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Abstract

Recent advances in score-based (diffusion) generative models have achieved state-of-the-art
sample quality across standard benchmarks. Building on the remarkable property of these
models in estimating scores, this thesis presents three core contributions: 1) new objectives
to reduce score estimation error, 2) a novel Bayesian-inspired optimization framework for
solving inverse problems, and 3) a fast one-step generative modeling framework that is based
on a novel amortized score estimation framework.

In the first part of this thesis, we introduce two new score estimation objectives with
applications to both implicit and diffusion-based generative models. To improve spectral-
based non-parametric estimators, we propose a theoretically optimal parametric framework
that learns the score by projecting it onto its top-L principal directions. Additionally, inspired
by matrix-valued kernel methods, we present a second approach that lifts the score into the
space of outer products, and minimizes the distance between the estimated and true scores
in this higher-order space.

In the second part, we shift focus from score estimation to leveraging diffusion models
as data-driven priors for solving inverse problems. Centering our development around
the problem of source separation, we introduce a novel algorithm inspired by maximum a
posteriori estimation. This approach combines multiple levels of Gaussian smoothing with an
a-posterior, enabling effective signal separation using only independent priors for the sources.
We demonstrate the effectiveness of this method through its application to interference
mitigation in digital communication signals. Finally, we outline how this framework can be
naturally extended to tackle a broader class of inverse problems.

In the final part, we return to the fundamental challenge of efficient sampling, which is
critical for enabling practical data-driven engineering systems. We propose a novel generative
modeling framework that enables training a one-step neural sampler from scratch. At the
core of this method is a new objective based on multi-divergence minimization, guided by a
novel approach for score estimation of mixture distributions. Our framework is simple to
implement, stable during training, unifies several existing approaches, and achieves state-of-
the-art performance in image generation tasks. Furthermore, we discuss how this framework
can be naturally extended to multi-step neural sampling and adapted for fast posterior
sampling—an essential component in simulation-based inverse problem solvers.

Thesis supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering
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Introduction

The volume of digital data consumed daily is currently estimated at several million terabytes
(2% bytes) and continues to grow at an exponential rate. This data is constantly accessed,
stored, and shared, not only between users but also across various interoperating modules
within engineering systems. For instance, self-driving cars often rely on visual measurements
such as infrared images or high-temporal-resolution videos. These measurements are critical,
as the information extracted from them plays a key role in downstream processes that drive
corrective maneuvers and ensure safety decisions are made in real-time.

Traditionally, engineering systems have been designed by experts, relying on hand-crafted
methods for data modeling and processing. However, with the sheer abundance of data
in today’s world, we are witnessing a shift towards data-driven engineering systems, e.g.,
intelligent chatbots (OpenAl, 2022) and next generation 6G wireless systems (Nokia, 2023).
This shift allows us to harness the powerful capabilities of machine learning and artificial
intelligence, enabling systems that not only simplify and streamline processes but also
outperform traditional approaches.

At the core of these systems are generative models — parametric models that capture the
rich statistical structures of a signal, often solely from data. Often parametrized via neural
network architectures, once trained, these models allow for sampling and making probabilistic
queries from rich and high-dimensional data.

1.1 Motivation

We start by motivating the need for generative modeling through real-world problems.

1.1.1 Signal Reconstruction and Modeling

Let x € RP represent a D-dimensional signal of interest, and consider the corruption process
given by
y=Ax+n, n~N(01Ip), (1.1)

where A € R%*P is a linear forward operator. This model can describe systems such as image
blurring, superresolution, or filtering, where A introduces a (convolutional) distortion.
Given a measurement y, the task is to recover x. In the absence of noise, a naive approach
would be to use the pseudoinverse, x = Aly. However, this often leads to poor estimates for
several reasons. First, multiple pseudoinverses exist, and not all are suitable for recovering the

15



1. Introduction

specific structures inherent in x. Second, matrix inversion can be unstable and ill-conditioned
in high-dimensional settings.

Bayesian approaches offer a more principled and expressive framework for signal recovery
by casting the problem as the estimation of the mazimum a posteriori (MAP) solution.
Specifically, given a noisy observation y, the goal is to recover the clean signal X by solving:

x = argmax log p(x|y)

= argmax log p(y|x) + log p(x), (1.2)

where p(x) denotes the prior distribution over the clean signals, and p(y|x) is the likelihood
model. This can be specialized for the setting where the likelihood is known to be Gaussian
(which is an assumption often made in practice) and the MAP estimation problem can be
rewritten as a minimization problem. This gives rise to the following formulation:

. 1
% = arg min S|y — Ax||3 — log p(x), (1.3)

which resembles Eq. (1.4) but replaces the hand-crafted regularizer with a prior-driven term
p(x) that captures richer statistical structure in the signals.

In practice, however, the true prior p(x) is rarely known. Traditional approaches approxi-
mate it using tractable models such as Gaussian mixture models (GMMs) or Markov random
fields (MRFs). More broadly, classical methods typically solve:

1
)E:argmin§||y—Ax||§+R(x), (1.4)

where R(x) is a regularization term that encodes prior knowledge about the signal. In image
deblurring, for example, the Tikhonov regularizer R(x) 2 ||Lx||2 is widely used, where L is a
linear operator estimating image gradients via first-order differences. While such regularizers
simplify the optimization and improve robustness, they often lack the capacity to capture
the complex structures present in real-world signals. As a result, they can overly constrain
the solution and limit recovery performance, especially under severe distortions.

This highlights the need for learning expressive and computationally tractable priors, which
can significantly enhance the performance of signal recovery systems. In the chapters that
follow, we will explore how generative models can be leveraged to learn such priors, opening
the door to more powerful and flexible reconstruction techniques.

1.1.2 Simulated Bayesian Inference

In the earlier setup, we assumed access to a known likelihood model. But what if the
likelihood is unknown or intractable? Simulation-Based Inference (SBI) (Cranmer et al.,
2020), also referred to as likelihood-free inference, offers a powerful Bayesian framework for
solving such inverse problems. In SBI, although the likelihood function is not available,
a forward simulator is assumed. This allows for the generation of multiple (x,y) pairs in
parallel, enabling the approximation of the posterior distribution p(x|y) through simulation.
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z ~ N(0,Ip) q6(x) p(x)

Figure 1.1.: A generative neural sampler maps a sample from a tractable Gaussian distribution
(over T' model evaluations) to the generated sample distribution gy(x). The latter
distribution is aligned with the data distribution typically by minimizing a
statistical distance.

By leveraging forward simulations, SBI sidesteps the need for an explicit likelihood model
while still supporting principled uncertainty quantification. Key methodologies in this
framework include Approximate Bayesian Computation (ABC), neural posterior estimation,
and neural likelihood or ratio estimation, each of which aims to recover or approximate the
posterior using only simulated data (Gloeckler et al., 2024).

A major strength of SBI is its flexibility in handling complex models where traditional
Bayesian methods fail. With recent advances in deep learning, SBI can use neural networks to
learn mappings from data to posteriors, making it efficient for repeated inference tasks. This
is especially useful in high-dimensional or ill-posed inverse problems, where many solutions
may explain the data equally well. By capturing full posterior distributions rather than single
point estimates, SBI naturally accounts for uncertainty and ambiguity—making it a valuable
tool when reliable and interpretable predictions are needed.

In this thesis, we explore how neural samplers can be trained from scratch to enable
rapid inference, and how these methods can be extended to learn efficient posterior samplers
tailored for SBI tasks.

1.1.3 Data-driven Signal Priors and Neural Samplers

This previous sections highlight the simplifying assumptions and practical constraints that
existing systems often rely on to address key engineering challenges. While hand-crafted
priors and regularizers have proven effective in many cases, scaling these approaches to
handle novel data modalities—especially in an efficient and scalable manner—remains a
significant challenge. At the same time, supervised learning with nonlinear models such
as neural networks has shown strong performance in modeling the joint statistics of paired
(x,y) datasets for discriminative tasks. While effective, such methods often require extensive
data and the learned model may not be easily leveraged for solving other downstream signal
processing tasks

Generative neural samplers offer a powerful solution in this context. At a high level, given
samples from a data distribution p(x), a generative neural sampler gy parametrized by a
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neural network with weights § maps samples from a tractable distribution (e.g., Gaussian)
to samples from a distribution gg(x). The sampler is is trained to align g with the data
distribution, as illustrated in Figure 1.1. This alignment can be enforced in various ways,
with one of the most common approaches being the minimization of a statistical distance
between the two distributions, such as through an f-divergence (Csiszar et al., 2004).

Rather than relying on hand-crafted regularizers, we can instead leverage the power of
generative models to implicitly impose structural constraints on the solutions. By utilizing
samples generated from a trained neural sampler, we can solve for Eq. (1.4) under a suitable
differentiable regularizer. This approach enables the model to inherently learn and enforce
the underlying structure of the data, allowing for a more flexible and data-driven solution
to the inverse problem. Moreover, the generative model can be re-used as a regularizer for
solving other inverse problems as well.

However, solving Eq. (1.2) is not feasible with a neural sampler alone. To make this
work, we need an estimate of the probability density of the sample, or its gradient if using
gradient-based optimization methods. As an example, score-based generative models (Ho
et al., 2020; Song et al., 2021b) that estimate the score Vylogp(x) can be leveraged in
the latter setting. Understanding which type of generative model is most suited to a given
practical application is crucial, as it provides a versatile tool for solving complex problems in
a data-driven manner.

1.1.4 Other Motivating Applications

Generative models have far reaching applications beyond inverse problems. We list some
applications below, several of which serve as motivations for the methods introduced in this
thesis.

o Environment Simulation and Synthetic Data Generation: Generative models can be
employed to simulate a wide range of physical phenomena using only sample data,
such as non-linearities in digital communication systems or reverberation effects in
underwater acoustic environments. To streamline and accelerate the development of
new systems in these settings, generative models can also be used to synthetically
generate novel training data, facilitating the advancement and proliferation of emerging
technologies.

o FEfficient Audio-visual and Text Generation: Generative models have made remarkable
strides in synthesizing novel multimedia content in recent years. Architectures such
as transformers (Vaswani, 2017), which power cutting-edge chatbots like ChatGPT
(OpenAl, 2022), and diffusion models (Ho et al., 2020), which have set new benchmarks
for sample quality across audio, image, and video modalities, are prime examples of these
advances. However, these models often come with high inference costs. As multimedia
sharing across multiple modalities increasingly shapes the future of communication,
developing more efficient algorithms for training generative neural samplers becomes
essential. These faster samplers have the potential to impact a wide range of fields,
including education, entertainment, and medicine.
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o Medical Diagnosis and Imaging: Generative models play a crucial role in the medical
field. They have already shown great promise in tasks like protein folding, which can
significantly accelerate drug discovery (Jumper et al., 2021). Additionally, generative
models can be utilized for data augmentation, supporting the training of new doctors and
enhancing disease diagnosis and treatment under limited data accessibility constraints.

e Data Compression and Representation Learning: Instead of relying on traditional
hand-crafted codecs (encoder-quantizer-decoder), generative models can be used as
density estimators to constrain the information content in learned representations in
a data-driven way. This approach leads to a new class of data compression methods
known as non-linear transform coding (Ballé et al., 2020). Generative models also enable
universal compression with model-free encoders, paving the way for future-proof data
storage techniques (Jayashankar, 2022). Furthermore, generative models can be used
for superresolution of the decoded signal, reducing distortion in existing compression
systems by more effectively leveraging information from compressed bitstreams in a
data-driven manner. This has the potential to enable efficient communication and
storage of novel formats of data including 3D and augmented reality (AR) content.

e Probabilistic Modeling and Uncertainty Quantification: By modeling the underlying
probability distribution of data, generative models can provide valuable insights into
the uncertainty inherent in predictions. For instance, they can be used to approximate
posterior distributions in Bayesian inference, allowing for more accurate uncertainty
quantification in tasks such as risk assessment and decision-making. The ability to
generate samples from uncertain or unknown distributions also allows generative models
to improve the robustness of simulations, particularly in fields like engineering, finance,
and climate modeling, where accurate uncertainty quantification is crucial for reliable
decision-making.

1.2 Generative Models

The previous section highlighted the practical advantages of using generative models to address
key challenges in engineering. With several generative modeling frameworks introduced in
recent years, a natural question arises — which framework is best suited for the task at hand?
As we will explore, each generative model comes with its own distinct properties and learning
frameworks.

1.2.1 Explicit and Implicit Generative Models

For over a decade generative models typically fell into two classes based on their ability to
model the likelihood of data:

e Faplicit Models: These models are typically trained by either estimating the density of
samples or minimizing a variational bound on the likelihood of the data. A well-known
example is the variational autoencoder (VAE) (Kingma and Welling, 2014), which
employs a stochastic encoder to map inputs to a Gaussian-regularized latent space
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Table 1.1.: Overview of popular generative models, their training characteristics, and the
inherent trade-offs involved.

Model Training Idea Tradeoff
VAE minimize variational upper one-step sampling, stable training, good density estimation
bound on NLL low-fidelity and blurry samples
Normalizing Flow  minimize NLL via chain excellent density estimation
rule of probability invertibility constraint and poor samples
GAN minimize JSD high fidelity one-step sampling
with discriminator unstable training, no density estimation
Diffusion Model multi-noise-level high-fidelity samples, stable training, density estimation
denoising score matching expensive sampling

and a decoder to reconstruct the data. The model is trained by minimizing an upper
bound on the negative log likelihood (NLL). Another example is the normalizing flow
(Rezende and Mohamed, 2015), which utilizes an invertible neural network to transform
a tractable distribution into data samples, estimating the likelihood through the change
of variables formula.

e Implicit Models: Unlike explicit models, where the neural sampler is a by-product of
the density estimation process, implicit models directly learn a neural sampler, which is
trained by minimizing a statistical distance, as illustrated in Figure 1.1. A prominent
example in this category is the Generative Adversarial Network (GAN) (Goodfellow
et al., 2014), which alternately trains a generator and an auxiliary discriminator network.
The discriminator’s objective is to estimate the density ratio between the generated
and true distributions, which is used to compute a statistical distance known as the
Jensen-Shannon Divergence (JSD), to align the two distributions and train the generator.

The Generative Tradeoff. At first glance, explicit models may seem appealing due to
their ability to model the likelihood and train a one-step neural sampler. However, as with
most things in machine learning, there is no free lunch—excelling in one aspect often requires
trade-offs in others as summarized in Table 1.1. Normalizing flows, for example, are excellent
density estimators but tend to produce blurry samples. Additionally, their training can be
computationally expensive due to the constraints imposed by the invertibility requirement.
On the other hand, GANs produce high-quality samples and set the state-of-the-art in several
domains. However, training GANs is notoriously challenging because of the underlying
min-max objective, and we cannot easily compute density estimates, often resorting to Monte
Carlo methods instead.

1.2.2 Score-based Generative Models: Diffusion

Recently a new paradigm for generative modeling has emerged that bridges both explicit and
implicit modeling techniques. Rather than trading off density estimation for sampling, these
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models trade off sampling efficiency, i.e., sampling is achieved via T" successive evaluations of
the underlying model rather than a single evaluation.

Instead of learning a one-step neural sampler, score-based generative models or as they are
known via their more popular moniker, diffusion models, (Ho et al., 2020; Karras et al., 2022;
Sohl-Dickstein et al., 2015; Song et al., 2021b) are characterized by their ability to estimate
the score of the noisy data distribution defined as,

S<Xt) = VXt logp(xt>7

where x; := x + 0,€, € ~ N(0,Ip). Here ¢ denotes a timestep in [0, 1] and it parametrizes a
corresponding noise level o;. As mentioned in Table 1.1, by sacrificing sampling efficiency,
score-based models produce high-quality samples with stable training dynamics. This is
achieved, by defining a forward process that slowly corrupts the signal with increasing amounts
of Gaussian noise such that x; ~ AN(0,07Ip). The generative process reverses this process
by using the score of intermediate distributions to synthesize samples from Gaussian noise in
T steps. Both of these processes can be expressed as stochastic differential equations (SDEs)
and hence its theoretical properties can be analyzed in practice. Additionally, an ODE based
on the Fokker-Planck equation governs the distributional evolution (Song et al., 2021b) and
allows for likelihood computation.

As alluded to in Section 1.1.1, with such a learned score it should now be more clear how
a gradient-based algorithm can be practically implemented to solve Eq. (1.2) by utilizing
the score of the prior distribution. This connection will be further explored and clarified
throughout this thesis.

1.2.3 Efficient and Stable One-Step Generation: A New Paradigm

Modern learning-based solutions are often data-hungry. For instance, transformer architec-
tures (Vaswani, 2017) are well-known to significantly underperform in data-scarce scenarios,
and diffusion models frequently benefit from data augmentation to ”virtually” expand the
size of their training datasets (Karras et al., 2022). But what happens when we encounter a
new problem with limited data? How can we scale and adapt existing generative modeling
techniques to suit these constraints?

One common solution is synthetic data generation. Since generative models can capture
the underlying properties of a data distribution, it makes sense to leverage their capabilities
to generate new data. However, achieving this at scale requires an efficient and easy-to-train
neural sampler. GANs provide efficiency but are notoriously difficult to train, while diffusion
models are stable but challenging to sample from.

Now, imagine an alternative to GANs that offers fast, one-step generation without the
training instabilities. This model would generate data in a single step, but to achieve this, we
would need to replace the unstable min-max discriminator learning objective. Given that the
diffusion training objective is stable and practical, a novel score estimation approach could be
introduced as an auxiliary task—rather than the primary focus—to help define a new, stable
one-step generative modeling paradigm. Such an approach would enhance the capabilities of
score estimation in training high-quality generative models. This thesis culminates in the
development of such a framework.
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1.3 Thesis Guide

1.3.1 Overview

This thesis is focused on questions of effectiveness, utility, quality and efficiency surrounding
score estimation for generative modeling.

In the first part, we begin from first principles to explore score estimation, drawing on
existing literature to develop novel frameworks. We specifically examine the approximation
errors inherent to non-parametric methods and introduce new parametric score estimation
techniques from the optimal scalar and matrix kernel regression point of view. The quality
of the estimator is assessed by training generative models with the learned score models. A
preliminary version of this part of the thesis can be found in (Jayashankar et al., 2024) and a
full version is under review.

In the second part of this thesis, we shift our focus to evaluating the utility of score
estimators learned by diffusion models in addressing practical signal processing challenges.
While much of the existing research in diffusion modeling emphasizes downstream sample
quality typically assessed using metrics like the Fréchet Inception Distance (FID) (Heusel et al.,
2017)—we take a different approach. Specifically, we explore the signal source separation
problem, utilizing score estimators as statistical priors for the signals. This enables us to
assess the quality of the score estimation by its ability to accurately model complex statistical
structures inherent in the signals via a novel Bayesian algorithm. A published version of this
part of the thesis can be found in (Jayashankar et al., 2023).

In real-world engineering applications, there exists a critical trade-off between quality and
efficiency. Sampling from existing diffusion models can be prohibitively expensive, with costs
rising steeply as the dimensionality of the data increases. To address this issue, the last part
of this thesis explores methods to enhance the efficiency and stability of generative samplers.
Specifically, we propose novel score estimation strategies for training one-step generative
models based purely on statistical divergence minimization, building on the technical tools
developed earlier in the thesis. A published version of this part of the thesis can be found at
(Jayashankar et al., 2025).

1.3.2 Organization

This thesis starts by an introduction of necessary tools, notiation and prerequisites surround-
ing score estimation and diffusion models in Chapter 2 (Score-based Generative Modeling
Preliminaries). The thesis is then sectioned in three parts.

The main technical development for improving score estimation by addressing the subopti-
mality of non-parametric estimators is in Chapter 3 (Principal Direction Score Estimation).
Our new parametric score estimator inspired by matrix-kernel-based non-parametric score
estimation is introduced in Chapter 4 (Lifted Residual Score Estimation).

Chapter 5 (Score-based Source Separation) introduces a novel Bayesian method for source
separation using independent score models and Chapter 6 (RF Source Separation) applies
the proposed method for source separation of digital communication signals.

We turn to the problem of efficient and fast generative sampling in the last part of this thesis.
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Chapter 7 (Overview of One-Step Generative Modeling Techniques) provides background
of several recent one-step generative modeling frameworks along with their shortcomings
and tradeoffs. Chapter 8 (Stable and Efficient Generative Modeling with Score-of-Mixture
Training) introduces our new proposed method for one-step generative model training based
on multi-divergence minimization and score of mixture estimation.

Each chapter concludes with appendices that provide supplementary material, including
additional results, deferred proofs, and background information to support a deeper un-
derstanding of the main content. We also include special sections marked with an asterisk
(*), which present preliminary analyses and early results for potential extensions and future
research directions.

We finally summarize our contributions and discuss potential new research directions in
Chapter 9 (Concluding Remarks and Future Directions).
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Score-based Generative Modeling
Preliminaries

The goal of this thesis is twofold — to advance the capabilities of generative models through
score estimation, and to explore novel applications of parametric score estimators in practical
engineering contexts. To achieve this, we draw inspiration from both theoretical foundations
and real-world applications. This chapter serves as an introduction to the key concepts and
techniques that underpin this thesis, namely score matching and diffusion-based generative
modeling.

2.1 Notation

We write e.g., z for a scalar-valued variable and e.g., x for a vector-valued variable with
x; denoting the 7’th element in the vector. When necessary we will use e.g., x to denote a
random variable.

We use e.g., B to denote a matrix and B; ; to denote the element in row ¢ and column j.

We use e.g., Jxf(x,y) to denote the Jacobian of the function with respect to x.

We use e.g., S to denote a set of objects with cardinality |S].

We use e.g., routine to denote a standard computational routine or function used in practice.

For a continuous valued random variable x we denote its probability density function by
p(z) or more explicitly as p,(z) when needed. Likewise for a discrete valued random variable
we denote its probability mass function by P(x) or more explicitly as P (x) when needed.

Analogously, for a continuous valued random vector x we denote its probability density
function by p(x) or more explicitly as p,(x) when needed. Likewise for a random vector
drawn from a finite set X we denote its probability mass function by P(x) or more explicitly
as P(x) when needed.

2.2 Score Estimation

Assume that there exists an underlying distribution with a continuously differentiable density
p(x) over X C RP, where the score function is defined as

s(x) := Vy log p(x) € RP.

The goal of score estimation is to construct an estimator §(x) from data D = {xy,..., Xy}
drawn from p(x). In this thesis, we particularly assume a class of parametric score models
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{sp(x): 6 € O} such as neural networks, and aim to find the best hypothesis from the class
as a proxy to the underlying score function s(x). In this section, we provide a brief overview
on the literature of both parametric and nonparametric score estimation.

2.2.1 Parametric Score Estimation

2.2.1.1 Exact Score Matching

Hyvérinen (2005) initially proposed the score matching (SM) objective for training unnor-
malized density models which can expressed simply as,

Lswi(s:59) = Ep[[|5(x) — s6(x) ] (2.1)

This objective is not realizable in practice as it depends on the ground truth score s(x) which
is typically unavailable in practice. Hyvérinen (2005) showed that an equivalent sample-only
objective exists, which we call exact SM to distinguish it from the variants that follow,

Losna(5530) = 5 (EppuI569) — 509 = By 00117

= ~Eyols0)"s0(x)] + 5By llso(x) (2.
Bt (Jaso ()] + £ By o (0] (23)

Here, (a) follows by integration by parts, under some mild regularity conditions on the
density p(x) and score function s(x). While the SM framework provides a computable
objective function, the computation often becomes demanding due to the trace of the
Jacobian tr(Jxsp(x)). While the latter is easy to compute at low dimensions using automatic
differentiation tools, it can be very expensive to compute for high-dimensional data.

2.2.1.2 Sliced Score Matching

As a solution to the computational burden of ESM, Song et al. (2020) proposed an equivalent
objective

1
Lssm(s; 8) = Eppope) [V IxSo(x)V] + éEp(x)[Hse(x)HQ]. (2.4)
Here, Hutchinson (1989)’s trick is applied to the first term in Eq. (2.3),

tr(Jxsg(x)) = tr(Jxse(x)Epw) [VVT])
= Epv)[VTIxso(x) V], (2.5)

where p(v) is a noise distribution over R” such that E,)[vvT] = Ip. In practice, the noise
distribution is often chosen as a standard normal distribution or a Rademacher distribution.
They call this computational trick slicing and call the objective the sliced SM (SSM) objective.

It is important to note that SSM also requires the computation of the Jacobian of the
estimator. The primary computational advantage of this approach lies in replacing the trace
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2.2. Score Estimation

computation with a Jacobian-vector product, which can be efficiently implemented using
slicing vectors in modern deep learning frameworks. However, in practice, the estimate in
Eq. (2.4) may become biased when only a limited number of slicing vectors are used. As a
result, SSM tends to perform worse in high-dimensional problem settings.

2.2.1.3 Denoising Score Matching

To avoid the computational complexity of derivatives altogether, Vincent (2011) proposed to
estimate the score of a noisy version of the underlying distribution. The resulting objective
known as denoising score matching (DSM) lies at the heart of applied statistics and state-of-
the-art generative models,

Formally, denote a noisy version of x as x, = x + o€, € ~ N (0,1Ip), where o is some
noise level. The induced Gaussian conditional distribution is p(x,|x) = N (x,;x;0%Ip) and
the induced marginal distribution is p(x,) = Epx) [p(%+|x)]. We can then define s(x,) :=
Vi, logp(x,) as the score of p(x,) and s(x,|x) := Vy, log p(x,|x) as the conditional score
function. Then, applying Eq. (2.2) on a parametric score model x,, — sy(X,) and the noisy
score s(X,), the DSM objective is derived as

Loswls;so) = & Eyoxn[I50%) — 500)I7 ~ Epie[I5(0) ) (2.6)
= Byt [ ~5x0)Ts00x0) + 5 Iso ) ]

b) 1
2 ot )| (% [3)T80(%2) + 5 180001

—~

where the (generalized) Tweedie’s formula, introduced in more detail in Section 2.2.2 |
E,(xjx,)[8(%Xs|X)] = s(x,) is used in (b). When s(x,|x) is easy to compute for a given choice
of p(x,|x) such as a Gaussian, the final objective can be computed without derivatives of the
estimator. Particularly, the DSM objective takes the form,

X, — X

(@
Losm(s;80) = Eppopes ) [— ( 72

)T So(Xy) + %HS@(XU)HQ]
(b) €

P(x)a(e) [— (;)T s0(%,) + %IIS@(XU)IIQ]

2} el (2.7)

E
©1
2

€
Epx)q(e) [HS@(XJ) +-

where the conditional score of the Gaussian likelihood is expanded in (a), the expression
is rewritten in terms of the additive noise in (b) and a closed form expression where C' :=
Eqoll€/0]|?] is independent of 6 is derived in (c). Thus, DSM allows for computing the noisy
score in a computationally efficient manner via a closed form regression objective which is
easy to implement and stable in practice. It should be noted that while DSM was originally
proposed as an approximate solution for direct score estimation, i.e., estimating s(x), it is
not widely used for the same as the denoising parameter is hard to tune. Instead, the DSM
has played a key role in the recent development of diffusion models.
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2. Score-based Generative Modeling Preliminaries
2.2.2 Tweedie’s Formula

Tweedie’s formula (Robbins, 1956) is a remarkable result that admits a computational tool
to estimate the marginal score of a noisy distribution, utilizing only the conditional score
and samples from the posterior. We first state it below as a theorem and then discuss its
practical significance.

Theorem 2.1 (Generalized Tweedie’s formula). For (x,%,) ~ p(x)p(x,|x),

Epeixa) (%0 [%)] = 8(%),
Epxix) [ (%0 [ %)8(x5 )T + 5% (x5 |%)] = 8(x5)8(x5)" + 5% (x,).

Here, s (x,) := V2 logp(x,) and s® (x,|x) := V2 _log p(x,|x).

The first relationship is of great practical significance. Considering a Gaussian noise
corrupted signal with noise standard deviation o, Tweedie’s formula gives the following
relationship,

X, — X
o2

$(Xs) = ~Epxixo) {

1
= 5% + ;E[X’XU].

In practice E[x|x,] is the optimal Gaussian noise denoiser. Thus, the marginal score estimator
can be parametrized by a denoiser f(x,) ~ E[x|x,], leading to the following expression for

the score: . .

Se(X,) = —;XU + ;fg(xg). (2.8)
Denoising is a fundamental task in signal processing, and significant research has been devoted
to developing powerful parametric models for this purpose (Milanfar and Delbracio, 2024).

These models can, in turn, be leveraged for estimating the marginal score.

2.2.3 Nonparametric Score Estimation

In this section, we provide a brief overview of non-parametric score estimation methods. Unlike
parametric approaches, non-parametric methods often estimate the score by employing kernel
regression, linear estimation, and regularized objectives that yield closed-form expressions.
Although these methods are generally more limited in terms of expressiveness, they play a
crucial role in the theoretical development of score estimation frameworks.

2.2.3.1 Stein Gradient Estimator

Li and Turner (2018) proposed estimating s(x) using the generalized Stein’s identity (Gorham
and Mackey, 2015; Stein, 1981)

E,px)h(x)s(x)T + Jxh(x)] =0
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2.2. Score Estimation

for a choice of test function h: X — R” with certain regularity conditions. Note that the
identity is essentially equivalent to integration by parts used in SM. Li and Turner (2018)
considered an empirical version of the identity and proposed to solve the resulting linear
system with a regularizer. Given a set of N samples {x") x® ... x(™M} they construct the
matrix H := [h(xV) h(x®) ... h(x™)] € RP*N. Then the matrix of scores at the sample
points S must (approximately) satisfy,

1
——HST ~ VH
N ST ~ VxH,

where V H = Zfil Jh(x®)/N. In practice this is implemented by solving a regularized
problem,

) 1 2
min HVXH + NHSTHF + 1S,

for some positive scalar 7. They call the resulting estimator the Stein gradient estimator
(SGE). SGE has several drawbacks. First, it can only estimate the score function at the
given data points, without principled way for extrapolation. Second, the choice of h(x)
governs the quality of approximation, as the method can be understood as learning with
kernel k(x,x’) = h(x)Th(x’); however, choosing a good test function is highly nontrivial.

