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ABSTRACT

Recent advancements in computer vision and graphics have led to remarkable achievements

in various visual computing tasks—from 3D reconstruction to real-time editing and animation of

complex scenes. Within this landscape, modeling and manipulating human faces has emerged as

a compelling topic, owing to its broad impact across multiple industries. This thesis addresses

the inverse problem of estimating 3D realizations of human faces from 2D image observations,

a formidable task that requires accurate modeling of the intricate geometry, appearance, and

dynamics of faces. In the first part of the thesis, we focus on photorealistic manipulations of a

single face image, where the manipulations are characterized by a 3D control input such as shape,

albedo, and lighting. We design a framework to achieve a fast manipulation system that changes

the attributes of a face image in a fully disentangled way. In the second part, we look into the

problem of efficient rendering of dynamic 3D faces, where we develop a representation that is

backward compatible with traditional graphics pipelines, does not require custom integration of

machine learning tools at rendering time, and runs at interactive frame rates on consumer devices.

Our representation leverages recent advances in neural rendering to sparsely sample the scene

and model volumetric effects. In the final part of the thesis, we focus on the problem of animating

volumetric 3D head avatars, where we develop a representation of controllable photorealistic

avatars that can be rendered in real-time and have compatibility with existing hardware, rendering

software, and modern network and streaming infrastructure to facilitate a faster adoption of

virtual telepresence systems. To achieve this, we learn a layered mesh and blend textures that

model appearance and deformations in the UV-space, and a simple linear transformation that maps

tracked face model parameters to blend weights, enabling the deployment of platform-agnostic

and streamable avatars to legacy renderers.

Thesis supervisor: Gregory W. Wornell

Title: Sumitomo Professor of Engineering
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1
Introduction

Faces are perhaps our most expressive tool for human-to-human communication. A fleeting

smile, a raised eyebrow, or a subtle glance can sometimes say more than paragraphs of text or

minutes of speech. Unlike words alone, our faces carry layers of emotions, intentions, or cues

that enrich our everyday interactions. This richness makes them not only essential to human

connection but also a fascinating subject of study for researchers in the fields of computer vision,

computer graphics, and human-computer interaction. Over the past few decades, breakthroughs

in these fields have transformed numerous industries, including entertainment and media, gaming,

security and surveillance, healthcare, retail, and fashion [1–3]. From digital actors that headline

blockbuster films to artificial intelligence (AI) systems that help diagnose medical conditions by

analyzing facial cues [4], advances in modeling and manipulating faces are quietly reshaping how

we live, work, and communicate with each other.

Before we seek to develop algorithms for face-related applications, we must first ask a funda-

mental question: how can we represent a face, or more broadly, an object or a scene in a digital

medium? For much of the digital era, the answer has been two-dimensional (2D) images consisting

of arrays of pixels. The first digital image, illustrated in Figure 1.1, was created in 1957 by Russell

Kirsch, who scanned an analog photograph of his infant son into a 176 × 176 pixel array [5].

Nowadays, billions of high-resolution images, such as the one displayed in Figure 1.2, are captured

every day by devices we carry in our pockets. Digital cameras, once rare and expensive, are now

ubiquitous, and so too are the images they produce—whether photographed by a human, painted

digitally by an artist, or conjured entirely by machines. In fact, this thesis is written at a time

when the distinction between captured reality and generated reality is increasingly blurred: many

of the pixels we encounter on our screens no longer come directly from the physical world. This

major shift raises exciting possibilities and, at the same time, complex challenges for how we

process and interact with visual information.

Two-dimensional image representations, along with their dynamic counterparts videos, remain

at the core of computer vision, powering mainstream applications such as classification, semantic

segmentation, object detection, or scene understanding [6–8]. For many applications, however,

15



Figure 1.1: The first digital image

was created by Russell Kirsch, who

scanned a photo of his son, Walden.

Figure 1.2: A digital image taken by a mobile phone, showing Walden

Pond State Reservation, in Concord, Massachusetts. Today, billions

of images like this are captured every day using these devices.

2D representations of scenes are insufficient to model complex phenomena occurring in three-

dimensional (3D) reality. For example, in the visual effects industry, the growing demand for

photorealism requires synthesized scenes to be not only realistically animated but also to exhibit

appearance changes that respond faithfully to dynamic scene conditions such as lighting variations.

Achieving this level of fidelity naturally calls for 3D-grounded modeling of scenes. Indeed, in

this thesis, we are motivated by various face-related applications that demand 3D modeling, and

hence focus our attention on 1) how to synthesize 3D faces, 2) how to edit 3D faces with respect

to various attributes, and 3) how to animate 3D faces.

Synthesizing 3D faces. Three-dimensional face synthesis refers to the process of generating

digital representations of 3D human faces. This may be broadly categorized into two canonical

problem settings: 1) creating new 3D faces by sampling from a learned distribution, and 2)

reconstructing a faithful representation of a specific individual from their images captured under

multiple viewpoints and/or varying scene conditions to produce a digital twin that mirrors the

geometry, appearance, and dynamics of the individual. In the first scenario, generative models are

often employed to capture the statistical variations of human face geometry and appearance with

varying complexities. Earlier approaches describe these variations using linear subspaces [3, 9],

enabling parametric control but producing only coarse, non-photorealistic results. Meanwhile,

modern methods leverage high-capacity non-linear models using volumetric representations

to synthesize more photorealistic faces, sometimes indistinguishable from real ones [10–12].

Importantly, these generative models are not merely artistic tools for creating synthetic faces.

They often play a crucial role in tasks such as 3D face reconstruction, where statistical face priors

can be integral to various solution algorithms [13–15]. The second scenario, i.e., creating digital

twins, has gained significant momentum with the rise of applications in extended reality (XR),

an umbrella term we will use to refer to augmented reality (AR), virtual reality (VR), and mixed

reality (MR) [16, 17]. Among these applications, virtual telepresence, an emerging technology

that enables users to experience the sense of being physically present in a remote location by
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transmitting immersive audiovisual content in real time, serves as the culminating focus of this

thesis. Our exploration spans algorithms for synthesizing 3D face representations tailored to the

distinct application needs and data regimes of these technologies.

Editing 3D faces. For many face-related tasks, 3D face synthesis is often just the starting

point. Certain applications require subsequent editing of various face attributes, such as 3D

shape, appearance, head pose, or facial expression [18–20]. Achieving this task requires not

only a physically accurate model of the face but also precise control systems that can adjust

attributes in response to user input or algorithmic constraints. These systems often need to

balance multiple competing requirements, such as high visual quality, computational efficiency,

and disentanglement, which is a property that ensures variations in one attribute do not influence

or entangle with other attributes. To meet these requirements, our key insight is to devise 3D-aware
editing approaches that are coupled with the 3D face synthesis process itself, hence requiring the

joint modeling of facial geometry and appearance.

Animating 3D faces. Animating a 3D face involves generating temporally coherent sequences of

deformations that reflect realistic face dynamics. Unlike one-off expression edits, face animation

requires models that produce smooth transitions over time, capturing nuances like muscle motion,

skin sliding, and subtle asymmetries [21]. Many animation algorithms require full controllability:

these systems must respond to a set of input parameters (whether derived from motion capture,

audio signals, or other modalities) to drive arbitrary talking sequences, facial expressions, or

even idiosyncratic gestures. A key application motivating the development of such algorithms is

virtual telepresence in XR, where participants equipped with head-mounted displays can interact

in shared virtual environments. Facilitating these applications often involves a relay race that

starts with tracking facial expressions using specialized hardware, using these as control inputs

to drive an animation model, and rendering 3D faces on edge devices [22–24]. These pipelines

typically need to address various considerations such as the photorealism of the output, rendering

speed, and memory efficiency. To ensure the scalability of such pipelines, akin to today’s 2D

video communication systems, factors such as streamability and backward compatibility with

existing hardware and software emerge as critical considerations. In this thesis, we focus on

developing novel, dynamic 3D representations that address these practical constraints, which are

often overlooked in modern approaches.

At the heart of these three challenges, i.e., synthesis, editing, and animation, we position the 3D
scene reconstruction problem, which involves generating a 3D model of an object or scene from

a set of observations, such as images or other sensor data [2, 25–27]. Although we exclusively

focus on reconstructing faces, 3D reconstruction of general scenes has been studied for decades

and underpins applications across an astonishingly wide range of fields. In robotics, reconstructed

models of the environment enable autonomous agents to navigate, manipulate objects, and

interact safely with their surroundings [28, 29]. 3D reconstruction is used to create immersive

and realistic virtual experiences, such as in video games and simulations [30, 31]. It is also used in

augmented reality applications to overlay digital information onto the real world [32]. Beyond

these domains, recovering 3D objects from limited number of observations can be used in medical

imaging to create detailed 3D models of the human body [33–35], allowing for more accurate
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diagnoses and treatment planning, or it can be used to create digital models of physical objects for

design and prototyping purposes, as well as for quality control and inspection in manufacturing

processes [36, 37]. 3D reconstruction methods can also be leveraged to create models of geological

and archaeological sites or historical landmarks, allowing scientists to better understand and study

these environments in a virtual setting, without the need for physical access [38, 39].

A growing number of applications of 3D scene reconstruction now operate on dynamic

scenes, where the captured scene evolves over time as objects move, rotate, deform, or appear

under varying lighting conditions [40–42]. Addressing such scenarios falls under the domain of

dynamic 3D scene reconstruction, which introduces significant additional challenges. Beyond

reconstruction, many applications also require the ability to control or animate the scene under

novel conditions not present in the collected data. This elevates the reconstruction task into a

learning problem. In this setting, the learning algorithm must be carefully designed to strike the

right balance, offering sufficient flexibility to model scene variations while also providing enough

regularization to avoid overfitting, as many different realizations of the reconstructed scene may

potentially explain the same observed data. In this thesis, we approach the controllable dynamic

face reconstruction problem through the lens of inverse problem-solving, providing a powerful

foundation for guiding our algorithmic design and methodologies. This perspective builds on a

long-standing history of inverse problems, which arise not only in the computer vision domain

but also across many scientific and engineering disciplines [43–46].

While this thesis places the 3D face reconstruction problem at its core, each of the main

chapters is shaped by a distinct task and application, which ultimately dictates the design of

the methods we devise. At the forefront of these decisions lies the 3D face representation, which

profoundly influences the capabilities and limitations of any system we develop. Here, we criti-

cally examine the trade-offs between surface-based and volumetric representations, as well as

between continuous and discrete formulations. These representations directly impact our key

considerations such as photorealism, rendering efficiency, memory footprint, and other practical

constraints. Throughout this thesis, we argue that the representation serves as the secret sauce
for satisfying the diverse requirements of synthesizing, editing, and animating 3D faces. Yet, as

we will see, representation is not the only consideration at play. Achieving practical and scalable

solutions also demands attention to other factors, such as the computational speed of the developed

algorithms or generalization capabilities to more challenging scenarios. These constraints, in turn,

shape our choices of model architectures, training datasets, and loss functions. Together with the

representations, these elements form a cohesive framework that advances the state of 3D-aware

methods in face modeling and manipulation.

Thesis Outline

The work presented in this thesis is centered around the inverse problem of estimating 3D real-

izations of human faces from 2D image observations, a challenging task that requires accurate

modeling of the intricate geometry, appearance, and dynamics of 3D faces. Beyond this recon-

struction problem, we also explore how to enable fast, efficient, and photorealistic editing and

animation of 3D faces, unlocking applications like portrait relighting, face image manipulation,

and efficient rendering. Our ultimate goal is to synthesize and animate volumetric 3D face avatars

suitable for virtual telepresence, an emerging technology that offers immersive alternatives to
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traditional video-based communications. In addition to photorealism and rendering efficiency

considerations, a major focus of this thesis is ensuring that the developed 3D face representations

are compatible with existing streaming systems, rendering platforms, and extended reality device

ecosystems to facilitate a faster adoption of telepresence systems and making them a ubiquitous

technology accessible to a wide range of users worldwide.

In Chapter 2, we present the foundational background for this thesis, with a focus on key topics

of inverse problems in computer vision, 3D scene representations, and 3D scene reconstruction.

In Chapter 3, we explore the problem of rendering manipulated 2D realizations of a given single

face image, where the manipulations are characterized by a control input that includes shape and

albedo of a reconstructed 3D face mesh, as well as scene lighting conditions. Using only a dataset

of single-view 2D face images, our objective in this chapter is to design a fast manipulation system

that changes the attributes of a face image in a fully disentangled way, so that changing a single

face attribute does not influence the other attributes.

In Chapter 4, we look into the problem of efficient rendering of dynamic 3D faces, where we aim

to synthesize face models from a multiview video data of different subjects. Different from other

chapters, we overlook the controllability aspect of the reconstructed model, and instead estimate

a sequence of 3D geometry and appearance realizations. Our main goal in this chapter is to design

a novel representation that is backward-compatible with traditional graphics pipelines without

requiring custom integration of machine learning tools at rendering time.

In Chapter 5, we focus on the problem of animating volumetric 3D face avatars for applications in

virtual reality and telepresence. Given multiview video data of a subject, we devise a framework

to synthesize a controllable and photorealistic digital twin of this subject that can be rendered in

real-time and have backward compatibility with existing hardware, rendering software, as well as

modern network and streaming infrastructure.

In Chapter 6, we reflect on the presented work and highlight the key takeaways, situating them

within the broader context of the current state of computer vision and artificial intelligence.
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2
Background and Related Work

In this chapter, we review relevant foundational concepts in computer vision and graphics to

contextualize the contributions of this thesis. We begin by formalizing the notion of inverse

problems in vision, where we provide a statistical characterization of generic inverse problems and

survey principal solution strategies, including optimization-based and learning-based approaches.

Next, we introduce the two predominant classes of 3D scene representations—surface-based

and volumetric—and detail key representations in these classes, including triangle meshes [47],

signed distance functions [48], neural radiance fields [49], and 3D Gaussian Splatting [50]. Finally,

we introduce the central problem in this thesis, the 3D face reconstruction task, and present a

taxonomy of existing approaches categorized by their underlying 3D representations.

2.1 Inverse Problems in Computer Vision

Suppose we are given a system—whose characteristics may be partially or wholly unknown—

that transforms an unobserved input into a collection of observable outputs. The problem of

estimating the input or identifying the system characteristics from the observed outputs is known

as an inverse problem, which arises in many fields in science and engineering, such as astronomy,

biology, computational imaging, signal processing, as well as computer vision and graphics [43–46].

Solving inverse problems typically requires careful system modeling by creating abstract and often

simplified representations of systems to analyze their structure and behavior more conveniently.

These models can be statistical in nature, to account for prior information about the unobserved

variables or randomness in the measurement processes. These assumptions lay the foundation for

the choice and design of solution algorithms, which can involve a diverse class of approaches, such

as closed-form inversions [51], classical iterative solvers [52], or deep neural network models [53].

Perspective projection, a conventional way to represent 3D objects on a 2D plane, is believed to

have been formalized by Filippo Brunelleschi, a renowned Italian architect in the 15th century [54].

Later in the 17th century, another renowned Italian architect, Andrea Pozzo, wrote a foundational

manual that systematically explains how to construct and analyze perspective illusions to infer
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underlying architectural plans [55]. This can be considered a very early instance of an approach

to an inverse problem in the vision domain, long before the emergence of computer vision as a

field. Nowadays, numerous visual computing tasks are formulated as inverse problems, including

deblurring [56], denoising [57], super-resolution [58], demosaicing [59], as well as 3D tasks such as

reconstruction [27], depth estimation [60], and inverse rendering [61]. Generally, these problems

are defined through a forward model of the form

y = A(x) + w , (2.1)

where x ∈ ℝ𝑚 is the unobserved or hidden variable of interest, A : ℝ𝑚 → ℝ𝑛
is the measurement

operator that transforms the hidden variables through some process, w ∈ ℝ𝑛
denotes an additive

noise (independent of x) due to uncertainities in the measurement process, and y ∈ ℝ𝑛
denotes the

observations collected from the system. Typically, inverse problems in computer vision cannot

guarantee the existence or uniqueness of a solution, and hence are characterized as ill-posed

problems [62]. This may require optimization-based techniques to settle for reasonable (but not

necessarily correct) solutions when no solutions exist or regularizers to constrain the solution

space when multiple (potentially infinitely many) solutions satisfy the observations [63].

2.1.1 Statistical Characterization of Inverse Problems

When an inverse problem has infinitely many solutions, on what principle should we prune the

solution space? What makes some solutions more likely than the others? These questions call

for a statistical modeling of the problem, and in particular, describing how the observed data and

the hidden variables are jointly distributed, which gives the full statistical characterization of the

problem. Suppose that such a joint distribution 𝑝y,x exists and that it can be factorized into a

likelihood term and a prior term as

𝑝y,x(y, x) = 𝑝y|x(y |x) 𝑝x(x) , (2.2)

which, to keep things general, can be continuous or discrete. Given an observation y, we can

describe our complete knowledge of x via the posterior distribution:

𝑝x|y(x |y) =
𝑝y,x(y, x)
𝑝y(y) ∝ 𝑝y|x(y |x) 𝑝x(x) , (2.3)

where the last relation follows from the assumption that 𝑝y(y) is constant and positive given y.

To estimate a hidden variable x given an observation y, let’s consider the following optimization

problem with the maximum a posteriori objective:

x̂(y) = arg max

x
𝑝y|x(y |x) 𝑝x(x) = arg min

x
[− log𝑝y|x(y |x) − log𝑝x(x)] . (2.4)

Based on Equation 2.1, the likelihood term can be rewritten as 𝑝y|x(y|x) = 𝑝w(y − A(x)), where

𝑝w denotes the noise distribution. This term is therefore governed by 𝑝w, and it typically manifests

itself as the data-fidelity term. For example, suppose the noise is distributed as zero-mean, isotropic

Gaussian, i.e.,𝑤 ∼ N(0, 𝜎2I). Then, we have − log𝑝y|x(y|x) = ∥y − A(x)∥2

2
/2𝜎2 + const., which

measures how well the current estimate x satisfies the observations in a squared loss sense. Despite
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its simplicity, such Gaussian idealization can be a good approximation of the physical reality when

images are collected as raw measurements (without compression) in well-exposed environments

with low noise levels [64, 65]. For common image restoration problems, while the likelihood

term typically yields a simple closed-form expression, the prior term encodes complex statistical

phenomena about the signals we aim to recover. Assuming it has a closed form, we can write

x̂(y) = arg min

x
𝜙 (y − A(x)) + 𝜆 𝑅(x) , (2.5)

where 𝜙 (·) is the data fidelity term, 𝑅(·) is the prior term, and 𝜆 > 0 is a scalar weight. When

dealing with ill-posed inverse problems, leveraging these priors is crucial not only for statistical

correctness but also for algorithmic viability, as they help produce solutions that obey physics or

human perception via tractable optimization problems. Yet, crafting priors that promote these

natural world statistics can be a highly non-trivial problem.

2.1.2 Approaches to Solving Inverse Problems

One of the most prominent philosophies that has received widespread attention in the context of

problem solving is the Occam’s Razor principle, which, among many explanations of a phenomenon,

instructs choosing the simplest one [66]. Suppose we are interested in estimating images (consisting

of arrays of pixel values) and that we rearrange them as𝑛-dimensional vectors. In this form, natural
images occupy a very small manifold in this potentially very high-dimensional space [67]. These

images typically manifest scale-invariant statistical regularities, have dominant low-frequency

structure, and contain contours and edges that delineate objects at multiple scales [68]. Such a

structure may be represented sparsely (i.e., with signals having few non-zero coefficients) in the

pixel domain, or transform domains via linear transformations such as the Fourier transform,

wavelet transforms [69], curvelet transforms [70], or discrete gradient operations [71]. These ideas

can be extended to 3D representations to promote, e.g., more natural geometry or appearance

estimations [72]. Historically, while these hand-crafted priors have led to notable achievements in

many inverse problems in vision and are still used in conjunction with more complex algorithms,

data-driven methods have quickly gained popularity owing to their flexibility and the rapid

advancements in deep learning over the last decade [62, 73, 74].

Many data-driven methods learn a parametric function 𝑓𝜃 : ℝ𝑛 → ℝ𝑚 that inverts a given obser-

vation y ∈ ℝ𝑛
to an estimate of x ∈ ℝ𝑚 . Given a dataset of ground-truth pairs {(y𝑖, x𝑖)}𝑁𝑖=1

where

𝑁 is large, deep learning methods have demonstrated remarkable performance over conventional

techniques using neural networks parameterized by a large number of learnable parameters [53,

75]. Optimization of these networks are typically performed via stochastic gradient descent [76]

using random mini-batches from the dataset, to minimize some distance between each of x𝑖 and

𝑓𝜃 (y𝑖), as well as some explicit regularization term for the network weights [77, 78]. Overall, this

mirrors the optimization problem in Equation 2.5, with an additional (implicit) regularization

incorporated in the network architecture, consisting of specific types of connections or activa-

tion functions. Such inductive biases [79] introduced by the networks can also be exploited in

a single-sample optimization setting, through frameworks such as the Deep Image Prior [80].

As an alternative to one-shot solvers that require a single forward pass through a network, the

technique of algorithm unrolling [81] expresses iterations of classical optimization algorithms as
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trainable layers, allowing the incorporation of physical knowledge (e.g., if the forward operator

A is known) into the estimation process.

Many data-driven approaches in the vision domain rely on paired examples of observations

and hidden variables, which can be challenging to acquire for certain tasks. As an example, let’s

consider the 3D reconstruction problem, where x describes a 3D representation of a scene, A
denotes a projection operation, and y is an image observation of the scene. Suppose we are

given a single observation of a 3D scene, as opposed to multiple observations from different

angles. The reconstruction task in this case can become severely ill-posed and hence require

good priors to estimate reasonable 3D realizations. If we are given a large dataset of single-view

images, and if the projection operation is known or can be estimated reasonably well, we can

leverage a data-driven approach as before. For example, we can learn a function 𝑓𝜃 that takes

in an observation y and outputs an estimate of x, i.e., x̂ = 𝑓𝜃 (y). These estimations can then be

cascaded with the forward operator and be supervised to match the observations by minimizing

some distance between A(𝑓𝜃 (y)) and y [82]. Alternatively, one can leverage a generative approach

by learning a function 𝐺𝜃 that transforms samples z from a known distribution to samples from

the underlying distribution of the 3D scenes 𝑝x, i.e., x = 𝐺𝜃 (z). Then, we can subsequently

embed a given observation y into the latent space of this generator so that y ≈ A(𝐺𝜃 (z)) [10,

14]. While such approaches traditionally focus on a specific class of scenes—such as faces [83, 84],

animals [85], cars [86], or bedrooms [87]—more recent generative frameworks such as diffusion

models [88–90] have led to higher capacity models trained with larger datasets, unlocking new

paradigms for many inverse problems in addition to 3D reconstruction [91].

The recent advancements in generative AI, pioneered by diffusion models, have transformed

the landscape of inverse problems in vision [91]. The unprecedented quality of complex, high-

dimensional samples from these models has provided compelling evidence that these models can

capture distributions that closely approximate the underlying data distribution, unlocking a wide

range of algorithms with remarkable performance [92–94]. If the hidden variable x of an inverse

problem is a natural image, a diffusion model trained on a large dataset of images can be utilized

as priors for 𝑝x by providing smoothed score functions ∇x𝑡 log𝑝x𝑡 (x𝑡 ) of noisy data x𝑡 = x + 𝜎𝑡z at

various noise levels 𝑡 , with z ∼ N(0, I). Using pairs of examples {(y𝑖, x𝑖)}𝑁𝑖=1
, it is also possible to

directly capture the posterior distribution 𝑝x|y through a conditional modeling [95, 96], which

can allow sampling different estimations of x from a single observation y. These probabilistic

frameworks can be useful in applications such as medical imaging, where multiple explanations

of the same data can be evaluated by humans to make more informed diagnoses [97].

When it is infeasible to collect a large amount of data for x, as in the case of 3D reconstruction,

diffusion models trained on a dataset of observations can still be used to solve inverse problems

if A is known. Among these works, score distillation sampling [98] introduces a framework to

generate 3D samples whose 2D projections are distributed according to the distribution captured by

an image diffusion model. For the 3D reconstruction problem, we can interpret this framework as a

general-purpose 3D prior that can be incorporated into gradient-based optimization algorithms by

adjusting the gradients for the 3D estimations. Given a dataset of 2D observations only, Diffusion

with Forward Models [99] modifies the reverse diffusion process by first lifting the 2D observations

to 3D and subsequently rendering them from the given views, thereby explicitly modeling the

distribution of 3D realizations given 2D observations. Although this method requires at least

two observations of the same scene for training, a single image can be run through the model at

inference time, producing realistic and diverse 3D realizations of the image.
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While our discussion so far has alluded to methods that estimate 3D scenes, it has been

agnostic to how 3D scenes are represented, which directly influences the design and development

of algorithms for various tasks in the visual computing domain. In fact, a significant portion of this

thesis is devoted to developing novel 3D representations of dynamic faces to meet the desiderata

of applications in virtual reality and telepresence. In the next section, we look into various 3D

representations that describe static or dynamic, general scenes.

2.2 3D Representation of Scenes

Everyday digital images we encounter or interact with are represented as arrays of pixels, which

typically hold 3-channel, 8-bit color values. Such a representation is a direct result of how we

conventionally sense images with consumer-level camera sensors that encode light intensities in

red, green, and blue using color filter arrays [100]. Similarly, digital representations of 3D scenes

can be imposed by the sensing technology, e.g., point clouds may emerge as raw output data of

the lidar technology [101], while voxel grids may arise naturally from volumetric medical imaging

techniques such as computed tomography (CT) [34] or magnetic resonance imaging (MRI) [33].

Yet, depending on the application, these raw representations may prove to be suboptimal in terms

of representational capacity or memory efficiency. For example, point clouds may be better utilized

when converted into meshes using surface reconstruction algorithms [102, 103], or cubic memory

growth of voxel grids can be prohibitive for high-resolution representations of sparse scenes,

demanding alternative volumetric representations [104, 105].

In computer graphics, a 3D scene or object is typically described by its geometry and its

appearance. The geometry defines how the scene occupies the 3D space and refers to its shape

or structure, while its appearance defines how it visually looks or interacts with lighting. In this

section, we review both surface-based and volumetric representations, and explore how we can

formally describe their geometry and appearance.

2.2.1 Surface Representations

To study surface-based representations, we first look into continuous formulations, where a scene

is modeled as a continuous function over 3D space, such as signed distance functions or implicit

fields [106]. We then transition to discrete representations, with a primary focus on triangle

meshes, which serve as the de facto standard in modern graphics pipelines due to their widespread

adoption, efficient rendering, and compatibility with existing hardware and software ecosystems.

