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ABSTRACT:
Environment estimation is a challenging task in reverberant settings such as the underwater and indoor acoustic

domains. The locations of reflective boundaries, for example, can be estimated using acoustic echoes and leveraged

for subsequent, more accurate localization and mapping. Current boundary estimation methods are constrained to

high signal-to-noise ratios or are customized to specific environments. Existing methods also often require a correct

assignment of echoes to boundaries, which is difficult if spurious echoes are detected. To evade these limitations, a

convolutional neural network (NN) method is developed for robust two-dimensional boundary estimation, given

known emitter and receiver locations. A Hough transform-inspired algorithm is leveraged to transform echo times of

arrival into images, which are amenable to multi-resolution regression by NNs. The same architecture is trained on

transform images of different resolutions to obtain diverse NNs, deployed sequentially for increasingly refined

boundary estimation. A correct echo labeling solution is not required, and the method is robust to reverberation. The

proposed method is tested in simulation and for real data from a water tank, where it outperforms state-of-the-art

alternatives. These results are encouraging for the future development of data-driven three-dimensional environment

estimation with high practical value in underwater acoustic detection and tracking.
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I. INTRODUCTION

Environment learning in reverberant settings is an

important task in difficult domains such as the underwater

acoustic (Niu et al., 2017a; Niu et al., 2019) and indoor

acoustic channels (Wu et al., 2021). Depending on the appli-

cation, environment learning may be the goal and this is the

case in indoor room shape estimation (Lee et al., 2019) and

ocean remote sensing (Ali et al., 2019) or may be an inter-

mediate step in a processing chain for enhanced accuracy in

localization. For example, to passively localize an unknown

emitter with a collection of receivers, line of sight (LOS)

arrivals to the receivers are used for time difference of

arrival (TDOA; Korhonen, 2008) or time of arrival (TOA)-

based localization (Ribeiro et al., 2010; Brutti et al., 2010).

However, if we also leverage the non-line of sight (NLOS)

arrivals from an accurately learned environment, higher

accuracy is attainable (Naseri and Koivunen, 2016). Thus,

we envision assuming an estimated emitter position (and

known receiver positions) as a known ground truth and

using the NLOS arrivals to accurately estimate the reflective

boundaries in the environment, after which further joint

localization and environment learning can be performed

(Arikan et al., 2023a).

Within the general scope of environment learning, we

focus on reflective boundary estimation for shallow-water

underwater acoustic settings,1 as in Fig. 1. Although there

may typically be some prior knowledge on the rough posi-

tion of boundaries, such as the sea surface and seafloor (and,

therefore, of the number of boundaries as well), we require

accurate knowledge of their positions to make use of the

corresponding NLOS arrivals. Over short ranges, we can

approximate boundaries as (piecewise) planar and the speed

of sound as constant and model them as producing mirror

images of the emitter as “virtual emitters” as per Snell’s

Law (Deane, 1994). Euclidean distance matrices (EDM;

Dokmanic et al., 2015) or other methods (Naseri et al.,
2014) can then be used for boundary estimation through the

localization of these virtual emitters. However, in the ocean,

we often have low signal-to-noise ratios (SNRs; Dardari

et al., 2009) and the model mismatch that arises from a

dynamic environment, which these methods do not address.

An alternative boundary estimation methodology relies

on the two-dimensional (2D) NLOS arrival correspondence
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to a path distance of dNLOS. This allows us to identify the

locus of potential reflective boundaries encountered by the

arrival as an ellipse whose foci are the emitter and receiver

locations, denoted as pe and pr, respectively, as in Fig. 2(a).

By definition, points on the ellipse have a total distance of

dNLOS to the emitter and receiver, and the reflective bound-

ary is a tangent line of this ellipse. With multiple receivers,

multiple ellipses are defined by such NLOS arrivals, and the

reflective boundary is their common tangent. Therefore, by

fitting common tangents to ellipses, the boundaries can be

estimated while avoiding a computationally challenging

echo labeling problem in multipath environments, as illus-

trated in Fig. 2(b). Here, each boundary is a common tan-

gent to a single arrival’s ellipse from each receiver,

highlighted by matching boundary and ellipse colors.

Assigning ellipses to tangents is a problem of combinatorial

complexity and error-prone for inaccurate time-delay esti-

mates (Crocco et al., 2017). Moreover, missing or spurious

arrivals in the received signals complicate the echo labeling,

thus, motivating a solution that bypasses this task altogether.