2.2.3.2 Spectral Stein Gradient Estimator

To resolve the latter downsides, Shi et al. (2018) proposed the spectral Stein gradient estimator
(SSGE), where the idea is to use the stack of the top-L eigenfuctions of a kernel as the test
functions in the SGE framework. More precisely, consider the top-L orthonormal eigenbasis
{pi(x)}2, of a fixed choice of kernel k(x,x") with respect to the given distribution p(x). It
then aims to estimate the score function s(x) := Vy log p(x) of a given distribution p(x), by
considering the order-L expansion

S0 = D By [B5(3x)5(00)101(x) = 3 b (),

where b; 1= E,x)[s(x)#i(x)]. Compared to SGE, SSGE has a principled formula for extrapo-
lation based on the Nystrom method and the error was theoretically analyzed.

2.2.3.3 Nonparametric Score Estimators

Zhou et al. (2020) proposed a unifying framework for nonparametric score estimation methods
based on a regularized vector-regression formulation (Baldassarre et al., 2012). For a matrix-
valued kernel I'; let Hr denote the reproducing kernel Hilbert space. Then, they defined the
score estimator as

. . . A
$x = arg min By [[|s(x) = 8(x)2] + SlIsl3,

where p(x) is the empirical distribution constructed from samples. Based on its closed-form
solution (or its variant with other spectral regularization), Zhou et al. (2020) applied a more
general version of Stein’s identity (essentially integration by parts), and introduced a general
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2. Score-based Generative Modeling Preliminaries

Figure 2.1.: A diffusion model is parametrized by a noise-destructive process running from
left to right and a generative process running in the opposite direction. As time
evolves the data distribution is gradually corrupted with increasing levels of
Gaussian noise.

nonparametric estimator that can be computed based on linear system of size MN x M N,
for a matrix-valued kernel of size M x M and data size N. They showed that this estimator
subsumes both SGE and SSGE as special cases, when the underlying matrix-valued kernel is
essentially scalar-valued. They also demonstrated that the nonparametric score estimator
using truly matrix-valued kernels such as curl-free kernels can substantially improve the
performance of SSGE.

2.3 Diffusion Generative Models

Score-based generative models were briefly introduced in Section 1.2.2 as models that admit
high-quality sampling and density estimation by trading off sampling efficiency. In this section
we provide a technical overview of the most popular instance within this class — diffusion
models.

2.3.1 Technical Formulation

We take the following unified view in our definition of DPMs as inspired by (Karras et al.,
2022). Let p(x) be the data distribution and let A(¢) define a variance exploding noise schedule
with distribution p(t) where ¢t ~ #/(0,1). Under this noise schedule we can define a noisy
version of x at noise level o, as

X; :=x+ o€ where €~ N(0,1). (2.9)

Rather than sampling from the data distribution via a one-step map from a tractable noise
distribution as in other implicit models (see Section 1.2.1), as shown in Figure 2.1, diffusion
models first define a user-design forward process governed by a stochastic differential equation
that gradually destroys structure in the signal,

dXt = f(Xt, t)dt + g(t)dw,

where w is a standard Wiener process and xo = x. The term f(x;,?) is known as the drift
coefficient and ¢(t) is known as the diffusion coefficient. For the variance exploding processes
considered in this thesis, f(x¢,t) = 0 and ¢(t) = /20:0;.
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2.3. Diffusion Generative Models

The time reversal of this process (i.e., the generative process) is known to follow the reverse

SDE,
dx; = [£(x0, 1) — g°(t) Vi, log p(x,)] dt + g(t)dw.

Notice that the sampling requires knowledge of the score. In practice Vy, log p(x;) would be
estimated by the score function sy(x;;t) from a variant of DSM.

Sampling can be simulated through techniques such as annealed Langevin dynamics or
ancestral sampling (Song et al., 2021b). While the above reverse SDE is stochastic in nature,
there also exists a deterministic process known as the probability flow ODE that satisfies the
same intermediate marginal distributions,

1
dx; = [f(x¢,t) — §g2(t)th log p(x;) | dt. (2.10)

The benefit of the ODE formulation is that it can discretized more coarsely and hence
sampling can done in fewer timesteps. Furthermore, sampling is possible by plugging in the
updates from Eq. (2.10) into black-box ODE solvers, e.g., the Heun 2" order solver (Karras
et al., 2022). Sampling can be sped even further if Eq. (2.10) can be solved exactly. Lu
et al. (2022) show that the exact solution to Eq. (2.10) at timestep ¢ given an initial value at
timestep s < t is,

gt
X; = Xg + 2/ 0u€g (Xy; 1) doy,. (2.11)

Various samplers can be derived by approximating the exponentially weighted integral in
different ways. For example, the widely used DDIM sampler (Song et al., 2021a) is an example
of a first-order Taylor expansion of the integral term. At the core of all these algorithms is a
score estimator/denoiser, which if learned accurately could improve the quality of samples
produced.

2.3.2 Training Objective

Given noisy samples of data, the diffusion objective can be reduced to a weighted denoising
objective,
Lorri(€o) = Epypeoae) [w(t)]l€ — €o(xe:1)]|°] (2.12)

where w(t) is a positive scalar-valued weighting function. Note that for the forward process
defined in Eq. (2.9), the conditional score is s(x¢|x) = —€/o;. Thus, Eq. (2.12) can be
interpreted as a weighted DSM loss over multiple noise levels,

€g(xy;t 2
EDPM(GQ) = ]Ep(t)p(x)p(xt\x) [w'(t) S(Xt|X) + —Q(Ut >H ] , (2.13)
t

where w'(t) := o?w(t) and the marginal score estimator is sp(x;t) := —€g(x4;t) /0.

Equivalently, some diffusion models train a denoiser to learn the conditional mean via
MMSE estimation,

min By ipqte) [w(t)|Ix — o (xi: )[17]
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2. Score-based Generative Modeling Preliminaries

By applying Tweedie’s formula (see Section 2.2.2), the marginal score estimator can be derived
using Eq. (2.8). Different models utilize distinct noise schedules and weighting functions, and
there is no universally optimal framework. In our experiments, we will clearly outline our
design choices.

2.3.3 Prior Work

Sohl-Dickstein et al. (2015) first introduced diffusion probabilistic models (DPMs) as deep
variational autoencoders (Kingma and Welling, 2014) based on the principles of thermo-
dynamic diffusion with a Markov-chain variational posterior that maximizes the evidence
lower bound (ELBO). Several years later, Ho et al. (2020) re-introduced DPMs (DDPMs)
with modern neural network architectures and a simplified loss function that set a new
state-of-the-art in image generation. Since then, numerous connections to existing literature
in statistics, information theory and stochastic differential equations (SDEs) have helped
bolster the quality of these models. For example, Song and Ermon (2019) illustrate the
equivalence between DDPMs and DSM at multiple noise levels, thus bridging the areas of
diffusion-based models and score-based models. Subsequently, Song et al. (2021b) showed
that in continuous time, DPMs can be appropriately interpreted as solving for the reverse
of a noising process that evolves as an SDE while Kingma et al. (2021) demonstrated that
continuous-time DPMs can interpreted as VAEs and that the variational lower bound is
invariant to the noise schedule except for its endpoints, thus bolstering its density estimation
capabilities. Following the latter discovery, Kong et al. (2023) show that DPMs can in-fact be
used for exact likelihood computation by leveraging techniques from information theory. To
further improve DPMs, extensive research has gone into the choice of noise schedules, network
architectures and loss functions (Hoogeboom et al., 2023; Karras et al., 2022; Kingma and
Gao, 2024; Nichol and Dhariwal, 2021). Many tangentially discovered frameworks such as
rectified flows (Liu et al., 2023) and conditional normalizing flows trained with Gaussian
conditional flow matching (Lipman et al., 2023), are also particular instances of (Gaussian)
diffusion models with specialized noise schedules and weighted loss functions, as shown in
(Kingma and Gao, 2024).

2.4 Summary

Score estimation is central to modern generative models, with a variety of both parametric and
non-parametric techniques developed to address this task, each possessing unique advantages.
Among parametric methods, SSM is widely used for learning the score of the base distribution,
while DSM is ideal for learning the score of a noisy distribution and forms the foundation
of diffusion models. On the non-parametric side, SSGE provides a straightforward proposal
for test functions, and the nonparametric score method encompasses a range of related
approaches.

We now have all the necessary tools to start our investigation into exploiting score estimation
techniques for the purposes of generative modeling.
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Appendix

2.A Proof of Tweedie's Formula

Proof of Theorem 2.1. Consider

S(XO') = an Ing(XU)

_ Vy,p(%0)

p(XJ)
= X, X p(X) X
—/anp( 4 )p(xa d

dx

)
:/VXUP(XU‘}Q P(x)p(x4]%)

P(xs|x)  p(xo)
— [ Vi, ol [x)plxlxa) dx
= Il'—Ep(x|xc,—) [on log p(X0'|X)]
= B [8(%o[%)].
To show the second identity, note that
s (x,) = Vi, logp(x,)
_ V(%) Vi, p(X0) Vi, P(%0)T

p(Xo) p(%,)?
_ Vo)
- p(Xg) ( U) ( U) . (214)

Applying the same logic from above on the first term, we have

V2 p(xs)
p(Xo)

V,Q(Up(xg %) } _

p(x[x0) [ p(Xo’X)

However, since
VP, [x)
(%o %)
rearranging the terms in Eq. (2.14) leads to the desired relation. O

= 5(%,)8(x,)T + 5P (x,),
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Principal Direction Score
Estimation

In the previous chapter, we discussed how non-parametric score estimation methods often rely
on the careful selection of test functions to apply the Stein gradient estimation framework.
However, choosing a suboptimal test function can significantly increase the approximation
error of the estimated score, rendering the method ineffective in practical applications. In
this chapter, we focus on this limitation within the Spectral Stein Gradient Estimator (SSGE)
framework introduced in Section 2.2.3.2. We begin by analyzing the approximation error in
SSGE and demonstrate how an ill-suited test function impacts performance. To address this,
we draw on tools from elementary linear algebra—specifically, principal component analysis
(PCA)—to guide the construction of a more effective estimation strategy. Building on these
insights, we introduce a novel extension to SSGE that learns the test functions as the basis
of an optimal kernel that minimizes the ¢, approximation error.

3.1 Suboptimality of SSGE

Instead of estimating the test function at the given sample points as in the SGE framework
(see Section 2.2.3.1), SSGE considers an orthonormal eigenbasis {¢;(x)}°, of a fixed choice
of kernel k(x,x’) with respect to the given distribution p(x). It then aims to estimate the
score function by considering the expansion

= Z b;¢;(x)

where b; 1= Epx)[¢:(x)s(x)].

Given N samples drawn from p(x), let {(A, v,)}2_, be the eigenvalue-vector pair of the
normalized empirical kernel matrix K/N, where K,,; = k(x,,%;). Then, the SSGE with L
components is defined as

L
Z bege(x
/=1

where we define based on the Nystrom method (Baker, 1977; Williams and Seeger, 2000),
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and

. o 1 .
b 1= By [Vade ()] = =5 D V().
n=1

Here, the gradient Vy¢;(x) is similarly estimated as
. ~ 1 1
V(X)) := Vxpp(x) = ZV k(x,X,)Ven.
A N

The following is the theoretical guarantee for SSGE from the original paper !

Theorem 3.1 (Error bound of SSGE). Assume that k(x,-) and k(-,x) are in the Stein class
of p(x). Further, assume that

p(x) —maxz:b2 < (C < o0,

max E
i€[D] i€[D] <

where s;(x) € L*(X,p). Then if \y > Xy > ... > A\, >0, for each i € [D],

Bl 0071 < 2(0,(3) +0(s50)) + 1) + 32 7
) tion W—/

estimation error . .
approximation error

Here, Ap :=miny<y<y, |Ae — Aeq1]| and O,(+) is the big-O notation in probability.

Intuitively, if the top-L eigensubspace of a given fixed kernel is not aligned with the target
score function, the approximation error cannot be controlled.

3.2 Optimal Kernel Characterization

The estimation error of SSGE is difficult to optimize further, but with an optimal test function
the approximation error can be minimized. Let {¢;}¢>1 be an orthonormal basis of £L2(X). In
order to overcome the suboptimality of SSGE we wish to minimize the approximation error

LH{be}izy) - ZE — si(x)|’]

- Y Bulsxno)

(>L+1 i=1
Define an operator 7(x,x’) := .7 s;(x)s;(x’). Then, minimizing £({¢¢}%,) becomes
equivalent to
max ZE T (x,x")de(X)],

{¢Z}g 1 =1

We found a bug in the guarantee in the original paper and made corrections.
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This optimization problem is equivalent to characterizing the top-L eigenfunctions of the
operator 7. Note that this linear operator is the integral kernel operator induced by the
kernel

sq(x)sq(x").

=
"
"
I
w
X
=
By
"
I
M=

d=1

The EVD of this kernel is equivalent to the EVD of its dual, which is the second moment
matrix 2

C = By [s(x)s(x)7.

It is easy to show that the best orthonormal eigenbasis is equivalent to the normalized
principal components. With this, the best order-L approximation of s(x) becomes

I B L ujs(x)
)X)—KZI\/A_NZ i//\_z = UpUfs(x), (3.1)

where Uy., is a stack of the top-L normalized principal directions. Note, however, we cannot
find the principal directions of s(x) via solving a linear system unlike SSGE, which works
with a fixed choice of kernel. The standard streaming PCA algorithms are not applicable, as
we only observe samples {x,}"_, without having explicit access to s(x,)’s.

3.3 Score Estimation with Principal Directions

To learn the optimal kernel and minimize the approximation error we need to learn the top-L
prinicipal directions. To this end, we choose to learn U = U;.p with a parametric score model
sp(x). For Vi.p = [vy,...,vz] € RP*L and a parametric model g4: X — RP| we can consider

sg(x) = VVTg,(x) as another score model. Note that § = {¢, V}. The resulting SM objective
with the “low-rank” score model is

LIV, 80) = 5 By 5x) — Vo ()] ~ By 5],

It can be shown that this parameterization suffices to learn the best order-L approximation
Eq. (3.1). Let a A b:=min{a,b}. We can then show the following:

Theorem 3.2. For L > 1, if

(V*,g") € arg min L(V,g),
VERDXL

g: X—RP

we have V*(V*)Tg*(x) = Uy.pa-UT 4, 8(X).

?Since [y (x) [s(x)] = 0 under a mild regularity condition, C is exactly the covariance matrix of s(x), and the
top-L EVD of C is exactly equivalent to the top-L PCA of s(x).
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3. Principal Direction Score Estimation
3.3.1 Practical Implementation

In practice, the integration-by-part trick from SM (see Section 2.2.1.1) can be used to rewrite
the objective function as

1
SEpeo [IVVTgs(x)12]

LV, 86) = By [tr(VVTxgs(x)] + 5

1
Vi Ix8s (X) V] +§Ep(x)[||VVTg¢(X)H§]-

Mb«

Note that this score model does not require the slicing trick for computational feasibility as
in SSM due to the built-in matrix V. This objective function can be computed efficiently via
the Jacobian-vector product (JVP) with off-the-shelf autograd packages. Furthermore, to
learn the ordered principal directions, we can apply the following trick called joint nesting. If
we define a new objective

'CNested(Vl:Lu 8a; W) = Z wbc(vl:& gd))

with some positive weights w = (w1,...,w;) € RL), minimizing this single objective
characterizes the ordered principal directions as the global minimizer.

Theorem 3.3 (Joint nesting). For L > 1, if

(V*7 g*) € arg VerﬁiDIlL 'CNested(Vv g; W)7

g: X—RP

we have v} (v})Tg*(x) = wpu)s(x) for each 1 <l < LAr. IfL>r, vy =0 forr <{<L.

3.3.2 Interpretation

The proposed score estimation framework introduces an inductive bias by assuming that the
underlying score function s(x) can be effectively captured by the top-L principal directions.
If s(x) lies approximately in a low-dimensional subspace, the score model x — V1., V], g4(x)
can leverage this structure. However, if s(x) lacks such low-dimensional structure, then
setting L = D would be necessary to capture the full signal, resulting in a model similar to
the standard SSM.

Despite the inclusion of additional parameters that capture the principal directions, the
model gy does not need to perfectly capture the base score. It is sufficient for the model to
capture only the non-null component of the score, which may be easier to learn in certain
scenarios. The learned principal directions do encapsulate inherent structures of the data
distribution, which can be leveraged as useful representations for downstream tasks.

3.4 Experiments

We evaluated the proposed method by training implicit autoencoders, a type of implicit
generative model. In this section, we describe the experimental setup and present results.
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3.4.1 Implicit Autoencoders

3.4.1.1 Variational Autoencoder (VAE)

Traditional VAEs (Kingma and Welling, 2014) are autoencoders with an encoder f, : R? — R?
and a decoder gy mapping in the opposite direction. The decoder induces a likelihood
distribution, py(x|z) and the latent space is assumed to be regularized with a standard normal
prior, p(z) = N(0,I). The decoder induces a posterior distribution and in practice the encoder
is designed to parametrize a variational Gaussian posterior, g4(z|x) = N (z; p4(x), 03 (x)14),
where the mean and covariance are defined by deterministic functions.

In practice, for generative modeling, the Gaussian posterior is restrictive in its expressivity
and one can instead define an implicit VAE that leverages a parametric stochastic encoder
to sample latent variables as z = f,(x, €), where p(€) is an auxiliary noise distribution. The
encoder now prescribes a stochastic procedure to generate latent variables by compromising
on an explicit posterior model. The overall training objective remains unchanged and these
models are still trained by maximizing the evidence lower bound (ELBO) (Kingma and
Welling, 2014),

By, alx) (108 Po(x[2)p(2)] + Eg (apx) [ 10g g5(2%)]

v~

=h(qs(2]x))
Maximization of the ELBO via gradient-based methods involves the computation of the
derivative of the differential entropy. Li and Turner (2018) show that this can be readily
computed given an estimate of the conditional score and by the fact that the stochasticity is
induced by the auxiliary noise,

Veh(gs(z]x)) = =V Ey e [log g4 (f5(x, €)[x)]
= —Epe) [Jofs(x, €)TV, 108 4 (2| X) | 2=t (x,0)]-

Thus, with a good conditional score estimator §y(z|x) ~ V,log ¢s(z|x), we can approximate
the gradient as

Voh(gs(z]x)) = —Epe)[Jofs(x, €)T8y (f5(x, €)[x)],

which in practice can be computed using automatic differentiation techniques.

3.4.1.2 Wasserstein Autoencoder (WAE)

Let p(z) be a fixed prior distribution and py(x|z) a likelihood distribution induced by a
deterministic decoder x = gy(z). Let p,(x) model the mean of a Gaussian posterior
distribution with variance o2 and let g4(z) = E,x [gs(z[x)]. A WAE (Tolstikhin et al., 2018)
seeks to solve the optimal transport (OT) problem,

inf Ep(x)q, (z]x C(X, zZ))|,
wral oy Ereastapo (X, 80(2))]

where ¢ : R? x R? — R is a distance function on a metric space, e.g., the 2-Wasserstein
distance ¢(z,y) = ||z — y||>. While solving the above optimization problem is hard, a relaxed
version can be solved with gradient-based methods,

Ep(x)g0(zix) [€(X, 80(2))] + D(qs(2), p(2)). (3.2)
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Above, the regularizer is an arbitrary divergence that forces the approximate and true
posterior to coincide. In our experiments, we choose the KL divergence Dki,(¢y(2z)||p(z)) and
leverage an implicit encoder defined via the re-parametrization trick (Kingma and Welling,
2014), z = py(x) + o€ for e ~ N(0,1;). As in implicit VAEs, gradient-based optimization of
Eq. (3.2) requires computing the entropy term as,

Vh(qe(z)) = —V4Eq,(z)[log q4(2)]
= =V, 0p(e) [108 44 (14 (%) + T€)]
= —Epop(e) ot (X) V2108 45(2) [ a=p, (x)+oe] -

With a good conditional score estimator 8,(z) ~ V,loggqs(z), we can approximate the
gradient as

Vsh(as(2)) = —Epope)Jops(x)T8y (14 (%) + €)].

3.4.2 Experimental Setup

We trained implicit autoencoders on the MNIST (LeCun, 1998) and the CelebA (Liu et al.,
2015) datasets. The MNIST dataset consists of grayscale images of handwritten digits at a
resolution of 28 x 28 whereas the CelebA dataset consists of photos of celebrity faces at a
resolution of 64 x 64.

For our experiments, we used the network architectures for the encoder and decoder from
(Shi et al., 2018), replacing all ReLLU activations with Swish activations (Ramachandran
et al., 2018), which we found to improve performance. We used the provided score backbone
architectures® to parametrize the model gy. We employed an MLP backbone for MNIST
experiments and a CNN backbone for CelebA . We parametrized the principal directions as a
matrix and initialized it randomly in the beginning. The principal directions and the model
were optimized jointly.

On MNIST, we varied the latent space dimensions and evaluated the model using negative
log-likelihood (NLL), while on CelebA, we used FID (Heusel et al., 2017) to assess sample
quality. We trained all models on a single NVIDIA 3090 GPU with the Adam optimizer.
MNIST models were trained for 200k steps with a learning rate of 1e-3 while CelebA models
were trained for 400k steps with a learning rate of le—4.

3.4.3 Results

We compared our method against non-parametric baselines like SSGE and Stein, as well as
parametric methods such as SSM and vanilla VAE/WAE. As shown in Table 3.1, our approach
consistently outperforms SSGE, demonstrating that optimal eigenbasis characterization
improves results. Notably, at lower dimensions, our method surpasses SSM, as learning the
optimal eigenbasis is easier and provides a practical alternative to Gaussian slicing.

As we scale experiments to 64 x 64 images, we continue to observe significant performance
improvements over SSGE, as indicated by lower FID values in Table 4.3. While SSGE

3https://github.com/ermongroup/sliced_score_matching
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3.5. Summary

Table 3.1.: Negative log-likelihoods on the MNIST dataset for conditional and unconditional
entropy modeling with different score estimation methods for implicit VAE and
WAE training respectively. Results are reported for latent dimension sizes of 8

and 32.
Method VAE WAE
NLL (8)] NLL (32)] NLL (8)] NLL (32)]
Gaussian Posterior 96.54 87.73 - -

Stein 95.95 93.23 98.13 90.66

SSGE 96.14 94.54 98.05 91.47

SSM 95.30 87.60 98.00 89.39

PDSE (ours) 93.91 87.40 97.01 91.31

Table 3.2.: FID and ELBO/WAE loss on the test set obtained using different score estimation
methods.

VAE WAE
FID, ELBO| FID|, WAE]

Guassian Posterior 52.61 4758 - -
Stein  91.06 4553 49.82 635
SSGE 95.06 4555 49.72 639

SSM 50.06 4678  47.44 482
PDSE (ours) 52.80 4651  49.72 319

Method

performs competitively with SSM in WAE architectures, we see no substantial improvements
beyond test loss, suggesting the SSGE basis is well-matched in this case. At higher dimensions,
learning the eigenbasis requires careful initialization, and we hypothesize that the latent score
becomes less low-rank, which may explain why SSM still outperforms our method in these
settings.

3.5 Summary

We introduced principal direction score estimation, a parametric approach that reduces the
theoretical approximation error found in non-parametric, spectral-based score estimation
methods. The proposed approach is straightforward to implement and builds upon the slicing
trick from SSM, but with more structured slicing vectors derived from the principal directions
of the optimal kernel operator. Through multiple experiments, we demonstrated that the
proposed method outperforms SSGE, highlighting the benefits of trading off less expressive
models in favor of more expressive ones that leverage higher computational power.
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Appendix

3.A Proof of Joint Nesting

To prove Theorem 3.3 we first present a Lemma and state a more general statement from which
the proof will follow. Recall that we assume that C := [, [s(x)s(x)T] = UAUT = 327 Asupu}
with UTU =l and Ay > ... > Ap > 0. Moreover, we assume that C has rank r < D.

Lemma 3.4. Let p(z) be a distribution over RP with unit covariance matriz, i.e., Ep,)|zzT] =
I. Then, the singular value expansion of the kernel k(x,z) = z7s(x) is

z) = Z ore(X) e (2)
=1

where Yy(z) = ujz and ¢i(x) = ﬁu}s(x) are the orthonormal singular functions and

o¢ = /A is the (-th singular value for { € [D].

Proof. Consider the symmetrized kernel k(x,x’) := Ep,)[k(x, 2)k(X',z)] = s(x)Ts(x’). By the
duality, this symmetrized kernel’s eigenfunctions has an one-to-one correspondence to those
of the matrix C = E,x)[s(x)s(x)T]. That is, the eigenvalue expansion of k(x,x’) is

X) = Mg(x)u(x
=

where ¢y(x) := ﬁu}s(x). To verify that ¢,(x) is the -th eigenfunction of k(x,x’) with eigen-

value Ay, consider Ep, ) [£(x, X") ¢ (X)] = 8(x)TE, ) [s(X') pe(x')] = s(x )T\lﬁE ) [s(x)s(x')Tuy =
S(X)TﬁCUg = \/_s( )Tuy = Mgy(x). To verify that {¢e(x)}2, is orthonormal, note that

By () [Pe(x)pe (x)] = 3;uj, Cup = ujuy = dyer.
Now, the singular Value expansion of k(x,z) must be of the form

z) = Z \/)\_ﬂbz(x)dfﬂ(z)

for some orthonormal functions {¢y(z)}/_,. We claim that ¢y(z) = u}z. To see this, note
that by the singular value relation,

1
Vi(z) = \/—)\—[Ep(x) [k(x, 2) e (x)]
1
= )\—KZ ]E x)[ ( ) ( )T]Ug:ZTllg.
This concludes the proof. O
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3. Principal Direction Score Estimation
Using this lemma, we can prove a more general statement than Theorem 3.2.

Theorem 3.5. For L > 1, if

(B*,f") € arg S hin Eyllls(x) — BE(x)]],
f;\HRL

we have B*f*(x) = Uy.pa U] 0, 8(%).

Proof. Consider the kernel k(x,z) := s(x)Tz with a distribution p(z) over R” with unit
covariance matrix, i.e., E,,)[zzT] = |. First of all, note that the objective function is

Eypollls(x) = BEX)[) = Epypia [(k(x, 2) — 27BE(x))7],

since E,(;)[2zT] = | by assumption. Now, by Schmidt’s low-rank approximation theorem,
the minimizer of the right-hand side objective function zZTB*f*(x) must be equivalent to the
rank-L approximation of k(x, z), which is from Lemma 3.4,

z'B*f"(x) = 2"U;. U], s(x),

which implies that
B*f*(x) = Uy.LU],; s(x),
where Ul Uy = Iy O

Theorem 3.3 then finally follows as a corollary.

Proof of Theorem 3.3. For each 1 < ¢ < L Ar, using Theorem 3.5 we have V7,,(V},,)7g"(x) =
U1.,U],s(x). In particular this means for £ = 1 that vi(v})Tg*(x) = wjujs(x). Thus by
inducting we can easily show that v} (v})Tg*(x) = uu;s(x). O
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Lifted Residual Score Estimation

Existing score estimation frameworks typically learn the score function s(x) by minimizing
the expected squared ¢y error between the true score and the model estimate sy(x). This
objective is common across both parametric and non-parametric methods, including the
Spectral Stein Gradient Estimator (SSGE) and its parametric extension introduced in the
previous chapter. As discussed in Section 2.2.3.3, non-parametric methods based on matrix-
valued kernel regression, particularly those minimizing the expected Frobenius norm error,
have demonstrated superior performance compared to alternative approaches.

Motivated by these insights, this chapter introduces a novel approach that estimates the
score in a lifted space, defined by the outer product of a vector-valued function with itself.
Specifically, the score estimator, sg(x) ~ s(x), is learned by minimizing the expected squared
Frobenius norm between a matrix-valued estimator sp(x;)sg(x2)T and matrix-valued target
s(x1)s(x2)T. As we operate in the lifted space, the resulting estimation framework is called
lifted score estimation (LSE).

In addition, inspired by the decomposition of the score into an optimal basis, as discussed
in the previous chapter, we propose a complementary technique called Iterative Residual
Estimation. This method addresses the practical limitations of parametric models, which
may suffer from architectural biases or limited expressivity. To mitigate such limitations,
we decompose the score function as a sum of successive residual estimators s(x) ~ sp«(x) +
spy (%) + ...+ 8g; (x), where each subsequent component sp«(x), for i > 1, is trained to model
the residual error left by the preceding estimators.

By combining both of these ideas—the lifted representation and the residual decomposition—
we arrive at the Lifted Residual Score Estimator, a flexible and powerful framework for accurate
score estimation.

4.1 Lifted Score Estimation

The score estimation frameworks in Section 2.2 estimate the score by minimizing the expected
(3-error By x[[|s(x) — sg(x)]|3]. We instead propose a new criterion

B )pioce) [[[8(31)8(362)T — 891 )89 (%2) T[] (4.1)

Rather than the standard squared distance in the Euclidean space, we lift the scores to
the space of their outer products and consider the squared Frobenius distance in the lifted
space; hence, we call it the lifted score estimation (LSE) objective. While the score matching
framework was originally proposed for training unnormalized parametric models, our goal is
to construct a good score estimator, and we thus use the term estimation instead of matching.
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4. Lifted Residual Score Estimation
4.1.1 Motivation: Matrix-Kernel Regression

This new criterion can be motivated from the matrix-kernel regression view, which was
adopted in the nonparametric score estimator (Zhou et al., 2020) discussed in Section 2.2.3.3.
For a matrix-valued kernel T'(x,x’) € RP*P let {¢;},>1 be an orthonormal basis for the set
of RP-valued square-integrable functions over X, i.e., its Mercer expansion (De Vito et al.,
2013, Theorem 3.4) is

(%, %) = > Nede(x) e (x)T.