2.2.1.1 Continuous Surface Representations

Suppose we seek to represent a real-world 3D surface on a computer, and that we sense this surface

by probing it at multiple points in space, gathering all samples as a point cloud {xi}𝑁𝑖=1
, where

𝑥𝑖 ∈ ℝ3, 𝑖 = 1, 2, . . . , 𝑁 . One way to describe a continuous surface S that passes through these

samples is through a zero-level set of a scalar function 𝑓 : ℝ3 → ℝ that satisfies 𝑓 (x𝑖) = 0 for

𝑖 = 1, 2, . . . , 𝑁 . This function implicitly defines the surface S as

S = {x ∈ ℝ3 | 𝑓 (x) = 0}. (2.6)
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It is evident that there exist infinitely many functions 𝑓 that fall into this characterization for finite

𝑁 , which demands constraining the solution space by promoting, e.g., more regular, smoother

surfaces resembling real-life objects. A classical approach to ensure smoothness is to approximate

3D surfaces as linear combinations of smooth, analytical functions as

𝑓 (x) =
∑︁
𝑖

𝑤𝑖 𝜙𝑖 (x). (2.7)

Among many function families, polynomials, splines, wavelets, and radial basis functions have

been historically very useful in representing 3D shapes with varying degrees of complexity [107–

109]. A different class of algorithms solves differential equations to find an implicit surface that

best approximates a point cloud, such as Poisson surface reconstruction (PSR) [103], which stands

out as one of the most popular methods. Given an oriented point cloud (where each point has a

surface normal attribute that can be estimated using neighboring points), PSR solves the Poisson

equation ∇ · ∇𝑓 = ∇ · ®𝑉 , where ®𝑉 is a vector field defined by smoothed, weighted aggregation

of the input point normals. Recently, neural network-based parameterizations of surfaces offer

more expressivity for representing complex surfaces and better compression capabilities as they

can store entire scenes within small MLPs [106, 110], while still allowing fast rendering thanks to

modern GPU hardware. Yet, classical methods like PSR remain as fast and predictable approaches

to surface reconstruction when dealing with sufficiently dense point cloud data.

Among numerous classes of functions whose zero-level sets define a surface, signed distance

functions (SDFs) [48] have been central in many applications that deal with continuous boundaries

of (closed) 3D objects. Let Ω denote the set of points occupied by a 3D object and S ··= 𝜕Ω denote

its boundary, both defined in the Euclidean space. We can define a signed distance function

𝑓 (x) =
{
−𝑑 (x, 𝜕Ω) if x ∈ Ω
𝑑 (x, 𝜕Ω) if x ∉ Ω

(2.8)

where 𝑑 (x,S) ··= infx′∈ S ∥x − x′∥ is the Euclidean distance of a point x to the set S. Such a

function satisfies the Eikonal equation ∥∇𝑓 (x)∥ = 1 almost everywhere, describing a unique

regularity condition among all functions that share the same zero-level set [111]. When optimizing

for an SDF, imposing this property can promote numerical stability [112]. Nowadays, modern

solutions parameterize SDFs using MLPs or transformers, achieving remarkable quality in surface

reconstruction not only from point cloud data, but also from multiview images [113–115].

Fully analytical or neural representations of 3D surfaces can compress complex scenes into a

modest number of parameters, hence allowing very efficient storage of these scenes in memory.

At the same time, rendering such compact representations may require expensive operations (such

as forward passes through a neural network per pixel) to decompress the representation, which

reduces the rendering efficiency. To address this, we can, for example, discretize the 3D space into

a grid and pre-compute function values at each element in this grid, thereby trading off memory

(space) for compute (time). This inherent memory–compute trade-off is central to the design of

3D scene representations, with research efforts focusing on developing novel representations that

have more promising memory–compute profiles. This motivates our discussion of discrete surface

representations, which constitute a cornerstone of this thesis.
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2.2.1.2 Discrete Surface Representations

Although continuous surface representations such as SDFs are mainstream tools in many computer

graphics applications, piecewise linear discretizations of these surfaces using polygonal meshes

have significantly more prevalence [47]. Because triangle meshes dominate real-time rendering

in practice, let’s focus our attention on formally defining a triangle mesh. Given a continuous

3D surface S, suppose we tessellate it into triangle primitives at a specific resolution, effectively

approximating the surface function with a piecewise linear one. We can then describe a single

triangle mesh M ··= (V, F ,A) as collection of three sets:

V ··= {v𝑖 ∈ ℝ3 | 𝑖 = 1, . . . , 𝑛𝑉 } (2.9)

F ··= {f𝑗 = (𝑖𝑗1, 𝑖𝑗2, 𝑖𝑗3) ∈ {1, . . . , 𝑛𝑉 }3 | 𝑗 = 1, . . . , 𝑛𝐹 } (2.10)

A ··= {a𝑖 = (𝑎𝑖1, . . . , 𝑎𝑖𝑛𝑎 ) ∈ ℝ𝑛𝑎 | 𝑖 = 1, . . . , 𝑛𝑉 }. (2.11)

Here, V is the set of vertex coordinates in 3D, which define the (shared) vertices of the triangles,

where 𝑛𝑉 = |V| is the number of vertices. F is the set of faces, where each ordered triple of

indices f𝑗 designates a (counter-clockwise) triangle with vertices (v𝑖𝑗1, v𝑖𝑗2, v𝑖𝑗3), and 𝑛𝐹 = |F | is

the number of faces. Lastly, A is the set of vertex attributes, where 𝑛𝑎 is the number of attributes

per vertex. These attributes can, for instance, include colors for appearance, normals for shading,

or 2D UV-space coordinates for texture mapping. These maps can be defined through a function

T : [−1, 1]2 → ℝ𝑛𝑎
(2.12)

which takes a UV-coordinate u ∈ [−1, 1]2
and outputs an attribute vector a ∈ ℝ𝑛𝑎

. In particular,

the rendered attribute of a surface point lying in face f𝑗 is obtained by barycentric interpolation of

its vertices’ UV coordinates, followed by an evaluation of T . For appearance modeling, these maps

are typically defined in pixel space at a specific texture resolution, and can facilitate high-frequency

appearance rendering even when the mesh resolution is not sufficiently high.

Triangle meshes are extremely popular in many production pipelines, as they are easy to

create and share, can be edited with simple workflows to produce different assets and perform

animations, can be rendered very efficiently with modern GPU hardware through rasterization,

and virtually all graphics hardware and software support them natively [116]. For decades, meshes

have been used to represent, edit, and animate 3D faces [117–120], spearheading the rapid progress

that has been further accelerated by the 3D morphable face models [9]. At the same time, as

the 3D face applications in the modern era demand photorealism to the point where renders

are indistinguishable from reality, single-surface face meshes have been replaced in favor of

volumetric representations that can handle complex geometry and appearance of hair, beard, eyes,

or idiosyncratic details on skin [49, 50].

2.2.2 Volumetric Representations

Perhaps the most natural way to represent a 3D scene volume is to divide it into a uniform

grid and assign attributes (such as color or opacity) to each cube in this grid [104, 121]. These

voxel-based representations are nowadays a standard in many medical imaging applications as

they naturally arise from the sensing process [33, 34]. For general scenes, while voxel-based

representations have been historically used in many applications [105, 122–124], their memory
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profile is often prohibitive for high-resolution 3D scene reconstruction. Advances in deep learning

have attempted to circumvent this problem by introducing low-resolution deep voxel grids that

store high-dimensional features, which are mapped to color values upon projection via learnable

functions [125–129]. While the idea of representing 3D scenes as continuous fields had previously

been explored [130], the seminal work Neural Radiance Fields (NeRFs) [49] proliferated the use of

MLPs for photorealistic and view-consistent rendering of high-resolution 3D scenes, effectively

commencing the era of radiance fields in computer vision and graphics.

2.2.2.1 Neural Radiance Fields

Representation. To synthesize photorealistic views of complex scenes, it is essential to model

how light interacts with matter along a ray. Neural radiance fields build on the classical volume

rendering equation [131] and capture how light is emitted and absorbed at each point in space.

Formally, suppose we are given a (virtual) camera ray r(𝑡) = o + 𝑡d, where o ∈ ℝ3
is the camera

origin, d ∈ ℝ3
is the (unit norm) camera ray direction, and 𝑡 ∈ ℝ is a scalar that parameterizes

the ray progression from 𝑡𝑛 to 𝑡𝑓 , denoting near and far clips of the camera. Using an emission–

absorption model, we can write the radiance received by the camera along ray r as

𝐿(r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡) 𝜎 (𝑡) 𝑐 (𝑡) 𝑑𝑡 . (2.13)

Here, 𝑐 (𝑡) is the emitted radiance at position r(𝑡), which typically holds color values in RGB. The

volume density 𝜎 (𝑡) is the rate at which radiance is absorbed per unit length at r(𝑡), while the

transmittance 𝑇 (𝑡) is the fraction of light that makes it from r(𝑡𝑛) to r(𝑡) without being absorbed.

Using this interpretation, we can write the following relations [132]:

𝑇 (𝑡 + 𝑑𝑡) = 𝑇 (𝑡) (1 − 𝜎 (𝑡)𝑑𝑡) (2.14)

𝑇 (𝑡 + 𝑑𝑡) −𝑇 (𝑡)
𝑑𝑡

=
𝑑𝑇 (𝑡)
𝑑𝑡

= −𝑇 (𝑡) 𝜎 (𝑡). (2.15)

Assuming a transmittance of 1 at the start of the ray (i.e., 𝑇 (𝑡𝑛) = 1), the solution to the first-order

ordinary differential equation in (2.15) can be written as

𝑇 (𝑡) = exp

(
−

∫ 𝑡

𝑡𝑛

𝜎 (𝑡) 𝑑𝑡
)
. (2.16)

This indicates that a 3D scene (under the emission-absorption model) can be fully described by its

volume density and radiance, which can be thought of as its geometry and appearance, respectively.

The NeRF framework precisely does this by parameterizing a radiance field and a density field

as a small MLP. To capture the view-dependent effects, the radiance field also depends on the

ray direction d. Formally, the full representation can be characterized by the weights of a single
network 𝐹Θ : (x, d) ↦→ (c, 𝜎), where x ∈ ℝ3

is a 3D position in the volume, and c ∈ ℝ3
is the color

in RGB. In practice, computing the volume rendering equation in (2.13) requires approximating

the integral via quadrature [133]. Suppose we are given 𝑁 samples across a single ray at 𝑡1, . . . , 𝑡𝑁
that yield color and density values {(c𝑖, 𝜎𝑖)}𝑁𝑖=1

after querying the MLP. Assuming constant volume

density along each interval [𝑡𝑖, 𝑡𝑖+1), we can approximate the rendered color as

ĉ =
𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖 𝛿𝑖)) c𝑖, where 𝑇𝑖 ··= exp

(
−
𝑖−1∑︁
𝑗=1

𝜎𝑗𝛿𝑗

)
, (2.17)
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where 𝛿𝑖 ··= 𝑡𝑖+1 − 𝑡𝑖 is the distance between consecutive samples. Defining 𝛼𝑖 ··= 1 − exp(−𝜎𝑖𝛿𝑖)
yields the traditional alpha-compositing equation

ĉ =
𝑁∑︁
𝑖=1

𝑤𝑖c𝑖, where𝑤𝑖 ··= 𝛼𝑖
𝑖−1∏
𝑗=1

(1 − 𝛼𝑗 ). (2.18)

If we conventionally let 𝛿𝑁 → ∞, we have 𝛼𝑁 → 1 and

∑𝑁
𝑖=1
𝑤𝑖 = 1. In this case, the weights

{𝑤𝑖}𝑁𝑖=1
can be interpreted as probability masses that quantify the probability of a ray terminating

at interval 𝑖 after passing through previous intervals 1, . . . , 𝑖−1. This provides more stable gradients

when optimizing a NeRF-based representation, which we focus on next.

Optimization. Suppose we are interested in reconstructing a volumetric representation of a

static 3D scene using multiple observations of it from different angles. The NeRF framework [49]

introduces 1) positional encoding to capture high-frequency components of the scene and 2) a

hierarchical sampling strategy to more efficiently sample from the high-frequency representation.

Specifically, positional encoding involves mapping the input of a function to a higher-dimensional

space through an encoding function such as

𝛾 (𝑝) = (sin(20𝜋𝑝), cos(20𝜋𝑝), . . . , sin(2𝐿−1𝜋𝑝), cos(2𝐿−1𝜋𝑝)) , (2.19)

which uses 𝐿 frequencies to map a single scalar in ℝ to ℝ2𝐿
. In typical NeRF-based models, this

function is individually applied to each coordinate in the input positions and viewing directions.

Meanwhile, the hierarchical sampling involves constructing two networks (a coarse one and a fine

one) that implement an importance sampling procedure to gather samples from more informative

regions of the scene, where the importance is derived from the weights𝑤𝑖 of each sample. To train

these two networks, one can minimize a loss function that measures the pixel-wise discrepancy

between the outputs of both networks and the ground truth training images, such as a squared

loss used in the original work [49].

Variants. Neural radiance fields have revolutionized visual computing, leading to rapid advance-

ments in many tasks, including reconstruction, view synthesis, relighting and appearance editing,

scene understanding, and human digitization for AR/VR [134–136]. They have also been used

to represent dynamic scenes using single- or multi-view videos of them, for applications such

as free-viewpoint video synthesis, human performance capture, or content generation [40, 41,

137–139]. To represent motion in the scenes, one can modify the original NeRF formulation

as 𝐹Θ : (x, d, 𝑡) ↦→ (c, 𝜎), where 𝑡 denotes the time-conditioning [140]. Alternatively, one can

accompany a static MLP with a time-conditioned deformation field in 3D space to represent

motion. We defer a more in-depth discussion of these methods to Chapter 4, where we develop a

dynamic model based on the radiance field formulation.

Perhaps the most notable limitation of the original NeRF methodology [49] is that it represents

an entire 3D scene with a global MLP, which is queried at each point along each ray, limiting the

rendering speed and thereby the training speed. Among several works that attempt to circumvent

this issue, Instant Neural Graphics Primitives (InstantNGP) [141] discards the heavy sinusoidal

positional encoding and relatively large MLP queries, and it instead maps spatial positions to

learned feature vectors stored in multi-resolution hash tables and uses much smaller MLPs to

29



decode these features. Meanwhile, Plenoxels [142] represents scenes using sparse voxel grids,

where each voxel stores density and radiance. As the radiance is merely stored as coefficients

for a simple basis of view-dependent functions [143], the representation is completely neural

network-free (and hence is not a neural field). At a high level, both of these works secure compute

gains and reduce training and rendering times significantly by storing spatial scene features

explicitly, thereby increasing the overall memory cost.

The original NeRF framework and its variants introduced so far rely on per-pixel ray casting

to render scenes, by sampling and integrating radiance along camera rays. Since this stochastic

procedure typically requires many queries along each ray, NeRF-based methods, including faster

variants such as InstantNGP [141] or Plenoxels [142], face scalability challenges for high-resolution

or interactive applications. The key idea that has gained attention recently is to trade off even more

memory efficiency for computation, by designing GPU-friendly volumetric primitives that can be

rasterized efficiently with modern hardware. One notable representation, Pulsar [144], introduces

spherical primitives that can be rendered very efficiently, but the rather simple, depth-weighted

blending of primitives limits its ability to represent complex scenes with volumetric effects. More

recently, the seminal work 3D Gaussian Splatting (3DGS) [50] has introduced anisotropic 3D

Gaussians as volumetric primitives that can be rasterized and alpha-composited very efficiently,

securing significant speed gains over the previous state-of-the-art while achieving comparable

image quality. As 3DGS and its subsequent variants marked a turning point in vision and graphics,

leading to an explosion of methods that demonstrate notable performance gains in many visual

computing tasks, we devote a separate section to 3DGS.

2.2.2.2 3D Gaussian Splatting

Representation. In the landscape of 3D scene representations, point-based methods leverage

point-based primitives, which, in their simplest form, are merely fixed-size points that are dis-

connected from each other [145]. Although such a representation enables very fast rendering,

the rendered images may manifest irregularities or holes, limiting their applications that demand

high visual quality [146]. One approach to resolving this issue is to represent each point as splats
in object-space or screen-space, allowing each primitive to extend beyond a single pixel when

rendered [147, 148]. 3DGS follows the same spirit by representing scenes as clouds of 3D Gaussian

blobs in the object space [50]. Formally, a single 3D Gaussian is defined through

𝐺 (x) = exp

(
−1

2

(x − 𝝁)TΣ−1(x − 𝝁)
)
, (2.20)

where 𝝁 ∈ ℝ3
and Σ ∈ ℝ3×3

are respectively the mean and covariance of the Gaussian, and x ∈ ℝ3

is a position in the 3D world-space. To constrain the covariance matrices to be positive semi-

definite, the original work [50] factorizes them into scaling and rotation matrices as Σ = 𝑅𝑆𝑆T𝑅T
,

where 𝑅 ∈ ℝ3×3
is the rotation matrix and 𝑆 ∈ ℝ3×3

is the scaling matrix. Each Gaussian is

also associated with transparency 𝛼 ∈ [0, 1] and view-dependent radiance c ∈ 𝑅𝑐 represented as

coefficients to a basis of view-dependent functions, namely, spherical harmonics [143]. These

functions are solutions to Laplace’s equation in spherical coordinates and have the form

𝑌𝑚ℓ (𝜃, 𝜙) = 𝑁𝑚
ℓ 𝑃

𝑚
ℓ (cos𝜃 ) 𝑒𝑖𝑚𝜙 , (2.21)
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where 𝑌𝑚ℓ is referred to as a spherical harmonics function of degree ℓ and order 𝑚, 𝑃𝑚ℓ is an

associated Legendre polynomial, and 𝑁𝑚
ℓ is a normalization factor [149]. Here, the degree ℓ takes

non-negative integer values while the order𝑚 follows −ℓ ≤ 𝑚 ≤ ℓ . Therefore, there exists 2ℓ + 1

functions for degree ℓ , and (ℓ + 1)2
functions in total up to and including degree ℓ . Both degree

and order determine the complexity of the function through the number of oscillations around the

sphere on which they are defined [150]. To represent view-directional radiance through spherical

harmonics, we can take the linear combination of these functions with (ℓ + 1)2
coefficients for

each color channel, and associate these coefficients with each Gaussian primitive.

One major benefit of representing scenes as a cloud of Gaussian primitives is that these

primitives can be projected onto screen space efficiently through rasterization, hence avoiding ray

marching used in neural radiance field rendering. Concretely, each 3D Gaussian in the object space

can (approximately) be projected to the pixel space as a 2D Gaussian with 2D mean and covariance.

If a single pixel falls under multiple Gaussians, we can first sort them based on their depth and

alpha-composite them using Equation 2.18, where each color channel of the 𝑖-th Gaussian is

expressed as a linear combination of the real part of the functions in Equation 2.21, while alphas

associated with each Gaussian are modulated with

𝐺𝑝 (u) = exp

(
−1

2

(u − 𝝁T

𝑝 ) Σ−1

𝑝 (u − 𝝁𝑝)
)
. (2.22)

Here, 𝝁𝑝 ∈ ℝ2
and Σ𝑝 ∈ ℝ2×2

are respectively the mean and covariance of the projected Gaussian,

and u ∈ ℝ2
is a position in 2D pixel space. In summary, a 3DGS-based representation in its

simplest form can be expressed as

G = {(𝝁𝑖,Σ𝑖, c𝑖, 𝛼𝑖)}𝑁𝑖=1
, (2.23)

where 𝑁 is the number of Gaussians. Here, the position, shape, and density of Gaussians can be

considered as the geometry of the representation, whereas the spherical harmonics coefficients

describe the appearance. We should also note that the rendering of 3DGS is mathematically similar

to evaluating a radiance field that has been discretized into a set of Gaussian kernels, each of which

describes density and radiance continuously in 3D space. Therefore, 3DGS can be considered

a radiance field as well—as reflected in the title of the original paper [50]—but it is not a neural
radiance field, as there is no neural network involved in the original representation.

Optimization. Once again, suppose we are interested in recovering a volumetric representation of

a static 3D scene using multiple observations of it from different views. The original algorithm [50]

starts by initializing a set of Gaussians located at points obtained from an off-the-shelf structure-

from-motion (SfM) algorithm [151]. To train the positions, shapes, colors, and transparencies of

each Gaussian, one can again minimize a loss function that measures the pixel-wise discrepancy

between the rendered and ground-truth images. To handle the discrete nature of the representation,

the original work [50] proposes an adaptive density control algorithm that dynamically prunes low-

contributing Gaussians and spawns new ones in regions with high error. While such a heuristic

may work well in practice, it may also require more careful parameter tuning or lead to unstable

optimization compared to the training of NeRF-based methods [152]. Nevertheless, the significant

gains secured in rendering and training speed make 3DGS a very appealing representation.
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Variants. Since the introduction of 3D Gaussian Splatting, the vision and graphics communities

have revisited many tasks formerly addressed using NeRF-based methodologies [153, 154]. To

represent dynamic scenes, one can naively learn a sequence of attributes for each Gaussian in

the cloud. Similar to prior work in NeRFs, one can also designate a canonical space and describe

motion via a deformation field that modifies position and shape attributes of Gaussians [155].

Another class of methods attaches Gaussians to simpler representations such as meshes, and

performs animations by rigging these representations [156].

Revisiting the inherent memory–compute trade-off in 3D representations, 3DGS prioritizes

fast rendering at the expense of high memory usage, exceeding the memory requirements of the

fastest neural representations, such as InstantNGP [141]. Although neural representations enjoy

some model compression by design, primitive-based representations such as 3DGS may require

more careful memory-handling for consumer-facing applications. Such demand has motivated

various 3DGS compression methods [157], which use techniques such as pruning of redundant

primitives [158] or vector/codebook quantization of per-splat attributes [159, 160]. Another class

of methods focuses on efficient streaming of dynamic 3D Gaussians to reduce the bandwidth

requirements without compromising real-time performance [161–163], which is essential for

production-level real-world applications such as virtual telepresence.

Beyond conventional 3D Gaussians, new representations have pushed 3DGS towards better

surface accuracy and material realism. Works such as 2D Gaussian Splatting [164] and Quadratic

Gaussian Splatting [165] collapse 3D primitives into disks or surface patches, achieving more

accurate surface modeling. For more realistic appearance modeling, normals, shading functions, or

material properties may be attached to Gaussians as additional attributes [166–168]. Collectively,

these innovations transform Gaussian splats from fast radiance fields into a relightable primitive

family that interfaces cleanly with mesh pipelines and future compression standards.

2.3 3D Face Reconstruction

In this chapter, we initially discussed inverse problems encountered in computer vision, with

an emphasis on the reconstruction of general 3D scenes. Having provided an overview of how

these general scenes are represented, we now turn our attention to the specific class of scenes this

thesis focuses on: 3D human faces. Among many problems that involve 3D faces, we first limit

our attention to the 3D face reconstruction problem, which lies at the core of this thesis.

2.3.1 Problem Definition

We define geometry model and appearance model of a 3D representation as follows:

𝐺 : ℝ𝑝 → ℝ𝑔 𝐴 : ℝ𝑝 → ℝ𝑎 , (2.24)

both of which take a vector of scene control parameters p ∈ 𝑅 𝑝 and output the geometry and

appearance realizations of the scene. For example, a geometry realization of a single mesh surface

would include vertex positions as well as the mesh topology that defines how these vertices are

connected, while an appearance realization may include an RGB texture map in UV-space as well

as the UV-coordinates assigned to each vertex. For a neural radiance field, the neural network

weights for the density and color fields would capture the geometry and appearance realizations of
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the scene, respectively. The control parameters can define the position, orientation, deformation

of the objects, or the lighting conditions in the scene, making the definition in (2.24) general for

any controllable 3D scene representation.

Given a set of camera parameters c ∈ ℝ𝑐
that defines camera intrinsic and extrinsics, we

assume that we are given a deterministic function R : ℝ𝑔 × ℝ𝑎 × ℝ𝑐 → ℝ𝑛
that renders a 3D

scene (described by its geometry and appearance) to a 2D image as seen from the camera. Putting

everything together, we write our observation model as

y = R(𝐺 (p), 𝐴(p); c) + n , (2.25)

where n ∈ ℝ𝑛
denotes an additive noise vector due to the measurement process, and y ∈ ℝ𝑛

is the

observed image of the scene from a camera with parameters c. To perform 3D reconstruction of a

face from its single or multiple observations, we can leverage traditional techniques commonly ap-

plied to general scenes, including shape-from-shading [169], photometric stereo [170], multi-view

stereo [25], and structured-light methods using active illumination [171]. However, to enhance the

performance of these algorithms, it is natural to exploit some domain-specific knowledge about

3D faces. Given that reconstructing 3D scenes from limited observations inherently constitutes

an ill-posed inverse problem, statistical modeling of faces would be a compelling approach to

incorporate such knowledge. Specifically, although a 3D face representation can be extremely

high-dimensional (for instance, a face mesh at moderate resolutions may contain thousands of

vertices), the intrinsic degrees of freedom governing facial geometry and albedo are well-captured

within a much lower-dimensional subspace. This insight has motivated research into statistical

modeling of 3D faces, culminating in the seminal work on 3D Morphable Face Models (3DMM) by

Blanz and Vetter [9], which has significantly advanced the field of 3D face analysis.