In light of these challenges, we propose a convolutional

neural network (CNN)-based regression method for bound-

ary estimation through supervised learning. Our data-driven

method operates by parametrizing tangents to ellipses by the

range (q) and azimuth (h) values of their normal vectors

(Naseri and Koivunen, 2016), calling this ðq; hÞ space the

common tangents to spheroids (COTANS) domain. This

COTANS transform maps the environment geometry and

time-delay estimates to images in the ðq; hÞ space, trans-

forming the data into an input representation that is easier

for operation by CNNs. The proposed COTANS neural net-

work (NN) method, termed Neuro-COTANS, incorporates a

modified AlexNet (Krizhevsky et al., 2012) architecture. It

is trained on a simulated dataset to estimate the locations of

reflective boundaries from unlabeled NLOS arrivals over a

wide range of SNRs: Neuro-COTANS is trained only once

for multiple SNRs such that the techniques become robust at

any SNR. The resulting network can be used with simulated

and recorded data. A key influence for our work was the

successful recent use of NNs for emitter localization and

environment learning, including the underwater acoustic set-

ting (Niu et al., 2017b; Niu et al., 2019) and reverberant

indoor environments (Wu et al., 2021). Although we target

the short-range shallow-water underwater acoustic setting as

opposed to a general open ocean setting, we propose a

general-purpose boundary estimation method for any setting

where straight-ray propagation holds, which outperforms its

alternatives in simulation and real-data experiments.

Our main contributions are the following:

• A robust NN method for boundary estimation that is supe-

rior to state-of-the-art alternatives and straightforward to

retrain for different environments;
• a study of the performance and stability of alternative

boundary estimation methods; and
• a Cram�er-Rao lower bound (CRLB) for boundary range

estimation, filling this gap in the literature.

In the literature, the problems of time-delay estimation

and localization are often treated separately with different

error/noise models. In this paper, we provide a unified

framework that establishes a common setting for these tasks,

allowing for the study of Neuro-COTANS and its alterna-

tives under more realistic conditions. A short version of this

work, incorporating some of our earlier simulation results,

was presented in Arikan et al. (2023b).

FIG. 1. (Color online) A general underwater acoustic setting, highlighting

the typical NLOS arrivals and corresponding virtual emitters.

FIG. 2. (Color online) NLOS arrivals

define ellipses with an emitter and

receiver as their foci (a), and in a rich

multipath setting, solving the echo

labeling problem is difficult (b). Each

boundary in (b) is a common tangent

to a single ellipse due to each receiver,

highlighted by matching colors.
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A. Prior work

Fitting tangent planes to spheroids for boundary estima-

tion is becoming an increasingly widespread approach for

indoor settings. This methodology was first proposed in

Antonacci et al. (2010) and Antonacci et al. (2012). A simi-

lar approach (Naseri and Koivunen, 2016) was used for joint

localization and boundary estimation, which employed a

method inspired by the Hough transform rather than

leveraging an analytical cost function as in Antonacci et al.
(2010) (which assumed only small-scale errors). In Park and

Choi (2021), a Hough transform-inspired method was used

to estimate an indoor environment and perform echo label-

ing with provisions to reject incorrectly chosen second-

order echoes. Although these techniques refer to the Hough

domain, they do not fit planes to point clouds as the Hough

transform does. Instead, they sample points from a sphe-

roid’s surface (typically randomly), and then deduce the

tangent at each point. We have previously derived a closed-

form mathematical method to perform this transformation

without such sampling of point clouds (Arikan et al., 2023b)

and use this more rigorous and reliable method in the cur-

rent paper. To avoid conflating our plane-fitting method

with the Hough transform, we refer to a COTANS transform

and COTANS domain instead.

Plane-fitting boundary estimation methods typically

apply a smoothing filter to COTANS images, followed by

the extraction of maxima (Naseri and Koivunen, 2016) to

estimate the boundaries when TOA estimation errors are

present. However, this handcrafted filtering operation is sub-

optimal and parameters, such as filter sizes and kernels, are

manually tuned to specific settings. Our original motivation

in pursuing a NN method was to automate and combine

these filtering and peak extraction tasks for different rever-

berant settings, thus, implementing a multi-scale filtering

approach. If a NN is trained with a wide range of geometries

and realistic estimation errors, it can potentially learn the

optimal inference rule, which can be viewed as joint (and

implicit) filtering and peak extraction. The resulting NN can

then be retrained for different environments. However, the

resulting NN method which we devised actually performs a

high-level inference over the entire COTANS transform

image, rather than solve a local peak estimation task.

Furthermore, Neuro-COTANS is not constrained by the

pixel resolution of the COTANS images, unlike existing

plane-fitting methods. Thus, Neuro-COTANS is a funda-

mentally different improvement over other tangent-fitting

methods instead of being a simple NN extension of this

overall approach.