Then, the order-L approximation of the target score function s(x) with respect to the
orthonormal basis is

L
s (x) 1= ) By [s(x') e (x)] e (),
=1
and the approximation error can be written as

Epi [[I8™ (%) = s(X) 3] = D Ep [8(x) T (%) Epoe) [3(x') e (x)]

£>L+1

= > Eppopae [00(x) T (x, %) ()],

>L+1
where we define the matrix-valued kernel
I*(x,x) = s(x)s(x')T € RP*P.

Hence, to minimize the approximation error one needs to choose I'*(x,x’) as a choice for
['(x,x’), so that the eigenbasis is aligned with I'*(x,x’). Since the kernel I'*(x, x’) has rank
1 by definition, we can learn a score model sy(x) by considering the rank-1 approximation
error, i.e.,

Epypx |7 (3%, %) — s(x)80(x) [,

which is the lifted score estimation objective.

4.1.2 The Lifted Objective Function

The criterion in Eq. (4.1) cannot be implemented as is due to the presence of the unkown
ground truth score. Below we explain how to derive a practical objective that only depends
on the estimator sy and samples from the data distribution. We consider estimating the score
with lifting, by minimizing the LSE objective

Lise(s;sy) = %Epm)p(x?) Is(e1)s(x2)" — sg(3¢1)s0(x2) "7 — HS(X1)S(X2)TH%]
= —(Epo [sT(x)56(x)])” + %(me)HISe(X)II%DQ- (4.2)
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4.1. Lifted Score Estimation

Compare this to the original SM loss in Eq. (2.2). Here, the term E,[sT(x)sp(x)] can
be computed using integration by parts —IE,u)[tr(Jxs¢(x))] or with Hutchinson’s trick (i.e.,
slicing) as —E,x)prv)[VTIxso(x)Vv]. If we deal with a noisy distribution convolved with a
Gaussian as in diffusion models, then this cross term can be computed even more efficiently
using the DSM trick, as we will show later in this chapter.

4.1.3 Resolving Sign Ambiguity

Note that unlike the SM objective, an optimal sy(x) for Eq. (4.1) would be proportional
to the score s(x), but with a potential sign flip. That is, the LSE objective is invariant to
scaling with a {£1}-valued function x: X — {£1}, since for §p(x) := k(x)sy(x), we have

B p eyt 18 (61)8(x2) T — 8 (x1)80 (%2) T[] = B o) [[18(x1)8(x2) T — s0(x1) 30 (%2) | -

This implies that the sign information is absent for each point x in the LSE framework. To
resolve this ambiguity we postulate two solutions:

1. Track signs: In practice, we find that it suffices to keep track of a single sign k € {1}
to form a score model, i.e., ksy(x) =~ s(x). An intuition behind the success of this simple
heuristic can be given as follows. Suppose that both the underlying score function
and a parametric model sp(x) we assume are sufficiently smooth over x. Then, a sign
correction function k(x) must not change the sign too abruptly as x varies, as otherwise
it will violate the smoothness. We empirically find that using a single-sign estimator
ko = sgn(Epx)[s(x)Tsp(x)]) works surprisingly well.

2. Unlifted regularization: Since SM (and its practical variants such as SSM or DSM)
does not have such sign ambiguity, we also propose another solution that minimizes the
a combination of the lifted loss and the base SM loss.

L& (sy89) == Lise(s;sg) + ALsm(s;sg), (4.3)

where A > 0 is some constant weight factor. In the absence of a sign estimator, the SM
regularizer helps mitigate frequent transitions between the two global minima of the
lifted loss at the expense of enforcing adherence to the unlifted loss landscape as well.

Through experiments on image datasets, we found that tracking the signs worked better in
practice for lifted score estimation; see Section 4.5.1. We thus describe our proposed method
with this strategy by default.

4.1.4 Analysis of Optimization Landscape

To understand the practical effect of lifting we studied the underlying optimization landscape
both theoretically via a closed form population objective and empirically via simulation.
First, consider a Gaussian distribution p(x) = N(x;0,X) so that the underlying score

is s(x) = —X7'x. To reduce approximation error we assume a well specified score model
sg(x) = —Ox. Then the lifted score estimation objective is,
1
L(O) = E(tr(@Ep(x) [xxT]0T))? — (tr(0))>.

49



4. Lifted Residual Score Estimation
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Figure 4.1.: Population and empirical optimization landscape induced by DSM and LSE when
modeling the score of a 1D and 2D Gaussian distribution with a well-specific
model.

In the one dimensional setting this becomes

»ClD(9> = %(0’202)2 — 02,

where > = ¢. Both the population and empirical versions of this objective are plotted
in Figure 4.3a. Notice that the curvature of the DSM landscape is larger, while the LSE
landscape appears sharper. As a result, after sign correction and with a good initialization,
LSE might converge more quickly to the global minimum. However, due to the sharpness
of the landscape, selecting an appropriate learning rate is crucial to prevent overshooting
the minima. In this context, lifting helps to stabilize the solution, effectively resolving the
minima in the underlying landscape.

The example can be made slightly more challenging by considering the two dimensional
setting. We consider

_|Lr
- L 1]
. _ 1 —p 1 -6
1_ 1 1
for some p € (—1,1). Since X! = e [—p ! ], we set © = 5 {_0 1 } Then, the

Lop(0) := %(ﬁ(l —20p + «92)>2 — (ﬁy

Note that the global optimizer is * = p. Again, we plot both the population and empirical
version of this objective in Figure 4.3b. The empirical and population curves don’t coincide

as cleanly in this setting, but lifting still induces a landscape with sharp curvature that could
aid in accelerating convergence and resolving the solution.

LSE loss function becomes
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4.2. Iterative Residual Estimation
4.2 Iterative Residual Estimation

In practice, when estimating a score function using a parametric model such as a neural
network, there will very likely exist a residual error even with the best possible fit under a
criterion. This is especially true in modern applications, where the underlying distribution is
extremely high-dimensional and multimodal, such as distributions over images or text.

In such a realistic scenario (also known as model-misspecified case), it is natural to consider
learning the residual of the true score after the estimation procedure. For example, suppose
that we found the best score model sg: (x) under a criterion. Defining r")(x) := s(x) — sg; (x),
we can attempt to find the best model sg; (x)" that models this residual. Repeating this
procedure, we essentially learn the score by a decomposition

s(x) ~ spx(x) + 8¢5 (x) + ... +8p2 (X).

Such an additive decomposition is especially natural in the score function domain (i.e., gradient
of log probability), as it can be understood as a successive refinement of the underlying
distribution, e.g.,

L
Vi logp(x) ~ Z Vi log pe: (x).
i=1

Here, for the sake of motivation, we hypothetically suppose that sg:(x) = V log pg; (x) for
some density model py(x). From a practical point of view, the residual learning idea provides
a way to improve the quality of score estimation by systematically stacking a given base
parametric model.

Note that this idea does not assume a specific learning criterion in the subroutine, and
it can be paired with the standard SM-type objectives such as SSM and DSM. Somewhat
surprisingly we empirically show that the residual learning exhibits significant performance
boost with lifting, while the other pairings sometimes only exhibit marginal improvements.

4.3 Lifted Residual Score Estimation

We now combine the lifted objective with residual estimation to produce our proposed
framework called lifted residual score estimation which is depicted in Fig. 4.2.

We can extend LSE with residual learning. Let F = {sq: X — R” |0 € ©} denote a class
of parametric functions, e.g., a set of functions induced by a neural network architecture.
Defining r"(x) := s(x) to be the level-1 residual, we can find the best s"") € F that fits
rV(x), i.e.,

s .= arg Isrél}l Lise(r®;s).

Recall that s approximates r up to a sign flip. Thus, we first estimate the sign as
kM = sgn(Epm [t (x)Ts (x)]), and then define the approximation error as the level-2
residual 1 ;= r) — kMg,

'We note that despite the notation, the residual model does not estimate the score.
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4. Lifted Residual Score Estimation

forn=1,2,...,.N

. ™ . . )
Level 1 Level 1: Sign Update SignUpdate
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n B
™ s 1
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- b=1
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Figure 4.2.: Overview of the proposed lifted residual score estimation framework. At each
level an estimator is trained to predict the residual score estimation error. The
topmost level estimates the based score model using our proposed lifted score
estimation objective in Eq. (4.5).

Now, we can repeatedly apply this learning procedure by considering the residual as a new
object to be estimated. For example, for a given level-¢ residual r® for ¢ > 1, we define

s = arg m1}1 Lise(r?;s), (4.4)
sE

whereby the level-(¢ + 1) residual is

and £ 1= sgn(E,x) [r@(x)Ts®(x)]. For each ¢, the {~th LSE objective can be explicitly
written as

Lse(r0:5) = — (B KO Ts(]) + 5 By IsC03]) (45)

= — (B ls()7s(x)] — 3 OBy s (0)Ts(0)]) 4 5Bl

i=1

Note that the gradient with respect to s can be computed in an unbiased manner.
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4.4. Extension to Noisy Score Estimation

Algorithm 4.1 Lifted Score Estimation with Residual Learning

1: Initialize s(()l), . ,s(()L) e F.

2: forn=1,...,N do

3: Get minibatch samples D,, := {X,1, ..., X5}

4: for/=1,...,L do > Define the level-¢ residual
5: st « GradOpt(Sfﬁl, @Sg>1£LSE(r$f); Sfﬁl)) > Update the function at the level-¢
6: ri) s — Zf;% /{S)_lsg ) > Define the level-¢ residual
7 at) < Zszl r (an)Ts%) (xnp) > Estimate Epx [rg) (X)ng) (x)] w/ minibatch
8: AP EMAB(A&I, a%)) > Update the soft statistics
9: kY sgn(Ag)) > Update the sign

4.3.1 Practical Optimization Scheme

In practice, solving each level of the optimization problem in a sequential manner as above
will incur a O(L)-multiplicative computational overhead. A more efficient approach is to
emulate solving the series of the optimization problems simultaneously with minibatch sam-
ples; see Algorithm 4.1. Here, the gradient of each objective is estimated in an unbiased
manner with the given minibatch of size B, and GradOpt(s, @s) denotes any gradient-based
minimization algorithm. The idea is to simultaneously update each level-¢ model s() based
on the level-¢ objective, as if the models from earlier levels in the previous iterates were
perfect similar to joint nesting used in Section 3.3.1. For the sign estimates, we maintain
the soft statistics E,x)[r? (x)Ts)(x)] using an exponential moving average, which we denote
as EMAg(apast, new) = Bapast + (1 — )aney below. Ultimately, we construct the final score

model as 8" (x) =30, ksl (x).
Notation. Residual estimation with L modes (or models) is characterized by a base score

estimator sy along with L — 1 estimators for the residues. We use the shorthand LSE (L = k)
to denote the lifted residual score estimation method with & modes.

4.4 Extension to Noisy Score Estimation

We now extend the LSE objective function Eq. (4.2) for the marginal score estimation of
samples corrupted with additive noise. Let p(x,|x) denote a channel with noise standard
deviation o where x, := x+ o€, € N(0,Ip). We are interested in learning the marginal score

s(x5) = Vy, log p(x,) where p(x,) = [ p(x,|x)p(x)dx.

4.4.1 Lifted Denoising Score Estimation

Consider two such channels with parameters o; and oy respectively. For the ease of exposition,
assume o, = 09 = o such that p(x,,) = p(X,,) = p(X,). In the lifted space, the LSE objective
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4. Lifted Residual Score Estimation

can be used for score estimation,

Luse(s:50) E (B 50005005 )] + 5 By [50(%,) 7)) (4.6)
= Byt 50 )0 + 5 By lsoC) P (A7)

Note that Eq. (4.7) follows by Tweedie’s formula s(x,) = Epxx,)[s(X+|x)] (see Theorem 2.1),
which is the same computational trick exploited in DSM.

4.4.2 Lifted Residual Denoising Score Estimation

Again, let F denote a collection of parametric vector-valued functions. We apply residual
learning to improve the score estimate. For each ¢ > 1,

/-1

r(x,) =s(x,) — > £Vs(x,).
1

7

Here, we explicitly assume a dependence of the sign on the noise level o, as we will apply
the framework for learning noisy scores across multiple noise levels in our denoising diffusion
model experiments. Using the residual score estimation framework from Sec. 4.3, we can
directly apply the ¢-th residual LSE objective in Eq. (4.5),

/-1 ‘ ‘ 9
Luse ;) 1= = (Byugptue o500 107806)] = 3 KBy 50,75, )] )

=1

+ 3By [5G0, (4.9

where Eq. (4.8) again follows from Tweedie’s formula

4.5 Experiments

We now demonstrate how our proposed methods can be applied to training image generative
models. We first experimented with LSE for training diffusion generative models and then
experimented with implicit autoencoders. For more background on diffusion models please
refer to Section 2.3 and for additional background on implicit autoencoders please refer to
Section 3.4.1. We evaluated all methods in terms of sample quality and compared against
various score estimation baselines.

4.5.1 Training Diffusion Models

We evaluated our denoising score estimation methods by training the iDDPM (Nichol and
Dhariwal, 2021) and the EDM (Karras et al., 2022) diffusion model architectures on the
CIFAR-10 dataset (Krizhevsky et al., 2009).
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4.5. Experiments

Architecture Details. We implemented our methods on top of the authors’ codebase
such that their models and each level-£ model of the residual LSE model utilized the same
architecture. For example, this means that the baseline model defined by the authors and
LSE (L = 1) have the same network backbone and number of parameters. The only change
is the objective function itself. For the iDDPM architecture, we used a simple version of
the model that does not leverage any KL regularizers or learned noise schedule. Given this
base model, we seek to understand how much improvement our proposed ideas can bring
about. We keep the architecture of the EDM model untouched to study how lifting affects
the results of state-of-the-art diffusion models.

Training Details. We trained all iDDPM models for 500k iterations on the CIFAR-10
dataset with a batch size of 128. As we are interested in comparing LSE against DSM, we
used the “simple” version of the loss defined in (Nichol and Dhariwal, 2021), and didn’t
include the KL divergence regularization term or the learned noise variance schedule. We
also implemented a residual version (see Appendix 4.A). We trained all models with default
hyperparameters for unconditional CIFAR-10 used by the iDDPM authors on a single NVIDIA
3090 GPU. All LSE models use a EMA decay of 0.5 for sign estimation.

We compared the same set of models for our EDM experiments on CIFAR-10. All models
were trained for 400k iterations with a batch size of 512 distributed across 8 x NVIDIA V100
GPUs. The baseline EDM model uses the default hyperparameters provided by the authors
whereas the residual DSM and LSE models use a smaller learning rate of 0.0001. All LSE
models use a EMA decay of 0.5 for sign estimation.

Evaluation. We generated 50,000 samples with each model and measured the FID,
sFID (Nash et al., 2021) and Inception Score (IS) (Salimans et al., 2016). This was re-
peated thrice to account for stochasticity in the results and the best numbers are reported.
For the iDDPM models, we used the DDIM sampler (Song et al., 2021a) with 7" = 250
sampling steps as no significant gains in FID were attained for T > 250 steps per our
experiments and the results in (Nichol and Dhariwal, 2021). We generated 50,000 samples
with each model and computed the FID. We did this three times due to the stochasticity
of the sampling scheme and reported the best FID for each model. For the EDM models,
we used the default sampling noise schedule and the deterministic Heun 2" order sampler
(Ascher and Petzold, 1998) with 18 sampling steps or 35 function evaluations per sample.

4.5.1.1 Results

The results of our iDDPM experiments are presented in Table 4.1. The baseline is the iDDPM
model trained with DSM without any lifting or residual score estimation.

Effect of Lifting. The first observation is that LSE (L = 1) outperforms the baseline in
terms of both FID and sFID, demonstrating that optimization in the lifted space is a viable

alternative to standard DSM at no extra computational cost.

Effect of Residual Estimation. The results further validate that iterative residual model-
ing improves score estimation in both unlifted and lifted spaces. Notably, the residual variant
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4. Lifted Residual Score Estimation

Table 4.1.: FID, sFID, and Inception Score (IS) of different score estimation methods. DSM
(L = 2) corresponds to a residual version of DSM with two modes. The first row
DSM (L = 1) is the baseline based on the standard DSM technique. Best numbers
are highlighted in each category.

Method FID] sFID] ISt

DSM (L=1) 865 1092  9.08
LSE (L=1) 6.35 5.27  9.05

DSM (L=2) 4.53 4.64  9.06
LSE (L=2) 483 58  9.16

Ablation: Lifting w/ DSM regularization
LSE (L=1) 5.23 5.37 9.16
LSE (L=2) 5.23 4.62 9.08

of DSM achieves the best FID, while LSE also outperforms the baseline. While FID reflects
the global coherence of generated samples, sFID is more sensitive to local variations between
images. Overall, we observe that residual estimation does not significantly degrade sFID and,
in the case of DSM, can even lead to substantial improvements.

Choosing Between Lifting and Residual Estimation. The results indicate that both
lifting and residual estimation serve as effective strategies for improving a weak baseline
estimator. Notably, the non-residual (i.e., with L = 1) LSE objective incurs no additional
computational cost compared to DSM, whereas residual variants (i.e., with L = 2) double the
memory overhead. Thus, the choice between these approaches depends on the practitioner’s
resource constraints, with either method offering a viable path to improved performance.

Sample Diversity. We found that LSE enhances the diversity of generated images, as
evidenced by a higher Inception score. However, enabling residual estimation leads to a
decline in this score. While modeling the error reduces training loss, it may slightly impair
generalization, which we hypothesize as the underlying cause of this trend.

Ablation study. We conducted an ablation study on methods for mitigating the sign flip
issue. Specifically, we compared LSE with sign tracking to LSE with a regularizer, as described
in Section 4.1. Our findings suggest that explicitly tracking signs is more effective in practice,
likely because the regularizer constrains the optimization process, limiting exploration of the
lifted objective’s landscape.

Compared to our modified iDDPM experiments, the EDM architecture is an instance of
a state-of-the-art score estimator. Hence, it is not suprising that our results varied quite
marginally with residual estimation. We observed that the learned residuals were very nearly
zero everywhere suggesting that the base score estimator is excellently modeled in practice. As
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4.5. Experiments

Table 4.2.: FID, sFID and Inception Score (IS) of EDM trained with DSM and LSE for
L e {1,2}.

Method FID| sFID| ISt
DSM (L=1) 221 382 9.59

DSM (L=2) 225 383 9.6
LSE (L=1) 225 3.80 9.48
LSE (L=2) 225 384 952

shown in Table 4.2 we once again notice some trends with lower sFID with lifting suggesting
that the lifting helps in enforcing greater spatial diversity amongst samples. In general
the EDM score estimator is very powerful and we show that we can achieve comparable
performance with lifting as well.

4.5.2 Training Implicit Generative Models

We trained implicit VAEs and WAEs with our proposed score estimation method. We are
particularly interested in understanding the empirical performance of the lifted objective as
is and hence do not use the SSM regularized objective mentioned in Section 4.1.3 in this
setting. We compared LSE against various baselines in terms of sample quality on the CelebA
dataset (Liu et al., 2023) as evaluated by the FID.

Architecture details. We used the same experimental setup in Section 3.4. Detailed
network architecture and implementation details can be found in Appendix 4.B. We experi-
mented with L = 2 and L = 3 for all residual score models. All experiments used a latent
dimension size of D, = 32 and the number of channel maps was set to m = 64. As alluded to
in Section 4.1, for training WAEs, we found it sufficient to keep track of a single sign to form
the marginal score model for the latent variable z. Surprisingly, in the VAE setting, despite
learning the conditional score we observed that continuing to keep track of single sign that is
independent of x worked well in practice too.

Training details. We trained all models with a batch size of 128 for 400k iterations on 1x
NVIDIA 3090 GPU. All methods compared under a generative model class (i.e., VAE or
WAE) utilized the same encoder and decoder architectures. The only difference lies in the
score estimation algorithm.

Results. We quantified the sample quality by computing the FID on synthesized samples,
as reported in Table 4.3. Also reported is the average value of the ELBO or WAE objective.
The best results were obtained with LSE and its residual versions, where L = 3 and
L = 2 outperform all other VAE and WAE models respectively. Surprisingly, we noticed
that residual learning paired with lifted score estimation offers significant gains in FID
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4. Lifted Residual Score Estimation

Table 4.3.: FID and ELBO/WAE loss on the test set obtained using different score estimation
methods. L = 1 denotes the non-residual variant, and the residual variants of
SSM and LSE are denoted by the descriptors L € {2,3}, where L — 1 denotes the
number of residual errors that are modeled.

VAE WAE
FID, ELBOJ FID| WAE]

Guassian Posterior 52.61 4758 - -
Stein  91.06 4553 49.82 635
SSGE 95.06 4555 49.72 639

Method

SSM (L =1) 50.06 4678 4744 482
SSM (L =2) 50.21 4604  47.02 434
SSM (L =3) 49.74 4541 4627 352
LSE (L=1) 50.72 4721  46.46 433
LSE (L =2) 47.68 4531 44.36 497
LSE (L =3) 46.81 4711 4556 583

in comparison to residual SSM. In general, even the . = 1 version of LSE was on par
or outperformed SSM, demonstrating that optimization in the lifted space is empirically
beneficial for score estimation. We observed that the residual versions could sometimes lead
to a slight degradation in performance and training instability as we continue to increase L
beyond a limit, which was L = 3 in these experiments. We postulate that this is attributed
to the inability of the neural network to learn useful representations if the residuals are too
small and noisy. Synthesized samples from different models are included in Appendix 4.B.

4.6 Summary

We introduced a new score estimation framework built on two core ideas: lifting and residual
learning. The resulting method achieves competitive performance in generative modeling,
effectively improving over SM when used as a drop-in replacement. Our theoretical analysis
shows that LSE can enhance optimization by promoting faster convergence to the global
minimum, thanks to the sharper curvature induced by lifting. Empirically, LSE demonstrates
improved score approximation, suggesting it can reliably substitute conventional methods
such as SSM or DSM in practice.

4.7 Higher-Order Lifting*

We can generalize lifting to the space of tensor products by defining the lifted objective of
order m as,

Epx1)p(sca)ploc) [[18(X1) @ 8(%2) @ -+ @ 8(%im) — 89(%1) @ 8(%2) @ -+ @ 89(Xm) [ ]
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4.7. Higher-Order Lifting*
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Figure 4.3.: Population landscape induced by LSE of order m where m = 1,2,3,4,5. LSE
(m = 1) corresponds to SM and LSE (m = 2) corresponds to lifting in the space
of outer products. As the order increases the curvature at the global minima
becomes sharper.

where || - ||z« denotes an extension of the Frobenius norm to higher-order tensors. When
m = 2, this reduces to the LSE objective introduced earlier in this chapter.

While conceptually straightforward, this higher-order objective is computationally expensive
to evaluate directly. However, as with the original LSE formulation, we can leverage integration
by parts to derive a more tractable surrogate objective that depends only on the estimator sy
and samples from the data distribution.

L8 (5159) 1= — (B [8T(X)86 (x)])™ + %(me)[nse(xn@])m.
A noisy extension can be similarly derived by leveraging the DSM trick.

Returning to the analysis in Section 4.1.4, we define the order-m m LSE objectives for both
1D and 2D Gaussian examples. The corresponding population loss landscapes are shown
in Figure 4.3. Here, the m = 1 curve recovers SM, while m = 2 reflects lifting in the space
of outer products. As the order increases, the curvature of the landscape near the global
minima becomes progressively sharper.

This behavior suggests a potential practical advantage: higher-order lifting can lead to faster
convergence during optimization by inducing a sharper curvature around the global minima.
However, sharper minima also bring increased sensitivity to optimization hyperparameters,
potentially leading to instability or divergence if not tuned carefully.

Looking ahead, several promising directions remain. In particular, exploring the practical
trade-offs involved in higher-order lifting and how the effect of residual learning impacts
estimation quality with higher-orders of lifting are both valuable avenues for future research.
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Appendix

4.A Residual Sliced and Denoising Score Matching

In Sections 4.3 and 4.4 we introduced the residual version of LSE with slicing and the DSM
trick respectively. We can similarly define the residual score estimation procedure in the
original (unlifted) space for both SSM and DSM.

4.A.1 Residual Sliced Score Matching

Recall the exact SM objective which we redefine as follows,

Lom(s:50) = ~Eyog 500 50()] + 5 Byl )]

We can now extend this objective with residual learning and the slicing trick from SSM (see
Sec. 2.2.1). Let F = {sp: X — RP|0 € 0} denote a class of parametric functions and let
r(V(x) := s(x) be the level-1 residual. We seek to find the best st) € F that fits rV(x), i.e.,

(1) ._ : ).
st argrsréljr_}ﬁs,\/,(r ;S).

Up to this point we have just minimized the standard SM objective. Now, after obtaining
s we can define the approximation error as the level-2 residual r® := r(® —s(1). Then, we
can repeatedly apply this learning procedure by considering the residual as a new object to
be estimated. In general, for a given level-¢ residual ) for ¢ > 1, we define

0 — : (©).
S arg min Lsm(r'?;s).
Expanding out the objective,
1
Lsm(r;s) = —Ep0 1 () s ()] + 5B [[Is(x) 3]

= (B 500s(x)] — 3 By s (x)75(00)]) + 3Epco GO (49)

=1

where in Eq. (4.9) we use the slicing trick to compute the first term. We call this objective
with the slicing trick, the residual sliced score matching estimator and formally define it as,

Las(e:5) = — By W s0w] — 3 Eypols? (0700 ) + 3By 1))

Henceforth, we will refer to our SSM extension with ¢ — 1 residuals as SSM (L = /).
Algorithm 4.2 describes the overall procedure for residual SSM.
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4. Lifted Residual Score Estimation

Algorithm 4.2 Iterative Residual Sliced Score Matching

1: Initialize s(()l), . ,s(()L) e F.
2: forn=1,...,N do
3: Get each minibatch samples D,, := {Xp1, ..., X5}

4: for/=1,...,L do A
5 sy) — GradOpt(sfﬁl, V. ESSM(rSf); Sfﬁl)) > Update the function at the level-¢
n—1

6: ri) s — Zf;% st > Define the level-¢ residual

4.A.2 Residual Denoising Score Matching

Let p(x,|x) be a noisy channel. DSM learns the marginal score of noisy samples, s(x,) =
V, log p(x,) where p(x,) = [ p(x,|x)p(x)dx. Again, let F denote a collection of parametric
vector-valued functions. We can apply residual learning to improve the DSM score estimate.
For each ¢/ > 1,

r(x,) =s(x,) — Y s9(x,).
i=1
Using the residual score estimation framework introduced in the previous section, the /-th
residual DSM objective is,

Lpsw(r?;s)

(-1 5
= = (Batenter 55 050 135 060)] = 3 Byt 590675051+ Syt 505 P, (410)

where in Eq. (4.10) we use the DSM trick arising from Tweedie’s formula.
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4.B. Network Architecture and Additional Results
4.B Network Architecture and Additional Results

4.B.1 Network Architecture for Implicit Autoencoder Experiments

Generative Model

Name

Configuration

VAE

Implicit Encoder

5 X 5 conv; m maps; Swish
5 x 5 conv; 2m maps; Swish
5 x 5 conv; 4m maps; Swish
5 x 5 conv; 8m maps; Swish
512 Dense, Swish
D, Dense

WAE

Encoder

concat [x, Swish(Dense(€))] along channels
5 x 5 conv; 2m maps; Swish
5 x 5 conv; 4m maps; Swish
5 X 5 conv; 8m maps; Swish
512 Dense, Swish
D, Dense

VAE and WAE

Decoder

Dense, Swish
5 x 5 convT; 4m maps; Swish
5 x 5 convT; 2m maps; Swish
5 x 5 convT; 1m maps; Swish
5 x 5 convT; ¢ maps; Tanh

VAE

SSM Score (sg(z|x))
Res. SSM and LSE Models (sgg)(z\x))

concat [x, Swish(Dense(z))] along channels
5 X 5 conv; m maps; Swish
5 x 5 conv; 4m maps; Swish
5 x 5 conv; 8m maps; Swish
512 Dense, Swish
D, Dense

WAE

SSM Score (sg(z))
Res. SSM and LSE Models (Séé)(z))

Reshape(Swish(Dense(z))] to 1 channel
5 x 5 conv; m maps; Swish
5 x 5 conv; 4m maps; Swish
5 X 5 conv; 8m maps; Swish
512 Dense, Swish
D, Dense

Figure 4.4.: Implicit VAE and WAE architectures for CelebA. All convolutions and transposed

convolutions use a stride of 2 with appropriate padding dimensions to preserve
feature map spatial resolution.
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4. Lifted Residual Score Estimation
4.B.2 EDM Diffusion Architecture

The EDM preconditioning diffusion model utilizes a base DDPM++ architecture from (Song
et al., 2021b) for CIFAR-10 and the ADM architecture (Nichol and Dhariwal, 2021) for higher
resolution images such as ImageNet 64 x 64. The EDM model uses a noise schedule that is
defined as

log oy ~ N(—1.2,1.2%). (4.11)

Rather than regressing against the unscaled additive noise as in DSM, EDM regresses against
the original sample expressed in the following form,

2
O data O¢ * Odata

X = X; + 5 3 g,
V 04 + 0 data

0152 + U?lata
where 0qata = 0.5. To this end, EDM is parametrized with a denoising neural network,

(4.12)

2
O data O¢ * Odata

fo(xs;t) = Xt + go(xs; 1), (4.13)
0t2 + O_(?lata V 0152 + oﬁata
which is trained by minimizing
min By [weom (£)[[x — fo (x: ) | 7,
where oo
data
wep (1) 1= —me— (4.14)
0% + 0 data
This is equivalent to estimating g by minimizing the objective,
*CEDM(gG) = IEp(x)q(e)]o(t) [Hg Y (Xt; t) ”2] : (415)
Using Eq. (4.11) and Eq. (4.12) we can show that,
oi + 03 ata
R (4.16)
Ot0data Ot/ O} + O data
2 2
_ VOt Tdua o Xt. (4.17)

/2 2
Odata gy + 0 dataPdata

Therefore, in terms of Eq. (2.12) the EDM objective boils down to the standard denoising
diffusion objective with weighting function,

2 2
Oy + O data

w(t) = ~—= (4.18)
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4.B.3 CelebA - VAE
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Figure 4.5.: VAE samples on CelebA.
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4.B.4 CelebA - WAE
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Figure 4.6.: WAE samples on CelebA.
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Score-based Source Separation

Thus far, we have explored score estimation primarily through the lens of minimizing
approximation error and enhancing the downstream sample quality of generative models.
However, the applications of score estimation extend far beyond merely facilitating sampling.
In this chapter, we revisit the signal recovery problem from Chapter 1 and introduce a novel
algorithm designed to solve the pervasive challenge of single-channel source separation, a
fundamental problem in engineering. At the end of this chapter we describe how the proposed
framework can be extended to solve general inverse problems.

