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Abstract—Underwater acoustic environment estimation is a
challenging but important task for remote sensing scenarios.
Current estimation methods require high signal strength and
a solution to the fragile echo labeling problem to be effective.
In previous publications, we proposed a general deep learning-
based method for two-dimensional environment estimation which
outperformed the state-of-the-art, both in simulation and in
real-life experimental settings. A limitation of this method was
that some prior information had to be provided by the user
on the number and locations of the reflective boundaries, and
that its neural networks had to be re-trained accordingly for
different environments. Utilizing more advanced neural network
and time delay estimation techniques, the proposed improved
method no longer requires prior knowledge the number of
boundaries or their locations, and is able to estimate two-
dimensional environments with one or two boundaries. Future
work will extend the proposed method to more boundaries and
larger-scale environments.

Index Terms—Convolutional neural networks, delay estima-
tion, localization, underwater acoustics.

I. INTRODUCTION

Estimation of the reflective boundaries in reverberant en-
vironments is an important yet difficult task for underwater
and indoor acoustics [1]—[3], that allows the use of non-line
of sight (NLOS) arrivals to enhance localization performance
[4]. Over short ranges, these boundaries can be approximated
as planar, which yield mirror images of the true emitter as
‘virtual’ emitters. Thus, given a known or estimated emitter
location, and known receiver locations, a variety of methods
can be used for boundary estimation through virtual emitter
localization [5], [6], [7]. However, low signal-to-noise ratios
(SNRs) [8] are not addressed by these existing methods. They
also generally require the solution of a difficult combinatorial
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Fig. 1: General simulation setting: each NLOS arrival yields
an ellipse whose common tangents are reflective boundaries.

echo labeling problem to differentiate between the boundaries
[9], complicated by missing or spurious echoes.

In previous work [10], [11], we introduced the convolutional
neural network-based (CNN) Neuro-COTANS method for
boundary estimation, to overcome these challenges. Neuro-
COTANS leveraged the fact that in 2D, a NLOS arrival
corresponds to an ellipse with a path distance of dios,
whose foci are the emitter and receiver locations. Multiple
receivers define multiple ellipses whose common tangents are
the boundaries, as in Fig. 1. We parametrized the tangents to
ellipses by their range p and azimuth 6 [4], calling this p- and
f-space the common tangents to spheroids (COTANS) domain.
Creating COTANS images where each ellipse corresponded
to a curve as in Fig. 2, we trained an AlexNet [12] neural
network (NN) to estimate boundaries from the unlabeled
NLOS distances. Neuro-COTANS proved more robust than
methods which applied heuristic smoothing filters to COTANS
images [13], [14], [15]. It also outperformed the state-of-the-
art least-squares (LS) [5] and Euclidean distance matrices
(EDM) [16], [6] methods by up to 6 dB SNR, even when
they were advantageously initialized with the correct echoes.

While Neuro-COTANS achieved groundbreaking perfor-
mance, it had several shortcomings that motivated future work.
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One of them was that the number of boundaries had to
be assumed known. Another was that the boundaries were
assumed to be known to within 10° in azimuth, informed by
prior knowledge. These constraints meant that the NN had to
be retrained for different environments.

In this paper, we introduce U-COTANS, a U-Net [17]
method which introduces the critical operational capabilities
of estimating the number of boundaries and covering the entire
COTANS image of a given resolution and scale. We retain the
multi-scale, multi-stage framework of Neuro-COTANS [11],
while exploiting the proven capabilities of U-Nets to solve
difficult 2D estimation problems through image segmentation
[18]. Through a careful choice of training and test models, we
maintain our groundbreaking performance while incorporating
new abilities into our overall approach.

The paper is organized as follows. In Section II, we briefly
review the COTANS image generation framework introduced
in our past work. The U-COTANS method is detailed in
Section III. Simulation results are presented in Section IV,
and final remarks are given in Section V. Our code is publicly
available at https://github.com/torosarikan/U-COTANS.

