ tw—t]xt +@tt$t >dxti)

ﬁ)f;( xgi) [1"‘2[@* t_@t t] txt [@:ﬁ(t @tt]xt }di’ftl)
Jeexp (16:(20) + 20; @ el + ©57" ) dof?
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~ A\ 2 )
R A @tt]fi“) [ dzf?
[ exp ([e*( M) + 207722l + 037 )dxf)
(C) max[@: t @t t] 3&

3 [y exp ( Or (zD) + 2@§Ttm(z J2{) + ozl )dmii)

T (07 — 61 1] ")) (05, =Ou) o(1)
fX eXp ( 9*( ) + 29 tm—t]xt + @ttxtl)>dx1(€i)

+

(3.95)

where (a) follows from Eq. (3.10) and 6*®) = 6*(2®) Vi € [n], (b) follows by using the Tay-
lor series expansion exp(y) = 1+y+o(y?) around zero (¢) follows because I 2zl =
I 27 () = I (xgi))?)dxgl) [y l)( z)) dz{) =0, I (aztz)) de() =223 /3, and
[ (:Egi))QE,Ei)dxf) = 8z /45.

Now, we bound the numerators in Eq. (3.95) by using [|©F — ét”l < \/216F — O4..
Then, we invoke Theorem 3.1 to bound ||©F — @t||2 by € ¢+ —3°— Therefore, we

C2 ngnax \/fi

subsume the second term by the first term resulting in the following bound:

, NN L N 20, a3 plle;—6
E o exp (- [0+ 26]_aaf-6u7") |2, 20 < =22 ma"@” O 00)

where we have used the triangle inequality, ||£®]||oe < Tmax for all i € [n] as well as
107 — Oy]l1 < /D|OF — ©4||2 to upper bound the numerator, and the arguments used

in the proof of Lemma 3.13 as well as f X dxgi) = 2% max to lower bound the denominator.

3
Using Theorem 3.1 in Eq. (3.96) with & —8~ and 0 <= 9, we have

202 Tmmax \/Z;
E [xﬁ’) exp < — [Hz(i) - 2@;@@]1’?) — @)tﬁf)> ’ :1:(2, z(i)] <e, (3.97)
with probability at least 1 — § as long as

cecﬂp (log —i—M@( )+M0n( ))

n > 5 . (3.98)

Using Eq. (3.97) and triangle inequality in Eq. (3.94), we have

B |tpy (29 w®) | wggu,z(i)} <e Z ’wy)‘ < |y,
teSy
with probability at least 1 — ¢ as long as n satisfies Eq. (3.98).
3.C.1.1.3 Proof of Lemma 3.10: Concentration of 1, To show this concentra-

tion result, we use Corollary 3.2 Eq. (3.223) for the function ¢y. To that end, we note
that the tuple of random vectors (y, a, v, z) corresponds to a 7-SGM (see Definition 3.8)
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with 7 2 (a, 8, B, Tmax, ©). However, the random vector y conditioned on (a, v, z) need
not satisfy the Dobrushin’s uniqueness condition (Definition 3.4). Therefore, we cannot
apply Corollary 3.2 Eq. (3.223) as is. To resolve this, we resort to Proposition 3.7
with \ = m to reduce the random vector y conditioned on (a, v, z) to Dobrushin’s
regime.

Fix any u € [L]. Then, from Proposition 3.7(b), (i) the tuple of random vectors
{ys,,a,v, (y_s,,2)} corresponds to a 71-SGM with 7, = (@+28%mayx, 3, W, Tmax; O\8,,),
and (ii) the random vector yg, conditioned on (y_g,,a, v, z) satisfies the Dobrushin’s
uniqueness condition (Definition 3.4) with coupling matrix 2v/222_ |©\s,| such that
2v222 . 195l lop < 2v222,, A < 1/2. Now, for any fixed i € [n], we apply Corol-
lary 3.2 Eq. (3.223) for the function g, with € <+ ¢ for a given w(f)su and z®, to
obtain

"(

3.C.1.2 Proof of Lemma 3.8(b): Anti-concentration of second directional
derivative

2

i, (i 0., ® S
Yu(2®;w) —E[wu(w“,w“) ( s, ” Z€ ‘ —suaz) < exp (ec’ﬁHw(i)HZ)'

2

Fix some i € [n] and some 0% € Ay. Let wC be as defined in Eq. (3.85). We claim that
the second-order directional derivative of £ defined in Eq. (3.74) is given by

e L(09) = 3 (wPal)? exp ( — [0 + 28] 2ol - @@9). (3.99)

t€lpy]

We provide a proof at the end. For now, we assume the claim and proceed. Now, we
lower bound 8[2w m]zﬁ(i) (09)) by a quadratic form as follows

8w(1>]2£ (6D) > Z wtz) () XeXp(_(lelgi)|—|—2”@t|’1Hw(i)Hoo)xmax)

telpy]
> Z wt l'ti X exXp <_(O‘+2ﬁxmax)xmax> : _Z wt xt >
t€[py] 2 "TtElpy]

(3.100)

where (a) follows from Eq. (3.99) by triangle inequality, Cauchy—Schwarz inequality,
and because ||£?||oo < Tmax for all i € [n], and (b) follows because © € Ag, %) € Ay,
and ||2]|o < Ty for all i € [n].

Now, to show the anti-concentration of 8[2‘0@}25(") (6%)), we show the anti-concentration of
the quadratic form in Eq. (3.100). To that end, we note that the tuple of random vectors
(y,a,v,z) corresponds to a 7-SGM (see Definition 3.8) with 7 = («, 8, 3, Tmax, ©). Then,
we decompose the quadratic form in Eq. (3.100) as a sum of L = 10245%z} log4p,
terms using Proposition 3.7 (see Section 3.H) with A\ = 4\/516%0“ and focus on these L
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terms. Consider the L subsets Sy,---, S5, € [p,] obtained from Proposition 3.7 and
define

P, (x; ) & Z (w§i)$§i))2 for every wu € L. (3.101)
teSy
Then, we have

Z (wti $t 2( 1 Z Z 2 Bq. (3.101) % Z B, (@ ), (3.102)
c[L] t€5u

t€(py)

where (a) follows because each t € [p,] appears in exactly L' = [L/32v/28z2,.] of the
sets Sy, -+, S according to Proposition 3.7(a) (with A = 4\522 ). Now, we focus on

the L terms in Eq. (3.102).

Consider any u € [L]. We claim that conditioned on zc(i)su and 2 the expected value

of 1, (2®; w®) can be upper bounded uniformly across all u € [L]. We provide a proof
at the end.

Lemma 3.11 (Lower bound on expected 1, ) Fiz i € [n] and 0% € Ay. Then, with
) defined in Eq. (3.85) and given 2z and " S , we have

min E I m(l)w(z) x(l) z(l)i| max 2
u€(L] Yu(® )‘ —Su CQLTH ||27

where the constant C, . was defined in Eq. (3.55).

Consider again any u € [L]. Now, we claim that conditioned on zc@su and 2z,

1, (2%9: w®) concentrates around its conditional expected value. We provide a proof at
the end.

Lemma 3.12 (Concentration of ). Fiz e >0, i E [n], u € [L], and 0 € Ay. Then,
with w9 defined in Eq. (3.85) and given 29 and x g , we have

Pu(@D;0) — B[, (@;0) | & , 20 <,

2

with probability at least 1 — exp ,;2 .
e Pllw®||3

Given these lemmas, we proceed to show the anti-concentration of the quadratic form
in Eq. (3.100) implying the anti-concentration of 8[ ()]QE(i)(H(i)). To that end, for any

u € [L], given a:(_?gu and 2| let E, denote the event that

Do (@D;00) > B[4, (2@ 0|2 | 20] - i, lw®]5. (3.103)

4
C'2 T
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Since F, in an indicator event, using the law of total expectation results in

- L7 (@) (9|2
P(E.) = E[PEI, 20) £ 1- e (12]2),

2
where (a) follows from Lemma 3.12 with ¢ <« zn(:j‘x lw® 2. Now, by applying the
e

T

union bound over all u € [L] where L = 10243z} .. log 4p,, we have

P(ﬂEu) >1-0 (ﬁzlogpyexp<“w i ))

uel

Now, assume the event N,cr F, holds. Whenever this holds, we also have

Z (wiz)xgz))Q Eq. ( 3102 Zd)

t€[py] uEL]
Eq. (3.103) 1 _ ; ; i ; max
> gZ(Eww“;w“ﬂw(é 2] - o H%)
u€[L] 2,7
(a) 1 12nax 1 x?naxL
=T e o e O (3.104)
wefr) 2T

where L' = [L/32v/2822,,,] and (a) follows from Lemma 3.11. Finally, approximating
= 1/32V/2B322 . and using Eq. (3.100), we have

||27

; 1 A 2 B (3 104) 32\/_@$max
Foop0O) 2 7= 3 (") o

t
WeCST

which completes the proof.

3.C.1.2.1 Proof of Eq. (3.99): Expression for second directional derivative
Fix any 7 € [n]. The second-order partial derivatives of £ (defined in Eq. (3.74)) with
respect to the entries of the parameter vector §) are given by

SO0 .
% - [xgl)fexp(_ 0 +26/_ 2 — Oy ) forall £ € [py).
t

Now, we can write the second-order directional derivative of £®) as

) g & g G0 L0 + o) — 0,0 L(6Y) 112 02LO(90))
2 @ gy A w ) B (7202LD(0)
Fuopt™(07) = lim I =[] o]
t€lp)
= 3 (@) exp (— 0 + 28] @ al? 8,70,
telp)
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3.C.1.2.2 Proof of Lemma 3.11: Lower bound on expected 1, First, we
claim that the conditional variance of azgi) conditioned on x_; = w(_z% and z = 20 is
lower bounded by a constant for every ¢ € [p,] and i € [n]. We provide a proof at this

end of this section.
Lemma 3.13 (Lower bound on the conditional variance). We have

OIMORNG 2; :
Var(:zr,g )|$(_35, 20 > % for allt € [p,] and i € [n],
me 2,7

where the constant C, . was defined in Eq. (3.55).

Given this lemma, we proceed. Fix any i € [n], u € [L], and ) € Ay. Then, given

a:(_zgu and z®, we have

B[ (e w0) 2l 20 EVE] 3 (wal?)" | 20, 20

teSy

9 5 B[00 [ o, 2]
t€Sy

® ZE[E[(a}tu)xf)f‘w@,Z(i)} ’ 3399u7z(i)]
teSy,

> Z E[Var(wt(l)x,gz) ac(_zi,z(z)> ‘ a:(_l)su,z(’)}
teSy,

(d 2

> 2w 1,02

— meCy,

where (a) follows from linearity of expectation, (b) follows from the law of total
expectation i.e., E[E[Y|X, Z]|Z] = E[Y|Z] since 'Y, C x), (c) follows follows from

_Su
the fact that for any random variable a, E[a?] > Var[a], and (d) follows from Lemma 3.13.

3.C.1.2.3 Proof of Lemma 3.12: Concentration of ¢/, To show this concentra-
tion result, we use Corollary 3.2 Eq. (3.223) for the function ¢;. To that end, we note
that the tuple of random vectors (y, a, v, z) corresponds to a 7-SGM (see Definition 3.8)
with 7 £ (a, 8, B, Tmax, ©). However, the random vector y conditioned on (a, v, z) need
not satisfy the Dobrushin’s uniqueness condition (Definition 3.4). Therefore, we cannot
apply Corollary 3.2 Eq. (3.223) as is. To resolve this, we resort to Proposition 3.7
with \ = W to reduce the random vector y conditioned on (a, v, z) to Dobrushin’s
regime. -

Fix any u € [L]. Then, from Proposition 3.7(b
{ys,,a,v, (y_s,,z)} corresponds to a 7,-SGM with 7,

(i) the tuple of random vectors
(a+25xmaxa 57 m7 Tmax, @\Su)7
and (ii) the random vector yg, conditioned on (y_g,,a, v, z) satisfies the Dobrushin’s
uniqueness condition (Definition 3.4) with coupling matrix 2v/222, |©\s,| such that

max

)
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2222, 19sullop < 2v222,, A < 1/2. Now, for any fixed i € [n], we apply Corol-

lary 3.2 Eq. (3.223) for the function ¢; with ¢ = ¢ for a given w(f)su and 2, to

obtain

“

3.C.1.2.4 Proof of Lemma 3.13: Lower bound on the conditional variance
For any random variable x, let h(x) denote the differential entropy of x. Fix any ¢ E [py]

and i € [n]. Then, from Shannon’s entropy inequality (2h(-) < log \/2meVar(-)), we
have

2

2
— D). G - i % (2) i (@) i —_6
V(2?0 )—E|y, (@0 ‘ z’s, ,z()” > e ‘ m—su=z()> = eXp(@C’ﬁ||w(i)||2)'

QWeVar(asgi) ‘azg, z9) > exp <2h($§i)}mg, z(i))>. (3.105)

Therefore, to bound the variance, it suffices to bound the differential entropy. We have

= / fx,z(w(iz z(i)) IOg th|x_t,z ajgl) |w(—13€7 z(i); ei(z(l)% @:)> dw(l)dz(l)
)

XPx Zpz
* (o (1) *T .(0)
/ Sz (2t 2% 10g< exp ([0 (=) +26; ta(;_t] o) ,)>dm(i)dz(i)
XPx Zp= x€XP ( 07 (2 )+26?Ttw ‘ ]xt +@tt37t )daf;tl

* (o (1) * (%)
/ fx,z(:c(izz(i))log(f x (10 (=] + 2067l 1@l Zme) )da:(i)dz(i)

s oD (—(167 (20) |+ 2167 |1 20| ) 2

g / fx,z(m(iz Z(l)) log (f P <(a il 2/8$max)wmax> ) dm(l)dz(l)

X exp ( (Oé + 26xmax CCrnax)

XP x Zpz

) C3 . C2

= / fxz z) 2z log (233 )ala:(Z dz® = log (2; ), (3.106)
XPx Zpz * *

where (a) follows from triangle inequality and Cauchy—Schwarz inequality and because
|| oe < Zmax for all i € [n], (b) follows because 6*(z()) € Ay for all i € [n], ©* € A,
[ |oc < @max for all i € [n], and (c) follows because [, dz{") = 2% 4. Combining
Egs. (3.105) and (3.106) completes the proof.

3.C.2 Proof of Lemma 3.7: Lipschitzness of the loss function

Fix any i € [n], any 8@, 60 € Ay. Consider the direction w® = @ — 6 and define
the function ¢ : [0, 1] — R as follows

g(a) = LD (0 + a(0% — 09)). (3.107)
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Then, the desired inequality in Eq. (3.76) is equivalent to

[4(1) = 4(0)] < ZmaxCy |||l

From the mean value theorem, there exists a’ € (0,1) such that

dg(d’)
1) — . 1
(1) - a(0)] = |2 (3109
Therefore, we have
Eq. (3108) dg(d') | & (3107) )dﬁ ) () +d/ (0 — gl ))’
1) —
|a(1) = q(0)] — -
Eq. (3.86) Dt
T 0ue (L£9(01)) @ —gy |- (3.109)
Using Eq. (3.89) in Eq. (3.109), we have
9() = g0 = | 3 el exp (= 07 + /(6" - 67) +26]_a")al” — Bul”) |
te(py]
@) i i i A ;
< e 2 i exp ({](1 = 0007 + || + 2181120 | )
t€[py]
(0) A
< Tmax €XP (((1 — a’)a +da+ Qmeax)xmaX> Z ‘@U‘
t€[py]
Eq. (3.55)

ZunaxCo 7 w1,

where (a) follows from triangle inequality, Cauchy—Schwarz inequality, and because
|20 < Zmax for all @ € [n] and (b) follows because 00 00 € Ay, © € Ag, and
|| s0 < Zimax for all i € [n].

3.D Proof of Theorem 3.2: Guarantee on quality of
outcome estimate
Fix any unit i € [n] and an alternate intervention @ € AP«. Then, we have
u(i)(a(i)) (3.6 E[y(i)(a(i))’v — v z= z(i)] @ Ely|a = a" v=0v®z= z(i)],
where (a) follows because the unit-level counterfactual distribution is equivalent to
unit-level conditional distribution under the causal framework considered as described
in Section 3.3.1. To obtain a convenient expression for E[yla = @'V, v = v,z = 2],

we identify ®*(“¥) € RP«*Py to be the component of ©* corresponding to u and y for all
u € {v,a,y}. Then, the conditional distribution of y as a function of the interventions
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a, while keeping v and z fixed at the corresponding realizations for unit 4, i.e., v and
2 respectively, can be written as

fy(\?.(yla) X exp ([9*(“ + 20T ) 4 2¢T@H*V) ]y 4 yTCD*(y’y)y>. (3.110)
Therefore, we have

Elyl]a=a",v=v"z= 20 =E [yla=a").
yla

Now, consider the p,, dimensional random vector w supported on AP» with distribution
fw parameterized by ¢ € RP» and ¥ € RP»>*Pv as follows

fu(w|p, ¥) o exp(y " w + w ' Yw). (3.111)

Then, note that fy(r;(y|a) in Eq. (3.13) and f |a(y|a) in Eq. (3.110) belong to the set
{fu(:|, V) : ¢p € RPw U € RPv*Pel for some 9 and ¥. Now, we consider any two
distributions in this set, namely fw('w|12}\, \TI) and fy(w|y*, ¥*). Then, we claim that
the two norm of the difference of the mean vectors of these distributions is bounded as
below. We provide a proof at the end.

Lemma 3.14 (Perturbation in the mean vector). For any i) € RP* and U € RP*Pv et
typ (W) € RP and Covy g (w, w) € RPe*Pe denote the mean vector and the covariance

matriz of w, respectively, with respect to f, in Eq. (3 111) Then, for any 1/) Y* € RPw
and WU, U* € RPv*Pw there exists somet € (0,1), w = tw—l—(l t)y* and U 2 tw—i-(l t)w
such that

15,5 (W) = e w- (W) l2 < [Cov g (w, w)op [ (1 = 7|2
+ > [Covy g (w, weyw)op | (Wi, —¥7)

tSG[pw]

Given this lemma, we proceed with the proof. By applying this lemma to f(yr;(y|a) in

Eq. (3.13) and fy
bound

(y|a) in Eq. (3.110), we see that it is sufficient to show the following

|a

1(0*@ — 0) 4 20O T (@) — ) 4 2T () — plaw)y,
+ 20 185 = B, < R(z,0/m) + pe.

tepy]

To that end, we have
> [l o)), < Z 167 — 6|2, (3.112)
te(py) t€py]

where (a) follows because ¢; norm of any sub-vector is no more than ¢, norm of the
vector. Similarly, we have

(%@ —90) 420 DT (§*) — pow)) 4 2g (DT (Grv) — ey,
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(a) NP ‘ ~ ‘ ~

< He*(l)_9(1)H2+2H/U(Z)T((I)*(U:y)_Q)(”’y)>H2+2|la(z)—r(q)*(avy)_(I)(avy))HQ
) . ~ i o Al

< 60 =02 2[[o D [[o] @Y — @D | 2| @D 5] (2 — DLW,
© . » ~

< 670 =01 + 2( 0?1l + 1@ 12) 16" ~ Olop

& . L .
< 11070 =89 + 2( oDz + @2 ) 6" — Bl

(e) N ~
<0 =02 + 22 (Vo + v/Pa) D1 — O30, (3.113)

where (a) follows from triangle inequality, (b) follows because induced matrix norms are
submultiplicative, (c¢) follows because operator norm of any sub-matrix is no more than
operator norm of the matrix and ¢, norm of any sub-vector is no more than ¢, norm
of the vector, (d) follows because the operator norm is no more than the Frobenius
norm, and (e) follows from the relationship between the matrix norms and because
max{||[v?||s, [|a?]|s0} < Tmax for all i € [n].

Now, combining Egs. (3.112) and (3.113), we have
H (0*(1')_ @\(i) ) 4 2,U(i)T((I)*(v,y)_ (/I;(v,y) ) 4 Qa(i)T(cD*(a,y)_ &\)(a,y)) H2 +Z’ ’ (I):(y’y)— Ef)gy,y) H2

t€py]
<000+ 22ma (v/Po+VB2) VB 10" = Blaot D 167 = Bl
t€[py]
(a)
< R(£,6/n) + 20max (VDo + V/Pa) V/PyE + Py,

and (a) follows from Theorem 3.1. The proof is complete by rescaling € and absorbing
the constants in c.

3.D.1 Proof of Lemma 3.14: Perturbation in the mean vector

Let Z(¢,¥) € R, denote the log-partition function of fy(-|¢), ¥) in Eq. (3.111). Then,
from (Busa-Fekete et al., 2019, Theorem 1), we have

11155 (W) = prye g (W) |2 = IV Z(0, W) = Ve Z(", 7). (3.114)
gfbi(g;ﬂi) d aijlza(ijzs. Using the fact that the Hessian of

the log partition function of any regular exponential family is the covariance matrix of
the associated sufficient statistic, we have

2 (b, W)
—~—~ =Co Wy, wy,) and ——— = Co Wy, , Wy, Wy ). 3.115
D, Db, Voo (W Wiy) 000, 0T, Vo (W Wiy Wes ) ( )

Now, for some ¢ € (0,1), L e+ (1 —c)y* and ¥ £ b + (1-— C)J, we have the
following from the mean value theorem
0Z($, W) 2Z(Y*,¥*)

672];1 82'bz(l

For t1,ts,t3 € [py], consider

D*Z (Y, W)
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2 -~ T /\ ~
= Z w : (¢t2 - ¢t2 Z Z i Z w7 (\Pt27t3 - @:2,153)

tQE[p awtgﬁwtl tQE[pw t3€[p ]aq]tQ,tSawtl
E 3 115) ~
q. Z (COV Wt17 th wtg ¢t2 + Z Z COV th, Wt3 th) (qjtg,tg \IJ;; t2)
t2€[pw] t3€[pwlt2€[pw]

Now, using the triangle inequality and sub-multiplicativity of induced matrix norms,
we have

V520, )= Ve Z(*, 9)2 < [Cov g (w, w) fopl| (=) 2
+ > [Cov g (w, wiyw) o (T, = ¥7,) |-

t3€[pw]

(3.116)

Combining Egs. (3.114) and (3.116) completes the proof.

3.D.2 Bounded operator norms for perturbations in the param-
eters

In Section 3.4.2, we assumed the operator norms of (i) the covariance matrix of y
conditioned on a, z, and v and (ii) the cross-covariance matrix of y and y;y conditioned
ona, z, and v for all t € [p,] to remain bounded for small perturbation in the parameters.
In this section, we provide examples where these hold.

Suppose the distribution of y conditioned on a, z, and v is a Gaussian distribution.
For simplicity, let the mean of this distribution be zero. Then, for any ¢, u,v € [p,],
(@)

COVG,@(YuaYthm»Zﬂ’) :EG,G(yuytyvla’7zav) 0.

where (a) follows because Eg o (yuyiyv|@, 2, v) is the third cumulant of y,yy,|a, z, v and
the third cumulant for any Gaussian distribution is zero (Holmquist, 1988). Then,

max [Cove(Y, yiy|a, z,v)|op = 0. (3.117)
t€[py]

Further, Eq. (3.117) also holds for small perturbations in § and © as the distribution of
y conditioned on a, z, and v would still be a Gaussian distribution.

Now, we bound |Covye(y,y|a, z,v)|op, under additional conditions. For simplicity,
suppose Varggo(yla,z,v) = 1 for all ¢ € [p,]. Further, suppose the (undirected)
graphical structure associated with elements of y, i.e., y1,--- ,¥,,, is a chain (This would
be true for the motivating example in Figure 3.1.1). If the correlation between any two
elements of y connected by an edge in the tree is equal to p € [0, 1] (This is equivalent
to all the off-diagonal non-zero entries of © being the same), then for any u,v € [p,],

lu—v]

(COVQ’@(yu,yACL,Z,’U) @p )
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where (a) follows by the correlation decay property for Gaussian tree models (Tan et al.,
2010, Equation. 18). Then, for any 0 < p < 1

@ 1+
[Covoely, yla, z,v)|ep < — L, (3.118)

1—p’
where (a) follows from Trench (1999). Further, Eq. (3.118) holds for small perturbations
in § and © as long as p < 1. Therefore, C'(B) in Eq. (3.20) is a constant (with respect
to p) for small perturbations in 6 and ©.
While we showed that C'(B) is a constant for a class of Gaussian distributions,

we except similar results for truncated Gaussian distributions and exponential family
distributions in Eq. (3.2).

3.E  Proofs of Propositions 3.2 and 3.3

3.E.1 Proof of Proposition 3.2

3.E.1.1 Guarantees for Example 3.7

We divide the proof into multiple parts for convenience. First, we express the outcome
generating process in Eq. (3.25) in a vector form. Then, we obtain the conditional
distribution of the outcome vector given the intervention vector, the observed covariates,
and the unobserved covariate. Then, we provide guarantees on recovering the parameters
that vary with time. Finally, we provide guarantees on recovering the parameters that
vary with unit.

3.E.1.1.1 Expressing Eq. (3.25) in a vector form We define
BW) e RP such that BY7) = ﬂg)_ ; forevery te[p] and j€|[d]
B») € RP such that B = 5t(fz)_j for every te€[p] and j € {0} U][d]
B € RP such that B = 5,5(3)_j for every te€[p] and ;€ {0}U][d],
where ﬁt(?ﬂ =0ift —j <0 for every u € {y, a,v}. Further, we define
y) € R? such that gy =y )j for every i€ n], t€[p] and j€|[d
a™) € R? such that a’) = ag_)j for every i€n|, t€p] and je€{0}U]d
v € R? such that v = Uii)j for every i€ n], t€[p] and je€ {0}U]ld],
where yﬁ)J = agl)] = vfi)j =0 fort—j <0 for all i € [n]. Then, Eq. (3.25) can be

written as

d
n(i) — y(i) _Z ﬁ(y,j)Q y( ZB @.5) &y q (B9 —

=1 j=0 =0

ﬁvj @v(” (i)17

M&

(3.119)

where ® denotes the element-wise multiplication.
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3.E.1.1.2 Obtaining the conditional distribution of the outcome For every
unit i € [n], the distribution of y = y® given a=a" v=v9 and z=2%1 is given
by fy|a,v,z(y(i)|a(i), v, 201) o exp (77( ) TERG ) We clalm that thls can expressed in a
form akin to Eq. (3.4). To see this, plugging in n® from (3.119), we have

fy\a,v,z(y(i) |a(i)7 'v(i)’ Z(i) 1)

d
x exp ( —2 [z(l)l + 80 4 6§“)a“)} - [Ey@) - E(B") o y(”]))}
j=1
T & . y
—9 Z [ @) @ ) 4 Bd) o a(w)} : [Ey(z)— ZE(B(W) o y(w))}
71=0 J=1

[ i () @y“’”)] [Ey(i)— Zd:E(ﬂ“”” @y“’j))]). (3.120)

Jj=1
To convert Eq. (3.120) into the familiar form, we define the interaction matrices

d
O € R such that ) = —Ey 4, + > By ey B, for every byt € [p]
j=1

P € RPP  such that @Efé) _ Z q)tlﬂ . 615(:)—)&-j,t1 for every ty,t; € [p]
@Y ¢ RP*P  such that @ﬁftyg = Z <I>t1+] " ﬁt(fij7t1 for every 1, € [p], and

PV ¢ RPP  such that @Ef’é — tl’{fg T+ Z cI>t1+J \ 515({2]‘,7&1 for every ty,t5 € [p),

where Ey, 4,+; = 0 for to + j > p, <I>§1+])t2 =0 for t; +j > p, and Bt(i)jt =0fort+75>p
for every u € {y,a,v}. We note that ®®¥) is a symmetric matrix. Further, these
interaction matrices are indeed such that:

oY = EBWT and o®¥ = BWoEY)  for every w € {v,a,y}. (3.121)
Then, we define the unit-level and the population-level parameters

0@ 2 2EwT |01 4 gy 4 ﬁf“)a(“] and O 2 [0W¥) o) W] (3.122)

with @) = @@v)" ¢ RP*Pa and W) = )" ¢ RP*Pv. Plugging these in (3.120),
we have

fyanz(y?]al? v, 201;69 0)
o (e(i)Ty@ + 200 @MWy () 4 200 plan)y D) 4 y(orq)(y,y)y(i)) . (3.123)

which is akin to Eq. (3.4).
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3.E.1.1.3 Assumption 3.1 holds To enable the application of the machinery de-
veloped in Section 3.3.3, we show that the unit-level and the population-level parameters
defined in Eq. (3.122) satisfy Assumption 3.1. We claim

109]|s0 < 2(Zmax + 2BmaxTmax) (1 + dBmax) B (3.124)
[Omax < Brnax(1 + dBimax) B, and (3.125)
[©]0c < (14 2Bmax + 3dBmax) (1 + dBmax) 5. (3.126)

Proof of Eq. (3.124). We have

3 122)

169]| Z* E1 20 T[201 4 g0 4 g@a®))|

< 210,291 + 5000 + 570

(b)
< 2(Zmax + QﬂmaxxmaX)”(I) “) ”

(c)

< 2(Zmax + 2BmaxTmax) [E1BY |
(d)

S 2(211'13)( _l_ 26maxxmax) ||E||OO ||B(y) ||OO7

A
N

2(2max + 2BmaxTmax) (1 + dBmax) B, (3.127)

where (a) follows from standard matrix norm inequalities, (b) follows from Assump-
tion 3.4 and because max{v®¥ a’} < .. for all i € [n], (c) follows from sub-
multiplicativity of induced matrix norms, (d) follows because E is symmetric, and (e)
follows from Eq. (3.28), Assumption 3.4, and Assumption 3.5(a).

Proof of Eq. (3.125). For any u € {v,a,y}, we have

(3.121) ; @ . B ®) _ ;
VBORED e < B [0y < B0

(c) _

S ﬁmax(l + dﬁmax)ﬁ)
where (a) follows from standard matrix norm inequalities, (b) follows from Assump-
tion 3.4(b), and (c) follows as in Eq. (3.127). Then, Eq. (3.125) follows by noting that
||@Hmax = MaXyc{v,a,y} H(I)(u,y) ”max-

Proof of Eq. (3.126). For any u € {v,a,y}, we have

Dy

Eg. (3.121)

[t B, € B 6], < [BY] (1+ )8, (3128)

where (a) follows from sub-multiplicativity of induced matrix norms and (b) follows as
in Eq. (3.127). Then, Eq. (3.126) follows by noting that

(a)
[0 < Y 12 |1 < (14 dBuax + 2(d + 1) Brax) (1 + dBrmax) B,

ue{y,a,v}

where (a) follows from Egs. (3.26) to (3.28) and (3.128) and Assumption 3.4.
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3.E.1.1.4 No dynamics in the outcomes In this scenario, we have 5,5(37)“ =0 for
all ty,ty € [p], i.e., B®) = —T and ®*¥) = —®W®¥)_ Then, for every i € [n], 0 can be
expressed as a linear combination of known vectors. In particular,

0% = DO, (3.129)

where
()
D £ 29w To@ c R and @ £ |gY) | e R¥*!, (3.130)
B

Therefore using Example 3.1, the sum of the metric entropy Me(e?) + My, (e?) is
O(p log 2 =+ 3 ) which is drlven by the unknowns © and c(

Recovering population-level parameters as in Eq. (3.29) Applying Theorem 3.1,
we obtain estimate © such that, with probability at least 1 — §, we have
p*(log 2 + plog %+ %)

|6 — O*|s0e <& for n> T (3.131)
1

Let us condition on the event in Eq. (3.131). To estimate B(® and B®™, consider
Eq. (3.121). For every w € {v,a}, we have

dwy) — _B@) ey

If we knew ®¥) and ®¥¥), estimating B(™) would have been easy. While we do not
know Py and WY we can produce estimates using O. In particular, let P(ww)
and ®@¥ be the components of O that are estimates of ®®¥) and ®®) , respectively.

