
Received 9 December 2024; revised 20 January 2025; accepted 17 February 2025. Date of publication 1 April 2025; date of current version 8 May 2025.

Digital Object Identifier 10.1109/OJCOMS.2025.3556319

RF Challenge: The Data-Driven Radio Frequency
Signal Separation Challenge

ALEJANDRO LANCHO 1,2 (Member, IEEE), AMIR WEISS 3 (Senior Member, IEEE),
GARY C. F. LEE 4 (Member, IEEE), TEJAS JAYASHANKAR5 (Student Member, IEEE),

BINOY G. KURIEN 6, YURY POLYANSKIY 5 (Fellow, IEEE),
AND GREGORY W. WORNELL 5 (Fellow, IEEE)

1Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2Gregorio Marañón Health Research Institute, 28007 Madrid, Spain

3Bar-Ilan University, Ramat Gan 5290002, Israel
4Communications and Networks, Institute for Infocomm Research, Singapore 138632

5Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6MIT Lincoln Laboratory, Lexington, MA 02421, USA

CORRESPONDING AUTHOR: A. LANCHO (e-mail: alancho@ing.uc3m.es)

This work was supported in part by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator under
Cooperative Agreement under Grant FA8750-19-2-1000, and in part by the National Science Foundation (NSF) under Grant CCF-2131115. The work
of Alejandro Lancho was supported in part by the Comunidad de Madrid’s 2023 Cesar Nombela program under Grant 2023-T1/COM-29065; in part
by the Comunidad de Madrid under Grant TEC-2024/COM-89; and in part by the Ministerio de Ciencia, Innovación y Universidades, Spain, under
Grant PID2023-148856OA-I00. The material in this paper was presented in part at the IEEE Int. Workshop Mach. Learn. Signal Process. (MLSP),

Aug. 2022, the IEEE Glob. Commun. Conf. (GLOBECOM), Dec. 2022, the IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Jun. 2023, and the IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Apr. 2024.

(Alejandro Lancho and Amir Weiss contributed equally to this work.)

ABSTRACT We address the critical problem of interference rejection in radio-frequency (RF) signals
using a data-driven approach that leverages deep-learning methods. A primary contribution of this paper
is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset for data-
driven analyses of RF signal problems. Specifically, we adopt a simplified signal model for developing
and analyzing interference rejection algorithms. For this signal model, we introduce a set of carefully
chosen deep learning architectures, incorporating key domain-informed modifications alongside traditional
benchmark solutions to establish baseline performance metrics for this intricate, ubiquitous problem.
Through extensive simulations involving eight different signal mixture types, we demonstrate the superior
performance (in some cases, by two orders of magnitude) of architectures such as UNet and WaveNet over
traditional methods like matched filtering and linear minimum mean square error estimation. Our findings
suggest that the data-driven approach can yield scalable solutions, in the sense that the same architectures
may be similarly trained and deployed for different types of signals. Moreover, these findings further
corroborate the promising potential of deep learning algorithms for enhancing communication systems,
particularly via interference mitigation. This work also includes results from an open competition based
on the RF Challenge, hosted at the 2024 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’24).

INDEX TERMS Interference rejection, deep learning, source separation, wireless communication.

I. INTRODUCTION

THE RAPID proliferation of wireless technologies
is driving an increasingly congested radio spec-

trum. Emerging services, such as virtual reality and

augmented reality, demand substantial bandwidth to oper-
ate effectively [1]. Concurrently, new applications for
ultra-reliable low-latency communications (URLLC) and
massive machine-type communication (mMTC) are imposing
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strict requirements on reliability, latency, and energy effi-
ciency. These requirements necessitate advanced interference
management strategies that go beyond traditional resource
orthogonalization in time and frequency domains. As a
result, wireless systems must adopt sophisticated interference
management techniques to support these diverse, coexisting
demands on the spectrum [2], [3].
Standard solutions for this ubiquitous problem involve

filtering out interference by masking irrelevant parts of the
time-spectrum grid or using multi-antenna capabilities to
focus on specific spatial directions. In this paper, however,
we focus on the case where the interference overlaps both
in time and frequency with the signal of interest (SOI),
and there is no spatial diversity to be exploited. Such a
challenging case can occur, for example, in single-antenna
devices or multi-antenna devices with insufficient spatial
resolution to satisfactorily spatially filter the interference.1

In such situations, judicious and effective solutions would
have to exploit the specific underlying statistical structure of
the interference, potentially via learning techniques.
Throughout this paper, we will also adopt the common

terminology of co-channel interference to refer to other
waveforms that operate at the same time and the same
frequency band as the SOI [4]. Such co-channel interference
can be reduced by the use of interference mitigation tech-
niques, often via signal separation methods.2 In this context,
the goal is to extract the SOI with the highest possible
fidelity, thereby enhancing downstream task performance
(e.g., detection, demodulation, and decoding).

A. PREVIOUS WORK
The simplest solution for interference rejection in communi-
cation systems is to filter the received signal using a matched
filter that is matched to the one used to generate the baseband
signal waveform at the transmitter [5], thereby implicitly
(and most likely incorrectly) treating the interference as addi-
tive white Gaussian noise (AWGN). Perhaps surprisingly, this
is often the only interference mitigation method employed
in existing wireless communication systems. However, it is
well-known that the matched filter solution, while guaran-
teed to be optimal (in the maximum signal-to-noise ratio
(SNR) sense) for an AWGN channel [5], is certainly not
necessarily optimal in other settings. Consider, for example,
an interference that is a communication signal generated
from another communication system, overlapping with the
SOI in time and frequency. In this case, in addition to
(Gaussian) noise, the received signal will be contaminated
with a non-Gaussian interference as well. In this scenario,
matched filtering is likely to be suboptimal, thus creating the

1While we do not include technical details, it can be shown that the
multi-antenna case can be effectively equivalent to a single-channel case
after applying a beamforming vector to multivariate data from an array.

2We will henceforth refer to signal separation also as source separation
or interference rejection, interchangeably. Furthermore, the interference
rejection problem can also be understood as a denoising problem, where
we aim to remove the SOI from the “noise”, which, in this case, is the
non-Gaussian interference signal.

possibility for other source separation techniques to provide
performance gains.
There are, indeed, various source separation methods in

the literature that were proposed and specifically designed
for digital communication signals. One noteworthy approach
is maximum likelihood sequence estimation of the target
signal, for which algorithms such as particle filtering [6] and
per-survivor processing algorithms [7] can be used. However,
methods such as maximum likelihood, often referred to
as “model-based” methods, require prior knowledge of the
statistical models of the relevant signals, which may not be
known or available in practical scenarios. As a result, in
practice these methods are often suboptimal, and in some
cases perform poorly (see, e.g., [8], [9]).
In those cases where the statistical models of the involved

signals are not fully known, a more realistic (though
challenging) paradigm is to assume that only a dataset of the
underlying communication signals is available. This can be
obtained, for example, through direct/background recordings
or using high-fidelity simulators (e.g., [10]), allowing for a
data-driven approach to source separation. In this setup, deep
neural networks (DNNs) arise as a natural choice. This data-
driven version of the source separation problem has been
promoted within the context of the “RF Challenge” dataset,
where signal separation with little to no prior information is
pursued [11].

While machine learning (ML) techniques have shown
promise in source separation within the vision and
audio domains [12], [13], the radio-frequency (RF) domain
presents unique challenges. Typically, these methods exploit
domain-specific knowledge relating to the signals’ charac-
teristic structures. For example, color features and local
dependencies are useful for separating natural images [14],
whereas time-frequency spectrogram masking methods are
commonly adopted for separating audio signals [15]. In
contrast to natural signals, such as images or audio record-
ings, most RF signals are different in nature: i) they are
synthetically generated via digital signal processing circuits;
ii) they originate from discrete random variables;3 and
iii) they typically present an intricate combination of short
and long temporal dependencies. On top of these differences,
the mixture signals may overlap in time and frequency. All
this together implies that classical, “handcrafted” model-
based solutions—while successful in other domains—may
fail in the RF signal domain (e.g., [17], [18]).

B. THE NEED FOR RF SIGNAL DATASETS
ML-based solutions often require large datasets. While large
datasets are readily available in domains like vision and
audio, they remain scarce in the RF domain, despite the
widespread importance of digital RF communication signals
in our everyday lives ([19, Ch. 2.4] and references therein).

