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Communication Over Discrete Channels Subject to
State Obfuscation
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Abstract— We consider communication over a state-dependent
discrete memoryless channel subject to a constraint that the out-
put sequence must be nearly independent of the state sequence.
We consider both cases where the transmitter knows (causally
or noncausally) and where it does not know the states. When
it does not know the states, we show that capacity can increase
when the encoder uses some source of randomness that is not
shared with the decoder. We consider three different cases for the
state sequence: where it is independent and identically distributed
across channel uses, where it is quasi-static, and where it has
memory but is not quasi-static. We present single-letter capacity
formulas for most combinations of the above scenarios, and also
provide some illustrative examples.

Index Terms— Channel capacity, channels with memory, quasi-
static, state-dependent channel, state masking.

I. INTRODUCTION

STATE-DEPENDENT channels have been extensively
studied in information theory [1], [2], [3]. The present

work considers communication over a discrete state-dependent
channel, with an additional requirement that the channel state
should remain unknown to the receiver. A representative
application for such a model is a scenario where the transmitter
wishes to conceal its physical location: its location may affect
the statistics of the channel to the receiver, hence can be
modeled as a channel state.

The problem we study is closely related to “state masking”
and, to a lesser extent, “state amplification” [4], [5], [6], [7],
[8]. Consider a state-dependent discrete memoryless channel
(DMC) where, given input X = x and state S = s, the
probability for the output Y to equal y is given by W (y|x, s).
Assume that the state is independent and identically distributed
(IID) across channel uses according to a known distribution.
The state-masking constraint considered in [4] is

lim
n→∞

1
n

I(Sn; Y n) ≤ E (1)
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for some parameter E, where n denotes the number of times
the channel is used. When channel-state information (CSI) is
available noncausally to the transmitter (i.e., the transmitter
knows the realization of Sn before sending any input to the
channel), a communication rate R is achievable under the
above constraint if, and only if [4, Theorem 2]

R ≤ I(U ; Y )− I(U ; S) (2)

for some auxiliary random variable U such that U ⊸−−
(X,S) ⊸−− Y forms a Markov chain, and that

I(S; U, Y ) ≤ E. (3)

Note that (2) is the Gel’fand-Pinsker rate expression [2], while
the condition (3) concerns I(S; U, Y ) and not I(S; Y ).

In the present paper we are interested in problems where
the states must be almost completely concealed from the
receiver, namely, where the limit in (1) must equal zero.
Our capacity formula in the case where CSI is available to
the transmitter then follows almost immediately from [4].
We also consider situations where CSI is not available and
derive similar capacity formulas. As we shall see, capacity
differs between the cases where the transmitter must use
a deterministic encoder and where it may use a stochastic
encoder; we provide single-letter capacity formulas for both
cases. In all three cases, we show that capacity is not affected
by the state distribution: the state-obfuscation communication
capacity is determined by the channel law W (·|·, ·) alone.

We go beyond IID states to study two other scenarios: where
the state is quasi-static, i.e., it is randomly generated and
remains constant during the entire transmission, and where
the state has memory (while not being quasi-static). Our
motivation for studying these scenarios is two-fold. From
a practical perspective, we recall that the state can model
attributes such as the location of the sender, which should
not change fast compared to the communication timescale,
therefore IID states are not an appropriate model for such
applications. On the mathematical side, since we know that
the state distribution does not affect capacity as long as it is
IID across channel uses, it is worth understanding whether its
dependence between channel uses will affect capacity or not.

In the quasi-static scenario, we impose the state obfuscation
constraint that I(S; Y n) approach zero; note that we do not
divide it by n as in (1), the latter trivially approaches zero as
n →∞. When CSI is available to the transmitter, or when CSI
is not available and the transmitter must use a deterministic
encoder, the capacity turns out to be the same as in the IID-
state scenario. Interestingly, when CSI is not available and
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the transmitter may use a stochastic encoder, capacity can
exceed that of the IID-state scenario, as we demonstrate via
an example.

For states with memory, we restrict our attention to those for
which the conditional probability of any state realization given
the past is bounded away from zero; the state-obfuscation
constraint is (1) with E = 0, as in the IID-state case.
An example of such a state process is a time-invariant Markov
process whose transition matrix does not contain zeros.1

We show that a DMC with such a state sequence has the
same state-obfuscation communication capacity as the same
DMC with IID states when the transmitter is deterministic
without CSI, when it is stochastic without CSI, and when it is
stochastic with causal CSI. The direct parts of these capacity
results are carried over from the corresponding results on IID
states. The converse parts, however, call for some nonstandard
proof techniques.

We consider IID states in Section II, quasi-static states in
Section III, and states with memory in Section IV. We then
conclude the paper with some remarks in Section V.

II. IID STATES

Consider a DMC with input alphabet X and output alphabet
Y that is affected by a random state S, which takes values in
the set S. The sets X , Y , and S are all assumed to be finite.
The channel law is, given input x ∈ X and state s ∈ S, the
probability of the output being y ∈ Y is W (y|x, s).

In this section, we assume that the states are drawn IID
across channel uses following a probability mass function PS .
Without loss of generality, we assume throughout that

supp(PS) = S. (4)

The message M to be communicated is drawn from the set
{1, . . . , ⌊2nR⌋}, where n denotes the total number of channel
uses, and R the rate of communication in bits per channel use.
The message is fed to an encoder, which in turn produces the
channel input sequence xn. We consider both cases where the
state realizations are known and unknown to the transmitter,
respectively. When the states are unknown to the transmitter,
we further distinguish between deterministic and stochastic
encoders; details are provided below. In all cases, the receiver
tries to guess the message based on the channel outputs yn

(the receiver has no CSI).
The state-obfuscation constraint we impose in the IID-state

case is

lim
n→∞

1
n

I(Sn; Y n) = 0, (5)

where the mutual information is computed for the joint distri-
bution induced by the encoder and a uniformly drawn message.
In fact, all results in this section will continue to hold when we
replace (5) by the following stronger constraint: irrespectively
of the distribution of the message, we require

I(Sn; Y n) = 0 for all n. (6)

1A simple example where the condition is not satisfied is the aforemen-
tioned quasi-static states. Recall that (1) with E = 0 is trivially satisfied by
quasi-static states.

In the following, we shall prove the stronger versions of both
converse and direct parts of our results, namely, we shall
prove converse results under the constraint (5) for a uniform
message, and direct results under the constraint (6) for any
message distribution. But, for simplicity, the theorems will be
presented only under the former constraint.