5.1 Single-Channel Source Separation

The problem of single-channel source separation (SCSS) arises in many different applications,
ranging from the cocktail party problem in the audio domain to interference mitigation in
the digital communications domain. Broadly speaking, the goal in SCSS is to decompose a
mixture

Yy = K1X1 + -+ kgXp +w e PP

into its K constituent components, {x;}X,,x; € XP. The scalars k1, ko, ... kg are mixing
coefficients that affect the relative levels at which the different constituent components mix
and w ~ N(0,Ip) is some background noise. In the first part of this chapter, we first consider
a mixture composed of two superimposed sources,

y =X+ Kn+w, (5.1)

where k € R, is the relative scaling coefficient between the two signals. We will term x as
the signal of interest (SOI) and n as the interference signal. For the time being, we also
assume no background noise or that the affect of the noise is captured by the interference
signal. This gives rise to the forward model,

y =X+ KN. (5.2)

To reiterate, in this context, the goal is to recover the SOI (and hence the interference) from
y. We will assume knowledge of x beforehand. This is a reasonable assumption to make as
an estimate of the relative noise level can be made by a simple detector or classifier.

Relationship to Signal Recovery Problem. Recall the mixture model in Eq. (1.1). In
this case, the forward operator is simply the identity matrix, and the noise is no longer
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5. Score-based Source Separation

necessarily modeled as Gaussian. Instead, it may represent a more complex, structured
interference signal for which a closed-form likelihood may not be available. In this chapter,
we continue to adopt a Bayesian perspective to tackle such inverse problems. We focus in
particular on the SCSS problem, which introduces additional structure that further refines
and specializes the underlying optimization framework. We will end the chapter with a
discussion on how the proposed framework can be leveraged for solving more general inverse
problems.

5.1.1 Prior Work

Prior art that uses deep learning for source separation problems has been well-studied in the
audio and image domain by leveraging domain-specific structures.

A popular framework for source separation is based on supervised learning. Given a dataset
of paired mixture and SOI pairs D = {(xV), yM), (x®,y®), ... (x™ y™)} supervised
learning methods or end-to-end methods learn a one-step separator f5(y) by solving,

min By, ey [lIx = f5(v)l13]- (5.3)

In fact, recent end-to-end methods in the audio domain leverage separability in the frequency
domain and use spectrogram masking techniques to separate sparse time-frequency represen-
tations of the audio instead (Chandna et al., 2017; Tzinis et al., 2020). Similarly, specialized
architectures have been developed for end-to-end source separation of digital communication
signals (Lancho et al., 2024). These methods are mixture specific and do not translate well
to other sources with different joint statistics.

Another class of methods leverage structural priors to introduce inductive biases in the
solution as discussed in Section 1.1.1. For example, in the visual domain, natural images may
be separable by exploiting local features and “smoothness” assumptions in the color space
(Gandelsman et al., 2019; Zou et al., 2020). Rather than optimizing over the ambient space,
these methods restrict the search space to range of a neural network fy that captures inductive
biases via the architecture, e.g., convolutional architectures. Additionally, hand-crafted priors
such as the Tikhonov regularization or spectral regularization are used to enforce further
constraints.

More recent efforts have tried to solve this problem by leveraging independently trained
statistical priors using annealed Langevin dynamics sampling (Jayaram and Thickstun,
2020; Lutati et al., 2023; Mariani et al., 2023). However, these methods have demonstrated
shortcomings on discrete sources that exhibit intricate temporal structures with equiprobable
multimodal distributions (Frank and Ilse, 2020).

5.1.2 Motivation

To address the shortcomings of prior works we are motivated to develop data-driven methods
for single-channel source separation that leverage statistical priors for two main reasons—i)
Unknown system parameters, e.g., the underlying signal generation model may not be
available to create hand-crafted priors; and ii) Automation, facilitated by learning methods
to create plug-and-play priors for versatile use.
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5.2. Maximum a Posteriori Estimation for Source Separation

We additionally impose restrictions on access to paired training data samples (x,n,y)
during training. Our motivation for this restriction arises from the following consideration:
given n sources, the number of two-component source separation models leveraging joint-
statistics grows as O(n?). Any changes to the training data—even for a single source—would
require O(n) model updates. In contrast, solutions that leverage independently trained priors
over the sources need to update only a single model (i.e., O(1)). Additionally, these priors
can also be used to solve more generalized source-separation problems, e.g., with K > 2
components or with a different mixture model, without requiring any additional training.

Finally, recognizing the limitations when dealing with sources that exhibit underlying
discreteness, we are motivated to develop novel source separation algorithms that can also
address this challenge.

5.1.3 Finite Alphabet Signal Processing

Our focus on sources with underlying discrete structures is driven by practical considerations.
In many engineering systems, signals commonly exhibit continuous magnitudes. However, in
particular cases, these signals may possess discrete properties, leading to a finite (but possibly
large) number of possible realizations. Such signals are often expressed as,

o0

x(t) = Z & Gp(t — tp), (5.4)

p=—00

where ¢, € S are discrete symbols drawn from a finite set S C C (or R) and g,(-) is a
continuous filter that “carries” contributions from the symbols. For example, in optical
or RF communications, the symbols could correspond to complex-valued mappings of the
underlying bits (Lapidoth, 2017), while in the discrete tomography domain, the symbols
might correspond to measurements obtained from different materials with a finite number
of phases or absorption values (Gouillart et al., 2013). In this work, we will address the
challenges associated with finding the global optimum within the optimization landscape
formulated for separating a superposition of such discrete sources.

5.2 Maximum a Posteriori Estimation for Source Separation

Let x € X C CP and n € CP be two statistically independent complex-valued vector sources,
where X is a countable set of all realizations x. We assume that x has PMF P,, and we let
n be an arbitrary source (potentially discrete with some noise) with PDF p,. We assume
that the latter distributions are multimodal, where the probability is generally (close to) zero
except at the modes. Additionally, we seek to be robust to the challenging setting where the
distributions have multiple equiprobable modes, so as to develop novel methods that can
tackle the finite alphabet source separation problem. We emphasize that these assumptions
do not completely characterize the often complicated fine-grained statistical source structure,
and we therefore rely on generative models to learn such unknown structures from data.
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5. Score-based Source Separation
5.2.1 The Combinatorial Curse

Given y and assuming x is known, in order to separate the sources, it is sufficient to estimate
x since n = (y — x)/k. The MAP estimate of x is then given by,

X = argmax pyy(x|y). (5.5)

XEX s.t y=x+kKn

Using Bayes’ theorem, Eq. (5.5) can be equivalently expressed as,

argmax  pa(xly) _  argmax  pyu(y[x)R(x) (5.60)
XEX s.t y=x+kn XEX s.t y=x+kn
= argmin — log P (x) —log pa ((y — x)/5), (5.6b)
XEX

where the likelihood py«(y|x) = pn ((y — x) /x) under the constraint Eq. (5.2), and we convert
to negative log probabilities in Eq. (5.6b). Due to the underlying discreteness of x, and
the potential underlying discreteness of n as well, the objective function in Eq. (5.6b) is
not differentiable. Hence, in its current form, gradient-based techniques cannot be used
to solve this problem, and we must instead resort to combinatorial methods, which are
computationally infeasible even for moderate dimension size D.

5.3 Proposed Method: a-RGS

To overcome the computational complexity of combinatorial-based methods, our goal is to
develop new gradient-based SCSS solutions that leverage diffusion models trained on discrete
sources. To this end, we propose to use multiple levels of Gaussian smoothing with an
extended MAP framework with an a-posterior, such that the optimization landscape of the
resulting objective function is smoothened.

5.3.1 The Smoothing Model and a-posterior Generalized Bayes’

5.3.1.1 Surrogate Distribution

One can almost perfectly approximate Py (in some well-defined sense) with the surrogate
distribution py , where X = x + g, for €, ~ N(0,02I), 0, — 0. While now theoretically
amenable to optimization via gradient descent, the sharp modes, which constitute numerical
pitfalls, often cause gradient-based methods to get stuck in local extrema.

5.3.1.2 Gaussian Smoothing Model

To avoid getting trapped in local minima we choose to regularize the underlying landscape
further. Inspired by diffusion models we can adopt a variance-exploding smoothing model,
with adjustable noise levels (see Section 2.3). Let there be a monotonic noise variance schedule
such that o, > o, for 0 < s < r < 1. Define the “smoothened sources” as

Xy(X) 1= X + 04€,, (5.7a)
n,(X,y) = (y — X) /k + ou€pn, (5.7b)
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where t,u ~ Uni([0,1]) and €, €, ~ N(0,Ip). Observe that x; and n,—the continuous-
valued proxies for x and n, respectively—have PDF's rather than PMFs, and in particular,
their PDF's have infinite support, and they are differentiable. More importantly, a direct
consequence is that it smoothens the optimization landscape and helps in preventing gradient-
based algorithms from getting stuck at spurious local minima.

5.3.1.3 Generalized Bayes’ with an a-posterior

We found it useful to replace the likelihood in Eq. (5.6a) with a distribution proportional to
Pyx(¥|x)®, a > 1. Intuitively, under the constraint Eq. (5.2), this sharpens the distribution
of n and gives a higher weight to the modes of p, relative to the natural weighting that arises
from the MAP criterion. This is beneficial, for example, when p, is more complicated and
has many more modes than P,.

This aforementioned reweighting has been used as an implementation trick in diffusion
sampling with classifier conditioning (Dhariwal and Nichol, 2021), but we recognize this as
MAP estimation with an a-posterior which is expressed through the generalized Bayes’ rule
(Griinwald, 2012; Holmes and Walker, 2017; Perrotta, 2020; Zhang, 2003) as,

Puy(X[y5 ) o pyu(y %) Bi(x) - (5.8)
~ 4 ~ s N~
a-posterior tempered likelihood prior

In practice, using an a-posterior has demonstrated increased learning speeds (Holmes and
Walker, 2017; Perrotta, 2020) and could potentially help in resolving model mismatch arising
from the use of approximate densities or scores (rather than exact ones) during optimization
via gradient descent.

5.3.2 Single Noise Level Estimation Loss

Let X(0) = 0 be our estimate of x.! Motivated by the form in Eq. (5.6b), we generalize
using the smoothing Eq. (5.7a)-Eq. (5.7b) in conjunction with the a-posterior to define a
new single noise level estimation loss,

L:.(0) == —logpy, (x¢(0)) — alogpy, (n, (0,y)) . (5.9)

While departing from the original MAP Eq. (5.6b), the newly-defined approximated loss
Eq. (5.9) thereof facilitates gradient-based methods, which is key to our solution approach.
Particularly, by varying the level of smoothing, Eq. (5.9) is more easily explored in regions
between the modes via gradient descent.

5.3.3 Estimation Rule Across Multiple Noise Levels

Intuitively, larger noise variances allow us to move between modes during gradient descent.
In contrast, at lower noise levels the modes are sharper, which is beneficial in resolving the

1Owing to the continuous nature of the optimization landscape, @ is in fact an estimate of X (see Sec-
tion 5.3.1.1), and does not affect BER and MSE estimates significantly.
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Algorithm 5.1 Proposed Method: a-posterior with Randomized Gaussian Smoothing
(a-RGS)

1: function SEPARATION(y, k, N, {n;}1,", 9(0)) > N total steps, learning rate 7; at step i
2: for 1< 0,N —1do

3: t,u~Uni{1/T,2/T,..., 1}, €., €, ~N(0,1) > Sample random noise levels
4: Xy <0(i)> =09 + g€, > Smooth x at level ¢, Eq. (5.7a)
5: n, <0(i),y> = (y — 0(")> /K + ou€n > Smooth n at level u, Eq. (5.7b)
6: €, €, = €y, (Xt (9(i)> , t) , €pn (nu <0(i),y) ,u) > Compute scores, Eq. (2.8)
7 6" = 9" 1y, [% (€n —€n) — 5 (€ — ex)} > Subtract noise, Eq. (5.10)
8: return X = 0 0 = (y —X)/xk

solution, assuming the iterative procedure starts at the basin of attraction of the correct local
extremum point, or, alternatively, another “good” local extremum point. We propose a new
estimation rule that uses Eq. (5.9) across multiple noise levels. Randomizing over multiple
levels of Gaussian smoothing, our proposed gradient update asymptotically (in the number
of iterations) takes the form,

(8}
VGL:(G) = _Ep(t)q(ez) [Sxt (Xt (0))] + ;Ep(um(en) [Snu (nu (07 Y))]7

(. 4
v~

Ept)p(u)[VoLet,u(0)]

where ¢, u ~ Uni ([0, 1]), and the true score is defined as
Sx; (Xt (9)) = Vx logpxt (X) )
x=x¢(0)
and similarly for s,,.

Our proposed updates can be implemented using stochastic gradient descent as shown in
Algorithm 5.1. We use pre-trained diffusion models (see Section 2.3) to approximate the score
when deriving the analytical score is not possible. Using Tweedie’s formula (see Section 2.2.2),
we relate the learned score to the denoiser available from the diffusion model, and also use a
zero mean noise corrected estimate,

Ee, (€4, (x(0),1)] = Ee, [€5, (x:(0) 1) — €], (5.10)

in our updates as shown in Algorithm 5.1. The above rule is motivated to introduce numerical
stability and reduces the variance of the updates, since the diffusion models were trained
to minimize the squared value of the same error term as in Eq. (2.12). Furthermore, rather
than sampling timesteps in the continuous range we discretize the unit interval and sample
t,u ~ Uni({i/T}L,) for some integer T' > 0.

5.4 Characterization of «-RGS

In this section, we characterize the behavior of our objective function through a simple yet
intuitive example. We first present a sufficient condition for perfect signal separation in the
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Figure 5.1.: Top left: Two discrete sources, with infinitesimal additive noise, superimposed
to produce a joint distribution with 8 equiprobable modes. An observed mixture
y, imposes a linear constraint in this space. Top right: Extending vanilla MAP
(v = 1) to multiple noise levels still has a relatively large local minima. Bottom:
By using o = k2, we are able to accentuate the correct mode and smooth the
landscape even further. Colored curves correspond to Eq. (5.12) evaluated with
T=1andt=u.

context of discrete sources that follow the signal generation model in Eq. (5.4).

Proposition 5.1. Let x(t) and n(t) be two sources following Eq. (5.4) with underlying symbols
¢, and ¢, respectively. Assume that the symbols are obtained as,

cy=f ({uZ}ZL:J;p) and ¢, =h ({Ui}f;;p) : (5.11)

where f : U* — C and h : VI — C are mappings from a sequence of length L over the
discrete alphabets U and V respectively. If the mapping between the discrete representation
and the symbol representation of the sources is unique, perfect recovery is possible.

5.4.1 Convergence Analysis

We now argue that under such conditions, our method in Algorithm 5.1 asymptotically
approaches a local extremum corresponding to the following loss function,

L(0) = —Epyg(e.) [log pu, (%1 (8))] = aBpuyg(en) [10g Pn, (0 (0, )] (5.12)
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5. Score-based Source Separation

To see this, let z and n be two discrete sources with equiprobable modes at {—1,+1}
and {46/v20, £2/v20} respectively. Figure 5.1 shows the contours of the negative log joint
probability, with the sources augmented with an infinitesimally small amount of Gaussian
noise (see Section 5.3.1). An observed mixture y, adds a linear constraint in the (x, n) plane.
The goal of Algorithm 5.1 is to pick out the constraint-satisfying mode at (1, -2/v20). If o = 1,
as shown in the middle plot, and given a poor initialization 0 closer to —1, the gradients in
this region may prevent the estimate from escaping the suboptimal local minimum. If instead,
we use @ = % > 1 (k = 15.85), as shown in rightmost plot, the optimization landscape is
better conditioned in the same (absolute) neighborhood around € = —1 with the mode at +1
much more accentuated. Specifically, if the algorithm is now initialized at 0 = 1, after
enough iterations, gradient steps at larger noise levels would lead the solution towards the
direction of @ = 1. Thus, on average (black curve), after enough iterations, the solution will
approach +1. In constrast, Langevin-dynamics-based approaches without the a-posterior
weighting (Jayaram and Thickstun, 2020), if initialized poorly, could potentially get stuck at
local extrema due to sharpening of the optimizing landscape as the level of noise decreases.
The estimate of the discrete source x can be obtained by mapping the solution returned
by Algorithm 5.1 to the closest point (in the Euclidean sense) in the discrete alphabet X'.
This relies on the extremum 6" of Eq. (5.12) being sufficiently close to the desired mode of
Py (X|y; @), so that 8" can be mapped to the correct point in X with high probability. In the
context of the above example, a key observation in achieving this desired behavior is that the
mode at (1, -2/v20) is still prominent at large noise levels. Thus, randomizing across different
noise levels helps balance the exploration between modes and the resolution of the estimate.
This mainly requires a suitable noise level range (i.e., a lower bound on o), to ensure that
the modes are sufficiently resolved. In our experiments, we show that no additional tuning
is required and that the training noise levels from the pre-trained diffusion models can be
re-used, provided that the models have learned the source’s structure sufficiently well.

5.4.2 Mode Seeking Behavior

We now focus on a single term,

Lx(8) := =Epiyg(e.) log P, (%1 (6))]. (5.13)
where we recall the definition of the Gaussian smoothing model from Section 5.3.1,
X (0) = 0 + o€, €, ~N(0,Ip). (5.14)

As detailed in Section 5.3.1, when estimating a discrete source x, 8 = 6 + ¢, for e, ~
N(0,0%Ip), 0, — 0, is a continuous surrogate of the discrete estimate 8, useful for opti-
mization via gradient descent. The above loss only depends on the prior of the source, and
is in particular independent of the data. Therefore, this term serves (and can be viewed)
as a regularizer in our inference optimization problem. Although analysis of Eq. (5.13) is
(strictly speaking) not useful in order to make statements about Eq. (5.12), it is nevertheless
informative and insightful to show that the local extrema of Eq. (5.13) approach the modes
of the underlying source distribution Py, by solving for the stationary points,

Epyges) [Vo 10gps, (0 + 0v€,)] = 0 (5.15)
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where we have used Leibniz rule for differentiation under the integral. Through our examples
we will demonstrate the mode-approaching nature of the solutions to Eq. (5.15) thus estab-
lishing another interpretation of the asymptotic behavior of our method—two loss terms
whose stationary points are modes of the corresponding source distributions which work
together in unison to satisfy the constraints imposed by the observed mixture. We thereby
end up, with high probability, in the correct mass-points of the underlying distributions.

5.4.3 Multivariate Normal Sources

We first start with the analysis of a multivariate normal source and show that the the exact
mode is obtained as the local extremum of Eq. (5.13).

Proposition 5.2. Let x € RP be a multivariate normal source with mean p, and covariance
matriz . For the Gaussian smoothing model in Eq. (5.14), the score at timestep t is

th(x) logpxt (Xt (X)) = —E;tl (X + 0€, — l’l’xt) , (516)

My, = My and Xy, = Xy +afID.
Then, the minimizer 8° = argming L«(0) is equal to py, i.e., the mode of the source

distribution.

Proof. Since x is a continuous source, we perform optimization over a continuous space with
respect to @ € R%.2 Notice that,

Vo logpy, (0 + 01€,) = Vi, (o) log py, (x:(0)) (5.17a)
=3, (0 + 06, — py,) (5.17b)

Substituting Eq. (5.17b) in Eq. (5.15), we see that the minimizer must satisfy

Ep [B5, (0 = py,)] =0,

where we have used the fact that €, is a zero mean Gaussian realization. Since X is invertible
the minimizer is
*
0 = l“l’xt = l’l/X'
O

Thus, we have established that the local extremum of the Eq. (5.13) corresponds to the
mode in the multivariate Gaussian case.

5.4.4 Finite Alphabet Sources

We next analyze Eq. (5.13) in the context of finite alphabet sources with symbols drawn
from A as described in Section 5.1.3. We will once again leverage Tweedie’s formula (see
Section 2.2.2) and for completeness of the exposition, we prove it for the case of scalar random
variables below.

2In this continuous setting, a surrogate distribution is not needed and 8 = 6 in Eq. (5.14)
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10!

100 4

Figure 5.2.: Simulating Eq. (5.13) on a two alphabet source. The loss at individual timestamps
is visualized in addition to the total loss. The minima are at the modes of the
source distribution, —1 and +1. Larger noise levels allow for exploration between
modes and smaller noise levels sharpen the mode-seeking behavior.

Proposition 5.3. Let x be a scalar random variable representing a symbol drawn uniformly
from a finite alphabet set A C C. For the Gaussian smoothing model in Eq. (5.14) where, at
timestep t,

x () =z + 046,

the score s

Vi (2) 108 Py (¢ (7)) = 1 (—xt + Z - oi(a, sy(x )) ) (5.18)

U
t acA

where,
exp{— &Ly
qbt(a?xt(x)) = Z exp{ ‘:Bz )—a|2}' (519)
aeA = —

As an illustrative example, consider a double alphabet source with modes at —1 and +13.
To solve Eq. (5.15) for 8, we require the score of the source at different non-zero levels of
Gaussian smoothing. Note that since the source is discrete, the score is undefined if no
smoothing is applied. Though this smoothened score can be computed using Eq. (5.18), the
stationary points of Eq. (5.15) cannot be computed in closed-form. Hence, in order to study
the behavior of the solutions, we simulate Eq. (5.13), as shown in Figure 5.2. The colored
curves plot the loss for a single noise level, i.e., when T' = 1, while the black curve computes
the loss across multiple levels of smoothing, by computing an average over the single noise
level curves. It is evident from these curves, that while the minima might not lie at the
modes —1 and +1 for the single noise level curves, by averaging across multiple noise levels,
the solution to Eq. (5.15) approach the mode of the source distribution. As pointed out in
Section 5.4, an important caveat is that this behavior is only observed for a good choice of
the noise level range. Larger noise levels aid in moving between the modes and smaller noise
levels help resolving the solution. Only using larger noise levels, for example, can smoothen

3In practical engineering settings this is representative of a BPSK source, for example
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out the landscape to the point that the modes are no longer discernible, thus resulting in
erroneous estimates. We leverage the noise levels from pre-trained diffusion models that have
learned the statistical structure sufficiently well, thus avoiding cumbersome tuning of the
noise level range. Additional analysis for Gaussian mixture models is in Appendix 5.B.

5.5 Related Work

The proposed optimization framework is closely related to recent methods that use score
estimators to enhance sampling quality and guide iterative samplers, as outlined below.

5.5.1 BASIS Separation

Jayaram and Thickstun (2020) introduced the BASIS separation algorithm that leverages
the score from a generative model to perform source separation using annealed Langevin
dynamics. Unlike our method, the BASIS algorithm relies on a specially tuned noise schedule
for separation that is distinct from the diffusion model training noise schedule. We circumvent
the challenges associated with tuning such a schedule and instead re-use the pre-determined
training noise schedule in a randomized fashion. As such, the only parameter that we
tune is the learning rate. A comparison between our method and BASIS can be found in
Appendix 5.C.

5.5.2 Score Distillation Sampling

The proposed method can be viewed as an extension of the recently proposed Dreamfusion
architecture (Poole et al., 2022), which uses pre-trained image diffusion models as critics
to guide the generation of novel 3D visual content. Given a generated sample, g(0), Score
Distillation Sampling (SDS) updates the 3D object realization using gradient descent with a
gradient given by,

VioLss (0,x = g(0)) = Epnyq(e,) [0(t)(€4(9(0) + 01€:,1) — €:)] (5.20)

where w(t) is a scaling related to the noise variance. Our updates contain the same gradient
terms in Eq. (5.20) and hence it can be viewed as a multi-source extension of SDS, shedding
light on its use in applications to problems beyond sampling with interactions between
numerous individual priors.

5.6 Summary

In this chapter we introduced a-RGS, a method that extends MAP estimation with an a-
posterior across randomized levels of Gaussian smoothing, which stems from a new objective
function, whose extrema points correspond to the modes of the underlying discrete distribution
of interest. Our method relies only on pre-trained diffusion models as priors via a simple
randomized algorithm that does not require cumbersome tuning of a special annealing
schedule, as is done in existing Langevin-dynamics-based works. Through simple analytical
illustrations, we demonstrate the favorable mode-preserving nature of our objective.
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5.7 Extension to General Inverse Problems*

While this chapter focused on a specific instance of an inverse problem, the proposed
framework, based on MAP estimation, can be extended to address a broader class of inverse
problems. In the following sections, we first describe how to generalize our algorithm for
recovering a signal of interest under a more flexible likelihood formulation, and then present
a modified version of the algorithm suited for practical implementation.

5.7.1 Posterior Sampling

Recently, diffusion priors have emerged as a powerful tool for solving a wide range of inverse
problems, including MRI reconstruction (Chung and Ye, 2022; Song et al., 2022), image
restoration and colorization (Chung et al., 2022a,b; Kadkhodaie and Simoncelli, 2021; Kawar
et al., 2022; Song et al., 2021c), and more broadly, for developing general-purpose inversion
algorithms (Chung et al., 2023, 2022a; Rout et al., 2023; Song et al., 2023a). Most of these
works focus on linear inverse problems, similar to the one introduced in Section 1.1.1, where
the forward model is given by:

y = AX + n,

and the goal is to recover the signal-of-interest (SOI) by sampling from the posterior distri-
bution p(x|y).

To achieve this, these methods typically employ annealed Langevin dynamics or reverse
diffusion processes that progressively reduce noise to approximate posterior samples. The
noise n is often modeled as white Gaussian, which makes the likelihood model p(y|x) tractable
and known in closed form. For example, diffusion posterior sampling (DPS) (Chung et al.,
2022a) uses an annealed Langevin update rule, where the score of the posterior is decomposed
via Bayes’ rule. At each noise level t the update rule is,

(i+1) (i) , (1) , (1)
X, =X+ Voo logpg(x,7) + V o log pyp (Y[x7) + 2nv/€r. (5.21)
The score can be obtained using a pre-trained diffusion model similar to a-RGS, but the score
of the likelihood conditioned on the noisy SOI is not available in closed form. A common
approximation made is,

V0108 Dy (y [x17) % Vo log pyu(y | Elx|x{]), (5.22)

where the conditional expectation E[X|X§i)] is estimated using a pre-trained diffusion model
by leveraging Tweedie’s formula. When multiple plausible solutions to an inverse problem
are desired, posterior sampling methods provide a compelling framework by enabling the
generation of diverse samples from the posterior distribution. However, a key limitation of
these approaches is that they do not naturally yield a way to compute the MAP estimate of
the SOI. In the following section, we generalize the a-RGS framework for MAP estimation
within this setting.
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Algorithm 5.2 Proposed Method:a-RGS for Linear Inverse Problems

1: function SEPARATION(y, A, N, {n} X!, 0(0)) > N total steps, learning rate n; at step i
2: for 1< 0,N —1do

3: t,u~Uni{1/T,2/T,..., 1}, €., €, ~N(0,1I) > Sample random noise levels
4: Xy <0(i)> =09 + 1€y > Smooth x at level ¢ and u
5: Xy (9(“) = 0" + o,e,

6: €y, €1, = €4, (Xt (9(i)> : t) , €y (xu (0(1)) : u) > Compute scores, Eq. (2.8)
T 6y ally — AGx(6) - ) + 4 (& - )]

8: return X = 8V

5.7.2 Generalizing a-RGS

Using Bayes’ rule, the MAP estimation problem with an a-posterior takes the form,
arg min — log py(x) — alog py«(¥]x).

Unlike the SCSS setting, this formulation does not impose a hard mixture constraint. Instead,
we assume access to a valid likelihood model, and the underlying signals are not restricted to
possess discrete or combinatorial structure.

Again, let @ be the estimate of the SOI. By leveraging randomized levels of Gaussian
smoothing for the SOI across multiple different noise levels, we can define a MAP-like objective
to solve this problem,

Lin(0) = _Ep(t)q(ew)[logpm (x:(0))] — aEp(U)q(ew)[logpylxu (x4(0))]. (5.23)

The gradient of this objective can be approximated as,

VoLin () = —Epnyg(e.) 86 (x:(0))] = aBpuyg(e,) [Vo 1og py(y [E[x[x,(8)])]; (5.24)

where the first term involves the marginal score of the noisy signal, and the second term
uses the DPS approximation in Eq. (5.22). Contrary to the SCSS setting the gradient of
the likelihood requires backpropagating through the score model in practice, which could
potentially be expensive in practice. Specializing to linear inverse problems with AWGN
noise, the gradient update is,

Vo Lin(0) ~ —Ep(nyg(e,) 8% (%1(0))] + aBpugien) [y — AE[x|x.(0)]]5].