3This is important because it implies that communication signals follow
non-differentiable probability mass functions rather than differentiable
probability density functions, which makes learning such distributions more
challenging. These numerical challenges are further discussed in [16].
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Among the available datasets, notable examples include
the one provided by DeepSig, which offers several synthet-
ically generated signals from GNU Radio for modulation
detection and recognition [20], and those available through
IQEngine, a Web-based software defined radio (SDR) toolkit
for analyzing, processing, and sharing RF recordings [21].
A relatively new dataset designed specifically for source

separation of RF signals is the “RF Challenge” [11]. This
dataset includes several raw RF signals with minimal to no
information about their generation processes. The lack of
prior knowledge of the signal structure, combined with the
possible complete overlap in time and frequency between the
constituent signals, renders conventional separation via clas-
sical, and in particular linear, filtering techniques ineffective.
Addressing this challenge calls for new learning methods
and architectures [16], [22] that must go beyond the state
of the art. The RF Challenge was created to promote the
development of solutions to important problems particular
to the RF domain, similar to how datasets such as MNIST,
ImageNet, VAST, and HPC Challenge ([23], [24], [25], [26],
respectively) have catalyzed research considerably in their
respective areas by creating standard benchmarks and high-
quality data.
The data associated with the RF Challenge are publicly

available at https://rfchallenge.mit.edu/datasets/ and contain
several datasets of RF signals recorded over the air or
generated in lab environments. Specifically, most signals in
the dataset are from the 2.4 GHz industrial, scientific, and
medical (ISM) band. Only the 5G signals in the dataset were
generated using a cable setup and a simulated 5G channel
environment.

C. CONTRIBUTIONS
Our main contribution in this paper is the comprehensive
presentation of the RF Challenge dataset for the single-
channel signal separation challenge, focusing on two goals:

1) Separate a SOI from the interference;
2) Demodulate the (digital) SOI in such a mixture.

Rather than considering the classical formulation of source
separation, we tackle this problem from a fresh, data-
driven perspective. Specifically, we introduce a novel
ML-aided approach to signal processing in communication
systems, leveraging data-driven solutions empowered by
recent advancements in deep learning techniques. These
solutions are made feasible by progress in computational
resources and the publicly available signal datasets we cre-
ated and organized. We highlight that the methods developed
within this research domain not only enable RF-aware ML
devices and technology, but also hold the potential to enhance
bandwidth utilization efficiency, facilitate spectrum sharing,
improve performance in high-interference environments, and
boost system robustness against adversarial attacks.
Through an extensive presentation of results, we show

the potential of data-driven, deep learning-based solutions
to significantly enhance interference rejection, and achieve

improvements by orders of magnitude in both mean-squared
error (MSE) and bit error rate (BER) compared to traditional
signal processing methods. To support this claim, we
introduce two deep learning architectures that we have
established as benchmarks for interference mitigation, along
with the performance results of the top teams from the
“Data-Driven Radio Frequency Signal Separation Challenge”
that we hosted at the ICASSP’24 Signal Processing Grand
Challenges [27].

Finally, we conclude the paper by outlining a series of future
directions focused on mitigating non-Gaussian interference in
wireless communication systems. We expect these research
directions, reinforced by competitions such as the recent SP
Grand Challenge at ICASSP’24, to gain increasing relevance
in the near future, and we invite researchers worldwide to
actively contribute to advancing this field.

D. NOTATIONS
We use lowercase letters with standard font and sans-serif
font, e.g., x and x, to denote deterministic and random scalars,
respectively. Similarly, x and x represent deterministic and
random vectors, andX and X denote deterministic and random
matrices.Additionally,x[n] is used to represent then-th random
sample of the vector-form random signal x. The uniform
distribution over a set S is denoted as Unif(S), and for K ∈ N,
we define S1:K � {1, . . . ,K}. For brevity, we refer to the
complex normal distribution as Gaussian. We denote Czw �
E [zxH] ∈ C

Nz×Nw as the cross-covariance matrix of the zero-
mean vectors z ∈ C

Nz×1 and w ∈ C
Nw × 1 (specializing to

the auto-covariance Czz when z = w). The indicator function
1E returns 1 when the event E occurs, and 0 event E occurs,
and 0 otherwise.

II. PROBLEM STATEMENT
We consider the point-to-point, single-channel,4 baseband
signal model depicted in Fig. 1, where a transmitter aims to
communicate a signal that carries a stream of encoded and
modulated bits, referred to as the SOI and denoted as s. The
signal is measured at the intended receiver in the presence of
an unknown interference signal, denoted as b. The ultimate
goal of the receiver is to successfully detect (or recover)
the transmitted bits (or message) with the highest possible
reliability, measured by the BER.
The input-output relation for a received, sampled, discrete-

time baseband signal of length N samples is given by

y = s + b ∈ C
N×1. (1)

This simplified model allows us to focus solely on
the problem of interference rejection and the potential
contributions of ML in this context. One can consider this
model as the resulting input-output relation after successfully
completing crucial processing stages in a communication

4The single-channel model encompasses scenarios such as single-antenna
links and multi-antenna links where the spatial resolution is insufficient,
resulting in a single effective channel between the transmitter and receiver.
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FIGURE 1. Communication schemes considered in this work.

system, such as time synchronization, channel estimation, and
equalization. Although these aspects are deferred for future
research, we acknowledge their importance in ensuring the
correct operation of any practical communication system.
Nonetheless, as we shall demonstrate throughout this paper,
studying this building block in isolation enables us to
understand the potential impact and challenges of integrating
artificial intelligence (AI) capabilities into RF communication
receivers.
Furthermore, we consider the case where the generation

process of the interference signal b is unknown. Specifically,
we assume that the interference consists of an unknown RF
signal originating from another system operating in the same
time-frequency band, possibly contaminated by AWGN.
Recall that we focus on digital communication signals

as SOI in this work. In digital communication systems, the
ultimate goal is to reliably recover the transmitted bits (or
messages). Therefore, we consider the BER as a central
measure of performance in this paper.
Note that we consider a scenario with non-Gaussian

interference of unknown generation process, for which the
optimal solution to minimize the BER is generally unknown.5

Under this setting, various receiver architectural designs can
be devised based on different principles, aiming to achieve
the best possible BER performance. In this work, we propose
a hybrid, “smart” receiver that first performs interference
mitigation in a data-driven manner using a DNN. This
approach aims to learn the relevant features of the unknown
interference signal, as well as their statistical interactions
with the relevant features of the SOI, in order to mitigate
it. Then, by treating the residual interference as Gaussian
noise, we apply standard matched filtering prior to decoding,
so as to increase the postprocessing SNR. Consequently, we
introduce a second measure of performance, namely the MSE
between the estimated SOI ŝ and the true transmitted SOI
s, to assess the signal quality after interference rejection and
before decoding.6

5If the interference were Gaussian, applying a matched filter at the
receiver, which is matched to the one used to modulate the encoded bits prior
to decoding, would be optimal for the BER criterion (see Section III-A).

6Other performance measures could be considered depending on the
specific receiver designs under consideration. Examples include packet-error
rate when channel coding is part of the pipeline, peak-SNR to evaluate
the fidelity of the reconstructed signal’s amplitude, and outage probability,
which is especially relevant for systems requiring guaranteed quality of
service, such as URLLC.

A. SIGNAL MODELS
In this section, we categorize the various types of signals
considered in this work based on our knowledge of their
generation process.
When the signal’s generation process is known, we

have detailed information about the generated signal.
Specifically, we can generate a synthetic dataset of signals
for the sake of learning a data-driven source separation
module. This approach is valuable when model-based
solutions are infeasible, either because the model of the
interference is unknown (but the SOI‘s model is known)
or because the signal models are analytically intractable
or such that lead to computationally impractical solu-
tions. We will further categorize signals with a known
generation process into single-carrier and multi-carrier
signals.
When the signal generation process is unknown, we

assume that we have datasets available, obtained through
recordings or high-fidelity simulations. Thus, any knowledge
relevant to performing source separation on these types of
signals must be learned from the data.

1) SIGNALS WITH A KNOWN GENERATION PROCESS

We consider single-carrier and multi-carrier signals gen-
erated by linearly modulating symbols from constellations
in the complex plane. Signals generated in this manner
correspond to a prevalent class of digital communication
signals observed in typical RF frequency bands.