A. With CSI

We consider both noncausal and causal CSI. A deterministic
encoder with noncausal CSI is a mapping

fNC-CSI : {1, . . . , ⌊2nR⌋} × Sn → Xn, (m, sn) 7→ xn. (7)

The transmitter can use a stochastic encoder that is chosen
randomly according to some distribution over all mappings of
the form (7). The distribution is known to the decoder, but the
actual choice is not.

A deterministic encoder with causal CSI is a sequence of
mappings

fC-CSI
i : {1, . . . , ⌊2nR⌋} × Si → X , (m, si) 7→ xi, (8)

i ∈ {1, . . . , n}. The transmitter can use a stochastic encoder
that is chosen randomly according to some distribution over all
sequences of mappings of the form (8). Again, the distribution
but not the choice is known to the decoder.

In both the noncausal and the causal cases, the decoder is
a deterministic mapping2

g : Yn → {1, . . . , ⌊2nR⌋}, yn 7→ m̂. (9)

In both cases, a rate R is said to be achievable if there exists
a sequence of pairs of stochastic encoders and (deterministic)
decoders as above such that, for a message M uniformly drawn
from {1, . . . , ⌊2nR⌋}, the probability that M̂ ̸= M tends to
zero as n grows to infinity, and, at the same time, (5) is
satisfied. As usual, capacity is defined as the supremum over
all achievable rates.

Theorem 1: The capacity of the channel when the transmit-
ter has either noncausal or causal CSI is the same, and is given
by

C IID
CSI = sup I(U ; Y ), (10)

where U takes values in some finite set U , and the supremum
is taken over joint probability distributions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s) (11)

subject to

I(S; U, Y ) = 0. (12)

Proof: It suffices to prove the converse in the noncausal
case and the direct part in the causal case. The former follows
directly from [4, Theorem 2] by noting that (12) requires that
U be independent of S.

To prove the direct part in the causal case, fix any joint
distribution of the form (11), generate a random codebook
{un(1), . . . , un(⌊2nR⌋)} IID according to PU , and reveal it to

2It is straightforward to show that there is no advantage in using a stochastic
decoder.
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the decoder. To send m, the encoder picks its input at time i,
i ∈ {1, . . . , n}, to be xi with probability PX|US(xi|ui(m), si)
independently (conditional on un(m) and sn) of the inputs at
other times.

We next show that, with probability one, the code generated
as above satisfies (6). Note that (12) implies

PY |US(y|u, s) = PY |U (y|u) (13)

for all s, u, y such that PSUY (s, u, y) > 0. When the code
is used to transmit any message M = m, the probability of
Y n = yn and Sn = sn, for any yn and sn, can be written as

Pr(Sn = sn, Y n = yn|M = m)

=
n∏

i=1

PS(si)PY |US(y|ui(m), si) (14)

=
n∏

i=1

PS(si) ·
n∏

i=1

PY |U (yi|ui(m)). (15)

Clearly, for any m and any n,

I(Sn; Y n|M = m) = 0. (16)

It then follows that, irrespectively of the distribution of M ,

I(Sn; Y n) ≤ I(Sn; Y n, M) (17)
= I(Sn; M) + I(Sn; Y n|M) (18)
= 0. (19)

It remains to analyze the probability of a decoding error,
which is standard. Consider a channel whose input alphabet
is U , whose output alphabet is Y , and whose transition law is
given by PY |U (so X becomes part of the channel). Applying
the standard proof as in, e.g., [9], to this new channel,
we conclude that, for all R < I(U ; Y ), there exists a sequence
of codes (with nonzero probability of being generated) whose
maximum error probability tends to zero as n tends to infinity.
It then follows that the average error probability must also tend
to zero for any message distribution.

B. No CSI, Deterministic Encoder

We next consider the case where no CSI is available to
the transmitter, and where the encoder must be deterministic.
Thus, instead of (7) or (8), the encoder is a deterministic
mapping

f det : {1, . . . , ⌊2nR⌋} → Xn, m 7→ xn. (20)

The decoder remains to be of the form (9). Capacity is defined
as in Section II-A, where the encoder with CSI is replaced by
the deterministic encoder without CSI (20).

Theorem 2: When the transmitter has no CSI and must use
a deterministic encoder, the capacity is given by

C IID
det = sup I(X; Y ), (21)

where the supremum is taken over joint distributions of the
form

PS(s)PX(x)W (y|x, s) (22)

subject to

I(S; X,Y ) = 0. (23)

Proof: For the direct part, we generate a codebook
{xn(1), . . . , xn(⌊2nR⌋)} by generating each codeword IID
according to PX . The analysis is a straightforward modifi-
cation of that in the proof of Theorem 1 and hence omitted.

For converse, take any sequence of codes with vanishing
error probability as n → ∞ and satisfying (5). By the fact
that Xn is a deterministic function of the message M , and by
Fano’s inequality, we have

H(Xn|Y n) ≤ H(M |Y n) ≤ nϵn (24)

for some ϵn ↓ 0 as n →∞. We thus have

I(Sn; Xn, Y n) = I(Sn; Xn|Y n) + I(Sn; Y n) (25)
≤ H(Xn|Y n) + I(Sn; Y n) (26)
≤ n(ϵn + ϵ′n), (27)

where ϵ′n ↓ 0 as n →∞, and the last step follows by (24) and
the constraint (5). We also have

I(Sn; Xn, Y n) = H(Sn)−H(Sn|Xn, Y n) (28)

=
n∑

i=1

H(Si)−H(Si|Xn, Y n, Si−1) (29)

≥
n∑

i=1

I(Si; Xi, Yi) (30)

≥ nI(S; X̄, Ȳ ), (31)

where X̄ denotes a random variable whose distribution is
the average of the marginal distributions for every Xi, i =
1, . . . , n, and Ȳ is the output corresponding to X̄ . Here, the
last step follows because the distributions for S1, . . . , Sn are
identical, and by the convexity of mutual information in the
conditional distribution of (X, Y ) given S. Combining (27)
and (31) we obtain

I(S; X̄, Ȳ ) ≤ ϵn + ϵ′n. (32)

But by the standard converse proof procedure (see, e.g., [9]),

R ≤ I(X̄; Ȳ ) + ϵ′′n, (33)

where ϵ′′n ↓ 0 as n →∞. So combining (32) and (33), noting
that both I(S; X̄, Ȳ ) and I(X̄; Ȳ ) are continuous in PX̄ for
fixed PS and W (·|·, ·), and letting n → ∞, we obtain that
C IID

det is upper-bounded by the right-hand side of (21). This
concludes the converse part of the proof.