Then, we can estimate B®) by performing an error-in-variable regression. Specifically,
defining A®W¥) = o) — &Y we have

wy) — _B@Hwy) 4 BWAGWY) L AGwy)
Then, we let B®) be such that
dwy) — B e
We claim that the choice of &1 = c£?/y/plogp in Eq. (3.131) is such that
IB®) — B®|, o < cg/ /A1 (3.132)

Then, the proof is complete by re-parameterizing e.

Proof of Eq. (3.132). First, from the triangle inequality, we have

|(B®) — B®) ) 200 < |(B®) — B®) ) 200 + |(B®) — BE)AQH) 2,00
(3.133)
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Now, we bound both the terms on the right hand side of Eq. (3.133). To bound the
first term in Eq. (3.133), we invoke (Shah et al., 2021c, Lemma N.1). We have

S

~ 1
p( BWAQUDE 4 |0 JAD) |y [ B Hoo\/ in)
YY) w,y) lng
S p CHB HQOOHACI) ”12+Cﬁmax(1+dﬁmax)6”A® ”maXHB ”00 p

1
< p(c (1+d)B maxHAq’ z0) 13, + B (1 4 dBrmax) B(1 4 d) Bppar | AD@Y) Umax,/ 0§p>

|
c(1+d)B max51 + Cﬂmax( + dBmax) B(1 + d)ﬁmax €1 0§p>’ (3.134)

—
S
=

where (a) follows by Cauchy—Schwarz inequality and from Eq. (3.125), (b) follows from
Egs. (3.26) to (3.28) and Assumption 3.4(b), and (c) follows from Eq. (3.131) and

because A®¥¥) is symmetric. To bound the second term in Eq. (3.133), we have

~ (a) ~
[(B™ —BM)Aew»)[3 < p|(B™) —B™)AGEY|2

)
< p|B™ — B[S JaetR,

© 5 (w w 2

< P(IB™ a0 + [BM200) [ADUH[3

(d)

< Cp(l + d) 61113,)(617 (3135)

where (a) follows from standard matrix norm inequalities, (b) follows by Cauchy—Schwarz
inequality, (c) follows from the triangle inequality and because A®¥¥) is symmetric,
and (d) follows similar to Eq. (3.134). Then, putting together Egs. (3.133) to (3.135)
and using the choice of &y = c/,/p, we have

B _ B2 e L2\ Y e
|(B™) — BEewv|s < +e" ) < e,
’ 10gp

where (a) holds as typically ¢ < y/log p. Finally, Eq. (3.132) follows after noting that
Assumption 3.6(a) implies

B™ —B™3 < —H( — B

Recovering unit-level parameters as in Eq. (3.30) In Eq. (3.129), if we knew the
matrix D, estimating ¢ ~would have been easy. While we do not know DY, we can
produce an estimate using ©.

The following lemma, proven in Section 3.E.1.3, provides guarantees on recovering
the coefficients in a linear combination when the basis are known with some error.
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Lemma 3.15 (Coefficient recovery in a linear combination with noisy basis). Suppose
0 €RF, D€ RpXk, and ¢ € R* are unknowns such that § = Dc. Suppose we have
estimates D and 6 = D¢ such that

ID =Dy <7 and MSE(6,6) < &,. (3.136)
Then,

1 .. 2

“Je - el < ———(kllc]2ZF + 7).

p Amin(DTD)

Given this lemma, we now proceed with the proof. Let us condition on the event in
Eq. (3.131) and define D" 2 _23wnTo0, Now, we write

~ (7

9 = D( )E(i) where ¢ £ ¢ 4 ¢,

for some error term (. Applying Theorem 3.1, we obtain estimate 0 such that, with
probability at least 1 — §, we have

for n> 1 —1—. (3.137)
&1

4 p P p
MSE(@®, 90 < max{gl,M} (log § 2 +5)

We note that the above estimate 8@ of the unit-level parameter 6@ is of the form

9 = ( )A(l) To prove the corresponding guarantee on E(i), we invoke Lemma 3.15.

Towards that, note that

D" -D,. S 2¢/1+ 222, ]| 0@ 71 — oUW T||
(b) ~
< V I+ 2x?nax\/_”(I)(%y) _(I)(y’y) H2,007
S \% 1 + 2x12nax\/_817

where (a) follows by noting that max{v®, a"} < z,., for all i € [n], (b) follows from
standard matrix norm inequalities, and (c¢) follows from Eq. (3.131).
()T (i
Next, we claim that the eigenvalues of D( ) D( ) are lower bounded by kop(1 — ¢)
with the choice €, = cke/\/p. Then, conditioning on the event in Eq. (3.137) and

invoking Lemma 3.15, we have

—||6(i)—c(i)||§ <

2, .2 p

c 2 2 2 2 2 {8 Ry log(log 3)}

— 5 | max B 1+2 + max ‘
/€2p(1 E) ( : {Zmax’ aX}( xmax)g Ko T ma )

where we have used Assumption 3.4. The proof is complete by taking a union bound

over i € [n].

NOWPN¢
It remains to show that the eigenvalues of D() D() can be lower bounded by
kep(l — €) with the choice &1 = ckye/ /p. From Weyl’s inequality (Bhatia, 2007,
Theorem. 8.2), we have

~ ()T~ (4 . . ' ' DT (i
)\min(D( ) D( )> Z )\min(D(’L)TD(Z)) - Amax(D(l)TD(l) — D( ) D( ))
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(a) o
> KoP — Amax(DOTDO — BTH ))7

where ( ) follows from Assumption 3.6(b). Now, it suffices to upper bound Apax (D@ TD® —

D(Z) D ) by kope. We have

‘)\max TD( B — ﬁ( D(l))l
(1)

~NON

2 DD - D lop

2 3\yD<i>TD<i> — DD s

() ; y ADOTyA@)
<3(IDOT(DY = D) s + (DY = D)D)
(@) ; ~ ()T N A

< 3(IDY a0 + D J2,00)[DY = D15

(e)

IN

cmax({1, 22, } (00 T1]ly + [SEHTL],)|AGE T 1,

IN=

cmax{1, 22, Ip(|oUY) |, + 8@V ) [AS@Y)

,\
INS

cmax{1, 22, p*?(1 4 2Bmax + 3dBmax) (1 + dBmax) BE1,

where (a) follows because DD — D" D" is symmetric, (b) follows because
IM[op < [M|r < k|M|pmax for any square matrix M € R¥* (¢) follows from the
triangle inequality, (d) follows by Cauchy—Schwarz inequality, (e) follows from Eq. (3.130)
and because max{v® a®} < ., for alli € [n], (f) follows from standard matrix norm
inequalities, and (g) follows because |AQ®Y)| < |\ /p|A®UY)|, ., and Egs. (3.126)
and (3.131). Then, the upper bound follows by the choice of &;.

3.E.1.1.5 No dynamics in the observed covariates In this scenario, we have
5t2 v, = 0if 1 # ty and ﬁtz ), = B otherwise, i.e., B¥) = — 3T and ¢=¥) = —ﬁé(”’y).

Then, for every i € [n], %) can be expressed as a linear combination of known vectors.
In particular,

1

() — _ (1) (D)
0 B(U)D c\,
where
(4)
z
DO 2 2@ To) ¢ RP*3 and @ 2 |pM)| e R
B
From Eq. (3.121), we have &) = B® @) = —ngB(w)(b(”’y) for every w € {a,y}.
We claim that there exists B\(”) such that
—~ cplog <5
B® — W <e for n> %. (3.138)
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Then, performing an analysis similar to the setting with no dynamics in the outcomes,
results in estimates F®) of F® £ B®) /8®) and m® of m® £ ¢ /8 such that

cp* log? p(log5+plog€4 )

[EC) —F®) l200 <& for n> ! and v € {a,y}, 6hd39)
1
2
; , log(log Z log & +
||ffl(2) - m(z)Hg < c 521{% i g( g 5) for n> ( 5 T g2 2)‘
kol —¢) etk

Then, B 2 ﬁ<w>B<v> is an estimate of B(") such that Eq. (3.29) holds as we have

B — By = [F5) — P50

— ||( — (w))g(v) + Fw (g(v) — B9 2,00

(@)  ~ ~ ~
< || (F(w) _ F(w))ﬂ(v) ||27OO + ||F(w) (B(U) _ 5(v)) ||27OO

(b) _ R
< Banae|[F = FO g + [FO [ B — 5|

© _ ) -

S BmaX”F(w) - F(w) ”2,00 + Bmax/ﬁi( ) v 1 + d‘/B(U) - 5(1])‘
(d) —

S Bmaxg + ﬁmax/ﬁmin\/ 1+ dE,

where (a) follows from triangle inequality, (b) follows from Assumption 3.4(b), (¢) follows
from Eqs. (3.26) to (3.28) and Assumption 3.4(b), and (d) follows from Egs. (3.138)
and (3.139). The proof of Eq. (3.29) is complete by re-parameterizing e.

Similarly, €@ £ m® B\(”) is an estimate of ¢ such that Eq. (3.30) holds. The proof
is similar to above.

Proof of Eq. (3.138). Using &%) = —ﬁB(y)q)(”’y) and Eq. (3.28), we have

(v,y)
B = % for all ¢ € [p]. (3.140)
o,
Then, we define
R 1 - B _ o)
BW 2 1730 where B € R such that B[ £ =L forall € [p]
p D,
(3.141)
We have
50— g0 = Lamae _ genTy € L0 - oy, (3.142)
p VP

where (a) follows from Cauchy—-Schwarz inequality. It remains to bound the right hand
side of Eq. (3.142) by £,/p.
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Case 1: [|(B8®) — 1) @ dY |, > 8™ © (@YY — dFY) (5. From Egs. (3.140)
and (3.141), we have

||q)1()v7y) — q)](?vyy)||2 — Hﬁ(v) ® (I)Igyy Y16 q)(yy 2
iyl

N A A

P
(@)  ~ N

> H(ﬁ(v) — B ) H2 — HIB (q)](gyy) _ (I)I(Dy,y))H2

®) _ ~

> \/lﬁH,B(v) _ 5(1))1”2 — ﬁmaxncpéy,y) _ (I)z(v%y)”% (3.143)

where (a) follows from triangle inequality and (b) follows from Assumption 3.6(a) and
Assumption 3.4(b). Then, re-arranging Eq. (3.143), we have

(v v 1 ENC] v o
18— 51 < = (B4 — 2Vl + B[ £1 F B,

(@ 1
Dz) = —(
VK1
where (a) follows from a bound similar to Eq. (3.131). The proof is complete by choosing

g1 = 08\/]_9.
Case 2: |(B"Y — 1) ® oY, < B@ @ (&;I(,y’y) — @éy’y))ﬂg. We have

~ (a) ~ ~ ~
\/FL_1||5(”) — 5(v)1|’2 < H(ﬁ(v) — 5(”)1) o) (p](gy,y)H2 < ||ﬂ(v) 0 (@;y,y) — q)](gy,y)) 2
Y P (vy) wa) |, 2
S /BmaXH(bp’ - (I)p7 H2 S ﬁmaxgla

where (a) follows from Assumption 3.6(a), (b) follows from Assumption 3.4(b), and
(c) follows from a bound similar to Eq. (3.131). The proof is complete by choosing

g1 = cs\/ﬁ

3.E.1.1.6 No dynamics in the interventions In this scenario, we have Bt(:,)tl =0
if t, # t, and 5t2t = B otherwise, i.e., B = —@7I and o) = —ﬁ(ﬁ(“’y). Then,

for every i € [n], 8@ can be expressed as a linear combination of known vectors. In
particular,

. 1 N
() — _ (1) (D)
0\ = 5@ DYc',
where
()
D 2 29 Tod ¢ RP3 and ¢ 2 |pM| e R
Y
Then, it is easy to see that the rest of the proof is similar to the setting with no dynamics
in the observed covariates.
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3.E.1.2 Guarantees for Example 3.8

In this setting, 2" = z for all i € [n]. Proceeding as in Section 3.E.1.1 to obtain
Eq. (3.123), for every unit ¢ € [n], we have

fY|a»V,Z(y(i) |a(i)’ v(i)a z; 9, @>

where 6 and © are as follows
0220597z and © £ [oW¥) @) )],

Then, using the methodology and analysis from Shah et al. (2023) (which is closely

related to the one in this work) to obtain estimates § and © such that with probability
at least 1 — 9, we have

clog L \[

max{||§— 012, ||(:) - @*”2,00} < ¢g; whenever n > =
1

(3.144)

The rest of the proof is similar to Section 3.E.1.1 with the choice of &, = cr12/v/plogp
in Eq. (3.144) for the guarantee in Eq. (3.31), and the choice of &, = ck1€?/py/plogp in
Eq. (3.144) for the guarantee in Eq. (3.32) (as ||2]|3 = O(p)).

3.E.1.3 Proof of Lemma 3.15: Coefficient recovery in a linear combination
with noisy basis

We start by expressing 6 in terms of ]5, ie.,
0 =D where ¢2c+¢, (3.145)
for some error term (. Then, ¢ can be controlled in following manner

3 145)

~ ~ (a) ~
D¢l “ £ )16 — Dell, = ||De — Dells < |D — Dloyllclls
b) ~
< (VPID = Da) - (VE|e]l)
(c)
< Vkpllc||F1, (3.146)

where (a) follows from sub-multiplicativity of induced matrix norms, (b) follows from
standard matrix norm inequalities, and (c¢) follows from Eq. (3.136).

Case 1: |D¢ — Dcl|y > ||D(||2. From Eq. (3.145) and triangle inequality, we find that
16— 6ll: = | D€ ~ De — D]l > D& — Dell, — D] (3.147)
Then, doing standard algebra with Eq. (3.147) yields that

_ B¢z _ |Pé-DBefi (@< DD -
\SE(.g) + IDCIE - D&~ Delf _ @€ —¢)"D'DE—c) 5.118)

j% 2p 2p
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Then, by assumption on the eigenvalues of ﬁTﬁ, we have
)\min ]/jT]/j ~ @ Tf)T]/j c ( )
( )HC - CH2 < (c—o¢) (c— )
2p 2 2p
where (a) follows from Egs. (3.136), (3.146), and (3.148).
Case 2: |[Dc — Dcl|; < HDCHQ. By assumption on the eigenvalues of D'D, we have
)\min<DTD) He H ) D D(C _ C) _ HD/C\_ DCHQ HDCHQ < 2]{3” ||2 =2
2p 2= 2p 2p - 2 o1
where (a) follows from Eq. (3.146).

—|—k||c||2 51

3.E.2 Proof of Proposition 3.3

3.E.2.1 Guarantees for Example 3.9

We divide the proof into two parts for convenience. First, we obtain the conditional
distribution of the outcome vector given the intervention vector, the observed covariates,
and the unobserved covariate. Then, we provide guarantees on recovering the parameters.

3.E.2.1.1 Obtaining the conditional distribution of the outcome For every
unit ¢ € [n] and time ¢ € [p|, the distribution of the outcome y; = ' given yi,_ = ygfi,l,
a;, = aﬁl, Vi = 'UY.Z, and 21, = 21 is given by

fyt|y1:t71,alzt,vlztyzl t( |y1t 1’0,51%7,0%1)” (i)l)

mexp([ +6 +5(“at + Zﬁm ]' + Zﬁm a;” + Zﬁt]y]} )

j=t—d Jj=t—d j=t—d

(3.149)
Then, the distribution of y = y® given a = a®, v = v®, and z = 291 is given by
fy\a vz(y Da®, 0@ 2071)

nyt\yu 1,aZV(ytl)’y1t 1, Q@ .,Z(i),v(i))

telp]

b) i i i i i

= H f}’t|y1:t71,31:t721:t1V1:t (yg )’ygn)ffl’ a’g 17 ( )17 ’vgzz)
te(p]

(C) a 7 (4

9 TL s ([:6 5 4000 + 8790+ 3 Aol + 37 )+ 3 Aol
te[p] j=t—d j=t—d j=t—d

(3.150)

where (a) follows by the chain rule, (b) follows because y; AL a;11.p, Zir1:p, Vet1yp |
Yit-1,@1, 214, V14 as per Figure 3.1.1, and (c¢) follows from Eq. (3.149). To convert
Eq. (3.150) into the familiar form, we define the interaction matrices

Py 2 B(”), play) 2 B(a)7 and @@ 2 (B(y) + B(y)T)/Q‘ (3.151)
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Then, we define the unit-level and the population-level parameters
09 2 |01 4 gp@ 4 5@a®|  and @ 2 [dWW) oW W] (3.152)

with @®®) = d@v)" ¢ RP*Pe and ¢W») = dv)" ¢ RP*Pv. Putting together Egs. (3.26)
to (3.28) and (3.150) to (3.152), we have

Fyava(y?la®,v®, 20109, 6)

 exp (g(i)Ty(i) + o0 GO 4 g Glav)y®) 4 yu)Tq)(y,y)y(z')) C(3.153)

3.E.2.1.2 Assumption 3.1 holds To enable the application of the machinery de-
veloped in Section 3.3.3, we show that the unit-level and the population-level parameters
defined in Eq. (3.152) satisfy Assumption 3.1. We have

‘ P ‘ o) (i Q) G (a)
||0(2)||oo ! (:3152) ||Z(z)1 + 61( )'U(z) + BZ( )a’( )Hoo < Zmax + 2BmaxTmax

) _
[Omax £ max 00| ae 7 EY max |B® ey < Brae and
uef{v,a,y} uef{v,a,y}

Eq. (3.152) ()
Ol < > 1V < 1+ dBunax + 2(d + 1) Bnax.

ue{y,a,v}
where (a) follows from Assumption 3.4 and because max{v®, a®} < ., for all i € [n],

(b) follows from Assumption 3.4(b) and (c) follows from Egs. (3.26) to (3.28) and (3.151),
and Assumption 3.4.

3.E.2.1.3 Recovering population-level and unit-level parameters For every
i € [n], 8@ in Eq. (3.151) can be expressed as a linear combination of known vectors.
In particular,
L)
00 = 0Wc®  where @£ Y| e R (3.154)
B
Applying Corollary 3.1, we obtain estimates © and 9 such that, with probability at
least 1 — §, we have
cp®(log & + plog % +%)

H@ — 0200 <e for n> 1
€

(3.155)

cp*(log & + plog L +%)
-4

SO log(log 2
MSE(#®, %) < max {52, M} for n >

p

. (3.156)

We note that the above estimate 0@ is of the form 0@ = 0®¢?. Then, from Assump-
tion 3.6(c)

lo®c® — o@We® |2 (¢ — ) To®d o (@ — W)

p p

MSE(6®, )
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> kllc® — €2, (3.157)

Putting together Eqs. (3.151), (3.152), and (3.154) to (3.157) completes the proof.

3.E.2.2 Guarantees for Example 3.10

In this setting, z) = z for all i € [n]. Proceeding as in Section 3.E.2.1 to obtain
Eq. (3.153), for every unit i € [n], we have

Tylaw2(y )|a i) U ,2:0,0)

 exp (QT + o0 GO 4 g plan)y () | yu)Tq)(y,y)y(i)),

where 6 and © are as follows
022z and ©2 [@WY oW glv)], (3.158)

Then, using the methodology and analysis from Shah et al. (2023) (which is closely

related to the one in this work) to obtain estimates 0 and © such that with probability
at least 1 — 9, we have

clog\%

max{||§_ 0|2, ||C:) — O"|20} <& whenever n > =

(3.159)

Putting together Eqgs. (3.151), (3.158), and (3.159) completes the proof.

3.F Proof of Proposition 3.4: Impute missing covari-
ates

Proof idea. First, we use units i € {n/2 + 1,--- ,n} without any measurement
error to estimate " and ©*, i.e., the parameters corresponding to the distribution
of y conditioned on (a,v) (see Section 3.7.1). Next, for units ¢ € {1,---,n/2} with
measurement error, we estimate 0*%) by expressing it as a linear combination of the
estimates of " and ©* (enabling the use of Example 3.1). The coefficients of this
linear combination turn out to be our estimates of the measurement error Av®.

Estimate ¢¥)" and ©*. For unitsi € {n/2+1,---,n}, under our assumption Av® =0
implying 0*@) = ¢®" . Therefore, in addition to the population-level parameter ©*, the
unit-level parameter () = ¢®)" is also shared for these units. Thus, learning ¢®"
and ©* boils down to learning parameters of a sparse graphical model (because of the
assumptions in Section 3.7.1) from n/2 samples. We use the methodology and analysis
from Shah et al. (2023) (which is closely related to the one in this work) to obtain

estimates gz5 and © such that with probability at least 1 — 9, we have

ce?log 5—%

max {[|¢ — ¢“"[|, |8 — O*|s00} <& whenever n > (3.160)

e
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Recover the unit-level parameters. As the first step, for units i € {1,--- ,n/2},
we express the true unit-level parameters 6*) as a linear combination of known vectors.
To that end, fix any i € [n/2]. Then, using Eq. (3.35), we can write 0*®) as a linear
combination of p, + 1 vectors, i.e.,

9 — Dc(i),
where

1

. * )* v t1 i A
D2 [¢(y) , 2P Ww) } e RPvxotl)  gp1q () & |:A’U(i

)} € RPHI>T (3.161)

While we do not know the matrix D, we can produce an estimate D using gg and ©. Let
®®) he the component of © that is an estimate of @) and define D £ [&5, 25(%“)].
This estimate is such that, with probability at least 1 — 5,

ce’ P log 24 7

||]5—D||27oo <¢e; whenever n > (3.162)

51

This guarantee follows directly from Eq. (3.160) and the definition of D in Eq. (3.161).
Now, we write

0 — D& where €@ £ c® ¢ ¢

for some error term (. Then, performing an analysis similar to one in Section 3.C
while using the bound on n in Eq. (3.160) instead of the one in Eq. (3.17), and using
Example 3.1, we obtain estimates 5(1), e ,5("/ %) such that (see Corollary 3.1(a) for
reference), with probability at least 1 — §, we have

{62 cec' B (pv + log(log %)) }
1> )

Py

max MSE(Q(Z 0*®) < max

i€[n/2]

(3.163)

whenever n > cec/'gs1 ( log \\F[py + pv) We note that the above estimate 8@ of the

unit-level parameter 6*() is of the form 8@ = D™ for i € [n/2].
Recover the measurement error. We condition on the events Egs. (3.162) and (3.163)

happening. Then, we declare ¢ as our estimate of the measurement error for unit
i € [n/2] and prove the corresponding guarantee below by invoking Lemma 3.15.

~T ~
We claim that the eigenvalues of D D can be lower bounded by xp,/2 with the

choice €1 = kea/ay/py(py + 1), whenever e < /p,/(p, + 1)/8. Taking this claim as

given at the moment, we continue our proof. From Lemma 3.15, with probability at
least 1 — ¢, we have

1 - 4 ce?? (p, + log(log "2
L 60— e < 2 (o2t 4 s i, o8 )
py i€[n/2] K,py py
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INE

A <,€2€% e’ (po + log(log "3+)) ) (3.164)

’f_py py py
where (a) follows from the choice of £; and because ||c”) ||OO < «a. Rearranging Eq. (3.164)
completes the proof.

~T ~

It remains to show that the eigenvalues of D D can be lower bounded by xp, /2 with
the choice €1 = key/ay/py(py +1). From Weyl’s inequality (Bhatia, 2007, Theorem.
8.2), we have

AT~ AT~ () AT ~
Ain(D ' D) > Ain(D D) = Aoy (DD = D' D) > 1p, — Apax(D D — D' D),
where (a) follows from the assumption on the eigenvalues of D' D. Now, it suffices to

upper bound Apax (DD — ﬁTﬁ) by rp,/2. We have

Amax(D D - D ' D)| ¢ ID'D - D D,
(b) T ~T ~
< (pv + 1)”D D-D D”max

Cc

< o+ )(ID"(D = D) s + (D ~ D) "Dl

—
~

d ~T ~
< (po +1)(ID" 200 + ID |2,00) D — D1

—
=

—

e

() (9) Kp.
< (pv + 1)(204\/p_y-|— 204\/p_y) . \/p_yel < 4kegn/py + 1\/p_ < Ty,

~

where (a) follows because DD — D'Dis symmetric, (b) follows from because |M|op, <
IM|p < k|M|max for any square matrix M € R¥** (¢) follows from the triangle
inequality, (d) follows by Cauchy—Schwarz inequality, (e) follows because Hﬁ”max < 2a,
ID|max < 2a (because of the assumptions in Section 3.7.1), and from Egs. (3.160)

Py
pu+1°

and (3.161), (f) follows from the choice of 1, and (g) follows whenever &5 < £

3.G Logarithmic Sobolev inequality and tail bounds

In this section, we present two results which may be of independent interest. First,
we show that a random vector supported on a compact set satisfies the logarithmic
Sobolev inequality (to be defined) if it satisfies the Dobrushin’s uniqueness condition
(to be defined). This result is a generalization of the result in Marton (2015) for discrete
random vectors to continuous random vectors supported on a compact set. Next, we
show that if a random vector satisfies the logarithmic Sobolev inequality, then any
arbitrary function of the random vector concentrates around its mean. This result is
a generalization of the result in Dagan et al. (2021) for discrete random vectors to
continuous random vectors.

Throughout this section, we consider a p-dimensional random vector u supported on

UP with distribution f, where p > 1. We start by defining the logarithmic Sobolev
inequality (LSI). We use the convention 0log 0 = 0.
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Definition 3.3 (Logarithmic Sobolev inequality). A random vector u satisfies the
logarithmic Sobolev inequality with constant o > 0 (abbreviated as LSL,(c?)) if

Ent, (q2) < ¢’E, [Hvuq(u)Hﬂ for all q:UP — R, (3.165)

where Ent, (g) = Ey[g(u)log g(u)] — Eu[g(u)]logEy[g(u)] denotes the entropy of the
function g : UP — R,

Next, we state the Dobrushin’s uniqueness condition. For any distributions g and f, let
| f—gllTv denote the total variation distance between g and f.

Definition 3.4 (Dobrushin’s uniqueness condition). A random vector u satisfies the
Dobrushin’s uniqueness condition with coupling matriz © € RE*? if |©]o, < 1, and for
every t € [p], s € [p]\{t}, and u_y,u_, € UP~" differing only in the s coordinate,

||fut|u_t:u_t_fut\u_t:ﬁ_t”TV S @ts~ (3166)

We note that the Dobrushin’s uniqueness condition, as originally stated (see Marton
(2015)) for Ising model, also requires ©; = 0 for all ¢ € [p]. This condition makes sense
for Ising model where u? = 1 for all ¢ € [p]. However, this is not true for continuous
random vectors necessitating a need for modification in the condition.

From hereon, we let UP be compact unless otherwise specified. Moreover, we define

fmin £ min fut|u,t(ut|u—t)‘ (3167)

te[p],ucUP
Now, we provide the first main result of this section with a proof in Section 3.G.1.

Proposition 3.5 (Logarithmic Sobolev inequality). If a random vector u with fu, > 0
(see Eq. (3.167)) satisfies (a) the Dobrushin’s uniqueness condition (Definition 3.4) with
coupling matriz © € RY? and (b) uu_, satisfies LS, y_,—u_,(0?) for all t € [p] and
u_, € UP™t (see Definition 3.3), then it satisfies LSIy(20%/(fmin(1 — [|O]op)?))-

Next, we define the notion of pseudo derivative and pseudo Hessian that come in handy
in our proofs for providing upper bounds on the norm of the derivative and the Hessian.

Definition 3.5 (Pseudo derivative and Hessian). For a function q : U? — R, the
functions Vq : UP — RP* and V2q : UP — RPY*P2 (p; py > 1) are, respectively, called a
pseudo derivative and a pseudo Hessian for q if for all w € UP and p € RP**!, we have

IVg(w)[l> > [|Vg(w)lls  and [p"Vq(w)lls > [V [p" Va(w)]|l>. (3.168)
Finally, we provide the second main result of this section with a proof in Section 3.G.2.

Proposition 3.6 (Tail bounds for arbitrary functions under LSI). Given a random
vector u satisfying LS, (0?), any function q : UP — R with a pseudo derivative ﬁq and
pseudo Hessian 62q (see Definition 3.5), u satisfies a tail bound, namely for any fized
e > 0, we have
2
P[\qc(u)}ZE]SeXp <_—4Cmin< = — = , _ ))
o E[[[Va(u)llo] +max [V2g(u)|f max [V2q(u)]op

where q.(u) = q(u) — E[q(u)] and c is a universal constant.

136



3.G.1 Proof of Proposition 3.5: Logarithmic Sobolev inequality

We start by defining the notion of W, distance (Marton, 2015) which is useful in the
proof. We note that W, distance is a metric on the space of probability measures and
satisfies triangle inequality.

Definition 3.6. (Marton, 2015, Wy distance) For random vectors u and w supported
a

on UP with distributions g and f, respectively, the Wy distance is given by Wi(gw, fu) =

2
inf Zte[p] []P’W(Wt + ut)} , where the infimum is taken over all couplings w(u,w) such
that w(u) = f(u) and 7(w) = g(w).

Given Definition 3.6, our next lemma states that if appropriate W5 distances are
bounded, then the KL divergence (denoted by KL (- ||-)) and the entropy approximately
tensorize. We provide a proof in Section 3.G.1.1.

Lemma 3.16 (Approximate tensorization of KL divergence and entropy). Given random
vectors u and w supported on UP with distributions g and f, respectively, such that
fmin > 0 (see Eq. (3.167)), if for all subsets S C [p] (with S¢ £ [p] \ S) and all
Wgc € up—|S|7

W22 (gwslwsc=wsc ) fus\usc=wsc) <C Z E [Hth\Wﬂwat _fUt\u7t=w7t H'QI'V ‘WSC :wSC] )

tes
(3.169)
almost surely for some constant C > 1, then
2C
KL (gw I fu) < . Z E[KL (th‘Wft:wft ||fut|u7t:w7t) ]a and (3.170)
T te[p)
2C .
Ent, (q) < Z Eu_, [Entupu_, (q)] for any function ¢ : UP — Ry.  (3.171)
min telpl

Next, we claim that if the random vector u satisfies Dobrushin’s uniqueness condition,
then the condition Eq. (3.169) of Lemma 3.16 is naturally satisfied. We provide a proof
in Section 3.G.1.2.

Lemma 3.17 (Dobrushin’s uniqueness implies approximate tensorization). Given
random vectors u and w supported on UP with distributions g and f, respectively, if

u satisfies Dobrushin’s uniqueness condition (see Definition 3.4) with coupling matriz
© € RP*P, then for all subsets S C [p] (with S¢ = [p]\ S) and all wge € UP™IS,

2 2
W2 (gwslwsc:wsc ) fus\usc:'wsc> <C Z E |:Hth‘W7t:'w7t _fut‘uft:’wft HTV‘WSC :wSC] )
tesS

(3.172)

almost surely where C' = (1— ||@||Op)2.
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Now to prove Proposition 3.5, applying Lemmas 3.16 and 3.17 for an arbitrary function

f:U? — R, we find that

Ent, (¢*) < & ;> B, [Entmuﬂf () }

fmin( H®“op) te(p]

20° 5> Bu [Buu | Vua(usud) ]

fmin( ”(a”op) te(p]

O 2" g B[S [Vadtususn|f]

fmin(l - ”@“op) telp]

,\
INe

—~
=

—
=

(0) 20 )
 fain(1— [Olp)’ Eu[|Vugw)[ly]

where (a) follows because u;|u_; satisfies LSI,,jy_,—_, (0?) for all ¢ € [p] and u_, € UP~,
(b) follows by the linearity of expectation and (b) follows by the law of total expectation.
The claim follows.