Single-Carrier Signals: We consider single-carrier signals
bearing M-bit long messages, which are mapped to L
symbols from a given complex constellation (e.g., quadrature
phase shift keying (QPSK)) using Gray coding. The bits
are randomly generated via a fair coin toss and are all
independent and identically distributed (i.i.d.). The n-th
sample of s ∈ C

N×1 is expressed as

s[n] =
L−1
∑

�=0

a� · g[n− �F − τ0], (2)

where a� ∈ A denotes a complex discrete symbol to be
transmitted, with A being the constellation of (possibly
complex-valued) symbols, F ∈ N is the symbol interval
(in discrete-time), τ0 ∈ S0:F−1 is the offset for the first
symbol, and g[n] is the discrete-time impulse response
of the transmitter filter (pulse shaping function). Figure 2
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FIGURE 2. Block diagram for the generation process of the single-carrier signal,
which modulates bits that are mapped into symbols from a complex-valued
constellation before being filtered using a given pulse shaping filter.

shows a simplified diagram for the generation process of the
considered single-carrier signal type.

Multi-Carrier Signals: For multi-carrier signals, we focus
on orthogonal frequency-division multiplexing (OFDM)
signals, which are among the most widely used in key
wireless communication technologies such as 5G and
WiFi. An OFDM signal consists of K orthogonal sub-
carriers, each carrying a symbol from a given (generally
complex-valued) constellation [28]. We will consider the
QPSK constellation for the numerical examples of this
paper.
In this case as well, the bits are randomly generated using

a fair coin toss in an i.i.d. manner and then mapped to
symbols from the given constellation using Gray coding. The
n-th sample of the SOI s ∈ C

N×1 is given by

s[n] =
P−1
∑

p=0

K−1
∑

k=0

ak,p r
[

n− p · (

K + Tcp
) − Tcp, k

]

, (3)

where

r[n, k] � exp(j2πkn/K) · 1{−Tcp≤n<K}. (4)

Here, K represents the total number of orthogonal complex
exponential terms (subcarriers), where not all of them are
necessarily active.7 The value of K corresponds to the fast
Fourier transform (FFT) size of the inverse FFT (IFFT)
involved in generating an OFDM signal. The coefficients
ak,p ∈ A are the information modulating symbols, where A
represents the constellation.8 A cyclic prefix (CP) is typically
added before an OFDM symbol. Thus, each OFDM symbol
is described within the interval [−Tcp,K], where Tcp is the
CP length. The signals then span P = N/(K + Tcp) ∈
N OFDM symbols, and their individual finite support is
reflected by the finitely-supported function r[n, k] in (4).
Figure 3 illustrates the block diagram of the OFDM symbol
generation process.

2) SIGNALS WITH UNKNOWN GENERATION PROCESS

When dealing with an unknown interference (e.g., from
a different technology), accessing the signal generation
process, which could potentially allow for the design of
specific interference rejector, is often rare. However, one can
rely on recorded interference signals to learn how to design

7An “active” subcarrier is one that is being used to convey information,
not necessarily random (e.g., pilots for the sake of channel estimation, and
recall that pilots are predetermined, deterministic and known).

8For simplicity, the constellation includes the zero symbol, so (3) accounts
for inactive subcarriers as well.

FIGURE 3. Block diagram for the generation process of an OFDM symbol carrying
symbols in each active subcarrier.

the interference rejector from the data. Another scenario
where we may lack access to the generation process but
still need to separate signals is the classical blind source
separation problem. In this case, we may not know any of
the signal models involved in the communication process,
and our goal is simply to separate the superimposed signals
into their constituent components. Finally, we could also
consider the case where the generation process of the signals
is known but is too complicated for deriving analytical
solutions.
In any of these cases, the availability of signal datasets

enables the design of data-driven source separators. We
note that within the RF Challenge, there is a dataset of
interference signals whose generative models are unknown,
which can be used to develop learned, data-driven solutions.

III. METHODS
In this section, we review the methods used to perform
interference rejection for the various combinations of SOIs
and interference signals considered in this work. It is
important to note that the signal models in this study are not
necessarily known, making it impossible to derive theoretical
performance bounds. Therefore, including a diverse set
of numerically evaluated methods is essential. Alongside
the proposed data-driven approaches, we include traditional
methods that are widely used in both the literature and
practical communication systems, providing well-established
benchmarks for comparison.

A. TRADITIONAL METHODS
We now present two prevalent methods whose appeal comes
from the balance between their theoretical justification—
and, in fact, optimality for common criteria under certain
conditions—and their simplicity, an important virtue in
practical systems.

1) LINEAR MMSE ESTIMATION

A computationally attractive approach that exploits the joint
second-order statistics of the mixture (1) and the SOI
is optimal minimum mean-square error (MMSE) linear
estimation. Assuming det(Cyy) �= 0 and that s and b are
uncorrelated, the linear MMSE (LMMSE) estimator [5],
given by

ŝLMMSE � CsyC−1
yy y = Css(Css + Cbb)−1y ∈ C

N×1, (5)

is constructed using the second-order statistics of the mixture
that inherently take into account the potentially nontrivial
temporal structure of the interference expressed through Cbb.
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In other words, if Cbb somehow deviates from a scaled
identity matrix, temporal cross-correlations exist.
While (5) coincides with the MMSE estimator when y

and b are jointly Gaussian, it is generally suboptimal due
to the linearity constraint. In our case, the signal s[n] is a
digital communication signal and is certainly not Gaussian.
As for b[n], its statistical model is assumed to be unknown
throughout the design process of the interference mitigation
module. Still, it would also typically be non-Gaussian, even
if it contains AWGN, which is highly plausible.
Despite (5) not being the MMSE estimator in our scenarios

of interest, it is still an important benchmark since it
constitutes an attractive method for two main reasons. First,
it is linear, and therefore fast and easy to implement for
moderate values of N. Second, it only requires knowledge
of second-order statistics, which are relatively easy to
accurately estimate from data, even in real-time systems. We
therefore use it as one of our benchmarks whenever it is
computationally feasible.9

2) MATCHED FILTERING

Matched filtering, perhaps one of the most commonly used
techniques in the signal processing chain of communication
systems, exploits prior knowledge about the signal waveform
(only) for enhanced detection of the transmitted symbols.
When the residual (additive) component is Gaussian, it is
optimal in the sense that it maximizes the SNR, and it is
therefore also optimal in terms of minimum BER.
If the transmitted signal is represented by s[n] = a0 ·g[n],

where g[n] is the pulse shaping filter, then the matched
filter would be hMF[n] = g∗[−n]. In practical scenarios,
the pulse g[n] has finite duration. After performing the
complex conjugation and time-reversal to obtain g∗[−n], the
resulting signal is shifted appropriately to ensure causality.
This shift corresponds to aligning the start of the pulse with
the beginning of the observation window.
This method is also an important benchmark as it is

probably still the most commonly used method for symbol
detection, which is the natural choice when the residual
component, be it noise or interference, is treated as AWGN.
To conclude this section, we note in passing that the

(theoretically naïve) option of not applying an interference
mitigation method, namely only applying a matched filter to
the received signal (1), will also be considered in our simu-
lation as a benchmark. Indeed, with the complete absence of
prior knowledge of the statistical model of the interference,
this plain option of simply ignoring the interference may,
after all, be chosen for practical considerations. While we do
not advocate for such a solution approach, we acknowledge
it as a realistic (even if not a leading) benchmark.

9For nonstationary input signals, the required inversion of Cyy is
computationally impractical at high dimensions—matrix inversion (without
a particular structure to be exploited) is generally of complexity O(N3).