C. No CSI, Stochastic Encoder

Next we consider the case where the transmitter has no CSI,
but is allowed to use a stochastic encoder, which is chosen
randomly according to some distribution over all mappings of
the form (20). The receiver knows the distribution according
to which the mapping is chosen, but not the actual choice
by the transmitter. The decoder is, as before, a mapping of
the form (9). Capacity is defined as in Section II-A with the
above-described encoder.
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Theorem 3: When the transmitter has no CSI but can use
a stochastic encoder, the capacity is given by

C IID
sto = sup I(U ; Y ), (34)

where U takes values in some finite set U , and the supremum
is taken over joint distributions of the form

PS(s)PU (u)PX|U (x|u)W (y|x, s) (35)

subject to

I(S; U, Y ) = 0. (36)

Proof: Achievability is proven by generating a codebook
{un(1), . . . , un(⌊2nR⌋)} IID according to PU , and picking
each input symbol xi with probability PX|U (xi|ui(m)), where
m is the message to be communicated. The analysis is similar
to the previous cases and hence omitted.

To prove the converse part, we first use Fano’s inequality
to obtain, for some ϵn ↓ 0 as n →∞,

n(R− ϵn) ≤ I(M ; Y n) (37)

≤
n∑

i=1

I(M,Y i−1; Yi). (38)

We also have

I(Sn; M,Y n) = I(Sn; M |Y n) + I(Sn; Y n) (39)
≤ H(M |Y n) + I(Sn; Y n) (40)
≤ nϵ′n, (41)

where ϵ′n ↓ 0 as n → ∞. The last step follows by Fano’s
inequality and the constraint (5). On the other hand,

I(Sn; M, Y n) =
n∑

i=1

I(Si; M,Y n, Si−1) (42)

≥
n∑

i=1

I(Si; M,Y i−1, Yi). (43)

Let Ui ≜ (M,Y i−1), i = 1, . . . , n. We have shown

n∑
i=1

I(Ui; Yi) ≥ n(R− ϵn) (44)

n∑
i=1

I(Si; Ui, Yi) ≤ nϵ′n. (45)

Note that Ui is independent of Si because Sn is IID. Let T be a
time-sharing random variable that is uniformly distributed over
{1, . . . , n}, and denote S ≜ ST , Y ≜ YT , and U ≜ (UT , T ),
then

I(U ; Y ) ≥ R− ϵn (46)
I(S; U, Y ) ≤ ϵ′n. (47)

The proof is completed by letting n → ∞ and exploiting
continuity properties of the mutual information.

D. Discussion and Examples

Bounds on the cardinality of the auxiliary alphabet U in
Theorems 1 and 3 can be obtained using standard methods;
see, e.g., [3]. For example, for Theorem 1, one can show that
it suffices to have

|U| ≤ min {|X | · |S|+ 1, |Y|+ |S|} , (48)

while for Theorem 3 we only need

|U| ≤ min {|X |, |Y|}+ 1. (49)

Furthermore, in all of Theorems 1–3, the mutual information
of interest is concave in the distributions of our choice, and the
set of admissible distributions is convex, so the single-letter
capacity expressions are all computable.

Next note that the three capacities that we analyzed clearly
satisfy

C IID
CSI ≥ C IID

sto ≥ C IID
det . (50)

Their formulas can be interpreted more intuitively. We start
with the smallest: the no-CSI deterministic-encoder capacity.
The condition (23) in Theorem 2 is equivalent to the following:
the input distribution must be restricted to those symbols that
are not affected by the state S, i.e., input symbol x ∈ X can
be used (with nonzero probability) only if

W (·|x, s1) = W (·|x, s2) for all s1, s2 ∈ S. (51)

Conversely, any input distribution that only uses symbols
satisfying (51) is permissible, in the sense that it satisfies
condition (23).

Now consider the (middle) no-CSI stochastic-encoder
capacity. Condition (36) is equivalent to requiring the code-
book be restricted to symbols u ∈ U satisfying

W (·|u, s1) = W (·|u, s2) for all s1, s2 ∈ S. (52)

Here, each u corresponds to a distribution on X . Thus,
a stochastic encoder can use not only (deterministic) elements
of X , but also their mixtures.

For some channels, some input symbols do not satisfy (51),
so they cannot be used by a deterministic encoder under the
state-obfuscation constraint. But mixing these input symbols
can result in a “super symbol” u that satisfies (52), which
can be used by a stochastic encoder. This is illustrated by the
following example.

Example 4: Consider the channel depicted in Fig. 1, where
X = Y = {0, 1, 2} and S = {0, 1}. The channel law is, when
S = 0, Y = X with probability one; when S = 1, Y = 0 if
X = 0, but the other two symbols are reversed: Y = 2 if
X = 1 and Y = 1 if X = 2, all with probability one. The
distribution of S is arbitrary. A deterministic encoder can only
use the input symbol 0, hence it cannot send any information:

C IID
det = 0. (53)

A stochastic encoder can choose U ∈ {0, 1} uniformly, X =
0 with probability one if U = 0, and X = 1 or 2 equally
likely if U = 1. This achieves one bit per channel use. It is
straightforward to verify that this input strategy is optimal, i.e.,

C IID
sto = 1 bit. (54)
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Fig. 1. The channel in Example 4. All transitions are with probability one.

Fig. 2. The channel in Example 6.

For the case with CSI, where the capacity is still larger, the
encoder again can only use u if it satisfies (52), but now each
u is a mixture not of elements of X , but of mappings from S
to X . We shall present an example where C IID

CSI > C IID
sto . Before

doing so, we first make the following useful observation: the
capacity in all three cases is upper-bounded by the worst-case
capacity over s ∈ S.

Corollary 5: In all settings above, capacity is upper-
bounded by

min
s

sup
PX

I(X; Y |S = s). (55)

Proof: By (50), it suffices to prove the claim for the case
with CSI. The condition (12) implies that

I(U ; Y ) = I(U ; Y |S = s) (56)

for every s ∈ S. Hence,

C IID
CSI ≤ sup

PU ,PX|US

min
s

I(U ; Y |S = s) (57)

≤ min
s

sup
PU ,PX|U

I(U ; Y |S = s) (58)

≤ min
s

sup
PX

I(X; Y |S = s), (59)

where the last step follows because U ⊸−− (X, S) ⊸−− Y
forms a Markov chain.

