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Abstract—We study communication over the scalar Gaussian
fading channel subject to a state-obfuscation constraint, which
requires that the channel outputs and the fading coefficients
be almost independent. We consider two cases for the fading
coefficient: where it is independent and identically distributed in
time, and where it is quasistatic, i.e., it is randomly generated
but then remains the same during communication. For the
transmitter, we study three different scenarios: where it only has
access to the message; where it has channel-state information
about the fading coefficient; and where it has access to feedback.
We establish conditions for the communication capacity subject
to obfuscation to be non-zero, and analyze this capacity in the
high signal-to-noise ratio regime.

Index Terms—Physical-layer security and privacy, Shannon
theory, Gaussian channels, noncoherent communication.

I. INTRODUCTION

In wireless communication, inherent imperfections of
chipsets affect the transmitted signal, which, combined with
the physical location of the transmitter, gives rise to a distinct
radiometric fingerprint. This fingerprint can be employed by
malicious parties to infer the transmitter’s location. Recent
studies propose practical fingerprinting solutions that can be
readily implemented in commercial off-the-shelf devices [1],
[2]. Channel state information (CSI)-based localization and
user identification have been demonstrated to be possible in
multiple scenarios, which could seriously threaten people’s
privacy at home or workplace [3]. Moreover, since these
parameters can be intercepted by gaining remote access to
the hardware (e.g., through unsecured internet connections) or
by employing low-cost sensing nodes, malicious applications
can potentially infer users’ identities and locations remotely,
exploiting their sensitive information for nefarious purposes.
Consequently, a growing number of applications aim to design
improved physical-layer waveforms that make such unautho-
rized eavesdropping tasks more difficult [3]–[7].

This paper addresses this issue from an information-
theoretic perspective by trying to answer the next question:
can we reliably communicate with a positive rate over a scalar
fading channel in such a way that the output contains almost
no information about the fading coefficients? We refer to this
condition as state obfuscation, and call the maximum achiev-
able communication rate under this condition the obfuscated
capacity.

Our investigation builds upon a recent work on communi-
cation subject to state obfuscation over discrete channels by
Wang and Wornell [8]. We aim to bridge the gap between the

This work was supported, in part, by ONR under Grant No. N000014-23-1-2803.

theoretical findings in [8] and physical channels by looking
at several variants of the Gaussian fading channel. Our main
focus is on the regime where signal-to-noise ratio (SNR) is
high; in particular, we shall study the multiplexing gain in the
obfuscated capacity in various scenarios.

The rest of the paper is organized as follows. The problem
setup is presented in Sec. II, and background material is
reviewed in Sec. III. The obfuscated capacity of the mem-
oryless fading channel is analyzed in Sec. IV, and that of the
quasistatic fading channel in Sec. V. We conclude the paper
with remarks and future research directions in Sec. VI.

Notation: Random variables are denoted using sans-serif
fonts like x, y, while their realizations are denoted with regular
italic fonts like x, y. The joint distribution of (x, y) is denoted
as Px,y. The phase of a complex number x is indicated by
∠x. We use j to denote the imaginary unit, i.e., j ≜

√
−1.

The notation [N ] refers to the set {1, . . . , N}. Throughout the
paper, o(1) terms are used to describe quantities that tend to
zero as SNR → ∞. Mutual information is represented by
I (·; ·), and differential entropy by h(·).

II. CHANNEL AND SYSTEM MODEL

In this work, we consider variants of the scalar fading
channel with additive Gaussian noise, described by

yn = hnxn + zn, n = 1, . . . , N (1)

where xn and yn are the transmitted and received signals at
time n, respectively; the additive noises {zn} are indepen-
dent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian random variables with mean zero and
variance 1

SNR . We assume zN ⊥⊥ hN and we further assume
that the fading coefficients have a bounded variance, namely
E
[
|hn|2

]
< ∞,∀n ∈ [N ]. We consider two different scenarios

regarding the distribution of the multiplicative gains {hn}. The
first scenario is where the sequence {hn} is i.i.d. and will be
referred to as the memoryless fading case. The second scenario
is where h1 = . . . = hN = h and will be referred to as the
quasistatic fading case. For the memoryless fading case, we
denote by h a random variable whose distribution is the same
as that of every hn.