2.3.2 3D Morphable Face Models

Consider the underlying distribution of human faces across the global population. While each

person possesses a unique combination of face shape and skin tone, there exist strong shared

structural patterns—for instance, most faces exhibit bilateral symmetry around the sagittal plane,

and skin tones generally fall within a limited range of naturally occurring hues. Given a sufficiently

large collection of 3D face scans or other digital representations, it may be feasible to model a

distribution that captures the dominant modes of variation within this data. In the original work,

Blanz and Vetter [9] use RGB laser scans of faces of 200 young adults, where dense correspondences

between facial features are estimated via an optic flow-based algorithm. Given a total number

of vertices 𝑉 in each scan, this yields a face shape vector s ∈ ℝ3𝑉
and texture vector t ∈ ℝ3𝑉

for each sample in the dataset. Then, they model shape and texture distributions individually as

multivariate Gaussians whose parameters are estimated from the data:

s = s̄ + Bs𝜶s t = t̄ + Bt𝜶t , (2.26)

where s̄ ∈ ℝ3𝑉
and t̄ ∈ ℝ3𝑉

are estimated mean vectors for shape and texture, Bs ∈ ℝ3𝑉×𝑁𝑠

and Bt ∈ ℝ3𝑉×𝑁𝑡
are basis matrices obtained via truncating the eigenbases of the covariance

matrices for shape and texture with 𝑁𝑠, 𝑁𝑡 ≪ 3𝑉 , and both 𝜶s ∈ ℝ𝑁𝑠
and 𝜶t ∈ ℝ𝑁𝑡

are distributed

standard normally. Albeit simple, such a distribution can serve as a powerful prior for analysis,

synthesis, and reconstruction tasks involving human faces. Indeed, subsequent 3DMMs use larger

3D datasets, incorporating facial expressions and full heads into the models [172–174].
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Full head models. Perhaps one of the most influential morphable face models nowadays is

FLAME [174], which models a full head with 𝐾 = 4 joints: neck, jaw, and two eyeballs. Under this

model, a canonical (unposed) face can be written as follows:

s(𝜷, 𝝍) = s̄ + Bid𝜷 + Bexpr𝝍 , (2.27)

where s̄ ∈ ℝ3𝑉
is the mean face shape, Bid ∈ ℝ3𝑉×|𝜷 |

and Bexpr ∈ ℝ3𝑉×|𝝍 |
are the identity and

expression PCA bases, and 𝜷 ∈ ℝ|𝜷 |
and 𝝍 ∈ ℝ|𝝍 |

are identity and expression coefficients. These

two offsets on top of the template mesh s̄ explain the shape variations due to identity of the subject

and due to facial expressions, although achieving full disentanglement of these variations is a

challenging task [175]. Now, suppose we are given rotation vectors for each joint and a global

rotation vector in axis-angle representation (∈ ℝ3), all of which are concatenated into a single

vector 𝜽 ∈ ℝ3𝐾+3
. We can then write pose offsets (∈ ℝ3𝑉 ) as

Δp(𝜽 ) ··= Bpose (𝑅(𝜽 ) − 𝑅(𝜽0)) , (2.28)

where 𝑅 : ℝ3𝐾+3 → ℝ9𝐾
converts pose vectors of all joints to vectorized 3 × 3 rotation matrices

and concatenates them, Bpose ∈ ℝ3𝑉×9𝐾
includes the pose blendshapes, and 𝜽0 ∈ ℝ3𝐾+3

is the

zero-pose vector. Using these pose corrections, we can write a posed face as

s′(𝜷, 𝝍, 𝜽 ) = s(𝜷, 𝝍) + Δp(𝜽 ) , (2.29)

on which a standard vertex-based linear blend skinning is applied. For appearance, linear texture

models that build on the FLAME topology have been subsequently developed [176]. These models

express textures as UV-space maps and are of the form

t = t̄ + Btex𝝓 , (2.30)

where t̄ ∈ ℝ|t|
is the mean texture, Btex ∈ ℝ|t|×|𝝓 |

is the texture basis, and 𝝓 ∈ ℝ|𝝓 |
are the texture

coefficients. For example, if the texture map is of resolution 𝑟 × 𝑟 and contains 𝑐 channels, we

have |t| = 𝑟 × 𝑟 × 𝑐 with |𝜙 | ≪ |t|.

Variants. Thus far, we have looked into traditional methods for constructing linear 3DMMs,

which typically rely on high-quality 3D face scans and employ principal component analysis (PCA)

to derive low-dimensional bases that capture variations in identity, expression, and appearance.

While these linear models have proven effective for encoding coarse geometric structure and

moderately detailed texture, they exhibit limited capacity to represent fine-grained facial details—

such as wrinkles, moles, freckles, or other subject-specific characteristics. Moreover, the diversity

of face variations that a 3DMM can model is inherently constrained by the scope of the underlying

3D scan dataset, which is often expensive and logistically challenging to collect at a large scale

with demographic balance. To mitigate the reliance on curated 3D scan datasets, a new class of

methods has emerged that learns 3DMMs directly from in-the-wild images or videos. Among

these, Tran and Liu [177, 178] replace linear PCA bases with nonlinear, convolutional decoders

to enhance the capacity of the learned shape and texture spaces. Other approaches, such as

TRUST [179], still utilize 3D scans but focus on increasing albedo diversity by incorporating a wider

range of skin tones into the training data. More broadly, the fundamental premise of a 3DMM—

learning a compact, parametric space that captures the natural distribution of human faces—has
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been extended beyond mesh-based representations to include alternative representations such as

implicit surfaces [180], neural radiance fields [181], and 3D Gaussian Splatting [182], all of which

offer new trade-offs in terms of fidelity, generalization, and rendering speed.

Having established the foundations of parametric face modeling, we now turn our attention

to 3D face reconstruction algorithms, many of which incorporate these models as priors or

constraints. Mirroring the taxonomy introduced in the previous section, our discussion is organized

around the type of underlying representation employed by these algorithms. While this overview

provides a broad perspective on the landscape of face reconstruction, our main focus is on static

reconstructions from single images. We defer the discussion of dynamic reconstruction from

single- or multi-view sequences and the animation of these reconstructions to subsequent chapters.

2.3.3 Surface-based Methods

Many face reconstruction approaches adopt geometry and appearance models (𝐺,𝐴) defined by

a linear, mesh-based 3DMM, and estimate the model parameters p in an analysis-by-synthesis

fashion [3]. Parameter estimation can be carried out either via direct optimization [183, 184] (e.g.,
by minimizing the discrepancy between rendered and observed images) or by learning a function,

typically implemented as a neural network, that maps input images to model parameters [185,

186]. However, reconstructions obtained through these methods are inherently restricted to the

subspace spanned by the linear 3DMMs, often resulting in overly smooth or generic face geometry.

To enhance detail and capture finer structures, one line of work introduces a refinement stage

following a coarse model-based reconstruction [187, 188]. Alternatively, model-free approaches

abandon the parametric formulation entirely to allow greater flexibility [189, 190], while other

methods learn more expressive, nonlinear parametric models that address the reconstruction

problem simultaneously [177, 178, 191]. Another strategy for capturing fine-scale details involves

encoding high-frequency geometry into texture maps, effectively baking geometric variations

into appearance [192, 193]. Although this yields visually compelling results, these representations

typically lack the physical correctness required for downstream tasks like relighting or animation.

Animating reconstructed faces, i.e., modifying control parameters p to synthesize novel expressions,

also demands a careful algorithmic design. In particular, geometry deformations must account

for person-specific traits such as expression lines, dimples, or asymmetric features to achieve

photorealistic and identity-preserving animations.

It is worth noting that many mesh-based reconstruction algorithms rely on gradient-based

optimization to estimate model parameters. As a result, these approaches require the rendering

operation R to be differentiable with respect to geometry and appearance realizations as well as

camera parameters. Furthermore, the underlying geometry and appearance models must also be

differentiable with respect to their control parameters. Achieving this in discrete representations

such as meshes is non-trivial, as it requires a careful re-implementation of each step throughout the

rendering process to preserve differentiability. Nowadays, several differentiable mesh renderers are

publicly available [194–196] and tightly integrated with modern deep learning frameworks. These

tools have significantly lowered the barrier to implementing gradient-based mesh optimization

and have inspired further research into converting non-differentiable rasterization pipelines to

differentiable ones with minimal engineering [197].

Most surface-based face reconstruction methods represent geometry using a single mesh, and

therefore, they are inherently limited by a finite resolution. To overcome this limitation, several
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approaches adopt continuous representations such as SDFs to enable resolution-independent

reconstruction and recover fine-grained details that discrete meshes may miss [180, 198–200].

Further, native differentiability of some of these representations can facilitate integration into

gradient-based learning pipelines without the need for specialized rendering implementations.

Nevertheless, continuous surface-based methods, like their mesh-based counterparts, still model

the face as a single surface. As a result, they also struggle to represent volumetric and complex

structures such as hair, beards, translucent face regions, or self-occlusions of the face, such as the

oral cavity. This limits the applicability of these models in high-fidelity scenarios that demand

photorealistic 3D digital humans. Naturally, these constraints motivate a shift toward volumetric

approaches, which we briefly explore next.

2.3.4 Volumetric Methods

For static faces, early volumetric reconstruction methods in the deep learning era employed

convolutional neural networks to regress 3D voxel grids from images directly [201, 202]. The

emergence of radiance field-based representations [49, 50] significantly enhanced the capabilities

for high-quality volumetric modeling, enabling richer geometry and appearance reconstructions

with view-consistent details [181, 203, 204].

In the absence of explicit 3D priors or multiview data, one can resort to 3D generative models

learned from in-the-wild face images. With single-step models, such as those learned with an

adversarial training framework [205], 3D reconstruction may involve inverting an image into

the model’s latent space [10, 11, 14, 206]. With multi-step models, such as diffusion models [89],

it was demonstrated that 2D image or video models can capture useful 3D priors, eliminating

the need for explicit 3D generative modeling [98, 207, 208]. A more recent line of work explores

transformer-based large reconstruction models [209, 210] that are trained on massive datasets to

learn powerful priors about the 3D reality. Via a single forward pass, these models can quickly

predict 3D realizations of 2D observations. Although developed for general scene reconstruction,

the underlying architecture and training paradigm of these models are well-suited for adaptation

to face-specific reconstruction tasks using curated face datasets.

When single-view or multiview video datasets are available, the 3D reconstruction problem

can be seen as a performance capture problem, which involves estimating temporally coherent,

dynamic 3D faces. As research in this area has showcased compelling, photorealistic dynamic face

synthesis with volumetric effects, the attention has shifted to building expression-controllable 3D

face models—an inherently more complex challenge. This brings us to the realm of 3D photoreal

avatars, which is the concluding focus of this thesis. To properly contextualize this progression,

we postpone our discussion of the broader concept of 3D digital humans until Chapter 4, where

we turn our attention to the application-driven aspects of the dynamic 3D face reconstruction task.
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3
3D-Aware Face Image Manipulation

3.1 Introduction

Face image manipulation refers to the task of altering one or more attributes of a given face image.

It has many prominent applications in the entertainment domain, where users can modify their

portrait images according to personal preferences, such as smoothing skin textures, enhancing

hair appearance, adjusting facial illumination to match a new background, or even adding virtual

accessories. While these are undoubtedly popular use cases, which have transformed content

creation, virtual try-ons, and portrait enhancement, face manipulation pipelines extend far beyond

these scenarios [211]. For example, these pipelines can be employed to create synthetic datasets

that augment existing ones, thereby enabling the learning of more robust face representations

for downstream tasks [212]. Moreover, given that face images often carry sensitive biometric

information, data collected without consent can be processed using face de-identification or

anonymization techniques to safeguard privacy [213]. This diverse set of applications makes face

editing algorithms a compelling research topic with several key technical challenges.

3.1.1 Main Challenges

Before devising a face manipulation algorithm, it is essential to first clarify what we mean by

manipulations: which face attributes are to be considered, and how can a user describe a desired

edit? Perhaps the most intuitive approach involves a natural language description, where the

user provides a prompt directly to the algorithm. While such high-level commands may be

convenient for end users, certain applications may demand a more physically-grounded and

parameterized description of manipulations, enabling finer control and reproducibility. This

may involve, for example, describing 3D face shape manipulations using an explicit 3D mesh or

representing the illumination changes by parameterizing lighting conditions with a set of basis

functions that describe view-dependent intensity and color variations. Historically, many methods

have approached face manipulation using single-step pretrained generative models [205], often
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Figure 3.1: Overview of our fully disentangled, 3D controllable face image manipulation pipeline.

incorporating 3D Morphable Models (3DMMs) [3] as control priors. These approaches typically

operate in the latent spaces of generative architectures, allowing for attribute modifications by

traversing specific directions in these compact representations. Yet, these lower-dimensional

descriptions of highly complex face images exhibit significant entanglement among distinct face

attributes, such that altering a single attribute frequently induces unintended changes in others.

Overcoming this, i.e., achieving disentanglement, remains a fundamental and challenging objective.

Another consideration in face image manipulation is the degree of 3D-awareness of the manip-

ulation algorithm. For example, when changing lighting conditions, it may be desirable to generate

cast shadows that accurately conform to the 3D geometry of the face. Similarly, when modifying

expressions, such as enhancing a subtle smile into a broad grin, it may be important to reproduce

secondary effects like skin wrinkling, nasolabial folds, and the shifting of details across the face.

However, generative face models developed prior to the work presented in this chapter have

predominantly relied on 2D-only architectures, largely neglecting explicit 3D reasoning during

synthesis. As a result, while these models can implicitly encode 3D information in their latent

spaces, their lack of explicit 3D representations limits their capacity to handle view-dependent

effects and geometry-aware edits with high fidelity. This limitation highlights the need for models

that not only synthesize visually appealing outputs but also possess a deeper understanding of

the underlying 3D structure and photometric properties of human faces.

Computational efficiency of face manipulation algorithms is also an important factor, par-

ticularly for applications that require edits across large datasets. For example, tasks such as

face anonymization across massive photo archives or videos may demand algorithms capable

of processing thousands of faces in a short time frame. When manipulating a real face image,

or in general, an arbitrary face image not generated by the pretrained face model at hand, early

methods often resort to optimization-based techniques to embed input images into the latent

space of these models via iterative procedures [19]. While these approaches have demonstrated
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success in photorealistic editing of real images, they are both computationally expensive and may

fail to preserve fine-level details of the face, sometimes leading to perceptible artifacts. Designing

algorithms that can take an input image and produce a photorealistic edited version of it in under

a second on modern hardware remains a formidable yet desirable goal for practical deployment.

Nowadays, publicly available large-scale face image datasets typically lack sufficient variation

in head poses, facial expressions, and lighting conditions, resulting in generative models biased

toward a narrow distribution of average faces [84]. Consequently, when these models are tasked

with performing extreme manipulations, such as rotating a face far from the frontal view, synthe-

sizing uncommon expressions, or relighting faces under complex environments, they often fail

to generalize and produce unrealistic outputs [19]. This calls for new architectures and learning

paradigms capable of handling out-of-distribution scenarios with high visual fidelity, which can

be crucial for certain face editing applications.

3.1.2 Main Objective and Contributions

In this chapter, we address the problem of photorealistic face image manipulation using a dataset

of single-view, in-the-wild face images. Our goal is to develop an algorithm capable of tackling

four key challenges: 1) disentanglement of face attributes, 2) 3D-awareness of manipulations, 3)

computational efficiency, and 4) robustness to extreme manipulations beyond the training data

distribution. Our proposed solutions to these challenges are outlined below. Please see Figure 3.1

for an overview of our pipeline.

Disentanglement. By explicitly estimating and processing each face attribute independently

within the architecture, our method achieves full disentanglement by design. Such an architecture

ensures that modifications to one attribute do not inadvertently affect others, enabling precise

and semantically consistent edits.

3D-awareness. We introduce a fully 3D-aware architecture that maintains computational ef-

ficiency at inference time. This is accomplished by estimating 3D geometry and appearance

parameters using 2D convolutional operations, which are then mapped onto 3D assets via a

predefined template mesh topology. This approach leverages the efficiency of 2D convolutions

while preserving explicit 3D structural information.

Computational efficiency. To replace computationally expensive optimization procedures, com-

monly used to embed input images into latent spaces, we design a learnable function that performs

this operation in a single forward pass. Specifically, we employ separate encoders for each face

attribute, allowing direct estimation of controllable 3D representations from an input image.

Support for extreme manipulations. A key insight in our approach lies in representing face

attributes in their physical spaces, without resorting to compressed spaces or lower-dimensional

abstractions. By preserving full physical representations of geometry, appearance, and lighting,

our pipeline showcases generalization to manipulations outside the training data distribution.
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3.1.3 Preliminaries

In this part of the thesis, we consider the following variation of the observation model in (2.25):

y = Ψ(R(𝐺 (p), 𝐴(p); c)) + n , (3.1)

where Ψ : ℝ𝑛 → ℝ𝑛
denotes an image enhancement function applied to the rendered 2D output.

This post-processing step can be beneficial when the underlying geometric and appearance models

fall short of capturing the full complexity of the 3D reality, as is often the case with single-surface

representations, which we adopt in this work. Given a single face image, our objective is to render

it under different control inputs such as 3D shape, albedo, or lighting. To achieve this, we assume

that we are given a dataset of 𝑁 single-view face images of different subjects {y𝑖}𝑁𝑖=1
without

ground truth camera parameters. Since we do not know the camera parameters nor the image

enhancement operation Ψ, we have a blind inverse problem with a complex but known, nonlinear

rendering operation R. We assume these operations to be differentiable as we aim to recover a 3D

face using gradient-based optimization algorithms. In what follows, we use notation consistent

with the published work [214].

3.2 Background and Related Work

To lay the groundwork for our pipeline, we first review the principles of generative adversarial

networks [205], highlighting the architectural components critical to our approach. Then, we

provide a literature review of face image manipulation methods that precede our methodology,

where we discuss our method’s key differences with these modern frameworks.

3.2.1 Generative Adversarial Networks

To build the principles of generative adversarial networks (GANs) [205], we begin by deriving the

adversarial training framework, including its theoretical formulation and the optimality conditions

of the minimax objective central to GANs. We then narrow our focus to a specific class of generator

architectures, namely style-based models [84], which have proven highly effective in synthesizing

photorealistic images and form the backbone of our proposed approach.

3.2.1.1 Derivation of Adversarial Training

Given a set of samples drawn from an unknown data distribution, the goal of generative modeling
is to approximate this underlying distribution with a probabilistic model that faithfully captures its

statistics. Generative models form a cornerstone of modern machine learning, enabling a range of

capabilities including the synthesis of novel samples and the construction of data-driven priors that

can be used in solving inverse problems, representation learning, coding, and compression [215,

216]. For visual signals—such as images, videos, or 3D assets—the generative modeling problem

becomes especially challenging due to the high dimensionality and intricate structure of the

underlying distributions, which often exhibit complex dependencies that are difficult to describe

analytically. A common approach to generative modeling involves learning a deterministic
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function, parameterized by weights w𝑔, that maps a sample from a simple prior distribution 𝑝z
(e.g., a standard Gaussian) to a sample in the target data space:

𝐺 (·; w𝑔) : ℝ|z| → ℝ|x| , (3.2)

which takes in a latent vector z ∈ ℝ|z|
distributed according 𝑝z to and generates a sample x ∈ ℝ|x|

.

Let 𝑝𝑚 denote the derived distribution that characterizes the output x of the model 𝐺 . Given a

dataset of samples {x(𝑖)}𝑁𝑖=1
, each distributed according to an unknown 𝑝𝑑 , generative modeling

aims to match the model distribution 𝑝𝑚 to the data distribution 𝑝𝑑 by optimizing the generator

weights w𝑔. To achieve this, the adversarial training framework [205] leverages another trainable

function parameterized by weights w𝑑 :

𝐷 (·; w𝑑) : ℝ|x| → [0, 1] , (3.3)

which takes in a sample x ∈ ℝ|x|
and outputs a scalar 𝑠 ∈ [0, 1] that represents the probability

that the given sample originates from the real distribution 𝑝𝑑 . This function, referred to as the

discriminator, is trained to differentiate between real samples drawn from the dataset and fake
samples synthesized by a generator. In parallel, the generator𝐺 is optimized to produce samples

that are indistinguishable from real data, thereby fooling the discriminator 𝐷 into classifying

generated instances as real. This adversarial training paradigm can be formalized as a two-player

minimax game, defined over a value function 𝑉 (𝐺, 𝐷):
min

𝐺
max

𝐷
𝑉 (𝐺, 𝐷) = min

𝐺
max

𝐷
𝔼x∼𝑝𝑑 [log(𝐷 (x))] + 𝔼z∼𝑝z [log(1 − 𝐷 (𝐺 (z)))] , (3.4)

which takes the form of a binary cross-entropy objective. For any given generator 𝐺 , we can

expand 𝑉 (𝐺, 𝐷) as follows:

𝑉 (𝐺, 𝐷) =
∫

x
𝑝𝑑 (x) log(𝐷 (x))𝑑x +

∫
z
𝑝z(z) log(1 − 𝐷 (𝐺 (z))𝑑z (3.5)

=
∫

x
[𝑝𝑑 (x) log(𝐷 (x)) + 𝑝𝑚 (x) log(1 − 𝐷 (x))]𝑑x , (3.6)

where we apply the change of variable x = 𝐺 (z) to the expectation over z. If we define 𝑓 (𝐷) ··=
𝑝𝑑 log𝐷 + 𝑝𝑚 log(1 − 𝐷), one can verify that 𝑓 (𝐷) is maximized at 𝐷∗ = 𝑝𝑑/(𝑝𝑑 + 𝑝𝑚), and hence

𝐷∗(x) = 𝑝𝑑 (x)/[𝑝𝑑 (x) + 𝑝𝑚 (x)] for every x. Plugging this into the objective, we have

𝑉 (𝐺, 𝐷∗) =
∫

x

[
𝑝𝑑 (x) log

𝑝𝑑 (x)
𝑝𝑑 (x) + 𝑝𝑚 (x)

+ 𝑝𝑚 (x) log

𝑝𝑚 (x)
𝑝𝑑 (x) + 𝑝𝑚 (x)

]
𝑑x (3.7)

=
∫

x

[
(𝑝𝑑 (x) + 𝑝𝑚 (x)) log

1

2

+ 𝑝𝑑 (x) log

𝑝𝑑 (x)
𝑝𝑑 (x)+𝑝𝑚 (x)

2

+ 𝑝𝑚 (x) log

𝑝𝑚 (x)
𝑝𝑑 (x)+𝑝𝑚 (x)

2

]
𝑑x (3.8)

= − log 4 + 𝐷KL

(
𝑝𝑑




 𝑝𝑑 + 𝑝𝑚
2

)
+ 𝐷KL

(
𝑝𝑚




 𝑝𝑑 + 𝑝𝑚
2

)
(3.9)

= − log 4 + 2𝐷 JS (𝑝𝑑 ∥ 𝑝𝑚) , (3.10)

where 𝐷KL is Kullback-Leibler divergence and 𝐷 JS is Jensen-Shannon divergence defined as

𝐷 JS(𝑝 ∥𝑞) ··= 1

2

[
𝐷KL

(
𝑝



 𝑝 + 𝑞

2

)
+ 𝐷KL

(
𝑞



 𝑝 + 𝑞

2

)]
. (3.11)
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Since these divergences are non-zero quantities,𝑉 (𝐺, 𝐷∗) is minimized when 𝑝𝑑 = 𝑝𝑚 and achieves

a constant value of − log 4. When this is the case, the optimal discriminator 𝐷∗(x) = 1/2 for all

x, meaning that the discriminator cannot do better than random guessing once the generator’s

distribution matches the data distribution. It can be shown that this solution is a Nash equilibrium

of the minimax game in Equation 3.4 [217].

To achieve the Nash equilibrium, the original work [205] proposes a stochastic gradient-

based algorithm that sequentially maximizes and minimizes the value function to update the

discriminator and the generator, respectively. In practice, the objective is often high-dimensional

and non-convex, and the proposed optimization algorithm poses stability challenges such as

non-convergence or mode collapse [218]. While numerous works have proposed alternatives

to the minimax objectives, novel training paradigms, or various heuristics and tricks [219–223],

adversarial training remains a relatively unstable algorithm for generative modeling compared to

more recent generative paradigms [89]. Nevertheless, the generative adversarial network (GAN)
objective can be conveniently augmented in many deep learning-based approaches by introducing

a single loss function, sometimes referred to as a realism loss, which promotes the realistic synthesis

of different classes of signals. In fact, we pursue a similar objective in our photorealistic image

manipulation pipeline that is developed later in this chapter.

3.2.1.2 Style-based Models for Image Synthesis

Up to this point, we have considered a generic data distribution 𝑝𝑑 and arbitrary functions for

the generator 𝐺 and the discriminator 𝐷 . We now narrow our focus to specific classes of images,

whose structure guides the architectures of 𝐺 and 𝐷 . Given a vector z in some latent space Z,

one common approach is to employ a fully convolutional generator that maps the latent space to

the image domain X (i.e.,𝐺 : Z → X) along with a convolutional discriminator that maps images

to scalar outputs, 𝐷 : X → [0, 1]. Conventional generator designs typically inject the latent code

only at the input layer, but this limits the model’s ability to disentangle and control high-level

semantic attributes in the generated images [84].

The seminal StyleGAN architecture [84] introduces a novel generator design, drawing inspi-

ration from advances in the style transfer literature. To promote disentanglement, i.e., to learn

a latent space composed of linear subspaces that control a single semantic attribute, StyleGAN

employs a learned nonlinear mapping 𝑓 : Z → W that transforms latent vectors from the input

space Z into an intermediate latent space W via an MLP. While samples z ∈ Z are drawn from

a simple, fixed prior (typically a standard Gaussian), their transformed counterparts w = 𝑓 (z)
exhibit a more complex distribution, empirically shown to yield more disentangled representations.

These intermediate codes w are then used to condition a convolutional generator that synthesizes

high-quality images that approximate the target data distribution.

The proposed generator in StyleGAN [84] transforms a learned constant tensor to an image

through a number of convolutional and upsampling layers. To control the generator output, the

intermediate vector w conditions each convolutional layer via an adaptive instance normalization

(AdaIN) operation [224]. Specifically, for each layer ℓ , the vector w is first mapped to a pair of

style vectors y 𝑠
ℓ , y

𝑏
ℓ ∈ ℝ𝑁ℓ

via learned affine transformations, where 𝑁ℓ is the number of feature

maps at layer ℓ . Then, the 𝑖-th feature map at this layer xℓ,𝑖 is transformed according to

xℓ,𝑖 = y 𝑠
ℓ,𝑖

xℓ,𝑖 − 𝜇 (xℓ,𝑖)
𝜎 (xℓ,𝑖) + y𝑏ℓ,𝑖 (3.12)
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where y 𝑠
ℓ,𝑖, y

𝑏
ℓ,𝑖 ∈ ℝ are the 𝑖-th component of the style vectors, and 𝜇 (·), 𝜎 (·) compute the mean

and standard deviation across the elements of a vector, respectively. This style-based conditioning

mechanism not only significantly enhances synthesis quality but also enables fine-grained control

over the generated outputs across multiple scales, from coarse structural attributes to finer details.

Since its introduction, the original StyleGAN architecture has undergone several refinements

to mitigate characteristic artifacts in the synthesized images, leading to subsequent iterations [225,

226]. StyleGAN2 [225] introduces modest architectural modifications, notably replacing instance

normalization with weight demodulation, which effectively suppresses blob-like artifacts while

preserving disentangled semantic control. Building on this, StyleGAN3 [226] presents a more

substantial redesign of the generator to address the so-called texture sticking phenomenon, wherein

high-frequency details erroneously lock to specific image coordinates, particularly during latent

space interpolations or spatial transformations. In this chapter, we leverage the StyleGAN2 [225]

architecture to synthesize textures for reconstructed 3D face meshes.

3.2.2 Face Image Manipulation

Photorealistic face image manipulation is inherently tied to the ability to synthesize realistic face

images. In late 2010s, GANs [205] have established a new benchmark in high-quality image genera-

tion, with style-based variants [84, 225, 226] producing face images that are often indistinguishable

from real photographs. While conventional GANs operate purely in the 2D domain, several

methods have explored extending generative modeling to 3D by leveraging voxel-based [125,

227–233] and mesh-based [234–236] representations to better capture the underlying 3D structure.

More recently, neural implicit representations have enabled continuous and differentiable 3D scene

synthesis, including that of human faces [237, 238]. Parallel efforts have focused on extracting

3D-aware features from pretrained 2D GANs to support image manipulation in 3D [239, 240] or

to recover explicit 3D geometry from single images [241, 242]. However, many of these methods

lack strong geometric priors, which constrain their ability to perform precise 3D-aware manipula-

tions. In contrast, our approach is grounded in a 3D architecture that explicitly incorporates the

StyleGAN2 generator [225]. Notably, our method is trained without access to real, high-quality

3D data, yet it learns strong 3D face priors to achieve photorealistic synthesis and manipulation.