B. DATA-DRIVEN METHODS
This section presents the two most effective architectures
we identified for data-driven source separation of RF
signals: UNet and WaveNet. This selection was informed
by insights from prior work. Specifically, in [22] we
analyzed cyclostationary Gaussian signals to in order to
isolate the effect of temporal correlations (i.e., second-order
statistics) from higher-order statistics, and determine key
modifications to standard deep learning architectures. This
enabled us to compute the (exact) optimal MMSE solution,
which was computable in this setup. We observed that
extending the kernel size in the initial layer of the UNet—
proportional to the effective length of the cross-correlation
between the signals—significantly improved performance,
closely approximating the optimal MMSE estimator in the
cyclostationary Gaussian signal scenario. These findings
guided our modifications of the UNet architecture, enhancing
its performance when applied to real-world RF signals from
the RF Challenge dataset.
Additionally, in [17] we evaluated state-of-the-art archi-

tectures from the audio domain on scenarios involving
superimposed OFDM signals, now addressing separation
based on higher-order statistics, where theoretically perfect
separation was possible. However, these architectures strug-
gled without domain-specific modifications. To address this,
we introduced structural changes that led to up to a 30 dB
improvement in separation performance. These modifications
involved extending the kernel size in UNet-like architectures,
so as to align with the OFDM’s underlying FFT size, and
employing dilated convolutions, which also motivated the
inclusion of WaveNet in our subsequent works [16], [27].
Throughout the course of our research, we evaluated

additional architectures, many of which did not yield notable
improvements. Comparative performance results for these
models are available in a dedicated GitHub repository for
further reference.10

We henceforth assume we have a dataset of D i.i.d. copies
of {(y(i), s(i))}Di=1, i.e., the baseband versions of the mixture
and SOI, whose real and imaginary parts are their in-phase
and quadrature components, respectively.

1) UNET

The UNet, as depicted in Fig. 4, is a type of DNN
originally proposed for biomedical image segmentation [29].
Its versatility has led to its adoption in various other
applications, including spectrogram-based RF interference
cancellation [30] and audio source separation [12], [31].
These applications typically correspond to a multivariate
regression setup with identical dimensions for both input and
output data.
Similarly to these aforementioned works, our approach

employs 1D-convolutional layers to better capture the
temporal features of time-series data. To effectively han-
dle (baseband) complex-valued signals, inspired by widely

10https://github.com/RFChallenge/SCSS_DNN_Comparison
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FIGURE 4. The UNet DNN architecture proposed for single-channel source separation of communication signals. The parameter κ denotes the kernel size of the first layer.

linear estimation techniques [32], we represent the real
and imaginary parts as separate input channels. The UNet
architecture comprises downsampling blocks, which operate
on progressively coarser timescales, and incorporates skip
connections to combine features from different timescales
with the upsampling blocks.
It is well known that the careful design of a neural

network architecture, tailored to the specific application,
can significantly impact performance, as demonstrated by
our experiments and architectural choices. Specifically,
unlike standard CNN-based architectures tailored for image
processing, which originally employed short kernels of
size 3 in all layers, our UNet architecture features a first
convolutional layer with a nonstandard, comparatively long
kernel (indicated by κ in Fig. 4), which is of size 101—a
difference of two orders of magnitude. We observed that
proper adjustment of this hyperparameter to capture the
effective correlation length of both the SOI and interference
facilitates (and perhaps enables, as some of our findings
indicates) the extraction of additional long-scale temporal
structures of both signals, leading to performance gains of
an order of magnitude compared to the originally proposed
UNet [22].11

2) WAVENET

The WaveNet architecture [33] was initially introduced as
a generative neural network for synthesizing raw audio
waveforms. In subsequent work, it was adapted for the task
of speech denoising [34]. At its core, the architecture uses
stacked layers of convolutions with gated activation units.
Unlike the downsampling and upsampling networks used
in UNets, WaveNet preserves the temporal resolution at
each layer while expanding the temporal receptive field by
using dilated convolutions. As shown in Fig. 6, a dilated
convolution can be interpreted as a kernel with spacing
between elements, allowing the model to capture longer
temporal dependencies without downsampling the sequence.
For example, a dilated convolution with a kernel width of 3
and a dilation of 2 has an effective receptive field of 5.

11Our proposed UNet architecture for source separation of RF signals
can be found at https://github.com/RFChallenge/icassp2024rfchallenge/blob/
0.2.0/src/unet_model.py.

FIGURE 5. The WaveNet DNN architecture proposed for single-channel source
separation of communication signals.

FIGURE 6. A dilated convolution operation with a kernel width of 3 and a dilation
rate of 2, which results in a receptive field of 5.

As illustrated in Fig. 5, the WaveNet employs R residual
blocks with dilated convolutions, where the output of block
i − 1 serves as the input to block i, for i ∈ {0, . . . ,R− 1}.
The dilated convolutions assist in learning long-range tem-
poral and periodic structures. The dilations start small and
successively increase, such that the dilation at block i is
given by 2imodm, where m is the dilation cycle length. For
example, if the dilation periodicity is m = 10, then in block
i = 9 the dilation is 512, and in block 10 the dilation is
reset to 1. This allows the network to efficiently trade off
between learning local and global temporal structures. All
residual blocks use the same number of channels, C. Our
WaveNet specifically uses R = 30 residual blocks, with a
dilation cycle m = 10, and a number of channels per residual
block of C = 128.

VOLUME 6, 2025 4089



LANCHO et al.: RF CHALLENGE: THE DATA-DRIVEN RADIO FREQUENCY SIGNAL SEPARATION CHALLENGE

A few key modifications were made to facilitate training
with RF signals compared to the original WaveNet [33].
First, since we are dealing with complex-valued continuous
waveforms, we train on two-channel signals where the
real and imaginary components of the RF signals are
concatenated in the channel dimension. Second, we train
with an MSE (squared �2) loss, as we did with the UNet.
We monitor the validation MSE loss, and once the loss stops
decreasing substantially, we stop training early. Lastly, we
increased the channel dimension up to C = 128 to learn
complex RF signals such as OFDM signals. Additionally,
during data loading, we perform random time shifts and
phase rotations on the interference to gain diversity and
simulate typical transmission impairments in RF systems.12

IV. RESULTS
We present a diverse set of results for RF signal separation,
examining various mixtures of signal types. Each combina-
tion exhibits unique joint statistical properties, introducing
different levels of complexity in the task of learning effective
signal separators.
We compare the performance of several approaches,

including data-driven, neural network-based separators, as
well as more traditional, commonly used methods. Beyond
showcasing our contributions in developing ML-enhanced
RF signal separation architectures, these results are also
crucial for establishing standardized benchmarks that will
serve as baselines for future research in this emerging field.
To analyze decoding capabilities (in terms of BER)

alongside interference rejection capabilities (in terms of the
MSE of the “denoised” SOI), we consider SOIs with known
generative processes in this work. Specifically, we consider
two different SOIs and four types of interferences, resulting
in eight different combinations of mixture types, each of
length N = 40, 960 samples.

For the SOIs, we have:

1) QPSK: A single-carrier QPSK signal with an oversam-
pling factor of F = 16, modulated by a root-raised
cosine pulse shaping function with a roll-off factor of
0.5 that spans 128 samples (8 QPSK symbols due to
the employed oversampling factor). We further apply
an offset for the first symbol of τ0 = 8 samples.
See Fig. 2 for a simplified diagram of the generation
process of this SOI, which we refer to as “QPSK”.

2) OFDM-QPSK: An OFDM signal where each subcar-
rier bears a QPSK symbol. We refer to this signal
as “OFDM-QPSK”. We set Tcp = 16, K = 64
subcarriers, with 56 active subcarriers (i.e., the 8
inactive subcarriers “carry” the zero symbol). Recall
that these quantities were defined in (3). A simplified
diagram of the generation process of this SOI is shown
in Fig. 3.

12Our proposed WaveNet architecture for source separation of RF signals
can be found at https://github.com/RFChallenge/icassp2024rfchallenge/blob/
0.2.0/src/torchwavenet.py.

The following four types of interference signals are only
available through provided recordings, hence their generation
process is unknown:

1) EMISignal1: Electromagnetic interference from unin-
tentional radiation from an unknown RF-emitting
device with a recording bandwidth of 25 MHz.

2) CommSignal2: A digital communication signal from a
commercially available wireless device with a record-
ing bandwidth of 25 MHz.

3) CommSignal3: Another digital communication signal
from a commercially available wireless device with a
recording bandwidth of 25 MHz.

4) CommSignal5G1: A 5G-compliant waveform with a
recording bandwidth of 61.44 MHz.