Example 6: Consider a channel depicted in Fig. 2, where
X = Y = S = {0, 1}. When S = 0, the channel is a perfect
bit pipe: Y = X with probability one; when S = 1, it is a Z-
channel: W (0|0, 1) = 1 while W (0|1, 1) = p ∈ (0, 1). (Again,
the distribution of S does not matter.) Corollary 5 implies that
C IID

CSI cannot exceed the capacity of the Z-channel. We show
that they are equal. Let U be a binary random variable with
the capacity-achieving input distribution of the Z-channel. Let
PX|US be such that

PX|US(1|0, s) = 0, s = 0, 1 (60a)

PX|US(1|1, 0) = 1− p (60b)
PX|US(1|1, 1) = 1, (60c)

namely, when S = 1, we choose X = U with probability one;
when S = 0, X is produced by passing U through the above
Z-channel. By this choice, we have the same Z-channel from
U to Y irrespectively of the value of S, hence I(S; U, Y ) = 0,
whereas I(U ; Y ) equals the capacity of the Z-channel.

On the other hand, one can show that C IID
sto = 0 (which in

turn implies C IID
det = 0). To see this, observe that the auxiliary

variable u can be any mixture of X = 0 and X = 1, but the
only such mixture that is not affected by S is X = 0 with
probability one.

We shall return to this example at the end of the next
Section.

Our last observation in this section is that, in all three
studied cases, the state distribution does not affect capacity.

Corollary 7: Suppose PS and QS are two probability mass
functions on S, both with support S . When the state distri-
bution of the channel is changed from PS to QS , all three
capacities C IID

det , C IID
sto , and C IID

CSI remain unchanged.
Proof: Consider C IID

det . First notice that the set of per-
missible input distributions remains unchanged when PS is
replaced by QS . Indeed, an input distribution is permissible if
and only if it only uses symbols that satisfy (51). Furthermore,
for such an input distribution, I(X; Y ) is not affected by the
state distribution. This is because I(X; Y |S = s) is the same
for all s ∈ S. Recalling Theorem 2, we can then conclude that
C IID

det indeed remains unchanged.
The proofs for the other two capacities are similar and

therefore omitted.

III. QUASI-STATIC STATES

Consider again a state-dependent DMC with input alphabet
X , output alphabet Y , state alphabet S, and channel law
W (y|x, s), x ∈ X , y ∈ Y , s ∈ S . In this section, we assume
the state to be quasi-static instead of IID. This means the state
is generated randomly according to a distribution PS before
communication starts, and remains the same throughout the
n channel uses when a transmission takes place. We again
assume (4) to hold.

As in the previous section, the message to be communicated
is drawn from the set {1, . . . , ⌊2nR⌋}, and we consider three
different settings for the encoder: with CSI, deterministic
without CSI, and stochastic without CSI. The decoder is, as in
Section II, a mapping from yn to a guess of the message.

For state obfuscation, we now require, for a uniformly
drawn message,

lim
n→∞

I(S; Y n) = 0. (61)

(Note that the mutual information is not divided by n.) All our
claims in this section will continue to hold under the stronger
condition that, irrespectively of the message distribution,

I(S; Y n) = 0 for all n. (62)

Indeed, we shall prove converse results under (61) and direct
results under (62).
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In all three settings, we define capacity as the supre-
mum over all rates for which one can find a sequence of
encoder-decoder pairs such that (61) is satisfied while the
decoding error probability will approach zero when n grows
large. Note that this definition, together with (4), requires that
the error probability be small conditional on S = s for every
s ∈ S.

Remark 8: Since our channel model is not information
stable [10], there is in general a tradeoff between outage
probability and supportable rate, as in, e.g., [11]. Indeed,
allowing a nonvanishing error probability can in some cases
increase the maximum possible communication rate, as we see
in the following simple example: When S = 0, the channel
is a perfect bit pipe; when S = 1, Y is a uniform binary
random variable and is independent of X . By sending uncoded
bits, we can send one bit per use of this channel, such that
I(S; Y n) = 0, and the probability of correct decoding is
approximately PS(0). However, when we require the error
probability to vanish as n →∞ (as in our analysis), capacity
is clearly zero (even without a state obfuscation constraint).

A. With CSI

When CSI is available to the transmitter,3 the encoder is a
possibly random mapping from (s, m) to xn, where m denotes
the message and xn the input sequence. The capacity in this
case is the same for quasi-static and for IID states:

Theorem 9: For any DMC with transition law W (·|·, ·) and
state distribution PS , the capacity when S is quasi-static and
when CSI is available to the transmitter is

Cstatic
CSI = C IID

CSI, (63)

where C IID
CSI is given by Theorem 1. Furthermore, Cstatic

CSI does
not depend on PS (as long as supp(PS) = S).

Proof: The direct part of the proof is very similar to that
for Theorem 1. Fix a joint distribution of the form (11). The
codebook {un(1), . . . , un(⌊2nR⌋)} is generated in the same
way as in the proof of Theorem 1. To send message m,
the encoder picks input at time i to be xi with probability
PX|US(xi|ui(m), s), where s is the state. To see that (62) is
satisfied, we write, for every m ∈ {1, . . . , ⌊2nR⌋}, s ∈ S, and
yn ∈ Yn,

Pr(S = s, Y n = yn|M = m)

= PS(s)
n∏

i=1

PY |US(y|ui(m), s) (64)

= PS(s)
n∏

i=1

PY |U (y|ui(m)). (65)

This shows that I(S; Y n|M = m) = 0, which in turn implies
I(S; Y n) = 0.

We next recall that (12) implies that PY |US does not depend
on S. Therefore, even though S is quasi-static and not ergodic,
the channel from U to Y is memoryless under such a joint
distribution. Thus we can apply without change the error

3Since the state remains constant during transmission, there is no difference
between causal and noncausal CSI.

probability analysis used in the proof of Theorem 1, which
completes the direct part.