The overall algorithm is shown in Algorithm 5.2.
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Appendix

5.A Deferred Proofs

Proof of Proposition 5.3. We will use Eq. (2.8) to compute the score, for which the only
quantity we need to compute is the conditional expectation. Let x' := x. Since x is discrete,
P, is also a uniform distribution over the symbol set A; := {a|a € A}. By Bayes’ rule,

PX + o, = z|X =a|PX =a
Y oaea PIX + o, = x|x = a| P[x = a

—z=al| KB 1
_ P[%_ ] E

ZaeAP [Eﬁf = ?} ) ﬁ

PX = alxX + o6, = 2] =

le—al?

exp{—"7r-}
P e oxp{—=55}
= ¢(a, ).
Therefore, from Eq. (2.8),
1
V() 10g Py, (71 (7)) = p) <—l‘t () + Z@ “ e (a, (l’))>
¢ acA

5.B Gaussian Mixture Source Model

We also consider a scalar Gaussian mixture model (GMM) that can often model arbitrary
complicated scalar distributions. We derive the score for a 2-component GMM and then
generalize the result to an arbitrary K-component GMM.

Proposition 5.4. Consider a two-component scalar Gaussian mizture source,
pul) = AN (@ 11, 0%) + (1= NN (w512, 02), A€ (0,1).

Under the Gaussian smoothing model in FEq. (5.14),

V() 10g D, (74()) = m {A er(z(w)) <%zt0(?)

+ = Nala) (25|

o3 + o}
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where
cr(w(2)) = N(@e(); p, of + 07),
ca(we(w)) 1= N (o (2); pa, 03 + 07),
Z(xe(x)) == Aer(ze(x)) + (1 = N) caae(2)).

Proof. We need to compute the score of the following distribution,

pxt(xt(x)) = pX+Ut6(X + 016, = lCt(ZC)), (525)

Our goal, to this end, is to leverage Tweedie’s formula to compute the score, thereby requiring
an expression for the conditional expectation . Since x and €, are independent, Eq. (5.25)
can be written as a convolution between two distributions,

Px (@) = (P * Py, ) (X + €5, = 4(2)),
where
X :=x and €, := 0s6,. (5.26)
In order to compute the conditional expectation, we first show that,

px’—l—egt [x! (X/ + €5, = a:t(x) ’X/ = a/)px/ (X/ = a’)

1 {/\ ci(zy(2)) N (a; rinle) toim o1y )

Z(w(x)) ot +of oito}
osxy(z) + oty olos
1)\ L2 t tY2 5.27
+( )CQ(It(x))N <(l, O'% + O_tg ) 0_% + O_tg ) ( )

where
cr(z(2)) = N (zy(x); 1, 05 + 07),
(x)) := N (we(2); p2, 05 + 07),
() == Aer(ze(w)) + (1 = A) cale ().

We start by deriving the density functions for the random variables in Eq. (5.26). Since
the convolution between two Gaussians is a Gaussian,

co(x
4(

&u-

pe(a) = AN (a; g1, 07) + (1= X) N(a; pa, 03), (5.28)
De,, (’LU) = N(w; 0, 0t2)>
from which it follows, for example through the identities derived in (Bromiley, 2003, Sec 1)),

that
P (20(2)) = AN (2(2); 1, 07 + 07) + (1 = ) N (2(2); pia, 05 + 7).

We conclude the derivation of the conditional distribution by using Bayes’ rule,

Px’+eqy ¥ (X' + €, = 24(2) X = a)pe (X' = a)

T P X+ 6o = m(@) X = @)pe(x = @) da”

px’|x’+€at (X/ = CL|X, + EO't = It<l'))
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5.C. BASIS Separation
whereby simplifying the terms in the numerator further, we have
Pxre i (X + €0, = 2(2)[X = a) = pe,, (€6, = 2(2) — @) = N(a;2(w), 07). (5.29)

Finally, by following the Gaussian product identities in (Bromiley, 2003, Sec 1), between the
distribution in Eq. (5.29) and Eq. (5.28) we reach the result in Eq. (5.27).
Now we can compute the expectation as,

EX|X + €5, = z:(2)] = m l)xcl(xt(x)) (“19”;(1 )++Ut0tm)
(1= ) ex(() (“U( L ‘”‘)] |

Using Eq. 2.8 we can express the score as,

V() 10g P, (74(2)) = m {A er(z(w)) (%)

+ (1= \) ea(24(2)) (“2_—%(‘”)” .

2 2
o5 + 0}

We can now generalize the score to an arbitrary K-component GMM ..

Proposition 5.5. Consider a K-component Gaussian mixture source,

Z:)\J\/’x,ul,z Z)\—l

=1

For the Gaussian smoothing model in Eq. (5.14), the score at timestep t is,

Vet g pali) = S hesmte) (M),
where

ci(xi(x)) == N (zy(x); pi, 07 + 07),

) = Z Aici(zi(z))

Similar to the finite alphabet case, since a closed-form expression for the solution to
Eq. (5.15) cannot be obtained, we simulate Eq. (5.13) for a four-component GMM with two
large equiprobable modes and two smaller modes. As shown in the colored curves on the right
in Figure 5.3, we again notice similar behavior where the modes are sharper at lower noise
levels, with the sharpness decreasing at large noise levels. Hence, gradient-based methods
can leverage the randomly chosen larger noise levels to move between modes and use the
smaller noise levels to resolve the estimate. On average, the minima of the loss approach the
modes of the original GMM source, as shown by the black curve on the right in Figure 5.3.
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10! 1

100 J

Figure 5.3.: Top: A GMM source with two equiprobable modes at —1 and —2. Two smaller
modes are present at +2 and +4. Bottom: The minima of Eq. (5.13) lie
(approximately) at the modes of the source distribution (black curve). Colored
curves correspond to Eq. (5.13) evaluated with 7" = 1.

Algorithm 5.2 BASIS Separation (original, as proposed in (Jayaram and Thickstun, 2020))

1: function SEPARATION(y, k, N, {o?}L,, 1,b§CO) , 1/)510)) > Specially tuned noise schedule

{Ut}thl
2 fort < 1,7 do
3: ¢§ct) — 'l/)g(ct_l)a ¢£f) < Tb,(f_l), N < f(UtQ) > Learning rate 7,
4: for 1< 0,N —1do
5 €, €, ~ N(0,1)
6 €, €, = €py (;b;“, t) y €Epn (1#7(1'5), t) > Compute scores at noise level o,
f PO )~y (€for) —my (y — ¥ — mpff)) o} + V21es

~——

approx. score

8: P =) = (€nfor) —mr (y -l - fﬂ[’g)) [0} + v/ 2ien
9: return X = ¢, 1 = ¢
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5.C BASIS Separation

Similar to our method, BASIS (Jayaram and Thickstun, 2020) leverages pre-trained generative
models as statistical priors and does not rely on end-to-end (supervised) training with paired
data. The manner in which these priors are used for separation, however differs:

1. Soft constraint vs. hard constraint: In the context of our problem formulation, we
are interested in decomposing a mixture y = X + xn into its constituent components.
As described in Section 5.3 our proposed method recovers the components by extending
a MAP estimation rule with a hard constraint given by,

X = argmax pyy(x|y),
XEX s.t y=x+kn
where the resulting estimate of n is n = (y —X)/k. The result of imposing this constraint
is a MAP objective that leverages two priors but only requires optimization with a
single variable,

argmax pay(xly) _  argmax  pyul(y[x)P(x) (5.300)
XEX s.t y=x-+kKkn XEX s.t y=x+kn
= arg min — log P(x) — logpy ((y — x)/K) . (5.30b)
XEX

In contrast, BASIS strives to estimate the underlying components by sampling from
the posterior. In particular, they do not enforce a hard constraint during sampling and
instead assume a likelihood of the form

Py (ylx,n) = N (y;x + k0, 7°1) | (5.31)

which actually corresponds to an alternate mixture model with auxilliary noise w ~

N(0,~%I) such that,

Yy =X-+kKn+w. (5.32)
Thus, the estimates X P45 and n P58 are obtained by sampling from the posterior,
Py (%, mly) = pia® (y1x, 1) B (x)ps(n). (5.33)

Notice that sampling from this posterior requires computing two separate estimates
due to the soft constraint in Eq. (5.32).

2. Annealed Langevin dynamics vs. randomized levels of Gaussian smoothing:
The aforementioned BASIS estimates satisfy y = XBASS 4 xnBASIS only when v — 0 in
the soft constraint in Eq. (5.32) enforced via the likelihood term. As shown in Algorithm
5.2, the idea behind BASIS is to leverage annealed Langevin dynamics sampling to
sample from the posterior by slowly decreasing the value of vy towards zero by tuning a
specially chosen noise schedule. While generally a separate noise schedule is required
per prior, the authors suggest sharing the same schedule across both priors. Apart from
tuning the noise schedule, the learning rate schedule is another hyperparameter that
must also be tuned. In contrast, our algorithm leverages the existing noise schedule from
pre-trained diffusion models in a randomized fashion without any additional tuning.
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5. Score-based Source Separation

3. Optimization via sampling vs. optimization via gradient descent: Starting
with initializations 1*) and !” for the SOI and interference respectively, BASIS
refines the estimate such that zbgf) approximates a sample drawn from the distribution
of the smoothened source p,,. Langevin dynamics leverages the approximate score of
Dx,» 10 update the estimate by sampling from higher density regions. A similar update
is performed for the interference. The estimates are constrained to satisfy Eq. (5.32)
through the Gaussian likelihood.
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In this chapter, we present practical solutions for source separation of radio frequency
(RF) signals, focusing specifically on digital communication signals. With the proliferation
of intelligent wireless devices competing for limited spectrum resources, ensuring reliable
operation within a rapidly evolving heterogeneous wireless networking ecosystem has become
increasingly important. Interference from other sources operating in the same channel, e.g.,
5G waveforms or WiFi signals, can lead to deterioration in quality of service. To address
this challenge, we develop data-driven score-based SCSS methods grounded in the a-RGS
framework, which we show achieves substantial performance gains over both traditional and
modern approaches. These results highlight new opportunities for intelligent and effective
interference mitigation. We conclude the chapter with a broader discussion of alternative RF
source separation strategies that may be better suited to different system constraints.

6.1 Background on Digital Communication Signals

At a high level, digital communications deals with the transmission of bits by modulating a
so-called “carrier signal”. Groups of bits, from which the underlying discreteness of these
sources originates, are first mapped to symbols ¢, € C via the digital constellation—a mapping
between groups of bits and a finite set of complex-valued symbols. The constellation is chosen
(among other considerations) by the number of bits modulated simultaneously. Typically
used digital constellations (the mapping between bits and symbols) include binary phase
shift keying (BPSK) and quadrature phase shift keying (QPSK). Specific BPSK and QPSK
examples are depicted in Figure 6.1.

The symbols are subsequently aggregated to form a complex-valued continuous waveform.
The signal models introduced in Section 5.1.3 can be particularized to RF signals. One of
the simplest RF signals is a single-carrier signal modulated waveform, e.g., QPSK symbols,

which can be expressed as,
o0

x(t) = Z cpe 9(t — pTy). (6.1)

p=—00
The second form corresponds to multi-carrier signals, such as Orthogonal Frequency Division
Multiplexing (OFDM) signals, where multiple symbols are modulated in parallel,

L-1

Z cpu exp {j2mlt/L}. (6.2)

=—00 (=0
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6. RF Source Separation

Both types of signals can be grouped in a single family of signals represented as,

oo L-1

u(t) = Z Z cpu g(t — pTs, 0) exp{j2nlt/L}. (6.3)

p=—00 £=0

In the RF domain, g(-) is known as the pulse shaping filter and helps limit the signal’s
bandwidth (Heath Jr, 2017, Sec 4.4.3). As shown above, each symbol ¢,; is multiplied with a
pulse shaping function with different time offsets and a main lobe width T}, helping smoothen
the signal and remove high frequencies. In this work, we will make use of the root-raised
cosine (RRC) pulse shaping for our single-carrier QPSK SOI. On the other had, OFDM
signals do not use an explicit pulse shaping function (as shown in Eq. (6.2)), i.e., g(t,-)
corresponds to a rectangular function in Eq. (6.3).

Figure 6.2 illustrates a representative modulation pipeline. To recover the bits at the
receiver, one may adopt matched filtering (MF) (Lapidoth, 2017, Sec 5.8) before the estimation
of the underlying symbols, and thereafter decode them back to bits. For commonly used pulse
shaping functions, such as the root-raised cosine (RRC) shown in Figure 6.2, the matched
filter and pulse shaping filter coincide.

We use z(t) to represent the signal of interest (SOI) and x as the vector representation for
a collection of N consecutive samples thereof. Similarly, the interference is represented by
n(t) or n.

01 ! 00 !
® .1+‘ ° ‘e
0 1
s -1 i T i

[ ] ® o °
11 10

—1 -1 -1

(a) BPSK constellation. (b) QPSK constellation. (c) Effect of RRC filtering.

-1@11

(d) Effect of 45° phase.

Figure 6.1.: Discrete constellations for a BPSK and QPSK signal. Application of the RRC
filter in the time domain leads to interpolation between constellation point as
shown in (c). Phase offsets in the waveform domain can be corrected by looking
at the rotated constellation as in (d).
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Figure 6.2.: The single-carrier digital modulation pipeline with an intelligent decoder that
performs a pre-processing stage of source separation. Illustrated is an example
with a QPSK constellation and a root-raised cosine (RRC) pulse shaping function.

6.2 Interference Mitigation

Mitigating co-channel interference (interference from sources within the same channel) is
a challenging problem, especially in heterogeneous networks (Damnjanovic et al., 2011;
Khandekar et al., 2010; Xu et al., 2021). If the system parameters and signal generation
model are known ahead of time, one can leverage this knowledge to devise hand-crafted priors.
However, one often deals with interference from more complicated wireless sources, for which
the signal model is unknown. In such scenarios, data-driven methods that learn priors from
background recordings can be useful. We envision that our SCSS solution based on a-RGS
could help mitigate such interference prior to decoding the signal, as shown in the right hand
(receiver) side of Figure 6.2.

6.2.1 Classical RF Interference Mitigation Techniques

Two classical approaches for interference mitigation are matched filtering and linear minimum
mean squared estimation. We present a brief overview of these techniques as they will serve
as baselines in our experiments.

6.2.1.1 Matched Filtering

Matched filtering (MF) is a signal processing technique commonly used in the demodulation
of RF waveforms. It exploits knowledge about the signal waveform to enhance the detection
and recovery of the transmitted symbols/bits, and is optimal in the maximum-SNR sense for
signals contaminated with additive Gaussian noise.

The basic principle involves filtering the received sampled RF waveform with a known
reference waveform called the “matched filter”. The goal is to maximize the signal-to-
interference-plus-noise ratio (SINR) at the filtered output, which consequently minimizes the
error probability in the subsequent symbol detection when the noise is Gaussian.

Consider a baseband RRC-QPSK signal and suppose that we adopt a simple additive white
Gaussian noise (AWGN) channel model, thereby representing our received signal as

y(t) = Z cp Gux(t — pTs) + w(t)

= gi(t) % > ¢, 6(t — pTy) + w(t),

p

where ¢, are the symbols from a QPSK constellation, d(-) is the dirac delta fucnction, and
w(t) ~ N(0,03wen) is the additive noise in the observed signal, statistically independent
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6. RF Source Separation

of all {¢,}. Of particular interest in this formulation is the transmit pulse shaping function
gix(t), where we chose to use the RRC function.
At the receiver, we seek a receiver filter, g« (), such that the filtered and sampled output

yne(t) = gox(t) * gux(8) % D €0(t = pT3) + gux(t) ¥ w(t)

i=g(t) b

= Cn g +ch T.) + v[n] (6.4)

o e

-~

=Yv [n}

would maximize the output SINR. In other words, we are looking to maximize

Bl E [Jea 2] 9(0)
SR = o lnlP] ~ Bl o [9GT0) P + e | G P/

(where Gy (f) is the Fourier transform of ¢, ()) via an appropriate choice of g(t)—and thereby,
grx(t). This can be done by finding an upper bound on the SINR that reaches equality for
the appropriate filter choices. Ultimately, one such choice is g« (t) = g (—t)—termed as
the matched filter—that leads to a maximized SINR. In the case of an RRC pulse shaping
function (which is real and symmetric), the matched filter is also the same RRC function.
As part of the demodulation pipeline, the filtered output is sampled (as in Eq. (6.4)), and
then mapped to the closest symbol in a predefined constellation (in the Euclidean distance
sense). Finally, we can map these complex-valued symbols back to their corresponding bits
to recover the underlying information.

Demodulation with matched filtering is optimal for waveforms in the presence of additive
Gaussian noise. However, in our signal separation problem, we consider the presence of an
additive interference, which is not necessarily Gaussian. Thus, exploiting the non-Gaussian
characteristics of the interference would likely lead to enhanced decoding performance.

6.2.1.2 LMMSE Estimation
Recall that our observation model is
Y = X + KN,

where we assume x and n are zero-mean and that they are statistically independent. The
linear minimum mean square error (LMMSE) estimator is the estimator X = Wy ysgy, such
that
Wravse = argminE [[lx — Wy /3] . (6.5)
WeCTxT

In this case, the optimal linear transformation (in the sense of Eq. (6.5)) can be written as

WLMMSE - C C ' — me (Cmc + 'Lizcnn)il

Y “yy
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where C,, := E[xy!] corresponds to the cross-covariance between x and vy, Cyys Caz, Cpyy are
the auto-covariance of y, x and n respectively. The second equality is obtained by statistical
independence, thereby C,, = C,,, C,y = Cpp + K2Cpm.

In relevant literature, this may also be referred to as linear MMSE receivers (Tse and
Viswanath, 2005, Sec 8.3.3). Note that we aim to mitigate the effects of an additive interference
channel. For the purposes of this work, we use LMMSE as one of the baselines as a signal
separation (interference mitigation) method. Thereafter, we assess performance based on the
squared error between X with the ground truth x. To obtain the underlying bits, we perform
a standard matched filtering operation on the estimator X.

Note that the LMMSE estimator is optimal if the components were Gaussian. However, as
digital communication signals contain some underlying discreteness and undergo unknown
time-shifts, these signals are typically non-Gaussian (and often, even far from Gaussian).
Hence, better performance can generally be obtained through nonlinear methods.

6.2.2 Deep Learning for RF Systems

Recently deep learning methods have demonstrated the potential to reap significant gains
over handcrafted model-based methods in RF applications (Eldar et al., 2022; Oyedare et al.,
2022). Some works have studied the problem of symbol detection (Samuel et al., 2019;
Shlezinger et al., 2020a), where they assume that the channel is stationary. Other works, such
as DeepSIC (Shlezinger et al., 2020b), use deep learning for interference cancellation in the
multi-user setting within the same channel. In contrast, we deal with the more challenging
setting of non-stationary interference, thereby requiring efficient exploitation of intricate
temporal structures. While the latter works consider the superposition of independent and
identically distributed sources (same technology), we assume unknown additive interference
(cross technology), a hard problem to solve with naive decoding methods in the absence of
explicit prior knowledge about the interference. Our problem formulation is closer to recent
work in (Lee et al., 2022). However, they learn an end-to-end estimate of the signal from
paired data samples. We instead assume restricted access to joint data, with a focus on
capturing properties of the components through independent priors.

6.3 Experiments

We now detail the setup for training diffusion models on RF signals. We subsequently explain
how to use the learned score estimator to implement our RF source separation algorithm
based on the a-RGS framework (see Chapter 5).

6.3.1 RF SCSS Formulation

We are interested in recovering x, the signal of interest (SOI), from a mixture y = x + kn,
where n is assumed to be a co-channel interference with unknown system parameters. We
evaluate performance using two metrics—i) the mean squared error (MSE), that measures
the distortion between the estimated SOI and the ground truth; and ii) the bit error rate
(BER) of the decoded discrete representation, which is obtained from the estimated SOI by
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6. RF Source Separation

extracting the underlying bits. The latter measure is particular to digital communication
signals as it captures the fidelity of the estimated representation that is only partially reflected
in the MSE criterion.

6.3.2 Datasets

We trained diffusion models on different RF datasets —i) synthetic QPSK signals with RRC
pulse shaping, ii) synthetic OFDM signals (BPSK and QPSK) with structure similar to IEEE
802.11 WiF1i signals; and iii) signals corresponding to “CommSignal2” from the RF Challenge
(Lancho et al., 2024), which contains datasets of over-the-air recorded signals. All synthetic
datasets were created using the NVIDIA Sionna toolkit (Hoydis et al., 2022). All datasets
contain between 150k - 500k samples and we use a 90-10 train-validation split during training.

6.3.3 Diffusion Model Training

We adopted the Diffwave (Kong et al., 2021) architecture for our experiments, with a minor
changes (see Appendix 6.A) to accommodate the complex-valued nature of our signals. Our
models were trained in the waveform domain on inputs of length 2560 with the real and
imaginary components concatenated in the channel dimension. We trained unconditional
diffusion models and assumed no access to knowledge about the signal generation model. We
used noise standard deviation in the range (0.03,99.97) discretized into 50 levels. We trained
for 500k steps with early stopping on 2 x NVIDIA 3090 GPUs.

6.3.4 Source Separation Setup

We considered three different mixtures in our experiments, all using an RRC-QPSK signal
as the SOI x. The interference signal n was one of OFDM (BPSK), OFDM (QPSK) or a
windowed recording from the CommSignal2 dataset. Our proposed algorithm used o = >
and was initialized with the MF solution given the mixture y. Note that x can be equivalently
described as the signal to interference ratio (SIR := 1/x* := E, [||x||3] /E, [||xn]|3]). We as-
sumed that x was known' and used N = 20,000 with a cosine annealing learning rate schedule
(Loshchilov and Hutter, 2017). The OFDM mixtures used (Mmax, min) = (5e—3, le—6) and
the CommSignal2 mixture used (Mmax, Pmin) = (26—3,1le—6). Importantly, we re-used the
training noise levels from the diffusion models and randomized over all but the smallest noise
level. We tested performance across SIR levels ranging from —24 dB to —3 dB (“strong
interference” regime), by changing the value of x in the mixture. Each set of separation
experiments was conducted on a single NVIDIA V100 GPU.

6.3.5 Baselines

We compared our proposed method against baselines that also leverage independent statistical
or structural priors over the sources. The simplest baseline, which nevertheless is still

'Many communication systems have power constraints and equalization capabilities, and with the endowment
of such knowledge it is possible to estimate the signal to interference ratio (SIR) within reasonable margin.
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commonly used in most communication systems, is the matched filtering solution, which
treats the interference as white Gaussian noise. The linear minimum mean square error
(LMMSE) solution, a commonly used technique for signal estimation, is another baseline that
leverages (up to) second-order statistics of the underlying source distributions.

We also compared with the BASIS separation algorithm (see Section 5.5), which is the
closest learning-based method that resembles our problem formulation. Applying their
method as is yielded poor results, and hence we modified the original hyperparameters by
tuning the annealing schedule to the best of our abilities for a fair comparison.

We also implemented a baseline based on simulating the reverse diffusion process (Ho et al.,
2020) as a denoiser. Given a mixture y, we interpreted the SOI as (scaled) additive noise
on top of the interference n. Since the reverse diffusion process can be interpreted as an
iterative denoiser , we ran a small chain of reverse diffusion for 10 timesteps starting at a
noise standard deviation of 0.07 and ending with variance of 0.03, which was chosen based
on different trials. Similar ideas have been used in prior works involving inverse problems
for images (Kadkhodaie and Simoncelli, 2021; Kulikov et al., 2022). We note that it is
generally cumbersome to find the optimal reverse diffusion noise range and it might in fact
be dependent on the specific mixture’s SIR.

To study the fidelity of our learned score models, we derived the analytical score function
of the QPSK SOI in the symbol domain (i.e., before pulse shaping). We used this analytical
score as another comparison to demonstrate the performance of our method if the score was
known perfectly. This formulation is closer to a learning-based interference mitigation setting,
where we assume perfect knowledge about the SOI model, and rely on a learned interference
model. For more details please refer to Appendix 6.B.

6.3.6 Source Separation Results

Figures 6.3 and 6.4 show the complete source separation results for mixtures with OFDM
and Comm§Signal2 as interference, respectively. Our model that uses an analytical SOI
score for the SOI and a diffusion-based score for the interference generally performs the best
and outperforms all baselines. Furthermore, we show that using a learned SOI score still
outperforms all baselines in terms of BER, despite the slight degradation. The trained SOI
score models consistently outperform all methods at high SIR in terms of BER since the
SOI diffusion model was trained with RRC-QPSK samples as opposed to the approximations
made in implementing the analytical score.

Our method also outperforms baselines in terms of MSE for OFDM mixtures as shown in
Figure 6.3. The performance at low SIR in the context of Comm§Signal2 mixtures is not the
same. As shown in Figure 6.4, the large MSE at low SIRs suggest that there is background
noise present in the CommSignal2 sources that is amplified for large values of k, i.e., the
interference is actually of the form n 4+ w for some background noise w. We validated that
this was indeed the case, by visualizing samples in both the time-domain and frequency
domain using the RF challenge demo notebook?. As shown in Figure 6.5, we noticed segments
of lower magnitude at the start and end, which we believe to be background noise that is not
part of intended communication signal. During source separation, this presumably results in

Zhttps://github.com /RFChallenge/rfchallenge_singlechannel_starter /blob/main /notebook /Demo.ipynb
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Figure 6.3.: Comparing our method against various baselines on separating (top) RRC-

QPSK + OFDM (BPSK) mixtures and (bottom) RRC-QPSK + OFDM (QPSK)
mixtures. Our model that uses an analytical SOI score outperforms all baselines in
terms of BER. Reverse diffusion is competitive at low SIRs since the interference
dominates the mixture in this regime and hence iterative denoising to separate
the SOI is effective. The trained SOI diffusion models significantly outperform
all baselines at high SIR. The reason the analytical SOI performs slightly worse
is due to the approximations we make.
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Figure 6.4.: Comparing our method against various baselines on separating RRC-QPSK +

CommSignal2 mixtures. Our method significantly outperforms all baselines in
terms of BER. The large MSE at low SIRs suggests that there is background
noise present in the CommSignal2 source, which is amplified at lower SIR (large
k). We try to estimate the amount of noise and model it as additive Gaussian
noise. Accounting for this noise could presumably lead to a lower bound on the
BER, shown by dotted black line on the left.

a noisier estimate of the SOI in comparison to mixtures with no additional background noise.
We estimated the SNR to be 16.9 dB by averaging across multiple samples. The dotted black
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curve on the left of Figure 6.4 is a presumable lower bound on the BER by accounting for
the magnitude of the background noise and modeling it as additive white Gaussian noise.

Figure 6.

Sample CommSignal2 Frame Spectrogram of Sample CommSignal2 Frame
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5.: Time-domain and frequency-domain plots of a single frame from the CommSignal2
dataset. Left: In the time-domain we observe segments of lower magnitude
at the start and end, which we believe to be background noise. Right: In
the frequency-domain we observe the bandlimited communication signal with
spectrally flat features in the regions we identified as background noise.

Nevertheless, across all experiments, we demonstrate that our method sets a new state-of-
the-art for applications such as interference mitigation where the interference can be learned

from data recordings and the desired information can be decoded with knowledge of the SOI
demodulation pipeline.
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Figure 6.6.: Top: BER and MSE versus a/k? for different SIR levels. Evidently, a good

choice of «, on average, across different noise levels is o = x?>. Bottom: By
looking at individual SIRs we see that the minimum BER and MSE is achieved

when « increases with increasing x? (decreasing SIR), visualized using a log scale
on the x-axis.
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6.3.6.1 Choice of «

We numerically verifed that o = x? is a good choice of the a-posterior term, To this end, we
first found a suitable order of magnitude for o, by varying «/k? between 1072 and 10? across
different noise levels. As shown in the top row in Figure 6.6, on average, the minimum BER
and MSE is achieved when « = k2. We additionally validated that it is beneficial to adapt «
as the SIR changes by varying a and studying the BER and MSE curves at individual noise
levels. As shown in the bottom row of Figure 6.6, we observe that « should increase with 2
to achieve good results.

6.3.6.2 Comparison with Supervised Methods

We are interested in leveraging independently trained priors in our source separation setup.
Nevertheless, we compared against a supervised setup that learns to separate mixtures
end-to-end by training a UNet on paired data. We trained three supervised models based
on the recent work in (Lancho et al., 2024), using their open-sourced training code®. These
models are trained with an ¢y loss. As such, we should expect the MSE performance to be
better than our unsupervised approach, which is indeed the case across all the mixtures as
shown in Figure 6.7. However, we notice that our method, which uses an analytical SOI score,
is able to perform similarly to the UNet and even better in terms of BER for some SIRs,
especially in the OFDM interference setting. Furthermore, in the challenging low SIR (strong
interference regime) our method performs well, showing that our interference diffusion models
were able to learn the underlying statistical structures. Thus, if the mixture model changes
in the future we can re-use our priors whereas the supervised approached could require an
entire change to the architecture and additional training. We can potentially drive down the
BER in the CommSignal2 setting by modeling the background noise in these signals either
through a different mixture model or through additional priors.

6.3.6.3 Computation Time

The inference time is as of now slightly longer than BASIS. To separate a single mixture,
our method that uses N = 20,000 iterations takes 328 seconds on average, whereas BASIS
takes 284 seconds for the same number of iterations. Meanwhile, the UNet only requires one
forward pass through the model and can separate a mixture in less than one second.