In addition to the above considerations, handcrafted fil-

ters can cause implementation issues because boundary esti-

mation tasks have different physical scales or domains (e.g.,

indoor or underwater acoustic). It is also challenging to

make a fair comparison between these various methods with

different filter sizes and kernels. Neuro-COTANS can be

retrained in an automated manner without having to modify

any implementation-specific hyperparameters.

The Neuro-COTANS method that we propose is envi-

sioned as a key component of a larger underwater acoustic

localization and tracking system. In a previous publication

(Arikan et al., 2023a), we proposed the passive end-to-end

localization (PEEL) method, which only featured a set of

known and fixed receiver positions that were used for sur-

reptitious localization and tracking of an unknown mobile

pulsed emitter. The PEEL method first established synchro-

nization with the emitter and produced a reasonable estimate

of its position using TDOA localization. In this TDOA

method, the received signals were cross-correlated and these

cross-correlation results were used to localize the emitter at

the intersection of hyperbolae of equidistance. To produce

an initial estimate of the NLOS boundary positions in the

environment, we used the (non-NN) COTANS transform

method that was existing in the literature.

Within the context of PEEL, Neuro-COTANS provides

an improved method for initial environment estimation

before we attempt to track a moving emitter that can disap-

pear behind occluding objects. Our use case is passive local-

ization and tracking of an emitter that is not necessarily

controlled or emitting in a particular location, in contrast to

an echosounder or fathometer. On the contrary, this uses the

emitter as a source of opportunity for boundary estimation.

Thus, the “known” emitter position is actually a TDOA esti-

mate, obtained at a position where the LOS to the receivers

has not been occluded. As the known emitter position can

have errors, Neuro-COTANS has to be robust to model

mismatch.

We develop Neuro-COTANS, as illustrated in Fig. 3,

and structure the paper as follows. In Sec. II, we formulate

the problem, and in Sec. III, we revisit fundamental results

regarding time-delay estimation, which are necessary for

understanding the motivation of our solution approach. The

COTANS methodology and our NN method are presented

in Sec. IV. Alternative methods are outlined in Sec. V, and

the CRLB for boundary range estimation is derived in Sec.

VI. Simulation and experimental results are presented in

Sec. VII, and concluding remarks are given in Sec. VIII.

Throughout the paper, lowercase bold variables are vectors,

and uppercase bold variables are matrices.

II. PROBLEM FORMULATION

We now present the notation, signal model, and envi-

ronment geometry that frame the boundary estimation prob-

lem. We model a static 2D environment with N planar

boundaries (tangent lines), where N is assumed to be known.

These boundaries are described by the range q 2 Rþ and

azimuth h 2 ½0; 2pÞ of their normal vector relative to the

(arbitrarily-chosen) origin. Thus, the jth boundary is param-

etrized as the vector gj ¼ ½qj hj�T, for all boundaries j 2 SN ,

where SK¢f1; …;Kg for some K 2N, denoting here the

number of boundaries. We assume a single isotropic emitter

in the environment at a known location, pe ¼ ½xe ye�T, and M
isotropic receivers at known pr;i ¼ ½xi yi�T; i 2 SM, with
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isotropicity only needed for every boundary to produce a

NLOS arrival at every receiver.2

The received signal at the ith receiver, riðtÞ 2 R, is

modeled as the sum of the LOS and single-reflection NLOS

arrivals, delayed by their respective TOAs. We assume that

higher-order reflections are heavily attenuated in the under-

water acoustic setting (Weiss et al., 2022) as compared to

first-order reflections from boundaries such as the sea sur-

face and seafloor. In an isovelocity ocean environment, the

LOS TOA, si;0, is given by

si;0 ¼
kpr;i � pek2

vs

; 8i 2 SM; (1)

where vs is the speed of sound, which is approximated as a

known constant.3

Reflections can be interpreted as producing virtual emit-

ters, and for the jth boundary, we obtain the virtual emitter

location, pj, by finding the corresponding reflection of pe

(see Fig. 1). The NLOS TOA at the ith receiver from the jth
boundary, si;j, is equal to the TOA from the ith receiver

(pr;i) to the corresponding jth virtual emitter (pj):

si;j ¼
kpr;i � pjk2

vs

¢
di;j

vs

; 8i 2 SM; 8j 2 SN: (2)

We denote the known emitted waveform as s(t), which

will ultimately be used to match-filter the received signals.

Merging the effects of attenuation and reflection into the

equivalent attenuation coefficient, ai;j, for each path, then

the received signal at the ith receiver is

riðtÞ ¼
XN

j¼0

ai;js t� si;jð Þ þ niðtÞ; (3)

where j¼ 0 corresponds to the LOS path, and niðtÞ is a noise

signal that is a realization of a spectrally flat Gaussian pro-

cess. In practice, the environment can be reverberant and

feature higher-order reflections and noise that may not be

Gaussian (Chitre, 2007), but here we consider simpler sce-

narios for the analysis. Nevertheless, this does not limit the

applicability of our method to signals with non-Gaussian

noise. We work with a discrete-time sampled version of Eq.