It remains to prove the converse. To this end, we define
auxiliary random variables

Ui ≜ (M,Y i−1), i = 1, . . . , n. (66)

Using Fano’s inequality and the chain rule, we have, for some
ϵn ↓ 0 as n →∞,

n(R− ϵn) ≤ I(M ; Y n) (67)

≤
n∑

i=1

I(M,Y i−1; Yi) (68)

=
n∑

i=1

I(Ui; Yi). (69)

We next show that I(S; Ui, Yi) must tend to zero as n →∞
for every i. Clearly,

I(S; Ui, Yi) = I(S; M,Y i) ≤ I(S; M, Y n), (70)

so it suffices to prove that I(S; M, Y n) must tend to zero as
n grows large. To this end, define a binary random variable
F that equals 0 when decoding is correct and equals 1 when
decoding is incorrect. Then we have

I(S; M,Y n)
= I(S; Y n) + I(S; M |Y n) (71)
= I(S; Y n) + I(S; M,F |Y n) (72)
= I(S; Y n) + I(S; F |Y n) + I(S; M |Y n, F ) (73)
≤ I(S; Y n) + H(F ) + I(S; M |Y n, F ). (74)

The first two terms on the right-hand side of (74) both tend
to zero as n → ∞, the first by (61), and the second because
the probability of a decoding error must tend to zero. For the
last term, we have

I(S; M |Y n, F )

= PF (0)
∑
yn

Pr(Y n = yn|F = 0)I(S; M |Y n = yn, F = 0)

+PF (1)
∑
yn

Pr(Y n = yn|F =1)I(S; M |Y n = yn, F = 1)

(75)

≤ PF (0)
∑
yn

Pr(Y n = yn|F = 0) · 0

+ PF (1)
∑
yn

Pr(Y n = yn|F = 1) · log |S| (76)

= PF (1) log |S|, (77)

which also must tend to zero as n →∞ because PF (1) must
tend to zero. Hence, as n → ∞, the right-hand side of (74)
must tend to zero, and consequently I(S; Ui, Yi) must tend
to zero for every i. This, together with (69) and a continuity
argument, completes the converse.
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B. No CSI, Deterministic Encoder

Assume now that the encoder must be a deterministic
mapping from the message m to an input sequence xn as
in (20). The capacity is again the same as in the IID-state
case.

Theorem 10: For any W (·|·, ·) and PS , the capacity when
S is quasi-static, and when the transmitter has no CSI and
must use a deterministic encoder, is

Cstatic
det = C IID

det , (78)

where C IID
det is given in Theorem 2.

Proof: The direct part is essentially the same as before
and omitted. For converse, we have, for every i ∈ {1, . . . , n},

I(S; Xi, Yi) ≤ I(S; Xi, Y
n) (79)

= I(S; Y n) + I(S; Xi|Y n) (80)
≤ I(S; Y n) + H(Xi|Y n). (81)

Since the encoder is deterministic, the decoder should be able
to correctly guess every Xi from Y n (by first guessing M )
with high probability. By Fano’s inequality, H(Xi|Y n) must
vanish together with the error probability. Hence, for every i,

lim
n→∞

I(S; Xi, Yi) = 0. (82)

Next consider the communication rate R. By Fano’s
inequality, for some vanishing ϵn,

n(R− ϵn) ≤ I(Xn; Y n) (83)
≤ I(Xn, S; Y n) (84)

≤
n∑

i=1

I
(
Xn, S, Y i−1; Yi

)
(85)

=
n∑

i=1

I(Xi, S; Yi) (86)

≤
n∑

i=1

I(Xi; Yi) + I(S; Xi, Yi). (87)

Combining (82) and (87) and letting n → ∞ complete the
converse.

C. No CSI, Stochastic Encoder: Examples

When the transmitter has no CSI, a stochastic encoder is
a random mapping from m to xn, as in Section II-C. The
decoder knows the distribution used by the stochastic encoder,
but not which codebook is chosen. Denote the capacity in
this case subject to (61) by Cstatic

sto . We have not been able to
develop a single-letter expression for Cstatic

sto . It is straightfor-
ward to verify that the direct part of Theorem 3 is still valid.
We thus have

C IID
sto ≤ Cstatic

sto ≤ Cstatic
CSI (= C IID

CSI), (88)

where the second inequality follows because additional infor-
mation cannot reduce capacity. Both inequalities in (88) can
be strict, as we show via the next two examples. In particular,
unlike the previous two cases, here capacity need not be the
same for quasi-static and for IID states.

Fig. 3. The channel in Example 11.

Example 11: Let X = Y = S = {0, 1}. When S = 0 the
channel is a noiseless bit pipe; when S = 1 the bit is
flipped at the output with probability one; see Fig. 3. We have
C IID

sto = 0 because, without CSI and when the states are IID,
it is impossible for the transmitter to send any information,
even without the constraint (5). We have

Cstatic
sto = 1 bit. (89)

Indeed, consider the following simple scheme. The transmitter
generates a random variable A uniformly over {0, 1}. To send
(n−1) information bits (B1, . . . , Bn−1) over n channel uses,
it sends

X1 = A (90)
Xi = Bi−1 ⊕A, i = 2, . . . , n. (91)

The output string is then given by

Y1 = A⊕ S (92)
Yi = Bi−1 ⊕A⊕ S, i = 2, . . . , n. (93)

It is IID and uniform irrespectively of the value of S,
so I(S; Y n) = 0. The receiver can recover all information
bits by computing

Bi = Yi+1 ⊕ Y1, i = 1, . . . , n− 1. (94)

Example 12: Consider the same channel as in Example 6
and Fig. 2, except that now the state remains the same for all
n channel uses. Recall that C IID

CSI equals the capacity of the
Z-channel on the right-hand side of Fig. 2; by Theorem 9,
so does Cstatic

CSI . We shall show that

Cstatic
sto = 0. (95)

To this end, consider any sequence of encoder-decoder pairs,
and define

An ≜
n∑

i=1

Xi (96)

Bn ≜
n∑

i=1

Yi. (97)

Further define

α ≜ P - lim sup
n→∞

An

n
, (98)

where P - lim sup denotes the limit-supremum in probability:
α is the smallest real number for which the probability that
An

n > α tends to zero as n → ∞. Assume that α > 0. Note
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that, when S = 0, Bn = An with probability one. Thus we
have

β ≜ lim sup
n→∞

Pr
(

Bn

n
≥
(
1− p

2

)
α

∣∣∣∣S = 0
)

> 0. (99)

When S = 1, Bn is conditionally a binomial distribution with
parameters An and p, therefore

P - lim sup
n→∞

(
Bn

n

∣∣∣∣S = 1
)

= (1− p)α. (100)

This implies

lim
n→∞

Pr
(

Bn

n
≥
(
1− p

2

)
α

∣∣∣∣S = 1
)

= 0. (101)

Let δ(·, ·) denote the total variation distance between two
probability distributions. It follows from (99) and (101) that

lim sup
n→∞

δ
(
PBn|S=0, PBn|S=1

)
≥ β. (102)

By Pinsker’s inequality and the data processing inequality [9],
this further implies that

lim sup
n→∞

I(S; Y n) ≥ lim sup
n→∞

I(S; Bn) ≥ 2β2. (103)

Thus the assumption that α > 0 is incompatible with
the requirement (61); in other words, state obfuscation (61)
requires that α = 0. But, clearly, having α = 0 does not permit
communication at a positive rate. We have thus proven (95).