6.4 Summary and Future Directions

Experiments on RF sources demonstrate that our approach achieves significantly improved
separation performance—yielding up to 95% gains in both BER and MSE compared to classical
and existing score-based SCSS methods. In the current problem setup, the background noise
in the CommSignal2 scenario is assumed to be entangled with the interference signal. However,
if a statistical model of the background noise (in the form of a known likelihood) is available,
the generalized extension of a-RGS, described in Section 5.7, can be applied to more precisely

3https://github.com /RFChallenge/SCSS_CSGaussian
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Figure 6.7.: Comparing our method against a supervised learning setup that trains a UNet
on paired data samples with an ¢ loss. We show that we are able to achieve
competitive BERs, and even outperform the supervised method at certain SIRs.
Our method is particularly competitive in the challenging strong interference
regime (low SIR), demonstrating the fidelity of our trained interference diffusion
models. The gap is larger for CommSignal2 mixtures as the supervised method
is presumably able to leverage knowledge of the joint statistics between the SOI
and interference to effectively deal with the background noise in the interference
signal.

isolate the sources while still leveraging independent priors over signals. This framework can
also be extended to handle mixtures with more than two component signals. Looking ahead,
an exciting direction for future work involves accelerating the algorithm to enable real-time
source separation.
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6. RF Source Separation
6.5 Real-Time Solutions*

Throughout this chapter, we primarily assumed restricted access to paired samples of the
SOI and their corresponding mixture signals. Our proposed solution leveraged powerful
diffusion-based priors to achieve source separation without relying on joint statistics. While
a-RGS demonstrated strong performance, consistently outperforming both classical and
learning-based baselines, its computational cost remains a major limitation—making real-
time deployment impractical in many scenarios. In contrast, supervised learning approaches,
given paired SOI-mixture recordings, offer compelling advantages in terms of speed. As noted
earlier, UNet-based models can separate a mixture signal in under a second. Although a-RGS
typically yields better separation quality, the ability to perform real-time inference makes
supervised models highly valuable in practical applications. In the following sections, we
explore how to build more efficient and faster solutions for real-time RF source separation.

6.5.1 WaveNet with Dilated Convolutions

Unlike standard UNet architectures used for image processing, the architecture adapted for
RF source separation in (Lancho et al., 2024) features an initial convolution layer with kernel
size of 101 to capture the effective correlation length of the both the SOI and the interference.
For example, this long kernel could capture long-scale temporal structures in OFDM signals
such as the cyclic prefix which could lead to significant performance gains. Inspired by this
we adapt the the DiffWave architecture for RF source separation in order to leverage its large
receptive field to capture long-range temporal structures. The main change from our diffusion
modeling experiments is that the architecture is trained to regress against the ground truth
SOI by minimizing an MSE loss, similar to the original WaveNet architecture that it is based
on Oord et al. (2016), and hence we call the resulting model WaveNet. More architectural
details can be found in Appendix 6.A.

Unlike the downsampling and upsampling networks used in UNets, WaveNet preserves
the temporal resolution at each hidden layer by leveraging dilated convolutions. The dilated
convolution can be interpreted as a “virtual” kernel with spacing between elements, enlarging
the effective receptive field of the convolution. For example, a dilated convolution with a
kernel width of 3 and a dilation of 2 has an effective receptive field of 5. Thus, rather than
employing a single large convolutional kernel, the WaveNet progressively grows the receptive
field of the network, thereby accurately modeling both local and global temporal interactions.
Unlike the UNet we found that the WaveNet also allowed for mixed precision training without
significant drop in performance, thereby allowing for more powerful and lightweight source
separation solutions.

Similar to the UNet model, we trained the WaveNet with an /5 loss. Formally, denoting
the WaveNet separator as fy : C” — CP and given a dataset of SOI-interference pairs (x,n),
the training objective is

min By opmpee 1% = f5(y)5, (6.6)

where y = x + xkn and p(k) is a distribution over the choice of SIR, which we assume to be
uniform over the range [—30, 0] dB in practice. In practice we compute empirical expectations
using a minibatch of samples.
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Figure 6.8.: Left: Real-time streaming operation of an autoregressive RF source separation
transformer. The current SOI token being decoded is shown in red. The
transformer leverages past mixture tokens shown in dark blue and previously
decoded SOI tokens. Right: An encoder-decoder transformer for RF source
separation.

6.5.2 Low-Latency Autoregressive Transformer

The UNet and WaveNet architectures operate by processing entire waveforms in parallel,
making them ideal for offline or batch processing. However, this design introduces significant
latency in streaming scenarios, where signal samples arrive sequentially. These models require
buffering large segments of the waveform before producing any output, which is impractical
for real-time applications. To address this limitation and enable low-latency source separation,
we introduce autoregressive models built on transformer architectures (Vaswani, 2017) that
can operate causally and efficiently in a streaming setup.

To facilitate causal processing, the incoming mixture waveform is divided into small,
overlapping windows—each spanning only one or two SOI symbols. Instead of working with
raw complex-valued samples, each window is projected into a compact vector embedding
using a simple linear tokenization module:

Cl(:l) = me(z) )

where y is the i’th mixture window, Wj, is a learned matrix and ci(fl) is the embedding or

tokenized representation of the mixture window. These overlapping tokens provide a smooth

temporal representation of the signal and are streamed and cached as new samples arrive.
These tokenized mixture representations are streamed and cached as they arrive. Concur-

101



6. RF Source Separation

rently, a transformer module (shown on the right of Figure 6.8) decodes the corresponding
SOI token (in red) for the current window, using attention mechanisms over both the cached
mixture tokens (in blue) and previously decoded SOI tokens. In our experiments an SOI
token is a just vectorized representation of the currently decoded SOI window.

The core operation of the transformer is multi-head attention, which computes a weighted
sum of value vectors based on the similarity between query and key vectors. Given a matrix
of input embeddings C;, and a matrix of reference embeddings C,.t, we define:

Q — WQCim K= WKCrefa V = WVCref

where Q is the matrix of queries, K is the matrix of keys and V is the matrix of values. The
output embeddings of the attention layer are obtained by taking each query embedding and
computing a weighted sum of the values based on the similarity between queries and keys,
ie.,

KT
Cout = softmax (Q ) V.
Vdy,

Here d}, is the dimensionality of the key embeddings and all matrices above are defined such
that the queries, keys and values have the same dimensionality. Typically the output from
the attention layer is adding back to the input embeddings C;, and then passed to an MLP
layer.

When C;, = C,, the mechanism is called self-attention; otherwise, it is referred to as cross-
attention. The encoder employs self-attention over the mixture tokens to model interactions
within the mixture signal, while the decoder combines self-attention with previously decoded
SOI tokens and cross-attention with the streamed in mixture tokens to perform source
separation.

Training is done using a ¢, loss, similar to WaveNet. However, the transformer offers
greater flexibility: its autoregressive structure naturally supports variable-length sequences
and real-time decoding. When efficiently implemented—e.g., using low-bit quantization and
high-throughput accelerators like NVIDIA H100s—the transformer can achieve real-time
operation at throughput exceeding 1 Mbps, all while maintaining competitive performance.

6.5.3 Results on Real-World Mixtures

We trained all models on signals of length 40,960 using 2 x A6000 GPUs. Unlike the
UNet, which required manual early stopping, the new architectures were trained with a
cosine annealing learning rate schedule. To address the data-hungry nature of transformers,
we applied a range of synthetic augmentations—including time shifts, phase shifts, and
Doppler shifts—to both the SOI and interference signals, enhancing model generalization.
The WaveNet model was designed with 128 hidden channels and 30 residual layers, while the
Transformer featured 14 encoder and decoder layers, each with a hidden dimension of 256.
All inference experiments were carried out on a single NVIDIA 3090 GPU.

As illustrated in Figure 6.9, these new architectures significantly outperform the UNet-
based solution, achieving substantial improvements through more sophisticated model design.
While WaveNet sets a new state-of-the-art in separation quality, the Transformer achieves
impressive results despite operating in a fully causal manner. With efficient implementation
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Figure 6.9.: MSE and BER plots for source separation of QPSK + CommSignal2 mixtures
using different supervised learning solutions.

using low-bit precision and deployment on high-end accelerators such as the NVIDIA H100,
the Transformer has the potential to reach decoding speeds exceeding 1 Mbps—well beyond
WaveNet’s capabilities. Notably, it achieves this while being approximately 25 times larger
than WaveNet, underscoring the promise of software-hardware co-design in enabling cutting-
edge real-time RF separation solutions.
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Appendix

6.A Diffusion Models for RF Signals

We trained diffusion models to learn the statistical structure inherent to digital RF signals.
We adopted an architecture based on an open-sourced implementation* of the Diff Wave
(Kong et al., 2021) diffusion model, initially developed for speech synthesis.

As illustrated in Fig. 6.10, Diff Wave employs R residual blocks (He et al., 2016) with
dilated convolutions (Oord et al., 2016), where the output of block ¢ — 1 serves as an input
to block 7, i € {0,..., R — 1}. The dilated convolutions assist in the learning of long range
temporal and periodic structures. The dilations first start small and successively get larger,
such that the dilation at block i is given by 2:™°4™ ywhere m is the dilation cycle length. For
example, if the dilation periodicity is m = 10, then in block ¢ = 9 the dilation is 512 and in
block 10 the dilation is reset to 1. This allows the network to efficiently tradeoff between
learning local and global temporal structures. All residual blocks use the same number of
channels, C'.

The output of each residual block is passed not only to the next block but also aggregated
into a unified feature representation. This aggregated feature is then processed by an MLP,
implemented as a 1 x 1 convolution, to produce the final waveform output. This intermediate
feature aggregation, known as a skip connection, helps retain low-level information that might

4https://github.com/lmnt-com/diffwave
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Figure 6.10.: DiffWave architecture for modeling RF signals.
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Table 6.1.: Hyperparameters used for training diffusion models.
QPSK  OFDM (BPSK) OFDM (QPSK) CommSignal2

Number of residual blocks (R) 30 30 30 30
Dilation cycle length (m) 10 10 10 10
Residual channels (C') 64 128 256 128
Random shift + phase rotation X v v v
Batch size 128 128 64 128
Learning rate Se—4 Se—4 be—4 le—4
Early stopping iteration 360,000 220,000 340, 000 90,000

otherwise be lost in deeper networks.

6.A.1 Architectural Modifications

Several changes were made in order to facilitate training with RF signals. First, since we
are dealing with complex-valued continuous waveforms, we trained on two channel signals
where the real and imaginary components of the RF signals are concatenated in the channel
dimension. Second, while the open-source implementation uses an ¢; loss for training, we
trained with an MSE (squared ¢5) loss to match the training objective in (Ho et al., 2020).
We monitored the validation MSE loss, and once the loss stops decreasing substantially, we
chose to stop training early. Lastly, we had to increase the channel dimension C' to learn more
complicated RF signals, e.g., OFDM (QPSK). We trained all our models on 2 x NVIDIA
3090 GPUs. Additionally, during data loading, we performed random time shifts and phase
rotations on the OFDM (BPSK), OFDM (QPSK) and CommSignal2 signals. Physically,
these simulate transmission impairments in RF systems. The hyperparameters that we used
for training each model are shown in Table 6.1.

6.A.2 Evaluation Metrics

In the image domain, metrics such as the Fréchet Inception Distance (FID) (Heusel et al.,
2017) can be used to assess the quality of generative models. However, such perceptual
metrics are less relevant to the digital communications domain. In the RF domain, the
fidelity is measured by the ability to extract the underlying transmitted bits. Hence, in the
context of our synthetic datasets, we probed generated samples and compared the estimated
received symbols with the underlying constellation. However, for real world signals such as
CommSignal2, for which we do not know the system parameters, we have no other means to
assess the fidelity apart from looking at time-domain structure. This is another motivation
for studying RF source separation, as it provides us with a framework to assess the quality of
the learned statistical priors.
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Figure 6.11.: Left: A ground truth RRC-QPSK time-domain waveform. Right: A sample
generated by our trained RRC-QPSK diffusion model. Evidently, the generated
waveform resembles the true one.

6.A.3 RRC-QPSK

We trained a diffusion model on the RRC-QPSK dataset. While a QPSK signal has four
distinct constellation points, application of the RRC filter results in interpolation between
points as shown in Figure 6.1c. Figure 6.11 shows an example of a ground truth RRC-QPSK
waveform on the left. On the right we show a RRC-QPSK sample generated by our diffusion
model. While it is hard to judge whether it has learned the underlying discrete structure,
visually, the waveform seems to have characteristics similar to the ground truth.
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Figure 6.12.: Samples generated from the diffusion model trained on RRC-QPSK samples.
The image on the left is underlying constellation of the realization generated
by the diffusion model. Notice that the RRC filtering results in interpolation
between the QPSK constellation points. After applying MF, the effects of pulse
shaping are reversed and the original QPSK constellation is recovered.

In Figure 6.12, we show that by probing generated samples for the underlying (interpolated)
symbols, we do indeed recover the constellation for an RRC-QPSK signal. Note that we can
do such probing since we know the parameters and signal generation model for an RRC-QPSK
signal. Furthermore, by performing MF and removing the effects of pulse shaping we are able
to recover the original QPSK constellation, thus demonstrating that the diffusion model has
indeed successfully learned the discrete constellation along with the pulse shaping function
from data samples.
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Figure 6.13.: Left: A complex-valued OFDM (BPSK) source augmented with a time shift of
8 samples and with a random phase rotation plotted in the time domain. In
the time domain, the discrete structure is not discernible and the time-domain
waveforms visually look like Gaussian noise. Right: Extracting the underlying
(rotated) symbols from the waveform on the left by demodulating the OFDM
signal using oracle knowledge about the FFT size, cyclic prefix, and time shift.
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Figure 6.14.: Top: Probing six generated samples from the OFDM (BPSK) diffusion model
recovers the underlying BPSK constellation after time synchronization. Bottom:
Probing six generated samples from the OFDM (QPSK) diffusion model recovers
the underlying BPSK constellation after time synchronization.

6.A.4 OFDM (BPSK and QPSK)

We trained two OFDM diffusion models, on OFDM (BPSK) and the OFDM (QPSK) dataset
of synthetic signals respectively . Figure 6.13, shows an example of an OFDM (BPSK)
signal from our dataset. On the left we plot the real and imaginary components of the
waveform. These components visually look like Gaussian noise and it is not evident that
there is actually inherent structure to these signals. The OFDM signals can be demodulated
using oracle knowledge about the FFT size and the cyclic prefix. Additionally, since the
signal undergoes a random time shift and phase rotation, the underlying (rotated) BPSK
constellation will only be visible when the time shift has been compensated for, i.e., the signal
has been time-synchronized, as shown on the right in Figure 6.13.

The top row of Figure 6.14 shows the recovered constellation for six generated OFDM
(BPSK) symbols and the bottom row shows the same for six generated OFDM (QPSK)
signals. Note that since there are some null symbols, i.e., unused subcarriers in the frequency
domain, there is an additional “constellation point” at the origin. In general the recovered
constellations are clean, except for a few symbols that lie slightly off the constellation. When
converting back to bits the symbols are mapped to the nearest constellation point.
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Figure 6.15.: Left: Ground truth CommSignal2 waveform from the dataset. Right: A
generated Comm§Signal2 waveform from the learned diffusion model.

6.A.5 CommSignal2

The CommSignal2 dataset was recorded over-the-air and hence, unlike the synthetic datasets,
we cannot probe it without knowledge of the true system parameters and signal generation
model, which is not provided in (Lancho et al., 2024). These complications serve as one of our
motivations to develop data-driven source separation models. In the real-world, CommSignal2
could interfere with an SOI such as a QPSK signal for which the signal generation model is
known. A learned prior for CommSignal2 could help mitigate such interference.

As shown in Figure 6.15, we observe that the generated CommSignal2 waveforms gener-
ally display similar global temporal structure to the ground truth waveforms. To further
demonstrate that our diffusion model has truly learned the statistical structure of the signal,
we carried out source separation experiments and demonstrate that leveraging this diffusion
model outperforms conventional and learning-based source separators.

6.B Analytical SOl Score

We used an RRC-QPSK signal as the SOI across all our source separation experiments.
As detailed in Section 5.4.4, the score for a smoothened QPSK source can be analytically
computed via Proposition 5.3, where it is more amenable to model and compute it in the
symbol space (i.e., as i.i.d. symbols). Nevertheless, for the problem of separating the SOI from
an interference source, we have to consider the components jointly in the time domain. Thus,
we relate the time-domain representation to the symbols via x = Ha, where H represents the
RRC filter matrix and a is a vector of symbols. To compute this analytical score, we smooth
the symbols via a Gaussian smoothing model at noise level corresponding to timestep ¢,

Xt = Hat = H(a+ O'tet).
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With this relation, we express the score of the smoothened source as,

vxz IOg Px, (Xt) =H- Vat IOg pat<at)

“H. (% <—at + 3 ace(a at)>> (6.7)

t acAK

Q

% (—xt +H Z a® ¢ (a HTxt)> . (6.8)

acAK

where ® represents element-wise product, ¢, is the softmax-like operator defined in Eq. (5.19)
that is applied element-wise here, and H' is the pseudo-inverse of H. Note that Eq. (6.7)
is obtained by applying Eq. (5.18) to a vector of i.i.d. smoothened QPSK symbols. In our
implementation, the estimate of these smoothened symbols a; is obtained by reversing the
RRC filter using H, as in Eq. (6.8).

On the other hand, our RRC-QPSK diffusion model is trained directly on the time-domain
waveform, and can be used directly to separate the SOI waveform from the mixture without
conversion to the symbol domain. This once again sheds light on the practicality of using
data-driven methods to circumvent otherwise computationally challenging statistical modeling
technical problems.
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Overview of One-Step Generative
Modeling Techniques

Data-driven engineering and scientific systems often depend on large volumes of data to
accurately model physical phenomena and calibrate systems for precise measurements in
downstream tasks. In data-scarce environments, the ability to generate synthetic data
becomes critical for system design and performance.

Consider, for instance, the SBI framework discussed in Section 1.1.2. In this approach,
samples of ground truth signals and corresponding measurements are generated via simulation.
A posterior sampler, typically implemented as a neural network, is then trained to invert the
simulator. Ideally, this sampler should be both fast and capable of providing real-time signal
recovery and uncertainty estimates.

However, in such settings, using diffusion models for sampling is often prohibitively
expensive. This challenge becomes even more pronounced in high-dimensional settings, where
each evaluation of the score function incurs a significant computational cost. For example,
generating a single low-resolution image can take several seconds on a modest GPU.

If the ultimate goal is to train a high-fidelity neural sampler, simulating the entire reverse
diffusion process becomes impractical for many real-world applications. As discussed in
Section 1.2, implicit models—such as generative adversarial networks (GANs) or implicit
autoencoders like those introduced in Chapter 4—offer a compelling alternative. These
models define a one-step generator, enabling fast and efficient sampling.

In this chapter, we present an overview of existing one-step generative models, with a focus
on the inherent strengths and weaknesses of different approaches.

7.1 Generative Adversarial Network

The most prominent approach in training implicit generative models is the generative
adversarial network (GAN) (Goodfellow et al., 2014). In its most standard and widely
used form, it alternates between the gradient steps of discriminator and generator training.
As shown in Figure 7.1, the generator gy : R? — RP is map between a tractable noise
distribution ¢(z), typically chosen to be a uniform noise distribution defined over a [0, 1]¢
or a standard multivariate normal distribution N(0,1;), and a generated distribution gs(x)
where x = gy(z).

In its original form!, the discriminator plays an adversarial game with the generator and

IThis is informally known as the “vanilla GAN”
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7. Overview of One-Step Generative Modeling Techniques

From p(x) or gg(x)?

Figure 7.1.: A GAN consists of a one-step generator and a discriminator that are trained in
alternating fashion.

given an input x, it is trained to predict with high confidence whether the sample is drawn
from the generated or data distribution by solving,

min — ) [log Dy (x)] = Eqy9[log(1 — Dy (x))]}-

In the non-parametric limit, the optimal discriminator for each @ is

p(x) 1

D*(x) = - ’
TR el T
where the density ratio is defined as r(x) := = ((xx)). In practice, the discriminator training is

implemented as
min By 59~ ()] + By sp(Co()]), (7.1)

where sp(y) := log(1+e€¥) denotes the softplus function and ¢, (x) models the log-density-ratio.
With a slight abuse of terminology we will also refer to ¢, (x) as the discriminator.

The generator objective is the opposite of the discriminator’s as it is trained to generate
samples that are indistinguishable from the true samples. Hence, to the train the generator
the discriminator loss is maximized,

max By [sp(—Ly (%))] 4 Eqy ) [sP (0 (x))]

or equivalently
min By, oo [—sp(fy(x))].

This is the so called saturating version of the GAN loss as it is empirically observed to result
in the gradient vanishing as training progresses. Instead, many successful GAN models adopt
the non-saturating version that results in the same optimal solution but is slightly more
stable in practice,

min By, oo [sp(—y(x))]
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This so-called adversarial training can be understood as minimizing the Jensen-Shannon
divergence (JSD) with the help of discriminator, via the variational characterization of JSD,
where the JSD is defines as

1 P+ q 1
Djsp(pllge) = §DKL (PH 5 9) + §DKL (QG

ptq
> 9). (7.2)

Despite the popularity of GANs, training them is challenging. Although various techniques
have been proposed to regularize the GAN objective—through alternatives to JSD (Arjovsky
et al., 2017; Mao et al., 2017; Nowozin et al., 2016), novel regularizers (Miyato et al., 2018),
and specialized network architectures (Brock et al., 2019; Karras et al., 2021; Sauer et al.,
2022)—the discriminator training remains unstable. This has sparked increasing interest in
developing new objectives for training generative models which we briefly discuss below.

7.2 Diffusion Distillation

The goal of diffusion distillation is to distill a teacher diffusion model into a student model
that can generate high-fidelity samples in few steps and ideally in a single step similar to
GANS.

The earliest works on distillation such as progressive distillation (Salimans and Ho, 2022)
train a student diffusion model with drastically reduced sampling budget to match the
performance of a teacher model that is simulated in reverse. For example, given a teacher
diffusion model parametrized as a denoiser f4 and a noisy sample x;, a “clean” target xé)k) is
constructed by running the teacher model for k steps in reverse. The student denoiser fj is
then trained by minimizing,

. k
min By upapio [w(t)fa(xi; £) — x|

More recently a class of new diffusion distillation techniques grounded in reverse KL divergence
(KLD) minimization have gained popularity. DiffInstruct (Luo et al., 2024a), DMD (Yin
et al., 2024b) and DMD2 (Yin et al., 2024a) all train a one-step generator gy mapping noise
z ~ N(0,Ip) to generated samples by minimizing Dkr,(gs||p). The gradient of this objective
is,

VoDxr(gsllp) = Eqz)[Vege(z)(Vx 10g go(x) — log p(X))|x=g, ()]

which depends on the difference between the scores of the generated samples evaluated with
score model of the fake samples (the fake score) and the data score (the true score). As we
did in Chapter 5, the score of a noisy distribution can be obtained from a diffusion model.
Hence, the aforementioned schemes minimize the divergence at multiple different noise levels
to obtain a gradient update that leverages the difference between scores of noisy distributions,

VoDRE(90]1p) = By [VoDXT (0.l p2)]-

Here the reverse KLD between the noisy distributions is

VHD?E(Qe,tht) = ]Eq(z)q(e) [Vggg(Z)<Sq9 (Xt) - sp(xt)) |X=g0(Z)]7 (7.3)

where s,(x;) = Vy, logp(x;) and sg, (x;) = Vx, log gs(x:).
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Figure 7.2.: Overview of reverse KlL-based distillation techniques. Top: To update the
generator, they compute the gradient of the reverse KLLD on noisy fake samples
with the fake score model using Eq. (7.3). Bottom: The fake score model is
updated by computing the score of the fake noisy samples.

7.2.1 Training and Practical Implementation

In practice, Eq. (7.3) is implemented using a minibatch of generated samples. Each sample in
the minibatch has a random noise level asociated with it. Thus, the scale of the gradients will
differ across noise levels. Assuming that the diffusion model was parametrized as a denoiser
(from which the score can be obtained using Tweedie’s formula in Eq. (2.8)) distillation
methods such as DMD scale the gradient and express it in terms of a pretrained denoiser f;
and a denoiser for the fake samples fy,

VoLomp(0) = Eq@yp(t)ace) [Wpmp (X, X, 1) Vogo(2) (£ (xi5 1) — £5(%451)) |x=go()),

where an adaptive weight is used to ensure that the scale of the gradient is roughly uniform
across noise levels, .

wDMD(Xt7X; t) : HX— fd)(xt;t)Hl. (74)
Training is performed in alternating fashion. As shown in Figure 7.2, the generator is updated
by computing the difference between scores with the true score coming from a pretrained
diffusion model and the fake score estimated from samples synthesized by the generator.
During generator training, the score models are kept frozen and their weights are not updated.
Similarly during fake score training the generator weights are frozen.

Distillation is generally a stable training routine and thus is very appealing in practice.
However, these techniques can still suffer pitfalls such as mode collapse, where the generator
learns a fixed subset of modes to sample from. To mitigate mode collapse and enhance sample
diversity, DMD employs an ODE-based regularizer by simulating the pretrained diffusion
model in reverse. This process generates noise-image pairs, which are then used to further
supervise the generator’s training. However, collecting this dataset becomes prohibitively
expensive for high-dimensional samples. To address this limitation, DMD2 introduces a
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fo(xs;8) fo(x151)

Figure 7.3.: A consistency function maps all points along the trajectory of the probability
flow ODE back to the origin.

GAN-based regularizer, which effectively minimizes the Jensen-Shannon divergence alongside
the reverse KLD, or a variant of the forward KLD when implemented in a non-saturating
manner.

Several methods build upon the divergence minimization framework by introducing regu-
larizers based on alternative statistical distance measures. For instance, Moment Matching
Distillation (MMD) (Salimans et al., 2024), Score Identity Distillation (SiD) (Zhou et al.,
2024), and Score Implicit Matching (SiM) (Luo et al., 2024b) align the fake score model with
the pretrained score model using a variant of the Fisher divergence:

Lpisner () = By cop(0ya(o)[w' (01 (x5 ) — sglfs (x5 )]]1%]-

Here sg stands for the stop gradient operator. Additionally, both SiD and SiM extend
this approach to generator training by minimizing the Fisher divergence, which requires a
computationally expensive gradient calculation through the entire score model. To address
this, they employ statistical approximations to make these gradient computations more
practical.

7.3 Consistency Models

Consistency models are a new class of generative models introduced by Song et al. (2023Db)
that learn a consistency function between all points along the trajectory of the probability
flow ODE such that they are mapped back to the origin as shown in Figure 7.3. Concisely,
given points along one such trajectory, x;,t € [e, 1], where x; ~ N(0,I), the consistency

function satisfies,
X ift=c¢
f(Xt, t) =
f(xs,5) se€lel]
Given the boundary condition at the origin, the consistency function can be parametrized using

a neural network similar to existing popular architectures such as EDM (see Section 4.B.2),
2

o gL —0c) -0
fo(xs,t) = da;a 5— X + (9 — %) Tams (x¢:1)
(Ut - 06) + Udata O'tZ + O-(Qiata
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7. Overview of One-Step Generative Modeling Techniques

Given a noisy sample x; = x + o€,€ ~ N(0,1), first a single step of the probability flow
ODE is simulated using the Euler sampler by running one step of sampling using Eq. (2.11),

Xs = X + (t - S)tvxt 1ng(xt)

This can be computed using either a pretrained score model or via a single sample Monte-
Carlo estimate. In the latter setting, it is important that the timesteps s and t are very close
to each other for the approximation to hold. In consistency distillation a pretrained score
model s, is available and a single sampling step along the PF-ODE is simulated as

x? = x; + (t — s)tsy(xs;t).
Then the consistency function is learned by minimizing

Len(9) = Eppaterpn [w(t)d(fo(xi: ), sglfo(x]_ait — At)])],

where d is some distance measure, w(t) is some positive weighting function and s = ¢ — At,
with At some fixed timestep difference. Song et al. (2023b) initially proposed using the
LPIPS distance but subsequent works (Geng et al., 2024; Song and Dhariwal, 2024) have
shown that similar performance can be achieved by using the ¢y distance or a pseudo-Huber
norm.

7.3.1 Consistency Training

Unlike distillation techniques, consistency models can also be trained from scratch. Assume
that s = t — 0t,0t — 0. Then, the sampling step can be approximated using Tweedie’s
formula,

X — X
X5 & Xy + (t— 3) !

= X + se.
Thus, the consistency function can now be learned by minimizing,
Lot (0) = Epeoqenm [wt)d(fo(x + te; t), sglfp(x + (¢t — ot)e; t — 6t)])],

Consistency distillation still lags behind distillation methods based on reverse KL minimization,
but consistency training often demonstrates more impressive results. However, consistency
training is still inherently unstable and requires careful design of both the noise schedule due
to limiting nature of ¢ and distance measure (Geng et al., 2024; Song and Dhariwal, 2024).
Stabilizing and making this objective simpler is the focus of a lot of current research in the
area.

7.4 Drawbacks and Qutlook

Table 7.1 provides an overview of the various one-step and score-based generative models
discussed in this chapter. Each method has its pros and cons. Both GANs and consistency
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7.4. Drawbacks and Outlook

Table 7.1.: Comparison of different generative modeling techniques capable of high-quality
sample generation.

. e . Training Require
Generative models Training idea Generation stability pretrained model?
GAN minimizing JSD, with discriminator one-step unstable N
Diffusion models training multi-noise-level denoisers via DSM multi-step stable N
Diffusion distillation (mostly) minimizing reverse KLD (in DMD) {one,few}-step  stable Y
Consistency distillation simulating trajectories of probability flow ODE  {one,few }-step uit@:]zflo N

Consistency training

training are attractive options for training a one-step generative model from scratch, but
they suffer from instabilities during training. Meanwhile schemes based on distillation are
stable but require access to a pre-trained diffusion model which could require several days or
weeks to train to optimality. Thus, bridging these different methods is of great interest and
in the next chapter we will develop a new framework for simple, stable anf efficient one-step
generative model training from scratch.
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Stable and Efficient Generative
Modeling with Score-of-Mixture
Training

In the last chapter we introduced several popular one-step generative modeling frameworks.
It was evident that each framework has its pros and cons but that in general fast one-step
sampling comes at a cost. It either comes with training instabilities or via constraints on
elaborate pre-training or access to a pre-trained model.