We emphasize that the generative processes of the signals
above are not only considered unknown in the simula-
tions, but are in fact truly unknown to the authors. The
dataset examples for the first three types (EMISignal1,
CommSignal2, and CommSignal3) were recorded over-the-
air, while the last one (CommSignal5G1) was generated and
recorded within a controlled wired laboratory environment,
with wireless impairments introduced via simulators.
To create interference signal examples, we divided the

set of examples into training and test sets. A frame of
the respective interference type was then randomly selected
(uniformly) from the corresponding set, and a random
window of N = 40, 960 samples was extracted. Each
interference component was scaled to achieve a target (empir-
ical) signal-to-interference-and-noise ratio (SINR). Since all
signal datasets are normalized to have unit power, for a target
SINR level κ2 = 10(SINR in dB)/10, the interference signal is
scaled by 1/κ . Each interference frame b(i) also undergoes a
random phase rotation before being added to the SOI s(i) to
create a mixture example y(i) (see (1)). Note that we choose
the term SINR rather than SIR since some of the signals
we use were recorded, thus they inevitably contain additive
noise. Consequently, the effective interference in these cases
is a sum of a non-Gaussian interference component and an
additive noise component.
For the recorded interference signals, the number of

examples available per signal type changes. Furthermore,
while the length of each recorded frame is the same for
each signal type, it varies across types as well. In particular,
we have 530 examples of 230, 000 samples for EMISignal1,
100 examples of 43, 560 for CommSignal2, 139 examples of
260, 000 for CommSignal3, and 149 examples of 230, 000
for CommSignal5G1. For consistency, we set the length of
all input mixtures to 40, 960 samples. Note that our dataset
consists of signals represented in baseband form, where the
carrier frequency component was removed prior to saving.
However, since the signals were not precisely centered
around the presumed carrier frequency, their spectral content
was not perfectly aligned around zero. This resulted in a
non-zero DC level and only partial frequency overlap. To
simulate the intended setting of maximal frequency overlap,
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FIGURE 7. Representative frames of the four interference signal types in the dataset: EMISignal1, CommSignal2, CommSignal3, and CommSignal5G1. Top: Real part of the
waveforms, Re{s}; Bottom: Spectrogram of the respective signal frames.

we applied an additional frequency-shifting step to align
the signals’ spectral content around zero, ensuring their
proper alignment for the analysis presented in this work. In
particular, signals EMISignal1 and CommSignal5G1 were
shifted in frequency to have their spectral energy content lie
in baseband frequencies, simulating co-channel interference
that overlaps both in time and frequency. Figure 7 shows the
time- and frequency-domain representations of the recorded
signal datasets used as interferences. Code examples can be
found at https://rfchallenge.mit.edu/icassp24-single-channel/.

A. OUR RESULTS
Figures 8–11 show the performance of the two traditional
interference rejection algorithms, introduced in Section III-A,
and our proposed deep learning-based interference rejection
algorithms, introduced in Section III-B, over the eight
possible SOI-interference combinations. The performance is
measured in terms of BER or MSE as a function of the
target SINR. The plots include the following curves:

• MF: ignore the (potential) non-Gaussianity of the
interference, and apply amatched filter to themixture (1).
We note that here matched filtering (MF) is applied only
for the purpose of decoding (BER plots only).

• LMMSE: the SOI is estimated via MSE-optimal lin-
ear estimation, the best-performing traditional method
described in Section III-A. Since the LMMSE requires
the inversion of the covariance matrix Cyy ∈ C

N×N ,
which is generally of complexity O(N3), we have
implemented this solution by applying (5) to consecu-
tive blocks of length 2, 560 samples each.13

13Computing the LMMSE for sequences of length 40, 960 samples is
impractical, as it requires inverting a 40, 960 × 40, 960 matrix, leading to
computations on the order of 40, 9603 ∼ 1012. However, we computed
the LMMSE using blocks of length 2, 560, which is already close to its
asymptotic value and, in particular, to the LMMSE for sequences of length
40, 960 samples.

• UNet and WaveNet: our proposed architectures, as
presented in Section III-B. We emphasize that a separate
neural network was trained for each mixture case.

Both the LMMSE estimation approach and DNN-based
interference rejection methods include a final step that treats
residual interference as Gaussian, applying standard matched
filtering prior to decoding to improve post-processing SNR.
For the QPSK SOI case, this involves matched filtering,

sampling at optimal points (assuming all necessary synchro-
nization information is available), and then hard decoding
to obtain symbols, which are mapped to bits. Similarly, for
the OFDM SOI, we assume perfect synchronization, remove
the cyclic prefix, apply an FFT of the appropriate size, and
estimate the received symbols on active subcarriers, mapping
them to their corresponding bits.
Both learning-based solutions described in Section III-B

outperform the best traditional method out of the ones we
consider as our benchmarks, namely LMMSE estimation,
achieving up to two orders of magnitude performance
improvements at considerably low SINR values. For instance,
in Fig. 11(a), at an SINR level of −18 dB, the WaveNet
model achieves a BER of approximately 10−3 and an MSE
below −20 dB. In contrast, the solutions based on LMMSE
and no mitigation (other than MF) only reach a BER slightly
above 10−1 and an MSE around 0 dB.

B. ICASSP’24 SP GRAND CHALLENGE RESULTS
We hosted the “Data-Driven Radio Frequency Signal
Separation Challenge” as part of the ICASSP’24 Signal
Processing Grand Challenges [27]. Among the submissions,
only a few significantly outperformed the learning-based
benchmark methods described in Section III-B at specific
mixture cases [35], [36]. The proposed solutions are sum-
marized below:

• KU-TII [35]: This team enhanced the WaveNet architec-
ture provided as a benchmark. Their main contributions
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FIGURE 8. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with EMISignal1 interference. This figure shows the benchmarks discussed in this
paper, along with our proposed data-driven methods.

FIGURE 9. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal2 interference. This figure shows the benchmarks discussed in this
paper, along with our proposed data-driven methods.

were two-fold: (i) Model-related: introducing learnable
dilated convolutions within the convolutional layer;
(ii) Data augmentation: expanding the training set by
using as a validation set the test example data provided
by the challenge organizers, and generating additional

training examples for CommSignal2 by converting high-
SNR waveforms with probably zero BER into bits, then
reconverting these bits back into waveforms to subtract
them from the mixtures. With this data augmentation
strategy, the team trained their algorithm with more
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FIGURE 10. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal3 interference. This figure shows the benchmarks discussed in
this paper, along with our proposed data-driven methods.

FIGURE 11. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal5G1 interference. This figure shows the benchmarks discussed in
this paper, along with our proposed data-driven methods.

data, potentially resulting in further performance gains
unrelated to architectural improvements.

• One-In-A-Million [36]: This team presented two
approaches, a Transformer UNet and a finetuned
discriminative WaveNet. The Transformer UNet is a

convolution-attention-based model with an encoder-
decoder architecture that includes self-attention blocks
in the bottleneck to refine representations, similar
to the one introduced in [37]. Between these two
options, the finetuned WaveNet achieved superior
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FIGURE 12. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with EMISignal1 interference. This figure includes the LMMSE benchmark, along
with our proposed data-driven methods and the proposed methods of the participants of the ICASSP’24 SP Grand Challenge.

performance across all signal mixture cases, suggesting
that Transformer architectures may require specific
design modifications to fully leverage their capabilities
in the source separation of digital communication
signals.

• LHen [38]: This team extended the WaveNet baseline by
incorporating an autoencoder tailored to the modulation
type of the SOI. The encoder learns to demodulate the
waveform estimated by WaveNet, while the correspond-
ing decoder re-synthesizes the SOI waveform from the
extracted bit sequence to achieve low MSE.

• TUB [39]: This team employed a DEMUCS archi-
tecture, featuring an encoder-decoder framework with
a convolutional encoder, bidirectional LSTM applied
on the encoder output, and a convolutional decoder,
all linked via UNet skip connections [40], [41]. They
further adapted DEMUCS for direct bit regression,
similar to the “Bit Regression” baseline from the
“Single-Channel RF Challenge” hosted on the RF
Challenge website in 2021.14

• imec-IDLab [42]: This team developed a UNet archi-
tecture, building upon the baseline UNet provided in
the challenge, redesigned specifically for separating
interference signals in the time-frequency domain. For
example, they leveraged domain-specific knowledge of
SOIs for the OFDM-QPSK SOI case by integrating
elements of OFDM signal resource grid configurations,

14The bit regression baseline code is available at
https://github.com/RFChallenge/rfchallenge_singlechannel_starter/tree/
main/example/demod_bitregression.

such as the cyclic prefix, into the architecture respon-
sible for the decoding process.