IV. STATES WITH MEMORY

Consider the same state-dependent DMC as in the previous
sections. We now turn to the situation where the state sequence
Sn is neither IID nor quasi-static. We make the following
technical assumption: there exists some a > 0 such that, for
all i ∈ Z+ and all si ∈ Si,

Pr
(
Si = si

∣∣Si−1 = si−1
)
≥ a. (104)

Aside from (104), we do not make any further assumptions
on Sn, such as stationarity or ergodicity.

For state obfuscation, we impose the same requirement as
in the IID-state case, i.e., (5). We consider the same three
types of encoders as in the previous sections, namely, with
CSI, deterministic without CSI, and stochastic without CSI.
The decoder is also of the same form as in the previous
sections. A rate is said to be achievable if there exists a
sequence of encoder-decoder pairs such that (5) is satis-
fied while the decoding error probability approaches zero
as n →∞.

By the same arguments as in Section III, we can easily see
that the achievability schemes used in Section II continue to
work when the states have memory, and that these schemes
even satisfy the stronger requirement that I(Sn; Y n) = 0 for
all n. This means that, for every type of encoders, the capacity
of a channel with states satisfying (104) is larger than or equal
to the corresponding capacity when the states are IID. In the
rest of this section we shall not repeat these achievability
arguments.

In this section, we change the order to first study the
cases where the transmitter has no CSI and uses deterministic

and stochastic encoders, respectively. We then study the case
where the transmitter has causal CSI. In all these three
cases, we show that capacity for any channel and any state
process satisfying (104) is the same as in the corresponding
IID-state cases. A single-letter expression for the capacity
when the transmitter has noncausal CSI remains an open
problem.

A. No CSI, Deterministic Encoder

In the no-CSI, deterministic-encoder case, capacity for any
state process satisfying (104) is the same as C IID

det . We note
that (104) allows the marginal distributions for each Si to be
different, therefore I(S; X, Y ) in (23) is not properly defined
under (104). In the following theorem we replace (23) by its
equivalent form, discussed in Section II-D.

Theorem 13: For any state sequence satisfying (104), the
capacity when the transmitter has no CSI and must use a
deterministic encoder, under the constraint (5), is equal to

Cmem
det = C IID

det = sup
supp(PX)⊆X̃

I(X; Y ), (105)

where

X̃ ≜ {x ∈ X : W (·|x, s1) = W (·|x, s2) for all s1, s2 ∈ S} .
(106)

Proof: As discussed earlier, we shall not repeat the direct
part. For the converse part, take any sequence of codes that
has vanishing error probability and satisfies (5). Like (27),
we have

I(Sn; Xn, Y n) ≤ n(ϵn + ϵ′n), (107)

where both ϵn and ϵ′n tend to zero as n →∞. Using the chain
rule, we lower-bound the left-hand side of (107) as

I(Sn; Xn, Y n) =
n∑

i=1

I(Si; Xn, Y n|Si−1) (108)

≥
n∑

i=1

I(Si; Xi, Yi|Si−1). (109)

To transform the above bound into one that involves∑n
i=1 I(Si; Xi, Yi) (without the conditioning), we observe the

following. For any i ∈ {1, . . . , n} and si−1 ∈ Si−1,

I(Si; Xi, Yi)

=
∑

s

PSi
(s)D

(
PXiYi|Si=s

∥∥PXiYi

)
(110)

=
∑

s

PSi
(s)D

(
PXiYi|Si=s

∥∥PXiYi|Si−1=si−1

)
−D

(
PXiYi

∥∥PXiYi|Si−1=si−1

)
(111)

≤
∑

s

PSi
(s)D

(
PXiYi|Si=s

∥∥PXiYi|Si−1=si−1

)
(112)

≤
∑

s

1− a

a
PSi|Si−1(s|si−1)

·D
(
PXiYi|Si=s

∥∥PXiYi|Si−1=si−1

)
(113)

=
1− a

a
I(Si; Xi, Yi|Si−1 = si−1). (114)
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Here, (113) follows by the assumption (104), and
because (104) further implies PSi(s) ≤ 1 − a; and (114)
follows because Si−1 ⊸−− Si ⊸−− (Xi, Yi) forms a Markov
chain. Averaging the above over si−1, summing it over i, and
recalling (107) and (109), we obtain

n∑
i=1

I(Si; Xi, Yi) ≤
n∑

i=1

1− a

a
I(Si; Xi, Yi|Si−1) (115)

≤ 1− a

a
· n(ϵn + ϵ′n). (116)

On the other hand, starting with a standard argument using
Fano’s inequality, we have, for some ϵ′′n that tends to zero as
n →∞,

n(R− ϵ′′n) ≤ I(Xn; Y n) (117)
≤ I(Xn, Sn; Y n) (118)

≤
n∑

i=1

I(Xn, Sn, Y i−1; Yi) (119)

=
n∑

i=1

I(Xi, Si; Yi) (120)

≤
n∑

i=1

I(Xi; Yi) +
n∑

i=1

I(Si; Xi, Yi) (121)

≤
n∑

i=1

I(Xi; Yi) +
1− a

a
· n(ϵn + ϵ′n), (122)

where the last step follows from (116).
The proof is essentially completed by combining (116)

and (122) and letting n → ∞, but there are some additional
technicalities. Since the marginals of Si, i = 1, . . . , n are
not specified and need not be the same, we cannot apply a
convexity argument to the left-hand side of (116), as we did
in the proof of Theorem 2. Instead, we make an argument via
the total variation distance. We present this remaining part of
the proof in the Appendix.

B. No CSI, Stochastic Encoder

Like in the previous case, here capacity for any state process
satisfying (104) is the same as in the IID-state case. Again,
instead of (34), we express this capacity in an equivalent form,
following the discussion in Section II-D.