II. PROBLEM FORMULATION

We continue to use the static 2D environment model that
was presented in prior work [10], [11]. There are N planar
boundaries in the environment, as described by the range
p € Ry and azimuth § € [—m,7) of their normal vector
relative to the (arbitrarily-chosen) origin. There is a single
isotropic emitter in the environment at a known location
Pe = [xe ye]T, and M isotropic receivers at known locations
Pri =[x yi]T. The speed of sound is assumed to be constant
[19]. Given the energy of a received pulse as F,., the SNR is
defined as E,. /Ny, where N is the one-sided power spectral
density of the Gaussian noise. At high SNR, the error in the
time delay estimates {7; ;} are Gaussian [20], but there is
an SNR threshold below which large ‘global errors’ occur
[21]. The COTANS transform [11] conceptualizes a boundary
that is defined by p and 6 as a point (p,6) in a COTANS
domain, and calculates the function p(#) for each of {7, ,}
[22]. Summing the resulting curves in a discretized p x 6 space
yields a COTANS image as in Fig. 2, with maxima at the true
boundaries {(p;,0;)} at high SNR.

In Neuro-COTANS [11], we used matched filtering (MF) to
produce the {7; ;}. While this was adequate for prototyping,
there are some fundamental issues with using MF for multipath
time delay estimation. In multipath environments, there is the
likelihood of overlap of different arrivals. While MF is the
maximum likelihood (ML) estimator for line of sight (LOS)
arrivals in Gaussian noise, its performance deteriorates if the
MF results of different multipath arrivals overlap. In light
of this difficulty, we instead adopt the space-alternating gen-
eralized expectation-maximization (SAGE) algorithm for the
estimation of time delays of potentially overlapping arrivals
[23]. SAGE is an extension of expectation-maximization (EM)
techniques [24], and is designed to prevent convergence to
a single copy of the emitted signal. Although omitted for
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Fig. 2: A high-SNR COTANS image with two boundaries,
with the curves from the respective boundaries properly inter-
secting at the ground-truth (p, 8) values.

brevity, SAGE does indeed yield improved estimates {7; ;}
on our datasets. In future work, new NN methods for time
delay estimation such as [25] will also be implemented.

III. U-COTANS FOR BOUNDARY ESTIMATION

In Neuro-COTANS [11], the outputs of the NN were
the boundary parameter estimates [p1 -« - pn Oy --- éN]T, each
scaled to a range of [0, 1] by dividing each p by a pmax (10
m in our case), and each 6 by 360°. We used the correct
[p1---pn 01 ---0x]" for training outputs, and training input
images as in Fig. 2 were generated by simulating scenarios
with randomized p. and {p;;}, as in Fig. 1.

Whereas Neuro-COTANS re-purposed the 8-layer AlexNet
architecture by replacing the classification layer with a regres-
sion layer [26], U-COTANS retains the established structure
of a U-Net [17], while modifying some of its hyperparameters.
Specifically, we set the number of channels to 1, the learning
rate to 0.05, and the weight decay to 0. The fundamental
innovation in U-COTANS is the use of an image segmentation
methodology, rather than a regression one. The inputs are
COTANS images as in Fig. 2, and the training outputs are
images with the same dimensions (e.g., 101 x 360), but with
pulses overlaid on the correct COTANS-domain boundary
locations. Specifically, each ground truth boundary location is
made the center of a 2D Gaussian pulse, truncated to a square
10 pixels wide, as in Fig. 3 (heuristically sized at 10 degrees
wide at a resolution of 1 degree in azimuth, as a hyperparam-
eter of U-COTANS). We call this a boundary estimate image
(BEI). As it was designed for image classification, AlexNet
was not optimized for the image regression task of [11]; but as
they are designed for image segmentation, U-Nets are indeed
an algorithmic fit for our new methodology.