Similar to the previous section, Figures 12–15 show
the performance of the traditional interference rejection
algorithm based on LMMSE estimation, our proposed deep
learning-based interference rejection algorithms introduced
in Section III-B, and the top-5-performing teams that
participated in the challenge.
As we can see, there are some teams whose solutions

improved upon the baselines in some cases involving
EMISignal1, CommSignal2, and CommSignal5G1 (see
Figs. 12(b), 13, and 15(a)). For example, “KU-TII” [35]
especially shines in those mixture involving CommSignal2
interference, where they gain more than an order of mag-
nitude in BER at SINR values below −20 dB compared
to our baseline architectures, and “OneInAMillion” [36]
performs especially well in the QPSK + CommSignal5G
mixture, where they almost achieved an order of magnitude
gain in BER at SINR values below −20 dB. Conversely,
mixtures with CommSignal3 consistently challenge all meth-
ods. While we believe it is a multicarrier signal with
a high data rate, the specific reasons for the difficutly
to separate CommSignal3 from the SOI remain unclear,
warranting further investigation. We note that, at least from
a theoretical perspective, it should come as no surprise that
one architecture is superior to others with respect to one
fidelity measure (e.g., MSE), and is no longer superior with
respect to a different one (e.g., minimum error probability).
Indeed, a DNN is trained for a specific goal, via choosing

4094 VOLUME 6, 2025

https://github.com/RFChallenge/rfchallenge_singlechannel_starter/tree/main/example/demod_bitregression


FIGURE 13. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal2 interference. This figure includes the LMMSE benchmark, along
with our proposed data-driven methods and the proposed methods of the participants of the ICASSP’24 SP Grand Challenge.

FIGURE 14. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal3 interference. This figure includes the LMMSE benchmark, along
with our proposed data-driven methods and the proposed methods of the participants of the ICASSP’24 SP Grand Challenge.

a single objective function, and therefore cannot necessarily
be optimal in more than one sense.15

15However, this may happen in special cases, such as the MMSE and
maximum a posteriori (MAP) estimators in the Gaussian signal model.

These results show the potential of data-driven,
deep-learning-based solutions to provide significant improve-
ments in interference rejection tasks when the interference
has unknown structures that can be learned. They also
demonstrate that innovative solutions are needed to achieve
further performance gains for challenging signals such as
CommSignal3.
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FIGURE 15. BER and MSE as a function of the target SINR for QPSK and OFDM-QPSK SOI, with CommSignal5G1 interference. This figure includes the LMMSE benchmark,
along with our proposed data-driven methods and the proposed methods of the participants of the ICASSP’24 SP Grand Challenge.

V. FUTURE DIRECTIONS AND CONCLUDING REMARKS
In this section, we explore potential future research directions
that can further advance the field of data-driven source
separation of RF signals using deep learning techniques. We
end the section with concluding remarks, encapsulating the
key findings of this paper.

A. FUTURE RESEARCH DIRECTIONS
As demonstrated in the previous section—for a variety of
signals using several methods—data-driven deep learning
algorithms for RF source separation can yield significant
performance gains. However, to make these techniques
practically relevant, many aspects of this problem remain to
be explored. Below, we outline and briefly discuss some of
the more important ones.
One natural extension of this work is to investigate

scenarios where the generation process of the SOI is
unknown. Such cases are more challenging, as there is
less prior information to exploit when designing the overall
separation algorithm. For example, the MSE results obtained
in Section IV can potentially be further improved if we
leverage knowledge of the modulation scheme of the SOI
via the decoding processing chain subsequent to the DNN-
based interference mitigation module. Clearly, when the
signal generation process is unknown, this approach is not
applicable, and more sophisticated DNN architectures would
be required to achieve the same performance.
As a preliminary empirical study on this front, we have

used CommSignal2 as the SOI, and evaluated the MSE
using the UNet and WaveNet architectures (Section III), as

well as LMMSE (Section III-A). We used the remaining
signals in the dataset as interference signals. The results,
presented in Fig. 16, demonstrate that both the UNet and
the WaveNet architectures outperforms LMMSE, except at
low SINR levels with CommSignal3 as the interference.
Yet another extension to a prevalent setting is to

multiple-input multiple-output (MIMO) systems, which are
a cornerstone of modern wireless communication standards
such as 5G and Wi-Fi. In this case, nontrivial spatial patterns
can potentially be learned and exploited. Although the multi-
channel source separation literature is significantly richer
than the single-channel one (e.g., [43], [44], [45], [46]),
the discussion revolving data-driven deep-learning-based
methods in this context has not yet been comparatively
addressed. Exploring how to utilize such spatial patterns in
tandem with the signals’ unique statistical characteristics,
including temporal structures, constitutes a promising avenue
for future research.
Other important extensions refer to potential physical

effects induced by the channel. For example, a more
comprehensive signal model may incorporate effects such as
arbitrary time shifts and fading. More generally, an extended
model of (1) can be expressed as:

y[n] = H{s[n]} + b
[

n− kb
]

, n ∈ Z, (6)

where, as before, s[n] and b[n] are the SOI and interference,
respectively, and H{·} denotes the channel response. For
example, the channel could be H{s[n]} = α[n] ·s[n−ks] for
some time-varying fading coefficient coefficient α[n] ∈ C

and an unknow delay ks ∈ N (e.g., [47]). In particular, H{·}
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FIGURE 16. MSE as a function of the target SINR for all combinations of
CommSignal2 SOI and the rest of interference types considered in this work.

is not necessarily linear or time-invariant. The advantage
of the data-driven approach is that it can potentially learn
to compensate for nonlinear, time-varying effects, provided
they are governed by some learnable statistical law, and are
well captured in the available datasets for training.
A central attribute of the data-driven solution approach

presented in this work is that each interference mitigation
module, once trained, is tailored for specific mixtures of
SOI and interference types. While this approach can lead to
statistically optimal separation performance, its robustness
is not guaranteed. Furthermore, it is highly demanding
in terms of the system resources, such as memory, to
maintain a separate NN for each mixture type, which can be

impractical in many scenarios. A desirable, more efficient,
robust alternative would be to maintain a single model
capable of mitigating multiple interference types. Such a
model can establish the groundwork for developing a foun-
dational RF signal separation model [48], [49], where signal
characteristics (e.g., codes, modulations, pulse shaping) act
as the “modalities”.
Recent work [50] introduced a foundation model for

wireless channels, using an encoder-decoder transformer
trained to predict masked channel embeddings, successfully
addressing downstream tasks like beam prediction and
LOS/NLOS classification. Similarly, exploring a founda-
tion model trained for interference rejection could unlock
downstream tasks such as demodulation or constellation
classification. A crucial first step in this direction is demon-
strating that a single DNN can handle multiple interference
types with performance comparable to specialized models,
in terms of both inference time and separation fidelity.

B. CONCLUDING REMARKS
In this paper we illustrate the potential of deep learning-based
methods for source separation of RF signals. Specifically,
we show that mitigating strong unintentional interference
from other RF emitting sources operating at the same time
and the same frequency band with data-driven methods
leads to considerable gains relative to traditional, “hand-
crafted” methods. Through extensive simulation experiments,
we demonstrate the superior performance of deep learning
architectures, such as UNet and WaveNet, over the traditional
signal processing methods of matched filtering and LMMSE
estimation across various scenarios. Results from different
leading research teams that participated in the “Data-Driven
Radio Frequency Signal Separation Challenge”, hosted as an
ICASSP’24 Signal Processing Grand Challenge [27], show
that further improving significantly beyond the established
deep-learning benchmarks is nontrivial, especially in mix-
tures involving multi-carrier signals.
Ultimately, these results represent merely an initial phase

of a more extensive journey towards integrating AI capabil-
ities into receivers for enhanced interference rejection. The
path forward would involve addressing additional, theoretical
and practical, related problems, including interpretability of
DNNs, and presenting viable solutions to demonstrate the
tangible benefits of these approaches. Indeed, the results
motivate further research and development for this dynamic
domain within the broader community, with the ultimate goal
of significantly improving future generations of RF systems
spanning diverse applications.