(3) as ri½n�¢friðtÞjt¼nTs
gn2Z, where Ts is the sampling

period, and the sampling rate, fs, is greater than twice the

Nyquist rate for the signals considered.

The geometric information for boundary estimation

consists of the known pe and fpr;ig and unknown fsi;jg.

Hereafter, the NLOS TOAs are estimated using an (at least

asymptotically) optimal estimator. For example, these esti-

mates can be obtained by matched-filtering ri½n� with

s½n�¢sðnTsÞ and picking the TOAs corresponding to the N
largest peaks (excluding the LOS) as fŝi;jg. The distance

estimates fd̂ i;j¢vsŝi;jg from Eq. (2) are then used to esti-

mate the boundaries as fĝjgN
j¼1, given the environment

model in Table I.

In many environment estimation methods, fd̂ i;jg are

modeled as corrupted by Gaussian noise (Cheung et al.,
2004). However, it is the received signals of Eq. (3) that are

instead subject to Gaussian noise, hence, we adopt a more

realistic error model for fd̂ i;jg, as follows.

III. FUNDAMENTALS OF NLOS TIME-DELAY
ESTIMATION

Time-delay estimation has been extensively studied; in

this section, we describe an estimation model for the time-

delay estimates, ŝi;j. For a given value of the SNR as S, we

obtain a corresponding error, �i;jðSÞ, that is not necessarily

Gaussian. This will serve our ultimate goal of generating a

wide range of time-delay errors in our dataset, modeling

operational conditions under high and low SNRs.

In the boundary estimation problem, the NLOS arrivals

from each boundary will produce a received signal with

multiple peaks, and we will be picking a given number of

the highest peaks from the matched-filtered riðtÞ
� �

to obtain

the NLOS time-delays.4 We assume that the multipath arriv-

als are typically sufficiently separated and the signal is of

high enough bandwidth such that after matched-filtering,

they do not affect each other’s time-delay estimation per-

formances through interference. If this condition is not

expected to hold, more advanced TOA estimation algo-

rithms, like SAGE, can be used (Demirli and Saniie, 2001),

which are able to handle overlapping arrivals but are out of

the scope of the present work.

FIG. 3. (Color online) Summary of the

Neuro-COTANS method’s presentation.

TABLE I. Model of the boundary estimation problem.

Problem feature Modeling assumptions

Speed of sound, vs Known and constant within the environment

Environment Static, short-range shallow-water environment

Reflectors, gj Planar, known number, and unknown positions

Emitter and receivers,

pe and fpr;ig
Known positions and synchronized

Transmissions Known pulse waveforms
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Time-delay estimation performance is specific to a

given emitted signal such as the following standard

Gaussian pulse, which we employ throughout:

p tð Þ ¼ e�2pt2=s2
p ; (4)

where sp ¼ 1=B, and B is the 3 dB bandwidth (in Hz). This

pulse has energy Ep ¼
Ð

p2ðtÞdt. Whereas the infinite-length

signal in Eq. (4) is truncated in practice to some finite

length, sd, the pulse exponentially decays to negligible mag-

nitudes, and the finite-length signal is functionally equiva-

lent to its infinite-length formulation. We assume that we

have real additive white Gaussian noise,5 and the one-sided

power spectral density of the noise niðtÞ is equal to N0.

Thus, the SNR6 is defined as Ep=N0. Given a desired SNR,

S, in dB, it follows that we obtain Ep=N0 ¼ 10S=10. For a

sampling rate, fs, the average noise power, Navg, is

Navg ¼ N0fs. Thus, for a desired S, the required variance, r2,

of the sampled, discrete-time additive Gaussian noise is

r2 ¼ fsEp

10S=10
: (5)

It is well-known that optimal time-delay estimation has

a performance profile, which is characterized by a transition

from a non-informative region at low SNRs, through a

threshold phenomenon, to a “small-errors” regime at high

SNRs (Weiss and Weinstein, 1983). At high SNR, the

Gaussian noise added to r(t) results in a Gaussian, small-

scale perturbation of ŝ and matched-filtering mean squared

error (MSE) estimation performance that asymptotically

coincides with the CRLB for time-delay estimation, which

for a given S has variance r2
CRLBðSÞ (Dardari et al., 2006).

The resulting estimation error, �i;j, is called a “local error,”

where �i;j � Nð0; r2
CRLBðSÞÞ. At lower SNRs, peaks of noise

can have a greater magnitude than that of the true arrival.