3.G.1.1 Proof of Lemma 3.16: Approximate tensorization of KL divergence
and entropy

We start by establishing a reverse-Pinsker style inequality for distributions with compact
support to bound their KL divergence by their total variation distance. We provide a
proof at the end.

Lemma 3.18 (Reverse-Pinsker inequality). For any distributions g and f supported on
U C R such that min,ey f(u) > 0, we have KL (g f) < m”g T3y

Given Lemma 3.18, we proceed to prove Lemma 3.16.

3.G.1.1.1 Proof of bound Eq. (3.170) To prove Eq. (3.170), we show that the
following inequality holds using the technique of mathematical induction on p:

C
KL (gu [1fu) <

) o Juus =, II%V]. (3.173)
min tE[p]

Then, Eq. (3.170) follows by using Pinsker’s inequality to bound the right hand side of
Eq. (3.173).

3.G.1.1.2 Base case: p =1 For the base case, we need to establish that the claim
holds for all distributions supported on U that satisfy the required conditions. In other
words, we need to show that

4C
< 7—llgw- fullry  for every ¢ € [p],

for all random variables w and u supported on U such that fi, = min,ey fu(u) > 0.
This follows from Lemma 3.18 by observing that C' > 1.

KL (gw || fu) <
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3.G.1.1.3 Inductive step Now, we assume that the claim holds for all distributions
supported on AP~ that satisfy the required conditions, and establish it for distributions
supported on UP. From the chain rule of KL divergence, we have

KL (gW Hfu) =KL (th Hfut) + E[KL (gw_t|wt Hfu_t|ut):| for every t e [p]

Taking an average over all ¢ € [p], we have

ngfu - ZKL th Hfllt ZE KI— gw tht Hfu t\ut):|- (3174)
te[p] te[p]

Now, we bound the first term in Eq. (3.174). Let 7* be the coupling between u and w
that achieves Wy (gw, fu), i-e.,”

2
Tt = arg min Z [Pﬂ(wt # ut)} : (3.175)
mim(u) = (u),m(W)=g(W) ;]

Then, we have

()1

_ZKL Gwy ||fUt = Zf ||th fUtHTV
tE[p] te[p min

b 4
<
pfmin

Z [IPW*(Wt =+ Ut>:|2
te(p]

4
W3 (gws fu
pfmin 2 ( )

Eq. (3.169) 4(C
<
pfmin

©

ZE[HthIW_t:'w_t_fut|u_t:w_t||'2rv} 5 (3176)
te(p]

where (a) follows from Lemma 3.18 because lower bound on conditional implies lower
bound on marginals, i.e., minepueu fu, (W) = Miiep)uer Jo cpm-1 fulu_, (Ulw—r)-
fu_,(u_y)du_; > fiin, (b) follows from the connections of total variation distance to
optimal transportation cost, i.e., ||gw — fullTv = infrr(u)=f(u),r(w)=g(w) P= (U # w), and
(¢) follows from Definition 3.6 and Eq. (3.175).

Next, we bound the second term in Eq. (3.174). We have

1
D ELKL (g [ )]
te[p]

_ZEFC DIl SRR ¥

telp] T se[p)\{t}

w =]

“The minimum is achieved by using arguments similar to the ones used to show that the Wasserstein
distance attains its minimum (Villani, 2009, Chapter 4).
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®) 4C
= pf . Z Z ]E|:||gwslwfs:wfs_fuslufs:wfs -2|—Vi|
" telp) selp)\{t}
4C(p—1
= % Z E |:”gWS|W,S:’w,S _fuslufs:wfs —2|—V:| ) (3177)

s€[p

where (a) follows from the inductive hypothesis and (b) follows from the law of total
expectation. Then, Eq. (3.173) follows by putting Eqgs. (3.174), (3.176), and (3.177)
together.

3.G.1.1.4 Proof of bound Eq. (3.171) To prove Eq. (3.171), we note that
Eq. (3.170) holds for any random vector w supported on U”. Consider w to be such
that g(u)/E,[¢(u)] is the Radon-Nikodym derivative of g, with respect to f,. For any

AP C UP, we have
q(u)
Gwdw :/ fudu
/weAP uear Eulq(u)]

Integrating out w; and u; for ¢ € [p], we have

Euju_, [q(u)]
e [ Bl
[t [ e e

implying
dgw_,  Bupu_,[q(0)] dguw_,  q(u)
J.. " L o(w)] and Fures  Bora, o] forall ¢te€[p]. (3.178)
We have
KL (g ) 2 B 0105 S
() AC R (C)
F [Eu [g(u)] Ve, [q(U)ﬂ
1 _ Enty(q)
= gy (el oza(w)] — Euf(w] log Bufaw)]) = g0,
(3.179)

where (a) follows from the definition of KL divergence and (b) follows from the choice
of w. Similarly, for every t € [p]|, we have

Ew_t |:K|— (thlwft:'wft Hfutluft:wft) i|

(@) AGwijw_, ] ]
= Ew_,|Ew,w_, | log
|: l |: dfut\u_t
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B o = |
dfut\u .
[dg”“ dg””'""“]

“Ldfy dfut|u .

{ ut|qulE;(U)] ]

é E IE'ut|u t[ ( )10g q( )] IEUHU% [q(u) IOg Eut|“7t [q(uﬂﬂ
Eu[q(u)]

]Eu,t [Entutluft (Q) ]
e (3.180)

where (a) follows from the definition of KL divergence, (b) follows from the law of total
expectation, (¢) follows from the definition of Radon-Nikodym derivative, (d) follows
from the choice of w and Eq. (3.178), (e) follows from the law of total expectation, (f)
follows from the definition of entropy. Then, Eq. (3.171) follows by putting Eqs. (3.170),
(3.179), and (3.180) together.

C

E

)

ﬁ

—~
N

3.G.1.1.5 Proof of Lemma 3.18: Reverse-Pinsker inequality Using the facts
(a) loga >1— 1 for all a > 0, and (b) min,ey f(u) > 0, we find that

flw) g(u)
log >1—=—= forevery uel. (3.181)
g(u) f(u)
Multiplying both sides of Eq. (3.181) by g(u) > 0 and rearranging terms yields that
g9(u) _ g*(u)
log —g(u) forevery wel. 3.182)
08y = sy O (

Now, we have

f

A
:\»
M
<

oS
=
&
|
=
&
SN—
(Y]
Q
)

INE

m(/ueu |9(u) — f(u)|al:n)2
2llg—Fllvv)

—
o
~

1
min,ey f(u) (

4 2
———lg—fll7v:
min,ey f(u) || ||TV

where (a) follows by simple manipulations, (b) follows by using the order of norms on
Euclidean space, and (c) follows by the definition of the total variation distance.
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3.G.1.2 Proof of Lemma 3.17: Dobrushin’s uniqueness implies approximate
tensorization

We start by defining the notion of Gibbs sampler which is useful in the proof.

Definition 3.7. (Marton, 2015, Gibbs Sampler) For a random vector u with distribution
f, define the Markov kernels and the Gibbs sampler as follows

Dy(ulu) = Lu_y =u"y) fuu ., (wlu,) and T(ulu)= ZF (ulu), (3.183)

te(p]

for all t € [p| and w,w’ € UP. That is, the kernel Ty leaves all but the t'" coordinate
unchanged, and updates the t™" coordinate according to fuu_,, and the sampler I' selects
an index t € [p| at random, and applies T'y. Further, for a random vector w with
distribution g supported on UP, we also define

gwli(w) = /gw(w’)Ft(w]w’)d'w' fort € [p], and
gl (w) = /gw(w’)F(w|w’)dw/ for all w e U”. (3.184)

We now proceed to prove Lemma 3.17 and split it in two cases: (i) S = [p], and (ii)
S C [pl.

3.G.1.2.1 Case (i) (S = [p]) Let I' be the Gibbs sampler associated with the
distribution f. Then,

(a)
W2 (gws\wsca fus|usc) == WQ(gwa fu) S WQ(QWa gwr) + W2<gwra fu)7 (3185)

where (a) follows from the triangle inequality. We claim that

1
W2 (gW7 gWF) S 5 Z ]wat [||th|W7t:'w7t _futluft:'wft H'QI'V] ) and (3186)
t€[p]

Wa(gwl', fu) < (1 - %) Wagw, fu)- (3.187)

Putting Eqgs. (3.185) to (3.187) together, we have

(gw7fu — p ZEW t|:||th\W t=W—¢ fut\u_t =w-— t||TV:|

te(p]
(1= [®lon) \ 1y
+ (1 - D ) Z(QW7fu)' (3188)

Rearranging Eq. (3.188) results in Eq. (3.172) for S = [p] as desired. It remains to
prove our earlier claims Eqgs. (3.186) and (3.187) which we now do one-by-one.
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3.G.1.2.2 Proof of bound Eq. (3.186) on W3(gw, gwI') To bound Ws(gw, gul),
we construct a random vector w! such that it is coupled with the random vector w.
We select an index b € [p] at random, and define

yb £y, forall o€ p]\ {b}.

Then, given b and w_;, = w_j, we define the joint distribution of (w, wj ) to be the max-
imal coupling of gu,jw_,=w _, and fy,ju_,—w_, that achieves ||guw,w_,=w , = fu,ju_p=w_, || TV-
It is easy to see that the marginal distribution of w is g,, and the marginal distribution
of w' is g,I" (see Definition 3.7). Then, we have

W2<gw,gwr>(i’z[Mb:wwm WElb = 1) + B(b £ 0)B(w wt|b7ét>]
te(p]

o Bmwt £ wllh = t)T

te(p]

r 2
2 Z / ]P)(Wt # WtF|b = t, W_; = w_t)gw7t|b:t(w_t|b = t)dw_t:|

te [p] w_y eZ/{P*1

r 2
@ 1
= Z / Hth|W7t:w7t _futluft:’w—tHTVgW—t (wt)dwt:|

te [p] -’Uth EZ/{P*1

8-> 3 LN [PV - tuw]r, (3159)

te(p]

where (a) follows from Definition 3.6 and the Bayes rule, (b) follows because P(b = t) = %

and P(w; # wl|b #t) = 0, (c) follows by the law of total probability, and (d) follows
because gw_,jp—t(w_¢|b = t) = gw_, (w_;) and by the construction of the coupling between
w and w''. Then, Eq. (3.186) follows by using Jensen’s inequality in Eq. (3.189).

3.G.1.2.3 Proof of bound Eq. (3.187) on W5(g,I', fu) We first show that f, is
an invariant measure for I'; i.e., f, = f,I', implying Ws(guw I, fu) = Wa(gwI, ful'), and
then I' is a contraction with respect to the W5 distance with rate 1 — % ie

Walgul', ful') < (1= S22 )5 (g, fu), implying Ea. (3.187).

3.G.1.2.4 Proof of f, being an invariant measure for I' We have

fublw "2 [ T (e

Eq. (3.183) / ( ry( )
= (ulu’
u’/eur Z

te(p]
(3. 1
DY / fulw) L = ) e ()
pte[p] u' eUP
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1 / /
= Z Z fut\u_t(ut|’uf—t) Julug, u)duy

1
= - Z fUt\u—t(utlu—t)fu_z<u—t> = fu(u).
pte[
]

3.G.1.2.5 Proof of I" being a contraction w.r.t the W, distance Let 7* be
the coupling between u and w that achieves Ws(gw, fu) i.e.,®

2
T = arg min Z [PW(Wt =+ ut)} i (3.190)
m(u)=f(u),m(w)=g(w) te[p]

We construct random variables u’ and w’ as well as a coupling 7’ between them such
that the marginal distribution of u’ is f,I" and the marginal distribution of w’ is g,I".
We start by selecting an index b € [p] at random, and defining

w), 2w, and u, 2w, forall v#b. (3.191)

v

Then, given b, w' , = w_;, and v, = u_,, we define the joint distribution of
(wy, uy) to be the maximal coupling of fy,u_,(-|lw—y) and f,ju,(-|u—p) that achieves
Hfub|u—b:w7b_fub|u—b:u7bHTV'

Now, for every t € [p], we bound P, (w/ # u)) in terms of P« (w; # 1;). To that end,
we have

Po(w] # uf) 2 P(b = 0)Pr(w, # ullb=1t) + P(b # )P (w, # ullb # 1)
O P (w £ ulb=1)+ (1 - %)Pﬂ*(wt £ u), (3.192)

Sl

where (a) follows from the Bayes rule and (b) follows because P(b = t) = % and
Eq. (3.191). Focusing on P,/ (w/ # u;|b = t) and using the law of total probability, we
have

Prr(w, # uy|b = t)

= P (w) # ulb=t. W =w_, vy =u_)my v pey(Wop, u[b=t)dw_,du_,
w_g,u_€Yr—1

(a)
= ||fut‘uft:'w7t - f’—’t‘uft:u—t ||TVW\>:1_t,u_t (w—t7 u—t)dw—tdu—t

w_g,u_ €YP1

= Eﬂ;‘,_t,u_t [HfUt\u—Fw—t - fUt\u—t=u—t HTV (3-193)

8The minimum is achieved by using arguments similar to the ones used to show that the Wasserstein
distance attains its minimum (Villani, 2009, Chapter 4).
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where (a) follows by the construction of the coupling between w’ and u’. Now, using
the triangle inequality in Eq. (3.193), we have

Po(w, # ujjb=1) <E.. > 1lry=hy=w,Yv<s)l(r,=h,=u,Yv>s) x

s€[p]\{t}
1(Ts =Ws, hs = us) Hfut|u,t:r,t _fut|u,t:h,t HTV]

tU—

Eq. (3.166)
< Eg o, [ Yol Wﬂéus] N 0P (w, # uy).
selp]\{t} selp]\{t}
(3.194)
Putting together Eqgs. (3.192) and (3.194), we have
1
P (w # u) < Z O P (wy # uy) + (1 - 5)1&*(% £ u). (3.195)

Se[p]\{t}

Next, we use Eq. (3.195) to show contraction of I'. To that end, we define diag(©) € RP*?
to be the matrix with diagonal same as © and all non-diagonal entries equal to zeros.
Then, we have

Wil £u) € 3 [Boind # )]

te(p]
Z{ S OuPn ws7éus)+(1—1—17)19>W*(vvﬁéu,f)}2

Eq. (3 195)
te[p] selp\{t}
L0 Dre o - dm@)[ 3 [petmrw)’
te[p]

p

© H ( 1)[ + %(@ — diag(@)) HszQQ(gwa fua)

p
@ 1 . g

< 1 _ - ;H@ — diag(©)op | W5 (gws fu)

(@) N 1 2

2 ((1 _ E) + ];||@||Op) W2(gus fu), (3.196)

where (a) follows from Definition 3.6, (b) follows by some linear algebraic manipulations,
(¢) follows from Definition 3.6 and Eq. (3.190), (d) follows from the triangle inequality,
and (e) follows because |Mi|op < [|Ma|op for any matrices M; and My such that
0 < M; < M, (component-wise). Then, contraction of I" follows by taking square root
on both sides of Eq. (3.196).

3.G.1.2.6 Case (ii) (S C [p]) We can directly verify that the matrix Og =
{O4s}; yeg is such that |Ogfop < [O]op This is true because the operator norm of any
sub-matrix is no more than the operator norm of the matrix. Further, we note that
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for any wgce € UP71¥! the random vector ugluge = wge with distribution Juslugo=wyo
satisfies the Dobrushin’s uniqueness condition (Definition 3.4) with coupling matrix ©g.
Then, by performing an analysis similar to the one above, we have

1
WQ(ng|wScafus|uSc) S ( ZE[HQM‘W =Wy fut\u_t —w_ t||TV‘WSC wSC}

1= [Os]op)

1
1 il E|:”gw\ —t:w—t_fu \ —t:w—t||2 ‘WSC = wSC:|a
(1~ [Oop) ; - h Y

where (a) follows because (

—
INs

This completes the proof.

1 1
<
1=[Os]op) — (1=[O]op)

3.G.2 Proof of Proposition 3.6: Tail bounds for arbitrary func-
tions under LSI

Fix a function ¢ : Y? — R. Fix any pseudo derivative %q for ¢ and any pseudo Hessian
V2q for q. To prove Proposition 3.6, we bound the p-th moment of ¢(u) — E[q(u)] by

certain norms of V¢ and E, [6q(u) . To that end, first, we claim that in order to
control the p-th moment of g(u) — E [g(u)], it is sufficient to control the p-th moment
of HVq Hz Then, using Eq. (3. 168), we note that the p-th moment of HVq Hz

is bounded by the p-th moment of ||[Vq(u)|ls. Next, we claim that the p-th moment
of |[Vg(u)||; is bounded by a linear combination of appropriate norms of V2¢ and
Ey [%q(u)} We formalize the claims below and divide the proof across Section 3.G.2.1
and Section 3.G.2.2.

Lemma 3.19 (Bounded p-th moments of g(u) — E[g(u)] and IVq(u)||2). If a random
vector u satisfies LSIy(0?), then for any arbitrary function q : UP — R,

la(w) = Efg(w]|,, < ov2pll[Va,ll,, for anyp>2. (3.197)

Further, for any pseudo derivative Vq(u) and any pseudo Hessian 62q(u) for q, and
even p > 2,

11V a(w)l2]| 2, < 2c0 (max [V2g(u) e+ /p max | V2q(w) |op) + 41 Eu[Va(w)] |2, (3.198)
where ¢ > 0 is a universal constant.

Given these lemmas, we proceed to prove Proposition 3.6. We let g.(u) = ¢(u) —E[q(u)].
Combining Egs. (3.197) and (3.198) for any even p > 2, there exists a universal constant
¢’ such that

lae()l],, <o (/B max [92g(w)le+p max [V2g(w)op+ VBIE[Va(w)] 1) (3199)

Now, we complete the proof by using Eq. (3.199) along with Markov’s inequality for a
specific choice of p. For any even p > 2, we have

P[[ae(u)] > ec'o(pmax [V2g(w)le + pmax [72g(u)lop + vBIE[Vo(w)] )]
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= P[|ac()]"> (ec'0?)” (Vpmax [V2q(w) s +pmax [V2g(u)lop+/PlEa [Va(w)] 1)’

. _ Eflatl] _
"~ (eco?)"(Vpmaxueys [V2g(u)e + pmaxueys [V2a(u)op + /BlE[Va(u)][2)"

Eq. (3.199)

e

— 9

—
N

where (a) follows from Markov’s inequality. The proof is complete by choosing an
appropriate universal constant ¢’, and and performing basic algebraic manipulations
after letting

2

1 Qmin( = 25 <2 2’ ~€2 )
co E[[[Vq(u)]l2] +max [V2g(u)[r max [V2g(u)]op

p:

We note that an even p > 2 can be ensured by choosing appropriate ¢”.

3.G.2.1 Proof of Lemma 3.19 Eq. (3.197): Bounded p-th moment of g(u) —
E[q(u)]

Fix any p > 2. We start by using the following result from (Aida and Stroock, 1994,
Theorem 3.4) since u satisfies LSI,(c?):

Jatw) ~ Efatw] |2, <lo(w) — Sl |2, + 2020~ 2 [V [}, 3200

Then, we bound the first term in Eq. (3.200) by using the fact that logarithmic Sobolev
inequality implies Poincare inequality with the same constant:

la(w) — Efg(w)]|[;, = Var(g(w)) < o°E, [qu<u)||j] . (3.201)
Putting together Eqgs. (3.200) and (3.201), we have

latw) = Efew)] [}, < o®Ea|[Vaw) ] +20%( = 2| Vatu)[L, |17,

(a)
50( JIva )" + 20— 2 [Vato], I,
2 o2 |[vaw)l 12, + 200 — 2 [ Vatoll I},
< 207 Fa(wl, . (3.202)

where (a) follows by Jensen’s inequality and (b) follows by the definition of p-th moment.
Taking square root on both sides of Eq. (3.202) completes the proof.

3.G.2.2 Proof of Lemma 3.19 Eq. (3.198): Bounded p-th moment of
IV (u)ll

Fix any even p > 2. Fix any pseudo derivative %q and any pseudo Hessian 62q. We
start by obtaining a convenient bound on ||Vq(u)||2 for every u € UP and then proceed
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to bound the p-th moment of ||Vq(u)]|,.

Consider a p-dimensional standard normal random vector g independent of u. For a

o~ T
given u = u € UP, the random variable Ya(u) € ig 4 standard normal random variable.

IVa(w)ll2
Then, for every u € UP, we have
Y/ . v T 1/p (b
va’(—“)HLp © <Eg|uu{<v~q<—“)g> D > *é_ (3.203)
IVa(w)]l IVa(w)]l

where (a) follows from the definition of p-th moment, and (b) follows since ||g]| L, 2 ‘[

for any standard normal random variable g and even p > 2. Rearranging Eq. (3 203),
we have

1/p

= 2
< Tao )P ) ‘
IVatw)l < - (Egueu| (Vo8] (3.204)
Now, we proceed to bound the p-th moment of |[Vg(u)]|; as follows

1911, 2 (B [I¥atu12]) ™
o (§3.204) % (Eug [(6q(u>Tg)p:| ) 1/p

= —HVq ‘gll,,

—~

S

S,
A_

IVq ) g~ Eu[Va(u)g] ||, +]|Eu[Va(w)g]||,, ), (3.205)

where (a) and (b) follow from the definition of p-th moment and (c¢) follows by
Minkowski’s inequality. We claim that

| Va(u)'e~Eu [Va(u)s] | < co (/5 max | (u) s +p max | 2g(w)) . £(3.206)
[ [Fa(w) 8] < 235 [Faw)] (3.207)

where ¢ > 0 is a universal constant. Putting together Eqs. (3.205) to (3.207) completes
the proof. It remains to prove our claims Eqgs. (3.206) and (3.207) which we now do
one-by-one.

3.G.2.2.1 Proof of bound Eq. (3.206) To start, we bound (Eyg— g[(Vq(u)T
Eujg=g [Vq(u)TgDp])l/p for every g = g. Then, we bound || Vg(u) g — E, [Vq(u)Tg] |1,

To that end, we define hy(u) = 6q(u)Tg—Eu‘g:g [%q(u)Tg} and observe that Eyg—g [hg(u)]
= 0. Now, applying Lemma 3.19 Eq. (3.197) to hg(-), we have

g, < ov/2 (Bugo [ VR, IE]) " € v/20(Buiy [V 8" Fa@]])
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Eq. (3.168) ~ 1/
D2 ov/2(Bugss [l VPa@)}])
(3.208)

IA

where (a) follows from the definition of hg(u). Now, to obtain a bound on the RHS of
Eq. (3.208), we further fix u = w. Then, we let g’ be another p-dimensional standard

normal vector and apply an inequality similar to Eq. (3.204) to gT§2q(u) obtaining

9" atw)], < = (Sgmvs-o| (o7 Tatwrg) ])
(3.209)

VD

Putting together Egs. (3.208) and (3.209), and using the definition of hy(u), we have

which implies
(Eug=s [HgT%Qq(U)HSDI/p g %(Eu,gqg—g [(VgT%Qq(U)g’)pDI/p
Eug=g [<€Q(U)TQ—Eu|g:g [%Q(U)Tg} )p] < (2V20) Ry gig=g [(gTﬁzq(u)g’yj} . (3.210)

Now, we proceed to bound ||[Vq(u) g — E, [§q(u)Tg} |z, as follows
- - 1/
Eug [(VQ(U)Tg —E, [VQ(U)Tg} )pD ’

(a)

(

/

[Va(u) g — Eu[Vaw) g |,
Egq. (3.210) ~ P\ 1/p

< 2V20(Egug | (87 V(u)) |) . (3.211)

where (a) follows from the definition of p-th moment. Finally, to bound the RHS of
Eq. (3.211), we fix u = u and bound the p-th norm of the quadratic form g'V?q(u)g

by the Hanson-Wright inequality resulting in
T2 NPT P =2 =2
(Bogiumn| (8" V2a(wg) ]) " < (VAT a(@l + pIVq(w) oy
72 72
< o VPmax |V g(u)le + pmax [V2g(w)]p ),
(3.212)

where ¢ > 0 is a universal constant. Then, Eq. (3.206) follows by putting together

Egs. (3.211) and (3.212).
3.G.2.2.2 Proof of bound Eq. (3.207) By linearity of expectation, we have
(3.213)

= =~ T

1By [Va(u) 'glllz, = [[(Eu[Vq(u)]) gL,
v, T

(]EU[VNq(u)]) g is a standard normal random variable.
[Eu[Va(u)]]l2

We note that the random variable
(3.214)

i ([ () ) e

H IEu[Va(u)][l2

Therefore,
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where (a) follows from the definition of p-th moment, and (b) follows since HgH . < 2yp

for any standard normal variable g. Then, Eq. (3.207) follows by using Eq. (3.214) in
Eq. (3.213).

3.H Identifying weakly dependent random variables

In Section 3.G, we derived (in Proposition 3.5) that a random vector (supported on a
compact set) satisfies the logarithmic Sobolev inequality if it satisfies the Dobrushin’s
uniqueness condition (in Definition 3.4). Further, we also derived (Proposition 3.6) tail
bounds for a random vector satisfying the logarithmic Sobolev inequality. Combining
the two, we see that in order to use the tail bound, the random vector needs to satisfy
the Dobrushin’s uniqueness condition, i.e, the elements of the random vector should be
weakly dependent. In this section, we show that any random vector (outside Dobrushin’s
regime) that is a 7-Sparse Graphical Model (to be defined) can be reduced to satisfy
the Dobrushin’s uniqueness condition. In particular, we show that by conditioning
on a subset of the random vector, the unconditioned subset of the random vector
(in the conditional distribution) are only weakly dependent. We exploit this trick in
Lemma 3.10 and Lemma 3.12 to enable application of the tail bound in Section 3.G.
The result below is a generalization of the result in Dagan et al. (2021) for discrete
random vectors to continuous random vectors.

We start by defining the notion of 7-Sparse Graphical Model.

Definition 3.8 (7-Sparse Graphical Model). A tuple of random vectors (y,a,v,z)
supported on YPv x AP+ x VP» x ZP= is a T-Sparse Graphical Model for model-parameters
72 (a,€,(, Tmax, ©) and denoted by T-SGM if

1. UC X 2 [~Zmax, Tmax] for everyU € {Y, A, V},

2. for any realizations a € AP*, v € VP and z € ZP*, the conditional probability
distribution of y given a =a, v="v, and z = z, i.e., fyav. (y\a,'v, z,0(z), @),
is as specified in Eq. (3.4), such that 0(z) € RPv depends on z and © =
(@) dwa) )] ¢ RPvXP s independent of z where p = Py + Pa + Py and
QW) ¢ RPv*Py 45 symmetric.

3. max {max.ez»- 0(2)”00, |2V | pax } < @, and

4. max { o), [ 2@V } < €, and [V ] < (.
Now, we provide the main result of this section.

Proposition 3.7 (Identifying weakly dependent random variables). Given a tuple
of random wvectors (y,a,v,z) supported on YPv x AP+ x VPv x ZP= that is a T-SGM
(Definition 3.8) with 7 2 (a,&,(, Tmax, ©), and a scalar X € (0,(], there exvists L =
32¢*log dp, /N\? subsets Sy, -+, Sy C [p,] that satisfy the following properties:

(a) For any t € [p,|, we have 25:1 1(t € S,) = [AL/(8C)].

150



(b) For any u € [L],

(i) the tuple of random vectors (ys,,a,V, (z,¥—s,)) correspond to a T-SGM with
71 = (4 2TmaxC, €, A, Tanaes O\s,) where ©\g, is obtained from © by removing
the rows and columns corresponding to [p,] \ S, and

(i1) the random vectorysg, conditioned on (a,v, (z,y_g,)) satisfies the Dobrushin’s
uniqueness condition (Definition 3. 4) with coupling matriz 2v/222,, |® yy)|

whenever A € < , 2\/%?“%) where <I> {q>(yy bries, such that H|<I)5§iy op <

Proof. Proof of Proposition 3.7: Identifying weakly dependent random variables ~We
prove each part one-by-one using a generalization of Dagan et al. (2021, Lemma. 12).

Recall Dagan et al. (2021, Lemma. 12): Let A € RP*? be a matrix with zeros on
the diagonal and |A], < 1. Let 0 < 7 < 1. Then, there exists subsets Sy, -+, St C [p]
with L £ 32log4p/n? such that

(a) For any t € [p], we have Zle 1(t € Su) = [nL/8], and

(b) Forany u € [L] and t € S, Y, 5. |Aw| <.

We claim that Dagan et al. (2021, Lemma. 12) holds even when A does not have zeros
on the diagonal. The proof is exactly the same as the proof of Dagan et al. (2021,
Lemma. 12).

Proof of part (a). From Definition 3.8, for any realizations a € AP+, v € VP* and
z € 2P+ the conditional probability distribution of y, given a = a, v = v, and z = z, is
given by Eq. (3.4). Consider the matrix ®®¥) € RP+»*Py and define A £ 1CI> %) Then,
note that |A|w < 1 and we can apply the generalization of Dagan et al. (2021 Lemma.
12) on A with n = % Then part (a) follows directly from Dagan et al. (2021, Lemma.
12.1).

Proof of part (b)(i). To prove this part, consider the distribution of yg, condi-
tioned ony_ g, = y_g5,, @ = a, v = v, and z = z for any u € [L], i.e., consider
fysuly_su,a7v7z (ySu |y—Su’ a,v, Z) = f(ySu |y—Su7 a,v, Z) as follows

f(y5u|y—5u7 a,v, Z) X €xXp <[U(Z, y—Su)] Ys, + 2|: T@(U v) + G’T¢( y)}y + ysuq)(y y)ysu)a

where &) £ {p{vV) Frepo)tes, forw € {v,a}, ®g" wy) & foWvh o andv(z,y_s,) €
RISulx1 such that
vi(z,Yy_s,) = 0,(2) +2 Z CID( yk for every t € S,. (3.215)
kelpy\Su

Now, to show that the tuple of random vectors (ys,,a, v, (z,y_g,)) corresponds to an
71-SGM with 71 = (@ + 20max(, €, A, Tanax, @ng), CD_(fls’f), @gzi’y)), it suffices to establish that

(4) (4)
max Iax vz, y-s.)]| ., ||q>(§ivy) ||max} < a+2Tma(  and ||<1>qu;21) oo < A
y_sue]pr—\Su\

(3.216)
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To establish (i) in Eq. (3.216), we note that

4w £ 0 <o and (3.217)
otz sl < 19 + 2max [0 |yl
é) 10(2)]| . + 2Zmax |2 | <) o + 2% max(, (3.218)

where (a) and (d) follow from Definition 3.8, (b) follows from Eq. (3.215) and the
triangle inequality, and (c) follows from the definition of | - |, and Definition 3.8. Then,
(i) in Eq. (3.216) follows from Eq. (3.217) and Eq. (3.218). Next, to establish (ii) in
Eq. (3.216), we again apply the generalization of Dagan et al. (2021, Lemma. 12) on
the matrix A = %q)(y’y) with n = % Then, we have

(I)(yvy)
|| <% forallte S, uelL]. (3.219)
ol Y ¢
Therefore, we have
Eq. (3.219)
Wy ( (y:y) ) s
| @5;" o = max ; oY) <A (3.220)

as desired. The proof for this part is now complete.