ACKNOWLEDGMENT
The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and

VOLUME 6, 2025 4097



LANCHO et al.: RF CHALLENGE: THE DATA-DRIVEN RADIO FREQUENCY SIGNAL SEPARATION CHALLENGE

distribute reprints for Government purposes notwithstanding
any copyright notation herein.
The authors acknowledge the MIT SuperCloud and

Lincoln Laboratory Supercomputing Center for providing
HPC resources that have contributed to the research results
reported within this paper. This work was partly done while
Alejandro Lancho, Gary C.F. Lee, and Amir Weiss were
with MIT.

REFERENCES
[1] “VR and AR pushing connectivity limits.” Accessed: Feb. 26,

2024. [Online]. Available: https://www.qualcomm.com/content/dam/
qcomm-martech/dm-assets/documents/presentation_-_vr_and_ar_are
_pushing_connectivity_limits_-web_0.pdf

[2] M. Hirzallah, W. Afifi, and M. Krunz, “Full-duplex-based rate/mode
adaptation strategies for Wi-Fi/LTE-U coexistence: A POMDP
approach,” IEEE J. Sel. Areas Commun., vol. 35, no. 1, pp. 20–29,
Nov. 2017.

[3] G. Naik, J.-M. Park, J. Ashdown, and W. Lehr, “Next generation Wi-
Fi and 5G NR-U in the 6 GHz bands: Opportunities and challenges,”
IEEE Access, vol. 8, pp. 153027–153056, 2020.

[4] T. Oyedare, V. K. Shah, D. J. Jakubisin, and J. H. Reed, “Interference
suppression using deep learning: Current approaches and open
challenges,” IEEE Access, vol. 10, pp. 66238–66266, 2022.

[5] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part
I. New York, NY, USA: Wiley, 2001.

[6] T. Shilong, C. Shaohe, Z. Hui, and W. Jian, “Particle filtering
based single-channel blind separation of co-frequency MPSK signals,”
in Proc. IEEE Int. Symp. Intell. Signal Process. Commun. Syst.,
Feb. 2007, pp. 582–585.

[7] T. Shilong, Z. Hui, and G. Na, “Single-channel blind separation of
two QPSK signals using per-survivor processing,” in IEEE Asia Pac.
Conf. Circuits Syst. (APCCAS), Dec. 2008, pp. 473–476.

[8] J. Lee, D. Toumpakaris, and W. Yu, “Interference mitigation via
joint detection,” IEEE J. Sel. Areas Commun., vol. 29, no. 6,
pp. 1172–1184, Jun. 2011.

[9] P. Chevalier, J.-P. Delmas, and M. Sadok, “Third-order volterra
MVDR beamforming for non-Gaussian and potentially non-circular
interference cancellation,” IEEE Trans. Signal Process., vol. 66, no. 18,
pp. 4766–4781, Jul. 2018.

[10] T. J. O’Shea and N. West, “Radio machine learning dataset generation
with GNU radio,” in Proc. GNU Radio Conf., vol. 1, no. 1, pp. 1–6,
Sep. 2016.

[11] “RF challenge—AI accelerator,” MIT RLE. Accessed: Dec. 3, 2024.
[Online]. Available: https://rfchallenge.mit.edu

[12] D. Stoller, S. Ewert, and S. Dixon, “Wave-U-net: A multi-scale neural
network for end-to-end audio source separation,” in Proc. Int. Soc.
Music Inf. Retrieval Conf., May 2018, pp. 334–340.

[13] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio
source separation with deep neural networks,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 24, no. 9, pp. 1652–1664,
Sep. 2016.

[14] Y. Gandelsman, A. Shocher, and M. Irani, “‘Double-DIP’:
Unsupervised image decomposition via coupled deep-image-priors,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 11026–11035.

[15] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis,
“Joint optimization of masks and deep recurrent neural networks for
monaural source separation,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 23, no. 12, pp. 2136–2147, Dec. 2015.

[16] T. Jayashankar, G. C. F. Lee, A. Lancho, A. Weiss, Y. Polyanskiy,
and G. W. Wornell, “Score-based source separation with applications
to digital communication signals,” in Proc. Adv. Neural Inform. Proc.
Syst. (NeurIPS), New Orleans, LA, USA, Dec. 2023, pp. 1–34.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2023/file/106b2434b8d496c6aed9235d478678af-Paper-Conference.
pdf

[17] G. C. F. Lee, A. Weiss, A. Lancho, Y. Polyanskiy, and G. W. Wornell,
“On neural architectures for deep learning-based source separation of
co-channel OFDM signals,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., Jun. 2023, pp. 1–5.

[18] “Single-channel source separation: Preliminary test of neural network
architectures.” MIT RLE: RF Challenge. 2022. [Online]. Available:
https://github.com/RFChallenge/SCSS_DNN_Comparison

[19] T. R. Oyedare, “A comprehensive analysis of deep learning for
interference suppression, sample and model complexity in wireless
systems,” Ph.D. dissertation, Dept. Electr. Eng., Virginia Polytechnic
Inst., State Univ., Blacksburg, VA, USA, Mar. 2024.

[20] “RF datasets for machine learning,” DeepSig. Accessed: Dec. 3, 2024.
[Online]. Available: https://www.deepsig.ai/datasets

[21] “A Web-based SDR toolkit for analyzing, processing, and sharing RF
recordings.” IQ Engine. Accessed: Dec. 3, 2024. [Online]. Available:
https://iqengine.org/

[22] G. C. F. Lee et al., “Exploiting temporal structures of cyclostationary
signals for data-driven single-channel source separation,” in Proc.
IEEE Int. Workshop Mach. Learn. Signal Process. (MLSP), Aug. 2022,
pp. 1–6.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Aug. 2009,
pp. 248–255.

[25] K. Cook, G. Grinstein, and M. Whiting, “The VAST challenge:
History, scope, and outcomes: An introduction to the special issue,”
Inf. Visualization, vol. 13, no. 4 pp. 301–312, 2014.

[26] P. Luszczek et al., “Introduction to the HPC challenge bench-
mark suite,” Lawrence Berkeley Nat. Lab., Berkeley, CA, USA,
Rep. 860347, 2005.

[27] T. Jayashankar et al., “The data-driven radio frequency signal
separation challenge,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Apr. 2024, pp. 53–54.

[28] T. Hwang, C. Yang, G. Wu, S. Li, and G. Y. Li, “OFDM and its
wireless applications: A survey,” IEEE Trans. Veh. Technol., vol. 58,
no. 4, pp. 1673–1694, May 2009.

[29] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention (Lecture Notes in
Computer Science 9351), N. Navab, J. Hornegger, W. M. Wells,
and A. F. Frangi, Eds., Cham, Switzerland: Springer, Nov. 2015,
pp. 234–241, doi: 10.1007/978-3-319-24574-4_28.

[30] J. Akeret, C. Chang, A. Lucchi, and A. Refregier, “Radio frequency
interference mitigation using deep convolutional neural networks,”
Astron. Comput., vol. 18, pp. 35–39, Jan. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2213133716301056

[31] E. Tzinis, Z. Wang, and P. Smaragdis, “Sudo RM-RF: Efficient
networks for universal audio source separation,” in Proc. IEEE Int.
Workshop Mach. Learn. Signal Process. (MLSP), Sep. 2020, pp. 1–6.

[32] B. Picinbono and P. Chevalier, “Widely linear estimation with complex
data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 2030–2033,
Aug. 1995.

[33] A. van den Oord et al., “WaveNet: A generative model for raw audio,”
Sep. 2016, arXiv:1609.03499.

[34] D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denoising,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Apr. 2018, pp. 5069–5073.

[35] Y. Tian, A. Alhammadi, A. Quran, and A. S. Ali, “A novel approach to
wavenet architecture for RF signal separation with learnable dilation
and data augmentation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. Workshops (ICASSPW), Apr. 2024, pp. 79–80.

[36] F. Damara, Z. Utkovski, and S. Stanczak, “Signal separation in radio
spectrum using self-attention mechanism,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. Workshops (ICASSPW), Apr. 2024,
pp. 99–100.

[37] Z. Kong, W. Ping, A. Dantrey, and B. Catanzaro, “Speech denoising
in the waveform domain with self-attention,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), May 2022, pp. 7867–7871.

[38] L. Henneke, “Improving data-driven RF signal separation with SOI-
matched autoencoders,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. Workshops (ICASSPW), Apr. 2024, pp. 45–46.

[39] Ç. Yapar et al., “DEMUCS for data-driven RF signal denoising,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Workshops
(ICASSPW), Apr. 2024, pp. 95–96.