The underlying idea of U-COTANS is that the BEI ap-
proximates a heatmap of the likelihood of true COTANS-
domain locations. Excepting global errors, COTANS curves
either intersect at a point and yield a pixel of high intensity, or
are superposed in the vicinity of a point and produce a region
of high intensity. The guiding observation of Neuro-COTANS
was that a regression NN could learn a high-level estimator
which could leverage this local intensity and other global
information for accurate inference. U-COTANS makes this
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Fig. 3: The BEI corresponding to the COTANS image in
Fig. 2, with Gaussian pulses at the ground-truth (p, ) values.

idea explicit: a region of high intensity pixels will correspond
to a high-intensity region in the NN output, with the rest of
the image effectively having been thresholded.

To estimate the boundaries using a BEI that is produced
from a COTANS image by U-COTANS, we find the maximum
of the BEI (indicating the presence of a pulse); then to
calculate the center of mass of the pixels around this maximum
(returning a potentially improved boundary estimate); and
finally to zero out the vicinity of this maximum and find a
new maximum in the BEI (moving to another pulse).

A. Improved environment generalization

The segmentation-based U-Net of U-COTANS offers criti-
cal advantages over the regression-based AlexNet of Neuro-
COTANS. When a NN is trained to estimate boundaries that
only come from a specific (p,#) region, the resulting NN
estimator limits its predictions to this constrained region. This
is advantageous when prior knowledge is available, leveraging
this information to improve performance. As the permissible
range of (p, 8) grows to encompass the entire COTANS image
for a given scale, however, the probability of any single pixel
being selected is reduced, and even a large training dataset
will fail to generalize to all possible environments.

In contrast, a BEI such as Fig. 3 is centered on the boundary
estimate, but also has positive values for the surrounding pixels
within a radius around this estimate. Thus, a training dataset
can cover and generalize to the entire decision space.

B. Estimation of the number of boundaries

U-COTANS also estimates the number of boundaries NV in
the environment. In Neuro-COTANS, N was assumed known
since this dictated the size of the last regression layer of the
network. U-COTANS instead allows us to use different BEIs
to estimate V. Consider the case of only one boundary being
present in the environment, and that we know that IV is a
maximum of two. Then, when we obtain time delay estimates
assuming N = 2 as in Fig. 4, only one set of COTANS curves
will result from the true multipath signal. The other set of
curves will instead be produced by random noise peaks, and
are unlikely to intersect at all. Therefore, we also train U-
COTANS with BEIs that can have only one pulse, as in Figs. 5,
so that the NN outputs not just the positions of the boundaries
but their number as well.
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Fig. 4: A COTANS image with N = 1, with one set of curves

properly intersecting at the ground-truth (p, #) value, and the

other set observed as global errors.
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Fig. 5: The BEI of the COTANS image in Fig. 4, with a
Gaussian pulse superimposed over the ground-truth (p, 6).
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IV. SIMULATION RESULTS

We first test U-COTANS in a simulation setting that is a
more generalized case of a two-boundary shallow-water un-
derwater acoustic channel, and compare it to the LS algorithm
(having observed in [11] that LS and EDM perform nearly
identically). We then test boundary number estimation for the
same environments with one or two boundaries present.

We train U-COTANS on 9 SNR levels, equally spaced in
the 13 to 21 dB SNR range (covering the medium- and high-
SNR regimes), generating 50,000 training, 10,000 validation,
and 50,000 test images per SNR. The f-parameter of each
boundary is picked with equal probability to lie in one of
the four quadrants, with the additional constraint that the two
boundaries are separated by a minimum of 30° (to match real-
life environments). Within each quadrant, 6 for that boundary
is a uniformly distributed random variable. The p-parameter
is uniformly distributed up to 8 m in each quadrant, with a
minimum p enforced with each quadrant to prevent a boundary
coming in between the receivers and the emitter (e.g., p > 3 m
in quadrant 3 for our particular simulation scenario). The p.
and {p;; } are drawn from a uniform distribution over 2 meter-
wide areas centered on the points (3.5, 0.5) m and (—2.5, 3.5)
m, respectively. Our performance metric is the range RMSE
(in m) over all N boundaries and K environment realizations
for each SNR S:

2
N K S (S
Zj:l Zk:l (Pg,k) - P;,k))
NK '

PRMSE(S) £ (D
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Fig. 7: Accuracy of estimating the number of boundaries [N

in the environment with U-COTANS.