Proof of part (b)(ii). We start by noting that the operator norm of a symmetric
matrix is bounded by the infinity norm of the matrix. Then, from the analysis in
part (b) (i), for any u € S, we have

Eq. (3.220)
N op < 11O < A

Therefore, [2v/222,,.|P3" W9)||,p < 1 whenever A < 1/2/222__. It remains to show that

for every u € [L], t € Su,r € S \{t},z=2v=wv,a=a, and y ;,y_; € YPv!
differing only in the 7" coordinate,

1 Fyely—imyvamawmvzms — Frly— =g acay—veez [ Tv < 2V222, |OEY].

To that end, fix any u € [L], any t € S,, any r € S, \{t}, any z=2z,v=v,a = a, and
any y_., y_, € YPv~! differing only in the r** coordinate. We have

” fyt|y 1=Y_¢,a=aN=v,2=2 fyt|y_t=§_t,a:a,v:v,z:z ||'2|'V

(@) 1
< KL(fMy t=Y-—t,a=a,V=v,Zz= ZnyHy t=Y—t,a=a,v=v,2= z)

1 ~ (©)
2 5@y, — 200 Pl < Sl 2l

2 max

where (a) follows from Pinsker’s inequality, (b) follows by (i) applying (Busa-Fekete
et al., 2019, Theorem 1) to the exponential family parameterized as per Trly_ra—ay=vz==
in Eq. (3.10) and (ii) noting that the Hessian of the log partition function for any regular
exponential family is the covariance matrix of the associated sufficient statistic which
is bounded by 22, when ¥ C X = [~Zmax, Tmax), and (c) follows because v,., 7, € V.
This completes the proof. O
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3.1 Supporting concentration results

In this section, we provide a corollary of Proposition 3.6 that is used to prove the
concentration results in Lemma 3.10 and Lemma 3.12. To show any concentration result
for the random vector y conditioned on (a, v, z) via Proposition 3.6, we need yla, v,z to
satisfy the logarithmic Sobolev inequality (defined in Eq. (3.165)). From Proposition 3.5,
for this to be true, we need the random vector y; conditioned on (y_4, a, v, z) to satisfy
the logarithmic Sobolev inequality for all £ € [p,]. In the result below, we show this holds
with a proof in Section 3.1.1. We define a 7 = («, £, {, Tmax, ©)-dependent constant:

Cy.r £ exp (Tmax (@ + 2(26 + )T max))- (3.221)
Lemma 3.20 (Logarithmic Sobolev inequality for y;|y_;,a,v,z). Given a tuple of ran-
dom vectors (y, a, v, z) supported on YPv x AP* x VP» x ZP= that is a T-SGM (Definition 3.8)
with 7 £ (0, &, ¢, Tmax, ©), yily—,a, v,z satisfies LSL,|y ,—y , acav—vz—z (895;2&)( cz ) for
allt € [py], y—r €Y, ae A v € VP and z € ZP=.
Now, we state the desired corollary of Proposition 3.6 with a proof in Section 3.1.2. The
corollary makes use of some 7 2 (o, £, (, Tyax, ©)-dependent constants:

Cs,

Cor 21+ Qpax + 422, (E+C¢) and Cy, = % (3.222)
’ ’ m

Corollary 3.2 (Supporting concentration bounds). Suppose a tuple of random vectors
(y,a,v,z) supported on YPv x AP+ x VPv x ZP= corresponds to a T-SGM (Definition 3.8)

with 7 = (0, &, ¢, Tmax, ©), and y conditioned on (a,v,z) satisfies the Dobrushin’s
uniqueness condition (Definition 3.4) with coupling matriz Y For any 0,0 € Ay

and © € Ag, define the functions q1 and qo as

q(x) = Z (wix))? and  go(x Z WXe exp( 60, + 2@t XX @ttxt)

t€[py] t€[py]
where w =0 — 0 and X, = x? — 1% /3. Then, for any e > 0
—e(1— [ 1e2
P[‘qi(x)_E[Qi(x) ) H Zg’a,v,z} §exp< ( "H ||2||0p) ) Jor 1=1,2,
(3.223)
where ¢ is a uniersal constant, ¢, = 160222, C3 _, and ¢; = C3,C; C2_ with C

defined in Eq. (3.221) and C, . and Cy . defined in Eq. (3.222).

3.I.1 Proof of Lemma 3.20: Logarithmic Sobolev inequality for
Yt|Y—ta a,Vv,Zz

Let u be the uniform distribution on X'. Then, u satisfies LSI, ( "5”‘) (see Ghang et al.

(2014, Corollary. 2.4)). Then, using the Holley-Stroock perturbation principle (see
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Holley and Stroock (1987, Page. 31), Ledoux (2001, Lemma. 1.2)), for every t € [p,],
y, eVl ac A ve VP and z € 2P+ yly ; =y s,a=a,v = v,z = z satisfies
the logarithmic Sobolev inequality with a constant bounded by

872 XP(SUP,, cx ¥(T4; Ty, 2) — Infy,ex (2 Xy, 2))

T2

’

where = (y,a,v) and ¢(z;24,2) = —[0i(2) + 20/ _x_Jv, — OuT, with 7, =
x? — 22, /3. We have

, (a)
exp(sup ¥(zy; Ty, 2)— 1r€1f)’(w(:ct; Ty, z)) <exp (2[0:(2)+20, _ | Tmax+2|Ou| 74 )
Tt

rre€X
(b)
S exp ((20! + 4(25 + C)xmax)'xmax)
Eq. (3.221)
= CS?,T?

where (a) follows from Definition 3.8 and (b) follows by using Definition 3.8 along with
triangle inequality and Cauchy—Schwarz inequality.

3.1.2 Proof of Corollary 3.2: Supporting concentration bounds

Let x = (y,a,v) and « = (y, a,v). To apply Proposition 3.6 to the random vector y
conditioned on (a, v, z), we need y|a, v, z to satisfy the logarithmic Sobolev inequality.
From Proposition 3.5, this is true if (i) fu, = Ml | pex?,zcxps Falx_rz(®e|T—,2) >0
(see Eq. (3.167)), (ii) y|a, v, z satisfies the Dobrushin’s uniqueness condition, and (iii)

x¢|X_¢, z satisfies the logarithmic Sobolev inequality for all ¢t € [p,]. By assumption,

)

y|a, v, z satisfies the Dobrushin’s uniqueness condition with coupling matrix Y. From

. 2 002 .
Lemma 3.20, x;|x_;, z satisfies LSL,x_,—a_, =2 (81“‘:‘2 3‘) for every t € [p,]. It remains

to show that fui, > 0. Consider any t € [p,], any * € X?, and any z € ZP=. Let
Ty =z — 22, /3. We have

exp ([Gt(z) +20]_@_]r, + @ttft>
Sy exp ([Gt(z) +20] x4z, + @ttft> dz,
exp < —10:(2) + 20/ _ @ _4|Tmax — @ttxfnax)
Jeexp (10:2) +26] @ | + Oty ) dy
) exp (= (10(2)] 4200111 |l T — Ou)
freexp ((10G2)] + 2101t 1@ T + Otr% )
@ e (= @+ 206+ Qrmadtmar) ) 1

- [y exp <(a +2(2€ + §)xmax)xmax> dz; 22max (5,

fxt|x_t,z($t‘w7t7 Z) (;

~

—
=
=

v

—
8}

v
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where (a) follows from Eq. (3.10), (b) and (d) follow from Definition 3.8, (¢) follows by
triangle inequality and Cauchy—Schwarz inequality, and (e) follows because | pdry =
2%Tmax. Therefore, fun = L Putting (i), (ii), and (iii) together, and using

22maxCs
c
S ) where C  was defined

Proposition 3.5, we see that y|a, v, z satisfies LSI, <W
_ o

in Eq. (3.222).
Now, we apply Proposition 3.6 to ¢; and ¢, one-by-one. The general strategy is

to choose appropriate pseudo derivatives and pseudo Hessians for both ¢; and ¢, and
evaluate the corresponding terms appearing in Proposition 3.6.

Concentration for ¢;. Fix any € XP. We start by decomposing ¢ (z) as follows
q(x) =@ r(x), (3.224)

where T £ (w?,--- ,wi ) and r(x) £ (ri(z), - 1y, (z)) with r,(z) = z7 for every

t € [p,]. Next, we define H : X7 — RPv*Pv such that

dr,(x)

Htu(w> - dI’t

for every t,u € [p,]. (3.225)

Pseudo derivative. We bound the ¢, norm of the gradient of ¢;(x) as follows

—T
Vol = (—dﬁf)f ey ()

te[py] t€lpy]

L (e wlIi
<o p||wu2g||H< Wil H (@)oo, (3.226)

where (a) follows because induced matrix norms are submultiplicative and (b) follows
because the matrix operator norm is bounded by square root of the product of matrix
one norm and matrix infinity norm. Now, we claim that the one norm and the infinity
norm of H(x) are bounded as follows

max {meug |H(x)|:, max ||H(a:)||oo} < 2T ax- (3.227)
reEXP xrEXDP

Taking this claim as given at the moment, we continue with our proof. Combining
Egs. (3.226) and (3.227), we have

ma | V0, (2) [} < 4035112 = 40 3 < A0 mix i 3 07 < 168007 ]

telpy] vl

where (a) follows because w € 2Ay. Therefore, we choose the pseudo derivative (see
Definition 3.5) as follows

Vai(z) = dampaxa|w]],. (3.228)
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Pseudo Hessian. Fix any p € R. We bound ||V(p Vg (x))|2 (see Definition 3.5) as
follows

Hv(p‘rﬁql(w))”% _ Z <M>2 Eq. (:3.228) 0

dzx,
u€[py]

Therefore, we choose the pseudo Hessian (see Definition 3.5) as follows
Vg (z) = 0. (3.229)

The concentration result in Eq. (3.223) for ¢; follows by applying Proposition 3.6 with
the pseudo discrete derivative defined in Eq. (3.228) and the pseudo discrete Hessian
defined in Eq. (3.229).

It remains to show that the one-norm and the infinity-norm of H () are bounded as in
Eq. (3.227).

Bounds on the one-norm and the infinity-norm of H(x). We have

2, it t=u,
Hy(z)={ " " "¢ (3.230)
0 otherwise.
Therefore,
Eq. (3.230) (a)
| H(z)|: = max Z |Hp(z)] < max 2|z, < 2Tpa and
u€[py]
t €lpy]
Fq. (3.230) (a)
|H ()]s = max Z | Hyw (0 < max2|xt| < 2% max,
ot €lpy]
Y

where (a) follows from Definition 3.8.

Concentration for ¢,. Fix any £ € X?. We start by decomposing g.(x) as follows

@) =w'r(z), (3.231)
where r(x) £ (ri(z), - ,7p, () with ry(x) = zeexp (— [0, + 20, _@_]z, — Oy, for
every t € [p,]. Next, we define H : X? — RPv*Pv such that

dry
Hy(x) = Td () for every t,u € [p,]. (3.232)
Lt

Pseudo derivative. We bound the ¢, norm of the gradient of go(x) as follows

[Fa@] = 3 (2 )Eq SR )

t€[py] t€lpy]

(3.232)
| H @)
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< i p||wu2an< Wil H (@)oo ||, (3.233)

where (a) follows because induced matrix norms are submultiplicative and (b) follows
because the matrix operator norm is bounded by square root of the product of matrix
one norm and matrix infinity norm. Now, we claim that the one norm and the infinity
norm of H(x) are bounded as follows

o { o 12 1@} < € o (3.234)
reEXP reEXP ’ ’

where U3 and C, . were defined in Eq. (3.221) and Eq. (3.222) respectively. Taking
this claim as given at the moment, we continue with our proof. Combining Egs. (3.233)
and (3.234), we have

max || Vay(@); < C3,C1 o

Therefore, we choose the pseudo derivative (see Definition 3.5) as follows
Vaa(z) = Cy . Cy |||, (3.235)

Pseudo Hessian. Fix any p € R. We bound ||V (p' Vg (2))||2 (sce Definition 3.5) as
follows

~ dp Vo(T)\2 Eq. (3.235)
IV Var(@)li3 = Y (FE2) T E g
u€[py] “
Therefore, we choose the pseudo Hessian (see Definition 3.5) as follows
V2ge(x) = 0. (3.236)

The concentration result in Eq. (3.223) for ¢; follows by applying Proposition 3.6 with
the pseudo discrete derivative defined in Eq. (3.235) and the pseudo discrete Hessian
defined in Eq. (3.236).

It remains to show that the one-norm and the infinity-norm of H () are bounded as in
Eq. (3.234).

Bounds on the one-norm and the infinity-norm of H. We have

Hy () = [1 — [0, + 20 x]z ] exp ( [0, + 2@T7_uw,u]xu — @mﬁu) if ¢t=u,
S —20,x exp (— [0, + 20, _ @_y|T, — OuuTy) otherwise.
(3.237)

Therefore,

|H (@)l = max 3 |Hu(a

t[y]
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Eq. (3.237) max |1— [8u+2®zm]xu| exp ( — [0, + 2@l_um_u]xu — @uufu)

u€[py]

+ 2 max 22 exp ( — [0, + 2@l_uaz_u]mu — @wﬁu) Z |94

u€(py] t#u

—

a

< (14 aTmax + 43712nax(§ +¢)) exp (Tmax (@ + 2(2€ + ()Tmax)) < 03,704,77

=

where (a) follows from Definition 3.8 along with triangle inequality and Cauchy—Schwarz
inequality and (b) follows from Egs. (3.221) and (3.222). Similarly, we have

[H ()] = max > [ Hu(z)|
€lpy] i)

Eq. (:3.237) m[?))% |1— [9t+2@:w]xt‘ exXp ( — [Qt + 2@:_,@_,5]:& — @ttft)
tElpy ’
+ 2 max E Ot xz exp ( — |60, + QGI_uw,u Ty — Ouulu
e 2 Oulruexp (= i )

u#t
a

S (1 + QTmax + 4x§nax(€ + C)) exp (SL’maX(Oé + 2<2£ + C)mmax)) (i) C'3,7'614,7'7

—
N

where (a) follows from Definition 3.8 along with triangle inequality and Cauchy—Schwarz
inequality and (b) follows from Eqgs. (3.221) and (3.222).
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Chapter 4

Causal Inference via Latent Factor
Modeling

4.1 Introduction

This chapter presents a novel framework using latent factor modeling to estimate
treatment effects in modern data-rich environments in the presence of unobserved
confounding. As a motivating example, consider an internet retailer. The platform
collects not only information on purchases of many customers across many products
or product categories, but also on glance views, impressions, conversions, engagement
metrics, navigation paths, shipping choices, payment methods, returns, reviews, and
more. While some variables, such as geo-location and type of device or browser, can be
safely treated as pre-determined relative to the platform’s treatments (advertisements,
discounts, web-page design, etc.), most are outcomes affected by the treatments, latent
customer preferences, and unobserved product features. We leverage the availability
of many outcome measures in modern data-rich environments to estimate treatment
effects in the presence of unobserved confounding. The core identification concept is
that if each element of a high-dimensional outcome vector is influenced by a common
low-dimensional vector of unobserved confounders, it becomes possible to remove the
influence of the confounders and identify treatment effects.

Two primary approaches to the estimation of treatment effects are outcome-based and
assignment-based methods. Consider again the example of an internet-retail platform
where customers interact with various product categories. For each consumer-category
pair, the platform makes decisions to either offer a discount or not, and records whether
the consumer purchased a product in the category. Outcome-based methods operate
by imputing the missing potential outcomes for each consumer-product category pair.
This process involves predicting whether a consumer, who received a discount, would
have made the purchase without the discount (i.e., the potential outcome without
discount), and conversely, if a consumer who did not receive the discount would have
purchased the product had they received the discount (i.e., the potential outcome
with discount). In contrast, assignment-based methods estimate the probabilities of
consumers receiving discounts in each product category and adjust for missing potential
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outcomes by weighting observed outcomes inversely to the probability of missingness.

A substantial body of literature has explored outcome-based methods, particularly
in settings where all confounding factors are measured (see, e.g., Abadie and Imbens,
2006; Angrist, 1998; Cochran, 1968; Rosenbaum and Rubin, 1983b, among many others).
Imputing potential outcomes in the presence of unobserved confounders poses a more
complex challenge. In this context, a commonly adopted framework is the synthetic
control method and its variants (see, e.g., Abadie et al., 2010a; Abadie and Gardeazabal,
2003a; Arkhangelsky et al., 2021; Cattanco et al., 2021). An alternative but related
approach to outcome imputation under unobserved confounding is the latent factor
framework (Bai, 2009; Bai and Ng, 2002; Xiong and Pelger, 2023), wherein each element
of the large-dimensional outcome vector is influenced by the same low-dimensional vector
of unobserved confounders. Matrix completion methods (see, e.g., Agarwal et al., 2023;
Athey et al., 2021; Bai and Ng, 2021; Chatterjee, 2015; Dwivedi et al., 2022a) which have
found widespread applications in recommendation systems and panel data models, are
closely related to latent factor models. Similarly, existing assignment-based procedures
to estimate treatment effects rely on the assumption of no unmeasured confounding
(see, e.g., Hirano et al., 2003; Robins et al., 2000; Wooldridge, 2007), common trends
restrictions (Abadie, 2005), or the availability of an instrumental variable (Abadie, 2003;
Sloczynski et al., 2024).

In this chapter, we propose a doubly-robust estimator (see Bang and Robins, 2005;
Chernozhukov et al., 2018; Robins et al., 1994) of treatment effects in the presence of
unobserved confounding. This estimator leverages information on both the outcome
process and the treatment assignment mechanism under a latent factor framework. It
combines outcome imputation and inverse probability weighting with a new cross-fitting
approach for matrix completion. We show that the proposed doubly-robust estimator
has better finite-sample guarantees than alternative outcome-based and assignment-
based estimators. Furthermore, the doubly-robust estimator is approximately Gaussian,
asymptotically unbiased, and converges at a parametric rate, under provably valid error
rates for matrix completion, irrespective of other properties of the matrix completion
algorithm used for estimation.

To our knowledge, this is the first work that leverages latent structures in both the
assignment and the outcome processes to obtain a doubly-robust estimator of treatment
effects in the presence of unobserved confounding. Arkhangelsky and Imbens (2022)
study doubly-robust identification with longitudinal data under the assumption that
conditioning of a function of the treatment assignments over time (e.g., the fraction of
times an individual is exposed to treatment) is enough to remove confounding. Athey
et al. (2021), Bai and Ng (2021), Dwivedi et al. (2022a), Agarwal et al. (2023), and
Xiong and Pelger (2023) propose estimators that apply matrix completion techniques to
impute potential outcomes. Although these studies utilize low-rank restrictions in the
outcome process, they do not investigate the possibility of similar latent structures in
the treatment assignment process. Our work addresses this question, and demonstrates
substantial benefits from incorporating knowledge about the structure of the assignment
mechanism.
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4.1.1 Some terminology and notation

For any real number b € R, |b] is the greatest integer less than or equal to b. For any
positive integer b, [b] denotes the set of integers from 1 to b, i.e., [b] £ {1,--- ,b}. We use
¢ to denote any generic universal constant, whose value may change between instances.
For any ¢ > 0, m(c) = max{c,+/c} and £, = log(2/c). For any two deterministic
sequences a,, and b, where b, is positive, a, = O(b,) means that there exist a finite
¢ > 0 and a finite ng > 0 such that |a,| < ¢b, for all n > ny. Similarly, a,, = o(b,)
means that for every ¢ > 0, there exists a finite ng > 0 such that |a,| < cb, for all
n > ng. Further, a, = Q(b,) means that there exist a finite ¢ > 0 and a finite ny > 0
such that |a,| > ¢b, for all n > ny. For a sequence of random variables, x,, = O,(1)
means that the sequence |z, | is stochastically bounded, i.e., for every € > 0, there exists
a finite § > 0 and a finite ng > 0 such that P(|z,| > 6) < ¢ for all n > ng. Similarly,
x, = 0,(1) means that the sequence |z,| converges to zero in probability, i.e., for every
e > 0 and 0 > 0, there exists a finite ng > 0 such that ]P’(|xn| > 5) < ¢ for all n > ny.
For sequences of random variables x,, and b, =, = O,(b,) means z,, = Z,b, where
the sequence T, = O,(1). Likewise, z,, = 0,(b,) means x,, = Z,b, where the sequence
Tn = 0p(1).

A mean-zero random variable z is subGaussian if there exists some b > 0 such
that Elexp(sz)] < exp(b*s?/2) for all s € R. Then, the subGaussian norm of x is
given by |z|ly, = inf{t > 0 : E[exp(2?/t?)] < 2}. A mean-zero random variable z is
subExponential if there exist some by, by > 0 such that E[exp(sx)] < exp(b?s?/2) for all
—1/by < s < 1/by. Then, the subExponential norm of x is given by ||z|y, = inf{t >
0: E[exp(|z|/t)] < 2}. Uniform(a,b) denotes the uniform distribution over the interval
la,b] for a,b € R such that a < b. N(u,0?) denotes the Gaussian distribution with
mean p and variance o2

For a vector u € R", we denote its #!" coordinate by u; and its 2-norm ||lul|. For
a matrix U € R™*"2 we denote the element in i’ row and j™ column by w; j, the i
row by U; ., the j column by U, the largest eigenvalue by Apax(U), and the smallest
by Amin(U). Given a set of indices R C [n1] and C C [ny], Uz € RFI*ICl is a sub-matrix
of U corresponding to the entries in T £ R x C, and U_z = {u,; : (i,5) € {[ni] x

[ns]} \ Z}. Further, we denote the Frobenius norm by |Ulp £ (Zie[m]de[m] uij)lﬂ,
)1/2

the (1,2) operator norm by [Ul]i2 £ maXjep,) (Zie[m] uz;)"", the (2,00) operator

1/2 :
norm by [|Ul|z,c0 = maxepn, (Zje[nﬂ uZQJ) / , and the maximum norm by |U|max =

MAaX;cfn,] jefns] |Uij|- Given two matrices U,V € R™*"2 the operators ® and @ denote
element-wise multiplication and division, respectively, i.e., ¢; ; = u; j-v; j when T' = UOV/,
and t; j = u; ;/v;; when T'=U @ V. When V is a binary matrix, i.e., V € {0, 1}"*"2,
the operator ® is defined such that ¢;; = w;; if v;; = 1 and ¢;; =7 if v;; = 0 for
T =U®V. Given two matrices U € R™"*"2 and V' € R™*"3_ the operator *x denotes the
(transposed column-wise) Khatri-Rao product of U and V, i.e., T =U x V € R"*x"2"s
such that t; j = w; j_p,7 - v;14; where j = [(j — 1)/n2]. For random objects U and V/,
U 1L V means that U is independent of V.
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4.2 Problem Formulation

Consider a setting with N units and M measurements per unit. For each unit-
measurement pair ¢ € [N] and j € [M], we observe a treatment assignment a; ; € {0,1}
and the value of the outcome y; ; € R. Although our results can be easily generalized
to multi-ary treatments, for the ease of exposition, we focus on binary treatments.

We operate within the Neyman-Rubin potential outcomes framework and denote
the potential outcome for unit ¢ € [N] and measurement j € [M] under treatment
a € {0,1} by y§f}’ € R. A no-spillover assumption is implicit in the notation, i.e.,
the potential outcome yi(:lj) does not depend on the treatment assignment for any
other unit-measurement pair. In the context of online retail data, the assumption of
no spillovers across measurements is justified if the cross-elasticity of demand across
product categories, j, is low. Our framework allows for the possibility that the same
treatment affects multiple outcomes (e.g., a; ; = a; j with probability one, for some j
and j’ in [M]). Realized outcomes, y; ;, depend on potential outcomes and treatment
assignments,

Yij = yi(,oj)(l —a;;) + yz-(,lj)ai,ja (4.1)
for all ¢ € [N] and j € [M]. Section 4.4.4 and Appendix 4.1 extend this framework to a
panel data setting with lagged treatment effects.

4.2.1 Sources of stochastic variation

In the setup of this chapter, each unit i € [N] is characterized by a set of unknown

parameters, {(653),6§,1j»),p1-,j) € R? x [0,1]}eqmy, which we treat as fixed. Potential
outcomes and treatment assignments are generated as follows: for all i € [N],j € [M],

and a € {0,1},

) =0+ L0 (42)
and

@i j = Pij T Mijs (4.3)
where 553) and 7; ; are mean-zero random variables, and

(4.4)

) —pi; with probability 1 — p;;
M3 =4 —p;; with probability p; ;.

(a)
1,J
assignment probability or latent propensity score. The matrices O £ {@fo})}iem,je[m,

It follows that 61(3-) is the mean of the potential outcome y; /, and p; ; is the unknown
o) & {egj)}ie[N],je[M}, and P £ {p;;}icinije collect mean potential outcomes
and assignment probabilities. Then, the matrices E©) £ {553)}i€[N}’j€[M],E(1) =

{5§71j)}ie[N],j€[M], and W & {ni,j}iE[N]Je[M] capture all sources of randomness in potential
outcomes and treatment assignments.
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Our setup allows O ©M to be arbitrarily associated with P, inducing unobserved

confounding. The assumptions in Section 4.4 imply that ©© O™ and P include all

confounding factors, and require (61(-3),81%)) AL n; ; for every i € [N] and j € [M].

4.2.2 Target causal estimand

For any given unit i € [N], our goal is to estimate the effect of the treatment averaged
over all measurements,

where

Analogously, for any given measurement j € [M], we could aim to estimate the effect of
the treatment averaged over all units,

ATE.; 2 ) — 1% (4.5)

(@) o 1 (a)
Ri =N >0

1€[N]

where

For consistency with the existing literature, we consider the latter estimand and note
that it is straightforward to adapt the methods in this chapter to the former estimand
as well as the estimation of alternative parameters, like the treatment effect over a
subset of the measurements, S C [M]. We note that ATE. ; is akin to the conditional

average treatment effect of Abadie and Imbens (2006), but based on the latent means,
9@
2,7

only.

in Eq. (4.2) rather than on conditional means that depend on observed covariates

4.3 Learning Algorithm

In this section, we propose a procedure that uses the treatment assignment matrix A
and the observed outcomes matrix Y to estimate ATE. ;, where

Y 2 {yistie e and A £ {aij}ieiny ey

The estimator proposed in this section leverages matrix completion as a key subroutine.
We start the section with a brief overview of matrix completion methods.

4.3.1 Matrix completion: A primer

Consider a matrix of parameters T' € RV>*M_ While T is unobserved, we observe the
matrix S € {R U {?}}V*M where ? denotes a missing value. The relationship between
S and T is given by

S=(T+H)®F. (4.6)
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Figure 4.3.1: Schematic of the treatment assignment matrix A, the observed outcomes
matrix Y (where green and blue fills indicate observations under @ = 1 and a = 0,
respectively), and the observed component of the potential outcomes matrices, i.e.,
Y (0)0bs and Y(1)ebs (where ? indicates a missing value). All matrices are N x M where
N is the number of customers and M is the number of products.

Here, H € RM*M ig a noise matrix, and F € {0,1}*M is a masking matrix with ones
for the recorded entries of S and zeros for the missing entries.

A matrix completion algorithm, denoted by MC, takes the .S as its input, and returns
an estimate of 7', which we denote by T or MC(S). In other words, MC produces an
estimate of a matrix from noisy observations of a subset of all the elements of the
matrix.

The matrix completion literature is rich with algorithms MC that provide error
guarantees, namely bounds on [|[MC(S) — T'|| for a suitably chosen norm/metric |[|-||,
under a variety of assumptions on the triplet (7, H, F'). Typical assumptions are (i) T’
is low-rank, (i7) the entries of H are independent, mean-zero and sub-Gaussian random
variables, and (#i7) the entries of F' are independent Bernoulli random variables. Though
matrix completion is commonly associated with the imputation of missing values, a
typically underappreciated aspect is that it also denoises the observed matrix. Even
when each entry of S is observed, MC(S) subtracts the effects of H from S, i.e., it
performs matrix denoising. Nguyen et al. (2019) provide a survey of various matrix
completion algorithms.

4.3.2 Key building blocks

We now define and express matrices that are related to the quantities of interest ©©), @)
and P in a form similar to Eq. (4.6). See Figure 4.3.1 for a visual representation of
these matrices.

e Outcomes: Let YO =V @ (1 — A) € {RU{?}}¥*M be a matrix with
(i, 7)-th entry equal to y; ; if a;; = 0, and equal to ? otherwise. Here, 1 is the
N x M matrix with all entries equal to one. Analogously, let Y(1)oPs =Y @ A €
{RU{?}}*M be a matrix with (i, j)-th entry equal to y; ; if a; ; = 1, and equal to
? otherwise. In other words, Y (9P and Y (Dobs capture the observed components
of {yzg?j)}ie[N},je[M] and {yi(;)}ie[N]vje[M}, respectively, with missing entries denoted
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by 7. Then, we can write

y©Oebs — (@@ 1 Oy g (1-A) and YO =@V EOYyo A (4.7)

e Treatments: From Eq. (4.3), we can write

A= (P+W).

Building on the earlier discussion, the application of matrix completion yields the
following estimates:

0 =uc(Yy @) 0 —ue(YWo>)  and P =MC(A), (4.8)

where the algorithm MC may vary for (:)(0), @(1), and P. Because all entries of A are
observed, MC(A) denoises A but does not need to impute missing entries. From Eq. (4.7)
and Eq. (4.8), it follows that ©©® and ©® depend on A and Y, whereas P depends
only on A.

In this section, we deliberately leave the matrix completion algorithm MC as a
“black-box”. In Section 4.4, we establish finite-sample and asymptotic guarantees for
our proposed estimator, contingent on specific properties for MC. In Section 4.5, we
propose a novel end-to-end matrix completion algorithm that satifies these properties.

Given matrix completion estimates of (©(Y), (), P), we formulate two preliminary
estimators for ATE. ;: (i) an outcome imputation estimator, which uses 0® and 6

only, and (77) an inverse probability weighting estimator, which uses P only. Then, we
combine these to obtain a doubly-robust estimator of ATE. ;.

Outcome imputation (OI) estimator. Let @(? denote the (i, j)-th entry of ©(® for
i € [N],j € [M], and a € {0,1}. The OI estimator for ATE. ; is defined as follows:
A0l & ~(1,0I)  ~(0,01)
ATES =77 — w7, (4.9)
where

~la 1 a
aon & N Z 8 for aec{0,1}.

“J irj
1€[N]

That is, the OI estimator is obtained by taking the difference of the average value of the

J-th column of the estimates 0 and ©W. The quality of the OI estimator depends

on how well O and O approximate the mean potential outcome matrices ©® and

O, respectively.

Inverse probability weighting (IPW) estimator. Let p; ; denote the (4, j)-th entry
of P for i € [N] and j € [M]. The IPW estimate for ATE. ; is defined as follows:

ATERW £ gl oI, (4.10)
where
. 1 i (1— ai ~ 1 i,
Ty DY yjl(_—A]) and T & 53T B
i€[N] P ey P
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That is, the IPW estimator is obtained by taking the difference of the average value
of the j-th column of the matrices Y (b5 and Y(1-bs replacing unobserved entries
with zeros, and weighting each outcome by the inverse of the estimated assignment
probability to account for confounding. The quality of the IPW estimate depends on
how well P approximates the probability matrix P.

The matrix completion-based OI and IPW estimators in Eq. (4.9) and Eq. (4.10)
have the same form as the classical OI and IPW estimators, which are derived for
settings where all confounders are observed (e.g., Imbens and Rubin, 2015a). In contrast
to the classical setting, our framework is one with unmeasured confounding.