A central application of 3DMMs is the reconstruction of 3D faces from 2D images, with the goal

of recovering either face shape alone [243, 244] or both shape and albedo [245, 246]. Approaches

that jointly estimate shape and albedo have increasingly leveraged GANs to produce higher

quality and more photorealistic textures [192, 193, 247]. Among these works, GANFIT [192] and

AvatarMe [247] achieve reconstructions with rich high-frequency details, but their success depends

on access to large-scale, high-quality 3D training datasets. Unlike these methods, our approach

does not rely on high-quality 3D ground truth for supervision. Instead, we learn to synthesize

photorealistic 3D face representations directly from 2D images. While several other methods also

attempt 3D face recovery from 2D images [186, 246], their outputs lack the photorealism and miss

important features of the face, such as hair or teeth.

A well-established line of research on 3D face modeling builds on 3DMMs [3, 9] to construct

parametric models of face geometry and appearance from high-quality 3D scans. Conventional

linear 3DMMs, such as the Basel Face Model [173, 248] and FLAME [174], are typically limited in

expressiveness due to their reliance on low-rank PCA bases and the scarcity of diverse training data.

These models often fail to capture fine-grained facial detail and realistic appearance variations. To
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overcome these limitations, several works have proposed nonlinear extensions of 3DMMs. Notably,

[177, 178, 191] introduce deep learning-based models that significantly improve reconstruction

quality compared to their linear counterparts. Neural architectures have also been explored for

high-quality texture synthesis in various face modeling tasks [193, 249, 250], demonstrating the

potential of learned representations to achieve better realism. In this chapter, we build our face

model as a nonlinear 3DMM based on the FLAME topology. While FLAME’s original linear

bases lack the capacity to produce photorealistic outputs, we leverage them to generate synthetic

training data and to impose regularization during albedo reconstruction. Importantly, although our

model adopts the FLAME mesh template, it does not inherit FLAME’s representational constraints:

we learn an entirely new model with significantly enhanced expressiveness in both shape and

appearance. Unlike prior work such as Tran and Liu [177], we employ separate encoders for

different face attributes to promote disentanglement, and we integrate StyleGAN2 for albedo

synthesis, enabling more photorealistic texture generation.

Recent efforts have explored the integration of 3D Morphable Models (3DMMs) into adversarial

training frameworks to enable disentangled editing of portrait images [18–20, 251–257]. Among

these, DiscoFaceGAN [18] employs contrastive learning to enforce attribute disentanglement,

while StyleRig [19] couples a 3DMM with a pretrained 2D style-based generator and manipulates

images in the latent space. However, both approaches rely on 2D generative models and are

thus limited in handling challenging 3D variations such as extreme pose, illumination, and facial

expression. To edit real face images, these methods typically require projection into the latent space

of the generator via techniques such as Image2StyleGAN [258], which can degrade the quality of

the results. To address this, Portrait Image Embedding (PIE) [20] introduces an optimization-based

inversion scheme that better preserves photorealism during latent space projection. Nevertheless,

as both StyleRig and PIE are built upon a pretrained 2D style-based generator, they are limited

to the distribution of variations seen in the face image dataset [84] used to train this generator.

Furthermore, since the disentanglement in these frameworks is introduced post hoc, they fall

short of achieving fully independent control over physical attributes. Concurrent to the work

presented in this chapter, GAR [255] introduces a photorealistic face reconstruction method that

can be used to manipulate portrait images, and VariTex [254] introduces a variational texture

model that enables face synthesis with attribute control. However, both methods primarily focus

on manipulating expression and head poses. In contrast, we are more generally interested in

modifying 3D shape, albedo, and lighting conditions.

3.3 Methodology

Our approach combines a statistical model of 3D faces with a style-based GAN, achieving a

photorealistic and fully disentangled 3D model of faces. We achieve such disentanglement by

individually processing each of the face’s physical attributes in our architecture, through separate

encoders and decoders, as illustrated in Figure 3.2. Such explicit control enables us to extrapolate

beyond what is well-represented in the training set, allowing for face synthesis in extreme facial

expressions and lighting conditions.
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Figure 3.2: Overview of our architecture. Our model starts with a set of encoders {E𝜶 ,E𝜷 ,E𝜸 ,E𝜽 ,Eh}
for shape, albedo, lighting, pose, and hair, respectively. To reconstruct the shape and albedo in their

physical spaces, we use a convolutional generator G𝜶 for shape and a style-based generator G𝜷 for albedo.

The reconstructed face image x̂f is produced using a differentiable renderer 𝚽. In addition to our face

model, which is demarcated by black connecting arrows, a hair generator Gh reconstructs the hair in 2D.

Reconstructed face and hair are finally fused and enhanced using a refiner network. All components are

trained end-to-end, except for hair, where we deploy a pretrained, off-the-shelf hair model [259].

3.3.1 Problem Formulation

Our method primarily relies on reconstructing high-fidelity and photorealistic 3D faces from 2D

images, following our formulation in Equation 3.1. First, we assume that a face image can be

decomposed into five different attributes: four physical attributes (3D shape, albedo, lighting, and

pose) and hair. Here, the physical attributes collectively define the unknown 3D realization of

a 2D face image. To construct our face model, we define a set of encoders {E𝜶 ,E𝜷 ,E𝜸 ,E𝜽 } that

individually map an input image to each of the physical attributes to promote disentanglement.

To mask out the regions that cannot be represented by a mesh-based 3D face model [174], we

use an off-the-shelf segmentation model [260] to segment the input image x and subsequently

obtain x′ ··= x ⊙ Mf , where Mf denotes the mask. The encoders E𝜶 and E𝜷 extract a latent shape

code 𝜶 and albedo code 𝜷 , while E𝜸 and E𝜽 directly estimate the lighting parameters 𝜸 and pose

parameters 𝜽 . To generate a face image, the shape and albedo codes are fed to a shape generator

G𝜶 and albedo generator G𝜷 , respectively, to produce a 3D shape Ŝ and albedo map Â, which

by design have a higher representational capacity than a linear 3DMM. Next, a differentiable

renderer 𝚽 renders the generated 3D model {Ŝ, Â} using the lighting and pose parameters {𝜸 , 𝜽 }
to produce the reconstructed face x̂f = 𝚽(Ŝ, Â,𝜸 , 𝜽 ). A discriminator D, not shown in Figure 3.2,

is employed to enhance photorealism through adversarial training.
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Since our face model is built on a 3DMM that does not model hair, we couple it with an explicit

2D hair model, which consists of an encoder Eh and a generator Gh to produce a portrait image

with reconstructed hair x̂h. The outputs of the face model and the hair model are combined using

a face mask Mf and a hair mask Mh, then passed through a refiner network R that produces the

final image x̂. Formally, given a set of 𝑁 portrait images along with their face masks and hair

masks {(x𝑖,M𝑖
f,M

𝑖
h)}𝑁𝑖=1

, our objective is to solve the following optimization problem:

arg min

{E𝜶 ,E𝜷 ,E𝜸 ,E𝜽 ,G𝜶 ,G𝜷 ,R}

𝑁∑︁
𝑖=1

∥x𝑖 ⊙ (M𝑖
f + M𝑖

h) − x̂𝑖 ∥1 (3.13)

where x̂ = R(x̂f ⊙ Mf + x̂h ⊙ Mh), with x̂f = 𝚽(G𝜶 (E𝜶 (x′)),G𝜷 (E𝜷 (x′)),E𝜸 (x′),E𝜽 (x′)) and

x̂h = Gh(Eh(x)). In later sections, we show that adopting this objective enables us to edit portrait

images in a fast, fully disentangled manner while preserving their photorealism.

3.3.2 Face Model

Our face model consists of four physical attribute encoders, two generators, and a differentiable

renderer [194]. In the shape pipeline, the shape code 𝜶 is input to a convolutional generator,

G𝜶 . The generated 3D shape, Ŝ, is composed of 3 channels in the UV-space that represent the 3D

coordinates of vertices [177] by their displacement from the FLAME mean head model [174]. In

parallel, the albedo code 𝜷 goes through a StyleGAN2 [225] generator G𝜷 that outputs an RGB

albedo map Â in the UV-space. Since most of the variations in face images are due to the variations

in the albedo, generating albedo with a style-based architecture is a crucial step to achieve realism

in the final output. Furthermore, in order to allow for more expressive latent spaces of shape

and albedo, we let our model learn them without being constrained to the subspace defined by

the original 3DMM. Finally, we represent the estimated lighting 𝜸 using a spherical harmonics

parameterization with 3 bands [143, 261], and our 6-DOF pose vector 𝜽 includes 3 parameters for

3D rotation using the axis-angle representation and 3 parameters for 3D translation.

We divide our training process into two stages: 1) we pretrain our face model on synthetically

generated faces; then 2) we generalize our model to real faces by training on real 2D images. The

loss functions for each stage are introduced in the equations below:

Synthetic data Pretraining

𝐿
syn

image
= ∥x − x̂f ∥2

2
(3.14)

𝐿
syn

albedo
= ∥A − Â∥2

2
(3.15)

𝐿
syn

shape
= ∥ws

𝑇 (S − Ŝ) ∥2

2
(3.16)

𝐿
syn

pose
= ∥𝜽 − 𝜽 ∥2

2
(3.17)

𝐿
syn

lighting
= ∥𝜸 −𝜸 ∥2

2
(3.18)

𝐿
syn

reg
= 𝜆𝛼 ∥𝜶 ∥2

2
+ 𝜆𝛽 ∥𝜷 ∥2

2
(3.19)

𝐿
syn

gan
= − log D(x̂f) (3.20)

Real data Training

𝐿real

image
= ∥x ⊙ Mf − x̂f ⊙ Mf ∥2

2
(3.21)

𝐿real

id
= 1 − cos(𝑓id(x), 𝑓id(x̂′)) (3.22)

𝐿real

lmk
= ∥wl

𝑇 [𝑓 (1)
lmk

(x) − 𝑓 (2)
lmk

(Ŝ)] ∥2

2
(3.23)

𝐿real

albedo
= ∥(BTB)−1BT(Â − Ā)∥2

2
(3.24)

𝐿real

lighting
= (𝜸 −𝜸 )𝑇Σ−1(𝜸 −𝜸 ) (3.25)

𝐿real

reg
= 𝜆𝛼 ∥𝜶 ∥2

2
+ 𝜆𝛽 ∥𝜷 ∥2

2
(3.26)

𝐿real

gan
= − log D(x̂f ⊙ Mf) (3.27)
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Pretraining on Synthetic Data. The first stage is a pretraining step to allow our network to

capture important characteristics of faces using strong supervision coming from a linear 3DMM.

In this stage, we use the FLAME model to sample 80 000 faces under an illumination and pose

prior [18]. We translate each face in 3D so that the rendered faces have the same 2D alignment as

the ones in the real dataset [84]. Although these synthetic faces lack realism, they have ground truth

values for the disentangled physical attributes albedo A, shape S, pose 𝜽 , and lighting𝜸 , which we

use to guide pretraining. Our loss function for pretraining consists of three parts: reconstruction

losses for the reconstructed face image (3.14) and for the four physical attributes (3.15)–(3.18);

regularization for shape and albedo codes (3.19); and a non-saturating logistic GAN loss [217] to

improve photorealism (3.20). In the shape reconstruction loss (3.16), we introduce a weighting

term ws to upweight vertices in regions surrounding salient facial features (e.g., eyes, eyebrows,

mouth). We carry out pretraining in three independent phases: albedo-only, lighting-only, and

shape & pose jointly. We minimize the following loss functions for the three phases:

shape & pose: 0.1𝐿
syn

image
+ 1000𝐿

syn

shape
+ 100𝐿

syn

pose
+ 1.0∥𝜶 ∥2

2
(3.28)

albedo-only: 𝐿
syn

gan
+ 10𝐿

syn

image
+ 100𝐿

syn

albedo
+ 1.0∥𝜷 ∥2

2
(3.29)

lighting-only: 10𝐿
syn

image
+ 100𝐿

syn

light
(3.30)

For each of these phases, we set the batch size to 16 and use the Adam optimizer [262]. E𝜶 , E𝜷 ,

E𝜸 , E𝜽 , and G𝜶 are all trained with a learning rate of 0.0001. During the albedo-only phase, we

alternate optimization steps between training the albedo generator G𝜷 and an image discriminator

D (both with learning rate 0.002), where the discriminator is trained to minimize the loss:

𝐿
syn

disc
= −1

2

log D(x) − 1

2

log(1 − D(x̂f)) . (3.31)

Training on Real Data. After pretraining, we train our model using the FFHQ face dataset [84]

at 256× 256 resolution. We obtain the face mask Mf for each image automatically using a semantic

segmentation network [260, 263], then feed the masked 2D face images to the network. We train

our face model in an end-to-end fashion, where we combine the loss functions in (3.21)–(3.26)

with a non-saturating logistic GAN loss (3.27). Since we do not know the ground truth physical

attributes for the real face images, we cannot apply any of the physical attribute reconstruction

losses (3.15)–(3.18). The only reconstruction loss we apply is a pixelwise reconstruction loss for

the masked faces (3.21). Defining the full reconstructed image as x̂′ ··= x ⊙ (1 − Mf) + x̂ ⊙ Mf , we

impose an identity loss (3.22), where 𝑓id(·) denotes the feature vector extracted by the ArcFace

face recognition network [264], and cos(·, ·) denotes cosine similarity. Our landmark loss (3.23)

measures the distance between the image-plane projections of the 3D facial landmark locations in

the input image (estimated using [265]) and the corresponding locations in the reconstructed 3D

shape model. The shape model vertices corresponding to specific facial landmarks are defined by

the FLAME topology, and the weighting term wl places more weight on important landmarks

such as the lip outlines to keep our learned model faithful to the FLAME topology.

Since the decomposition of an input image into physical face properties is an ill-posed problem,

there are ambiguities such as the relative contributions of color lighting intensities and surface

albedo to the RGB appearance of a skin pixel. To help resolve this ambiguity, we introduce an

albedo regularization loss (3.24) to minimize the projection of our reconstructed albedo into the
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FLAME model’s albedo PCA space. Here, Ā and B respectively represent the mean and basis vectors

of the albedo model. To address the same ambiguity, we also include a lighting regularization

loss (3.25), which maximizes the log-likelihood of the reconstructed lighting parameters 𝜸 under a

multivariate Gaussian distribution over lighting conditions. To obtain that distribution, we sample

50 000 lighting vectors using the prior provided by [18] and calculate their sample mean 𝜸 and

sample covariance Σ. As in pretraining, (3.26) regularizes the shape and albedo codes.

During training, we split the FFHQ dataset [84] into train and test sets with 90% − 10% split,

using the first 63 000 face images for training and the last 7 000 images for testing. We optimize

over all networks in our face model (E𝜶 , E𝜷 , E𝜸 , E𝜽 , G𝜶 , G𝜷 ) jointly in an end-to-end fashion, and

we alternate optimization steps between the face model and an image discriminator D. For the

first 50 000 iterations, we minimize the following loss function for all blocks in the face model,

using a batch size of 16 and the Adam optimizer with learning rate 10
−5

:

𝐿real

gan
+ 10

3 𝐿real

image
+ 10𝐿real

identity
+ 10

2 𝐿real

landmark
+ 𝐿real

albedo
+ 10

−5 𝐿real

lighting
+ ∥𝜶 ∥2

2
+ ∥𝜷 ∥2

2
. (3.32)

Using a batch size of 16 and a learning rate of 10
−5

, we train the discriminator by minimizing

𝐿real

disc
= −1

2

log D(x ⊙ Mf) − 1

2

log(1 − D(x̂f ⊙ Mf)) . (3.33)

After training our face model for 50 000 iterations, we fine tune E𝜷 , E𝜸 , G𝜷 for another 50 000

iterations by freezing the weights of E𝜶 ,E𝜽 ,G𝜶 and discarding the landmark loss to further

improve the reconstruction quality.

3.3.3 Hair Model

Since hair has a more complex structure than faces, representing and manipulating hair in 3D is a

very challenging problem. This motivates us to manipulate hair in 2D, but to couple the hair gen-

eration process with our 3D face model. We build our hair model on a 2D model, MichiGAN [259],

which disentangles hair shape, structure, and appearance by processing them separately. Here,

shape refers to a 2D binary mask of the hair region, structure is represented as a 2D hair strand

orientation map, and appearance refers to the global color and style of the hair, which is encoded

in a latent space. We incorporate a pretrained MichiGAN in our training pipeline, which we briefly

represent as an encoder-decoder style model in Figure 3.2. When we repose faces at inference

time, we couple MichiGAN with our 3D face model to change the shape and structure of the hair

without changing its appearance code.

Coupling with Face Model. Our 3D-guided hair manipulation algorithm is illustrated in Fig-

ure 3.3. Since our face model reconstructs explicit 3D face shapes, we use these to reason about

how the hair will move in 2D by calculating a 2D warp field [266]. We derive the 2D warp field

based on the pose-induced movement of the 3D face vertices, then extrapolate the face’s warp

field to the rest of the image. We use the warp field to warp the hair mask and the hair orientation

map in 2D. Since this process can introduce warp artifacts, we regularize the warped masks by

projecting them onto a PCA basis calculated from a dataset of binary hair masks of portrait images.

The orientation map, on the other hand, is regularized as part of the MichiGAN framework, which

outputs a map that is consistent with the warped map and aligned with the regularized hair
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Figure 3.3: One iteration of our hair manipulation algorithm. Given a reference pose from the previous

iteration and a target pose, we calculate a 2D warp field based on how 3D vertices move within the image

plane. Given a reference image from the previous iteration It−1 along with its reference mask and orientation

map, we use this warp field to warp the mask and the orientation map, which we regularize to obtain the

target mask and orientation map. Next, we combine these with the hair appearance code obtained from the

original input image and the reconstructed face reposed to the target pose, to obtain a novel portrait image

It. At the end, we feed this image through the refiner to obtain a photorealistic output. This algorithm is

invoked sequentially starting from the original pose.

mask. Finally, the reconstructed face in the target pose, hair appearance code, hair mask, and hair

orientation map are combined by the MichiGAN pipeline to produce the reposed portrait image,

which is then processed with the refiner. For large pose variations, we invoke this algorithm

sequentially by going from reference pose to target pose in multiple steps, and we regularize the

warped masks and orientation maps at each step.

Warp field calculation. In each iteration of our hair manipulation algorithm, we first identify

the visible triangles of the given face mesh with its reference pose and compute the center of each

triangle by taking the average of its vertices. Then, we project these triangle centers onto the

image plane under both the reference and the target pose. Using the correspondences between the

two projections, we construct a 2D warp by calculating how much each of the projected triangle

centers moves in pixel space as a result of the pose change. For the vertical component of the

warp field, we simply copy the vertical warp component from the nearest neighbor that was

assigned a warp. For the horizontal component, we use a heuristic to assign a fixed horizontal

warp to every pixel on the left edge of the image and a different fixed horizontal warp to every
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pixel on the right edge; then the horizontal component of the warp field for the entire image is

simply interpolated from the assigned warps. In particular, when we rotate the faces clockwise

(counter-clockwise) around the vertical axis, we extend a ray from the center of the 3D face to the

left (right) perpendicular to the face’s plane of symmetry and identify the 3D point on the ray

whose projection lies on the leftmost (rightmost) edge of the image. Next, we calculate by how

much this point’s projection into the image plane moves when the head rotates, and we multiply

this number by 3 to obtain the horizontal warp that we assign to the leftmost (rightmost) column

of the warp field. For the rightmost (leftmost) column, we heuristically choose a displacement

of 10 pixels to the right (left). Finally, we interpolate between the assigned pixels using linear

interpolation to obtain the horizontal warp of every image pixel.

Regularization of the hair mask. After we obtain a complete warp field, we apply it to the

reference hair mask and orientation. The orientation is regularized as part of the MichiGAN

pipeline, whereas we regularize the mask by projecting it onto a PCA basis that we calculate from

a dataset of hair masks. In particular, we construct our hair mask dataset by randomly selecting

10 000 samples from our FFHQ training set and combining it with 10 000 masks that we obtain

from the USC Hair Salon database [267]. For the latter, we attach 3D hair models from the USC

Hair Salon database to the FLAME mean head model, which we rotate around the vertical axis by

an angle uniformly sampled from [−90
◦, 90

◦]. The hair masks are obtained by rendering these 3D

shapes. Finally, after downsampling all masks to 64× 64 resolution, we construct a PCA basis with

50 principal components, onto which we project the hair masks at each iteration of our reposing

algorithm. In this work, starting from the pose of the original face image, we invoke this algorithm

sequentially by imposing a pose change of 5
◦

in each iteration.

3.3.4 Refinement

Although our combined model’s rendered 3D reconstructions and 2D hair reconstructions closely

resemble the original images, there remains a small realism gap that needs to be filled. In particular,

since we regularize the reconstructed albedos using the FLAME albedo space, the reconstructions

do not exhibit sufficient variation in the eye regions, and they lack certain details such as eyelashes,

facial hair, teeth, and accessories, which are not modeled by the FLAME mesh template. Further-

more, since face and hair are processed separately, some reconstructions have blending issues

between the face and the hair. To address these issues, we utilize a refiner network, which closes

the realism gap between the reconstructions and the original images while making a minimal

change to the reconstructions. We employ a U-Net [268] that takes in a combined image of the

reconstructed face and hair and outputs a more realistic portrait image, as shown in Figure 3.2.

After freezing the weights of the rest of the model, we train the refiner with pairs of original

images from the dataset and reconstructed images. We combine the identity loss (3.22) described

above with an adversarial loss as well as a reconstruction loss based on the VGG-16 perceptual

loss [269, 270], promoting better reconstruction quality for hair. Denoting the combined face-and-

hair reconstruction as x̂c ··= x̂f ⊙ Mf + x̂h ⊙ Mh, the refined image as x̂ ··= R(x̂c), and the original

face and hair as x′ ··= x ⊙ (Mf + Mh), we employ the following loss function for the refiner:

𝐿ref

gan
+ 8.0 ∥ 𝑓VGG(x′) − 𝑓VGG(x̂)∥2

2
+ 10.0 (1 − cos(𝑓id(x′), 𝑓id(x̂))) , (3.34)
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where the second term is a VGG-16 perceptual loss [269, 270] and the first term 𝐿ref

gan
is a GAN loss:

𝐿ref

gan
= − log Dref (R(x̂c)) . (3.35)

Here, Dref is a discriminator trained to minimize the following loss:

𝐿ref

disc
= −1

2

log Dref (x′) − 1

2

log(1 − Dref (R(x̂c)) . (3.36)

With a batch size of 16, we train the refiner and the discriminator for 500 000 iterations using the

Adam optimizer with learning rate 0.0001. To prevent overfitting, we randomly translate x′
and x̂c

together, where horizontal and vertical translations are uniformly sampled from [−15, 15] pixels.

3.3.5 Architecture Details

Encoders. For encoders {E𝜶 ,E𝜷 ,E𝜸 ,E𝜽 }, we employ the ResNet-18 architecture [271] (starting

from the ImageNet [272] pretrained weights) where we change the final layer to reflect the

dimensionality of each latent representation: 𝜶 ∈ ℝ150
, 𝜷 ∈ ℝ200

, 𝜸 ∈ ℝ27
, and 𝜽 ∈ ℝ6

.

Generators. For the albedo generator G𝜷 , we employ the original StyleGAN2 [225] architecture

up to the 256 × 256 layer. For the shape generator G𝜶 , we use the architecture shown in Table 3.3.

The output of this network is a UV-space representation of shape from which we sample points

corresponding to the UV-coordinates of each vertex in the FLAME topology [174]. Then, we add

these as an offset to the FLAME mean shape to obtain a 3D shape in Euclidean space.

Refiner. We employ a U-Net [268] with 5 convolutional layers followed by 5 transpose convolu-

tional layers with skip connections. We provide the U-Net architecture details in Table 3.4.

3.4 Experiments and Results

In our experiments, we manipulate portrait images with respect to several physical attributes

and compare them with the results of a state-of-the-art relighting method [257] and a real-image

manipulation method, PIE [20]. Because we generate a full 3D face model, we can manipulate

physical attributes beyond the distribution of the training set. We can also modify the face in

ways not seen during training, such as relighting using a different lighting and shading model.

3.4.1 Expression and Lighting Manipulation

We illustrate our facial expression and lighting manipulation results in Figure 3.4. To edit facial

expression (left), we choose an eigenvector from the FLAME expression basis and multiply it

by a constant factor to obtain an offset, which we add to the vertex locations in our model’s

reconstructed 3D shape. In the moderate examples (top left), we use the first eigenvector to add

smile/frown variations up to ±2 standard deviations. In the extreme examples (bottom left), we

scale 4 different expression eigenvectors by up to 10 standard deviations. For lighting manipulation

(right), the moderate edits (top right) rotate the reconstructed lighting around the camera axis.
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Figure 3.4: Expression and lighting manipulation results. Expression manipulation (left). We illustrate

both moderate (top) and extreme (bottom) expression variations. The two numbers above each column

indicate which FLAME expression eigenvector is used and by how many standard deviations it is scaled.

Lighting manipulation (right). Top: For moderate variation, we rotate the reconstructed lighting around

the camera axis by the angle above each column. Bottom: For extreme lighting variation, we render the

reconstructed 3D model using a point light source and Phong shading model.

For extreme lighting variations (bottom right), we employ a point light source and Phong shading

model, where we rotate the light source horizontally around the vertical axis and can introduce any

desired amount of specularity to the face albedo. The results demonstrate that our method handles

extreme expressions and lighting conditions that are not well-represented in the training set and

can use lighting and shading models not used in training. Although our method facilitates face

image manipulation in several physical attributes simultaneously or in isolation, it is also able to

outperform methods that are focused on and optimized for more limited tasks such as manipulating

a single attribute. To illustrate this, we compare our extreme lighting manipulation results with

those of a state-of-the-art relighting method [257] in Figure 3.5. For additional expression and

lighting manipulation results, please refer to Figure 3.10 and Figure 3.11.
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Input OursHou et al. (2021)

Figure 3.5: Relighting comparisons. Relighting comparison with Hou et al. [257], where we use a point

light source. Our method achieves more photorealistic relighting with fewer artifacts.

3.4.2 Shape Transfer

Our model achieves better disentanglement of physical attributes such as shape and albedo by

modeling them separately and explicitly. This disentanglement is illustrated by the shape transfer

results in Figure 3.6, where we transfer the 3D face shape of a source image to a target image. Our

method (left) is able to transfer the face shapes accurately, while maintaining photorealism and

keeping the albedo, lighting, and hair unchanged. This is in contrast to the shape transfer results

by the previous state-of-the-art (right, a combination of StyleRig [19] and PIE [20]), where for a

given source shape, the transfer results have varying face shapes with noticeable differences in

expressions. When the source and target images are identical (images on the diagonal), our method

produces the original reconstruction by design, whereas PIE + StyleRig struggles to maintain the

original identity. For additional shape transfer results, please refer to Figure 3.12.