The resulting performance curves for 6 are qualitatively similar
to the performances for p presented here.

We compare U-COTANS to LS that has been given the
advantage of initialization at the ground truth virtual emitter
locations and with the correct echo labeling. Fig. 6 shows
the average range RMSE of these methods vs. the SNR. U-
COTANS outperforms LS by a minimum of 3 dB SNR, and
performs much better in the low and high SNR regimes. The
leveling off in performance in both methods is due to specific
challenging time delay estimation scenarios where a more
advanced time delay estimation front-end may be needed for
both algorithms. Recall that since LS requires echo labeling
and random initialization that in practice can also cause large
errors, its real-life performance will be worse than in Fig. 6.

For the U-COTANS boundary estimation trials, we generate
the simulated environments with a 50% chance of having
N = 1. Our performance metric is the frequency of inaccurate
N estimates, as a percentage of the number of trials. Our
results in Fig. 7 demonstrate strong performance at medium
to high SNR for this novel capability, with perfect results
being achieved at high SNR. We observe that the performance
in Fig. 7 closely mirrors the performance curve in Fig. 6,
suggesting that the detection task of choosing N and the
estimation task of determining (p,6) for a given N are
fundamentally related. In a future study, we will investigate
the correspondence between the trials with high range RMSE
and the trials where IV is estimated incorrectly.

In a separate set of experiments omitted here for brevity,
we trained U-COTANS on environments where the boundaries
were known to within 10° in azimuth, and compared its

performance to our past Neuro-COTANS performance [11].
We observed that U-COTANS reproduced the performance of
Neuro-COTANS, performing slightly better when using SAGE
instead of MF. Although it is intuitive that two CNN methods
trained on the same dataset with the same error metric would
yield similar performances, the segmentation and regression
approaches are fundamentally different methodologies for
approaching the same task. Hence, the two NNs seem to
be learning the same correct underlying global optimization
algorithm for this task.

Finally, we conducted a real-life experiment on the data that
we had obtained from the 36-meter-wide SOARS wave tank at
the Scripps Institute of Oceanography in [11]; and found that
U-COTANS correctly identified that there were 2 boundaries
present in the environment.

V. CONCLUDING REMARKS

We propose the U-COTANS method for 2D boundary esti-
mation, as a major enhancement of the previously published
Neuro-COTANS. U-COTANS continues to deliver robust per-
formance that is superior to the state-of-the-art alternatives
such as LS. Additionally, U-COTANS no longer needs to
be re-trained for different environments and can handle any
environment of a given COTANS image scale. U-COTANS
also introduces the capability of directly estimating the number
of boundaries in a given environment from the NN results
instead of requiring other sensors or estimation front-ends,
which to the best of our knowledge is not shared by any state-
of-the-art boundary estimation methods. The results that we
have achieved bring us close to a plug-and-play environment
estimation method that can handle general 2D environments
over any SNR range and any reasonable number of boundaries.

Future work will focus in the near term on applying U-
COTANS to more than 2 boundaries and over longer distances
of up to 1 km; fundamentally, this is a straightforward exten-
sion to several additional zoomed stages, with re-training on
more environments. Another operationally important extension
will be the case of a moving emitter, which will allow for
higher performance over time due to the spatial diversity
provided by the different emitter locations. This will lead to
higher performance over time as compared to single-snapshot
environment estimation. Finally, while U-COTANS works with
a 2D setting, its operation will ultimately be extended to 3D.

U-COTANS has some advantages for estimating N (the
number of copies of the emitted signal in the received signals)
over the established information-theoretic methods such as the
Akaike information criterion (AIC) [27] and the minimum
description length (MDL) [28], for this particular problem.
These alternative methods are biased towards producing a
larger estimate for /N when the signal observation window is
longer, while our method has no such limitations. Our method
is also able to leverage, not just the received signals as is
the case for AIC and MDL, but the geometric information
encoded in the COTANS image and the accuracy of the
resulting boundary estimates. In future work, we will compare
the performances of AIC and MDL to that of U-COTANS.
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