4.3.3 Doubly-robust (DR) estimator

The DR estimator of ATE. ; combines the estimates @(0), (:)(1), and P from Eq. (4.8).
It is defined as follows:

e ~(1,DR ~(0,DR
ATEDPR £ LPR 7 OPR) (4.11)
where
—~ 1 ) 1—a;.;
B2 L ST i S 20+ () L
N 1 —Dpi;
1€[N] i
and
~ 1 . a; q
e LS i A 20+ A )
i€[N] b

In Section 4.4, we prove that @_]?JR consistently estimates ATE. ; as long as either
(0©,8W) is consistent for (O©,©M) or P is consistent for P, i.e., it is doubly-robust.
Furthermore, we show that the DR estimator provides superior finite sample guarantees
than the OI and IPW estimators, and that it satisfies a central limit theorem at a
parametric rate under weak conditions on the convergence rate of the matrix completion
routine. Using simulated data, Figure 4.3.2 demonstrates the improved performance
of DR, relative to OI and IPW. Despite substantial biases observed in both OI and
IPW estimates, the error of the DR estimate closely follows a mean-zero Gaussian
distribution. We provide a detailed description of the simulation setup in Section 4.6.

4.4 Analysis and Main Results

This section presents the formal results of this chapter. Section 4.4.1 details assumptions,
Section 4.4.2 discusses finite-sample guarantees, and Section 4.4.3 presents a central

limit theorem for @BR.
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Figure 4.3.2: Simulation evidence of the convergence of the error of the doubly-robust
(DR) estimator to a mean-zero Gaussian distribution. The histogram represents

ATE DR — ATE. ;, the green curve represents the (best) fitted Gaussian distribution, and
the black curve represents the Gaussian approximation from Theorem 4.2 in Section 4.4.
Histogram counts are normalized so that the area under the histogram integrates to
one. Unlike DR, the outcome imputation (OI) and inverse probability weighting (IPW)
estimators have non-trivial biases, as evidenced by the means of the distributions in
dashed green, blue, and red, respectively. Section 4.6 reports complete simulation
results.

4.4.1 Assumptions

Requirements on data generating process. We make two assumptions on how the
data is generated. First, we impose a positivity condition on the assignment probabilities.

Assumption 4.1 (Positivity on true assignment probabilities). The unknown assign-
ment probability matrix P is such that

A<pij <1=A (4.13)
for alli € [N] and j € [M], where 0 < X\ < 1/2.

Assumption 4.1 requires that the propensity score for each unit-outcome pair is
bounded away from 0 and 1, implying that any unit-item pair can be assigned either of
the two treatments. An analogous assumption is pervasive in causal inference models
with no-unmeasured confounding. For simplicity of exposition and to avoid notational
clutter, Assumption 4.1 requires Eq. (4.13) for all outcomes, j € [M]. In practical
applications, however, ATE. ; may be estimated for a select group of those outcomes.
In that case, the positivity assumption applies only for the selected subset of outcomes
for which ATE. ; is estimated.

Next, we formalize the requirements on the noise variables.

Assumption 4.2 (Zero-mean, independent, and subGaussian noise). Fiz any j € [M].
Then,
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(a) {( ’], m 7772,3) 21 € [N]} are mean zero and independent (across i);

(b) for everyi € [N] and j € [M ( ”, Z]) AL n; ;; moreover, the distribution of

(e, e) depends on (@U @(1 ,P) only through (6."),6\")), and the distribution

)
of ni; depends on (©© P) only through p; ;; and

(c) 51»? has subGaussian norm bounded by a constant & for every i € [N] and a €

{0,1}.

Assumption 4.2(a) defines (0¥ 6 P) as matrices collecting the means of the
potential outcomes and treatment assignments in Eqgs. (4.2) and (4.3). Further, for
every measurement, it imposes independence across units in the noise variables. As-
sumption 4.2(b) imposes independence between the noise in the potential outcomes
and noise in treatment assignment, and implies that for each particular umt z and
measurement j, confounding emerges only from the interplay between (81(3), QZ ; ) and
pij. Finally, Assumption 4.2(c) is mild and useful to derive finite-sample guarantees.
For the central limit theorem 1n Sectlon 4.4.3, subGaussianity could be disposed of

by restricting the moments of 5 Assumptlon 4.2 does not restrict the dependence

between 5( and z—: . Neither Assumptlon 4.2 restricts the dependence of n; ; across
outcomes. In partlcular, Assumption 4.2 allows for the existence of pairs of outcomes
(7,7") such that E[n?;] = E[n; ;] = E[n;;n; ], in which case a;; = a;;» with probability
one.

Requirements on matrix completion estimators. First, we assume the estimate
P is consistent with Assumption 4.1.

Assumption 4.3 (Positivity on estimated assignment probabilities). The estimated
probability matriz P is such that

for alli € [N] and j € [M], where 0 < X\ < .

Assumption 4.3 holds when the entries of P are truncated to the range [\, 1 — A,
provided A is not greater than \. Second, our theoretical analysis requires independence
between certain elements of the estimates (P, 0 OW) from Eq. (4.8), and the noise
matrices (W, £, EM). We formally state this independence condition as an assumption
below.

Assumption 4.4 (Independence between estimates and noise). Fiz any j € [M]. There
exists a non-empty partition (Ro, R1) of the units [N] such that

{ (@J’ é}?) }ieRs AL {mvj}ieRs (4.14)
and

{pZ]}ZERS AL {(7]1]7 Zv]))}iERs7 (415)

for every a € {0,1} and s € {0,1}.
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Eq. (4.14) requires that within each of the two partitions of the units, estimated mean
potential outcomes and estimated assignment probabilities are jointly independent of the
error in assignment probabilities, for every measurement. Similarly, Eq. (4.15) requires
that within each of the two partitions of the units, estimated assignment probabilities are
independent jointly of the noise in assignment probabilities and potential outcomes, for
every measurement. Conditions like Eq. (4.14) and Eq. (4.15) are familiar in the doubly-
robust estimation literature. Chernozhukov et al. (2018) employ a cross-fitting device
to enforce an assumption similar to Assumption 4.4 in a context with no unmeasured
confounders. Section 4.5 provides a novel cross-fitting procedure for matrix estimation
under which Assumption 4.4 holds for any MC algorithm (under additional assumptions
on the noise variables).

Matrix completion error rates. The formal guarantees in this section depend
on the normalized (1,2)-norms of the errors in estimating the unknown parameters
(0@, 00 P). We use the following notation for these errors:

~ A |P-P
a2l 1.2

Q) _ )
£(p) 210 NECRCRIP

VN

and £(0)2> £(6), with £(6@) . (4.16)

a€{0,1}

A variety of matrix completion algorithms deliver S(ﬁ) = Op(min{N, M}~*) and
5(@) = O, (min{ N, M}~#), where 0 < o, 3 < 1/2. The conditions in this section track
dependence on N only. We say that the normalized errors £ (]3) and £ (@) achieve
the parametric rate when they have the same rate as O,(N ~1/2) Section 4.5 explicitly

characterizes how the rates of convergence £ (ﬁ) and £ (@) depend on N and M for a
particular matrix completion algorithm based on Bai and Ng (2021).

4.4.2 Non-asymptotic guarantees

The first main result of this section provides a non-asymptotic error bound for @%R —
ATE. ; in terms of the errors 5(?) and 5((:)) defined in Eq. (4.16).

Theorem 4.1 (Finite Sample Guarantees for DR). Suppose Assumptions 4.1 to 4.4
hold. Fiz ¢ € (0,1) and j € [M]. Then, with probability at least 1 — 0, we have

|ATED® — ATE. ;| < ErrR, (4.17)

-~ ~ cl 12 ~ om(cls 12
S

for m(c) and ¢, as defined in Section 4.1.

The proof of Theorem 4.1 is given in Appendix 4.B. Egs. (4.17) and (4.18) bound
the absolute error of the DR estimator by the rate of 5(@) (& (P) + N705) 4 N705,
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When & (ﬁ) is lower bounded at the parametric rate of N5 Err%} has the same rate
as 5(]3)8(@) + N705,

Doubly-robust behavior of A/T\E,BR. The error rate of E(ﬁ)é’(@) + N7% imme-
diately reveals that the DR estimate is doubly-robust with respect to the error in
estimating the mean potential outcomes (0(®), ©())) and the assignment probabilities P.
First, the error Err]]?,l’)g decays at a parametric rate of O,(N"%?) as long as the product
of error rates, 5(?)8(@), decays as O,(N7%%). As a result, FF\E%R can exhibit a
parametric error rate even when neither the mean potential outcomes nor the assignment
probabilities are estimated at a parametric rate. Second, Err%}; decays to zero as long
as either of £ (]3) or £ ((:)) decays to zero, provided both errors are O,(1).

We next compare the performance of DR estimator with the OI and IPW estimators
from Eqs. (4.9) and (4.10), respectively. Towards this goal, we characterize the ATE. ;

estimation error of ﬁ\ESI in terms of & (@) and of @Ifw in terms of & (ﬁ)

Proposition 4.1 (Finite Sample Guarantees for Ol and IPW). Fiz any j € [M]. For
OlI, we have

[ATEO" — ATE. ;| < Err{! 2 £(8). (4.19)

For IPW, suppose Assumptions 4.1 to 4.4 hold. Define Omax = Zae{o,l} 10 | max, and
fix any § € (0,1). Then, with probability at least 1 — §, we have

|ATE®W — ATE. ;| < Err¥Y, (4.20)
where
2 ~ 1/ C&;/lg 26m(c€5/12) 1
ErrbW £ 2 [Qmaxé’ P) + (—em + 264/ cls 1o + ) ,
IT N § Y ( ) \/5_1 04/ Cls/12 \/5_1 \/N

for m(c) and L. as defined in Section 4.1.

The proofs of Eq. (4.19) and Eq. (4.20) are given in Appendices 4.D and 4.E,
respectively. Proposition 4.1 implies that in an asymptotic sequence with bounded
Omax, Ol and IPW attain the parametric rate O,(N~"%) provided £(0) and £(P) are
O,(N %), respectively. The next corollary, proven in Appendix 4.C, compares these
error rates with those obtained for the DR estimator in Theorem 4.1.

Corollary 4.1 (Gains of DR over OI and IPW). Suppose Assumptions 4.1 to 4.4 hold.
Fiz any j € [M]. Consider an asymptotic sequence such that Suppose Onax is bounded.
IfE(P) = Op(N™) and £(©) = O,(N~F) for 0 < a < 0.5 and 0 < 5 < 0.5, then

|[ATES' — ATE. ;| = O,(N~?),  |ATE"Y — ATE. ;| = O,(N™%),
and
{ATEBR . ATE.J{ — OP(N_ m1n{a+ﬁ,0.5}>‘
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Corollary 4.1 shows that the DR estimate’s error decay rate is consistently superior

to that of the OI and IPW estimates across a variety of regimes for o, 5. Specifically,

the error Err][\),l} scales strictly faster than both Err{)! and Errﬁ}’v if the estimation errors

of ©©. W and P converge slower than at the parametric rate O,(N~Y2). When the

estimation errors of @(O), @(1), and P all decay at a parametric rate, OI, IPW, and DR
estimation errors decay also at a parametric rate.

4.4.3 Asymptotic guarantees

The next result, proven in Appendix 4.C as a corollary of Theorem 4.1, provides
conditions on £(P) and £(O) for consistency of ATEPE.

Corollary 4.2 (Consistency for DR). Suppose Assumptions 4.1 to 4.4 hold. As N — oo,
if either (i) E(P) = 0,(1), £(0) = 0,(1), or (i) E(O) = 0,(1), E(P) = O,(1), it
holds that

ATEPR — ATE ; 25 0, (4.21)
for all j € [M].

Corollary 4.2 states that @.ER is a consistent estimator for ATE. ; as long as either
the mean potential outcomes or the assignment probabilities are estimated consistently.
The next theorem, proven in Appendix 4.F, establishes a Gaussian approximation

for @P]R under mild conditions on error rates £ (]3) and &£ (C:))

Theorem 4.2 (Asymptotic Normality for DR). Suppose Assumptions 4.1 to 4.4 and
the following conditions hold,

(C1) S(ﬁ) = 0,(1) and 5(@) = 0,(1).
(C2) £(P)E(B) = 0,(N71/2).

(C3) For every i € [N] and j € [M], let 0\°) and az(’lj) be the standard deviations of 51(»3-)

0]

and 55}}, respectively. The sequence
(Dy2 (0)y2
AN Tt N T
7 2 PR Dh et (4.22)
i€[N] Pij N i€[N] 1=pi
is bounded away from zero as N increases.
Then, for all j € [M],
—_— . d
VN(ATEPR — ATE ) /7; - N(0,1), (4.23)

as N — o0.
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Theorem 4.2 describes two simple requirements on the estimated matrices P and
(©®,0W), under which ATEPR exhibits an asymptotic Gaussian distribution centered

at ATE.;. Condition (C1) requires that the estimation errors of P and (6®,6®)
converge to zero in probability. Condition (C2) requires that the product of the errors
decays sufficiently fast, at a rate o,(NN~'/?), ensuring that the bias of the normalized
estimator in Eq. (4.23) converges to zero. Condition (C2) is similar to conditions in
the literature on doubly-robust estimation of average treatment effects under observed
confounding (e.g., Assumption 5.1 in Chernozhukov et al., 2018). Specifically, in that
context, Chernozhukov et al. (2018) assume that the product of propensity estimation
error and outcome regression error decays faster than N—1/2.

Black-box asymptotic normality. We emphasize that Theorem 4.2 applies to any
matrix completion algorithm MC, provided conditions (C1) and (C2) hold. This level of
generality is useful because the product of £ (}A’) and &£ ((:)) is o, (N -1/ 2) for a wide range
of MC algorithms, under mild assumptions on (0, O P). In contrast, achieving such
black-box asymptotic normality for OI or IPW estimates is challenging. Their biases
are tied to the individual error rates, £ (@) and £ (P), which are typically lower-bouded
at the parametric rate of N5,

The next result, proven in Appendix 4.F.3, provides a consistent estimator for the
asymptotic variance ; from Theorem 4.2.

Proposition 4.2 (Consistent variance estimation). Suppose Assumptions 4.1 to 4.3
and condition (C1) in Theorem 4.2 holds. Suppose the partition (Ro, R1) of the units
[N] from Assumption 4.4 is such that

{(@,j, 51((;)) bier, AL {(ni,j7 553‘))}1‘67237 (4.24)

for every j € [M], a € {0,1} and s € {0,1}. Then, for all j € [M], 52 — 52 - 0,
where

i
~ i)’

O o
6.\j2 A % Z (ym 1,32) ;. 5 _'_% Z (yz,]

_ (4.25)
i€[N] (pi,j> i€[N] (

0.7)’ (1 — aiy)
1

4.4.4 Application to panel data with lagged treatment effects

Sections 4.4.2 and 4.4.3 considered a model where the outcome y; ; for unit ¢ € [N] and
measurement j € [M] depends on treatment assignment only for unit ¢ and measurement
J, i.e., a; ;. The Appendix 4.1 discusses how to extend the results of this section to
a setting of panel data with lagged treatment effects. In a panel data setting, the
M measurements correspond to 1" time periods, and ¢ denotes the time index. Then,
Appendix 4.1 considers an auto-regressive setting, where the potential outcomes at time
t depends on the treatment assignment at time ¢ and the realized outcome at time t — 1,
i.e., for all s € [N],t € [T], and a € {0, 1},

y(a‘yi,tfl) _ Oé(a)yz‘,t—l + 91(:;) + g(a)

it it
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and observed outcomes satisfy

Olyi,e— 1y;,e—
Yit = yz(,t‘y’ 1)(1 — ait) + yit'y’ l)ai,t-

The presence of lagged treatment effects in this model makes it crucial to define
causal estimands for entire sequences of treatments. The supplementary appendix

describes how the proposed doubly-robust estimation can be extended to treatment
sequences and derives a generalization of Theorem 4.1.

4.5 Matrix Completion with Cross-Fitting

In this section, we introduce a novel algorithm designed to construct estimates ((:)(0), @(1), }A?)
that adhere to Assumption 4.4 and satisfy conditions (C1) and (C2) in Theorem 4.2. We
first explain why traditional matrix completion algorithms fail to deliver the properties
required by Assumption 4.4. We then present Cross-Fitted-MC, a meta-algorithm
that takes any matrix completion algorithm and uses it to construct (©(”), 6 P) that
satisfy Assumption 4.4, and the stronger independence condition in Proposition 4.2.
Finally, we describe Cross-Fitted-SVD, an end-to-end algorithm obtained by combin-
ing Cross-Fitted-MC with the singular value decomposition (SVD)-based algorithm
of Bai and Ng (2021), and establish that it also satisfies conditions (C1) and (C2) in
Theorem 4.2.

Traditional matrix completion. Estimates ((:)(0), (:)(1), ﬁ) obtained from existing
matrix completion algorithms need not satisfy Assumption 4.4. In particular, using
the entire assignment matrix A to estimate each element of P typically results in a
violation of {;b\”}zeR A {m,j}ieRs in Assumption 4.4, as each entry of P is allowed to
depend on the entire noise matrix W. For example, in spectral methods (e.g., Nguyen
et al., 2019), P is a function of the SVD of the entire matrix A, and

]/7\1'7]' JLL Qg 47, (426)
for all (7,7), (¢,7") € [IN] x [M] in general, which implies {@J}ieRs un {m,j}ieRs, for
every Ry C [N]. Similarly, in matching methods such as nearest neighbors (Li et al.,
2019), P is a function of the matches/neighbors estimated from the entire matrix A.
Dependence structures such as p; ; )L a;; for any 4,5 € [N] x [M]—which is weaker
than Eq. (4.26)—are enough to violate the {@,j}ie’lzs AL {ni,j}ieRS requirement in
Assumption 4.4. Likewis/e\7 the rquuirement {é}?}ie& 1L {nm}ieRs in Assumption 4.4
can be violated, because O and O™ depend respectively on Y (b5 and Y (1)-oPs which
themselves depend on the entire matrix A.

4.5.1 Cross-Fitted-MC: A meta-cross-fitting algorithm for matrix
completion

We now introduce Cross-Fitted-MC, a cross-fitting procedure that modifies any MC
algorithm to produce (0, O, P) that satisfy Assumption 4.4. We employ the
following assumption on the noise variables.
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Assumption 4.5 (Block independence between noise). Let (Rg, R1) denote the par-
tition of the units [N] from Assumption 4.4. There exists partitions (Co,C1) of the
measurements [M], such that for each block T € P = {R, x Cy : s,k € {0,1}},

Wy AL W_g, B (4.27)
and
W_z 1L Wy, B, (4.28)

for every a € {0,1}.

For a given block Z, Eq. (4.27) requires the noise in the treatment assignments
corresponding to Z to be independent jointly of the noise in the treatment assignments
and the potential outcomes corresponding to the remaining three blocks. Likewise,
Eq. (4.28) requires the noise in the treatment assignments corresponding to the remaining
three blocks to be independent jointly of the noise in the treatment assignments and
the potential outcomes corresponding to Z. Assumption 4.5 leaves unrestricted the
dependence of the noise variables across outcomes that belong to the same block.

For notational simplicity, Assumption 4.5 imposes independence conditions across
blocks of outcomes in a partition of [M] into two blocks only. It is important to note,
however, that the results in this section hold under more general dependence patterns. In
particular, at the cost of additional notational complexity, it is straightforward to extend
the result in this section to partitions of outcomes (Co,Cy,...,Cy,) such that for each
ke{0,1,...,m}, s € {0,1} and a € {0, 1}, there exists ¥’ € {0,1,...,m} \ {k} with
i3} aperoxe, L {nij, 653)}@,;')672175%,6/ and {ﬁi,j}(i,j)enlﬁxck/ AL {ni,j75§f})}(i,j)e7zsxck-
This allows for rather general patterns of dependence across outcomes while preserving
independence across specific sets of outcomes (e.g., certain product categories in the
retail example of Section 4.1).

Recall the setup from Section 4.3.1: Given an observation matrix S € {RU{ 7} }V*M
a matrix completion algorithm MC produces an estimate T = MC(S) € RV*M of a matrix
of interest T', where S and T are related via Eq. (4.6). With this background, we now
describe the Cross-Fitted-MC meta-algorithm.

1. The inputs are (i) a matrix completion algorithm MC, (i) an observation matrix
S e {RU{?}}V*M and (iii) a block partition P of the set [N] x [M] into four
blocks as in Assumption 4.5.

2. For each block T € P, construct Tz by applying MC on S ® 17 where 177 € RN*M
denotes a masking matrix with (4, j)-th entry equal to 0 if (7, j) € Z and 1 otherwise,
and the operator ® is as defined in Section 4.1. In other words,

T\I = TI where T = MC(S X 1_1). (429)

3. Return T € RV*M gbtained by collecting together {fz}ze'p, with each entry in
its original position.
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We represent this meta-algorithm succinctly as below:
T = Cross-Fitted-MC(MC, S, P).

In summary, Cross-Fitted-MC produces an estimate T such that for each block T € P,
the sub-matrix 77 is constructed only using the entries of S corresponding to the
remaining three blocks of P. Figure 4.5.1(a) provides a schematic of the block partition
P for Ry = [|[N/2]] and Cy = [| M/2]]. See Figure 4.5.1(b) for a visualization of S ®1-Z.
The following result, proven in Appendix 4.G.1, establishes (0, ©(), P) generated by
Cross-Fitted-MC satisfy Assumption 4.4.

Proposition 4.3 (Guarantees for Cross-Fitted-MC). Suppose Assumptions 4.2 and /.5
hold. Let MC be any matrix completion algorithm and P be the block partition of the set
[N] x [M] into four blocks from Assumption 4.5. Let

0O = Cross-Fitted-HC(MC,Y @b P), (4.30)
00 = Cross-Fitted-Me(Mc, Y 1ebs Py, (4.31)
P = Cross-Fitted-MC(MC, A, P), (4.32)

where Y005 qnd Y (D5 gre defined in Eq. (4.7). Then, Assumption 4.4 holds for all
Jj € [M]. Further, suppose

Wz, BEX 1L W_z, B, (4.33)
for every block T € P and a € {0,1}. Then, Eq. (4.24) holds too.

A host of MC algorithms are designed to de-noise and impute missing entries of
matrices under random patterns of missingness; the most common missingness pattern
studied is where each entry has the same probability of being missing, independent
of everything else. In contrast, Cross-Fitted-MC generates patterns where all entries
in one block are deterministically missing, as in Figure 4.5.1(b). A recent strand of
research on the interplay between matrix completion methods and causal inference
models—specifically, within the synthetic controls framework—has contributed matrix
completion algorithms that allow for block missingness (see, e.g., Agarwal et al., 2023,
2020, 2021; Arkhangelsky et al., 2021; Athey et al., 2021; Bai and Ng, 2021; Dwivedi
et al., 2022a,b). However, it is a challenge to apply known theoretical guarantees for
these methods to the setting in this chapter because of: (i) the use of cross-fitting—which
creates blocks where all observations are missing—and (ii) outside of the completely-
missing blocks, there can still be missing observations with heterogeneous probabilities
of missingness. In the next section, we show how to modify an MC algorithm designed
for block missingness patterns so that it can be applied to our setting with cross-fitting
and heterogeneous probabilities of missingness outside the folds. For concreteness, we
work with the Tall-Wide matrix completion algorithm of Bai and Ng (2021).
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Figure 4.5.1: Panel (a): A matrix S partitioned into four blocks when Ry = [IN/2] and
Co = [M/2] in Assumption 4.5, i.e., P = {Top Left, Top Right, Bottom Left, Bottom
Right}. Panel (b): The matrix S @ 1-Bottom Right ohtained from the matrix S by masking
the entries corresponding to the Bottom Right block with 7.

4.5.2 The Cross-Fitted-SVD algorithm

Cross-Fitted-SVD is an end-to-end MC algorithm obtained by instantiating the Cross-
Fitted-MC meta-algorithm with the Tall-Wide algorithm of Bai and Ng (2021), which
we denote as TW. For completeness, we detail the TW algorithm in Section 4.5.2.1, and
then use it to describe Cross-Fitted-SVD in Section 4.5.2.2.

4.5.2.1 The TW algorithm of Bai and Ng (2021).

Bai and Ng (2021) propose TW to impute missing values in matrices with a set of
rows and a set of columns without missing entries. More concretely, for any matrix
S e {RU{7}VM et Rops C [N] and Cops € [M] denote the set of all rows and all

columns, respectively, with all entries observed. Then, all missing entries of S belong
to the block Z = Rpiss X Cuniss, Where Ruiss = [N] \ Rops and Ciss = [M] \ Cops-

Given a rank hyper-parameter r € [min{|Rops|, |Cobs| }], TW, produces an estimate of
T as follows:

1. Run SVD separately on St & SN|xCo. and S (wide) 2 SRopex[M]s 1-€.

SVD(S(taH)) — (U(tall) e RNXFN, Z(tall) E R?NXFN’ V(tall) 6 R‘Coble?N)
and
SVD(S(Wlde)) — (U(Wlde) c R'Robs‘XFI\/I’ E(Wide) c RFJVIX?My V(Wide) c RMXFM)

where 7y 2 min{N, [Cops|} and 7p; 2 min{|Rops|, M }. The columns of U and
UWide) are the left singular vectors of St and S("i4¢) | respectively, and the
columns of V) and V(¥ide) are the right singular vectors of St and S(vide),
respectively. The diagonal entries of () and $(¥14®) are the singular values of
Stal) and 9 (Wide), respectively, and the off-diagonal entries are zeros. This step of
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TW requires the existence of the fully observed blocks S (tal) and SMde) e R
and C,ps cannot be empty.

. Let Val) ¢ RICusxr he the sub-matrix of VW that keeps the columns cor-

responding to the r largest singular values only. Let V/(wide) ¢ RICobs|*r he the
sub-matrix of ¥ ("19¢) that keeps the columns corresponding to the r largest singu-
lar values only and the rows corresponding to the indices in C,ps only. Obtain a
rotation matrix R € R™" as follows:

R2 ‘7(ta11)T‘7(wide) (i}(wide)T"‘//v(wide))—ll

That is, R is obtained by regressing y(tall) op J/(wide) Ty essence, R aligns the
right singular vectors of St and Sid®) ysing the entries that are common
between these two matrices, i.e., the entries corresponding to indices Rops X Cobs-
The formal guarantees of the TW algorithm remains unchanged if one alternatively
regresses V(Wide) on 1/ (tall) o yses the left singular vectors of St and S(wide) for
alignment.

T € R™*" be the sub-matrix of £(**) that keeps the columns correspond-

Let X
ing to the r largest singular values only. Let V(Wlde) € RM>*" he the sub-matrix of

V(wide) that keeps the columns corresponding to the r largest singular values only.

Return 7 2 U (tau)i(tamRV(Wide)T as an estimate for 7.

4.5.2.2 Cross-Fitted-SVD algorithm.

1.

4.

D.

The inputs are (i) A € RVM_ (i3) Y(@obs ¢ fR U { 2}IV*M for a € {0,1}, (4ii)
a block partition P of the set [N] x [M] into four blocks as in Assumption 4.5,
and (iv) hyper-parameters 7, 5, r3, and A such that ry, 7,73 € [min{N, M}]
and 0 < \ < 1/2.

Return P = Projy(Cross-Fitted-MC(TW,,, A, P)) where Proj;(-) projects each
entry of its input to the interval [\, 1 — A].

Define YOl a5 equal to V(@b but with all missing entries in Y055 set to
zero. Define Y (Wl analogously with respect to Y (1)-0bs,

Return ©©) = Cross-Fitted-MC(TW,,, VO™l P) ¢ (1 — P).

Return O = Cross-Fitted-MC(TW,,, YOI Py ¢ P.

We provide intuition on the key steps of the Cross-Fitted-SVD algorithm next.

Computing P. The estimate P comes from applying Cross-Fitted-MC with TW on A
and truncating the entries of the resulting matrix to the range [\, 1 — )], in accordance
with Assumption 4.3. The TW sub-routine is directly applicable to A, because for any
block Z = R, x C, € P the masked matrix A ® 177 has [N] \ R, fully observed rows
and [M]\ Cy, fully observed columns. See Figure 4.5.2(a) for a visualization of A®17%.
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Figure 4.5.2: Panels (a), (b), and (c) illustrate the matrices A ® 17%, Y(0bs @ 17,
and Y(Uobs @ 17T obtained from A, Y05 and Y(D:obs  respectively, for the block
partition P in Figure 4.5.1(a) and the block Z = Bottom Right. Unlike Panels (b) and
(¢), there exists rows and columns with all entries observed in Panel (a). To enable the
application of TW for Panels (b) and (c¢), we replace missing entries in blocks Top Left,
Top Right, and Bottom Left with zeros.

Computing ©© and O, The estimates O© and O are constructed by applying
Cross-Fitted-MC with TW on YOl and Y (D-full ' wwhich do not have missing entries.
TW is not directly applicable on Y (0058 and Y (D-obs a5 hoth matrices may not have any
rows and columns that are fully observed. See Figure 4.5.2(b) and Figure 4.5.2(c) for
visualizations of Y(©:°bs @ 1=7 and Y18 © 1-Z, respectively. However, notice that,
due to Assumption 4.2(a) and Assumption 4.2(b),

EyOM =Ey o (1-A4)]=0"06@1-P)
and
Ey WM =E[Y © Al =6W e P.

As a result, MC(Y (Ol and Mc(Y M) f!) provide estimates of O © (1 — P) and 0 © P,
respectively—recall the discussion in Section 4.3.1. To construct ©© and @(1), we divide

the entries of MC(Y (@) and Mc(Y (full) by the entries of (1 — P) and P, respectively,
to adjust for heterogeneous probabilities of missingness (see, e.g., Bhattacharya and
Chatterjee, 2022; Jin et al., 2021; Xiong and Pelger, 2023, for related procedures).
This inverse probability of treatment weighting adjustment to estimate 0O and OW is
distinct and in addition to the augmented IPW procedure that generates @,BR from

estimates ©©, O and P.

4.5.3 Theoretical guarantees for Cross-Fitted-SVD

To establish theoretical guarantees for Cross-Fitted-SVD, we adopt three assumptions
from Bai and Ng (2021). The first assumption imposes a low-rank structure on the
matrices P, ©© and ©W, namely that their entries are given by an inner product of
latent factors.
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Assumption 4.6 (Linear latent factor model on the confounders). There exist constants
Tps Ty, To, € [MIn{N, M}| and a collection of latent factors

UeRVN v vV eRM™  yg@eRN 7 gnd V@ e RM*™ for e {0,1},
such that the unobserved confounders (0, W P) satisfy the following factorization.:
P=UV" and W =U@V@T for aec{0,1}. (4.34)

Assumption 4.6 decomposes each of the unobserved confounders (P, ©®, and ©()
into low-dimensional unit-dependent latent factors (U, U®, and U®") and measurement-
dependent latent factors (V, V@ and VM), In particular, every unit i € [N] is
associated with three low-dimensional factors: (i) U; € R'», (i) Ui(o) € R, and (7i1)
Ui(l) € R™:. Similarly, every measurement j € [M] is associated with three factors: (7)
V; € R, (i1) Vj(o) € R, and (4i7) Vj(l) € R, Low-rank assumptions are standard in
the matrix completion literature.

The second assumption requires that the factors that determine P, 0 © (1 — P),
and O ® P explain a sufficiently large amount of the variation in the data. This
assumption is made on the factors of 0@ © (1 — P) and O ® P instead of O and
OW as the TW algorithm is applied on YOl = Y © (1 — A) and Y =y © A,
instead of Y(©°bs and Yo (see steps 4 and 5 of Cross-Fitted-SVD). To determine
the factors of ©© © (1 — P) and O © P, let

U£ 1y, U e R0 and V£ [1,V] € RM<U» D,
where 15 € RY and 1, € R are vectors of all 1’s. Then,
0o 1-P) =T 7" and 6Wep=07"7"" (4.35)

where TV 2 T+ U© ¢ RN >0 (rp 1) VOL27,10 ¢ RM 70 (rpt1)] TV 2 LU e
RYN*ro17» - and V(l) £ VsV e RM*ro17 with the operator * denoting the Khatri-Rao

product (see Section 4.1). We provide details of the derivation of these factors in
Appendix 4.G.2.3.