3.4.3 Joint Transfer of Physical Attributes

The full disentanglement of our face model is demonstrated by its ability to transfer all physical

attributes either individually or jointly. In Figure 3.7, we illustrate our results for joint albedo and

lighting transfer, as well as joint transfer of albedo, lighting, and shape.

3.4.4 Interpolation in the Latent Space

Although we do not impose any smoothness constraints within the latent spaces, the learned

shape and albedo latent spaces enable smooth interpolation between different latent codes. We

present our interpolation results in Figure 3.8, where we simultaneously interpolate between the

reconstructed shape code, albedo code, and lighting parameters of the reference and target images.
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Figure 3.6: Shape transfer comparisons. We transfer the 3D shape of each source image to each target

image while keeping everything else unchanged. Our results (left) demonstrate more accurate shape transfer

and much better disentanglement between shape and other attributes (e.g., albedo, pose, and hair) than the

combination of StyleRig [19] and PIE [20] (right).

3.5 Ablation Study

Training and loss functions. In our experiments, we observe that pretraining on synthetic data

is crucial for our method to work, since we observe stability issues when we started out by training

on real data. For the real data training, our experiments suggest that all loss functions except for

the albedo regularization, lighting regularization, and regularization of shape and albedo codes

are crucial for our method to achieve reasonable face reconstructions. When we omit albedo and

lighting regularizations, we observe that our method converges to a state in which the albedo

reconstructions are washed out and the appearance of the face is mostly attributed to the lighting,

which suggests that albedo and lighting regularizations are important to achieve better albedo

and lighting disentanglement.

Refinement. In this section, we analyze the impact of the refiner on our reconstructions by

providing a qualitative and quantitative comparison of our results with vs. without the refiner. In

addition, we compare our reconstructions with a state-of-the-art nonlinear 3D morphable model

proposed by Tran and Liu [178]. We illustrate our qualitative comparisons in Figure 3.9, where

our reconstructions achieve better photorealism than those of Tran and Liu. We also observe

a notable improvement in photorealism using our complete model (with refiner) vs. using our

model without the refiner. To quantify our observations, we calculate a face recognition (FR)

score as the average cosine similarity between the feature vectors extracted from the ArcFace

face recognition network [264] for the original and reconstructed images (from our test dataset).
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Figure 3.7: Joint transfer of physical attributes. Our method is able to transfer physical attributes jointly

as well as individually. In this figure, we jointly transfer the indicated physical attributes of each source

image to each target image while keeping the other parameters of the target image unchanged. Left: Albedo

and lighting transfer. Right: Shape, albedo, and lighting transfer.

Table 3.1: Average face recognition (FR) scores, SSIM, PSNR, and LPIPS between the original and recon-

structed face images from our dataset. We observe a notable improvement due to the refinement.

FR score ↑ SSIM ↑ PSNR ↑ LPIPS ↓
Ours (without refinement) 0.66 ± 0.10 0.72 ± 0.09 22.24 ± 2.63 0.15 ± 0.05

Ours (with refinement) 0.68 ± 0.10 0.74 ± 0.08 23.20 ± 2.47 0.12 ± 0.04

We also compute the structural similarity index measure (SSIM) [273], peak signal-to-noise ratio

(PSNR), and learned perceptual image patch similarity (LPIPS) [274] between the original and

reconstructed images. We quanitatively compare our model with versus without the refiner in

Table 3.1. In Table 3.2, we perform quantitative comparisons. To obtain the results in Table 3.2, we

masked out the hair, background, clothing, and teeth for fair comparison.

3.6 Discussion and Outlook

In this chapter, we introduced a novel framework for performing face image manipulation in

a 3D-aware manner. We demonstrated that a fully 3D architecture, designed to process facial

attributes independently, enables fast, disentangled, and photorealistic manipulations. Our ap-

proach integrates the physically-grounded representation of 3DMMs with the expressive capacity

of style-based generators, implemented within an encoder–decoder architecture built on the

3DMM template. In contrast to prior methods that rely on iterative optimization procedures to
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Reference Interpolations Target

Figure 3.8: Interpolation results. In each row, given a reference and a target image, we interpolate between

their shape codes, albedo codes, and lighting parameters. For each interpolated image, the background and

the latent code for hair are copied from the reference image.
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Figure 3.9: Ablation study and comparison with Tran and Liu [178]. On images from the test set (never

seen during training), our method is able to reconstruct faces more accurately and photorealistically

than [178]. These results also demonstrate that our full model (with refinement) shows a notable improve-

ment in image quality vs. our model without the refiner.

manipulate real images, our encoding mechanism supports efficient, feed-forward manipulation

at inference time. A key insight from our design is that operating on attributes in their physical

spaces facilitates generalization beyond the distribution of the training data. Empirical results

validate the ability of our method to manipulate 3D shape, albedo, and lighting photorealistically,

producing larger variations compared to prior work while achieving better disentanglement.

56



Table 3.2: Average face recognition (FR) scores, SSIM, PSNR, and LPIPS between the original and recon-

structed face images for our method (both with and without refinement) and Tran and Liu [178]. To obtain

the results in this table, we masked out the hair, background, clothing, and teeth for fair comparison with

Tran and Liu [178]. Our method achieves better scores in all three metrics.

FR score ↑ SSIM ↑ PSNR ↑ LPIPS ↓
Tran and Liu [178] 0.51 ± 0.12 0.87 ± 0.03 20.96 ± 1.57 0.092 ± 0.026

Ours (without refinement) 0.69 ± 0.10 0.87 ± 0.04 25.08 ± 2.92 0.086 ± 0.035

Ours (with refinement) 0.71 ± 0.10 0.88 ± 0.04 26.17 ± 2.71 0.062 ± 0.031

Limitations. While our methodology successfully addresses the core motivations outlined at

the beginning of this chapter, it exhibits several limitations that may need to be resolved for

certain applications. One notable limitation in our pipeline design is the explicit disentanglement

of hair from the physical attributes of the face. As a result, changes to other attributes, such as

illumination, do not affect the appearance of hair. Although our refinement stage adjusts hair

appearances to enhance visual realism, the resulting changes are often subtle and insufficient for

high-quality portrait relighting tasks. This limitation could potentially be mitigated by coupling

face attributes with the hair model at training time. Additionally, we observe that our model

tends to attribute variations in skin tone primarily to lighting rather than albedo. This bias arises

from our use of the FLAME albedo basis to regularize albedo predictions, as the basis itself lacks

diversity in skin tones. Adopting a more representative and demographically balanced albedo

model that is better aligned with global population statistics could lead to more accurate albedo

estimates and, consequently, more realistic relighting under novel illumination conditions. Finally,

because our 3D shape predictions are generated via a convolutional architecture that enforces

local smoothness across neighboring mesh vertices, our model often produces overly smooth

geometry. As a result, fine-scale face details, such as wrinkles, are sometimes encoded into the

albedo rather than the geometry. This misattribution has a direct impact on relighting quality, as

physically plausible lighting interactions with high-frequency surface features like wrinkles are

critical for photorealistic rendering of faces.

The next era. While the work presented in this chapter offers valuable insights into the design

of a 3D-aware face manipulation pipeline under constraints imposed by specific data modalities

and desiderata such as inference speed and generalization, the broader landscape of the field has

evolved significantly at the time of this writing. In particular, adversarial training frameworks [84,

205]—once dominant despite their well-known instability—have been largely supplanted by

diffusion-based models [89, 275]. These newer paradigms offer more stable training dynamics

and have demonstrated the ability to model significantly more complex, high-dimensional data

distributions, including video and 3D assets [276–278]. Today, considerable industrial investment

is directed toward training large-scale variants of these diffusion models on massive datasets,

with some efforts resulting in open-source releases that enable further research [279, 280]. Recent

progress has shown that these models can be fine-tuned for specific downstream tasks or utilized

as sources of distilled knowledge to supervise the training of task-specific models [281, 282].

This has accelerated the research and development cycle, reducing the overall effort required to

build high-performing systems compared to earlier approaches. Beyond the pure image-based
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diffusion models, the availability of large-scale visual–textual data pairs has enabled the emergence

of text-conditioned visual content generation [283], where natural language prompts serve as

intuitive control signals for a wide array of synthesis tasks. This modality has opened up new

possibilities for human–AI interaction, allowing for flexible and expressive manipulation of visual

content through simple textual descriptions [284, 285].

In addition to the generative pipelines led by diffusion models, transformer-based architec-

tures [286], which underpin large language models (LLMs), have recently revolutionized the

machine learning landscape, demonstrating capabilities that closely resemble human-level intelli-

gence in natural language understanding and generation [287]. These models have since been

extended to multimodal settings, enabling interaction with data across various modalities such

as images, audio, and video [288]. When paired with visual inputs, they are often referred to as

vision-language models (VLMs) [289, 290]. Such models can serve as a rich source of distilled

knowledge, making the implicit representations they encode more accessible for downstream tasks.

In the context of face image manipulation, these models offer a substantial paradigm shift. Rather

than constructing pipelines from the ground up—by carefully designing network architectures,

curating datasets, engineering loss functions, and managing inference-time considerations—the

main objectives shift toward effectively leveraging the hidden knowledge embedded in these

pretrained models. Such reframing enables creative repurposing of this hidden knowledge to solve

complex visual tasks with minimal supervision. Indeed, this emerging workflow is rapidly over-

taking traditional approaches, as the performance gains achieved through large-scale pretrained

models are often unprecedented and difficult to match through conventional means [291–293].
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Table 3.3: Architecture of the shape generator G𝜶 . The output of the network is a UV-representation of

3D shape, where the three channels of the 256 × 256 output represent 3D offsets (in 𝑥 , 𝑦, and 𝑧) from the

FLAME mean head shape [174].

layer type kernel size / stride output shape activation

linear – 1024 × 1 none

reshape – 16 × 8 × 8 –

conv2d and upsample 4 × 4 / 1 32 × 16 × 16 tanh

conv2d and upsample 4 × 4 / 1 64 × 32 × 32 tanh

conv2d and upsample 4 × 4 / 1 64 × 64 × 64 tanh

conv2d and upsample 4 × 4 / 1 64 × 128 × 128 tanh

conv2d and upsample 4 × 4 / 1 64 × 256 × 256 tanh

conv2d 4 × 4 / 1 3 × 256 × 256 tanh

Table 3.4: Architecture of the refiner R. We employ a U-Net [268] with skip connections between the

encoder and decoder parts of the network. In all layers of the encoder, we use the LeakyReLU activation

function with a negative slope of 0.2. All layers of the decoder use the ReLU activation function.

layer type kernel size / stride output shape activation

conv2d 4 × 4 / 2 64 × 128 × 128 LeakyReLU

conv2d 4 × 4 / 2 128 × 64 × 64 LeakyReLU

conv2d 4 × 4 / 2 256 × 32 × 32 LeakyReLU

conv2d 4 × 4 / 2 512 × 16 × 16 LeakyReLU

conv2d 4 × 4 / 2 512 × 8 × 8 LeakyReLU

conv2d_transpose 4 × 4 / 2 512 × 16 × 16 ReLU

conv2d_transpose 4 × 4 / 2 256 × 32 × 32 ReLU

conv2d_transpose 4 × 4 / 2 128 × 64 × 64 ReLU

conv2d_transpose 4 × 4 / 2 64 × 128 × 128 ReLU

conv2d_transpose 4 × 4 / 2 3 × 256 × 256 ReLU
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Input 1 | 2.0 3 | 8.0 5 | 6.0 6 | 5.0 7 | 6.0 7 | -7.0 8 | 7.0 10 | 7.0 10 | -7.0 

Figure 3.10: Additional expression manipulation results. We illustrate several expression changes with

varying intensities. The two numbers above each column indicate which FLAME expression eigenvector is

used and by how many standard deviations it is scaled.
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Input 0° 90° 180° 270° -60° -30° 0° 30° 60°
Moderate Extreme

Figure 3.11: Additional lighting manipulation results. For moderate variation, we rotate the reconstructed

lighting around the camera axis by the angle listed above each column. For extreme lighting, we render the

reconstructed 3D model using a point light source and Phong shading model.

61



source

ta
rg

et

Sh
ap

e 
tra

ns
fe

r (
ou
rs

) 
Sh

ap
e 

tra
ns

fe
r (

St
yl

eR
ig

 +
 P

IE
) 

source

ta
rg

et

Figure 3.12: Additional shape transfer results and comparisons. We transfer the 3D shape of each source

image to each target image while keeping everything else unchanged. Compared to the previous state of

the art (StyleRig [19] + PIE [20]), our results (top) demonstrate more accurate shape transfer and much

better disentanglement between shape and other face attributes (e.g., albedo, pose, and hair).
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4
Efficient Rendering of Dynamic Faces

4.1 Introduction

From this point onward, we narrow our focus to the domain of digital twins, with a particular

emphasis on applications in extended reality (XR). Recent advances in computer vision and

graphics, coupled with significant progress in mobile and embedded hardware, have brought

the synthesis, editing, and animation of digital twins on consumer-grade devices from concept

to reality [294]. Yet, this reality remains in its early stages of maturity. Edge devices such as

head-mounted displays are still far from ubiquitous, hindered by factors such as high production

costs, societal hesitance toward wearable technology, as well as the limited readiness and efficiency

of current XR applications for broad adoption [295]. In the remainder of this thesis, we examine

the underlying causes of these challenges in efficiency and fidelity, and identify the key technical

considerations. Then, we develop frameworks that address these key considerations to enable

more accessible and scalable deployment of digital twin technologies in everyday XR systems.

While the synthesis of 3D faces from 2D image data once again serves as the foundation

of our development, our focus in this chapter shifts away from multi-attribute editing. Instead,

our objective is to render temporally coherent sequences of facial expressions that simulate

lifelike conversations through virtual digital twins within XR environments. Here, we explore

two application scenarios. First, by relaxing the requirements on controllability and drivability,

we aim to synthesize 3D facial expression sequences that can serve as 3D memories: pre-recorded,

expressive animations that can be viewed on a mobile device or experienced immersively through

a head-mounted display. Second, we consider the more challenging case of real-time controllability,

where a tracked sequence of facial expressions is used to drive a 3D face representation, enabling

virtual telepresence where users interact with each other in real-time. These responsive, interactive

digital twins are commonly referred to as avatars.
Controllability of 3D face representations introduces significant challenges, particularly in

terms of generalizing to unseen expressions or novel facial dynamics beyond the training distribu-

tion. For this reason, the current chapter focuses on the first, more constrained problem. To lay
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the groundwork for both this chapter and the next, we begin by reviewing the core challenges

shared across both application settings. When we turn our full attention to controllable avatars in

the following chapter, we also address the additional difficulties introduced by real-time driving

and expression generalization.

4.1.1 Main Challenges

Capturing and simulating human presence in 3D digital form is not a recent concept. Early

examples appeared in video games and cinematic productions as far back as the 1990s, marking

the rise of computer-generated imagery (CGI) [296, 297]. Thanks to major advances in graphics

hardware and software, and particularly in performance capture technologies, the production costs

of CGI have decreased significantly, enabling increasingly realistic depictions of digital humans in

the entertainment and communications industry [298, 299]. Beyond entertainment, industries

such as advertising, customer service, and healthcare have also begun to embrace digital humans

as part of their evolving technological landscape. With the advent of consumer-grade virtual

reality, digital humans have found a new medium, giving rise to the concept of 3D digital twins,

primarily for applications like telepresence [31]. These digital twins of real humans, referred to as

avatars, have attracted considerable attention over the past few years, with many works focusing

on the synthesis, manipulation, and animation of photorealistic avatars [134].

Avatars are commonly modeled using either full-body or head-only representations. This

thesis focuses exclusively on head-only avatars, thereby avoiding the additional complexities

associated with full-body modeling (such as clothing simulation, garment animation, and full-body

motion capture) that pose substantial technical challenges beyond those encountered in face

modeling [300]. From a production and wide-scale deployment perspective, avatar representations

must be evaluated along several key aspects. We categorize these considerations as 1) photorealism,

2) rendering and memory efficiency, and 3) other practical factors.

Photorealism. The photorealism of an avatar is primarily governed by the capacity of the un-

derlying representation. This encompasses not only the static visual fidelity of the reconstructed

face but also the level of realism with which dynamic expressions are rendered. Traditionally,

mesh-based representations have dominated the digital human landscape [119, 120]. Nowa-

days, modern mesh reconstruction techniques can achieve high-resolution detail, capturing fine

geometric features such as wrinkles, dimples, and skin folds, while also enabling efficient ani-

mation or expression control through well-established algorithms [244]. However, as mentioned

earlier, meshes are inherently constrained in their ability to model complex volumetric and view-

dependent structures. Volumetric approaches such as NeRFs [49] and 3DGS [50], along with their

dynamic extensions, offer significantly richer expressiveness. These methods can capture subtle

facial idiosyncrasies and specularities that are difficult to reproduce with single surfaces, and can

achieve remarkable realism in both static and animated settings [40, 139, 156, 301]. Despite this,

they may suffer from visual artifacts, such as floaters [302] or pops [303], which can detract from

immersive experiences. Nevertheless, ongoing research continues to address these limitations,

and the state-of-the-art has now reached a level of hyperrealistic synthesis and animation that is

increasingly viable for real-world applications.
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Neural Radiance Manifolds

Appearance Decomposition Static Layered Mesh Per-Frame Layered Texture

Our Representation Volumetric 3D Performance

Figure 4.1: We model a dynamic face sequence as a set of radiance manifolds, which are exported as a

static layered mesh and an animated texture. This allows for smoothly controlling the quality vs. memory

and compute footprints, while achieving efficient and photorealistic rendering of volumetric scenes using

established graphics pipelines without any neural network integration.

Rendering and Memory Efficiency. Classical head-avatar pipelines represent geometry as a

low-vertex mesh with a handful of blendshapes. While these meshes fit easily into memory and

can be rasterized at lightning speed, their baked textures and simple bidirectional reflectance

distribution functions (BRDFs) rarely cross the uncanny valley [304]. Volumetric radiance fields—

first NeRFs [49], then 3DGS [50]—trade kilobytes of triangle primitives for tens to hundreds

of megabytes of density and color, and rely on techniques such as long ray-marches or splat

compositing. This exposes the rendering efficiency vs. memory efficiency frontier: NeRFs sit on the

slow and lightweight end (small MLP, many samples per ray), whereas 3DGS on the fast and heavy

end (efficient splat look-up, but potentially millions of splats). Recent work has aimed to push the

frontier outward for general scenes with techniques such as pruning low-contribution Gaussians

at run time [305] or quantizing spherical harmonics coefficients and covariances to lower bit

precision [159]. Replicating these tricks in the 3D face domain would essentially exploit the

non-uniform signal spectrum of human heads, which manifests high detail around eyes, hairlines,

and mouth but is mostly smooth elsewhere. Therefore, pushing the frontier would be primarily

achieved by spending bytes and flops where the viewer is paying attention the most.

Other considerations. At production scale, a head avatar pipeline is a relay race that begins

with lightning-fast on-device face tracking systems [306]. The tracked coefficients then drive a

mesh, NeRF, or 3D Gaussian cloud in real-time. When the users are remote, an avatar system also

requires careful determination of what to stream and how to stream it, as there is no established

coding standard for transmitting custom 3D assets, unlike the H.264/H.265 standard used for video

streaming. Due to the increasing popularity of 3DGS-based representations, this problem has

recently sparked new algorithms for 3DGS compression and streaming [157–160]. Furthermore,

since companies develop their own ecosystems with custom rendering pipelines and streaming

algorithms, cross-device interaction between consumers remains a challenging problem.

4.1.2 Main Objective and Contributions

In this chapter, given observations of a dynamic 3D face, our objective is to learn 1) 3D geometry and

2) appearance sequences that produce photorealistic images, support high frame rates, and maintain
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a modest memory footprint, all while remaining compatible with legacy graphics pipelines and

existing streaming infrastructure. To meet these requirements, we propose a novel representation

that models 3D faces using a static layered mesh coupled with an RGBA texture video. Our

approach is guided by the following key insights:

• Volumetric effects can be effectively approximated using a moderate number of layered sur-

face representations, eliminating the need for fully volumetric models that define geometry

and appearance at every point in 3D space.

• Meshes offer efficient rasterization on standard graphics platforms, ensuring backward

compatibility and a favorable memory-compute tradeoff.

• Texture videos can be trivially streamed using existing infrastructure, leveraging mature

video codec systems widely deployed in today’s content delivery networks.

To learn this layered mesh and dynamic texture representation, we build on recent advances

in neural rendering, particularly radiance manifolds [307], which enable us to discretize the

3D scene into a set of continuous 2D surfaces. These surfaces are subsequently discretized

into textured meshes, which are deployed to game engines on consumer devices. Our system

achieves photorealistic and real-time playback of 3D face sequences with challenging geometry

and appearance changes. Please refer to Figure 4.1 for an overview of our pipeline.

4.1.3 Preliminaries

In this chapter, we develop a framework for rendering 3D face sequences, where we do not yet

focus on the animation problem. Formally, we consider a variation of the model in (2.25):

y𝑣𝑡 = R(𝐺𝑡 , 𝐴𝑡 ; c𝑣 ) + n (4.1)

Let Y ≜ {y𝑣𝑡 | 𝑣 = 1, . . . ,𝑉 ; 𝑡 = 1, . . . ,𝑇 } denote a multi-view video sequence of a single subject,
where 𝑇 is the number of frames and 𝑉 is the number of views. Our objective is to estimate a

sequence of geometry and appearance realizations {𝐺𝑡 }𝑇𝑡=1
and {𝐴𝑡 }𝑇𝑡=1

from our observations Y
as well as the parameters of cameras from each view {c𝑣 }𝑉𝑣=1

. Since we assume that the rendering

operation is deterministic and known, we have a non-blind inverse problem with a non-linear

forward model. Still, since there are infinitely many realizations of geometry and appearance

sequences that satisfy our observations, this inverse problem is also an ill-posed one. In the next

sections, we use a notation consistent with the published work [308].

4.2 Background and Related Work

In this section, we first review dynamic neural radiance fields, providing a brief survey of the

core design principles of prominent methods in the literature. We then narrow our scope to

generative radiance fields, with an emphasis on computational challenges associated with high-

fidelity 3D synthesis. Finally, we limit our attention to a specific generative method, generative
radiance manifolds [307], whose underlying representation plays a central role in the volumetric

representation we develop later in this chapter.
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4.2.1 Dynamic Neural Radiance Fields

The advent of Neural Radiance Fields (NeRFs) [49] has had a transformative impact on the computer

vision community, catalyzing many lines of research on continuous volumetric representations for

photorealistic 3D scene reconstruction and view synthesis. While the original NeRF formulation

was designed for static scenes, subsequent efforts have extended it to dynamic environments,

where the input consists of monocular or multi-view videos capturing temporally varying 3D

content [40, 41, 140, 309, 310]. A natural extension to accommodate dynamics is to append time as

an additional input to the radiance field, resulting in a formulation 𝐹Θ : (x, d, 𝑡) ↦→ (c, 𝜎), where

x ∈ ℝ3
and d ∈ ℝ2

respectively denote the spatial location and the viewing direction, and 𝑡 ∈ ℝ

the time coordinate. This baseline approach was formalized in Li et al. [140], where the time is

encoded using positional encoding similar to the spatial coordinates.

For dynamic scenes, spatial and temporal variations exhibit distinct statistics and frequency

characteristics, and treating time as an additional spatial-like coordinate constrains the ability

to represent complex and often non-smooth deformations that characterize real-world dynamic

scenes [140]. As a result, a single global network struggles to accurately reconstruct detailed

dynamics such as facial expressions, fluid motions, or events like occlusions, disocclusions, or

disappearing surfaces. Moreover, phenomena involving volumetric discontinuities—e.g., flames,

smoke, or splashes—violate the smoothness assumptions baked into (finite-frequency) positional

encoding, leading to artifacts and training instability. To address these limitations, Li et al. [140]

propose augmenting the NeRF with per-frame learned latent codes z𝑡 instead, as

𝐹Θ : (x, d, z𝑡 ) ↦→ (c, 𝜎) . (4.2)

Such a formulation introduces additional expressivity to the model, enabling the network to better

capture frame-specific variations without requiring an explicit physical model of motion.

An alternative formulation for modeling dynamic scenes involves decomposing the radiance

field into a canonical scene representation and a time-dependent deformation field that warps points

from the observation space into a shared canonical space, allowing the network to disentangle

temporal variations from spatial content [309]. Specifically, for a 3D point x at time 𝑡 , we can

decompose a dynamic radiance field as follows:

𝐺Ψ : (x, 𝑡) ↦→ 𝛿x 𝐹Θ : (x + 𝛿x, d) ↦→ (c, 𝜎) , (4.3)

where 𝐺Ψ is a time-conditioned deformation network, parameterized as an MLP with weights Ψ,

and 𝐹Θ denotes a static radiance field in canonical space, which is queried by deformed points

x + 𝛿x. Compared to latent-conditioned dynamic NeRFs that directly encode temporal changes

into a learned latent vector, this deformation-based formulation provides a more structured way

to model motion, effectively decoupling temporal variations from spatial variations. As a result, it

reduces the risk of overfitting to per-frame geometry and appearance, often leading to sharper

reconstructions and more photorealistic dynamics.

In practice, many dynamic scene reconstruction methods rely on calibrated and synchronized

multi-camera capture systems operating in controlled environments, which limits their scalability

and accessibility. To facilitate broader adoption, recent research has focused on techniques that

are robust to a sparse number of views and tolerant of noisy camera parameters. This more

challenging setting introduces stronger ill-posedness to the problem, requiring not only more
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careful regularization techniques, but also algorithmic breakthroughs for the representation of

dynamic scenes. A seminal contribution in this direction is Nerfies [40], which addresses the

problem of dynamic scene reconstruction from a single handheld mobile device. Nerfies extends

the previous formulation as follows:

𝐷Ψ : (x, z𝑡 ) ↦→ 𝛿x 𝐹Θ : (x + 𝛿x, d,w𝑡 ) ↦→ (c, 𝜎) , (4.4)

where z𝑡 is a per-frame learned latent code modulating the deformation field to capture time-

dependent motion, and w𝑡 is a learned appearance code accounting for per-frame radiance

variations due to motion-induced appearance changes. To ensure physically plausible dynamics,

Nerfies introduces an elastic regularization term that encourages local deformations to be as rigid

as possible. Let J ∈ ℝ3×3
be the Jacobian of the deformed coordinates (in the canonical space)

with respect to the original coordinates (in the observation space), which can be computed via

automatic differentiation. Given the singular value decomposition of the Jacobian J = U𝚺VT
, the

proposed framework imposes rigidity of a transformation by penalizing its Jacobian’s deviation

from the identity matrix I ∈ ℝ3×3
as

𝐿elastic(x) = ∥ log𝚺 − log I ∥2

F
= ∥ log𝚺∥2

F
. (4.5)

In this chapter, we leverage multiview video data, which makes our reconstruction problem

significantly less ill-posed compared to monocular approaches like Nerfies [40]. As a result, we

follow the dynamic NeRF formulation in Equation 4.2, where we learn per-frame latent codes that

condition the dynamic portion of our model.