We now define the communication setting.
Encoder observes a message M ∈

[
2RN

]
and generates

a codeword via a sequence of random mappings from M to
xn ∈ C, n = 1, . . . , N . The codeword xN is subject to an

20
24

 6
0t

h 
An

nu
al

 A
lle

rt
on

 C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

n,
 C

on
tr

ol
, a

nd
 C

om
pu

tin
g 

(A
lle

rt
on

) |
 9

79
-8

-3
31

5-
41

03
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AL
LE

RT
O

N
63

24
6.

20
24

.1
07

35
29

2

Authorized licensed use limited to: MIT. Downloaded on December 10,2024 at 19:21:47 UTC from IEEE Xplore.  Restrictions apply. 



average input power constraint

1

N

N∑
n=1

E
[
|xn|2

]
≤ 1

where the expectation is taken over the message, which is
drawn uniformly at random, and over the random encoding
mappings.

Some of our results are for the case where CSI is available at
the encoder. This means the input symbol xn is generated by
a random mapping from the message M and the realization
of the fading coefficients. The causal CSI case is where
xn = fn (M, hn) and the noncausal CSI case is where
xn = fn

(
M, hN

)
.1 In these cases, the average power is

averaged also over the CSI.
We shall also consider cases where there is feedback, so

xn = fn
(
M, yn−1

)
. Here, the average input power will also

be averaged over the channel outputs yn−1. In the following,
it shall be understood that, whenever feedback is not explicitly
mentioned, we assume it is not present.

Decoder receives the channel outputs yN and tries to decode
the message M. We denote the decoded message by M̂.

Obfuscation Constraint. The channel outputs are subject
to an obfuscation constraint of the form of near independence
between the sequence yN and the sequence of the channel
fading coefficients. For the memoryless fading channel, the
constraint is

lim
N→∞

1

N
I
(
yN ; hN

)
= 0 (2)

while for the quasistatic case, the constraint is

lim
N→∞

I
(
yN ; h

)
= 0. (3)

As we shall see, the results in this paper hold when we replace
the obfuscation constraints of (2) and (3) by the stronger con-
straints I

(
yN ; hN

)
= 0,∀N ≥ 1 and I

(
yN ; h

)
= 0,∀N ≥ 1,

respectively.
A rate R is said to be achievable if there exists a sequence

of length-N codes such that the obfuscation constraint—(2)
for the memoryless fading channel and (3) for the quasistatic
fading channel—is satisfied and the probability of decoding
error P

(
M̂ ̸= M

)
approaches zero as N → ∞. The obfus-

cated capacity is defined as the supremum of all achievable
rates.
Remark 1. The memoryless and quasistatic models are similar,
respectively, to the “IID state” and “constant state” cases of
discrete channels studied in [8], whereas the encoders that we
study correspond to the “with CSI” and “no CSI, stochastic
encoder” cases in [8].

III. BACKGROUND

A. The Non-Coherent Phase-Noise Channel

We shall use the capacity results on non-coherent phase-
noise channels by Lapidoth [9] and Nuriyev et al. [10]. The
memoryless phase-noise channel is the channel (1) with i.i.d.
sequence {hn} and when |h| is constant with probability (w.p.)
1. Its non-coherent capacity, denoted by Cnc(SNR), is the

1There is no distinction between the causal and non-causal CSI cases when
fading is quasistatic.

maximal achievable rate R in the same setting as we described
in the previous section, but without the obfuscation constraint.
(The terminology “non-coherent” refers to the fact that the
decoder is oblivious of the values of the sequence hN .)

Lemma 1 ( [9]). Consider the channel (1) under memoryless
fading and assume that |h| = h̃ for some positive constant h̃
w.p. 1, and that h (∠h) > −∞. Then,

Cnc(SNR) = sup
Px: E[|x|2]≤1

I (x; y)

=
1

2
log (SNR) · (1 + o(1)) .

The quasistatic phase-noise channel is the channel (1) where
hn = h,∀n ∈ [N ] and where |h| = h̃ w.p. 1. Its non-coherent
capacity is defined similarly to that in the memoryless case.

Lemma 2. Consider the channel (1) where hn = h,∀n ∈ [N ]
and assume that |h| = h̃ w.p. 1 for some positive constant h̃.
Then,

Cnc(SNR) = log (SNR) · (1 + o(1)) .

Proof. The upper bound follows trivially by classical results
on the capacity of the coherent Gaussian channel. The lower
bound follows by using the results from [10, IV.C].