[40] A. Défossez, G. Synnaeve, and Y. Adi, “Real time speech enhancement
in the waveform domain,” in Proc. Interspeech, 2020, pp. 3291–3295.

[41] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music
source separation in the waveform domain,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2021, pp. 1–16. [Online]. Available:
https://openreview.net/forum?id=HJx7uJStPH

4098 VOLUME 6, 2025

http://dx.doi.org/10.1007/978-3-319-24574-4_28


[42] M. Naseri, J. Fontaine, I. Moerman, E. De Poorter, and A. Shahid, “A
U-net architecture for time-frequency interference signal separation
of RF waveforms,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. Workshops (ICASSPW), Apr. 2024, pp. 91–92.

[43] A. Hyvarinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3,
pp. 626–634, May 1999.

[44] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. Signal Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.

[45] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Trans. Signal
Process., vol. 50, no. 7, pp. 1545–1553, Jul. 2002.

[46] A. Weiss and A. Yeredor, “A maximum likelihood-based minimum
mean square error separation and estimation of stationary Gaussian
sources from noisy mixtures,” IEEE Trans. Signal Process., vol. 67,
no. 19, pp. 5032–5045, Oct. 2019.

[47] A. Lancho et al., “Data-driven blind synchronization and interference
rejection for digital communication signals,” in Proc. IEEE Glob.
Commun. Conf. (GLOBECOM), Dec. 2022, pp. 2296–2302.

[48] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[49] J. Fontaine, A. Shahid, and E. D. Poorter, “Towards a wire-
less physical-layer foundation model: Challenges and strategies,”
Feb. 2024, arXiv:2403.12065.

[50] S. Alikhani, G. Charan, and A. Alkhateeb, “Large wireless model
(LWM): A foundation model for wireless channels,” Nov. 2024,
arXiv:2411.08872.

ALEJANDRO LANCHO (Member, IEEE) received
the B.E., M.Sc., and Ph.D. degrees in electrical
engineering from the Universidad Carlos III de
Madrid, Spain, in 2013, 2014, and 2019, respec-
tively. From 2019 to 2021, he was a Postdoctoral
Researcher with the Chalmers University of
Technology, Sweden. From 2021 to 2023, he was
a Marie Curie Postdoctoral Global Fellow with the
Massachusetts Institute of Technology, USA. Since
October 2023, he has been with the Universidad
Carlos III de Madrid, where he is currently an

Atracción de Talento César Nombela Research Fellow. His research interests
include information theory and deep learning for wireless communications.
He was among the six finalists for the IEEE Jack Keil Wolf ISIT Student
Paper Award at the 2017 IEEE International Symposium on Information
Theory.

AMIR WEISS (Senior Member, IEEE) received
the B.Sc. (magna cum laude), M.Sc., and Ph.D.
degrees in electrical engineering from Tel Aviv
University (TAU), Tel-Aviv, Israel, in 2013,
2015, and 2020, respectively. From 2019 to
2020, he was a Postdoctoral Fellow with the
Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science,
Rehovot, Israel. From 2020 to 2023, he was
a Postdoctoral Associate with the Research
Laboratory of Electronics, Massachusetts Institute

of Technology, Cambridge, MA, USA. He has held a researcher position
with Elbit Systems, EW and SIGINT Elisra Ltd., Holon, Israel, from 2013
to 2020, specializing in detection and estimation of RADAR and SONAR
signals. Since 2024, he has been the Faculty with Bar-Ilan University,
Ramat Gan, Israel, where he is a Senior Lecturer (Associate Professor
equivalent) with the Faculty of Engineering. He is also the Head of AI and
Technological Innovation, Medibyt Ltd., Israel. His main research areas are
in statistical and digital signal processing, estimation theory, and machine
learning, with applications to localization, communication, and compression.
He received the scholarship for excellent M.Sc. students from the Faculty of
Engineering, TAU in 2015, and The David and Paulina Trotsky foundation
award for outstanding Ph.D. students in 2019. He is a recipient of the 2021
ICASSP Outstanding Paper Award. He also received the Nadav Levanon
studies prize for graduate students in 2016, the scientific publication prize
(three times) in 2017, 2018, and 2020, respectively, and the David Burshtein
scientific publication prize in 2019, all from the The Yitzhak and Chaya
Weinstein Research Institute for Signal Processing. He is a recipient of the
2024 Alon Scholarship for the Integration of Outstanding Faculty.

GARY C. F. LEE (Member, IEEE) received the
M.S. and Ph.D. degrees in electrical engineering
and computer science from the Massachusetts
Institute of Technology, Cambridge, MA, USA,
in 2019 and 2023, respectively. He is a Research
Scientist with the Institute for Infocomm Research
(A*STAR). His research focuses on artificial
intelligence and machine learning (AI/ML) for
next-generation wireless communications systems,
with interests spanning the areas of signal process-
ing, communications engineering, and AI/ML.

TEJAS JAYASHANKAR (Student Member, IEEE)
received the B.S. degree in electrical engineering
from the University of Illinois at Urbana-
Champaign in 2019 and the M.S. degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT)
in 2022, where he is currently pursuing the
Ph.D. degree with the Department of Electrical
Engineering and Computer Science where is
advised by Prof. Wornell and is supported by the
MIT Claude E. Shannon Fellowship. His research

interests lie at the intersection of statistical inference, generative modeling
and signal processing. His more recent research focus is centered around
score estimation, diffusion models, and efficient neural synthesis.

BINOY G. KURIEN received the master’s and
Ph.D. degrees in engineering sciences from the
School of Engineering and Applied Sciences,
Harvard University in 2009 and 2016, respectively.
He is currently an Assistant Group Leader with
the Tactical Edge Communications Group, MIT
Lincoln Laboratory, Lexington, MA, USA. His
research interests are in dynamic spectrum access,
applications of machine learning to wireless com-
munications, array signal processing, and remote
sensing.

YURY POLYANSKIY (Fellow, IEEE) received
the M.S. degree in applied mathematics and
physics from the Moscow Institute of Physics
and Technology, Moscow, Russia, in 2005 and
the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ, USA, in
2010. He is a Cutten Professor of electrical
engineering and computer science, a member of
IDSS and LIDS with MIT. His research interests
span information theory, machine learning and
statistics. He won the 2020 IEEE Information

Theory Society James Massey Award, the 2013 NSF CAREER award, and
the 2011 IEEE Information Theory Society Paper Award.

VOLUME 6, 2025 4099



LANCHO et al.: RF CHALLENGE: THE DATA-DRIVEN RADIO FREQUENCY SIGNAL SEPARATION CHALLENGE

GREGORY W. WORNELL (Fellow, IEEE) received
the B.A.Sc. degree in electrical engineering and
computer science from the University of British
Columbia, Canada, and the S.M. and Ph.D. degrees
in electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT) in 1985, 1987, and 1991, respectively.

Since 1991 he has been a Faculty with
MIT, where he is the Sumitomo Professor of
Engineering with the Department of Electrical
Engineering and Computer Science (EECS) and

the Schwarzman College of Computing, and an Area Co-Chair of the
EECS Doctoral Program. At MIT he leads the Signals, Information, and
Algorithms Laboratory, and is affiliated with the Research Laboratory of
Electronics, the Computer Science and Artificial Intelligence Laboratory,
and the Institute for Data, Systems and Society. He has held visiting appoint-
ments with the Department of Electrical Engineering and Computer Science
at the University of California, Berkeley, CA, USA, from 1999 to 2000, the
Hewlett-Packard Laboratories, Palo Alto, CA, USA, in 1999, and the AT&T
Bell Laboratories, Murray Hill, NJ, USA, from 1992 to 1993. His research
interests and publications span the areas of signal processing, information
theory, statistical inference, artificial intelligence, and information security,
and include architectures for sensing, learning, computing, communication,
and storage; systems for computational imaging, vision, and perception;
aspects of computational biology and neuroscience; and the design of
wireless networks. He has been involved in the Information Theory and
Signal Processing societies of the IEEE in a variety of capacities, and
maintains a number of close industrial relationships and activities.

Prof. Wornell has won a number of awards for both his research and
teaching, including the 2019 IEEE Leon K. Kirchmayer Graduate Teaching
Award.

4100 VOLUME 6, 2025



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