Assumption 4.7 (Strong factors). There exists a positive constant ¢ such that

1Ullooe < e Voo S e UV looe < e and V@ z0c < for a€{0,1}.
Further, the matrices defined below exist and are positive definite:

vvo . vy g9 Ty
R L A L S L T

Assumption 4.7, a classic assumption in the literature on latent factor models,
ensures that the factor structure is strong. Specifically, it ensures that each eigenvector
of P, 0 © (1 — P), and O © P carries sufficiently large signal.

The third assumption requires a strong factor structure on the sub-matrices of P,
0 ® (1 — P), and O ® P corresponding to every block Z in the block partition P
from Assumption 4.5. Further, it also requires that the size Z grows linearly in N and

M.
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Assumption 4.8 (Strong block factors). Consider the block partition P = {R, x
Cr : s,k € {0,1}} from Assumption 4.5. For every s € {0,1}, let Uy € RR:lxm,
UES; e RIRslxro,(rot1) - g U&; € RRsIxm0170 be the sub-matrices of U, U(O), and U(l),
respectively, that keeps the rows corresponding to the indices in Rs. For every k € {0,1},
let Viyy € RICxrs, V% € RICkIxrao(rotl) - gnd 786)) € RICkXrom be the sub-matrices of

V, V(O), and V(l), respectively, that keeps the rows corresponding to the indices in Cy.
Then, for every s,k € {0,1}, the matrices defined below ezist and are positive definite:

UT U VT \V U(a)TU(a) 77(a)T17(a)
. (s)Y(s) . (k) V (k) . (s) Yi(s) . k) VY (k)
Jim. Ry Jim Gl A TR and  lim ERTA for a € {0,1}.

Further, for every s,k € {0,1}, |Rs| = Q(N) and |Cy| = Q(M).
The subsequent assumption introduces additional conditions on the noise variables
in Bai and Ng (2021) than those specified in Assumptions 4.2 and 4.5.

Assumption 4.9 (Weak dependence in noise across measurements and independence
in noise across units).

(a) Zj,E[M} ‘E[m,jm,j/H < ¢ for every i € [N] and j € [M],

(b) > jein ‘E[EZ(‘E)EEQ),] < ¢ for every i € [N], j € [M], and a € {0,1}, where

— A a a
B0 & 0, mis + el iy + €

i, and

(¢) The elements of {(El(a), W;.) 1i € [N]} are mutually independent (across i) for
a € {0,1}.

Assumption 4.9(a) and Assumption 4.9(b) requires the noise variables to exhibit only
weak dependency across measurements. Still, these assumptions allow the existence
of pairs of perfectly correlated outcomes (e.g., 7,7/ € [M] such that a;; = a; ;).
Assumption 4.9(c) requires the noise (E®, W) to be jointly independent across units,
for every a € {0,1}. We are now ready to provide guarantees on the estimates produced
by Cross-Fitted-SVD. The proof can be found in Appendix 4.G.2.

Proposition 4.4 (Guarantees for Cross-Fitted-SVD). Suppose Assumptions 4.1, 4.2,
and 4.6 to 4.9 hold. Consider an asymptotic sequence such that Oyayx is bounded as both
N and M increase. Suppose bpax is bounded. Let P, O and ©W) be the estimates
returned by Cross-Fitted-SVD with the block partition P from Assumption 4.5, 1 = 1),
Ty = Ty (rp+1), r3 = rg,1p, and any X\ such that 0 < X\ < X\ with A denoting the constant
from Assumption 4.1. Then, as N, M — oo,

£(P) - op(\/iﬁ n %M) and £(8) = op<%ﬁ n ﬁ)
Proposition 4.4 implies that the conditions (C1) and (C2) in Theorem 4.2 hold
whenever N'/2/M = o(1). Then, the DR estimator from Eq. (4.11) constructed
using Cross-Fitted-SVD estimates @(0), (:)(1), and P exhibits an asymptotic Gaussian
distribution centered at the target causal estimand. Further, Proposition 4.4 implies

~

that the estimation errors E(P) and 5(@) achieve the parametric rate whenever

N/M = O(1).
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4.5.4 Application to panel data with staggered adoption

Section 4.5.1 considered a setting with block independence between noise (formalized in
Assumption 4.5). Appendix 4.J discusses how to extend the proposed doubly-robust
framework to a setting of panel data with staggered adoption, where this assumption may
not hold. Recall (from Section 4.4.4) that in the panel data setting M measurements
correspond to T time periods, and t denotes the time index. Then, Appendix 4.J
considers a setting where a unit remains under control for some period of time, after
which it deterministically remains under treatment. In other words, for every unit
i € [N], there exists a time point t; € [T] such that a;,;, = 0 for t <t¢;, and a;; = 1 for
t > t;. Such a treatment assignment pattern leads to a heavy dependence in the noise
{nit }eepr) for every unit i € [N]. Appendix 4.J describes an alternative approach to the
Cross-Fitted-SVD algorithm and shows that Assumption 4.4 still holds for a suitable
staggered adoption model.

4.6 Simulations

This section reports simulation results on the performance of the DR estimator of
Eq. (4.11) and the OI and IPW estimators of Eqs. (4.9) and (4.10), respectively.

Data Generating Process (DGP). We now briefly describe the DGP for our
simulations; Appendix 4.H provides details. All simulations set N = M. To generate,
P, 09 and ©M we use the latent factor model given in Eq. (4.34). To introduce
unobserved confounding, we set the unit-specific latent factors to be the same across P,
0 and O je., U =UO® = UM, The entries of U and the measurement-specific
latent factors, V, V(© V() are each sampled independently from a uniform distribution,
with hyperparameter r, equal to the dimension of U and V, and hyperparameter r,
equal to the dimension of U and V(@ for a = 0, 1. Further, the entries of the noise
matrices E©) and E® are sampled independently from a normal distribution, and the
entries of W are sampled independently as in Eq. (4.4). Then, y,fflj), a;;, and y; ; are
determined from Eqgs. (4.1) to (4.3), respectively. The simulation generates P,
and O once. Given the fixed values of P, O and ©M the simulation generates
2500 realizations of (Y, A)—that is, only the noise matrices £, E() T/ are resampled
for each of the 2500 realizations. For each simulation realization, we apply the Cross-
Fitted-SVD algorithm with hyper-parameters as in Proposition 4.4 and A = A\ = 0.05
to obtain P, ©©@, and O, and compute ATE. ; from Eq. (4.5), and KT\E%I, @Ig’w
and @BR from Eqgs. (4.9) to (4.11).

Results. Figure 4.6.1 reports simulation results for N = 1000, with r, = 3, rg = 3 in
Panel (a), and r, = 5, rp = 3 in Panel (b). Figure 4.3.2 in Section 4.3 reports simulation
results for r, = 3, ryp = 5. In each case, the figure shows a histogram of the distribution
of @Pjp” — ATE. ; across 2500 simulation instances for a fixed j, along with the best
fitting Gaussian distribution (green curve). The histogram counts are normalized so
that the area under the histogram integrates to one. Figure 4.6.1 plots the Gaussian
distribution in the result of Theorem 4.2 (black curve). The dashed blue, red and green
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Figure 4.6.1: Empirical illustration of the asymptotic performance of DR as in The-
orem 4.2. The histogram corresponds to the errors of 2500 independent instances of
DR estimates, the green curve represents the (best) fitted Gaussian distribution, and
the black curve represents the Gaussian approximation from Theorem 4.2. The dashed
green, blue, and red lines represent the biases of DR, OI, and IPW estimators.

lines in Figures 4.3.2 and 4.6.1 indicate the values of the means of the OI, IPW, and
DR error, respectively, across simulation instances. For reference, we place a black solid
line at zero. The DR estimator has minimal bias and a close-to-Gaussian distribution.
The biases of OI and IPW are non-negligible. In Appendix 4.H, we compare the biases
and the standard deviations of OI, IPW, and DR across many j.

Panels (a), (b), and (c) of Figure 4.6.2 report coverage rates over the 2500 simulations

for @.%R—centered nominal 95% confidence intervals with N = 500, N = 1000, and
N = 1500, respectively, all with M = N and r, = 1y = 3. For every j € [M], panels

(a), (b) and (c) show ¢;, the percentage of times [@BR + 1.965;/v/N] covers ATE.

(in blue), and c;, the percentage of times [@Ep‘ + 1.960,/v/'N] covers ATE.; (in
green). Panel (d) shows the means and standard deviations of {C;};cin and {c;}jepm
for different values of N. Confidence intervals based on the large-sample approximation
results of Section 4.4 exhibit small size distortion even for fairly small values of N.

4.7 Concluding Remarks

This chapter introduces a new framework to estimate treatment effects in the presence
unobserved confounding. We consider modern data-rich environments, where there are
many units, and outcomes of interest per unit. We show it is possible to control for the
confounding effects of a set of latent variables when this set is low-dimensional relative
to the number of observed treatments and outcomes.

Our proposed estimator is doubly-robust, combining outcome imputation and inverse
probability weighting with matrix completion. Analytical tractability of its distribution
is gained through a novel cross-fitting procedure for causal matrix completion. We
study the properties of the doubly-robust estimator, along with the outcome imputation
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Figure 4.6.2: Panels (a), (b), and (c) report coverage rates for nominal 95% confidence
intervals constructed using the estimated variance from Eq. (4.25) (in blue) and the
true variance from Eq. (4.22) (in green) for N € {500, 1000, 1500} and M = N. Panel
(d) shows the means and standard deviations of coverage rates across outcomes for
different values of N.

and inverse probability weighting-based estimators under black-box matrix completion
error rates. We show that the decay rate of the error of the doubly-robust estimator
dominates those of the outcome imputation and the inverse probability weighting
estimators. Moreover, we establish a Gaussian approximation to the distribution of the
doubly-robust estimator. Simulation results demonstrate the practical relevance of the
formal properties of the doubly-robust estimator.
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Appendix

4.A Supporting concentration and convergence results

This section presents known results on subGaussian, subExponential, and subWeibull
random variables (defined below), along with few basic results on convergence of random
variables.

We use subGaussian(o) to represent a subGaussian random variable, where o is a
bound on the subGaussian norm; and subExponential(c) to represent a subExponential
random variable, where ¢ is a bound on the subExponential norm. Recall the definitions
of the norms from Section 4.1.

Lemma 4.1 (subGaussian concentration: Theorem 2.6.3 of Vershynin (2018)). Let
x € R™ be a random vector whose entries are independent, zero-mean, subGaussian(o)
random variables. Then, for any b € R™ and t > 0,

P{b7a] > 1} < 2exp (50).

o?||bf3
The following corollary expresses the bound in Lemma 4.1 in a convenient form.

Corollary 4.3 (subGaussian concentration). Let x € R™ be a random vector whose
entries are independent, zero-mean, subGaussian(o) random variables. Then, for any
b e R™ and any 6 € (0, 1), with probability at least 1 — 9,

b7 x| < av/cls - ||b])2.
Proof. The proof follows from Lemma 4.1 by choosing § £ 2 exp(—ct?/a?||b||3). O

Lemma 4.2 (subExponential concentration: Theorem 2.8.2 of Vershynin (2018)). Let
x € R™ be a random vector whose entries are independent, zero-mean, subExponential(o)
random variables. Then, for any b € R™ and t > 0,

IP’{|bTx‘ > t} < 2exp (— cmin <U2fbH§7 0-|’£Hoo>)

The following corollary expresses the bound in Lemma 4.2 in a convenient form.
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Corollary 4.4 (subExponential concentration). Let x € R™ be a random vector whose
entries are independent, zero-mean, subExponential(c) random variables. Then, for any
b€ R" and any 6 € (0,1), with probability at least 1 — 0,

[b" ] < omi(cts) - [[bll2:
where recall that m(cls) = max (CE(;, \/c&;).

Proof. Choosing t = tyo||b||2 in Lemma 4.2, we have

b
P{‘bTﬂ > toOHsz} < 2exp ( — ctomin (to, ]’]|b|‘\|2 >> < 2exp ( — ctomin (%o, 1)),

where the second inequality follows from min{ty, ¢} > min{t¢y,1} for any ¢ > 1 and
16]]2 > ||b]|oe- Then, the proof follows by choosing § = 2 exp ( — ctomin (to, 1)) which

fixes tg = max{+/cls, cls} = m(cls).
[

Lemma 4.3 (Product of subGaussians is subExponential: Lemma. 2.7.7 of Vershynin
(2018)). Let x; and zo be subGaussian(oy) and subGaussian(oz) random variables,
respectively. Then, x1xy is subExponential(oios) random variable.

Next, we provide the definition of a subWeibull random variable.

Definition 4.1 (subWeibull random variable: Definition 1 of Zhang and Wei (2022)).
For p >0, a random variable x is subWeibull with index p if it has a bounded subWeibull
norm defined as follows:

]|y, = inf{t > 0 : Elexp(|z|*/t")] < 2}.

We use subWeibull, (o) to represent a subWeibull random variable with index p,
where o is a bound on the subWeibull norm. Note that subGaussian and subExponential
random variables are subWeibull random variable with indices 2 and 1, respectively.

Lemma 4.4 (Product of subWeibulls is subWeibull: Proposition 2 of Zhang and Wei
(2022)). For i € [d], let x; be a subWeibull,,(0;) random wariable. Then, 1lciq; is
subWeibull,(o) random variable where

-1
o= llicgo; and p= (ZU/%) .

i€(d]
Next set of lemmas provide useful intermediate results on stochastic convergence.

Lemma 4.5. Let X,, and X,, be sequences of random variables. Let 6, be a_determmistic
sequence such that 0 < 6, <1 and 6, — 0. Suppose X,, = 0p(1) and P(|X,| < |X,]) >
1 —96,. Then, X,, = 0,(1).
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Proof. We need to show that for any € > 0 and § > 0, there exist finite 7, such that
P(|X,| >0) <e

for all n > n. Fix any € > 0. As 9,, converges to zero, there exists a finite ny such that
op < €/2, for all n > ng. As X, is converges to zero in probability, there exists finite 74,
such that P(]X,,| > ) < €/2 for all n > ny. Now, the event {|X,| > §} belongs to the
union of {|X,| > |X,|} and {|X,| > §}. As a result, we obtain

P([Xn| > 0) S P(IXn] > | Xa]) + P(IXn| > 0) < 0n + P(|Xn| > 6) <,
for n > = max{ng,n; }. Therefore, X,, = 0,(1). O

Lemma 4.6. Let X,, and X,, be sequences of random variables. Suppose E[|Xn] ‘Yn} =
0p(1). Then, X,, = 0,(1).

Proof. Fix any 6 > 0. Markov’s inequality implies

P(1%.] > 0[X.) < %E[\m

Yn] = 0,(1).

The law of total probability and the boundedness of conditional probabilities yield
P<|Xn| > 5) - E[P(|Xn| > 5‘@)} 0.

]

Lemma 4.7. Let X, and X, be sequences of random variables. Suppose X,, = 0,(1)
and P(|X,| > |X,,| 4+ f(€)) < € for some positive function f and every e € (0,1). Then,
X, = 0,(1).

Proof. We need to show that for any e > 0, there exist finite § > 0 and 7@ > 0, such that
P(|X,|>0) <e¢

for all n > m. Fix any € > 0. Because X,, is bounded in probability, there exist
finite § and ng, such that P(|X,| > §) < €/2 for all n > ng. Further, we have
P(|X.| > |X,| + f(¢/2)) < €/2. Now, the event {|X,| > d + f(e/2)} belongs to the
union of {|X,,| > |X,.| + f(¢/2)} and {|X,| > §}. As a result, we obtain

P(| X, > 6+ f(€/2)) < P(IX,| > | Xa| + f(e/2)) + P(|X,] > 6) <e.

for all n > ng. In other words, P(|X,| > 0) < € for all n > 7, where § = & + f(¢/2) > 0
and 7 = ng. Therefore, X,, = O,(1). O
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4.B Proof of Theorem 4.1: Finite Sample Guarantees
for DR

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding
doubly-robust estimate ATED® from Eqs. (4.5) and (4.11), respectively. The error
AATEP! = @BR — ATE. ; can be re-expressed as

1 1
DR __ p(LDR) _ 7(0,DR) (1) (0)
AATE ;" = + ) <9z‘,j — i ) N ) (% B em.)

ie[N] i€[N]

LS (@ - @)
zE [N]

(@) % 3 (1P 4 TOPR)Y, (4.36)
1€[N]

where (a) follows after defining T (LDR) 2 (@(}]JDR) 951])) and T (0.DR) 2 (@E’DR) - HE’OJ.) )

for every (i,7) € [N] x [M]. Then we have

TOPR) _ GILPR) _ g0
7,7 1,7
(a) 71 1 (l
pl_]
OG0 4 (gD 4 ) @fl})% e (4.37)
i,j
1 1 Dij T Mij Dij + i,
:(51(7j)_gz(7j))<1_ ]’\,. j)+€§])< J J)
Dij D
20 _ 1) D _ ) (1) )
_ (0i; = 0:,) (i —pig)  (0i; _Agi,j)md 4 Cigbig 8”7]”, (4.38)

pz,g Dij Dij Di,j
where (a) follows from Eq. (4.12), and (b) follows from Egs. (4.1) to (4.3). A similar

derivation for a = 0 implies that

0 0 ~ 0 0 0
']I‘(O DR) _ _ (@(,j) - ez(,j))(l - pz',j_<1 - pz’,j)) X (é\z(,j) - 91(,]'))<_7h'7j) _ 52,3‘)(1 - pz’,j)

& 1= i 1= D 1= D,
e (~miy)
 1-Diy
_ O 0@ —p) O 00my el p) | St
1—Dij 1 =i 1 =i 1—piy

Consider any a € {0,1} and any ¢ € (0,1). We claim that, with probability at least
1 —60,

) Z T(aDR ‘
N

£(8@)e(P) + VLo g (@) 4 TVCls | 2Tmlcly) -, 4,

— + —= :
MON MWN MON

>/|I )
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where recall that m(cfs) = max (cf(;, vV c&;). We provide a proof of this claim at the end
of this section. Applying triangle inequality in Eq. (4.36) and using Eq. (4.40) with a
union bound, we obtain that

2v/cls (@) N 45+ cls N dam(cls)
MWON MWN MWON

with probability at least 1 — 126. The claim in Eq. (4.18) follows by re-parameterizing
J.

Proof of bound Eq. (4.40). Recall the partitioning of the units [N] into Ry and R,
from Assumption 4.4. Now, to enable the application of concentration bounds, we split
the summation over i € [N] in the left hand side of Eq. (4.40) into two parts—one over
1 € Ry and the other over ¢ € R;—such that the noise terms are independent of the
estimates of (), O P in each of these parts as in Egs. (4.14) and (4.15).

Fix a = 1 and note that | >,y T T DR \ <Y ier, ’]I‘Z(.}j’DR |+ 1> ier, T * DR)\ Fix
any s € {0,1}. Then, Eq. (4.38) and trlangle inequality imply

’ZTlDR‘<’Z ) —0)) (5 —pij) ‘Z llj ).
Di

ng

AATEDS| < S£(0)€(P) +

1€Rs b
+‘Z 1]p1] )Z z]nZJ (441)
ieR pz J R« pz ,J
Applying the Cauchy-Schwarz inequality to bound the first term yields that
o) —6L)) (Bii—pig TN
s BBl Z <—’jc ~ ) > (ig = pis)’
i€Rs Pij i€Rs Pij i€R s
<6V -0%) 0 Py Pll,  (1a2)

To bound the second term in Eq. (4.41), note that 7; ; is subGaussian(1/y/¢;) (see
Example 2.5.8 in Vershynin (2018)) as well as zero-mean and independent across all

i € [N] due to Assumption 4.2(a). By Assumption 4.4, {(p;;, @?}j))},-ens A {nijtier,-
The subGaussian concentration result in Corollary 4.3 yields

80—V,

Z(w

iERs p 0]

Vels (?)3?—65?)2 B _e) 0P
< — ©. NoP,; , (4.43
with probability at least 1 — §.

To bound the third term in Eq. (4.41), note that 51(»71]-) is subGaussian(a), zero-
mean, and independent across all i € [N] due to Assumption 4.2. By Assumption

Assumption 4.4, {pi;}tier, AL {5571]‘)}%7;@. The subGaussian concentration result in

Corollary 4.3 yields
<a\els, | > ‘<o Vebs| Py @ Pyl (4.44)
ZER

‘ Z zngJ
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with probability at least 1 — 9.

To bound the fourth term in Eq. (4.41), note that ¢; )77” is subExponential(/+/¢;)
because of Lemma 4.3 as well as zero-mean and 1ndependent across all i € [N] due to
Assumption 4.2. By Assumption 4.4, {p; ; }ier, 1L {(7:;, sg}j))}iens. The subExponential
concentration result in Corollary 4.4 yields that

1
é}md

am(cls)
— \/_
with probability at least 1 —§. Putting together Eqs. (4.41) to (4.45), we conclude that,
with probability at least 1 — 34,

11y @ P, (4.45)

~

ier, Pii

| 16 < HI©OY-6) 0P, I1P— ., + YL@ -0 0 P,
1€ERs
oam(cls)
W—(SHIN@P -

Then, noting that 1/p;; < 1/ for every i € [N] and j € [M] from Assumption 4.3,
and consequently that ||B.; @ Pl|2 < |B|i2/A for any matrix B and every j € [M],
we obtain the following bound, with probability at least 1 — 30,

aom)| o L yaa gy 1p vels \am)_ g
N)Z;T | < 57100 -0 ol PPlis + 1160 -6,
m(cls)
= 1 4.46
e th (1.46)
)1~ ~ Vels oo cls  am(cls)
< =£(eW)e(P) + £(6 + = (447
< 3EOEP) + SEE @)+ SR+ S (47

where (a) follows from Eq. (4.16) and because |P|;» < v'N and |1];2 = v'N. Then,
the claim in Eq. (4.40) follows for a = 1 by using Eq. (4.47) and applying a union bound
over s € {0,1}. The proof of Eq. (4.40) for a = 0 follows similarly.

4.C Proofs of Corollaries 4.1 and 4.2

4.C.1 Proof of Corollary 4.1: Gains of DR over OI and IPW

Fix any j € [M] and any ¢ € (0,1). First, consider IPW. Take any « € [0,1/2]. From
Eq. (4.20), with probability at least 1 — ¢,

— 26max Fax _ 2emax D
N®|ATESY — ATE. ;| < == NE(P) + fi(§)N*1/? < —NE(P) + 1(9),
where
2 (/L 20 15
fl (5) é = (—c 6/12 Hmax + 25 066/12 + Jm(c 6/12)> )
A VG Vi
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for m(c) and /. as defined in Section 4.1. Then, if E(ﬁ) =0, (N*a), Lemma 4.7 implies
|ATEPW — ATE. ;| = 0,(N~°).
Next, consider DR. From Eq. (4.17), with probability at least 1 — 9,

‘@_BR _ATE‘J‘ < ;5 (:)) ( )+f( )N N2,

where
2 ([ +\/ 065/12 ~ 25m(c€5/12))
5) & = £(O 204/cl — .
f2(0) 3 ( N ( ) + 204/ clsjio + N

Suppose 5(16) =0, (N*a) and 8(@) =0, (N*/B). Consider two cases. First, suppose
a+ B <0.5. Then, with probability at least 1 — 4,

NH[RTEDT — ATE ;| < SNE ()€ () + f(5) N+

DN >~

< 2yt (0)€(P) + £,(6).

>

Lemma 4.7 implies L?T\EP]-R ATE. ;| = O,(N~(™). Next, suppose a + > 0.5.
With probability at least 1 — 6,

Nl/Q\XT\E,]?jR—ATE.J\§§N1/28((:))5( )+ £2(8) < ZNTPE(B)E(P) + (o).

> Do

Lemma 4.7 implies |ATEDR ATE. ;| = O,(N~1/2).

4.C.2 Proof of Corollary 4.2: Consistency for DR

Fix any j € [M]. Then, choose § = 1/N in Eq. (4.18) and note that every term in the
right hand side of Eq. (4.18) is 0,(1) under the conditions on £(©) and £(P). Then,
Eq. (4.21) follows from Lemma 4.5.

4.D Proof of Proposition 4.1 (4.19): Finite Sample
Guarantees for OI

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding
outcome imputation estimate ATES' from Eqs. (4.5) and (4.9), respectively. The error
AATE?J-I = KT\E%I — ATE. ; can be re-expressed as

ANTES) = 37 (0)-01) - 3= (o)) = 3 (@) -01)) - @09 -41)).

1E€[N] 1€[N] 1€[N]
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Using the triangle inequality, we have
1
0)] o)
AATEY| < | >° @) - o)) | + N‘ > (@) -60)| (4.48)
1€[N] 1€[N]
Consider any a € {0,1}. We claim that
1
a) (a
D@ -0 < £(8), (4.49)
1E[N]
The proof is complete by putting together Eqs. (4.48) and (4.49).

Proof of Eq. (4.49) Fix any a € {0,1}. Using the Cauchy-Schwarz inequality, we
have

1 1 (1 1
N\Z D —0)] < SInla18) - e, < f||@<1 oW1,

1€[N]

4.E Proof of Proposition 4.1 (4.20): Finite Sample
Guarantees for IPW

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding
inverse probability weighting estimate ATE'"™ from Egs. (4.5) and (4.10), respectively.
The error AATE!TY = @TW — ATE . ; can be re-expressed as

IPW Yijaij i1 —aij) 1 (1) (0)
AATE NZ( — 1P )_NZ(ei,j_ei,j>

1E€[N] pl 7 e

LS (et )
i€[N] b o

@ 1 (1,IPW) (0 IPW)

D ST 1), .
i€[N]

where (a) follows after defining ']I'(l IPW) & = i /Dij— ( / and ’]TEE.’IPW) £ 02(3) —yi;(1—
a;;)/(1 —pij). Then, we have

T(LIPW) _ Z/z‘,Ajaz’,j _ o

" Dij "
(1) (1)
(a) (6 +ei)) (i + mig) _ oW
Dij "
<o (B ) (it
Di ,J plv]
01 ij — Dij 0y) i.J e i, el i
_ ZJ(pj p,])+ zin,]_'_ Z,/J\pﬂ"_ 7,‘77737 (451)
Dij Dij Pij Dij
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where (a) follows from Eqgs. (4.1) to (4.3). A similar derivation for a = 0 implies that

TOPW) _ 5(0) _ Yi (1 — aij)

i Yy 1— 7.,
,]
0 ~ 0 0 0
_ _Qz(,j)(l —pij — (1= Diy)) 0 (=) B e (1=piy) B ).
1 —pi; 1 —Dpi; 1 —Dij 1 —pi;
(0) ~ (0) (0) (0)
B ei,j (pi,j - pi,j) ei,j g  Eij (1 _pi,j) €5 g
= — + - — — +
L —Dpi; 1 —pi; L —Dpi; 1—pij

Consider any a € {0,1} and 6 € (0,1). We claim that, with probability at least 1 — 64,

X SN 295\/cl;  25m(cl
_’ZT( JIPW) <—||@a“max ( ) C ” (a)||max+ o 66+ am(c 6)

A\/E_N TN X\/zl_N'(4'52)

1€[N]

where recall that m(cfs) = max (c&;, V c&;). We provide a proof of this claim at the end
of this section. Applying triangle inequality in Eq. (4.50) and using Eq. (4.52) with a
union bound, we obtain that

2v/cls 0 +4E\/c€5 +45m(c€5)
MWOHN ™ AN AWON

with probability at least 1 — 12§. The claim in Eq. (4.20) follows by re-parameterizing
J.

Proof of Eq. (4.52). This proof follows a very similar road map to that used for
establishing the inequality in Eq. (4.40). Recall the partitioning of the units [/V] into
Ro and R, from Assumption 4.4. Now, to enable the application of concentration
bounds, we split the summation over ¢ € [N] in the left hand side of Eq. (4.52) into
two parts—one over i € Ry and the other over ¢ € Ri—such that the noise terms are
independent of the estimates of @) M P in each of these parts as in Eqs. (4.14)
and (4.15).

Fix a = 1 and note that |37, T, IIPW)| < | Xier, ZIJIPW)| + | D ier, ZIJIPW)].
Fix any s € {0,1}. Then, Eq. (4.51) and triangle inequality imply that

(1,IPW) plj pZJ H’LJT]Z] zypZ]
PILE MZ UPIE u EiDY

1€ERs Rs pl] pz]

[AATESY] < 26,0, (P) +

(1)
‘ Z € Mg
i€eR, LI

Di,j
(4.53)

Next, note that the decomposition in Eq. (4.53) is identical to the one in Eq. (4.41),
except for the fact when compared to Eq. (4.41), the first two terms in Eq. (4.53)

have a factor of 9 / instead of (0 j)—Gz( ]) As a result, mimicking steps used to derive

Eq. (4.46), we obta,m the following bound, with probability at least 1 — 30,

1 N bl o/ cls am(cls)
S ST < O o P Pl 2S00+ T Pl TS
NiZ N MWHN AN AVEN
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( Vel avcls  am(cls)

) ~
@ max || P —P += @ max T — + =
& 1Ol P Pl £ O T2 2L
®© 5 avcls  am(cls)
< Z1eW], .. E(P) + - O e + 0 1 7 , 4.54
< 10 e £(P) + 5O+ T2+ T 450

where (a) follows because |OW |15 < VN[|OW|ax, |Pliz < VN and |1];2 = VN,
and (b) follows from Eq. (4.16). Then, the claim in Eq. (4.52) follows for a = 1 by using
Eq. (4.54) and applying a union bound over s € {0,1}. The proof of Eq. (4.52) for
a = 0 follows similarly.

4.F Proof of Theorem 4.2: Asymptotic Normality for
DR

For every (i,j) € [N] x [M], recall the definitions of TE;’DR) and TE%DR) from Eq. (4.38)
and Eq. (4.39), respectively. Then, define

o)
;0N
x(LDR) & p(1LDR) _ (1) _ Zig "lig (4.55)

1,3 — iy i,J
Dij

(0)
x(@DR) & T(0.DR) +€(0) IR NALE
1,5

" ’ Y —piy
and
5('1')7% j 5(0-)771' j
ZPR A Y T SOy T (4.56)
Dij Tl —=pij

Then, AATE%-R in Eq. (4.36) can be expressed as
1
DR _ (1,DR) (0,DR) DR
1€[N]
We obtain the following convergence results.

Lemma 4.8 (Convergence of X?R). Fix any j € [M]. Suppose Assumptions 4.1 to 4.4
and conditions (C1) to (03’) in Theorem 4.2 hold. Then,

\/_ Z ( (LDR) +X(ODR)) _ op(l).

i€[N]

Lemma 4.9 (Convergence of Z?R). Fiz any j € [M]. Suppose Assumptions 4.1 and 4.2
hold and condition (C3) in Theorem 4.2 hold. Then,

ST ZPR L N (0, 1).

1€[N]

\/_

Now, the result in Theorem 4.2 follows from Slutsky’s theorem.
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4.F.1 Proof of Lemma 4.8
Fix any j € [M]. Consider any a € {0,1}. We claim that

\/_ > X < O(VNEBW)E(P)) + 0,(1). (4.57)

1€[N]

We provide a proof of this claim at the end of this section. Then, using Eq. (4.57) and
the fact that @; > ¢ > 0 as per condition (C3), we obtain the following,

f Z( (1000 < %(o(\/ﬁg(@))e(ﬁ)) +op<1))

92 (VR ) 40,(1)) L),

where (a) follows from (C2), and (b) follows because 0,(1) + 0,(1) = 0,(1).