Picking one of these spurious peaks results in a “global

error” that leads to a drastic performance reduction; because

the noise peaks are distributed uniformly in the time interval

on which the matched-filtering is performed, global errors

cause ŝ to be distributed uniformly on the observation time

interval. Thus, examining r(t) in the time interval,

½d; Tp þ d�, where d is some time increment in seconds and

Tp is the time length of our received signal observation win-

dow, we have ŝi;j � Uðd; Tp þ dÞ, where Uða; bÞ denotes the

uniform distribution of a random variable within ½a; b�. As

SNR is progressively reduced below a certain threshold,

there is a transition to such global errors having a higher

probability of occurrence, which increasingly dominates the

MSE (Weinstein and Weiss, 1984).

In Fig. 4, we conduct a range estimation simulation

with 10 000 realizations of the simulated noise added to p(t)
per SNR value considered and compare it to the CRLB for

time-delay estimation. As discussed previously, below a

SNR threshold, global errors eventually cause catastrophic

estimation errors with higher probability. The results illus-

trate the need for a boundary estimation method that

performs accurately when errors are small (local errors) and

robustly when errors are large (global errors). Note that

localization performance is fundamentally different than

time-delay estimation: while time-delay estimation accuracy

could be on the order of 0.1 m, for example, the localization

accuracy from leveraging multiple receivers can be much

more refined, as will be calculated in Sec. VI.

IV. NEURO-COTANS FOR BOUNDARY ESTIMATION

Having defined the boundary estimation problem in

Sec. II, we present the Neuro-COTANS method. Suppose

that a set of fŝi;jg has been estimated from riðtÞ
� �

and is

unlabeled with respect to the corresponding boundaries. The

goal is to estimate fgjg in a way that is robust to estimation

errors in fŝi;jg. We first discuss how the COTANS transform

is used to generate images for a given geometry and set of

fŝi;jg (Naseri and Koivunen, 2016). Then, we detail how

Neuro-COTANS estimates the fgjg from these COTANS

images.

A. Generation of COTANS images

We summarize the generation of COTANS images for a

given geometry and fŝi;jg. In 2D, a boundary defined by q
and h can be conceptualized as a point ðq; hÞ in a COTANS

transform domain; working out the ðq; hÞ expression of a

line is performed by computing its COTANS transform

(Borrmann et al., 2011). The inputs to the COTANS trans-

form are a receiver and emitter pair’s locations in space and

a specific NLOS TOA; the output of the COTANS transform

is the set of all points, ðq; hÞ, which represent the valid tan-

gent planes to the ellipse defined by these inputs.

In practice, the COTANS transform generally does not

have a closed-form solution, and we, therefore, apply the

COTANS transform to individual tangent planes to yield a

large collection of points, ðq; hÞ. Here, we derive a

FIG. 4. (Color online) The CRLB on the range estimation root-mean

squared error (RMSE) for a Gaussian pulse of 15.4 kHz bandwidth and the

simulated empirical matched-filtering performance. The global error thresh-

old for this particular signal is observed to be �13:5 dB SNR, indicating

that large errors can be encountered even at seemingly high signal

strengths.
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mathematical solution for the COTANS transform which

precludes the need for randomly sampling points ðq; hÞ on

the surface of an ellipse7 (Naseri and Koivunen, 2016).

Thus, we avoid a heuristic of the number of sampling points

to achieve a desired image resolution, allowing for simple

COTANS image generation. We follow the steps outlined in

Fig. 5 for ease of explanation of the COTANS transform.

Step 1: For a given h, we use vector geometry to obtain

the COTANS transform’s q for an origin-centered ellipse as

q hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2hþ b2 sin2h

p
; (6)

where

a ¼ dNLOS=2; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

NLOS � d2
LOS

q
=2 (7)

are the standard ellipse axes calculated from the fŝi;jg, as in

Fig. 2(a).

Step 2: To move a collection of fðq; hÞg centered on the

origin to pe and pr, we rotate the points to match the true ellip-

se’s orientation (adjusting h to be some hrot) as in Fig. 5(b).

Consider the azimuth of the vector pe � pr, designating

this angle hrot. To align our starting standard ellipse with the tar-

get ellipse, we replace each ðq; hÞ with ðq; ðhþ hrotÞmod2pÞ,
which we term ðq; h00Þ. The rotation operation leaves the

q-value of each tangent line unchanged and only affects the azi-

muth, whereas the new foci are at p00e and p00r .

Step 3: We now translate the points (yielding a final

qCOTANS and hCOTANS), as in Fig. 5(c). Here, care must be

taken in how ðq; hÞ is modified in Fig. 5.