In this chapter, we tackle the problem of training high-quality one-step generative models
more directly, i.e., without simulating an iterative reverse diffusion process for sampling or
leveraging a pretrained diffusion model during training. Starting from first principles of
statistical divergence minimization, we show that a high-quality one-step generative model
can be trained from scratch in a stable manner, via the multi-noise-level DSM technique used
in diffusion models.

The proposed framework achieves the best of several worlds, thus addressing drawbacks of
existing one-step generative models: (1) a new, simple statistical divergence minimization
framework without probability paths of ODE (like GAN), (2) stable training using denoising
score matching (like diffusion models), (3) training from scratch without a pretrained diffusion
model (like consistency models), and (4) near state-of-the-art one-step image generative
performance (like GAN and consistency models). We also demonstrate that the proposed
method can be extended to distill from a pretrained diffusion model, and can achieve
performance similar to state-of-the-art methods for the same.

Finally, we show that the framework can be naturally extended to multi step generative
modeling, similar to consistency models, offering practitioners greater flexibility and control
over the generation process.

8.1 Score-of-Mixture Training

In this section, we introduce a new framework for generative modeling called Score-of-Mizture
Training (SMT). We describe how to efficiently train one-step generative models from scratch,
i.e.,, without a pretrained diffusion model. The key ingredient of this framework is distribution
matching using a new family of statistical divergences, whose gradient can be approximated
by estimating the score of mixture distributions of real and fake distributions, hence the
name Score of Mixture Training. We adopt the concept of multi-noise level learning from
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8. Stable and Efficient Generative Modeling with Score-of-Mixture Training

diffusion models and propose multi-divergence minimization for stable training.

8.1.1 Minimizing a-Skew Jensen—Shannon Divergences

The crux of the new framework lies in minimizing a class of statistical divergences between
p(x) and gp(x) defined as

a 1 1
Di3p (a9 p) = ~Drw(ao || ap + (1 = @)go) + 7D (p | ap + (1~ a)ap)

-«
for some a € (0, 1), which we call the a-skew Jensen-Shannon divergence (a-JSD) (Nielsen,
2010). This divergence belongs to f-divergences (Csiszar et al., 2004).

Interestingly, a-skew JSD naturally interpolates between the forward Kullback—Leibler
divergence (KLD) Dky(p || go) (when o — 0), the standard definition of JSD (when a = 3),
and the reverse KLD Dxp.(gs || p) (when o — 1). In contrast to the forward KLD and reverse
KLD, the a-skew JSD with a € (0, 1) is well-defined even when there is a support mismatch
in p and gy, which may be the case especially in the beginning of training.

Feature 1: Multi-Divergence Training. Hence, we propose to minimize a weighted sum
of the a-JSD’s for different a’s, as divergences with different o’s exploit different geometries
between two distributions. For example, it is known that minimizing the forward and reverse
KLD leads to mode-covering and mode-seeking behaviors, respectively, and we can enforce
better support matching behavior by considering the entire range of a.

To minimize this family of divergences in practice, we consider its gradient expression:

Proposition 8.1. Suppose that Ey,x)[Veloggo(x)] = 0." Then, we have

Vo Digh a0,) = <) [ Voa(2) (00(x) — 500() (8.1)

X=gp (ZJ

where we define the score of the mixture distribution
So.a(X) 1= Vxlog(ap(x) + (1 — a)ge(x)).

This proposition suggests that we can update the generator gy(z) using this gradient
expression, provided that we can estimate the score of the mixture distribution sg.,(x).

Feature 2: Amortized Score Model. To implement this idea, in this paper, we propose
to use an amortized score model (x, ) — sy(x;a), to approximate the score of mixture
Sg.o(x). Through our experiments we show that learning the scores of mixture over different
a’s using a single model is effective and helps training. In Section 8.1.3, we explain how we
can train the amortized score model (x, o) — s, (x; o) using samples from p(x) and gy(x).

Tt is a standard assumption in the literature (Hyvirinen, 2005), which holds under a mild regularity
assumption on the parametric model go(x) so that [ Vgge(x)dx = Vy [ go(x) dx.
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8.1. Score-of-Mixture Training
8.1.2 Learning with Multiple Noise Levels

To achieve stable training, we opt to minimize the divergence at different noise levels by
considering the convolved distributions, p; := p*x N (0, 0?1p) and gp := qo * N'(0,01p). This
idea is widely used in the existing distillation methods. We borrow the variance-exploding
Gaussian noising process notation from Karras et al. (2022) where 0; € [Omin, Omax)- As we
also integrate over different o’s, the final objective becomes

Lyen(0) = Ep(aypn Db (d.6, )], (8.2)

where we will prescribe the choice of p(«) in Section 8.1.5. Similar to Eq. (8.1), the gradient
of the divergence at noise level ¢ can be approximated via the amortized score as

VGDS%%)(Q@,t,pt) ~ 'yw(Q; a,t) 63
Sy (Xt 07 t) — sy(x ;O t
= Eqz)q(e) [Vgge(z) (X ) — Sy (X )

Y

« X=gg (z)i|

where the amortized score model sy (x;; o, t), which is conditioned on the noise level ¢, is an

estimate of sp.o +(x¢) := Vi, log(ap(x;)+(1—a)ge(x;)). We provide a practical implementation

of the amortized score model as a small modification of a diffusion model architecture in

Section 8.1.4. We remark in passing that this expression can be understood as a generalization

of the gradient update of Eq. (7.3) used in the existing reverse-KLD-based distillation schemes.
Finally, we can then approximate the generator gradient as

VoLeen(0) = Epayp(ey [V (05 v, )]

Importantly, similar to existing distillation methods, the gradient only involves the output of
the score model, but not its gradient. This is beneficial since such extra gradient information
requires expensive backpropagation through the score model to the generator (Zhou et al.,
2024).

8.1.3 Estimating Score of Mixture Distributions

Estimating the score of the mixture distribution turns out to be as simple as minimizing a
mixture of the score matching losses, as stated in the following proposition:

Proposition 8.2. For any a € [0, 1], the minimizer of the objective function

L5 a) = a By [lsp(x;a) —s,(x)||°]
+(1 = @) By [lI50(x5 ) = 5, (x) ] (8.4)
satisfies Sy« (X; ) = Sg.q(X).

Since we train with multiple noise levels, we are interested in the marginal score of
x; = X + 016, € ~ N(0,I) at some noise level o;. We can use denoising score matching (see
Eq. (2.6)) to define an equivalent sample-only objective to learn the score using Tweedie’s
formula, as stated in the following proposition:
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8. Stable and Efficient Generative Modeling with Score-of-Mixture Training

Proposition 8.3. Let « € [0, 1] be fized and o be some fixed noise level. Then, the minimizer
of the objective function

‘Cscore(w; a, t) = OéEp(x)q(E)[st(Xt; «, t) + G/Ut”Q]
+ (1= @) Egy g sy (x15 2, ) + €/ay]?]. (8.5)

satisfies

S¢=~< (Xta a, t) = S@;a,t (Xt) .
Hence, to approximate sy, +(x) using the amortized score model sy, (x; o, t), we can minimize

['score (w) = IEp(oz)p(t) [‘Cscore<w; Q, t)] .

In practice, we parametrize the score model in the form of a denoiser and reconstruct the
score from the denoiser output via Tweedie’s formula similar to diffusion models (see Eq. 2.8).

Feature 3: Leveraging Real and Fake Samples via Amortized Score Estimation.
We remark that our score learning objective seamlessly utilizes both real and fake samples
throughout the training, helping the generator better generalize. This is in contrast to some
existing diffusion distillation methods, which introduce expensive regularizers to integrate
real samples, or backpropagate through the pretrained score model (Salimans et al., 2024;
Yin et al., 2024a,b).

8.1.4 Practical Design of Amortized Score Network

With an additional conditioning scheme to embed auxiliary information about « in addition
to the noise level o;, any existing diffusion model backbone can be used to parameterize
the amortized score network sy (x; a, t). Here, we describe how we can modify the popular
UNet-based score architectures (Karras et al., 2022; Nichol and Dhariwal, 2021; Song et al.,
2020) with minimal modifications.

First, drawing from the noise embedding sensitivity analysis by Song and Dhariwal (2024),
we opt for a Fourier embedding c, with a default scale of 16. This choice ensures that the
embedding is sufficiently sensitive to fluctuations in «, particularly during the early stage of
training.

Then, we concatenate the a-embedding with the embedding of other auxiliary information
(e.g., t and labels) and apply a single SiLU (Elfwing et al., 2018) activated linear layer:

Cout = Silu(WauxCaux + Waca)'
The rationale behind this choice is as follows: as training progresses, the real and fake
distributions begin to overlap, making it natural for the amortized score model to become

less sensitive to a. Thanks to the additional linear layer W, after the a-embedding c,, this
behavior can be realized when W, ~ 0, when necessary.
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8.1. Score-of-Mixture Training

Generator Wi ~ /\/'(O,tZI) Amortized Score Model
fake
} S ;0,t
7 '/\/(07 I) g xfake _ ge(z) Xiake w(X: ) )
. 0 Sy (X7, t)
Noise ) Fake Image o ‘
becscssssssamsasaasas 3 Tk @, i) Bessssssse e :

Generator Update (Eq. (6))

<8 J /L leal Sy (Xta % a, t)
Real Dataset < st X" '
~ Real Image «@ T sy (x5 a,t)
I
I
I
I
I

TET

Amortized Score Update (Eq. (8))

Figure 8.1.: Overview of SMT. Top: To update the generator, we compute the gradient of
the a-JSD on noisy fake samples with the frozen amortized score model using
Eq. (8.3). Bottom: The amortized score model is updated by computing the
score of the mixture distribution on both fake and real noisy samples, and then
updating the weights using the gradient in Eq. (8.5).

8.1.5 Training

Alternating Training. Our training scheme alternates between the score estimation with
the score matching objective in Eq. (8.5), and the generator training with Eq. (8.3), where
we plug-in sy (x¢; , t) in place of sg.o¢(x;). This is similar in spirit to GAN training, but the
DSM technique in our framework in place of the discriminator training naturally stabilizes
training. The overall training framework is summarized in Figure 8.1 and Algorithm 8.1 in
Appendix 8.C.

Initialization. We warm up the generator with a standard denoising task as in diffusion
models for several steps to better initialize the weights, as we empirically found that initializing
the generator with pretrained weights from a denoiser significantly accelerated convergence.
The amortized score network is randomly initialized.

Choice of p(«). The choice of p(«) is crucial in our framework. To train both the generator
and score model, we sample « from a uniform distribution over 1000 equally spaced points
in [0, 1], ensuring a dense enough grid to generalize to any «. For score training, we further
ensure that 25% of the sampled «’s are zero, since this is always used in our gradient update;
see Eq. (8.3).

Adaptive Weighting. In practice we compute the gradient with an adaptive weight
w(xy, X, a, t) to ensure that the scale of the gradient for each minibatch sample is roughly
uniform for different values of o and ¢. Hence, we modify the generator gradient in Eq. (8.3)
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8. Stable and Efficient Generative Modeling with Score-of-Mixture Training
as
VO (0; 1) == By [wg@(z) X (8.6)

Sy (X150, 1) — sy (x¢; oz,t)}
«

Y

{w(xt,x,oz,t) ( )i|
x=gy(z

where the weighting is defined as
w(Xy, X, @, t) 1= we (X, t)wpmp (X, X, ). (8.7)

Here wpyp is the adaptive noise weighting introduced by (Yin et al., 2024b) (see Eq. (7.4)
in Section 8.2) and w,(x,t) is a new weighting inspired by the pseudo-Huber norm (Geng
et al., 2024; Song and Dhariwal, 2024)

I8y (x40, 1) — sy (34 L, 1)
I8, (x43 0, 1) = sy (31, 1) |2

Wo (Xy, 1) 1=

This weighting still preserves the limiting forward KLD behavior of the objective as a« — 0
and simplifies to DMD gradient when o« = 1. We empirically show the efficacy of our adaptive
weighting term w, (x;,t) through ablation studies on the CIFAR-10 dataset in Section 8.3.3;
see Figure 8.3b.

Regularization with GAN. We empirically found that a GAN-type regularization can
accelerate convergence even further in the beginning of training. More concretely, we can
train the discriminator £, (x;;t) ~ log (2((’;)) by the GAN discriminator training in Eq. (7.1).
In our implementation, we opt to train a discriminator using a variant based on the a-JSD.

Given a discriminator £y (xy;t), we minimize a non-saturating version of the a-JSD loss,

LER) = Eqyixy [sp(—Lo (i) = log —=— )| (8.8)

Similar to Yin et al. (2024a), we parameterized the discriminator by a stack of convolution
layers, applied on top of an intermediate feature of the amortized score network at aw = 1/2.

8.2 Score-of-Mixture Distillation

In our development so far, we do not assume access to a pretrained diffusion model. In
this section, we show how a practitioner can train a one-step generative model leveraging
a pretrained diffusion model, if available, within our framework. The proposed distillation
scheme is comparable or even outperforms the state-of-the-art distillation schemes.

8.2.1 How To Leverage Pretrained Diffusion Model

In the distillation setup, we treat the pretrained diffusion model as the data score s,(x;; ), and
thus training the score of mixture sy, (x;;t) using a single, amortized model may not be the
most efficient parameterization. Hence, instead, we consider an alternative parametrization,
as guided by the following statement:
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8.2. Score-of-Mixture Distillation

Proposition 8.4. Let o € [0, 1], s,(x) be the data score, s,,(x) be the score of the generated
samples. Then, the score of the mizture distribution can be expressed as

S50 (X) = Do;a(X)8,(%) + (1 — Dpia(x))s4, (), (8.9)
where )
p(x Q
Dpa(x) = a<1og g T a), (8.10)

In words, we can express the score of mixture sy,,(x) as a mixture of scores s, and s,,, where
the weight is (Dg.o(x),1 — Dy.o(x)). This suggests that instead of an amortized modeling of
the score of mixture, we can use an alternative parameterization,

sy P (x;.0) 1= Dy(x; 0)sp(x) + (1 = Dy (x; )8 (x),

where

Dy(x;a) == 0<€¢(X) + log ] fo)'

Here, we can parameterize the discriminator x — £,(x) in the same way as we do for the
GAN discriminator (see Section 7.1).
We can extend this to multiple noise levels easily. Hence, an alternative parameterization
for sp.o(x¢;t) is
SZXP(Xt; a,t) := Dy(x4; o, t)s, (x4 1) (8.11)
+ (1 — Dy (x; a,t))sfjke(xt; t),

where

Dy (x4 a,t) == a<€¢(xt;t) + log . a

). (8.12)

Plugging this explicit score model into Eq. (8.5), we can learn both the fake score model sfjke

and the discriminator ¢, at different noise levels.

Corollary 8.5. Let o € [0, 1] be fized and oy be some fixed noise level. Then, the minimizer
of the objective function

L (s 0, t) = a By 1877 (x11 0, 1) + €/04]|°]
+ (1= ) By, q(o 187 ° (xe; . 1) + €/ 0] (8.13)
satisfies

p(Xt)
qo(x¢)

(1) = 55, (x3) and e (xit) = log

We remark that this new regression objective in Eq. (8.13) provides a new way to compute
the log density ratio, as an alternative to the GAN training. In Appendix 8.B, we establish a
connection between this objective for training a discriminator to an existing GAN discriminator
objective in the literature.
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8. Stable and Efficient Generative Modeling with Score-of-Mixture Training

With this new, explicit parameterization, we can approximate the gradient expression in

Eq. (8.3) as
VoDh (@0 ) ~ VP (0; 0, 1) (8.14)
1= By | Dy (X450, 1) X

sfake(x: ) — s, (x4,
Vogo(2z)— e p 0

a Xge(z)] '

8.2.2 Implementation and Training

Model Architectures. We can leverage any existing diffusion model architectures directly
for the fake score s#*(x;t). We parametrize the discriminator £(x;;t) similar to the
noise-conditional discriminator in our training from scratch setting (see Section 8.1.5). The
difference is that we can train the discriminator by minimizing the DSM loss in Eq. (8.13)
naturally, without an additional GAN loss. When training the generator, we plug in this
approximate log density ratio into Eq. (8.8) to regularize the generator updates.

Training. We also train in an alternating fashion. Since we have access to a pretrained score
model, we use this to initialize the weights of both the generator and the fake score model. We
utilize the same sampling distribution for v as in our training from scratch setup (see Section
8.1.5). The procedure is summarized in Figure 8.2 and Algorithm 8.2 in Appendix 8.C.

Amortized Score Model

[0
Generator w; ~ N(0,£°I) s
/\_L
z ~ N(0,I) g6 xfke — o (7) xfake Eq. (12)
Noise 7 [~ ;
i Sp P9
s /‘\' | S:_Zq
| I I |
L””””””””””} ’Yex (9,a,t) 1 ”””””””””””
Generator Update (Eq. (15))
w; ~ N(0,°T)
- /L x?ke fak
N—r sSH(xP*e; a, t)
Real Dataset & D {X;eal} { it :eal
< Real Image @ sy (x5 1)

_____________

[l i
VL (W, )

Score Model Update (Eq. (14)) '

Figure 8.2.: Overview of Score-of-Mixture Distillation. Top: To update the generator weights,
the fake image is diffused at noise level ¢ and then used to compute the gradient
of the a-skew divergence with the explicitly parametrized amortized score model
using Eq. (8.14). Bottom: Amortized score model training involves computing
the score of the mixture distribution on both fake and real samples diffused with
noise level ¢ and then updating the weights using the gradient of Eq. (8.13).

128



8.3. Experiments

Table 8.1.: Image generation results on ImageNet 64x64 (class-conditional) and CIFAR-10
32x32 (unconditional). The size of the sampler is denoted by the number of
parameters (# params), and NFE stands for the Number of Function Evaluations.
The best FIDs from each category are highlighted in bold, and our methods SMT
and SMD are highlighted with a blue shade.

ImageNet 64x64 CIFAR-10 32x32
Method # params NFE FID] # params NFE FIDJ

Training from scratch: Diffusion models

DDPM (Ho et al., 2020) - - 56M 1000  3.17
ADM (Dhariwal and Nichol, 2021) 296M 250  2.07 - - -

EDM (Karras et al., 2022) 296M 512 1.36 56M 35 1.97
77777777777777777 Training from scratch: One-step models
CT (Song et al., 2023b) 296M 1 13.0 56M 1 8.70
iCT (Song and Dhariwal, 2024) 296M 1 4.02 56M 1 2.83
iCT-deep (Song and Dhariwal, 2024) 592M 1 3.25 112M 1 2.51
ECT (Geng et al., 2024) 280M 1 5.51 56M 1 3.60
SMT (ours) 296M 1 3.23 56M 1 3.13
Diffusion distillation

PD (Salimans and Ho, 2022) 296M 1 10.7 60M 1 9.12
TRACT (Berthelot et al., 2023) 296M 1 7.43 56M 1 3.78
CD (LPIPS) (Song et al., 2023b) 206M 1 620  56M 1 453
Diff-Instruct (Luo et al., 2024a) 296M 1 5.57 56M 1 4.53
MultiStep-CD (Heek et al., 2024) 1200M 1 3.20 - - -

DMD w/o reg (Yin et al., 2024b) 206M 1 560  56M 1 558
DMD2 w/ GAN (Yin et al., 2024a) 296M 1 1.51 56M 1 243
MMD (Salimans et al., 2024) 400M 1 3.00 - - -

SiD (Zhou et al., 2024) 296M 1 1.52 56M 1 1.92
SiM (Luo et al., 2024b) - - - 56M 1 2.02
SMD (ours) 296M 1 1.48 56M 1 2.22
 w/ eapensive reqularizer or finetuning
CTM (Kim et al., 2024) 296M 1 1.92 56M 1 1.98
DMD w/ reg (Yin et al., 2024b) 296M 1 2.62 56M 1 2.66
DMD?2 (finetuned) (Yin et al., 2024a) 296M 1 1.23 - - -

8.3 Experiments

In this section, we first present results on the ImageNet 64 x 64 dataset. We then demonstrate
the competitiveness of our method on the CIFAR-10 dataset and conduct a series of ablation
studies. We measure performance through sample quality as measured by the Fréchet Inception
Distance (FID) (Heusel et al., 2017). The exact hyerparameters, training configurations used
and additional results can be found in Appendix 8.D.

8.3.1 Class-conditional ImageNet 64x64 Generation

Experimental Setup. We trained class-conditional one-step generative models on ImageNet
64 x 64 (Deng et al., 2009), experimenting with both distillation and training from scratch.
In both cases, we used the ADM architecture (Nichol and Dhariwal, 2021) with EDM pre-
conditioning (see Section 4.B.2) as the base score model architecture, and the discriminator
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SMT/SMD on ImageNet 64x64

—— SMT (scratch) 107 - SMT on CIFAR10
—e— SMD (distillation) random a; DMD weighting
—e— random a; our weighting
—— a € {0, 1}; our weighting
—+— random a; our weighting + GAN reg
o
T 10% [a)]
w
101 4
25 50 7.5 100 125 150 17.5 20.0 2 4 6 8 10 12 14
training steps x10% training steps x10%

(a) ImageNet 64x64 (scratch and distillation).  (b) CIFAR-10 with ablation studies (scratch).

Figure 8.3.: FID evolution with training.

Figure 8.4.: Samples from SMT on ImageNet 64x64. Each row represents a unique class.
Additional samples can be found in Appendix 8.D.3.

ly(x4;t) was implemented as a stack of convolution layers operating on the bottleneck feature
from the score network, similar to DMD2 (Yin et al., 2024a). For training from scratch, we
augmented the score architecture using an a-embedding as described in Section 8.1.4. The
total number of parameters of the amortized score model remained unchanged otherwise. As a
warmup stage, we pretrained the generator on the dataset using a standard diffusion denoising
objective for 40k steps to initialize the weights. For distillation, we used a pretrained diffusion
model from (Karras et al., 2022).

Results. We evaluated our method against several published baselines for both training from
scratch and distillation. As shown in Table 8.1, when trained from scratch, our generator
with 296M parameters outperforms both consistency training and its improved variant (Song
and Dhariwal, 2024; Song et al., 2023b), with a much smaller training budget (200k iterations
with batch size of 40 vs. 800k iterations with batch size of 512). Our model also competes
favorably with iCT-deep, despite using a generator with half the number of parameters:
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FID of 3.23 with 296M parameters (ours) vs. 3.25 with 592M parameters (iCT-deep). We
observed stable training throughout, without requiring extensive hyperparameter tuning or
special noise schedule adjustments as in consistency training, as visualized in Figure 8.3a.
We also surpass the ECT model (Geng et al., 2024) of similar size and training budget that
includes several modifications to induce stability in consistency training. Samples generated
using our method can be found in Figure 8.4 and Appendix 8.D.

In the distillation setting, our model achieves a competitive FID of 1.48, outperforming
several baselines. Notably, we outperform consistency distillation methods, such as multistep
consistency distillation (Heek et al., 2024), despite using only a fraction of the model size (256 M
parameters against 1200M parameters). Our model also surpasses consistency trajectory
models (CTM) (Kim et al., 2024), without the need for expensive simulation of the probability
flow ODE. We also outperform reverse-KLD methods with similar compute or regularizers
such as DMD (Yin et al., 2024b) and DMD2 with FIDs of 5.60 and 1.51 respectively. We note
that on spending significant extra compute, DMD and DMD2 achieved improved results with
expensive regularizers that require simulation of the pretrained model or lengthy finetuning
stages of 400k steps. We did not resort to these techniques and sought to find an approach
that worked best with a single execution of the training pipeline.

8.3.2 Unconditional CIFAR-10 Generation

Experimental Setup. We evaluated our method on the CIFAR-10 dataset (Krizhevsky
et al., 2009) for unconditional one-step generative modeling, considering both training from
scratch and distillation. In both cases, we employed a DDPM++ architecture (Song et al.,
2020) with EDM preconditioning. The discriminator again followed the convolutional stack
used in DMD2. For training from scratch, we modified the score model to incorporate the
a-embedding (Section 8.1.4) while maintaining a similar network size. To mitigate overfitting
due to the dataset’s small size, we enabled dropout with p = 0.13, as in EDM. In the
distillation setting, we initialized the generator with a pretrained unconditional diffusion
model from (Karras et al., 2022), using the same UNet backbone and weights. Distillation
performed well without dropout.

Results. The last three columns in Table 8.1 highlight the performance of our method on
CIFAR-10 compared to various baselines. In our training from scratch setting, despite utilizing
a lower training budget (150k steps with a batch size of 40) than many methods, our approach
remains highly competitive. In terms of training budget, the most comparable baseline is
ECT, which we are able to outperform without requiring excessive design considerations
and hyperparameter tuning. Our distillation results are also competitive. In particular, we
outperform DiffInstruct and DMD?2, which are only based on minimizing the reverse KLD.
This corroborates the benefit of our multi-divergence minimization approach. Image samples
can be found in Appendix 8.D.

8.3.3 Ablation Studies

We use the CIFAR-10 dataset to study the effectiveness of the design choices that we have
proposed; see Figure 8.3b.
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Table 8.2.: Comparison of different generative modeling techniques capable of high-quality
sample generation.

. P . Training Require
t s .

Generative models Training idea Generation stability pretrained model?
GAN minimizing JSD, with discriminator one-step unstable N
Diffusion models training multi-noise-level denoisers via DSM multi-step stable N
Diffusion distillation (mostly) minimizing reverse KLD (in DMD) {one,few}-step  stable Y
Consistency distillation . . . . . e . stable Y

. - simule rajectories of probability flow ODE > few }-ste .
Consistency training simulating trajectories of probability flow O {one,few}-step unstable N
Score-of-Mixture Training (ours) minimizing {a-JSD}aep,1) with multi-noise-level one-ste stable N
Score-of-Mixture Distillation (ours) training, & scores of miztures via DSM step ° Y

Choice of Adaptive Gradient Weighting. Starting with our base objective without the
GAN regularizer, we tested our (a, t)-adaptive weighting in Eq. (8.7). Figure 8.3b demon-
strates the benefits of our weighting scheme, compared to the DMD weight function that
only depends on t.

Learning with Single vs. Multiple a’s. The a-JSD reduces to the reverse KLD of DMD
and other distillation methods, when o = 1. To test the efficacy with multi-a learning, we
implemented an amortized variant, training the score model only with a € {0,1}. Results
show that conditioning on a range of a-values not only minimizes multiple divergences but
also strengthens the @ embedding as a conditioning signal thereby facilitating more accurate
divergence minimization.

Accelerated Convergence with GAN Regularizer. We finally verify the benefits of our
novel GAN-type regularizer for a-JSD minimization. As demonstrated by the second and
fourth curves in Figure 8.3b, the GAN regularizer helps accelerate convergence especially in
the beginning of training.

8.4 Summary

We show that high-quality one-step generative models can be trained from scratch and in a
stable manner, without simulating the reverse diffusion process or probability flow ODE as in
diffusion models and consistency models. The key distinctive idea in our framework is a new
multi-divergence minimization paradigm implemented by estimating the score of mixture
distributions. For stable training, we borrowed multi-level noise learning and denoising score
matching techniques from the diffusion literature. Our empirical results show that accurate
score estimation facilitates stable minimization of statistical divergences. We summarize our
method alongside other generative models in Table 8.2.
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8.5 Multi-Step Generative Modeling*

We can extend the SMT framework for multi-step generative modeling similar to consistency
models. While the consistency model is a deterministic sampler, we will show that the
resulting extension allows for stochastic sampling, thus leading to greater sample diversity in
practice.

Suppose that we wish to train a multi-step generator of the form gy(z, x,, 1), where x,, is
a noisy version of an image x and u denotes the level of the noise. For a given u, let gy(x|x,)
denote the induced model (or fake) distribution.

Similar to the SMT framework, we consider minimizing

min By o)p(u)p(a)p(eu) [D%E (qo(xt|xu) H p(thXu))] : (8.15)

Here, we use t to denote the time step of the Gaussian corrupted version of x in the forward
diffusion process which we leverage to apply the DSM trick, making a distinction from the
time step u of x,, which is the noisy observation of x, from which we wish to denoise.
In Eq. (8.15), the underlying probability model p(x, x,, X;) = p(x)p(x,|x)p(x:|x) satisfies
the Markov chain
X, —X — Xy under p(X, Xy, X;).

Similarly, our generative model assumes gy(x, X,, X;) := p(Xy)qo(X|x,)p(X¢|X), which corre-
sponds to the Markov chain

X, —X —x; under gp(X, Xy, X;).

Here, p(xy) := Epu)[p(xu|x)] is the marginal noisy distribution of p(x). Hence, the fake
posterior distribution is written as

g (3¢ ]x,) = / (%[ %) g0 (x|x0) dX = By ) [P (22 X)), (8.16)

for any ¢ and wu.

Generator Update. We wish to train a multi-step generative model (z, x,) — g¢(z, Xy, u).
The gradient update for the generator is

Sy (X450, t, Xy, u) — Sy(Xe; 0, t, Xy, )

Yo (05 o, t, Xy, u) = By | Vogo(2, X0, u)

9

«

x:ge (z7x1l. 7u)]

where we now leverage an amortized score model sy, (x;; @, t, X,,, u) that is quadruply amortized
over «, t, X,, and u.

Amortized Score Estimation. The amortized score model can be characterized by the
optimal solution of a mixture of DSM losses

Escore(¢) = IEp(t)]o(oz) »Cscore(w; «a, t) )
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where

£SCOI‘6(17Z}; «, ta U’) = IEp(xu) a Ep(xt\xu) |:||S¢(Xt; «, t) Xy U) - VXt 10gp<xt|xu) ||§:|

(1= ) By | 18606 01, 0, 4) = Vg log qe<xt|xu>||%]] .