B. Independence in Addition

Lemma 3. Let h, x, z ∈ C be random variables s.t. z ⊥⊥ (hx, h)
and let y = hx+ z. Then y ⊥⊥ h if and only if hx ⊥⊥ h.

Proof. Using the characteristic function to test independence
between random variables [11, Ch. 7], y ⊥⊥ h means

ϕy,h (v1, v2) = ϕy(v1)ϕh(v2) (4)

where ϕw(v) ≜ E
[
ejwv

]
and ϕw1,w2

(v1, v2) ≜
E
[
ej(w1v1+w2v2)

]
are characteristic functions of random

variables. Using the independence between (h, hx) and z we
get

ϕy,h (v1, v2) = ϕz(v1)ϕhx,h(v1, v2),

ϕy(v) = ϕhx(v)ϕz(v).

So a necessary and sufficient condition for (4) to hold is:

ϕhx,h(v1, v2) = ϕhx(v1)ϕh(v2)

which is equivalent to hx ⊥⊥ h.

The next lemma is a consequence of Lem. 3.

Lemma 4. Let h, x, z ∈ C be random variables s.t. z ⊥⊥ (hx, h)
and x ⊥⊥ h and let y = hx+z. Then y ⊥⊥ h implies that either
|h| is constant w.p. 1 or E

[
|x|2

]
= 0.

Proof. By Lem. 3, y ⊥⊥ h requires hx ⊥⊥ h, which fur-
ther implies |hx| ⊥⊥ |h|. In particular, this requires that
E
[
|hx|2

∣∣ |h|] = E
[
|x|2

]
|h|2 be independent of |h|2, which

is possible only if either |h| is constant w.p. 1 or E
[
|x|2

]
=

0.

We shall also provide an alternative proof for Lem. 4 in
App. A.
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IV. MEMORYLESS FADING

In this section, we analyze the obfuscated capacity of the
memoryless fading Gaussian channel (1), which we denote by
CIID. We prove a single-letter upper bound on CIID. We then
show that this bound is tight as SNR → ∞. We end the section
by calculating the asymptotic high-SNR obfuscated capacity
with feedback and with CSI.

First note that the upper bound below is trivial, as it holds
even without the obfuscation constraint:

CIID ≤ sup
Px: E[|x|2]≤1

I (x; y). (5)

We further have the following:

Lemma 5. The capacity CIID > 0 only if |h| is constant
w.p. 1.

Proof. Repeating the proof of the converse of [8, Th. 3] and
adding the power constraint we get that

CIID ≤ sup I (u; y)

where the supremum is over distributions of the form

Ph,u,x,y = PhPuPx|uPy|x,h

subject to

I (h; u, y) = 0, E
[
|x|2

]
≤ 1.

For a necessary condition for CIID > 0, we relax I (h; u, y) =
0 to I (h; y) = 0. By Lem. 4, this requires either |h| be constant
w.p. 1 or E

[
|x|2

]
= 0. Since E

[
|x|2

]
= 0 will result in

I (u; y) = 0, we conclude that CIID > 0 only if |h| is constant
w.p. 1.

We now analyze CIID in the regime where SNR → ∞.

Theorem 1. Let yN be the output of the channel (1) with
|h| = h̃ > 0 w.p. 1. Then

CIID ≥ 1

2
log (SNR) · (1 + o(1)) . (6)

If furthermore h (∠h) > −∞, then

CIID =
1

2
log (SNR) · (1 + o(1)) . (7)

Proof. We first prove (6). Consider the following strategy: pick
a sequence x̃N , and map it to the input sequence xN via

xn = ejφn x̃n,

where {φn} are i.i.d. uniformly over [0, 2π) and independent
of x̃N . Then we have the following “effective” channel from
x̃ to y:

yn = hne
jφn x̃n + zn ≜ h̃nx̃n + zn. (8)

By [12, Ch. 4], {∠h̃n} is i.i.d. uniformly over [0, 2π) and
independent of {∠hn}. Since

∣∣∣h̃n∣∣∣ = h̃ w.p. 1, this further

implies that h̃N ⊥⊥ hN and, irrespectively of the distribution
of x̃N , {h̃nx̃n} ⊥⊥ hN , which in turn implies yN ⊥⊥ hN , so the
obfuscation constraint is satisfied.