Building on step 2, we calculate a translation vector,

ptrans ¼ pr � p00r ; (8)

which would be added to any point on the rotated standard

ellipse to obtain the target ellipse. To obtain the resulting

ðqCOTANS; hCOTANSÞ pairs, we first calculate the dot product:

qproj ¼ ptrans � q̂; (9)

where q̂ ¼ ½cos h00; sin h00�T is the unit vector pointing

toward the tangent line. Thus, we project the translation vec-

tor, ptrans, onto q̂. If qproj � 0, then we merely advance the

tangent line in the same direction without changing its azi-

muth, such that we replace ðq; h00Þ with ðqþ qproj; h
00Þ. If

qproj < 0, then we subtract the projection result from q, thus,

replacing q with jq� jqprojjj, which ensures that q is posi-

tive as per definition. If jqprojj < q and qproj < 0, then we

do not modify the azimuth h00; else, because the line has

been translated past the origin and the direction of the q̂-

vector has been flipped, we replace h00 with ðh00 þ pÞmod 2p.

Performing the set of operations in steps 1–3 for each of

the original ðq; hÞ
� �

points representing tangent lines, we

obtain a final transformed set of ðqCOTANS; hCOTANSÞ
� �

,

rounded to a desired accuracy. This set of COTANS trans-

form results can be conveniently illustrated as a COTANS

image, where we define an array over q and h with this reso-

lution and for each rounded point, increment the correspond-

ing array cell by one.

Generating and adding the separate COTANS images

for every NLOS arrival and corresponding emitter and

receiver pairs, we essentially discretize the space q� h as a

matrix and increment this “accumulator” array over every

candidate ðq; hÞ to yield a composite COTANS-domain

image (e.g., as in Fig. 6). Here, the maxima are at the true

boundaries fðqj; hjÞg in the absence of errors. Note that the

mapping to the space q� h is not one-to-one, which is one

of the fundamental reasons why multiple receivers are

needed for localization (unless the search space is con-

strained) and why the intersecting arcs in an accumulator

array are required.

When time-delay estimation errors are present (which is

always the case in practice), the COTANS curves do not

exactly intersect at the correct boundary locations, as seen

in Fig. 7(a). This issue prevents us from simply picking the

N largest local maxima of an image to estimate the bound-

aries as the curves do not intersect to yield such maxima. In

the literature, a heuristic, handcrafted smoothing filter is typ-

ically used for local averaging of the image (Naseri and

Koivunen, 2016), followed by selection of as many maxima

as there are boundaries as in Fig. 7(b), where the neighbor-

hood of each maximum is set to zero to avoid picking the

same boundary multiple times.8 This suboptimal methodol-

ogy can increase the estimation errors because it distorts the

original COTANS image, and it only uses the information in

a small part of the image rather than exploiting other

FIG. 5. (Color online) Steps to obtain the COTANS transform of a tangent line. Description of one tangent to a standard ellipse (a), rotation of this origin-

centered ellipse and its tangent (b), and the translation of this ellipse to its real position (c) are shown.
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potential patterns in the full image. Furthermore, the

smoothing filter’s dimensions and kernel are heuristically

tuned to specific environments and COTANS image resolu-

tions, making it difficult to generalize. Therefore, rather

than work with model-driven methods that may not be able

to fully use the information in the image, we introduce a NN

method for higher-level inference of boundary locations

over entire COTANS images, which is not constrained by

such limitations.

B. Neuro-COTANS method

Neuro-COTANS uses CNNs for multi-output regression

from COTANS images. We repurpose the eight-layer and two-

GPU AlexNet architecture (Krizhevsky et al., 2012) by replac-

ing the final classification layer with a regression layer, where

MSE is used as the cost function. Here, we are guided by previ-

ous approaches that repurpose AlexNet for regression (Szegedy

et al., 2013). To work with color images, AlexNet has three

channels; however, the COTANS images only have a single

value for each pixel scaled to be within [0,1], therefore, we

modify AlexNet to only have one channel. Our network

inputs are COTANS images, and outputs are the boundary

parameter estimates, ½q̂1 � � � q̂N ĥ1 � � � ĥN�T. We use the

ground truth values, ½q1 � � � qN h1 � � � hN�T, as the target for

training the NN. Thus, our output layer size is 2N, and the

NN implements a function that projects COTANS images

onto this 2N-dimensional space.

We use AlexNet as a building block for Neuro-

COTANS because it does not incorporate any specific image

classification features as we have an image regression task

instead. Thus, we can easily replace the final classification

layer with a regression layer and modify the input image

dimensions. Our training hyperparameters are given in

Table II; note that ‘2 regularization (which compensates for

image noise) is set to zero because the COTANS transform

images (on which the NN operates) are not noise corrupted,

although the underlying acoustic data may be noisy.