For the scores of posterior distributions Vy, log p(x;|x,) and Vy, log gs(x¢|x,), we apply
Tweedie’s formula and obtain

Vx, log p(Xt|Xu) = Ep(X\Xt,xu) [th log p(Xt|X, Xu)} = ]Ep(XImeu) [th log p(Xt |X)] .
Vi, log gs (Xt|Xu> = qu(XIXt,xu) [VXt log QG<Xt|Xa Xu)] = Eqa(X\Xt,xu) [vx,s 1ng(xt|x)] .

The last equation follows since gg(x;|x,x,) = p(x;|x). Hence, we can instead minimize

L3001, 4) = By |0 Byt eppixises) | 1833630, %0, 1) = Vi, Tog plxe )3

(1= 0) gy peaantsea) | 186006 0%, 1) = Vi, logp<xt\x>\|§]]

(a)
= Ep(x)p(xu,xt\x) [st(xt; «, T, Xy, U’) - th logp(xt|x) ||g}

+(1—a) B (3¢ ) g5 (x[xu )p(x:[x) [”SIZJ(Xt; o, t, Xy, u) — Vy, 108;P(Xt\X)H§} .

Here, (a) follows from the definition of the probability models p(x,x,,x;) and gg(x, x,, X;).
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Appendix

8.A Deferred Proofs

8.A.1 Proof of Proposition 8.1

Proof of Proposition 8.1. We can simplify the gradient of each term separately as follows:

VoDkw(gollap + (1 — a)gp) = Egyx) [V@ log ap(x) —{—q(el(x—) OZ)(]G(X)}

+ Ey(z) [Vege(z)(se;o(x) — Sp,a(X)) ‘x:ge(z)]
VoDxr(pllap + (1 — a)gp) = —Eyx) [Volog(ap(x) + (1 — a)go(x))] -

Here, note that in the first expression, we invoke the chain rule: for some function fy: X — R,
we have

)

Vo fo(go(z)) = (Vo fo(x))x=gs@) + Vo20(2) (Vi So(X)) lx=go(2)-
Combining these two terms with the weights, we get the gradient of the a-skew JSD:

o 1 1
VoDish(as:p) = VoD (asllap + (1~ a)ap) + 7—— VD (pllap + (1~ a)ap)

1 —
- EEQ(z) [v9g9<z> (5950(X) N SG;Q(X)) x=g9(z)}
_ ﬁEap(x)-i—(l—a)qe(x) [V log(ap(x) + (1 — a)ge(x))]

1
+ By 0[ Vo log gs (x)]

1
= ~Ey) [Vogo(2)(s00(x) —sa(x))| .
« x=gg(z)
Here, we use the assumption that Ey,x)[Velog gs(x)] = 0. O

8.A.2 Proof of Proposition 8.2

Proof of Proposition 8.2. We can write the objective £(1; @) as

L(¢;a)

— [ {(ar60)+ (1= @) su o )l = 2aplx)sy () + (1= @)an(x))Tsulox )+ €

= / (ap(x) + (1 - oc)(le(x))st(x; @) — ap(x)z,;) ((};))i((ll__ij)qqe@((i))sqg () H2 dx + C".
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Hence, it is clear that the global minimizer should be

ap(x)s,(x) + (1 — a)gp(x)sg, (x)
ap(x) + (1 — a)ge(x
_ aVyp(x) + (1 — a)Vxqe(x)
ap(x) + (1 — a)ge(x
_ Vx(ap(x) + (1 — a)gs(x))
ap(x) + (1 — a)ge(x)
= Vixlog(ap(x) + (1 — a)ge(x)). O

Sy (X5 ) =

8.A.3 Proof of Proposition 8.2

Proof. We can write the objective L(1; a, t) as

2
dx de.

Luame(ict) = [ [ @pl00) + (1 = @)anl0)) st ) + <

0¢

This is a standard minimum mean square estimation (MMSE) problem for which the global
minimizer is the conditional mean,

1

Syp* (Xt; a, t) = _O__t]EOépt'F(l—a)QG,t [G‘Xt]
1
= __zEapt+(1—a)qe,z [x¢ — x|x]
Oy
1 1
= + U—?Eam(l—a)qe,t [x|x]

= Vi, log(ap(x¢) + (1 — a)go(x:))-

Here we use that x; = x + 0,€ and make the connection to the marginal score in the last line
using Tweedie’s formula using Eq. (2.8). O

8.A.4 Proof of Proposition 8.4

Proof. The amortized score can be expressed as

Vi log(ap(x) + (1 — a)gs(x))
o) + (1 — a)ao(x)
ap(x) (1~ a)go()
B ap(x) - (1 —a)gp(x)
= ) (1 a)al) BT T - e
— D(x; )V log p(x) + (1 — D(x: @) Vi log go(x).

) Vi log qe (X)

We can now simplify the scaling factor as

ap(x) p(x)

P = T M- wm <10g 9o (x)

+ log

a ) 0
1l -«
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8.B Discriminator Training via Score-of-Mixture-Distillation
In Section 8.2, we plugged in the explicit parameterization
sy (%) 1= Dy (35 a)s,(x) + (1 — Dy(x; oz))sf;ke(x),

to the mixture regression loss in Eq. (8.4), to train the fake score and the discriminator
simultaneously. If we consider an ideal scenario where we have the perfect score models
for both p and ¢, then all we need to train is the discriminator andthe mixture regression
objective can be interpreted as a discriminator objective. Here we reveal its connection to an
instance of f-GAN discriminator objective.

Let s,(x) and s,(x) be the underlying score functions for p and ¢, respectively. Then, the
explicit parameterization becomes

sy (3 o) = Dy (3 a)sp(x) + (1 = Dy(x; )8y (%),
and the mixture regression objective becomes only a function of the discriminator, i.e.,

L5 ) = a B [[877 (x5 0) = 8, (3) 7] + (1 = @) By ) [1I877 (3 @) — 54() 1]
= aBy[(1 — Dy (x:0))|I8p(x) — 84(0)[I°] + (1 = ) Eqp [D (x5 @) [[s () — 84(x)[|°]

— [{areo1 = Dutxia))? + (1= @)a()Dulox ) s, (x) = 5,0) |7 dx.

Here, we note that the term ||s,(x) — s,(x)||? is common in both expectation, and can be

safely dropped to train the discriminator, which leads to a simplified objective
L'(1h; ) = a By (1 — Dy(x;0))°] + (1 = ) Eqpo [Dy(x; )]
= /{ap(x)(l — Dy(x;0))* + (1 — a)q(x) Dy (x; oz)2} dx.

We note that this is equivalent to the discriminator objective induced by the following
f-divergence

p(x)q(x)
D =1- dx := D, ,
@ I 9) /ap(x> (= o)) & e(p [l @)
where f,(r) := —(;;f()fl_;g) is a convex function over [0,00) for a € (0,1). For a = 1, this

divergence becomes symmetric in p and ¢ and is known as the Le Cam distance (Le Cam,
2012, p. 47) in the literature (Polyanskiy and Wu, 2019). We thus call the general divergence
for a € (0,1) the a-Le Cam distance. In the GAN literature, this is known as the LSGAN
objective (Mao et al., 2017).

As revealed, our discriminator training in distillation can also be done separately using the
a-Le Cam-distance-based objective. However, we conjecture that our score-regression-based
end-to-end objective may have benefit, as our primary goal of discriminator training is to use
it in the generator update in the form of an approximate score of mixture.
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8.C Algorithm Blocks

Algorithm 8.1 Score-of-Mixture Training

1:

~

10:
11:
12:

13:
14:

15:
16:
17:
18:
19:
20:
21:

22:

Inputs: Randomly initialized generator gy, amortized score model s, discriminator
ly, real dataset D, score training sub-iterations = 5, learning rates (7gen, Mscore), GAN
regularizer weights (score = u, gen = \)

Pretraining: Train gy with DSM using D

for each pretraining iteration do
Sample mini-batch x ~ D and add noise x; = x + o€, e ~ N (0,1)
Compute DSM loss Lpsm(f) (see Section 2.2.1.3)
Update parameters: 6 < 6 — npsymVeLpsm(0)

Training: Alternating updates of gy and sy
for each training iteration do

Generator Training: Freeze s,

Sample mini-batch of fake samples xfk¢ = g4(z),z ~ N(0,1)
Sample t ~ p(t) and « as described in Section 8.1.5

Compute weighted generator gradient v, (6; ., ) from Eq. (8.6)

Compute GAN regularizer loss £(§< Atlz] from Eq. (8.8)
Update parameters:

0 4 0 — NgonEp(aypiey [w (X7, x4 v, £)72 (6; v, t) + AV LER (0)]

Amortized Score Training: Freeze gy

for each sub-iteration do
Sample mini-batch of real samples x™' ~ D
Sample t ~ p(t) and «
Compute score matching 10ss Lcore (¥ v, t) from Eq. (8.5)
Compute non-saturated discriminator loss Lgisc(10) (see Section 7.1)
Update parameters:

¢ — ¢ - nscorevw (Ep(a)p(t) [Lscore(w; «, t)] + ,U“Cdisc (d}))

Return: Trained model parameters 6, 1
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Algorithm 8.2 Score-of-Mixture Distillation

1:

10:

11:
12:
13:
14:
15:

16:

Inputs: Randomly initialized generator gy, fake score model s
pretrained score model s, real dataset D, score training sub-iterations = 5, learning rates
(Ngen, NMscore)s; GAN generator regularizer weight A

Initialization Initialize Sy

fake * discriminator Ly,

fake and gy with weights from s,

Training: Alternating updates of gy and sy,
for each training iteration do

Generator Training: Freeze s and (,,
Sample mini-batch of fake samples xfk¢ = g4(z),z ~ N(0,1)
Sample ¢t ~ p(t) and « as described in Section 8.1.5
Compute generator gradient v3*(6; o, t) from Eq. (8.14)
Compute GAN regularizer loss Cg‘ Atlz] from Eq. (8.8)
Update parameters:
0 0 = eyt 1 (01 . 1) + AVHLGE ()]

Amortized Score Training: Freeze gy
for each sub-iteration do

Sample mini-batch of real samples x™ ~ D

Sample t ~ p(t) and «

Compute score matching loss using explicit parametrization £ (¢; o, t) from

Eq. (8.13)
Update parameters:

¥ 4= ¥ = Nscore Vo Epayp(t) [Loeore (V5 @, )]

17: Return: Trained model parameters 6, 1
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8.D Additional Experimenal Details and Results

We present some additional experiments and results in this section. We first provide a more
detailed training configuration for our experiments in Section 8.3 and then evaluate our
proposed method on a synthetic swiss-roll dataset in Appendix 8.D.2. Finally, we present
some samples generated from Score-of-Mixture Training and Score-of-Mixture Distillation in
Figures 8.6-8.9.

8.D.1 Training Configuration

We summarize the detailed training configuration in Table 8.3.

Table 8.3.: Hyperparameters used for training one-step generators with Score-of-Mixture
Training and Distillation.

Hyperparameter CIFAR-10 ImageNet 64 x 64
Scratch Distillation Scratch Distillation

Generator learning rate le-4 5e-5 He-6 2e-6
Score learning rate Se-4 5e-H 5e-H 2e-6
Score learning rate decay cosine None cosine None
Batch size 280 280 280 280
Diffusion pretraining steps 15k N/A 40k N/A
Training iterations 150k 150k 200k 200k
Score dropout probability 0.13 0.00 0.00 0.00
Number of GPUs 2 x A100 4x A100 7x A100 7x A100

8.D.2 Toy Swiss Roll

We tested our proposed framework and ablated various design choices on a synthetic swiss roll
dataset. We followed the dataset setup by Che et al. (2020). We trained models with SMT and
SMD and compared this against an amortized version of reverse KL minimization with DMD
weighting (o € {0,1}) similar to the ablations in Section 8.3.3. Additionally we compared
against non-score-based baselines including the vanilla GAN and Diffusion-GAN (Wang et al.,
2023).

Across all experiments, we use the same generator architecture — a two-layer MLP with
a hidden dimension of 128 and leaky ReLU nonlinearity. We train all models for 200k
steps on a single NVIDIA 3090 GPU with a batch size of 256. All score-based methods
leverage a learning rate of le-5 for the generator and le-4 for the amortized score (and
discriminator when applicable) whereas the GAN-based methods use a learning rate of le-4
for both generator and discriminator. We use the AdamW optimizer without any learning
rate schedulers.

The samples produced are shown in Figure 8.5. Notice how the GAN is unable to perfectly
cover the entire continuous mode of the swiss roll. The multi-noise-level extension of GAN-
based on Diffusion-GAN covers the mode but also samples from areas of low density. We
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(a) Ground Truth (b) SMT (No GAN) (¢) SMT (with GAN) (d) SMD

(e) Amortized Reverse KLD (f) GAN (g) Diffusion-GAN

Figure 8.5.: Samples produced by generators trained using different methods. All figures are
created using 10,000 samples from the respective generator.

found the latter to be sensitive to the chosen noise levels in comparison to the methods based
on updating the generator using the score.

Our results for training from scratch and distillation are presented in Figure 8.5(b)-(d).
All three methods successfully capture the modes of the underlying distribution. While the
impact of the GAN regularizer is less pronounced than in our high-dimensional experiments,
we observe that enabling it reduces the number of samples in low-density regions. The
distillation results appear slightly noisy, likely due to the quality of the pre-trained score
model. This highlights the advantage of training from scratch, as it avoids amplifying existing
estimation errors in the pre-trained model.

Figure 8.5(e) presents the results of ablating the a-sampler. Unlike in the high-dimensional
setting, the choice of the number of a values is less critical in this case. However, our method
in (b) still produces fewer noisy samples, suggesting that training the amortized score model
with multiple a values may be beneficial.

8.D.3 Samples

We present some image samples generated by SMT and SMD in Figures 8.6-8.9.
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Figure 8.6.: One-step generated samples from SMT on CIFAR-10 (unconditional).
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Figure 8.7.: One-step generated samples from SMD on CIFAR-10 (unconditional).
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Figure 8.8.: One-step generated samples from SMT on ImageNet 64x64 (conditional).
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Figure 8.9.: One-step generated samples from SMD on ImageNet 64x64 (conditional).
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Concluding Remarks and Future
Directions

In this final chapter we review the contributions of this thesis and summarize potential
directions for future work.

9.1 Summary of Contributions

In this thesis, we provided an overview of the relationship between score estimation and
generative modeling through principled theoretical development and applications in practical
engineering contexts. We first tackled the deficiencies of existing score estimation frameworks
and introduced new estimation objectives that lead to tangible improvements in generative
modeling as measured by sample quality. Beyond their traditional use in diffusion-based
sampling, we highlighted the broader potential of score functions by developing new score-
driven algorithms for solving inverse problems. These methods are thoroughly examined in
the context of interference mitigation for digital communication signals. We then revisited
the foundational challenge of efficient neural synthesis and propose a new score estimation
framework that supports a one-step generative modeling approach via multi-divergence
minimization. A detailed summary of these contributions along with future directions and
preliminary analysis is provided below.

9.1.1 From Nonparametric to Parametric Score Estimation

The first part of this thesis was centered on score estimation, with a particular focus on
how parametric techniques can enhance the accuracy of existing methods. To showcase the
power of parametric approaches, we revisited spectral-based nonparametric score estimation
methods, which typically expand the score function using test functions. Existing techniques
often rely on a fixed, and potentially mismatched, set of test functions derived from the
eigenbasis of an arbitrary kernel. In contrast, we proposed a parametric method that learns
the optimal eigenbasis that minimizes the estimation error—a technique we refer to as
principal direction score estimation.

Furthermore, taking inspiration from the nonparametric score estimation method, we
proposed a new optimization framework for learning the score by lifting it into the space of its
outer product with itself. This can again be interpreted as solving for the optimal eigenbasis
of a matrix-valued kernel. Furthermore, by augmenting this method with iterative residual
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learning to compensate for empirical estimation errors, the resulting framework called lifted
residual score estimation was able to outperform several baselines for training both implicit
and score-based generative models.

An interesting insight from the latter framework is its natural extension to higher-order
lifted spaces, using tensor products of the score of order m € Z, . This generalization yields
loss functions with increasingly sharp curvature near the global optimum, which may facilitate
faster convergence under appropriate hyperparameter settings. Extending this lifting principle
to other regression-based objectives and understanding the theoretical implications of such
transformations—especially in combination with residual estimation—opens up exciting
directions for future research.

9.1.2 Score-based Statistical Signal Priors

In the second part of this thesis, we shifted our focus from learning score functions to leveraging
parametric score models for solving inverse problems. In many engineering domains, signal
recovery tasks are traditionally guided by hand-crafted priors designed to encompass the
structure of the unknown signal. However, these manually designed models are often overly
simplistic or mismatched, leading to suboptimal performance and requiring significant domain
expertise—making them difficult to scale or generalize across applications.

To address these limitations, we proposed a novel Bayesian algorithm for single-channel
source separation, inspired by MAP estimation principles. Unlike conventional methods, our
approach does not rely on prior knowledge of the mixture model or joint signal statistics.
Instead, it uses independent signal priors, expressed as score functions of the individual
components, and introduces randomness across noise levels to perform iterative signal recovery.
We demonstrate significant improvements in signal recovery performance when applied to
mixtures of digital communication signals. Additionally, the proposed algorithm effectively
handles the underlying discreteness of such signals, recovering both their continuous and
discrete structures.

Although this thesis emphasized the source separation problem, the proposed algorithm is
general and can be applied to a wide class of inverse problems. In contrast to existing diffusion-
based methods that use pre-trained score models within a posterior sampling framework—often
relying on Langevin dynamics—our method formulates an optimization problem to recover
the MAP estimate. This avoids the need for artificial consistency constraints often used
to enforce uniqueness in probabilistic reconstructions. The generality of our framework
opens the door to a number of future extensions, including multi-source separation, explicit
background noise modeling, and real-time deployment in communication systems. Future
work could explore these directions and investigate how this optimization-based framework
can be adapted to broader domains such as image, audio, and biomedical signal processing.

9.1.3 Score-of-Mixture Training for One-Step Generative Modeling

In recent years, data-driven techniques have become increasingly sophisticated and are now
widely integrated into engineering systems to enhance both efficiency and accuracy in solving
complex downstream tasks. The driving force behind such progress is access to large, diverse
datasets. However, in many practical scenarios—such as proprietary domains or when only
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partial datasets are open-sourced—data may be scarce or difficult to obtain. In such cases,
the ability to simulate high-quality synthetic data becomes an invaluable asset.

Diffusion models currently represent the state of the art in generative modeling, producing
high-fidelity samples across various data modalities. Despite their impressive performance,
these models are computationally expensive to sample from, as they typically require many
evaluations of the underlying score network. Recently, methods that distill pre-trained
diffusion models into few-step generators have gained popularity, offering a more efficient
sampling process while maintaining quality. However, these approaches still rely on an
expensive pre-training phase. In contrast, one-step generative models—such as GANs or
consistency models—can be trained from scratch but often suffer from training instability
and require careful tuning.

To overcome these limitations, we introduced a new framework for training one-step
generative models from scratch by directly minimizing a class of statistical divergences. The
core idea is to learn the score of mixture distributions across multiple noise levels, inspired by
diffusion models but without the need for costly trajectory simulation or adversarial objectives.
This approach is not only simple to implement but also flexible: it can seamlessly incorporate
a pre-trained model if available, allowing for efficient distillation. Our experiments showed
that this divergence-based framework achieves state-of-the-art performance in one-step image
generation, highlighting its potential as a scalable and practical alternative for high-quality
data synthesis.

Although this thesis primarily focused on one-step generative modeling, the proposed
framework can be naturally extended to train multi-step neural samplers, similar to consistency
models. While consistency models train a deterministic sampler, it can be shown that the
multi-step neural sampler learned through our framework is stochastic. This stochasticity is
particularly useful for estimating uncertainty and providing greater control over the generation
process. A promising direction for future research is to extend this multi-step generator
for posterior sampling. The ability to generate samples from the posterior distribution is
essential, particularly for solving inverse problems, and remains a key challenge for popular
inverse problem solvers based on posterior sampling, such as SBI (see Section 1.1.2) and DPS
(see Section 5.7.1). We will comment on this some more later in this chapter.

9.2 Preliminary Exploration Toward Future Directions

Throughout this thesis, we have offered guidance on possible extensions to the methods
presented. Nevertheless, the ideas developed here open the door to many more directions
worth exploring. In this final section, we amalgamate several of the proposed techniques and
extensions to provide readers with a clearer, more actionable path highlighting how the tools
introduced in this work can be leveraged to tackle a broad range of challenging problems.

0.2.1 MAP Estimation with Latent Diffusion Models

In Section 5.7, we introduced an extension of a-RGS for tackling general inverse problems,
formulated as an optimization problem in the ambient signal space. While the use of
randomized Gaussian smoothing helps to stabilize optimization, the high dimensionality
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of the signal space can still lead to rugged loss landscapes, increasing the likelihood of
convergence to suboptimal local minima. This issue becomes especially pronounced in
high-resolution settings, such as inverse problems defined over pixel spaces.

Meanwhile, recent advances in generative modeling have turned to latent space diffusion
models. These approaches begin by training an autoencoder—comprised of an encoder £,
and decoder g, —to map high-dimensional data into a compact latent space. This latent
representation is often regularized to follow a smooth, typically Gaussian, prior distribution. A
diffusion model is then trained directly in this latent space, where the reduced dimensionality
simplifies both sampling and optimization. Once a sample is generated, it can be mapped
back to the original data space through the decoder, enabling generation of high-fidelity
outputs.

Given an input image x, assume that it was generated from some latent embedding z,
i.e., x := gy(z). Given a measurement y = Ax +n, n ~ N (0,Ip), we can solve the MAP
estimation problem in the latent space,

argénaxpz|y(0|y).

Developing the a-RGS framework around this optimization problem we can derive a new
objective whose gradient is,

Vo Liatent-inv (0) ~ _Ep(t)q(ez)[SZt (z:(0))] + aEp(U)q(ez)[Hy — Agy (E[Z’Zu(e)mg]’

where s,,(z;(0)) is the score obtained from a latent diffusion model. The second term is again
simplified by using the DPS approximation in Eq. (5.22).

We conducted preliminary experiments to evaluate the effectiveness of the proposed method
on the problem of recovering signals from motion blur. As baselines, we compared against
two posterior sampling approaches: DPS and PSLD (Rout et al., 2023), a latent-space variant
of DPS. For training our model, we adopted a cosine annealing learning rate schedule that
decays from le-1 to le-6 and we gradually increase the value of o over time. This schedule
encourages broad exploration during the early stages of training while progressively enforcing
the measurement constraints more strictly as training progresses. In all experiments we used
an open-source Stable Diffusion v1.5 pre-trained diffusion model! that was trained for several
weeks on large scale image datasets at a resolution of 512 x 512.

Figure 9.1 presents the results of this experiment. While DPS, which operates directly in
pixel space, struggles to preserve fine structures—evident in the distortion of the human figure
in the second row—both PSLD and a-RGS produce more visually coherent reconstructions.
Overall, a-RGS demonstrates promising performance, though the outputs tend to be slightly
oversmoothed. This limitation could potentially be mitigated by applying a few refinement
steps using a diffusion sampler. Exploring strategies to enhance the perceptual sharpness
and sample quality of a-RGS outputs remains a compelling direction for future research.

Thttps://github.com/faraday /runway-stable-diffusion-inpainting
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(a) Measurement (b) Ground Truth (c) DPS (d) PSLD (e) a-RGS

Figure 9.1.: Recovered images using different methods. All images were recovered from the
same motion-blurred measurement.

9.2.2 Exact Diffusion Posterior Sampling

Recall that the DPS framework approximates the gradient of the log-likelihood conditioned
on a noisy signal of interest using the expression:

V0 108 By (y1317) 2 V0 Log ey [Efef ).
Notably, we can also express the likelihood conditioned on the noisy input more generally as,

Pype (¥ | %) = By, () [Py (Y %), (9.1)

where we often assume that we have access to the likelihood model py(y|x).
Now, suppose we have access to an implicit neural sampler capable of drawing samples
from the posterior p,. Then the expectation in Eq. (9.1) can be rewritten as,

Dy|x; (yx:) = Eq@)p(x) [pyIX(y |%)| x:go(Z,Xt)] 5

where gy denotes the generator conditioned on the noisy signal of interest x; and z ~ ¢(z) =
N(0,Ip). This naturally leads to a more accurate way of computing the gradient of the
conditional likelihood:

V0 108 Dy, (¥1%4”) = By [V, 02y (7 130 g, .0
This expectation can be efficiently approximated in practice via Monte Carlo sampling.

But how do we obtain such a neural sampler? This is precisely the outcome of the multi-step
extension of the SMT framework introduced in Section 8.5. When trained properly, this
multi-step generator not only enables high-quality sample generation but also serves as a
flexible inference tool for solving inverse problems more accurately within the DPS framework.
This connection opens up promising avenues for integrating learned generative samplers into
principled Bayesian inference pipelines.
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9.2.3 Fast and Efficient Posterior Sampling

Let’s extend the proposed ideas one-step further and assume that we have access to paired
samples of (x,y). This could be given to us ahead of time or could be simulated with a
black box simulator. In this scenario, we can extend the SMT framework to train a one-step
generator capable of sampling from the posterior distribution p(x|y), when a likelihood model
p(y|x) is given.
In this case, the underlying probabilistic models are

p(x,y, %) := p(X)p(y [x)p(x¢|x),
(9.2)
00 (%, y,%t) := p(y)ao(x|y)p(x¢[x),

where p(x;|x) is the forward variance exploding Gaussian diffusion kernel and p(y) :=
E,x)[p(y|x)] denotes the marginal distribution over the noisy observation y.

To train a one-step generator gy to sample x from a given y we can minimize the skew
Jensen—Shannon divergence between the induced posterior distribution and the true posterior

distribution,

min D (an(x[y) || p(xy)):

As in the SMT framework, we can again extend this to multiple noise levels and multiple o/’s.
Additionally we can amortize different observations,

min Ep(opapn) DS (a0(xe[y) || p(xe|y))):
Here, the noisy posterior distribution is defined as
ply) 2 [ plx x)plxly) dx = By o ) 93)

and similarly for the fake posterior, i.e.,

Q(x:y) = / p(x¢|%)qo(x|y) dx = Ey, (xy) [p(x¢[%)]. (9.4)

Generator Update. We wish to train a one-step generative model (z,y) — go(z,y). The
gradient update for the generator is

)Slﬂ(xt; 07 ta y) - Slp(xt; «, t? Y)

Vogo(z,y -

Y (050t y) = By

x=gp (z,y)]

where we now leverage an amortized score model s, (x;; , t,y) that is triply amortized over
a, tand y.

Amortized Score Estimation. The amortized score model can be characterized by the
optimal solution of a mixture of DSM losses

Escore(¢) = IEp(t)]o(oz) »Cscore(w; «a, t) )
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where

ﬁscore(d” a, t) = Lp(y)

& Bty |30 0,1, y) — Vi log ey

+ (1 =) Egyx,ly) [Ilszp(xt; a,t,y) — Vy, log qe(XtIY)H%]] :

However, we do not know how to explicitly compute the posterior scores Vy, log p(x;]y) and
Vi log go(x:]y). As a detour, we apply Tweedie’s formula to Eq. (9.3) and Eq. (9.4) and
obtain

vxt log p(xt |Y) = I[“-?419(x|xt,}’) [th log p(Xt|X, Y)] = EP(X|Xt,Y) [vxt IOg p(Xt |X)} )
Vi 108 40(x:[y) = Egyxixry) [V 108 40(%2 1%, ¥)] = By xirey) [V 108 p(x1]x)]
In both equations, the second equalities follow since y — x — x; forms a Markov chain under

both models p(x;|x)p(x|y) and p(x;|x)gs(x|y). Hence, as we derive the DSM loss, we can
instead minimize

Lleore30,1) = Epiy) | @ Eptuyiptut) | 18655 0, £,3) = Vi, Tog plxe )3

(1= 0) Eiyintober) 1860505 0,1, 5) = Vi logp<xt|x>|r§}]

@

o Epp(ylx)p(xilx) [st(xt; a,t,y) — Vi, logp(xt\X)Hi}
+ (1 = @) Ep(y)go (xly)pxelx) [st(xt; a,t,y) — Vx, logp(XtIX)lli}

2

2
€

+ (1= @) Epyyanealyate) [HSw(Xt; aty)+ -

(®) €

= aEpxp(yx)a(e) [st(xt; a,ty) + o

2

) .

Here, (a) follows since p(y)p(x:|y)p(x[x:, y) = p(x)p(y|x)p(x:[x) and g (x[y) a0 (x[x:, y) =
qo(x|y)p(x¢|x) and (b) follows from the reparameterization trick.

This approach holds promise for efficient SBI, enabling fast and accurate posterior sampling
in complex, data-driven settings. By directly learning a one-step generative model conditioned
on observations, it bypasses the computational bottlenecks of iterative inference methods.
This makes it especially well-suited for applications where real-time decision-making or
uncertainty quantification is essential, such as scientific discovery, engineering design, and
medical diagnostics.
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9.3 Epilogue

In this thesis, we have explored the intersection of score estimation and generative modeling,
advancing both theoretical understanding and practical applications. From developing novel
score estimation frameworks to introducing new approaches for solving inverse problems and
performing one-step generation, we have demonstrated the potential of score-based methods
across various domains. While the work presented here represents a significant step forward,
it also opens the door to many exciting possibilities for future research. Whether extending
these methods to new data modalities or applying them to complex real-world problems, the
potential for further exploration is vast. As the tools this thesis is built on continue to evolve,
we hope that the contributions of this thesis will inspire future work on the next generation
of scalable, efficient, and innovative solutions that leverage generative models.
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