We can thus code over the channel from x̃ to y given by
(8) while ignoring the obfuscation constraint. The channel (8)
is a phase-noise channel where the phases are i.i.d. uniformly
over [0, 2π). Its high-SNR capacity is given by [9, Sec. IV]
as 1

2 log (SNR) (1 + o(1)).

To prove (7), we note that whenever |h| is constant,
the right-hand side of (5) is the non-coherent capacity of
the memoryless scalar phase-noise Gaussian channel, which
by Lem. 1 is given by 1

2 log (SNR) · (1 + o(1)) whenever
h (∠h) > −∞.

Remark 2 (Multiplexing Gain). When h (∠h) = −∞, (7) may
not hold. To see this, consider the example where h ∈ {±1}.
Obfuscation can be achieved by multiplying the input symbols
by a sequence an that is i.i.d. uniformly over {±1}. Roughly
speaking, we can transmit two real symbols per channel use
(the real and the imaginary parts of the input symbol), resulting
in a multiplexing gain of 2 as opposed to 1 in (7).

A. Memoryless fading with feedback

We now analyze the obfuscated capacity of the memoryless
fading channel with feedback. We will show that in the regime
where SNR → ∞ feedback does not increase the obfuscated
capacity.

Theorem 2. Whenever h(∠h) > −∞, feedback does not
increase the asymptotic high-SNR obfuscated capacity of the
memoryless fading channel without CSI.

Proof. We note that when we add feedback, the next Markov
relationships hold(

yi−1,M
)

—xi—yi, ∀i ∈ 1, . . . , N, (9)

M—yN—M̂.

Thus, by defining the auxiliary variable ui ≜
(
M, yi−1

)
the

same analysis of [8, Th. 3] and Lem. 5 still holds and we get
the same capacity expressions as without feedback.

Remark 3. We note that the proof of Th. 2 does not use the fact
that the underlying channel is Gaussian, therefore holds for any
memoryless channel. We further note that in the discrete case,
the same achievability from [8, Th. 3] can be used, showing
that feedback does not increase the capacity.

B. Memoryless fading with CSI

We next analyze the case where the encoder has access to
(causal or non-causal) CSI, as defined in Sec. II. The capacity
in this case is denoted as CIID

CSI.
2

Lemma 6. The capacity CIID
CSI is greater than zero only if

E
[

1
|h|2

]
< ∞.

Proof. Repeating the proof of [8, Th. 1] and adding the power
constraint, we get that the obfuscated capacity for memoryless
fading with either causal or non-causal CSI is upper-bounded
by

CIID
CSI ≤ sup I (u; y)

where the supremum is over distributions of the form

Ph,u,x,y = PhPuPx|u,hPy|x,h

2We do not claim that the capacities with causal and with non-causal CSI
are equal, so we are abusing notation when we denote these two capacities
with the same expression. What we mean is that the relevant claims in the
following hold for both capacities.
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subject to

I (h; u, y) = 0, E
[
|x|2

]
≤ 1.

By Lem. 3, I (h; u, y) = 0 implies hx ⊥⊥ h. Thus, we have that
c ≜ E

[
|hx|2

∣∣∣|h|] = |h|2 E
[
|x|2

∣∣∣|h|] is constant. This implies

1 ≥ E
[
|x|2

]
= E

[
E
[
|x|2

∣∣∣|h|]] = E

[
c

|h|2

]
= c · E

[
1

|h|2

]
.

Thus, whenever E
[

1
|h|2

]
= ∞, we must have c = 0, i.e.,

|hx| = 0 w.p. 1, which implies I (u; y) = 0.

Theorem 3. If E
[

1
|h|2

]
< ∞, then

CIID
CSI = log(SNR) · (1 + o(1)).

Proof. We first prove the converse. Using Cauchy-Schwarz
inequality, we note that

E
[
|hx|2

]
≤ E

[
|h|2

]
· E

[
|x|2

]
≤ E

[
|h|2

]
.

Since (u, h)—hx—y forms a Markov chain, we can upper-
bound the capacity by that of the non-fading Gaussian channel

y = x⋆ + z

with the power constraint E
[
|x⋆|2

]
≤ E

[
|h|2

]
. Therefore

CIID
CSI ≤ log

(
E
[
|h|2

]
· SNR

)
· (1 + o(1))

= log(SNR) · (1 + o(1)).