To use this architecture on COTANS images, we gener-

ate training image datasets by simulating scenarios with ran-

domized pe and fpr;ig and randomized boundary positions,

as in Fig. 8. We train Neuro-COTANS on different SNRs in

the relevant SNR range, including the transition region of

global errors. We generate 50 000 training and 3000 valida-

tion images for each SNR. As COTANS curves for all

receivers are summed up into a single image, Neuro-

COTANS does not need modification to handle variable

numbers of receivers.

FIG. 6. (Color online) Examples of COTANS images for the transition region at 12 dB SNR (a) and high-SNR region at 20 dB SNR (b) for an environment

with two boundaries at ðq; hÞ ¼ (3.5,84) and (6.4,258). The images are colored for convenience; the original images are in gray scale.

FIG. 7. (Color online) The COTANS accumulator for fŝ i;jg (a) and its boundary estimates (b). Note that the image is periodic in azimuth.
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Computational resources constrain the COTANS image

dimensions for the NNs, necessitating a trade-off between

complexity and bin resolutions. Thus, to plot the complete

COTANS curves, we adopt input dimensions of 101 pixels

in q and 360 pixels in h. The h-resolution is therefore 1�,
whereas we use a q-resolution of 0.1 m, leading to a q-axis

of 0–10 m. This range of q is appropriate for our simulation

and real experiment settings but can be scaled or translated

to a different interval for different applications while keep-

ing the same image dimensions. We are able to do so

because the NN is trained on a scaled q range of ½0; 1�
instead of a specific ½0; qmax�. Therefore, while our coarse-

resolution COTANS images currently represent a maximum

range of 10 m and a range resolution of 0.1 m, they can also

represent a maximum range of 100 m and a range resolution

of 1 m without any modification to the method itself. The

method is more or less agnostic to the dimensions that are

actually represented in the real-life setting and may only

begin to break down when the problem is scaled to much

larger dimensions, when other assumptions such as those on

the speed of sound begin to break down.

To surpass the performance limitations imposed by the

resolution constraints on COTANS images, we design suc-
cessive stages of Neuro-COTANS with finer resolutions

for refined performance. This leads to the multistage, multi-

resolution Neuro-COTANS method, as summarized in

Fig. 9. A single NN, termed Coarse-NN, forms the first stage

which is trained on coarse-resolution, complete COTANS

images. Whereas this NN is a good overall first-pass estima-

tor, its performance saturates at high SNRs, where the lim-

ited resolution can constrain performance. To overcome this

limitation, we zoom into the vicinities of Coarse-NN bound-

ary estimates on the full images and perform further stages

of estimation on these high-resoluting images. At each stage

of zooming, we increase the q- and h-resolutions by a cer-

tain (fixed) factor, such as ten, so that the second stage in

our particular implementation yields images with a resolu-

tion of (0.01 m, 0.1�) in ðq; hÞ. The image dimensions are

retained to be the same at 101� 360 pixels such that pre-

training employed for the first stage can be used for succes-

sive stages as well. This procedure is illustrated in Fig. 10,

where we have highlighted the vicinity of one of the two

boundary estimates from Coarse-NN.

To train a NN for fine-resolution images, first, we gen-

erate a new set of 25 000 training and 1500 validation

coarse-resolution COTANS images for each SNR. Then, we

zoom into the 1 m� 3.6� image region around the Coarse-

NN estimates of each boundary and generate images within

these regions to obtain a zoomed dataset of 50 000 training

and 3000 validation images. Training the same NN architec-

ture with this dataset yields a new NN, which we call Fine-

NN. Using Coarse-NN and Fine-NN in sequence leads to

enhanced performance.

After using Fine-NN for estimation, further stages of

zooming have diminishing performance returns. These

stages yield images featuring crisscrossing lines, as in Fig.

11, rather than intersecting curves. Therefore, we employ a

basic weighted averaging procedure for interpolating the

estimates for these stages instead of training new stages of

NNs. Recall that COTANS images are scaled such that the

maximum intensity pixel, corresponding to the maximum

number of crossing curves, has a value of one. We heuristi-

cally threshold the image pixels to only retain those with

values � 0:5. Weighting every remaining pixel by its value

and finding the average pixel coordinates yields a refined

boundary estimate. This stage’s performance gain only

becomes relevant at high SNR.

Neuro-COTANS performs better when the image inputs

to Coarse-NN are the echo-labeled curves from a single

boundary rather than the sum of unlabeled curves from all

the boundaries. Such single-boundary images can have less-

distorted maxima, and the accuracy of successive stages of

TABLE II. Training specifications for Neuro-COTANS.