4.2.2 Generative Radiance Fields

Most NeRF-based approaches in early 2020s focus on scene-specific optimization, where a single

neural network is trained to represent a single static scene using dense multi-view supervision [135].

While these methods demonstrate impressive results, their limited generalization prompted a shift

toward generative radiance fields that can synthesize novel 3D content.

Inspired by the success of generative models in 2D image synthesis, several works have explored

3D scene generation by training models on large collections of 2D observations of different classes

of scenes, such as human faces. One of the earliest approaches in this area is GRAF [237], which

introduces a conditional NeRF framework trained adversarially, where each scene representation

is conditioned on latent shape and appearance codes. Building on this idea, GIRAFFE [311] handles

more complex scenes consisting of multiple objects by introducing a compositional architecture.

To further enhance the model expressivity, pi-GAN [238] introduces a model based on sinusoidal

activations [312] and per-layer conditioning mechanism via Feature-wise Linear Modulation

(FiLM) [313]. These NeRF-based generative models significantly outperform earlier 3D-aware

frameworks based on discrete volumetric representations, such as HoloGAN [230], which use

low-resolution voxel grids. The transition from voxel grids to continuous fields represents a pivotal

shift in 3D generative modeling, giving rise to a new paradigm where high-quality, view-consistent

3D scenes can be synthesized from purely 2D supervision.

Training large-scale generative models of complex signals, such as 2D images or 3D scenes,

requires synthesizing a vast number of samples during training. In the case of NeRFs, rendering

a single image entails sampling and integrating many points along each camera ray, leading to
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prohibitively high computational costs. This bottleneck severely limits the scalability of generative

NeRF-based methods, impeding both training efficiency and the quality attainable by such models.

To address this challenge, a number of architectural changes have been proposed to make NeRF-

based representations more computationally tractable. Among these approaches, StyleNeRF [11]

draws inspiration from style-based 2D image generators and renders low-resolution feature maps

that are subsequently upsampled and decoded into RGB images, enabling faster and more memory-

efficient synthesis. EG3D [10] introduces a tri-plane representation, which factorizes the 3D

volume into three orthogonal 2D feature planes, allowing for real-time rendering of novel 3D

scenes. Complementing these advances, GRAM [307] decomposes the 3D scene into a collection

of 2D implicit surfaces. These radiance manifolds dramatically reduce the number of samples

required per ray while preserving high-fidelity volumetric effects. As radiance manifolds serve as

the foundational representation in our efficient dynamic face rendering pipeline, we dedicate a

separate subsection to detailing their formulation and implementation.

4.2.3 Generative Radiance Manifolds

The original NeRF formulation [49] defines radiance fields over a continuous 3D volume, where

rendering involves sampling many points along each camera ray. These samples can lie anywhere

within the volume, resulting in high computational cost due to dense volumetric integration.

To improve the rendering efficiency, radiance manifolds [307] concentrate sample points onto a

sparse set of 2D surfaces embedded within the 3D space. Here, each surface is implicitly defined

as a level set of a scalar field represented with a manifold predictor MΦ, which is parameterized

by an MLP with weights Φ as

MΦ : ℝ3 → ℝ , (4.6)

which takes in a point x ∈ ℝ3
and outputs a scalar value 𝑠 ∈ ℝ. To define 𝑁 radiance manifolds

within the volume, 𝑁 target values {𝑠𝑖}𝑁𝑖=1
are selected. The 𝑖-th surface S𝑖 is then implicitly

defined as a zero-level set

S𝑖 = {x |MΦ(x) = 𝑠𝑖}. (4.7)

For rendering, given a camera ray with origin o ∈ ℝ3
and direction d ∈ ℝ3

, we seek the intersection

point x𝑖 of the ray with surface S𝑖 . Assuming dense sampling along the ray, we identify the two

closest samples x𝑓 and x𝑏 located at the front and the back of the surface, such that:

MΦ(xb) = 𝑠𝑏 ≤ MΦ(xi) = 𝑠𝑖 ≤ MΦ(xf) = 𝑠𝑓 . (4.8)

Following the differentiable rendering framework of Niemeyer et al. [314], the intersection x𝑖 is

approximated using a single iteration of the secant method:

x𝑖 =
𝑠𝑖 − 𝑠𝑏
𝑠𝑓 − 𝑠𝑏

x𝑓 +
𝑠𝑓 − 𝑠𝑖
𝑠𝑓 − 𝑠𝑏

x𝑏 . (4.9)

This approximation can be refined through additional iterations, though at an increased computa-

tional cost. Once the intersection points {x𝑖}𝑁𝑖=1
are computed across the manifold set, radiance

and density values are queried from a conditional radiance field:

𝐹Θ : (x, d, z) ↦→ (c, 𝜎) (4.10)
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Figure 4.2: Training and inference pipelines. Given a set of rays from the training cameras, we determine

the intersection of these rays with a set of implicit manifolds predicted by a single manifold predictor. After

transforming these intersections to UV-space coordinates, a texture predictor outputs RGBA texture maps

conditioned on the video frame index. At inference time, we shoot rays from the surface of a designated

hemisphere around the scene towards its center, obtaining a single geometry and a video texture. The

view-dependent branch is bypassed to ensure that the appearance is fully diffuse.

where z ∈ ℝ|z|
is a latent code representing scene-specific attributes. Although point samples lie

strictly on the learned surfaces, the radiance field 𝐹Θ remains defined over the full 3D domain,

ensuring continuity and compatibility with NeRF’s volumetric rendering formulation. Final color

values are obtained by integrating radiance along rays using the standard alpha-compositing

procedure employed in NeRF, as described in Equation 2.18.

4.3 Methodology

In this section, we first formulate the objective problem and present an overview of our pipeline.

After describing how we process our datasets, we elaborate on how we leverage radiance manifolds

to learn efficient 3D representations from multi-view videos. Finally, we describe how we export

our representation to a single set of textured meshes that can be rendered natively on traditional

graphics software while maintaining the rendering quality.

4.3.1 Definitions and Overview

Our objective is to learn a volumetric 3D representation of a subject that can be played back on

game engines without any special neural network integration. Given a multi-view video of a

subject with 𝐾 frames, we learn a static geometry and a dynamic appearance model in an end-to-

end fashion. We take inspiration from recent advances in implicit geometry representations [113,

115], which significantly outperform explicit 3D reconstruction techniques that rely on mesh or

point cloud representations. In our pipeline, similar to GRAM [307], the geometry is modeled by a

set of 2D manifolds, embodied as a set of implicit surfaces. But unlike GRAM, the appearance is
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learned as a UV-mapped dynamic radiance over these manifolds, instead of the 3D 𝑥𝑦𝑧-space. We

learn 𝑁 distinct manifolds defined implicitly by a single manifold predictor

G : ℝ3 → ℝ , (4.11)

which takes in a point (𝑥,𝑦, 𝑧) ∈ ℝ3
and outputs a single scalar 𝑠 ∈ ℝ. Given a set of fixed scalars

{𝑠𝑖 ∈ ℝ | 𝑖 ∈ I ≜ {1, 2, . . . , 𝑁 )}, which we refer to as s-values, the manifold predictor defines a set

of 𝑁 isosurfaces that represent our static geometry:

S𝑖 = {(𝑥,𝑦, 𝑧) | G(𝑥,𝑦, 𝑧) = 𝑠𝑖} . (4.12)

In our appearance model, we first transform points on each manifold to UV-space coordinates via

a fixed function 𝑓 : S𝑖 → [−1, 1]2
. For each manifold 𝑖 ∈ I and each frame 𝑗 ∈ J ≜ {1, 2, . . . , 𝐾},

a texture predictor T𝑖 𝑗 defines RGB and transparency fields as

T𝑖 𝑗 : [−1, 1]2 → ℝ4, 𝑖 ∈ I & 𝑗 ∈ J , (4.13)

which takes a single UV-coordinate (𝑢, 𝑣) ∈ [−1, 1]2
outputs (𝑟, 𝑔, 𝑏, 𝛼) ∈ ℝ4

. Note that we do not

estimate volume density as is the case for traditional volume rendering, but instead model 3D

point transparency with an alpha value. This makes the radiance accumulation independent of

the ray path, which is crucial for enabling the next step of exporting the learned manifolds as

textured mesh layers. Our approach can be treated as a generalization of the multi-plane image

representation [315], where we optimize arbitrary 2D surfaces instead of planes.

Once the training is completed, we collect samples across each manifold at a specific resolution

and export these collections of 3D points, UV-coordinates, and RGBA values as a single set of

topologized triangle meshes with UV-textures that can be efficiently rendered on legacy graphics

renderers. We illustrate our training and inference pipelines in Figure 4.2.

4.3.2 Dataset

We use the publicly available dataset Multiface [316], where we follow a tailored preprocessing

pipeline to ensure its compatibility with our model architecture and training. In particular,

we gather multi-view videos of 3 subjects from V1 of the dataset (subject IDs V1 002914589,

002643814, 5372021), and 2 subjects from V2 (subject IDs002421669, 002645310), ensuring

that the subjects exhibit diverse facial geometries and appearances. To demonstrate sufficiently

long facial performances, we pick 𝐾 = 60 consecutive frames from each video sequence where

subjects perform expressions freely. For all subjects, we scale and transform the scene parameters

such that the subjects are centered at the origin and oriented along the positive 𝑥-axis with

up-vector aligned with the positive 𝑧-axis, and that the camera centers are distributed roughly

1 unit away from the subjects. We discard the cameras with elevation angles of more than 45
◦

and azimuth angles of more than 90
◦
, which yields a set of cameras in the 𝑥 > 0 half-space. For

each subject, we also hold out 2 cameras to perform quantitative evaluations. This yields us 23

training cameras for V1 subjects and 50 training cameras for V2. Finally, we downsample all

images to 768× 500 resolution while adjusting the camera parameters accordingly, which provides

an effective compromise between our training efficiency and ability to showcase high-resolution

renders. We do not perform any background masking as our method is able to separate the

foreground significantly either by restricting the scene volume or by placing it into the view-

dependent component of radiance, which is discarded at inference time. We elaborate on this

phenomenon in the next subsection.
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4.3.3 Model Architecture and Training

Given 𝐾 frames from a multi-view video with camera parameters, we sample 𝑀 points uniformly

along each camera ray and compute the intersections between these rays and the manifolds using

the differentiable ray-manifold intersection algorithm [314] adopted in GRAM [307]. We sample

𝑀 = 256 points along each ray, set the number of manifolds to 𝑁 = 12, and train our model using

videos consisting of 𝐾 = 60 frames for each subject.

Previous techniques that model dynamic scenes with radiance manifolds [317, 318] have used

explicit learned deformation of the manifolds to model scene animation. On the contrary, we

model all frames of a dynamic sequence with a single set of static manifolds, which poses a

non-trivial challenge. To achieve this, our technique uses a unique sequence of steps, where we 1)

transform intersection points to UV-space, 2) separate RGB predictions into view-independent

and view-dependent components, and 3) estimate the transparency of each intersection directly

without computing volume densities. Given an intersection p = (𝑥,𝑦, 𝑧) ∈ ℝ3
and a fixed center

c ∈ ℝ3
of a unit sphere, we first project the intersection to the surface of the sphere and obtain

p′ ≜ (𝑥′, 𝑦′, 𝑧′) = (p − c)/∥p − c∥. We then calculate the UV-space coordinates as 𝑢 = 2

𝜋 sin
−1(𝑧′)

and 𝑣 = 2

𝜋 tan
−1(𝑦′/𝑥′). The texture predictor receives UV-coordinates and the s-values of the

intersections, as well as the frame index that is mapped to a learned latent code that conditions

the predictions. The texture predictor is then branched into two layers that predict single-channel

view-dependent compontent and three-channel view-independent component, former of which is

conditioned on the view direction. The outputs of these branches are added together to produce the

final RGB prediction. Such architecture allows us to discount view directional effects at inference

time and achieve view-consistent rendering of exported meshes. Furthermore, it also helps us

to separate most of the background from foreground by attributing the background to view-

dependent component, particularly if the background is primarily grayscale, thus eliminating the

need for explicit background removal. Finally, the alpha values are predicted as the raw output of

our texture predictor, which can be directly used to alpha-composite our 𝑁 -layered representation.

4.3.3.1 Training details

To promote training stability, we adopt the manifold initialization technique used in GRAM [319]

and begin training with sphere-like manifolds centered at c. We optimize our model in an end-to-

end fashion by adopting ℓ1 loss between the predicted and ground truth pixel values. To ensure

that the appearance is mostly explained by the view-independent component, we penalize the

output of the view-dependent branch with ℓ2 penalty. To promote more stability, we apply ℓ2
regularization to all manifold predictor layers except for the final one. The manifold and texture

predictors are optimized jointly by minimizing the loss function

L = Lrec + 𝜆vdLvd + 𝜆regLreg , (4.14)

where Lrec is the ℓ1 reconstruction loss, Lvd is the view-dependent branch penalty, and Lreg is the

manifold regularization with 𝜆vd = 1.0 and 𝜆reg = 0.0001. The manifold and texture predictors are

jointly optimized using the Adam optimizer [262] with initial learning rates of 0.0007 and 0.0010,

and exponential decay rates of 0.05 and 0.20 per 200 000 iterations, respectively. Using a batch

size of 32 768 rays sampled across all training frames and views, we perform training for 500 000

iterations for each subject.
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Figure 4.3: Video texture visualization. We illustrate 3 frames (15
th

, 30
th

, and 45
th

frames) from the learned

texture video of subject 002914589. For each frame, we show full RGBA and alpha-only UV-space texture

maps in the top and bottom rows, respectively.

4.3.3.2 Architecture Details

The manifold predictor is implemented as an MLP with 3 hidden layers of widths 128 and a final

layer, where we choose the set of fixed scalars {𝑠𝑖}𝑁𝑖=1
so that the initial concentric and sphere-like

surfaces roughly falls within ±0.03 units of the surface of the face. These scalars are tuned slightly

for each subject according to the size of the faces inferred by the tracked meshes provided in the

Multiface dataset [316]. The texture predictor is implemented as an MLP with 8 hidden layers of

widths 256 and 2 final layers corresponding to view-independent and view-dependent branches.

Both input points and view directions undergo positional encodings and the frame indices are

mapped to 32-dimensional learned latent codes through an embedding layer. Encoded input points

and frame indices are fed into the MLP at its first layer whereas the encoded view directions are

concatenated to the input to the view-dependent branch.

4.3.4 Exporting Layered Meshes and Textures

At test time, we gather points across the unit hemisphere by collecting azimuth and elevation

angles in [−𝜋/2, 𝜋/2] uniformly at resolution 𝑅 × 𝑅 and shoot rays towards the sphere center

c. We set this center 0.25 units away from the scene center in the direction of negative 𝑥-axis

to ensure that the entire scene is encompassed by the hemisphere. This gives us 𝑅 × 𝑅 samples

across each manifold with UV-coordinates that are distributed uniformly in [−1, 1] × [−1, 1]. For

each frame, these points are used to query the texture predictor to yield 𝑁 RGBA texture maps at

resolution 𝑅 × 𝑅, where the view-dependent branch is bypassed to ensure the texture maps are

fully diffuse. Our simple spherical projection yields reasonable texture mapping despite slight

distortions near the edges of the maps [320]. We emphasize that we export the alpha channel as

8-bit images and hence store them efficiently without sacrificing the visual quality. Finally, while
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Figure 4.4: Free-viewpoint rendering on Unity. Our representation allows for free-viewpoint rendering

of dynamic 3D volumes on consumer hardware.

the texture maps vary according to their frame indices, the geometry is the same across all frames.

To export our manifold-based representation to explicit surfaces, we reconstruct meshes from

each of the 𝑁 point clouds of size 𝑅 × 𝑅 via Poisson surface reconstruction [103], where the

normals for each point are computed with respect to their neighboring points. We then simplify

these meshes using a mesh decimation algorithm to reduce the number of vertices to a target

mesh resolution 𝑅m ×𝑅m
. Finally, for each vertex in the simplified mesh, we determine the nearest

point in the original point cloud and assign its corresponding UV-coordinate. The texture maps,

on the other hand, can be downsampled to a specific target resolution 𝑅t × 𝑅t
to meet the memory

requirements of the renderer. To summarize, our final assets are: 1) a single set of 𝑁 triangle

meshes, each with number of vertices less than the target resolution 𝑅m × 𝑅m
and 2) 𝐾 sets of 𝑁

RGBA texture maps at resolution 𝑅t ×𝑅t
that form a UV texture video. We illustrate 3 frames from

an example texture video along with composited texture maps in Figure 4.3.

4.3.5 Rendering on Game Engines

Our rendering pipeline in Unity using the exported layered mesh and texture sequences runs

in real-time. We leverage two-pass deferred shading [321] on the GPU. When given a camera

pose at runtime, we generate 𝑁 G-buffers by shading each mesh layer and its opacity in a single

render pass. Modern game engines use multiple render targets (MRT) for this purpose and we

used culling masks to achieve this in Unity. For a small number of layers (e.g., 𝑁 <16, which is

the maximum texture sampler count supported in Unity), we composite G-buffers on the GPU by

tracing a ray through all layers in one pass, similar to accumulating luminance in the traditional

volume rendering pipeline. For more than 16 layers, we suggest using a prefix sum algorithm [322]

on the GPU for efficient layer compositing.

In our experiments with 𝑁 = 12, we achieved real-time performance on a 2019 Macbook Pro

with an M1 Max chip and Unity 2021.3. This was consistent across five datasets and over 1,000

frames. The average rendering time per frame was under 17 ms (above 60 FPS) at a rendering

resolution of 2560 × 1440, even for our largest reconstructed mesh of 6.3M triangles.

4.4 Experiments and Results

We evaluate our method on several subjects from the Multiface dataset [316], where we provide

qualitative and quantitative comparisons against state-of-the-art neural rendering methods. We
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Figure 4.5: Qualitative comparisons. Our method achieves comparable visual quality to state-of-the-art

neural rendering techniques while facilitating very efficient rendering of dynamic sequences on legacy

graphics software without any custom integration of ML pipelines.

then perform more analysis of the configurability of our representation by assessing its perfor-

mance with respect to varying numbers of manifolds, mesh resolution, and texture resolution.

4.4.1 Qualitative Results

We train our pipeline individually on 5 multi-view video sequences from [316], and illustrate our

novel view synthesis results in Figure 4.5. Here, we provide comparisons against 4 state-of-the-art

neural rendering methods—MonoAvatar [139], MVP [301], HyperNeRF [41], and Nerfies [40].

Despite discretizing the 3D volume into only 𝑁 = 12 manifolds and hence sampling much fewer

points across the scene during both training and evaluation, our approach manifests a comparable

performance against other techniques. Furthermore, our technique does not require any MLP

query or a custom pipeline during rendering and thus can be exported into a game engine, where

we can perform free-viewpoint rendering of a dynamic 3D scene. We import our layered meshes

and UV-textures into Unity and achieve the results demonstrated in Figure 4.4.

By interpolating between the learned latent codes of different frames at inference time, we

can render our representation at higher frame rates to enhance the overall visual quality. We

depict our frame interpolation results and provide comparisons in Figure 4.6, where we observe

comparable performance against other methods.
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Figure 4.6: Frame interpolation results. Interpolating between the learned latent codes of frame indices

allows us to achieve high-quality temporal interpolation between training frames with comparable perfor-

mance to other approaches. Original frames are highligted in red.

4.4.2 Quantitative Results

For each subject, we perform quantitative evaluations on 2 held-out cameras across all 𝐾 =
60 frames, totaling 120 images. In Table 5.1, we report average image quality metrics for our

method and other methods in PSNR, SSIM [273], and LPIPS [274], where we consistently observe

comparable performance across all methods. We also report VRAM usage, required disk storage,

and frame rates for each of the methods, where we compress individual texture maps into a video

and apply mesh compression to individual meshes using Draco
1

with no quantization of vertex

positions and texture coordinates, and using the lowest compression amount. From our results,

we observe that our method is able to achieve higher frame rates despite utilizing a comparable

amount of storage against other methods. Note here that other methods can be run with much

lower VRAM usage by reducing the batch size down to single ray per batch.

All ML training, including ours and the state-of-the-art methods, was done on a workstation

with NVIDIA V100 GPU. Since the state-of-the-art methods require a Linux workstation with

NVIDIA GPU also for inference, they were evaluated and profiled on this same workstation. Our

method does not require such special ML integration, and we perform our evaluation on the Unity

game engine on a 2019 Macbook Pro laptop.

4.4.3 Ablation Studies

Since the radiance manifolds constrain 3D volumes to a number of implicit surfaces, the rendering

quality is strongly influenced by the number of manifolds chosen before training. We provide

qualitative and quantitative comparisons across different numbers of manifolds in Figure 5.11

and Table 4.2. Here, we observe that not only the rendering quality suffers with decreasing number

of manifolds, but also, capturing volumetric effects requires a sufficient number of samples.

Our exported representation allows for trading image quality with memory efficiency by

1
https://google.github.io/draco/
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Table 4.1: Quantitative comparisons. Our method attains comparable visual quality across various metrics

while utilizing significantly less VRAM and enabling much higher frame rates. The image quality metrics

are averaged over a total of 600 test images of all 5 subjects.

Method PSNR↑ SSIM↑ LPIPS↓ VRAM↓ Disk↓ FPS↑
Ours 25.49 ± 3.16 0.788 ± 0.069 0.356 ± 0.038 602 MiB 118 MiB >60

MonoAvatar [139] 24.59 ± 1.71 0.786 ± 0.042 0.341 ± 0.018 2746 MiB 296 MiB 0.33

MVP [301] 26.20 ± 2.34 0.738 ± 0.54 0.313 ± 0.025 1412 MiB 356 MiB 12.7
HyperNeRF [41] 26.91 ± 3.14 0.845 ± 0.0394 0.305 ± 0.041 2861 MiB 15 MiB 0.02

Nerfies [40] 26.11 ± 3.15 0.815 ± 0.042 0.332 ± 0.044 4205 MiB 15 MiB 0.03

Table 4.2: Ablation on number of manifolds. While significant gains in memory efficiency can be achieved

by reducing the number of manifolds, it has a noteable effect on the visual quality. Numbers are averaged

over a total of 240 test images of two subjects with IDs 002914589 and 002421669. We report total disk

storage required by the meshes and the video texture and the total number of triangles in all meshes.

Num. Manifolds PSNR↑ SSIM↑ LPIPS↓ Num.Tri.↓ Disk↓
12 25.54 0.760 0.341 6264412 125.1 MB

4 24.47 0.728 0.372 2088497 42.9 MB

1 22.51 0.704 0.395 522242 11.0 MB

performing standard operations such as mesh simplification and texture downsampling. After

reconstructing a single set of meshes via Poisson surface reconstruction [103], we decimate each

of these meshes to meet a target number of vertices. We illustrate qualitative and quantitative

evaluations for varying mesh resolutions in Figure 5.11 and Table 4.3. We observe that the image

quality does not undergo a significant drop until 16× 16 resolution per surface. This is because our

layered mesh representation does not manifest high-frequency changes while still allowing for

state-of-the-art rendering quality via learned alpha-manifolds. This provides us with an extremely

lightweight geometry representation without sacrificing any visual quality or volumetric effects.

The texture resolution, on the other hand, naturally plays a vital role in rendering quality. To

compare, we individually subsample each of the texture maps across all manifolds and frames

bilinearly, and render each frame at original training resolution 768× 500. We illustrate our results

in Figure 5.11 and Table 4.4 where we observe a notable reduction in quality at 128×128 resolution.

4.5 Discussion

In this section, as in Chapter 3, we summarize our key takeaways from the developed methodol-

ogy and subsequently reflect on the limitations of our approach, discussing potential research

directions that could address these shortcomings. A broader outlook on the future of dynamic and

animatable 3D face representations is deferred to the next chapter, following the development of

our controllable volumetric avatar pipeline.
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Figure 4.7: Ablation results. Number of manifolds. Using a sufficient number of manifolds is essential to

attain photorealism and volumetric effects. Mesh resolution. We can decimate the exported meshes to much

lower resolutions without sacrificing significant visual quality. Texture resolution. We can modify texture

resolution arbitrarily at inference time to trade off image quality with rendering efficiency as desired.

In this chapter, we introduced a novel representation for high-quality, memory-efficient

volumetric rendering of dynamic facial performances in legacy platforms. We demonstrated that

a static layered mesh combined with dynamic RGBA textures offers several practical advantages

without compromising visual fidelity, rendering speed, or memory usage. These assets are obtained

by leveraging radiance manifolds [307] to model the dynamic performance as a set of layered,

continuous 2D surfaces, which are subsequently discretized after training. Once generated, our

representation requires no machine learning operations or complex computations at inference

time, enabling efficient real-time rendering using standard graphics software on consumer-grade

hardware. Our approach effectively compresses the full 3D dynamics into a sequence of 2D videos,

allowing for trivial streamability using conventional video compression and streaming protocols.

One key question addressed in this chapter is whether volumetric effects, as well as complex

geometric and appearance variations of a 3D face, can be faithfully simulated by offloading all

dynamic components to the appearance model. Our findings suggest that this is indeed feasible:

with a moderate number of layered surfaces, volumetric effects can be rendered at state-of-the-art

quality, and intricate dynamics can be synthesized through alpha composition of these surfaces,

eliminating the need to explicitly learn a volumetric density field, as required in traditional radiance
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field pipelines. Furthermore, we observe that discretizing continuous surface representations

into meshes and converting texture fields into pixel-space texture maps at moderate resolutions

preserves overall visual fidelity. Notably, the learned geometry of the radiance manifolds is

designed to be smooth, allowing us to maintain high-quality reconstruction even under aggressive

mesh simplification, further improving memory and rendering efficiency.

Limitations. Our representation is designed to discretize 3D geometry and dynamics into con-

ventional textured triangle primitives, enabling practical deployment on traditional graphics

pipelines. However, since the static mesh does not precisely conform to the true face geometry,

sampling across a discrete set of manifolds (as opposed to the full 3D volume) can lead to shell

artifacts under extreme viewing angles, as illustrated in Figure 5.13(b). Our layered mesh with

transparency can be interpreted as a generalization of Multiplane Imaging (MPI) [315], where we

instead learn a set of surfaces that follow a coarse face geometry and represent dynamic content.

Due to this coarse approximation, there exists an inherent limitation in the range of viewing

angles for which artifact-free rendering is possible [323]. Our empirical findings suggest that

such artifacts can be alleviated by carefully initializing the manifolds based on the scale of the

scene and maintaining sufficiently small spacing between consecutive layers, while still ensuring

that the spacing remains large enough to preserve volumetric effects. Beyond these heuristics,

sophisticated geometry regularization techniques [112] can be employed to further refine the

predicted surfaces. Ultimately, however, our findings reveal a fundamental trade-off: increasing

the range of artifact-free viewing angles necessitates higher mesh resolution and more complex

geometry, which comes at the cost of increased computational and memory demands.