Now we provide a construction that achieves the same
asymptotic behavior. Let h̄n ≜ 1

hn

√
E[1/|h|2]

and let the

input sequence xN be given by xn = h̄nx̃n. Since yn =
1√

E[1/|h|2]
x̃n + zn, we have yN ⊥⊥ hN and the obfuscation

constraint is satisfied irrespectively of the distribution of x̃N .
We then note that

E
[
|xn|2

]
= E

[∣∣h̄n∣∣2]E [
|x̃n|2

]
= E

[
|x̃n|2

]
.

We can thus use the channel from x̃ to y as a (non-fading)
Gaussian channel with unit power constraint, whose high-SNR
capacity is given by log(SNR) · (1 + o(1)).

V. QUASISTATIC FADING

We now analyze the obfuscated capacity of the Gaussian
channel (1) with quasistatic fading, which we denote by
Cquasi. The proofs follow the same lines as for memoryless
fading. We first show that the |h| must be constant for the
obfuscated capacity to be non-zero. Then we will use the
capacity results of the block-noncoherent channel to derive
the capacity. We also analyze the cases with feedback and
with CSI.

Theorem 4. The obfuscated capacity of the Gaussian channel
with quasistatic fading and without CSI or feedback is greater
than zero only if |h| is constant w.p. 1 and is given by

Cquasi = log (SNR) · (1 + o(1)) .

Proof. Using the same arguments as in [8, Th. 6] we can show

Cquasi ≤ sup I (u; y)

where the supremum is over distributions of the form

Ph,u,x,y = PhPuPx|uPy|x,h

subject to

I (h; y) = 0, E
[
|x|2

]
≤ 1.

By the same reasoning as in the proof of Lem. 5 we conclude
that, for Cquasi to be positive, |h| must be constant w.p. 1.

We note that Cquasi when |h| = h̄ w.p. 1 is upper-bounded
by the capacity of a non-fading Gaussian channel whose SNR
is

∣∣h̄∣∣2 · SNR, the latter at high SNR being

log
(∣∣h̄∣∣2 SNR

)
(1 + o(1)) = log(SNR)(1 + o(1)).

We prove an asymptotically matching lower bound. Let the
input sequence xN be given by xn = ejφx̃n, where φ is
uniform over [0, 2π) and independent of x̃N . The channel then
becomes

yn = h̃x̃n + zn, n ∈ [N ]

where h̃ ≜ hejφ is uniform on a circle and is independent
of h (provided that |h| = h̄ for some constant h̄ w.p. 1). It
then follows that h ⊥⊥ yN , so the obfuscation constraint is
satisfied. The channel with input x̃N and output yN is a block
non-coherent phase-noise channel, whose high-SNR capacity
is log(SNR) · (1 + o(1)) [10, Sec. IV.C].

Remark 4 (Deterministic Encoder). Th. 1 and Th. 4 both
concern the case where the encoder can be stochastic, i.e.,
it can employ local randomness that is not shared with the
receiver. In [8] the authors distinguish between the cases
of stochastic encoder and deterministic encoder, the latter
meaning that the mapping from the message to the input
sequence must be deterministic. For our channel (1) with either
memoryless or quasistatic fading, the obfuscated capacity with
a deterministic encoder is zero (as long as there is fading). To
see this, we note that the converse proofs of [8, Th. 2 and 6]
are still valid, so the obfuscated capacity of interest is upper-
bounded by I (x; y) subject to I (h; x, y) = 0. But I (h; x, y)
can be zero only when either x = 0 w.p. 1 or h is constant.
The former clearly implies I (x; y) = 0 so no positive rate can
be achieved, and the latter is the case where there is no fading
at all.

A. Quasistatic fading with feedback

Theorem 5. The obfuscated capacity of the quasistatic fading
channel with feedback and without CSI is greater than zero
only if |h| is constant w.p. 1 and is given by

Cquasi
fb = log (SNR) · (1 + o(1)) .