Theorem 14: For any state sequence satisfying (104), the
capacity when the transmitter has no CSI and may use a
stochastic encoder, under constraint (5), is equal to

Cmem
sto = C IID

sto = sup I(U ; Y ), (123)

where the supremum is taken over a choice of finite set
U , distribution PU on U , and conditional distribution PX|U ,
satisfying, for all s1, s2 ∈ S, and for all u ∈ U such that
PU (u) > 0,∑

x

PX|U (x|u)W (·|x, s1) =
∑

x

PX|U (x|u)W (·|x, s2),

(124)

and the conditional distribution PY |U=u is (124) computed for
any s ∈ S.

Proof: The direct part is omitted. To prove the converse
part, let T be a random variable uniformly distributed over
{1, . . . , n}, and define

Ui ≜ (M,Si−1, Y i−1), i = 1, . . . , n (125)

U ≜ (UT , T ) (126)

S ≜ ST (127)

Y ≜ YT . (128)

Note that (M,Y i−1) ⊸−− Si−1 ⊸−− Si forms a Markov
chain, hence (104) implies

PS|U (s|u) ≥ a for all s ∈ S, u ∈ U . (129)

By Fano’s inequality, we have, for some ϵn that tends to zero
as n →∞,

n(R− ϵn)

≤ I(M ; Y n) (130)

=
n∑

i=1

I(M ; Yi|Y i−1) (131)

≤
n∑

i=1

I(M,Si; Yi|Y i−1) (132)

=
n∑

i=1

I(Si; Yi|Y i−1) +
n∑

i=1

I(M ; Yi|Y i−1, Si) (133)

≤
n∑

i=1

I(Si; Yi|Y i−1) +
n∑

i=1

I(Ui; Yi|Si). (134)

The first summation on the right-hand side of (134) can be
bounded using the condition (5): for some ϵ′n that tends to
zero as n →∞,

nϵ′n ≥ I(Sn; Y n) (135)

=
n∑

i=1

I(Sn; Yi|Y i−1) (136)

≥
n∑

i=1

I(Si; Yi|Y i−1). (137)

Combining (134) and (137), we obtain

R− ϵn − ϵ′n ≤
1
n

n∑
i=1

I(Ui; Yi|Si) (138)

= I(UT ; YT |ST , T ) (139)

≤ I(UT , T ; YT |ST ) (140)

= I(U ; Y |S). (141)

On the other hand, starting with a bound like (41), we have,
for some ϵ′′n that tends to zero as n →∞,

nϵ′′n ≥ I(Sn; M,Y n) (142)

=
n∑

i=1

I(Si; M, Y n|Si−1) (143)

≥
n∑

i=1

I(Si; M, Y i|Si−1) (144)
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≥
n∑

i=1

I(Si; Yi|Ui) (145)

= nI(ST ; YT |UT , T ) (146)

= nI(S; Y |U). (147)

Combining (141) and (147), recalling (129), and letting n
tend to infinity, we obtain that the state-obfuscation capacity
is upper-bounded by

sup I(U ; Y |S) (148)

over distributions of the form (note the Markov chain Si ⊸−−
(M, Y i−1, Si−1) ⊸−− Xi)

PS(s)PU |S(u|s)PX|U (x|u)W (y|x, s) (149)

subject to

PS|U (s|u) ≥ a for all s, u (150)

I(S; Y |U) = 0. (151)

It remains to reduce (148)–(151) to the claimed expression.
To this end, note that (150) and (151) together imply that, for
every u ∈ U with PU (u) > 0, and for every s ∈ S,

PY |US(y|u, s) = PY |U (y|u). (152)

Also note that, by (149),

PY |US(y|u, s) =
∑

x

PX|U (u)W (y|x, s). (153)

Thus, (152) is a constraint on the choice of U and PX|U ;
whether it is satisfied or not is not affected by the choice of
PU |S . We now have

I(U ; Y |S)

=
∑

s

PS(s)
∑

u

PU |S(u|s)

·D

(
PY |US(·|u, s)

∥∥∥∥∥∑
u′

PU |S(u′|s)PY |US(·|u′, s)

)
(154)

=
∑

s

PS(s)
∑

u

PU |S(u|s)

·D

(
PY |U (·|u)

∥∥∥∥∥∑
u′

PU |S(u′|s)PY |U (·|u′)

)
(155)

≤
∑

s

PS(s) sup
PU|S(·|s)

I
(
PU |S(·|s), PY |U

)
(156)

= sup
U⊥⊥S

I(PU , PY |U ), (157)

where in the last two lines we use I(P,W ) to denote the
mutual information computed according to input distribution
P and transition law W . We thus obtain that (148) is upper-
bounded by

sup I(U ; Y ) (158)

over distributions of the form

PS(s)PU (u)PX|U (x|u)W (y|x, s) (159)

with the condition∑
x

PX|U (u)W (y|x, s) = PY |U (y|u)

for all u, y, s with PU (u) > 0, (160)

which is equivalent to the claimed capacity expression.
Remark 15: The role played by the condition (104) and its

consequence (129) in the proof is the following: they require
that (152) must hold for every s. Without (129), there could
be a pair (u, s) with PS|U (s|u) = 0, so it would be possible
to have PY |US(·|u, s) ̸= PY |U (·|u), but PS(s) ̸= 0, then (155)
need not hold.

C. Causal CSI

When the transmitter has causal CSI, the encoder is a
sequence of mappings: at time i, it maps the message m
and the states si to the input symbol xi. This mapping may
be stochastic, i.e., the encoder may choose xi according to
a certain distribution conditional on m and si. Capacity is
defined in the same way as before, and equals the capacity
when the states are IID and with (causal or noncausal) CSI at
the transmitter.

Theorem 16: For any state sequence satisfying (104), the
capacity when the transmitter has causal CSI, under con-
straint (5), is equal to

Cmem
C-CSI = C IID

CSI = sup I(U ; Y ), (161)

where the supremum is taken over a choice of finite set U ,
distribution PU on U , and conditional distribution PX|US ,
satisfying, for all s1, s2 ∈ S, and for all u ∈ U such that
PU (u) > 0,∑

x

PX|US(x|u, s1)W (·|x, s1)

=
∑

x

PX|US(x|u, s2)W (·|x, s2), (162)

and the conditional distribution PY |U=u in (161) is computed
for any s1 or s2.

Proof: The proof is the same as the proof of Theorem 14,
except that (149) is replaced by the joint distribution

PS(s)PU |S(u|s)PX|US(x|u, s)W (y|x, s). (163)

Remark 17: The reason why the above proof does not apply
to noncausal CSI is that, with noncausal CSI, the Markov chain
(M, Y i−1) ⊸−− Si−1 ⊸−− Si no longer holds, so we can no
longer establish (129).