Our pipeline captures view-dependent effects using a view direction–conditioned function,

which offers high representational capacity and enables more faithful reconstruction of the input

sequence. However, since this conditioning is implemented via an MLP, it is discarded when we

export our final assets. As a result, our results do not exhibit view-dependent effects, as illustrated

in Figure 5.13(a). If this conditioning mechanism were instead decoupled from neural network

inference, e.g., by querying learned spherical harmonic functions [143] with view directions in an

offline manner, our pipeline could be extended to estimate specular maps as well. This would, in

turn, enable plausible specular relighting within traditional graphics pipelines.

It is worth noting that our method samples across the 3D volume by casting a single ray

per pixel and querying MLPs at multiple points along each ray. This approach is known to be

susceptible to aliasing artifacts [302] and results in slow training [141]. Future work could integrate

recent neural rendering frameworks that incorporate anti-aliasing techniques and fast, grid-based

representations [324] to improve both performance and visual quality. However, adapting radiance

manifolds to operate within such acceleration pipelines remains a nontrivial challenge.

Finally, we emphasize that the primary objective of this chapter is to evaluate the feasibility

of static layered mesh representations for dynamic face synthesis. Our results demonstrate that

these representations are indeed capable of supporting high-quality 3D playback of dynamic face

sequences. However, we have not yet provided any insights on making these representations

controllable, a key requirement for virtual telepresence applications, which serves as the central

motivation for the work presented in the following chapter.

79



Table 4.3: Ablation on mesh resolution. Despite reducing the memory footprint of the geometry, visual

quality is maintained for resolutions as low as 32 × 32. For all mesh resolutions, the texture resolution is set

to 1024 × 1024 and requires 5.9 MB storage after video compression. Numbers are averaged over 120 test

images of a single subject with ID 002914589.

Mesh resolution PSNR↑ SSIM↑ LPIPS↓ Num.Tri.↓ Disk (mesh)↓
512 × 512 30.10 0.858 0.284 6261920 118.1 MB

256 × 256 29.58 0.838 0.293 1377119 22.2 MB

128 × 128 29.57 0.839 0.290 250740 4.1 MB

64 × 64 29.49 0.837 0.289 43224 721 KB

32 × 32 29.12 0.831 0.291 9962 170 KB

16 × 16 27.26 0.795 0.306 2574 38 KB

8 × 8 23.81 0.705 0.364 728 11 KB

Table 4.4: Ablation on texture resolution. We can reduce the memory footprint of the video texture by

simply subsampling each frame at inference time. For renders of resolution 768 × 500, a noteable drop

in quality occurs at 256 × 256 texture resolution. For all texture resolutions, the mesh resolution is set to

512 × 512, hence the number of triangles and disk storage for meshes are constant and are 6261920 and

118.1 MB, respectively. Numbers are averaged over 120 test images of a single subject with ID 002914589.

Note that the texture video size will increase with the number of frames in the input video.

Texture resolution PSNR↑ SSIM↑ LPIPS↓ Disk (texture)↓
1024 × 1024 30.10 0.858 0.284 5.9 MB

512 × 512 30.29 0.859 0.303 2.1 MB

256 × 256 29.51 0.836 0.341 667 KB

128 × 128 27.32 0.791 0.404 183 KB
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5
Synthesis and Animation
of Volumetric Face Avatars

5.1 Introduction

Building on our insights from the previous chapter, we now shift our focus to controllable 3D

face representations, where our objective is to develop a representation that can be driven by

some description of facial expressions, such as the 3DMM parameters. A suitable motivating

application for this is virtual telepresence, in which tracked face parameters from one client are

used to drive a corresponding avatar on another client’s device, enabling real-time, bidirectional

communication. These emerging technologies offer immersive alternatives to traditional video-

based communication, further blurring the line between physical and synthesized realities. Beyond

virtual telepresence, drivable avatars hold transformative potential across industries such as

education. For example, some institutions are already piloting spatial 3D teaching assistants that

interact with students in VR-based classrooms [325, 326].

In this chapter, our motivation closely aligns with that of the previous one. Specifically, we aim

to develop representations that maintain backward compatibility with legacy rendering hardware

and software, support efficient and trivial streaming, achieve photorealistic quality, and exhibit

a favorable memory-compute tradeoff. In addition to the challenges discussed in the preceding

chapter, this chapter introduces the crucial challenge of controllable synthesis. This involves

conditioning the model on tracked expression parameters and ensuring that it can generalize to

unseen expressions beyond the training data, while preserving realism and identity consistency.

To establish the problem setting, we assume that we are given multiview videos of a single

subject, as in the previous chapter. However, in this case, each multiview frame is additionally

annotated with facial expression parameters, which are assumed to be obtained via an offline face

tracking algorithm. These expression labels will serve as conditioning inputs to enable controllable

synthesis in the subsequent framework we introduce later in this chapter.

81



5.1.1 Main Challenges

A static layered mesh paired with dynamic textures provides a strong foundation for designing

backward-compatible and streamable avatars. But it is important to note that, within the previous

pipeline, the texture predictor is the sole dynamic component of the representation, as it is respon-

sible for capturing all variations in geometry and appearance. For controllability, a straightforward

approach would be to condition the texture predictor on expression parameters. However, a key

constraint in our formulation is that this conditioning mechanism must remain exportable at

inference time, that is, it must be implemented without relying on any neural network layers

during deployment. This requirement introduces a non-trivial challenge that complicates the

design of conventional conditioning strategies.

Suppose there exists a conditional texture mapping representation capable of synthesizing

novel textures at inference time without using any neural networks. The central question then

becomes: what should be the capacity of this model, and more fundamentally, is it possible to

capture complex geometric and appearance variations solely at the texture level? A key observation

is that certain geometric changes, such as mouth opening, can be easily achieved by directly

deforming the mesh, i.e., by moving the vertices around. However, in our formulation, the mesh is

kept entirely static, which necessitates offloading such deformations to the texture mapping and

texture coordinate look-up operations. Accomplishing this without significantly increasing the

model’s capacity poses a substantial challenge.

Finally, assuming we can achieve a reasonably compact static mesh representation, how can

we ensure that it generalizes to novel expressions, allowing the avatar to be driven by arbitrary

facial parameters within the training distribution? One potential approach is to leverage the

tracked mesh itself, as the underlying parametric face model used to generate the mesh offers

a strong prior for synthesizing new expressions. Indeed, this paradigm is commonly adopted,

where volumes parameterized as NeRFs [49] or Gaussian primitives [50] are anchored to tracked

meshes to support expression-driven synthesis [139, 156, 327]. However, since our framework

prohibits explicit mesh deformation at inference time, we must instead achieve generalization

directly within the lower-dimensional space of expression parameters, which presents a more

challenging learning problem. Addressing this requires careful construction of the training dataset,

along with loss functions and regularization strategies to guide the model toward generalization.

5.1.2 Main Objective and Contributions

In this chapter, given observations of a dynamic 3D face, our goal is to learn 1) 3D geometry

and 2) appearance models that can be controlled by facial expression parameters in real-time,

yielding photorealistic images, while being compatible with legacy graphics platforms and existing

streaming infrastructure. Our key insight is to discretize the three constituent scene components—

geometry, appearance, and deformation—and convert them into classical primitives, such as

meshes and textures. To this end, we represent the canonical geometry of the face as a static
layered mesh extracted from a learnable radiance manifold inspired by previous work [307, 308,

328]. We couple this mesh with a controllable appearance model driven by a 3D morphable face

model [3]. Uniquely, we model deformations not in 3D geometry space, but instead as dynamic

warp and texture fields defined in the UV space of the layered mesh. This design choice allows us to

retain the static mesh, thereby enabling the trivial streamability of our controllable representation.

82



…
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Figure 5.1: We introduce a novel representation for rendering animatable volumetric 3D face avatars

using meshes and textures. We generate a layered mesh and blend-textures that model the appearance

and deformations, and a simple linear transformation that maps tracked face model parameters to blend

weights. Our representation can be deployed in traditional graphics pipelines efficiently and conveniently.

Moreover, by introducing a warp field, we can offload a significant amount of geometry variations

to UV-space warps, substantially reducing the number and size of assets required at inference

time. Please see Figure 5.1 for an overview of our pipeline.

To deploy our model without relying on custom rendering pipelines or neural networks, we

represent warps and textures as combinations of blendable fields, where the blend weights are

predicted via a simple linear transformation of expression parameters derived from a morphable

face model. During enrollment, we jointly optimize radiance manifolds, a warp basis, a texture

basis, and the associated linear mappings to reconstruct the captured enrollment sequence of a

subject. At deployment time, the radiance manifolds are exported as a single static mesh, as in

the previous chapter, while the learned warp and texture bases are discretized into sets of 2D

warp and texture images in pixel space. Although it is not immediately obvious that discretizing

continuous warp and texture fields at moderate resolutions would preserve visual quality, we

empirically observe that such discretization introduces negligible artifacts. Using these assets, the

animation and rendering can be performed with a simple warp-and-blend shader and standard

rasterization on any graphics platform, as we demonstrate later in this chapter.

To help avoid overfitting to the expressions from the calibration sequence of the target subject,

and thereby ensure generalization to novel expressions, we train each subject jointly with a set

of synthetic subjects, whose expression parameters are sampled from a broader, more carefully

constructed distribution. This is done in addition to standard regularization techniques such as

weight penalties for the respective geometry, warping, and texture predictors.

5.1.3 Preliminaries

In this part of the thesis, we finally consider the original observation model in (2.25):

y = R(𝐺 (p), 𝐴(p); c) + n. (5.1)
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Here, we assume that we are given a set of multi-view observations of a single subject with different

facial expressions, from known and calibrated cameras {y𝑖, p𝑖, c𝑖}𝑁𝑖=1
, where we estimate the facial

expression parameters in each frame (with multiple views) using an off-the-shelf optimization

algorithm that fits a 3DMM to our observations. We emphasize that not only we aim to learn

geometry and appearance models that explain the observations under the given control inputs, but

we also would like these models to generalize to novel inputs, which requires careful regularization

of these respective models during training. In the remainder of this chapter, we use a notation

consistent with the submitted work [329].

5.2 Background and Related Work

In this section, we review volumetric head avatar methods by categorizing them according to their

underlying representations, including surface-based, NeRF-based, and point-based approaches.

5.2.1 Surface-based Avatars

Early real-time 3D avatar systems were predominantly built on parametric models, most notably

3DMMs [3, 9, 174]. Since these models are differentiable by design, they enable efficient inverse

rendering pipelines that facilitate canonical expression capture and retargeting. However, their

expressiveness is fundamentally constrained by their low-dimensional linear subspaces, which

limit their ability to represent high-frequency geometric details, complex appearances, and view-

dependent phenomena, ultimately compromising photorealism.

Recent advances in neural rendering have addressed these limitations by leveraging implicit sur-

face representations, which model geometry as the zero-level set of learned continuous fields [113,

330]. Unlike mesh-based 3DMMs, these representations are not bound by a fixed topology and

can accommodate challenging geometries in regions like hair or the oral cavity. Moreover, sev-

eral works have demonstrated that implicit representations can be made controllable by using

3DMM parameters to condition the deformations of learned surfaces [331, 332], bridging classical

model-based control with modern high-fidelity synthesis. Appearance modeling in these systems

is similarly enhanced through learned radiance fields that enable view-consistent rendering.

To further enhance the rendering of volumetric effects, recent works have departed from the

single-surface modeling and instead adopted multi-layered surface representations. Among these,

BakedAvatar [318] leverages radiance manifolds [307] that are discretized into layered meshes,

allowing efficient rasterization at inference time while preserving complex volumetric phenomena.

Other methods augment mesh surfaces with volumetric primitives [333, 334], creating hybrid

architectures that combine the benefits of explicit surface control with volumetric appearance

modeling. As these approaches substantially deviate from purely surface-based representations,

we discuss them in detail in subsequent sections.

5.2.2 Neural Radiance Field-based Avatars

On a fundamental level, animating volumetric avatars requires introducing a dynamic representa-

tion capable of generalizing to novel control signals at inference time. One formulation of such

dynamic representations is exemplified by Nerfies [40], which models non-rigid deformations via
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learned latent codes conditioned through a deformation network and a canonical radiance field,

as described in Equation 4.4. This approach can be extended to support controllable animation by

directly conditioning the networks on a control input instead:

𝐷Ψ : (x, p) ↦→ 𝛿x 𝐹Θ : (x + 𝛿x, d, p) ↦→ (c, 𝜎). (5.2)

Here, the vector p ∈ ℝ𝑝
represents control parameters such as 3DMM-based expression and pose

coefficients. Similar conditioning mechanisms enable animation-driven synthesis and are adopted

by several NeRF-based avatar systems in the literature [332, 335, 336].

While control inputs such as 3DMM coefficients provide a compact representation of dynamic

mesh deformations, they are ultimately a low-dimensional proxy for complex high-resolution

surfaces. To better capture fine-grained dynamics, an alternative class of methods anchors vol-

umetric representations directly to tracked meshes in mesh space. Among these techniques,

MonoAvatar [139] encodes per-vertex features on a tracked template mesh, which are used to

interpolate color and density values from an MLP. Other approaches forgo MLPs entirely in

favor of explicit volumetric grids to accelerate inference, albeit at the cost of increased memory

consumption [301]. More recent works mitigate the memory-performance trade-off by leveraging

the Instant-NGP framework [141], utilizing multi-resolution hash grids for compact and efficient

neural field representation [327]. Another paradigm generalizes traditional blendshape models

to volumetric settings. These methods synthesize dynamic effects by linearly combining a set of

pre-learned volumetric blend assets. As with other dynamic avatar representations, these blend-

based volumetric models have also been accelerated through hash-based data structures, yielding

real-time performance without compromising quality [333].

5.2.3 Point-based Avatars

Suppose we aim to represent a controllable 3D head avatar realization via an oriented point cloud

{x𝑖,n𝑖, f𝑖}𝑁𝑖=1
, where x𝑖 ∈ ℝ3

are positions, n𝑖 ∈ ℝ3
are normals, and f𝑖 ∈ ℝ𝐹

are appearance-

related features such as diffuse or specular albedo in physical color spaces, or more abstract

representations in learned feature spaces that are subsequently mapped to RGB values. To control

these attributes, we can define a geometry model 𝐺 (p) that transforms positions and normals in

some canonical space {x𝑐𝑖 ,n𝑐𝑖 }𝑁𝑖=1
to a deformed space {x𝑑𝑖 ,n𝑑𝑖 }𝑁𝑖=1

given a control input p ∈ ℝ𝑝
.

Such a transformation can be carried out by a learnable function parameterized as a neural

network or the deformation function of a morphable face model can be used directly. Given

a set of canonical features {f𝑐𝑖 }𝑁𝑖=1
, an appearance model 𝐴(p) may optionally transform these

colors to another space {f𝑑𝑖 }𝑁𝑖=1
to represent deformation-induced appearance changes. Camera

view-dependent effects can be carried out by the rendering function R that rasterizes points and

composites colors to produce the final image.

Point-based representations with simple point primitives have been shown to effectively

model volumetric effects while enjoying efficient rendering thanks to fast, GPU-accelerated

rasterization [337, 338]. With the advent of 3D Gaussian Splatting (3DGS) [50], point-based

avatars were extended to use anisotropic Gaussian primitives with per-primitive, view-dependent

appearance attributes, leading to a higher representational capacity. These advancements have led

to a wave of research into 3DGS-based avatars using animation models of varying characteristics.

Following the formulation in (2.23), consider a canonical Gaussian cloud G =
{(
𝝁𝑐𝑖 ,Σ

𝑐
𝑖 , f

𝑐
𝑖 , 𝛼

𝑐
𝑖

)}𝑁
𝑖=1

,

where we replace the color attributes with more general appearance features f𝑐𝑖 . Under control
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parameters p ∈ ℝ𝑝
, a geometry model 𝐺 (p) can transform the positions, shapes, and opacities

of the Gaussians to some deformed space, yielding {𝝁𝑑𝑖 ,Σ𝑑𝑖 , 𝛼𝑐𝑖 }. As before, an appearance model

𝐴(p) may optionally transform features to produce {f𝑑𝑖 }𝑁𝑖=1
. Such a modeling paradigm underpins

recent influential works such as GaussianAvatars [156] and Gaussian Head Avatar (GHA) [339].

Here, GaussianAvatars attaches Gaussian primitives to a FLAME template mesh, and rigs this

mesh (along with the attached Gaussians) directly from tracked pose and expression coefficients,

whereas Gaussian Head Avatars [339] uses a learned deformation function conditioned on tracked

coefficients. Other approaches adopt alternative control mechanisms, such as Gaussian Blend-

shapes [334], which generalize mesh-based blendshape models to the Gaussian domain, enabling

expressive animation by linearly blending a set of Gaussian basis components.

5.3 Methodology

A 3D avatar system generally consists of two phases, an enrollment phase in which the avatar

is created using data captured from a subject, and a deployment phase in which the avatar is

streamed, animated, and rendered on the client device from a desired viewpoint. Our goal is to

design a volumetric avatar representation that is compatible with legacy rendering platforms

during the deployment phase. We achieve this by exporting our enrolled volumetric avatar to

classical graphics primitives like meshes and textures that can be rendered efficiently using simple

programmable shaders on any graphics platform without additional custom engineering, agnostic

of the underlying device hardware or software. We also aim to make our representation conducive

to online streaming, which includes the ability to trade off quality and data bandwidth via data

compression, similar to today’s online video streaming systems.

5.3.1 Avatar as Layered Mesh

Given the calibration video of a subject, our objective is to learn a single layered mesh representa-

tion that can be dynamically textured using expression coefficients of a parametric face model

in real-time. To achieve this, as done in Chapter 4, we model the geometry as a set of static 2D

implicit surfaces. But this time, the appearance is modeled as a UV-mapped dynamic radiance

controlled by 3DMM coefficients. To model the geometry, we learn 𝑁 implicit surfaces {S𝑖}𝑁𝑖=1

defined by a single manifold predictor M : ℝ3 → ℝ, which takes in a 3D point x ∈ ℝ3
and

outputs a scalar value 𝑠 ∈ ℝ, as in the previous chapter. We map all points on these surfaces via

a learnable function 𝑓 : S𝑖 → [−1, 1]2
to obtain UV-coordinates, which allows the network to

deviate from the deterministic spherical mapping used in Chapter 4. This is an important step to

better learn dense UV-space correspondences across different expressions in a subject-specific

way. In this UV-space, we learn a set of𝑊 warp fields and 𝑇 texture fields for each surface by

parameterizing the following functions as MLPs:

W𝑖 𝑗 : u ↦→ 𝛿u (5.3)

T𝑖𝑘 : u ↦→ c , (5.4)

where u ∈ [−1, 1]2
is a UV-space coordinate, 𝛿u ∈ ℝ2

is a UV-space offset, c ∈ ℝ𝑐
is a view-

dependent color parameterized as spherical harmonics coefficients [143], and 𝑖 ∈ {1, 2, . . . , 𝑁 },
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Figure 5.2: Training pipeline for enrollment phase. Our model consists of three separate modules: a

manifold predictor M, a warp predictor W, and a texture predictor T . Here, M is a scalar field that defines

layered implicit surfaces. The intersections with these surfaces are spherically mapped to the UV-space via

a learnable function 𝑓 . Then, the output subsequently queries W to obtain a basis of UV-offsets. These

offsets are then linearly blended as a function of expression parameters of a face model and added to the

original values. Finally, the new coordinates are fed through T which predicts a basis of RGBA appearances

which are also linearly blended as a function of expression parameters. Each module takes in learned latent

codes 𝜙𝑚, 𝜙𝑤, 𝜙𝑡 for multi-subject training, while W and T takes in learnable embedding matrices 𝐸𝑤 and

𝐸𝑡 to output bases of warps and textures.

𝑗 ∈ {1, 2, . . . ,𝑊 }, 𝑘 ∈ {1, 2, . . . ,𝑇 }. Given a set of face model parameters p ∈ ℝ𝑝
of a single frame,

a layered warp field {W𝑖}𝑁𝑖=1
and a layered texture field {T𝑖}𝑁𝑖=1

are obtained by

W𝑖 =
𝑊∑︁
𝑗=1

𝛾𝑗W𝑖 𝑗 and T𝑖 =
𝑇∑︁
𝑘=1

𝛽𝑘T𝑖𝑘 (5.5)

where {𝛾𝑗 }𝑊𝑗=1
and {𝛽𝑘}𝑇𝑘=1

are a set of weights obtained as a learnable linear function of p. Given

a 3D point x ∈ S𝑖 and its UV-coordinate u, we compute the warped UV-values u′ = u +W𝑖 (u)
which are used to query the blended texture field to obtain color and transparency as c = T𝑖 (u′).
We design our pipeline in a way that the implicit surfaces and the warp and texture bases can

be efficiently discretized and exported into a layered mesh and UV-space maps in pixel-space so

that our assets can be immediately deployed to any graphics platform without relying on custom

rendering algorithms or incorporation of ML tools.

5.3.2 Dataset

To train our model, we use multiview videos from the NeRSemble dataset [340], which consists of

a set of subjects with various facial expressions and talking sequences. To explicitly supervise

correspondences between different frames, we fit a parametric face model to the video sequences of

each subject to obtain per-frame expression coefficients as well as per-pixel UV-values Our 3DMM

includes linear bases of identity and expression. For each frame, we fit the 3DMM by estimating

599 landmarks in 2D and optimizing identity, expression, rotation, and translation parameters of

the 3DMM using a loss function that encourages consistency between per-vertex landmarks of

the 3DMM and the observed 2D landmarks [341]. The parameter size of our expression model

is 𝑝 = 63. As a preprocessing step, we transform the camera extrinsics to align faces across

frames to a canonical 3D face in order to account for strong head rotations during the capture. We
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Figure 5.3: During training, the radiance is mod-

eled using spherical harmonics coefficients, which

can be decomposed into diffuse and specular com-

ponents. The appearance can be exported as just

diffuse or both diffuse and specular texture images.

Figure 5.4: Given ground truth UV-coordinates ugt,

our model is supervised to match the expectation
of warped coordinates ū′

to the ground truth. We

visualize the expectations of the spherically mapped

coordinates ū and the warps 𝛿ū.

downsample the original images to a resolution of 802 × 550, which we found to offer an effective

trade-off between training efficiency and the ability to demonstrate high-resolution visual effects.

A note on expression generalization. We again emphasize that learning an expressive geometry

and appearance model that also generalizes to novel expressions outside of the calibration sequence

is a challenging and ill-posed problem. Furthermore, sampling across 2D discrete surfaces instead

of the entire 3D volume introduces more instability in training, which can cause shell artifacts in

extreme poses, as seen in Chapter 4. To aid generalization to novel expressions and mitigate stability

issues arising in the joint learning of geometry and appearance, we introduce a multi-subject

training paradigm, where we use a publicly available synthetic multi-view multi-expression image

dataset [342]. In our experiments, we combine each subject in the NeRSemble dataset [340] with

synthetic subjects that have similar face shapes to the real subject, which helps avoid overfitting

to the expressions from the calibration sequence of the target subject and prevents artifacts. We

empirically found that training with 20 synthetic subjects strikes a good balance between training

times and overall expression generalization.

5.3.3 Model Architecture and Training

Our architecture consists of three modules: a manifold predictor M, a UV-space warp predictor

W, and a texture predictor T , which we illustrate in Figure 5.2. While we note the similarity of

this architecture to the one we develop in Chapter 4, there are several notable changes.

Manifold predictor. We implement our manifold predictor as a subject-specific scalar field that

takes in 3D coordinates in 𝑥𝑦𝑧-space and a learned latent code 𝜙𝑚 for each subject. This module

defines a set of 𝑁 implicit surfaces, which are static for the entire sequence of a given subject. To

achieve this, an input 3D point is first deformed using a subject-specific deformation field, and

subsequently used to predict a scalar value that determines the manifold geometry. Given a camera

ray, we use the ray-mesh intersection algorithm [314] to find the set of 𝑥𝑦𝑧-space intersections

per ray and compute an initial set of UV-coordinates using spherical following Chapter 4. But

since we are interested in learning dense UV-space correspondences across frames consistent
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with the ground truth UV values, this spherical transformation is done with respect to a learnable

scene center instead of a fixed one.

UV-space warp predictor. In our animation model, we learn a basis of UV-space offsets for each

surface implemented as an MLP, which receives a set of𝑊 learned latent codes and a learned

subject code. This defines a set of warp fields that can be linearly combined into a single warp

field, which is used to add offsets to the input UV-coordinates before querying the appearance

model. In particular, we first linearly map the per-frame expression coefficients to a set of weights

that linearly blend the predicted UV warps across different surfaces. We note that the blending

weights are the same for all surfaces, facilitating a lightweight compute at rendering time.

UV-space texture predictor. To account for the geometry and appearance changes that cannot be

fully modeled by the UV-offsets (such as the inner mouth, eyelid motions, or complex specularities

on the skin), we learn a set of blend-textures in the UV-space that can also be linearly combined

into a single layered texture using the expression coefficients. Our texture predictor receives a

set of 𝑇 learned latent codes as well as a learned subject code, and outputs 2-degree spherical

harmonics (SH) coefficients for radiance [143] and a scalar alpha value (i.e., we do not estimate

volume density as before). Note that since the view-directional radiance is represented via a finite

set of SH functions, it is inherently less expressive than the view-directional radiance in Chapter 4.

But at the same time, it can be exported as SH coefficient map in the UV-space, allowing quick

look-up to render specular effects in a network-free way. Finally, given a UV-space coordinate u′

and a view direction in 𝑥𝑦𝑧-space, the output of our entire pipeline is an RGB radiance and alpha

value, which are composited across rays to produce the final color:

w𝑖 ≜ 𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼𝑗 ) c =
𝑁∑︁
𝑖=1

w𝑖ci (5.6)

At inference time, we decompose the radiance into diffuse and specular components, which

provides further flexibility on the size of the assets that are exported from the model. In Figure 5.3,

we illustrate our renders for each component.

Losses. We train our pipeline in an end-to-end fashion by adopting the following loss function:

L = Lrec + 𝜆uvLuv + 𝜆silhLsilh + 𝜆regLreg (5.7)

where Lrec is an ℓ1 reconstruction loss between predicted and ground truth pixel values, Luv is

an ℓ1 loss between the per-pixel expected UV-coordinates and ground truth UV-values computed

only on skin regions of the face, Lsilh is a silhouette loss that guides the manifold geometry using

per-image foreground masks [318], and 𝜆reg is the regularization term that penalizes predicted

warps, specular radiances as well as manifold predictor weights to promote training stability. Here,

the expected UV for each pixel is obtained by a weighted combination of the predicted warped UVs

across rays {u′
𝑖}𝑁𝑖=1

as ū′ ≜
∑𝑁
𝑖=1

w𝑖u′
𝑖 , which is supervised to match the ground truth UV-values at

that pixel. The UV supervision is a key term to improve the model capacity by registering the

facial features consistent with the UV topology of the 3DMM so that the texture basis focuses on

appearance changes that cannot be explained by warping of the UV coordinates. We illustrate a

representative test frame along with its per-pixel UV values and warps in Figure 5.4.
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Figure 5.5: Programmable shader. At the deployment phase, our 3D assets (a single static layered mesh

and bases of warp and texture maps) can easily be used to render dynamic and volumetric faces via a

programmable shader on any graphics platform.