Proof of Eq. (4.57) Recall the partitioning of the units [N] into Ry and R4 from
Assumption 4.4. Now, to enable the application of concentration bounds, we split the
summation over ¢ € [N] in the left hand side of Eq. (4.57) into two parts—one over
1 € Ry and the other over i € R;—such that the noise terms are independent of the
estimates of O, ©W_ P in each of these parts as in Eqs. (4.14) and (4.15).

Fix a = 1. Then, Eqgs. (4.38) and (4.55) imply that

(LPR) _ (9, 9(1))(% pivj)_(az(,lj)_‘gz(}j))ni,j +€z(,1j)pi,j +€§,1j)77i,j _ 61(,1}77@',;'

i Ki @,j @,j @,j S Pij
_ (@(13) 9( )) (p” Pm‘) B (gz(,lj)_ez(,lj))ni,j B ag,lj) (@] _pi,j) B Eg}j)nij(pu pu)
pz,] ﬁi,j ﬁi,j pz ]pz Vi

Now, note that | 3y X570 < | Cier, Kby 1+ Lier, Xiy- |- Fix any s € {0,1}.
Then, triangle 1nequahty 1mphes that

’ Z X(l DR) ‘ ’ Z ” ) ng pi,j) 1 ‘ Z (/9;(,13‘)_01(3))772]
\/_ B \/_ p” VN i€Rs 8
ng pzy ‘ 52]771] ng pi,j) 458
\/_‘Z Dij TUN Z DijDij - (458)

To control the first term in Eq. (4.58), we use the Cauchy-Schwarz inequality and
Assumption 4.3 as in Appendix 4.B (see Egs. (4.42), (4.46), and (4.47)).

To control the second term in Eq. (4.58), we condition on {(p; ;, (/9;(?)}2673 Then,

Assumption 4.4 (ie., Eq. (4.14)) provides that {(p; ;, @(1]))}1673 AL {n;;}ier,. As aresult,
22%(9 8(1))7]”/]%3 is subGaussian ([ Y,cr. (@(1])—92(?)2/(@])2} 1/2/\/6_1) because
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n;.; is subGaussian(1/+/¢;) (see Example 2.5.8 in Vershynin (2018)) as well as zero-mean
and independent across all i € [N] due to Assumption 4.2(a). Then, we have

1 1 1 1
il s Ot |, Then] £ 2| T (L’j)_%))?
VN i€R, Pij o 1T VN i€R, Pij

< @) -6%) 0 2,

£(6) 2 o,(1), (4.59)

where (a) follows as the first moment of subGaussian(o) is O(o), (b) follows from
Assumption 4.3 and Eq. (4.16), and (c) follows from (C1).

To control the third term in Eq. (4.58), we condition on {p; ;}icr,. Then, As-

sumption 4.4 (i.e., Eq. (4.15)) provides that {p;;}ier, 1L {61(1])}2673 As a result,
- PO . ~ 2,0 \211/2

ZzgRg 51]) (ng —Ds j)/pzj 1S SubGaussmn( [Zzeng (pl] Di ]) /(pz ]) } / ) because 8(1)

is subGaussian(@), zero-mean, and independent across all i € [N] due to Assumption 4. 2
Then, we have
pu)

LE{
< C—UH( i—Pg) @ Pyl

e

Z Zj(p,” pi,j)

i€Rs pi J

— Bishen ) € 7

I/\@
’U) ﬁM
"U /‘\

= 0,(1), (4.60)

where (a) follows as the first moment of subGaussian(o) is O(o), (b) follows from
Assumption 4.3 and Eq. (4.16), and (c) follows from (C1).
To control the fourth term in Eq. (4.58), we condition on {p;;}ier,. Then, As-

sumption 4.4 (i.e., Eq. (4.15 rovides that {p; ; }ier. 1L » s icr.. As a result
p q. p p] ERs 77,]7 2,7 ERs )

~ 2,/ 211/2
ZIGRS z(j)nlj(plj p”)/p”p” IS subExponenUal( [ZieRs (pi,j_pi,j) /(pi,jpi,j) } / /\/E)
because 557 j)m-,]- is subExponential(7/y/f1) due to Lemma 4.3 as well as zero-mean and
independent across all i € [N] due to Assumption 4.2. Then, we have

ol

Z 5z(',1j)77i7j (ﬁi,j _pi,j)

iIER pl,]pl,j

Di jPij

@ 7 D i—p; .)2
pbien.| = = | D (PP
‘{p ,j} ERS:| — \/N = (

< %H(ﬁ,j—ﬂj) ® (P Py,

®) T, =\ ()

< 5O\ (P) = op(1), (4.61)
where (a) follows as the first moment of subExponential(o) is O(c), (b) follows from
Assumption 4.3 and Eq. (4.16), and (c¢) follows from (C1).
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Putting together Eqs. (4.58) to (4.61) using Lemma 4.6, we have

| TR < 0(VRE@)E(P)) + 0y(1)

7]
1€Rs

Then, the claim in Eq. (4.57) follows for a = 1 by using [,y X%’DR” <Y ier,

XEE’DR)] +1 2 ier, X%’DR)L The proof of Eq. (4.57) for a = 0 follows similarly.

4.F.2 Proof of Lemma 4.9

To prove this result, we invoke Lyapunov central limit theorem (CLT).

Lemma 4.10 (Lyapunov CLT, see Theorem 27.3 of Billingsley (2017)). Consider a
sequence x1,xa,--- of mean-zero independent random variables such that the moments
E[|z;|*™] are finite for some w > 0. Moreover, assume that the Lyapunov’s condition
1s satisfied, i.e.,

N N 24w
> EflaiP/(XoER) T —o0. (4.62)
as N — oo. Then, - -

as N — oo.

Fix any j € [M]. We apply Lyapunov CLT in Lemma 4.10 on the sequence

L%, ZEY, - - where ZPR is as defined in Eq. (4.56). Note that this sequence is

zero-mean from Assumption 4.2(a) and Assumption 4.2(b), and independent from
Assumption 4.2(b). First, we show in Appendix 4.F.2.1 that

1 0
(01, (@)

Var(Z21) = ;
K Dij L —pi;

(4.63)

for each i € [N]. Next, we show in Appendix 4.F.2.2 that Lyapunov’s condition Eq. (4.62)

holds for the sequence Zp}, Z3%, - - - with w = 1. Finally, applying Lemma 4.10 and

using the definition of 7, from Eq. (4.22) yields Lemma 4.9.

4.F.2.1 Proof of Eq. (4.63)
Fix any i € [N] and consider Var(Zp}'). We have

Var (ZEF) =Var (sfj (1 + m—J> — 553') (1 — #)) (4.64)
Dij — Dij
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We claim the following:

(1)\2
Var( )(1 + ”’J)) _ L3y) : (4.65)
pi,j ng
(0)y2
Var (51(»(;-) <1 — L)) = M (4.66)
’ L —pi; L—pij’
and
cov( (1+77”>,55J)(1—L)) —0, (4.67)
Di,j 1 —pij

with Eq. (4.63) following from Eqs. (4.64) to (4.67).
To establish Eq. (4.65), notice that Assumption 4.2(a) and (b) imply 5( )1 n;; and
E[gglj)] = E[n; ;] = 0 so that E[s(»l-)(l +1:;/pi;)] = 0. Then,

17.7

(914 32)) =200+ 32)) ] = 5[ () e[+ 2]
(

2 2 1
—E|(<) } [1+E{";’JH @ (52 {HP—”( p”)]
’ Di; ’ pi,j
(017)?
Dij ’

Where (a) follows because E[nu] Var(n; ;) = pij(1 — pij) from Eq. (4.3), and

[ )2 = Var(e flj)) = (af ;)7 from condition (C3). A similar argument establishes

Eq. (4 66). Eq. (4.67) follows from,
(COV(E 77@] , f?(l_m—ﬂ)) :E[ ()(1+772J> §J)<1_ U )}
1 —pi; Pi L —pi;
77i,j)< Nij )} 1) _(0)
1+ —==)(1—-—"—)|Elg /¢
[( i L —pi; i)

E
U (1) _(0)
S I B
( pii(1—pij) I
0- E[&?( )0 )} =0,

2V ANV}

where (a) follows because (5(0) (1 )) Al n;; from Assumption 4.2(b) and (b) follows

0,5 1]
because E[n?;] = Var(n;;) = pi; (1 — pi;).
4.F.2.2 Proof of Lyapunov’s condition with w =1
We have

Siev BIZT’] 1 Ve E[IZF]

3/2  N3/2 3/2
(Zz‘e[N] Var(ZEJR)) / N (% Zz’e[N] Var@l?ﬁ)) /
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@ 1 Ziew E[1Z2]
o N3/2 (6)3/2

J
W 1 Yiem BIZP] @ 1 o (4.68)
= Vo EE TR |

where (a) follows by putting together Eqs. (4.22) and (4.63), (b) follows because
o; > ¢ > 0 as per condition (C3), (c¢) follows because the absolute third mo-
ments of subExponential random variables are bounded, after noting that ZP} is
a subExponential random variable. Then, condition Eq. (4.62) holds for w = 1 as the
right hand side of Eq. (4.68) goes to zero as N — 0.

4.F.3 Proof of Proposition 4.2: Consistent variance estimation

Fix any j € [M] and recall the definitions of 75 and 7 from Egs. (4.22) and (4.25),

respectively. The error Aj =57 —@; can be expressed as
(1) 2 1(0) 2 1) (0)
A = l Z (ei,j - Z/z‘,j) Q4,5 I (Qi,j - yz‘,j) (1 - ai,j) _ (Om- )2 n (O’i’j )2
i€[N] (pi,j) ( - pi,j) irj i.j
1 2 1 0 2 0
1 (@-,j) - yi,j) Qi (O-i(,j))2 (é\z(,j) - yi,j) (1 —aiy) (Jz(,j))Q
- N ~ 2 a .. + ~ 2 - 1 —p:
i€[N] (pi,j) Pij (1 — pi,j> Dij
(@ 1 (1), ()
= (Ti,j +Tm)’ (4.69)
1E€[N]

where (a) follows after defining

(1) 2 (1) 7(0) 2 (0)
T 2 (‘gz‘,j - yi»j) @i, (Uz}j)z 4 TO 2 (91‘,]‘ - yz‘,j) (1 —aiy) (Ui,j)Q
i 2 - - an i ~ 2 1y
(D) Piy (1= Pij) Pig
for every (i,7) € [N] x [M]. Then, we have

0 = 00 — ) iy ) ()2

1) @ \"i, ij i
T Z Pij
-y 0 0—o)
(5ig)’ (Bis)’ (Big)’
. (=) ?pi . () iy ()’
(Bis)” (Bis)” Pij

where (a) follows from Eqgs. (4.1) to (4.3). A similar derivation for a = 0 implies that

7(0) (0) (0)\2 (0)
T — (Qi,j - gi,j - 5z',j) (L = pij — niy) B (Ui,j )?

N (1-5i)" L=pig
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B9 0020 — i) 2000 pi,) 09 -02) | 2:0m, (52 —0)

_ Wig 7Y% i
(1-5iy)° (1-5iy)" (1-5y)°
LGy @D
(1-5ij)’ (1-py)° 1P

Consider any a € {0,1}. We claim that

<>

1E€[N]

(4.70)

We provide a proof of this claim at the end of this section. Then, applying triangle
inequality in Eq. (4.69), we obtain the following

Aj < op(1) +0p(1) © op(1),

~

where (a) follows because 0,(1) + 0,(1) = 0,(1).

Proof of bound Eq. (4.70). This proof follows a very similar road map to that used
for establishing the inequality in Eq. (4.57). Recall the partitioning of the units [N]
into Ry and R; from Assumption 4.4. Now, to enable the application of concentration
bounds, we split the summation over i € [N] in the left hand side of Eq. (4.70) into
two parts—one over i € Ry and the other over 1 € R{—such that the noise terms are
independent of the estimates of ©(®) O™ P in each of these parts as in Eqs. (4.14)
and (4.15).

Fix a = 1. Now, note that | 3. T47 | < | Sicr, Too| + [ Cier, Ti5|. Fix any
s € {0,1}. Then, triangle inequality implies that

1) p1)
1 (1) i) (9, _em') Qi
NL; Ti:j < N Z A, '

D5 (B~ ‘

2¢,;
N‘Z (p”)Q

ZGRS
+l‘ 265])771](55] ) ‘Z ’L] 772] ‘Z ’L] pl] (0‘5}7))2
N 5 )2 N A 2 N -
IER (pw) i iR Dij Pij

(4.71)

To bound the first term in Eq. (4.71), we have

1 )\ 2
2 : w w aU 2 : w zy)
N A 2 N
i€R i€ER pw

(®)
<
- )\2N

9 560 < 5 [6@)] L o0 L o), 472)

a

|85 -6,
(

O

~

where (a) follows as a;; € {0,1}, (b) follows from Assumption 4.3, (¢) follows from
Eq. (4.16), (d) follows from (C1), and (e) follows because 0,(1)o,(1) = 0,(1).
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To control second term in Eq. (4.71), we condition on {(@’j,aﬁ))}leR Then,
Eq. (4.24) provides that {(p;;, @}1]))}1673 i {511] bier,. As aresult, > e (éil)

1€Rs Z]p'L] 1,]

8(1 )/(pw)2 is subGaussian (7 Y ,cx. (pm-)g(@” 6’ ) /(Di;) ]1 ) because 62,]-) is
subGaussmn(E), zero-mean and independent across all i € [N] due to Assumption 4.2.
Then, we have

1 2cMpi; (01 —61))

Laf| 3o 2t 5 0 |

N z;z: (Bis)* o

(@) co (Pm‘ (6. 0.1 ) 2

N i€ERs (@J)2

®) T |\~ o @EBW)  @E(O) w

S/_\QNH -,j H2:§ VN <5\_ JN :Op(1)7 (4.73)

where (a) follows as the first moment of subGaussian(o) is O(co), (b) follows from
Assumptions 4.1 and 4.3, (¢) follows from Eq. (4.16), and (d) follows from (C1).

To control third term in Eq. (4.71), we condition on { (p; ;. 5(1)) }ier,. Then, Eq. (4.24)

i.j
provides that {(@J,é\f?)}zen i {(mJ,agj))}leRs As a result, Y, r¢ ”)77”(5(1)
0(1))/(19”) is subExponential (7] Y, 5. (/9;(71) 9(1)) /(Pi;) }1/2/\/_) because 553)77”
is subExponential(5/y/¢;) due to Lemma 4.3 as well as zero-mean and independent
across all i € [IV] due to Assumption 4.2. Then, we have

1 25( )m 5(1) oY R
NE{ Z JE v i) “{(Pi,jaag,lj))}iens}
i€Rs (pi,j)
Qo (55,?—9;))2
N 1€Rs (ﬁi,j)

®) &~ A CRIIRAC)

2T ley-ey), @ gEE < ZER W)
J 2 2 VN A2 /N

where (a) follows as the first moment of subExponential(o) is O(o) (Zhang and Wei,

2022, Corollary 3), (b) follows from Assumption 4.3, (¢) follows from Eq. (4.16), and (d)

follows from (C1).

To control fourth term in Eq. (4.71), we condition on {p; ;}ier,. Then, Eq. (4. 24)
provides that {p;;}ier, 1L {(m,j,gfj)}ms. As a result, Zze&( (1) ) T]Z]/(p”) is

subWeibully /3 (EZ[ZZERS 1/(@,]-)4} 1/2/\/4@_1) because (e Z(-J)) 1;,; is subWeibully /5 (7 o2 /1)
due to Lemma 4.4 as well as zero-mean and independent across all ¢ € [N] due to
Assumption 4.2. Then, we have

1 (())?7”
—E{ Z(A—

N i€ERs pm)

(4.74)

(a) 1 0 52
—_— ~ 4 —_— -
N 1€ER s (pi,j) AQ\/N

=o0,(1), (4.75)

‘ {Dpi; }zens}
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where (a) follows as the first moment of subWeibully/3(0) is O(o) (Zhang and Wei,
2022, Corollary 3) and (b) follows from Assumption 4.3.
To control fifth term in Eq. (4.71), we have

Z( (1) i <0§,§~))2> ' _ Z( () pia (01) pis | (@) Pig (05,?)2) ‘
p = PR 2 2
i€Rs (pm) Pij = (pi,j ) (pi,j) (pi,j) Dij

Z( ()"~ (Uﬁ))z]ma’) ‘+ Z( (01) Py _ (0_%))2) ‘
~ —~ 2 I
1ER s (plrj) pz"]

i€Rs (piﬁj)2
(4.76)

where (a) follows from the triangle inequality. To control the first term in Eq. (4.76),

(a)
<

we condition on {p;;}ier,. Then, Eq. (4.24) provides that {p;,;}ier, 1L {sl(lj)}zgz
Further, E[( (1))2 (o (1))2] = 0 due to (C3) and Assumption 4.2. As a result,

D icR, [55 ) ( ) }p”/(pz J) is subExponential(EQ[ZieRs (pi,j)Q/(ﬁiJ)ll] 1/2) be-

cause (g; )) — (o, ( )) is subExponential(5?) and independent across all i € [N] due to
Lemma 4.3. T hen we have

z] _( ()) }pw
Z (p”)

pisd 1(2052 Z( Pij )2@ T, )

DijrieRs | > 7 2 S——7—=—""0p s
N i€Rs (pz‘,j) AN

(4.77)

where (a) follows as the first moment of subExponential(o) is O(co) and (b) follows from
Assumption 4.3. To bound the second term in Eq. (4.76), applying the Cauchy-Schwarz
inequality yields that

1

Ly ((o,?,?)sz-,j - <a§,?>2) ‘ 1
NIGEN\ @) P N

Z (05,13'))2((2%)2 - (@'J)2)

iR (Bi) pi
(01)"|pis — B

iERs (@ j)2pij

(a)
<

2
N

—~

b)

< /\)\QNg; |pij — Dijl

INT

26° (&) 207 L =\ (e
where (a) follows by using (pm-)2 - (@])2 = (pij + Dij) Wiy — Dij) < 2|pij — Dijl,
(b) follows from Assumptions 4.1 and 4.3, and because the variance of a subGaussian
random variable is upper bounded by the square of its subGaussian norm, (c¢) follows
by the relationship between ¢; and ¢, norms of a vector, (d) follows from Eq. (4.16),
and (e) follows from (C1).
Putting together Eqgs. (4.71) to (4.78) using Lemma 4.6,

¥z

ZES

_Op
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Then, the claim in Eq. (4.70) follows for a = 1 by using |3,y ']I'flj)] <D ier Tﬁljy +
| D ier, Tl(lj)| The proof of Eq. (4.70) for a = 0 follows similarly.

4.G Proofs of Propositions 4.3 and 4.4

In Section 4.G.1, we prove Proposition 4.3, i.e., we show that the estimates of P,
0 and ©M generated by Cross-Fitted-MC satisfy Assumption 4.4. Next, we prove
Proposition 4.4 implying that the estimates of P, ©(®) and ©() generated by Cross-
Fitted-SVD satisfy the condition (C2) in Theorem 4.2 as long as v N /M = o(1).

4.G.1 Proof of Proposition 4.3: Guarantees for Cross-Fitted-MC

Consider any matrix completion algorithm MC. We show that

Pr, 0% 1wy (4.79)
and
Py 1L Wy, B, (4.80)

for every Z € P and a € {0, 1}, where P is the block partition of [IN] x [M] into four
blocks from Assumption 4.5. Then, Eqgs. (4.14) and (4.15) in Assumption 4.4 follow
from Eqs. (4.79) and (4.80), respectively.

Consider 0,00 and P as in Egs. (4.30) to (4.32). Fix any a € {0,1}. From
Eq. (4.29), note that Py depends only on A®1-Z and @(Ia) depends on Y (@5 1-7 In
other words, the randomness in (ﬁz, (:)(Ia)) stems from the randomness in (A_z, Y_(‘})’Obs)
which in turn stems from the randomness in (W,I, E(fz)) Then, Eq. (4.79) follows from
Eq. (4.27). Likewise, the randomness in Py stems from the randomness in A_7 which
in turn stems from the randomness in W_z. Then, Eq. (4.80) follows from Eq. (4.28).

To prove Eq. (4.24), we show that

Pr, 0% 1wy, B, (4.81)

for every Z € P and a € {0,1}. As mentioned above, the randomness in (131, (:)(Ia))
stems from the randomness in (A_I, Y_(%)’Obs) which in turn stems from the randomness

in (W_g, E(_az)) Then, Eq. (4.81) follows from Eq. (4.33).

4.G.2 Proof of Proposition 4.4: Guarantees for Cross-Fitted-
SVD

To prove this result, we first derive a corollary of Lemma A.1 in Bai and Ng (2021)
for a generic matrix of interest 7', such that S = (T'+ H) ® F, and apply it to P,
0 ® (1 - P), and O ® P. We impose the following restrictions on 7', H, and F.
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Assumption 4.10 (Strong linear latent factors). There exist a constant ro € [min{ N, M }]
and a collection of latent factors

UecRY*T  gnd Ve RMxrr,
such that,
(a) T satisfies the factorization: T = UV,
(b) ||(7||2Oo < c¢ and ||‘~/||2C>o < ¢ for some positive constant ¢, and

(¢) The matrices defined below exist and are positive definite:

o UU VTV
lim and lim )
N—oco M—o0

Assumption 4.11 (Zero-mean, weakly dependent, and subExponential noise). The
noise matrix H is such that,

(a) {h;j :i € [N],j € [M]} are zero-mean subExponential with the subExponential
norm bounded by a constant T,

(0) X irepny |Elhihi)

(¢) The elements of {H,. :i € [N]} are mutually independent (across i).

< ¢ for everyi € [N] and j € [M], and

Assumption 4.12 (Strong block factors). Consider the latent factors U e RV gnd
V € RMxrr from Assumption 4.10. Let Rops € [N] and Cons C [M] denote the set of
rows and columns of S, respectively, with all entries observed, and Ruiss = [IN] \ Reobs
and Criss 2 [M]\ Cops. Let U°bs ¢ RIRovs|xr1 g miss ¢ RIRmiss| X1t pe the sub-matrices
of U that keeps the rows corresponding to the indices in Rons and Rumiss, Tespectively.
Let Vobs € RlCoslxrr g ymiss ¢ RiCmiss X1 pe the sub-matrices ofV that keeps the rows
corresponding to the indices in Cons and Cpss, TESpectively. Then, the matrices defined
below exist and are positive definite:
obsT 7 70bs missT 7 7miss obsT 1/0bs missT |/ miss

lim u, im w, lim u, and lim u (4.82)

N—oo ’Robs’ M—oo |Rmiss ’ N—oo ‘Cobs ’ M—o0 ’Cmiss|

Further, the mask matrix F is such that
|Robs| = QUN),  |Rumiss| = QN),  [Cobs| = QUM), and |Cpiss| = Q2UM). (4.83)

The next result characterizes the entry-wise error in recovering the missing entries of
a matrix where all entries in one block are deterministically missing (see the discussion
in Section 4.5.1) using the TW algorithm (summarized in Section 4.5.2.1). Its proof,
essentially established as a corollary of Bai and Ng (2021, Lemma A.1), is provided in
Section 4.G.3.

Corollary 4.5. Consider a matriz of interest T', a noise matriz H, and a mask matrix
F such that that Assumptions 4.10 to 4.12 hold. Let S € {RU{?}}V*M be the observed
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matriz as in Eq. (4.6). Let Rops C [N] and Cops C [M] denote the set of rows and
columns of S, respectively, with all entries observed. Let T = Ryjss X Cmi§§ where
Romiss = [N] \ Rops and Cuiss = [M]\ Cops. Then, TH,,. produces an estimate Ty of Tz
such that

~ 1 1

Tr = Trlnax = Oy ==+ — ),

|7z ~ Tzl p(\/ﬁ \/M)
as N, M — oo.

Given this corollary, we now complete the proof of Proposition 4.4. Consider the
partition P from Assumption 4.5 and fix any Z € P. Recall that Cross-Fitted-SVD
applies TWon P® 1%, YOl 1-T and Y-l -7 and note that the mask matrix
177 satisfies the requirement in Assumption 4.12, i.e., Eq. (4.83) under Assumption 4.8.

4.G.2.1 Estimating P.

Consider estimating P using Cross-Fitted-SVD. To apply Corollary 4.5, we use
Assumptions 4.6 and 4.7 to note that P satisfies Assumption 4.10 with rank parameter
rp. Then, we use Eq. (4.4), Assumption 4.2, and Assumption 4.9 to note that W
satisfies Assumption 4.11. Finally, we use Assumption 4.8 to note that Assumption 4.12
holds. Step 2 of Cross-Fitted-SVD can be rewritten as P = Proj;(P) and P = Cross
-Fitted-MC(TW,,, A, P) where 11 = r,. Then,

~ (@) (®) 1 1
”PI - PI”max S ”PI - PI"max - Op(\/_N + \/_M)’
where (a) follows from Assumption 4.1, the choice of A, and the definition of Proj;(-),
and (b) follows from Corollary 4.5. Applying a union bound over all Z € P, we have

LJFL) (4.84)
VN VM) '

where (a) follows from the definition of (1,2) operator norm.

~ (a)
£(P) £ 1P~ Pl = 0,

4.G.2.2 Estimating ©(® and @M,

For every a € {0,1}, we show that

£(09) =0, (\/—% + ﬁ) (4.85)

We focus on a = 1 noting that the proof for a = 0 is analogous. We split the proof in two
cases: (i) [(OW —OW) @ Pliax < [OW @ (P = P) |max and (ii) [(OW —OW) @ Pllyax >
100 & (P = P) | max-

In the first case, we have

(@
||

— o~ ~~ o~y g (b) oy
MO —0W [y <[ (O =OM) © Plnax < [0 O (P = P) [max < 10™ [rmase | P = Plmas;

(4.86)
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where (a) follows from Assumption 4.3 and (b) follows from the definition of [O™M | ay.
Then,

~ © 0™ | max ( 1 1 )
P-P max — N O + )
” ” A "\VN VM

where (a) follows from the definition of (1,2) operator norm, (b) follows from Eq. (4.86),
and (c) follows from Eq. (4.84). Then, Eq. (4.85) follows as 1/ and |©M|.x are
assumed to be bounded.

In the second case, using Egs. (4.2) and (4.3) to expand Y

@ ® oW
£(61) € 18000, < %

(Wl we have

yWhl —egWoproWow+EVeoP+EY oW,

Next, we utilize two claims proven in Sections 4.G.2.3 and 4.G.2.4 respectively: O ® P
satisfies Assumption 4.10 with rank parameter ry,r, and

D200 eow+EVeoP+EY oW,

satisfies Assumption 4.11. Finally, Assumption 4.8 in Section 4.5 implies that Assump-
tion 4.12 holds. R . R
Now, note that step 5 of Cross-Fitted-SVD can be rewritten as ©(1) = 6( ) ® P and

o = Cross-Fitted-MC(TW,,, Y Wl P) where r3 = r9,7p. Then, from Corollary 4.5,

=(1) (1) 1 1 )
O; — 07" O Prlmax = Op| — + —|.
” T T I” p(m \/M

Applying a union bound over all Z € P and noting that e =W © ﬁ, we have

~ ~ 1 1
W e P —-0WE Pl =0 (—+—) 4.87
| e = O, =+ —— (.87

The left hand side of Eq. (4.87) can be written as,
10W O P —0W @ Plypx = 0P 0P —0M 0 P+00 6P — 006 Pl
z [(B = 0M) & Pluax — [6W @ (P = P)umax
2 ABY — 0V — [0Vl P — Plow,  (488)

where (a) follows from triangle inequality as || (C:)(l) —oW) @]3||maX > oMo (]3—P) | max
and (b) follows from the choice of A and the definition of |©™)] .. Then,

||@(1’ [max

—~ (a) —~ ~ ~
(W) < 0W =0V 0 < =[|0W @ P — OW @ Pl + | P— Plmax

( 1 N ) N 10M ] 1nax 0 ( 1 N 1 )
AN P\VN VM A "\VN VM)’
where (a) follows from the definition of L; » norm, (b) follows from Eq. (4.88), and (c)

follows from Eqs. (4.84) and (4.87). Then, Eq. (4.85) follows as 1/A and |©™ |, are
assumed to be bounded.
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4.G.2.3 Proof that ©©® ©® (1 — P) and ©® ©® P satisfy Assumption 4.10.

First, we show that T ¢ RV <o+ and V¥ € R¥*ra0o D) are factors of ©©) o

(1-P), and T e RV and V1 € RV*"o1 are factors of ©V) @ P as claimed in
Eq. (4.35). We have

(e Z )= ¥ (en)(on)

i€lre, ] F€[rp] i€[rg, ] j€[rp)

@ (U*U )(V*V(l))

_)T

Uv,

(b)

where (a) follows from the definition of Khatri-Rao product (see Section 4.1) and (b)

follows from the definitions of U and V'". The proof for 0 © (1 — P) follows
similarly. Then, Assumption 4.10(a) holds from Eq. (4.35). Next, we note that

7=(1) (b)
[T oo = U # UO 500 & mgg]c douZ; Y ()2 < U 2o [lUV 2o < ¢,
JE[rp] J'€lre, ]

where (a) follows from the definition of Khatri-Rao product (see Section 4.1), and (b)
follows from Assumption 4.7. Then, O @ P satisfies Assumption 4.10(b) by using

similar arguments on V(i). Further, ) ® (1 — P) satisfies Assumption 4.10(b) by
noting that U2 and |Vs, are bounded whenever |U|20 and |V]2, are bounded,
respectively. Finally, Assumption 4.10(c) holds from Assumption 4.7.

4.G.2.4 Proof that €1 satisfies Assumption 4.11

Recall that V) £ W o W + EW © P+ EW © W. Then, Assumptlon 4.11(a) holds

as 5( ) is zero-mean from Assumption 4.2 and Eq. (4.3), and 5z‘,j is subExponential

because 5(»1)

i i7Mij is a subExponential random variable Lemma 4.3, every subGaussian
random variable is subExponential random variable, and sum of subExponential ran-
dom variables is a subExponential random variable. Finally, Assumption 4.11(b) and

Assumption 4.11(b) hold from Assumption 4.9(b) and Assumption 4.9(c), respectively.

4.G.3 Proof of Corollary 4.5

Corollary 4.5 is a direct application of Bai and Ng (2021, Lemma A.1), specialized
to our setting. Notably, Bai and Ng (2021) make three assumptions numbered A, B,
and C in their paper to establish the corresponding result. It remains to establish
that the conditions assumed in Corollary 4.5 imply the necessary conditions used in
the proof of Bai and Ng (2021, Lemma A.1). First, note that certain assumptions
in Bai and Ng (2021) are not actually used in their proof of Lemma A.1 (or in the
proof of other results used in that proof), namely, the distinct eigenvalue condition in
Assumption A(a)(iii), the asymptotic normality conditions in Assumption A(c) and the
asymptotic normality conditions in Assumption C. Next, Eq. (4.83) in Assumption 4.12
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implies Assumption B and Eq. (4.82) in Assumption 4.12 is equivalent to the remaining
conditions in Assumption C.

It remains to show how Assumptions 4.10 and 4.11 imply the remainder of conditions
in Bai and Ng (2021, Assumptions A). For completeness, these conditions are collected
in the following assumption.