Proof. Similarly to Th. 2, the same Markov relations (9) hold
in the quasistatic case. Thus, by defining the auxiliary variable
ui ≜

(
M, yi−1

)
the same converse of Th. 4 still holds, and

thus we conclude that |h| must be constant w.p. 1 for the
obfuscated capacity to be nonzero. That it cannot be larger
than log(SNR) · (1 + o(1)) follows because the latter is the
asymptotic high-SNR capacity when the decoder knows h and
when there is no obfuscation constraint.
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B. Quasistatic fading with CSI
We denote the obfuscated capacity under quasistatic fading

with CSI (and without feedback) by Cquasi
CSI . Assume, like in

Th. 3, that E
[

1
|h|2

]
< ∞. The same coding scheme from Th. 3

can be used, and thus Cquasi
CSI ≥ log(SNR) · (1+ o(1)). On the

other hand, Cquasi
CSI cannot exceed the capacity for the same

channel without the obfuscation condition, therefore Cquasi
CSI ≤

log(SNR) · (1+ o(1)). Thus, asymptotically, Cquasi
CSI coincides

with CIID
CSI, the capacity in the memoryless case with CSI.

Remark 5. To achieve the above asymptotic capacity, the
average input power of the transmitted codeword needs to
depend on the realization of |h|. Due to the quasistatic nature
of the channel, there is a significant outage probability (which
depends on the distribution of |h|) for the average power of
the input sequence to exceed 1.
Remark 6. Unlike in the memoryless fading case, we have not
shown that E

[
1

|h|2

]
< ∞ is a necessary condition for Cquasi

CSI

to be positive. This is because the converse part of [8, Th. 5]
does not apply when the state (in our case h) is continuous.

VI. CONCLUDING REMARKS

For both memoryless and quasistatic fading, without en-
coder CSI, the obfuscated capacity can only be positive if the
channel is a phase-noise channel. This is also true when there
is feedback. With CSI, however, we have positive obfuscated
capacity (for both i.i.d. and quasistatic fading) as long as
E
[

1
|h|2

]
< ∞.

For memoryless fading, when the encoder does not have CSI
(but may possibly have feedback), and when the obfuscated
capacity is positive, the multiplexing gain is in general 1
(assuming h (∠h) > −∞). When the encoder has CSI, the
multiplexing gain becomes 2, which is also the multiplexing
gain in all quasistatic fading cases. Thus, whenever the obfus-
cated capacity is positive, the multiplexing gain is essentially
the same as though there were no obfuscation constraint.

Developing the obfuscated capacity of channels with more
complex temporal structures (e.g., when hN is a stationary
process) or other variants of the scalar Gaussian channel
(for example, the inter-symbol-interference channel) is the
subject of ongoing research, as is characterizing the obfuscated
capacity for multi-input multi-output (MIMO) channels, which
arise when multi-antenna transmitters and/or receivers are
involved.

APPENDIX A
ALTERNATIVE PROOF OF LEM. 4

We now provide an alternative proof to Lem. 4. This proof
does not require assumptions on the second moments of |h|
nor |x|. We start by giving an alternative way to prove the
claim that |hx| ⊥⊥ |h| implies that |h| is constant w.p. 1.

Lemma 7. Let |h| and |x| be nonnegative-valued ran-
dom variables satisfying |h| ⊥⊥ |x|, |hx| ⊥⊥ |h|, and
P (|h| > 0, |x| > 0) > 0. Then, we must have that |h| is
constant w.p. 1.

Proof. Assume for the sake of contradiction that |h| is not
constant w.p. 1, so there exists some a satisfying 0 <

P (|h| ≤ a) < 1. By right-continuity of CDFs, we have that
there exists some ε > 0 such that P (|h| ≤ a+ 2ε) < 1. Then,
choose h to satisfy the property that

P

(
|x| ∈

(
a+ ε

a+ 2ε
h,

a+ ε

a
h

))
> 0

Using independence of |h| and |x| we obtain that

P (|hx| ≤ h(a+ ε)| |h| ≤ a) = P

(
|x| ≤ a+ ε

|h|
h

∣∣∣∣|h| ≤ a

)
≥ P

(
|x| ≤ a+ ε

a
h

)
and similarly

P (|hx| ≤ h(a+ ε)| |h| > a+ 2ε) ≤ P

(
|x| < a+ ε

a+ 2ε
h

)
.

By our choice of h we have that these two probabilities are
not equal, and by our choice of a we have that the events
|h| ≤ a and |h| > a + 2ε happen with nonzero probability.
Then |hx| ̸⊥⊥ |h|, which is a contradiction, so we conclude
that |h| must be constant almost surely, or otherwise the events
should have the same probability for any corresponding a, h
and ϵ, which is possible only if |x| = 0 w.p. 1, leading to
E
[
|x|2

]
= 0.

We note that Lem. 4 follows by combining Lem. 7 with
Lem. 3.
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