Training details. The manifold predictor is implemented as two cascaded 4-layer MLPs of widths

128, which respectively learn a subject-specific 3D warp field and a scalar field that determines the

manifold geometry. The warp predictor is a 6-layer MLP of widths 128, which takes in𝑊 learnable

embeddings of dimension 128 after the third layer. The texture predictor is a 6-layer MLP of widths

256, which receives 𝑇 learnable embeddings of dimension 128 after the third layer. The subject

embeddings are 128-dimensional vectors, which condition each module individually. We optimize

our entire model using the Adam optimizer [262] with initial learning rates of 0.0007, 0.0005,

0.0008 and exponential decay rates of 0.20 per 200 000 iterations for M, W, and T , respectively.

Using a batch size of 32 768 rays sampled across all subjects, frames, and views, we train our

pipeline for 500 000 iterations.

5.3.4 Exporting 3D Assets and Model Deployment

Our discretization logic is similar to the one presented in Chapter 4. We discretize our continuous

manifolds into meshes by shooting rays from a hemisphere (centered at the learned scene center)

uniformly in azimuth and elevation angles, gathering all intersections and topologizing them into

a triangle mesh. We use the same set of points to query our warp and texture predictors to obtain

a basis of UV-space offsets and appearance maps. Finally, we export the linear functions that map

expression coefficients to blending weights as individual matrices. Depending on the application,

the mesh can be decimated to reduce the number of primitives, while UV-offset and appearance

maps can be downsampled to lower resolutions. Since our final assets merely comprise a single

layered mesh with a fixed topology as well as warp and appearance maps, they can easily be

deployed to any graphics platform for rendering.
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The blend weights for our warp and texture bases can be efficiently computed at rendering

time by linearly mapping 𝑝 = 63 dimensional expression coefficients to𝑊 = 𝑇 = 12 coefficients.

Including the learned constant offset in this mapping, this results in two weight matrices of size

12 × 64. Our canonical UV values, warp basis, and texture basis are all exported in the UV space,

where the resolution and the precision can be modified for different application needs. Please refer

to Figure 5.14 for visualizations of our assets. For renders at 0.5K resolution, we found that mesh,

warp map, and texture map resolutions of 512 × 512 are sufficient to preserve the overall visual

quality. Here, a 32-bit precision is maintained for UV values, while the appearance is exported as

8-bit RGBA maps where the view-dependent radiances are discarded.

5.3.5 Rendering

Rendering is performed by a programmable shader that receives the exported 3D assets, as well

as face model parameters p and the camera viewpoint, as shown in Figure 5.5. Here, blend and

warp phases are simple linear operations, while rasterization is a standard projection operation

handled by the graphics pipeline. By learning a canonical geometry and modeling deformations

in the 2D UV-space instead of the 3D space, we can disentangle their parameterization into a

single mesh and a set of warp maps. In our results, we show that it is possible to model the

blend weights for the warp and appearance bases as a linear transformation of the expression

parameters. This makes animation a very simple linear operation without having to explicitly

account for complex non-rigid dynamics in 3D. This is in contrast to mesh-based avatar methods

such as BakedAvatar [318], which handles animations by explicitly deforming meshes.

A note on rendering efficiency in comparison with modern methods. Rasterizing triangles

is inherently significantly faster than the standard implementations of volumetric rendering

techniques such as Gaussian splatting and neural fields on a per-primitive and per-pixel basis.

Gaussian splatting requires an expensive sorting operation, while neural fields rely on tracing rays,

sampling multiple points along the ray that need to be contiguously integrated. Rasterizing our

ordered mesh representation does not suffer from such challenges since sorting is handled using the

depth buffer. Finally, we do note that there are several implementations of 3D Gaussian splatting

and neural fields, including hash grids like InstantNGP [141] and hierarchical embeddings [343]

that offer faster results, but they are often engineered for particular hardware such as a GPU or

require custom implementations for wide-scale deployment.

5.3.6 Streaming

Our method simplifies transmission by initially sending static mesh, textures, and linear transfor-

mations. Subsequently, only per-frame face model parameters p are streamed and fed directly

to the programmable shader, shown in Figure 5.5. Our technique also offers a unique advantage

in multi-avatar interaction scenarios. In a 1-on-1 interaction, complete client-side rendering is

ideal, as it minimizes the amount of data that must be transmitted. But in a multi-avatar scenario,

offloading compute to the server side is more efficient as it avoids duplication of compute effort

across multiple clients. Our pipeline allows for expression-related computations such as warping

and blending to be performed on the server side, so that only the view-dependent rendering is left

to be performed on the client side. Most importantly, since the output of our warping and blending
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Figure 5.6: View synthesis results. Our

model achieves photorealistic volumetric

rendering of 3D face avatars. Please see

the supplementary material in [329] for

video demonstrations.
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Figure 5.7: Comparisons on novel view synthesis. Our model

can synthesize novel views at a comparable visual quality to

MonoAvatar++ [327] and GaussianAvatars [156], while being

less prone to floater artifacts in NeRFs, and inherently prevent-

ing primitive ordering artifacts in 3DGS.

operations is a set of texture maps, they can be conveniently transmitted as a compressed video

stream. This allows for a healthy trade-off between compute and transmission bandwidth. Such

ability is not trivially available with other volumetric techniques, including other mesh-based

techniques like BakedAvatar [318], since it demands the much heavier mesh-streaming for every

frame. In contrast, our approach relies solely on video streaming.

5.4 Experiments and Results

In our experiments, we set 𝑁 = 𝑇 =𝑊 = 12. We use the first 9 talking sequences of each subject

in the NeRSemble dataset [340] for training and use the last one for testing. We hold out 2 of

the 16 cameras in training data to evaluate our model’s performance quantitatively. To aid the

training stability and generalization, we gather 25 subjects from the synthetic data corpus with

the closest head shapes to the real subjects, as discussed in Section 5.3.2.

We compare against 5 state-of-the-art efficient volumetric avatar techniques, BakedAvatar [318],

Gaussian Head Avatar (GHA) [339], GaussianAvatars [156], Monoavatar++ [327], and PointA-

vatar [337]. We chose these methods as representative of the best-in-class techniques that achieve

fast rendering and employ layered meshes, Gaussian splatting, or neural radiance fields as the

underlying volumetric representation. We note that our goal is not to visually outperform existing

volumetric techniques, but to allow native compatibility with existing graphics platforms, while

maintaining comparable visual fidelity.
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Figure 5.8: Qualitative comparisons. Our technique achieves comparable visual quality to modern neural

rendering techniques while facilitating 3D animations in a platform-agnostic way.
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Table 5.1: Quantitative comparisons. Our model attains similar quality compared to previous methods.

Method PSNR↑ SSIM↑ LPIPS↓
PointAvatar [337] 23.80±1.28 0.872±0.016 0.137±0.018

MonoAvatar++ [327] 27.45±2.43 0.936±0.011 0.098±0.009

GHA [339] 24.29±2.16 0.863±0.039 0.102±0.024

GaussianAvatars [156] 27.54±1.69 0.931±0.017 0.066±0.015

BakedAvatar [318] 24.38±0.78 0.888±0.013 0.117±0.018

Ours 26.97±1.23 0.929±0.007 0.117±0.006

5.4.1 Qualitative Results

Novel view synthesis. We illustrate our novel view synthesis results in Figure 5.6. Our method

generalizes over different subjects with varying face geometries and appearances. Please refer to

the supplementary video in [329] for demonstrations and comparisons with other methods.

Novel view synthesis comparisons. We provide comparisons on novel view synthesis with

the state of the art methods in Figure 5.7. NeRF-based methods like [327] can manifest floating

artifacts, and 3DGS-based methods may result in popping-like artifacts due to explicit sorting of

primitives [303]. Our method is not prone to such artifacts by design, and the exported textured

meshes can be edited by an artist, providing additional flexibility to remove visual seams as a

post-processing step. Please see the supplementary video in [329] for better visualizations.

Self-reenactment. We show renders of test expressions from the heldout views and compare

them with baseline methods in Figure 5.8. Our model achieves comparable visual quality to the

previous methods that rely on sophisticated primitives or MLP queries at rendering time. For

video visualizations, please refer to the supplementary material in [329].

Cross-reenactment. Our avatar representation can also be driven by transferring expressions of

another subject. Please refer to the supplementary video in [329].

5.4.2 Quantitative Results

For three subjects (with IDs 055, 264, and 306), we perform quantitative evaluations on two

held-out views across the entire test sequences, consisting over 800 images. We report average

image quality metrics in PSNR, SSIM [273], and LPIPS [274] for our method and other methods in

Table 5.1, where we observe comparable average performance.

5.4.3 Real-time Rendering on Web Browsers

Our representation is natively deployable on graphics platforms and enables real-time rendering

of volumetric face avatars using a simple programmable shader. Using WebGL on a consumer

laptop, we achieve the frame rates shown in Figure 5.9 for varying mesh resolutions and rendering

resolutions, while keeping the memory usage less than 2 GB at 512
2

mesh resolution and 2K
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Figure 5.9: Frame rates on WebGL (in frames per second). Our assets can be natively deployed on

traditional graphical pipelines on web browsers using WebGL, achieving cross-platform compatibility.

These numbers are profiled on Chrome 133.0 on a MacBook Pro with M1 Pro chip. Frame rates above the

refresh rate of 120 Hz are indicated as >120.

rendering resolution. We emphasize that our approach discretizes all scene components, placing

it on the memory-intensive side of the inherent memory–compute trade-off. Nevertheless, by

employing a moderate number of layers and basis sizes, our assets remain sufficiently lightweight

to maintain a memory footprint compatible with commodity hardware. We also observe that the

performance of BakedAvatar [318] suffers significantly at higher rendering resolutions owing to

per-pixel MLP queries, while our representation naturally scales well to higher resolutions due to

simple texture queries.

5.4.4 Ablation Studies

Mesh and texture resolution. As seen in Chapter 4, our representation has the flexibility to

efficiently trade off image quality with rendering efficiency by reducing the number of primitives

of the exported mesh and downsampling the layered textures. Given a layered mesh at 512 × 512

vertex resolution (per layer) with canonical texture coordinates as vertex attributes, we first

gather the vertices from each layer as an oriented point cloud and perform Poisson surface

reconstruction [103] to obtain watertight surfaces as before. Then, we use an off-the-shelf mesh

decimation algorithm to reduce the number of vertices in the mesh to a given target. Since our

model is trained to represent a variety of expressions with a single set of static surfaces, the

exported meshes roughly correspond to the coarse face geometry of the subjects. Therefore, we

can reduce the total number of primitives significantly without sacrificing the visual quality, as

shown in Figure 5.10 and the supplementary video in [329].

If there is any need to decrease the resolution of the streamed avatar (such as reduced data

bandwidths), we can dynamically downsample our video textures using the existing infrastructure.

We report view synthesis and animation results for a variety of texture resolutions, illustrated in

Figure 5.10 and the supplementary video in [329].
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Figure 5.10: Ablation on mesh and texture resolution. At deployment phase, our asset size can be trivially

reduced with standard operations. Due to our smooth surface geometry, the visual quality is maintained

down to 32 × 32 mesh resolution, with a total number of primitives of <12 000, providing a very lighweight

volumetric representation for renders at 0.5K resolution. Similarly, the texture resolution can also be

adjusted for varying needs of an application by downsampling layered textures.

Ground Truth W = T = 16 W = T = 8 W = T = 4 W = T = 2

Figure 5.11: Ablation on sizes of warp and texture bases. Sufficient number of blendable warps and

textures is crucial to achieve good rendering quality and generalization to novel expressions.
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Figure 5.12: Ablation on synthetic data. The stability and overfitting challenges can be mitigated by

introducing synthetic face data jointly trained with the real subject. This helps with generalization to novel

expressions in addition to regularization of the learned face geometry.

Table 5.2: Ablation study on sizes of warp and texture bases. Basis sizes improve rendering quality and

expression generalization. These metrics are obtained on cropped images that include the face region only.

PSNR↑ SSIM↑ LPIPS↓
𝑊 = 𝑇 = 16 29.67 ± 1.36 0.897 ± 0.012 0.258 ± 0.017

𝑊 = 𝑇 = 8 29.47 ± 1.39 0.894 ± 0.012 0.259 ± 0.017

𝑊 = 𝑇 = 4 29.38 ± 1.41 0.892 ± 0.012 0.263 ± 0.016

𝑊 = 𝑇 = 2 28.46 ± 1.21 0.882 ± 0.012 0.276 ± 0.019

Warp and Texture Basis Size. To provide more insights into our model, we evaluate its expres-

siveness by modifying its warp and texture basis sizes. We illustrate our results in Figure 5.11

and evaluation metrics in Table 5.2, where we observe that the overall rendering quality suffers

and the renders manifest artifacts as we reduce the basis sizes. Furthermore, the model does not

generalize to novel facial expressions and eye gazes as we reduce its capacity.

Synthetic data. We illustrate the effectiveness of our joint real–synthetic training in Figure 5.12,

where we observe that in the absence of synthetic data, our model is prone to geometric instabilities

and may fail to generalize to novel expressions.

5.5 Discussion and Outlook

In this chapter, we introduced a novel, efficient, and natively deployable representation for

animatable volumetric head avatars, designed to operate seamlessly within traditional graphics

pipelines. We demonstrated that the static mesh and dynamic texture framework developed in

the previous chapter can be extended to support expression control, while retaining the practical

benefits of memory efficiency, rendering speed, and platform compatibility. This is accomplished

by learning bases of UV-space warps and RGBA textures, which together enable the synthesis

of a wide range of facial expression changes. Expression control is performed efficiently via
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Figure 5.13: Limitations. Layered mesh representations may suffer from shell artifacts when

viewed from extreme angles. While our approach outperforms existing baselines on visual quality

on novel views that deviate from training data (left), at more extremely out-of-training profile

views (right) it also suffers from “shell” artifacts similar to the baseline.

simple linear blending of these bases, conditioned on tracked parameters from a morphable face

model. Our experiments show that discretizing geometry as layered meshes, UV-space warps as

pixel-space warp maps, and RGBA textures as pixel-space texture maps supports high-quality

rendering with minimal visual artifacts and without incurring significant memory overhead.

Limitations. The core premise of our representation lies in the discretization of scene compo-

nents: geometry, appearance, and deformation. While this design enables compatibility with

traditional rendering pipelines, it inherently imposes limitations on representational capacity

when compared to continuous volumetric approaches such as radiance fields or 3D Gaussians. As

discussed in the previous chapter, the use of coarse geometry can lead to shell artifacts, particularly

at oblique viewing angles, as illustrated in Figure 5.13. Based on our earlier findings, achieving

artifact-free rendering at wider viewing angles would require higher-fidelity geometry predictions,

which in turn increases the size and complexity of the layered mesh representation.

The enrollment phase in our pipeline depends on machine learning–based training for each

subject. While this process can be practically executed using cloud-based computational resources,

scaling it to support millions of users poses a significant challenge in terms of cost and efficiency.

To address this, recent research has explored strategies to simplify and accelerate the enrollment

process. For instance, advances in generative modeling have demonstrated the ability to leverage

strong priors over facial geometry and appearance, enabling direct regression of volumetric

representations from as little as a single input image [13]. In another line of work, large-scale

models trained on massive datasets have shown promise in rapid inference-time enrollment,

requiring only a handful of casually captured images from a handheld device [344]. We note that

our representation is agnostic to the data modality and thus potentially amenable to training on

large-scale, diverse datasets, making it well-suited for integration with these emerging approaches.
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In summary, we believe that this work establishes a solid foundation for a novel representation

capable of capturing, animating, and rendering volumetric facial effects within conventional

graphics frameworks. Future research can build upon this framework to develop even more

efficient, scalable, and deployable solutions for real-world applications.

The next era. Early photorealistic head avatar pipelines rely on light stages packed with dozens

of synchronized cameras, as standard mesh and texture models lacked enough priors to infer

geometry, reflectance, and lighting from a sparse number of views. One breakthrough that resolved

these hardware constraints was the combination of neural, differentiable rendering with subject-

specific deformations. Nowadays, dynamic NeRF-style volumes (and their 3DGS successors) can be

recovered using a single handheld selfie video while being warped by a low-dimensional expression

and pose codes learned from parametric face models. The next leap appears to be data-hungry

pre-training: avatar foundation models can compress millions of subjects into a single transformer

that can cold-start an enrollment in minutes. Looking a decade ahead, commercial enrollment will

likely shrink to a few casually lit photos or a five-second head-turn clip fed through a cloud-scale

foundation model. Even if the enrollment converges to a single forward pass, the underlying

3D representation—whether 3D Gaussians, tri-planes, or hybrid mesh and implicit patches—will

likely remain a first-order design knob, as it dictates the trade-off between bandwidth, latency,

and visual fidelity in production pipelines. In the near future, as devices, their latencies, and

privacy constraints will likely remain heterogeneous, it is unlikely that a single avatar foundation

model or representation will dominate. Instead, production systems will likely have to juggle a

selection of 3D codecs—meshes for legacy, 3D Gaussians for fidelity—and lightweight parametric

deformations for expression control, which might involve selecting the one that best satisfies the

moment-to-moment trade-off between compute, bandwidth, and photorealism.

The growth of the XR industry, even when equipped with compelling technologies such as

virtual telepresence that operate at low cost, low latency, and with high photorealism, must

also overcome public hesitation toward large wearable hardware like head-mounted displays.

This can imply that these devices must deliver truly groundbreaking capabilities, beyond virtual

telepresence alone, to create a strong sense of desire or attraction in users, even when the offered

experiences are primarily for entertainment. Therefore, diversifying the application space beyond

avatars, with experiences such as immersive gaming, remote collaborative work, or virtual tourism,

may accelerate the adoption of these new wearables into our lives.

Looking ahead in the next decade, it is likely that we will witness a new class of transformative

technologies emerging, where users are able to generate interactive, fully immersive environments

or games from single text prompts. These personalized, shareable worlds can offer unprecedented

forms of entertainment, with customizable experiences tailored to individual preferences. In-

terestingly, such virtual environments may entirely deviate from modern-day 3D assets—such

as meshes, voxels, point clouds, or radiance fields—and instead be generated directly by large

transformer-based architectures that advance beyond current state-of-the-art world models such

as Genie 3 [345]. Using these models, every pixel displayed on the XR headset could be generated

on-the-fly by a transformer, rather than rendered from existing 3D assets. This paradigm opens

exciting possibilities for the gaming and entertainment industries, potentially enabling entirely

new forms of content creation. For example, an interactive 3D movie generated from a single

prompt by a single user could be shared with millions of people, enabling them to experience
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it on their own devices. However, whether or not these experiences will be sufficient to drive

widespread adoption, ultimately leading to a future where XR headsets are as ubiquitous as mobile

phones today, remains an open question.
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Figure 5.14: Visualizations of the assets. Illustrating a subset of the learned warps and appearances. With

tracked expression coefficients of a 3DMM, these assets can be used to render a texture video shown at the

bottom. All images are alpha-composited for visualization purposes.
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6
Concluding Remarks
and Perspectives

This thesis offers a narrow yet focused glimpse into the vast and rapidly evolving research landscape

surrounding face-centric problems in visual computing. The methods presented were developed

over the course of nearly four years, each shaped by a distinct moment in time—situated within

vastly different states of computer vision, graphics, and the broader fields of machine learning and

artificial intelligence. Over this period, new paradigms have swept through the community, often

becoming the de facto state-of-the-art, embraced by thousands of researchers worldwide—only to

be replaced by newer frameworks within a year. Generative adversarial networks [205], which

formed the foundation of the methods in Chapter 3, have been almost entirely supplanted by

diffusion models [89] by the time Chapter 4 was developed. Similarly, large avatar models [344]

were not yet on the horizon when the work in Chapter 4 was completed. Today, they are emerging

at scale, poised to fundamentally reshape how we think about avatar representations that satisfy a

diverse set of design constraints. At the time of writing this thesis, we are witnessing the advent of

consumer-accessible reasoning models that bring large language model–level inference capabilities

to everyday devices [287]. These systems exhibit unprecedented levels of generalization, rigor,

and reasoning ability—capable of addressing research problems that span dozens of disciplines, all

within a single interface triggered by a simple user prompt. As of July 2025, an AI model has even

been awarded a gold medal in the International Mathematical Olympiad, a symbolic achievement

that underscores just how far these technologies have come [346]. Undoubtedly, this may be the
most exhilarating time to be a researcher in the field of artificial intelligence.

While none of the methods developed in this thesis directly engage with systems that exhibit

human-level intelligence through natural language, they nonetheless offer meaningful insights

into how machine learning can transform algorithm design, particularly by introducing powerful

paradigms that automatically learn rich and fascinating properties of our 3D world, embedded

within the weights of neural networks. The central creative challenge lies in unlocking this

automation: by selecting the right architecture, curating the appropriate data, designing effective
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loss functions, and addressing numerous other considerations specific to the 3D vision domain,

where algorithms must deal with the complexities of real-world physics, geometry, appearance,

illumination, as well as the interactions among them. This makes machine learning in the 3D

domain particularly challenging, as the level of abstraction extends beyond simply tokenizing

information into embedding vectors. It requires careful modeling of how we digitally represent

the 3D world, along with a deep understanding of the image formation process through rendering,

while always remaining grounded in physical reality. Indeed, a central theme throughout this

thesis has been to critically examine the choice of 3D representation in each task we addressed,

and to explore how these representations can be optimized, or even designed from scratch, to

better fulfill the requirements of the target applications.

Yet, as we have seen, representation is merely one facet of the broader problem of 3D face

synthesis and editing. In Chapter 3, we worked with textured meshes as the foundation for

our 3D-aware face image manipulation pipeline. But the ambitious set of desiderata—namely,

fast inference, disentangled control, generalization beyond the training distribution, and data

efficiency—directly influenced our design choices, ultimately leading to a rather involved, multi-

stage training framework. This training scheme required careful and extensive experimentation

to balance the relative contributions of multiple loss terms, and to ensure that adversarial su-

pervision consistently provided meaningful gradients to push the synthesized outputs toward

better photorealism. In the end, creative model design must often be complemented by thorough

empirical study, as the optimal configuration of model architectures or training parameters may

not be readily apparent through theoretical reasoning alone.

We observed similar patterns in Chapter 4. While we initially hypothesized that a static layered

mesh representation could meet our goals of streamability and backward compatibility, it was

not immediately clear whether such a representation would in practice satisfy these constraints,

nor how to effectively learn such mesh-based structures. Among various possible approaches,

the radiance manifolds framework [307] emerged as a particularly intuitive solution. It enabled

the optimization of continuous surfaces that can be rendered directly during training, integrates

naturally with gradient-based learning, and responds well to data-driven supervision. However,

we also found that the joint learning of geometry and appearance is a highly non-trivial challenge,

which often exhibits unstable dynamics as the network attempts to explain variations in one

modality using the other. Ironically, our pipeline is explicitly designed to explain most geometric

variation through the appearance model. This leads to a spectrum of valid solutions, each placing

a different burden on the representational capacity of the geometry and appearance components.

The challenges associated with learning layered mesh representations re-emerged in Chapter 5—

this time compounded by additional requirements of controllability and generalization to novel

expressions. These new demands required a significant rethinking of the playback pipeline

introduced in the previous chapter. Specifically, we introduced UV-space warps to more compactly

model geometric deformations, offering a more efficient alternative to directly alpha-compositing

fully dynamic textures. Addressing the generalization challenge led us to incorporate synthetic

data into the training process, which in turn raised important design questions about subject

conditioning and model capacity. To maintain high-quality rendering across a diverse set of

identities and expressions, we increased the representational capacity of the network notably.

Perhaps the most non-obvious question was whether full discretization of the pipeline, especially

the UV-space warps, could preserve the visual fidelity achieved by the continuous formulation.

Through empirical validation, we showed that it is indeed possible: a lightweight, programmable

104



shader can consume these discrete assets and drive a volumetric avatar in real time on consumer

hardware. This finding holds practical implications for virtual telepresence, potentially enabling

scalable deployment across a heterogeneous set of devices, just as modern video conferencing

seamlessly spans different web browsers, platforms, and operating systems.

Parting thoughts. A recurring question posed throughout this thesis has been: What are the

limitations of the methods we have developed, and what comes next? As we have seen, each

of our methods carries a set of trade-offs and limitations that, in turn, spark new directions for

addressing the underlying challenges more effectively. At the same time, the broader context in

which this thesis was written has been marked by rapid, unprecedented advances in AI and visual

computing, leading to paradigm shifts that have already rendered some foundational components

of our pipelines less relevant or even obsolete. Pretrained, large-scale diffusion models [285]

and vision-language models [289] now provide powerful building blocks for developing face

image manipulation systems. Similarly, the emergence of avatar foundation models has begun to

eliminate the need for subject-specific, computationally demanding enrollment pipelines altogether.

Yet, as we have emphasized throughout this thesis, one of the most pressing open questions

remains: What is the right 3D representation? This question makes novel representation research

a particularly rich and important avenue to pursue. Indeed, a large avatar foundation model that

regresses casually captured images into a static layered mesh, along with warp and texture bases,

would be a compelling demonstration. However, it is also likely that meshes and textures, long-

standing components of traditional graphics pipelines, may soon lose their legacy status. As both

academia and industry continue to develop new standards for compression, streaming, and real-

time rendering of newer representations, notably radiance fields represented as neural networks

or 3D Gaussian primitives, the practical limitations that once hindered these representations will

be minimal. When that happens, we can expect a proliferation of consumer-facing applications

not just in avatar synthesis, but across the broader spectrum of visual computing tasks, spanning

devices from head-mounted AR systems to laptops, smartphones, and potentially a new generation

of wearables that may profoundly transform how we interact with the digital world.

The remarkable progress in AI opens up thrilling new possibilities for the future of humanity,

but it also brings complex and unsettling uncertainties. Only last year, the feasibility of artificial

general intelligence was still under debate—now, the conversations have shifted toward the

development of artificial superintelligence, powered by models that integrate text, audio, images,

video, and 3D data. Visual content generation has reached unprecedented levels of realism, where

AI-generated videos can now be created by everyday users, shared across social media, and

potentially viewed by millions of people. While it is tempting to be swept up in the exciting

potentials of these advances, we must again acknowledge a growing divergence: the gap between

physical reality and the digitally constructed realities we interact with on our devices is widening.

Ultimately, it is up to us, the researchers, not only in computer vision and machine learning but

also in the social sciences and humanities, to anticipate and address the potential harms that these

technologies may introduce. It is difficult to say whether or not artificial superintelligence will be

achieved by the end of this decade. But there is no doubt that the developments in large-scale AI

models have begun and will continue to fundamentally change the way we approach and solve

problems that involve synthesizing, editing, and animating 3D faces, and more broadly, the fields

of computer vision and computer graphics, as a whole.
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