Assumption 4 13. The noise matrix H is such that,
(a) maxjep) v ZJ 1e[M] ‘Zze Elhijhiy]| <
(b) manG[M] ‘E h’l»]hZI:JH < Ci i and maXiG[N] Zi’G[N] Cii < C,

(¢) 7 Yoiien 2ojgremna |Elhihin i/
(d) max; el N2 H ZzE[N] (hl jhijr — E[hi,jhi,j’]) |4}'

Assumption 4.13 is a restatement of the subset of conditions from Bai and Ng
(2021, Assumption A) necessary in Bai and Ng (2021, proof of Lemma A.1) and it
essentially requires weak dependence in the noise across measurements and across units.
In particular, Assumption 4.13(a), (b), (c), and (d) correspond to Assumption A(b)(ii),
(iii), (iv), (v), respectively, of Bai and Ng (2021). For the other conditions in Bai
and Ng (2021, Assumption A), note that Assumption 4.10 above is equivalent to their
Assumption A(a)(i) and (ii) of Bai and Ng (2021) when the factors are non-random as
in this work. Similarly, Assumption 4.11(a) above is analogous to Assumption A(b)(i)
of Bai and Ng (2021). Assumption A(b)(vi) of Bai and Ng (2021) is implied by their
other Assumptions for non-random factors as stated in Bai (2003).

To establish Corollary 4.5, it remains to establish that Assumption 4.13 holds, which
is done in Section 4.G.3.1 below.

<c¢, and

4.G.3.1 Assumption 4.13 holds
First, Assumption 4.13(a) holds as follows,

max— S ‘ZE highiy]| < max Z 3 ‘IE il ]

'e[M i€[N] J'€[M]

1
= jem] N Z cTa
1€[N]

where (a) follows from triangle inequality and (b) follows from Assumption 4.11(b).
Next, from Assumption 4.11(a) and Assumption 4.11(c), we have

0 if § £ 4

mMax;ey] ‘E[hfj]‘ <c ifi=7¢

max |E[hi jha 51| = {

Then, Assumption 4.13(b) holds as max;e(n) maxje(a] ey |E[hi hi ;]| < c. Next,
Assumption 4.13(c) holds as follows,

Z 2 [Blhaghe NMZZ bNLZZC—C

i, €[N] 3,5’ €[M] i€[N] 5,5’ €[M] i€[N] j€[M]
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where (a) follows from Assumption 4.11(c) and (b) follows from Assumption 4.11(b).
Next, let 7, ;. £ hi jh; jo —Elh; jh; 7] and fix any j, 7 € [M]. Then, Assumption 4.13(d)
holds as follows,

w2l 0) ] = Bl ) (3 ) (5 ) (5 )

i1€[N 12€[N] i3€[N] i4€[N]
@ 1 4 3 2 .2
T ON? 2 E[%’j’j'] e > E[%‘,j,j'%cjvj’} ¢
i€[N] i#i'€[N]

where (a) follows from linearity of expectation and Assumption 4.11(c) after by noting
that E[v; ;7] = 0 for all 4,7, € [N] x [M] x [M] and (b) follows because ~; ;; has
bounded moments due to Assumption 4.11(a).

4.H Data generating process for the simulations

The inputs of the data generating process (DGP) are: the probability bound A; two

positive constants ¢(® and ¢V); and the standard deviations al-(g-)

[M],a € {0,1}. The DGP is:

for every ¢ € [N],j €

1. For positive integers 7,, rp and r = max{r,, rp}, generate a proxy for the common
unit-level latent factors Ushared € R¥*" such that, for all i € [N] and j € [r],
uSh"“ed is independently sampled from a Un1form(\/_ V1 — ) distribution, with
A e (0,1).

2. Generate proxies for the measurement-level latent factors V,V(© V(1) ¢ RMxr

such that, for all i € [M] and j € [r], viyj,vg?j),vi(’lj) are independently sampled

from a Uniform(v/\, v/I — \) distribution.

3. Generate the treatment assignment probability matrix P

1 shared T
P = —UiNxiry) Vimixry)-
p

4. For a € {0,1}, run SVD on Usharedy/ (T o
SVD(USharedv(a)T) — (U(a)’ E(a)’ W(a))
Then, generate the mean potential outcome matrices ©(*) and O

a) a
o@ _ AUSwmE") @ @r

o [N]x[re] *" [M]x[re]

where Sum(X(®) denotes the sum of all entries of %(®)

5. Generate the noise matrices £ and E®, such that, for all i € [N],j € [M],a €
{0, 1}, EEZ) is independently sampled from a AN(0, (02-(3-))2) distribution. Then,
determine yi(’aj) from Eq. (4.2).
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Figure 4.H.1: Empirical illustration of the biases and the standard deviations of DR,
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and IPW estimators for different j, and for different 7, and ry.
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6. Generate the noise matrix W, such that, for all i € [N], 5 € [M], n;; is indepen-

dently sampled as per Eq. (4.4). Then, determine a; ; and y; ; from Eq. (4.3) and

Eq. (4.1), respectively.
In our simulations, we set A = 0.05, ¢® = 1 and ¢V = 2. In practice, instead of
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the estimate of the standard deviation of OI, IPW, and DR is the standard deviation
of @81 — ATE. ;, KT\ETW — ATE.; and @BR — ATE. ; across the @ simulation
instances. The DR estimator consistently outperforms the OI and IPW estimators in
reducing both absolute biases and standard deviations.

4.1 Doubly-robust estimation in panel data with lagged
effects

This section describes how the doubly-robust framework of this article can be generalized
to a panel data setting with lagged treatment effects. We highlight that, as is the
convention in a panel data setting, ¢ denotes the column (time) index and T' denotes
the total number of columns (time periods).

4.1.1 Formulation

As described in Section 4.4.4, potential outcomes are generated as follows: for all
i € [N],t € [T], and a € {0, 1},

(alyie—1)

Yie = a Wy + 9,(3) + 55?, (4.89)
where yﬁlyi’“l) is the potential outcome for unit ¢ at time ¢ given treatment a € {0, 1}
and lagged outcome y; ;1. This model combines unobserved confounding and lagged
treatment effects, where the lagged effect is carried over via the auto-regressive term,
a@y; 1, with a(® being the auto-regressive parameter for treatment a € {0,1}. The
treatment possibly starts at ¢ = 1, and y; ¢ is assumed to not be affected by any future
exposure to the treatment. Treatment assignments are continually assumed to be
generated via Eq. (4.3). As in Eq. (4.1), realized outcomes, y;;, depend on potential
outcomes and treatment assignments,

0 i t— 1 i t—
Uiy = yz'(,t‘y it 1)(1 . aﬁ) + yz‘(,t‘y it 1)ai,t, (4'90)

for all i € [N] and ¢t € [T].

4.1.2 Target causal estimand

The lagged effects in Eq. (4.89) imply that the treatment effects need to be defined
for sequences of treatments. For concreteness, consider the effect at time T for an
always-treat policy, i.e., a;; = 1, versus never-treat, i.e., a;; = 0, for i € [N] and j € [T].
Let yzmT be the potential outcome for unit 7 at time 7" under always-treat and yz[?}T be
the potential outcome for unit ¢ at time 7" under never-treat. We aim to estimate
the difference in the expected potential outcomes under these two treatment policies
averaged over all units,

a 1 a
ATE.r £ plyp — ply, where pf) 2 =% Elyf),
1€[N]
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with the expectation taken over the distribution of {51(’?}1»6[ N,teT], conditioned on the
initial outcomes {y;o}icn). We make the following assumption about the noise in
potential outcomes.

Assumption 4.14 (Zero-mean noise conditioned on the initial outcomes). {557? 11 E
[N|,t € [T],a € {0,1}} are mean zero conditioned on {y;o}icin

Assumption 4.14 holds whenever Assumption 4.2(a) holds conditioned on the initial
outcomes {y;}icin)- Another sufficient condition for Assumption 4.14 is that (e E(?, Elt))
are independent in time. Given this, the time dependence in the expected potential

outcome ]E[yz[a}] is captured as follows: for a € {0,1}

El9] = (a@) yio + > (a@)0%_.. (4.91)

Eq. (4.91) forms the basis of our doubly-robust estimator of ATE. 7.

We chose the contrast between always-treat and never-treat for concreteness. How-
ever, the framework and the results in this section can be generalized in a straightforward
manner to contrast any two pre-specified sequences of treatments, where the treatment
can also be chosen stochastically with pre-specified probabilities. For the remainder
of this section, we condition on the initial outcomes {y;}ic;n but omit it from our
notation for brevity.

4.1.3 Doubly-robust estimator

The DR estimator of ATE. 7 combines the estimates of (a(?), o), () 6W) and P.
First, we obtain the estimates (@(®), @")). These estimates can be computed using the
likelihood approach of Bai (2024) whenever there exists some units such that they all
have treatment a for some consecutive time points, for a € {0, 1}.

Next, we define the residual matrices Y (@b and Y()obs et Y(©obs ¢ (R
{713V *T be a matrix with (i,¢)-th entry equal to y;; — @@y, if a;; = 0, and equal
to ? otherwise. Analogously, let Y (Mebs ¢ {R U {?}3¥*T be a matrix with (,t)-th
entry equal to y;; — @My, if a;; = 1, and equal to ? otherwise. Then, similar to
Eq. (4.8), the application of matrix completion yields the following estimates:

OO = Me(Y©@obs) M) = Me(YDO) and P = MC(A). (4.92)

Then, the DR estimate is defined as follows:

1
~[1,DR]  ~[0,DR ~Ja,DR a,DR,
ATEDTRJ = M[TJ] M[,T,J ! where /L-[,T,J = N yzo + Z /TZT s] ’
1€[N]
(4.93)
where
~ 1 — a; s
@?%13_? = @EOT)_S + (yi,T—s —a )sz s—1 — 9107)’ s)ﬁ
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and

~ a;7—s
51[»71%]3_2] = g’gT)_s + (yi,T—s - a(l)yi,T—s—l - @(}T)_S) il

]/7\1‘7T—s

The estimator is parameterized by an integer J, which denotes the contiguous number
of time periods preceding time 7' that are used to estimate the expectations at time
T (see the summation in Eq. (4.91)). Notably, using preceding J terms instead of
T — 1 terms allows us to adapt cross-fitting for the setting with lagged treatment
effects. Let us briefly elaborate: suppose (@(®,a")) are estimated from entries of Y in
[N] x [L] for some L < T — J. Consider the column partitions Co = {L+1,...,T — J}
and C, = {T — J+1,...,T} of times [T] \ [L]. Suppose Egs. (4.27) and (4.28) in
Assumption 4.5 hold for Z =R x C; and Z = Ry x C; for some row partitions Ry and
Ry of units [N]. Then, applying Cross-Fitted-MC on the residual matrices Y ()b
and Y M°> with row partitions (Ro, R1) and column partitions (Co,C;) ensures that
Assumption 4.4 holds for every column in C; with row partitions (Rg, R1).

4.1.4 Non-asymptotic guarantees

Recall the notation for £ ((:)) and & (ﬁ) from Eq. (4.16) and define

@)= > £@") where £(@")=2a —al]. (4.94)

a€{0,1}

Our analysis makes two additional assumptions to state a non-asymptotic error
bound for ATEDR, — ATE. 7.

Assumption 4.15 (Bounded auto-regressive parameters and estimates). The auto-
regressive parameters and their estimates are such that |o\?| < @ and || < @, for
all a € {0,1}, where @ € [0,1).

Assumption 4.15 requires the regression parameters to be bounded by a fixed
constant less than 1. This condition is standard for auto-regressive models, as it implies
stability of the outcome process in Eq. (4.89). The analogous condition on the estimated
parameters can be ensured by truncating the estimates to [0, @].

Assumption 4.16 (Bounded observed outcomes, mean potential outcomes, and esti-
mated mean potential outcomes). The observed outcomes, the mean potential outcomes,

and the estimates of the mean potential outcomes are such that |y .| < C1, |61((?] < Oy,
and @(m < (s, for alli € [N], j € [M], and a € {0,1}, where Cy, Cy, and Cs are
universal constants.

Assumption 4.16 requires the observed outcomes, the mean potential outcomes, and
the estimates of the mean potential outcomes to be bounded to simplify our proof.
With a more delicate analysis, Assumption 4.16 can be relaxed to require the average
observed outcomes over ¢ € [N], the average mean potential outcomes over i € [N], and
the average estimated mean potential outcomes over i € [N] to be bounded.
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Theorem 4.3 (Finite Sample Guarantees for DR with lagged effects). Consider the
panel data model with lagged effects defined via Eqs. (4.89) and (4.90). Suppose Assump-
tions 4.1 to 4.3, 4.15, and 4.16 hold and Assumption 4.4 holds fort € {T —J+1,...,T}
for some integer J € [T]. Fiz 6 € (0,1). Then, with probability at least 1 — &, we have

— EITDR a‘]
ATERR _ATE. ;| < — X 4 &
‘ T, ,T| e + 11—

+£@)(Ta" + %)} o (499)

for Err]]?,% as defined in Eq. (4.18) in Theorem 4.1 and a universal constant C'.

The proof of Theorem 4.3 is given in Section 4.1.5. For brevity, the finite sample
guarantees above uses £(0©) and £(P) as defined in Eq. (4.16), but the proof can be
easily modified to replace the max;cps] appearing in the definition of | - |, 2 in Eq. (4.16)
with mane{T_J+17... T}

Next, we remark that Theorem 4.3 is a strict generalization of Theorem 4.1. To this
end, note that when o(® = 0 for all a € {0,1}, the model considered in Theorem 4.3
simplifies to the model considered in Theorem 4.1. For this setting, the assumptions
in Theorem 4.1 imply that the assumptions in Theorem 4.3 hold with J = 1. First,
Assumption 4.15 holds with @ = 0 when o® = 0 for all a € {0,1}. Second, the proof of
Theorem 4.3 can be easily modified to drop the requirement of Assumption 4.16 when
J =1and @ = 0. Substituting @ = 0, £(a) = 0 (i.e., the auto-regressive parameters are
known to be 0), and J = 1 in Eq. (4.95) recovers the guarantee stated in Theorem 4.1.

Doubly-robust behavior of A/ﬁEPTP}J. When @ # 0 and bounded away from one,
Eq. (4.95) bounds the absolute error of the DR estimator by the rate of

£(0)(£(P) +1/°7) + %ﬁ L@+ E@).

Then, if the conditions of Theorem 4.3 are satisfied for some J such that C'log N >
J >log N/(2log(1/@)), the error rate of the DR estimator is bounded by

£(6) (£(P) + /5N 4 =+ £(@),

—0.5)

which decays a parametric rate of O,(N as long as

1 ~ 1 1
—). €(0)=0)(F=—=). ad @) =0,(—=)
m) (®) =6 VIoglog N @ =2%\5

Note that Proposition 4.4 still implies that Cross-Fitted-SVD achieves E(ﬁ) =
Op(N7%5 +T7095) under suitable conditions. To estimate the auto-regressive parameter
o' for a € {0,1}, Bai (2024, Section 5) shows that whenever there exist & units such
that they all have treatment a for L consecutive time points, a full information maximum

likelihood estimator provides |a(® — a@| = O,((K L)~%%). Next, establishing a matrix
completion guarantee for the mean potential outcomes by residualizing as in Eq. (4.92)

£B)E(P) =0,
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can be reduced to deriving a matrix completion guarantee for an approximately low-
rank matrix. To this end, Agarwal and Singh (2024, Theorem 5) suggests that, up to
logarithmic factors, an error rate of N~05 + T7%% 4 £(@) is plausible for £(6) for our

setting. A complete derivation of error guarantees for £(a) and £ (@) in the dynamic
model is an interesting venue for future work.

4.1.5 Proof of Theorem 4.3: Finite Sample Guarantees for DR
with lagged effects

The error AATEP} = ATE DR — ATE. 7 can be re-expressed as
~[1.DR] _~[0,DR [ ~[1,DR] _ 1 ~[0,DR] _ [0
AATED = () =% ]) (=) = (A" = nle) = (A = 1% (4.96)

We claim that, with probability at least 1 — 9,

MW | oM|T
~[1,DR 1 |tV [a!V]
u.[,T,J]—u”‘ SC[

1 — oM}’ 1
~(1) T—1
" o E@ )(Ta" "+ + ‘)2)

T [a®] " (T~ [a®

2 ~ ~ 1 \/ Cgé/(m]) ~ 2677@(0&5/(12{])
4+ [E(OME(P) + EOW)+27, /el +——=),
T O P+ (e 8 et + )

(4.97)
and
O _ |qO]T 1 O 1
~0oR] 0| o o [[02]7 | () (a1 o]
e ] e e UG e S e
2 ~ ~ 1 cls/12g) ., ~ 20m(cls a2
+—— e [E(OM)E(P) + EOO)+27,/ct 2
TR [FO P+ (L B 2t 2 F2)

(4.98)

Then, the claim in Eq. (4.95) follows by applying triangle inequality in Eq. (4.96) and
using Assumption 4.15. We prove the bound (4.97) in Section 4.1.5.1, and also provide
an expression for C'. The proof of Eq. (4.98) follows similarly.

4.1.5.1 Proof of Eq. (4.97)

We start by decomposing MMT as follows:

no_ 1 (1)ys (1) () 4y,
e | S Sty St | - v

i€[N i€[N]
where
1 J—1 1 T-1
T é oMy Nl Ul 2 ~ (™) 3" 60, (4.99)
s:O i€[N] s=J 1€[N]
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and
v 2 (1) Z Yio- (4.100)
16 [N]

Next, we decompose ﬁ‘[}fﬁ} in Eq. (4.93) as ,u[lTDJR} = ']TSD + @(1), where

J-
(1 1 ~(1)\s 1,DR (@
202 LS a0) DA, wa 0L @rL S o
s=0 i€[N] N e [N]
Finally, we define
J-1
F0 a1 My § [ My, ) ) ET= 4.102
J TN Z(O‘ ) Z ir—s t (Wir—s — oWy = 07 ) Dirs|’ (4.102)
s=0 i€[N] b

which is similar to TSI) except that @V is replaced by V). The proof proceeds by
bounding each term in the following fundamental decomposition:

P ) = (00 V) ¢ (B 1)+ @ -F) v a0y

With Cy £ maxX;e [N |¥i0| and Cpr = Cs + (2C; + C3)/ A, we claim that the bounds

@) ot

1—|a®] 7

VO —vO| < gere@Vyatt, U < ¢ (4.104)

and

Gy (1~ |a)) L) (4.105)

) _ ) Sy (1
T T = e )< A 1-fa0] PRI am]p
hold deterministically (conditioned on &), and that the bound
~ 2 A ~
e (] q—— T (TN O 2
Velsjazgy o 2om(clsyaan\ 1
+ (—5 W)Y 4 25, /ety /19y + ) (4106
7 (OY) + 204/ cls/2.) 7 ~ ( )

holds with probability at least 1 — §/2. The claim in Eq. (4.97) follows by applying
triangle inequality in Eq. (4.103) and using the above bounds.

It remains to establish the intermediate claims Eqs. (4.104) to (4.106). Throughout
the rest of the proof, we repeatedly use the inequality below that holds for all s € [T7:

CIR—

(@®)* = (aW)e| = ‘(au) — o) (@) M)

le[s]

O se@Mat,  (4.107)
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where (a) follows from Assumption 4.15 and (b) follows from Eq. (4.94).
Proof of Eq. (4.104) First, from Eq. (4.99), we have

= r-1 a7 — |a®|T

W ) 0 -
Uyl = ‘ Z DI Er o e 1= Ja®]

s=J i€[N] s=J

where (a) follows from Assumption 4.16 and (b) follows from the sum of geometric
series. Next, from Egs. (4.100) and (4.101), we have

‘@(1) _ V(l)’ — ‘((a(l))T _ (a(l))T)% Z Yio

1€[N]

(a)
< CoTE(@WM)yal!

where (a) follows from the definition of Cj and Eq. (4.107).
Proof of Eq. (4.105) From Egs. (4.101) and (4.102), and triangle inequality, we have

~(1 ~(1 1 ~(1)\ s 1 ~ 1 Q5 T—s
‘TS) _ ']I“(])‘ < N Z Z (aM) @;,:2_5 + (yir—s — aVy;r_g1 — @T)_S)ﬁ )
i€[N] 5=0 i, T—s
ai, —s
- (a(l))s (@(,IT)_S + (yz‘,T—s — Oé(l)yi,T—s—l - @}T)_S) — A > ‘
DPir—s
1 J—1 .
== (@®)* (@ — gW)y, p_y_ L= ((&(1)>s _ (&(1))3)
i€[N] s=0 Pi,T—s
~ Q5 T—s
) <§§,11)“—s + (yi,T—s - Oé(l)yi,T—s—l — é}-}%_s) oT ) ‘
pi,Tfs
R I (1)s —s—1
<% }E[N}SZ) LaWPE@Y) + Conse@Y)a

=0

N Cy (1 — oM} 1

_ (D[ 1\~ 1% "1 ) -
=¢@ )(A [— o] TR T lam )

where (a) follows from Eq. (4.94), Assumptions 4.3 and 4.16, and because max;c[n) (7]
}A[l DR]‘ < Cpg from Assumptions 4.3, 4.15, and 4.16, and (b) follows from the sum of
geometric and arithmetico-geometric sequences.

Proof of Eq. (4.106) We start by defining

,DR 1 1 i, T—s
@}T—s} = é};T)—s + (.%,T—s - a(l)yi,T—s—l - é\g,%—s) =
PiT—s
Then, from Eqgs. (4.99) and (4.102), we have
J—1 1 () 22 1
~(1 1 s L,DR] (1 s L,DR] (1
T =19 = | 3@y 5 Do @5 002 < D ja | 2 @ -0,
s=0 i€[N] s=0 i€[N]
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where (a) follows from triangle inequality. From Eqs. (4.3) and (4.89), we have

1,DR 1
o)

i, —s + i, —s
i, T'—s —s /0\2(,17)1—5 + (6)1(,17)“—5 + 65,17)“ s é\vg,l])“—s)u - 0(1)

i, '—s*
DiT—s

Then, the term HllTDFi — 91(71%_5 is analogous to the display Eq. (4.37) in the proof of

Theorem 4.1. Following similar algebra as in Appendix 4.B, we first obtain

1 1

gILDR] _ g1 _ @T s 9 _)Pir—s — Pir—s) B @7}7‘9 — 95,*}73)771‘175
i, T—s i, T—s ]/)\ . @771_8
(1) (1)

Ei,T—Spi)T_S + 61T San S

pi,Tfs pz T—s

Now, note that Assumption 4.4 holds for j =T — s for all s € {0,...,J —1}. Hence, for
any such s and for any § € (0, 1), mimicking the derivation of Eq. (4.40) from Appendix
4.B, we obtain, with probability at least 1 — 6/(2.J),

A ~ 74 ~ 20./cl
~> gCR ) | < 35(@ NE(P) + 2/ to/a29) VD g (@) 4 D
i, T—s i, T—s N
‘zG[N] A /\Vgl AVN

(4.108)

23m(c£5/(1gj))
MWOHN

Finally, multiplying both sides of Eq. (4.108) by (a"))*, summing it over s € {0,...,.J —
1}, and using a union bound argument yields that the bound in Eq. (4.106) holds with
probability at least 1 — /2.

4.J Doubly-robust estimation in panel data with stag-
gered adoption

This section shows how to extend the doubly-robust framework of this article to a
setting with panel data and staggered adoption. Recall (from Section 4.1) that for panel
data, ¢t denotes the column (time) index and 7" denotes the total number of columns
(time periods). In a staggered adoption setting, for every unit ¢ € [IV], there exists a
time point ¢; € [T] such that a;; = 0 for t < t;, and a;; = 1 for ¢t > t;. This defines the
observed treatment assignment matrix A. As mentioned in Section 4.5.4 and illustrated
in the example below, a staggered treatment assignment leads to a heavy time-series
dependence in {n; }eer-

Example 4.1 (Single adoption time). Consider a panel data setting where all units
remain in the control group until time Ty. At time Ty + 1, each unit i € [N] receives
treatment with probability p;, and remains in treatment until time T'. With probability
1 — p;, each unit i € [N] stays in the control group until time T. In other words, for
each unit i € [N]

pir=0 forall t<Ty and p;y=p; forall To<t<T.
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Further, for units remaining in control,
g =0 forall t<Ty and n;=—p; forall To<t<T,
and for units receiving treatment,
e =0 forall t<Ty and n,=1—p; forall To<t<T.

The strong time-series dependence in 7;; above implies that Assumption 4.8 or
Assumption 4.9(a) do not hold, which in turn implies that the guarantees for Cross-
Fitted-SVD, as in Proposition 4.4, may not hold. To see this, first note that to ensure
Assumption 4.5, the set of column partitions {Cp,C;} must be equal to {[To], [T] \ [Zo]}
due to the dependence in the noise W. Now, for Assumption 4.8 to hold, we need
|Ck| = QT for every k € {0,1}. However, for Assumption 4.9(a) to hold, we need
T — Ty to be a constant with respect to T as, for any ¢ € [T]\ [To] and i € [N],
> verr) [Elmismiv]| = (T — To)e; where ¢; € {p, (1 —p:)*}.

Moreover, in Example 4.1, t; = Ty for all treated units. This allows the choice
of {[To], [T\ [Tv]} as the set of column partitions {Co,C;} in Assumption 4.5. More
generally, if treatment adoption times {¢;};c(n] differ across units, then it may not be
feasible to obtain a partition of [T'] into {C,C;} such that Assumption 4.5 holds.

In this section, we propose an alternative approach to the Cross-Fitted-SVD
algorithm such that Assumption 4.4 still holds for a suitable staggered adoption model.

Assumption 4.17 (Staggered adoption and common unit factors). We consider a
panel data setting with staggered adoption where

1. all units remain under control till time Ty, i.e., for every unit i € [N], there exists
a time point t; > Ty such that a;y =0 fort <t;, and a;y =1 fort > t;, and

2. the unit-dependent latent factors corresponding to P, ©© and O are the same,
ie., U=UO =UWD ¢ RN [In other words, for every i € [N] and t € [T],
pit = 9(Ui, Vi), 952) = (U;, V;(O)), and 9&) = (U;, Vt(l)) for some known function
g:R"xXR" = R, with (-,-) denoting the inner product.

For Example 4.1, the function g corresponds to the inner product, the unit-dependent
latent factors are 1-dimensional (i.e., r = 1) with U; = p; for every i € [N], and the
time-dependent latent factors for the assignment probability are such that V; = 0 for
every t € [Tp] and V; = 1 for every t € [T]\ [Ty]. Consequently, Example 4.1 is consistent
with Assumption 4.17 if U = p; for every a € {0,1} and i € [N]. Next, we provide a
more flexible version of Example 4.1 that allows different adoption times for different
units.

Example 4.2 (Different adoption times). Consider a panel data setting where all units
remain in the control group until time Ty. At every time t € [T\ [Ty], each unit i € [N]
receives treatment with probability p;, and remains in treatment until time T'". Therefore,
fort € [T]\ [To] and i € [N], a;y = 1 if the adoption time point t; € {To+1,--- ,t},
which occurs with probability Zt’e[t—To—I](l — ) 'pi. In other words, for each unit
i€ [N]:

pir=0 forall t<Ty and p=1—-(1- p) T forall Ty<t<T.
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For Example 4.2, the unit-dependent latent factors are 1-dimensional (i.e., r = 1)
with U; = p; for every i € [N], and the time-dependent latent factors for the assignment
probability are such that V; = 0 for every t € [Tp] and V; =t — T} for every ¢ € [T]\ [To).
Further the function g is such that g(U;, Vi) = 1— (1 —U;)"*. Consequently, Example 4.2
is consistent with Assumption 4.17 if U\* = p; for every a € {0,1} and i € [N].

We now describe Cross-Fitted-Regression, an algorithm that generates esti-
mates of (0, O, P) for the staggered adoption model in Assumption 4.17 such that
Assumption 4.4 holds.

1. The inputs are (i) A € RV*T (i3) Y@obs ¢ fIRUL?}IV*T for a € {0, 1}, (444) the
rank r of the unit-dependent latent factors, (iv) the time period T until which all
units remain under control, (v) the time period t € [T] \ [T] for which we want
to estimate the average treatment effect, and (vi) the function g.

2. Let Y(Opre ¢ RN*To he the sub-matrix of Y(9°P that keeps the first 7} columns
only. Run SVD on Y(©@»re e

SVD(Y 0Py = (U € RV § e R,V e RITolxr),

3. Let R and R™ be the set of units receiving control and treatment at time ¢,
respectively. In other words, for every a € {0,1}, R £ {i € [N] : a;; = a}.
Next, randomly partition R(® into two nearly equal parts R(()a) and Rﬁ“’. For
every s € {0, 1}, define Ry = R URY.

4. For every s € {0, 1}, regress {a;;}ier, on {U;}icr. using g to obtain V;_,. For
every s € {0,1} and ¢ € R, return p;; = g(U;, Vs).

5. For every a € {0,1} and s € {0,1}, regress {y;},_p@ on {ﬁ} eR(a) to obtain
17( ) For every a € {0,1}, s € {0,1}, and i € Ry, return 9 = U,V

In summary, Cross-Fitted-Regression estimates the shared unit-dependent latent
factors using the observed outcomes for all units untll time perlod Ty. Then, for every
s € {0, 1}, the time-dependent latent factors VS, v , and VY are estimated using the
treatment assignments and the observed outcomes for units in Rq_.

To establish guarantees for Cross-Fitted-Regression, we adopt the subsequent
assumption on the noise variables.

Assumption 4.18 (Independence across units and with respect to pre-adoption noise).

(a) {(mﬂg,sgi)) i € [N} are mutually independent (across i) given {85?}i€[NM€[TO]
for every t € [T]\ [Ty] and a € {0,1}.

(b) {51(»2)}1»6[1\;]&@0] AL {nie, egi)}ie[N] for every t € [T]\ [To] and a € {0, 1}.

Assumption 4.18(a) requires the noise (E(® W) corresponding to a time period
t € T\ [Tp] to be jointly independent across units given the noise E® corresponding to
time periods [Tp], for every a € {0,1}. Assumption 4.18(b) is satisfied if, for instance,
the noise variables follow a moving average model of order ¢ — Ty — 1. The following
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result, proven in Section 4.J.1, establishes that the estimates generated by Cross-
Fitted-Regression satisfy Assumption 4.4. Deriving error bounds, i.e., E(P) and

5((:)), for the estimates generated by Cross-Fitted-Regression for the staggered
adoption model is an interesting direction for future research.

Proposition 4.5 (Guarantees for Cross-Fitted-Regression). Consider the staggered
adoption model in Assumption 4.17 and suppose Assumption 4.18 holds. Fix any
t € [T]\ [To], and {@(2)79@127@,1:}1‘6[N] be the estimates returned by Cross-Fitted-
Regression. Then, Assumption 4.4 holds.

4.J.1 Proof of Proposition 4.5: Guarantees for Cross-Fitted-
Regression

Fix any s € {0,1}. Then, Assumption 4.18(a) and Assumption 4.18(b) imply that

0 a a
(e Yeemeerm) U (i €89 ierm, . AL {69 Vicr s (4.109)

for every partition (Ro, R1) of the units [N].

Cross-Fitted-Regression estimates {p;;}ier, using {(72}2673 and XA/S, where XA/S is
estimated using {U; }ier, . and {ait}ier, .. Therefore, the randomness in {p;;}ier,
stems from the randomness in Y ©#* and {a;;};er,_, which in turn stems from the ran-

domness in {552)}i€[N]7t€[TO} and {n;}ier, .. Then, Eq. (4.15) follows from Eq. (4.109).

Next, fix any a € {0,1}. Then, Cross-Fitted-Regression estimates {@‘”}iens
using {U; }ier, and Vi, where V% is estimated using {ﬁi}ieRY’_)s and {yi,t}ienga_);
Therefore, the randomness in {é\(“)}ieRs stems from the randomness in Y and
{yi,t}ieRgajs which in turn stems from the randomness in {52(-2) Yie[n) terry) and {EZ(C;)}
Then, Eq. (4.14) follows from Eq. (4.109).

ier(® "
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