V. CONCLUDING REMARKS

We have presented information-theoretic capacity expres-
sions for several instances of communication subject to state
obfuscation. The case where the state is quasi-static and
unknown to the transmitter, and where the transmitter can use
a stochastic encoder, is yet unsolved. We have demonstrated
via examples that the capacity in this case differs from both
the IID-state no-CSI stochastic-encoder case and the quasi-
static-state with-CSI case. Another unsolved case is where the
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states have memory, and where noncausal CSI is available at
the encoder; in this case we do not know whether capacity
differs from the corresponding IID-state case or not.

Our capacity results for IID states, specifically Theorems 2
and 3, can be extended to state masking, where the con-
straint (5) is replaced by (1); we do not elaborate within the
present paper.

Partially due to the stringent state-obfuscation constraint (5)
or (61), the state distribution has limited influence on the
communication capacity. Indeed, in most cases we have stud-
ied, capacity depends on neither the marginal distribution
of the state for a specific channel use, nor the depen-
dence of states across channel uses. A notable exception is,
as mentioned above, the quasi-static-state stochastic-encoder
case.

Compared to IID or quasi-static channel states (the “com-
pound channel” is an example of the latter), states with
memory are less widely considered in the literature. The con-
verse proofs in Section IV use some nonstandard techniques.
For example, in (129), dependence between the current and
previous states is reflected as dependence between the state
and an auxiliary random variable, which plays a crucial part
in the proof.

To analyze scenarios of practical interest where the trans-
mitter wishes to guarantee a low probability of geolocation by
the receiver, one may consider channel models with contin-
uous alphabets. Our proof techniques do in general apply to
continuous-alphabet channels, although the cardinality bounds
do not, so additional work may be needed to obtain com-
putable capacity formulas.

Some practically relevant channel and state models may be
the following. In line-of-sight multiple-antenna wireless com-
munication, the state S may correspond to the phase difference
between observation at receive antennas. For free-space opti-
cal communication, S may correspond to attenuation of the
transmitted signal. Examples 6 and 12 may be considered
a first step towards modeling the latter channel. Analysis
of these and other such scenarios is the subject of ongoing
work.

APPENDIX

In this appendix we complete the proof of Theorem 13.
We continue from (116) and (122). For any x̂ ∈ X \ X̃ , let
s1, s2 ∈ S be such that

W (·|x̂, s1) ̸= W (·|x̂, s2). (164)

We have the following bound:

I(Si; Xi, Yi)

≥ PSi
(s1)D

(
PXiYi|Si=s1

∥∥PXiYi

)
+ PSi

(s2)D
(
PXiYi|Si=s2

∥∥PXiYi

)
(165)

≥ a ·D
(
PXiYi|Si=s1

∥∥PXiYi

)
+ a ·D

(
PXiYi|Si=s2

∥∥PXiYi

)
(166)

≥ 2a · δ2(PXiYi|Si=s1 , PXiYi)

+ 2a · δ2(PXiYi|Si=s2 , PXiYi
) (167)

≥ a ·
(
δ(PXiYi|Si=s1 , PXiYi) + δ(PXiYi|Si=s2 , PXiYi

)
)2

(168)

≥ a · δ(PXiYi|Si=s1 , PXiYi|Si=s2)
2 (169)

≥ a · (PXi
(x̂))2 · δ2

(
W (·|x̂, s1), W (·|x̂, s2)

)
. (170)

Here, (165) follows by dropping all s ∈ S except s1, s2; (166)
by (104); (167) by Pinsker’s inequality; (168) by simple alge-
bra; (169) by the triangle inequality for total variation distance;
and (170) by dropping all x ∈ X except x̂. Combining (116)
with (170), and letting n →∞, we see that the following must
hold:

lim
n→∞

1
n

n∑
i=1

(PXi
(x̂))2 = 0. (171)

Define

Bi ≜ 1
{

Xi /∈ X̃
}

, i = 1, . . . , n, (172)

with 1{·} denoting the indicator function. Noting(
1
n

n∑
i=1

PXi
(x̂)

)2

≤ 1
n

n∑
i=1

(PXi
(x̂))2 , (173)

and applying (171) to all x̂ ∈ X \ X̂ , we obtain

lim
n→∞

1
n

n∑
i=1

EBi = 0, (174)

We now turn back to (122). For every i ∈ {1, . . . , n},

I(Xi; Yi) = I(Xi, Bi; Yi) (175)
= I(Bi; Yi) + PBi

(1)I(Xi; Yi|Bi = 1)
+ PBi

(0)I(Xi; Yi|Bi = 0) (176)

≤ H(Bi) + PBi
(1) log |X |+ C IID

det . (177)

Plugging (174) and (177) into (122) and letting n →∞ prove
that

R ≤ C IID
det . (178)

This completes the proof.

REFERENCES

[1] C. E. Shannon, “Channels with side information at the transmitter,” IBM
J. Res. Develop., vol. 2, no. 4, pp. 289–293, Oct. 1958.

[2] S. I. Gel’fand and M. S. Pinsker, “Coding for channels with random
parameters,” Probl. Control Inf. Theory, vol. 9, no. 1, pp. 19–31, 1980.

[3] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[4] N. Merhav and S. Shamai, “Information rates subject to state
masking,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2254–2261,
Jun. 2007.

[5] Y.-H. Kim, A. Sutivong, and T. M. Cover, “State amplification,” IEEE
Trans. Inf. Theory, vol. 54, no. 5, pp. 1850–1859, May 2008.

[6] O. O. Koyluoglu, R. Soundararajan, and S. Vishwanath, “State ampli-
fication under masking constraints,” in Proc. 49th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Monticello, IL, USA, Sep. 2011,
pp. 936–943.

[7] T. A. Courtade, “Information masking and amplification: The source
coding setting,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA,
USA, Jul. 2012, pp. 189–193.

[8] M. Dikshtein and S. Shamai, “Broadcasting information subject to state
masking,” 2018, arXiv:1810.11781.

Authorized licensed use limited to: MIT. Downloaded on December 10,2024 at 19:16:49 UTC from IEEE Xplore.  Restrictions apply. 



8466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 12, DECEMBER 2024

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.,
Hoboken, NJ, USA: Wiley, 2006.

[10] M. S. Pinsker, Information and Information Stability of Random Vari-
ables and Processes. San Francisco, CA, USA: Holden-Day, 1964.
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