Parameter Optimizer Number of epochs Mini batch size ‘2 regularization Initial learn rate

Value Adam 25 50 0 0.001

FIG. 8. (Color online) Random geome-

tries and the corresponding NLOS

ellipses, showing the transition region

at 8 dB SNR (a) and high-SNR region

at 20 dB SNR (b).
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refinement is contingent on this Coarse-NN performance.

However, we do not attempt to solve the complete, combi-

natorial echo labeling problem. Instead, we first perform

boundary estimation with Coarse-NN and then use the

resulting estimates to estimate the correct assignment of

echoes. Each boundary estimate corresponds to a set of

NLOS TOAs, ~si;j0 , to each receiver, which differs from the

NLOS TOAs, ŝi;j, that were obtained by time-delay estima-

tion. At each receiver, i, we make the echo assignment of j
to j0 such that

min
pð�Þ

XN

j¼1

ð~si;j0 � ŝi;jÞ2 subject to pðjÞ ¼ j0; (10)

where pð�Þ is a permutation mapping. We, then, generate

separate new COTANS images for each j0 from the sorted

time-delays, ŝi;j0 , and use Coarse-NN for estimation. Note

that this procedure does not necessarily lead to a completely

correct labeling when global errors have been made, but the

performance of Coarse-NN is strong enough that the label-

ing of echoes with only local errors is generally accurate.

The correct assignment of most of the echoes to separate

images is found sufficient to deliver superior performance

relative to other methods.

In implementation, the zooming operations that we

have outlined do not involve simply generating higher-

resolution complete Neuro-COTANS images and taking

specific regions of these images into consideration. For a

large dataset, the memory requirements of progressively

higher-resolution images become prohibitive. Instead, we

maintain a lookup table of the coarse-resolution azimuth

transformations, h! hCOTANS. We generate the higher-

resolution images by running the COTANS transformation

only on the relevant h-interval that yields the desired

hCOTANS-interval.

V. PRIOR ART IN BOUNDARY ESTIMATION

In this section, we summarize the least squares (LS)

(Cheung et al., 2004) and EDM (Dokmanic et al., 2013)

algorithms, which are state-of-the-art alternatives to Neuro-

COTANS. LS and EDM are used to localize emitters using

LOS arrivals; they are similarly used for boundary estima-

tion by localizing virtual emitters using NLOS arrivals.

Whereas Neuro-COTANS is currently limited to 2D, LS and

EDM have the advantage of being three-dimensional (3D)

estimation methods. However, we will observe that they

assume a small-scale error regime and require solving the

FIG. 9. (Color online) Flowchart of the

Neuro-COTANS method.

FIG. 10. (Color online) A coarse-resolution COTANS image with the region highlighted in red centered on one of the Coarse-NN boundary estimates (a)

and the resulting zoomed-in image in stage 2 (b).
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computationally hard echo labeling problem that Neuro-

COTANS bypasses.

A. The least-squares solution for boundary estimation

In LS localization, we solve for the variables, xe and ye,

that define pe. Assuming a high-SNR regime, we have the

Gaussian noise-corrupted range estimates, rif gM
i¼1

, as

ri ¼ di þ ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xe � xið Þ2 þ ye � yið Þ2

q
þ ni; (11)

where ni � Nð0; r2
r Þ. Defining re¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

e þ y2
e

p
, we solve the

equations Ax ¼ b such that

A¢

x1 y1 �0:5

..

. ..
. ..

.

xM yM �0:5

2
664

3
775; x¢

xe

ye

r2
e

2
64

3
75;

b¢
1

2

x2
1 þ y2

1 � r2
1

..

.

x2
M þ y2

M � r2
M

2
6664

3
7775: (12)

In the presence of Gaussian noise, the LS solution for

Eq. (12) is

x̂e ¼ argmin
~x

A~x � bð ÞT A~x � bð Þ; (13)

where ~xe ¼ ½~xe ~ye ~r2
e �

T
is the optimization variable vector. In

the presence of range estimate errors, it is critical to also

introduce the nonlinear constraint,

~x2
e þ ~y2

e � ~r2
e ¼ 0; (14)

and solving Eq. (13) constrained by Eq. (14) yields the LS

algorithm for localization. For virtual emitters, we only

need to reconceptualize our optimization variable vector as

~xv ¼ ½~xv;j ~yv;j ~r2
v;j�

T
for each boundary j ¼ 1;…N, and use

the NLOS range estimates, ri;j. Going beyond the literature,

inequality constraints on ~xe or ~ye can also be added, thus,

confining LS solutions to a region in which the emitter is

known to be present, and thereby exploiting prior informa-

tion on the environment and, in particular, on the area of

interest.

B. Boundary estimation with Euclidean distance
matrices

EDM was designed with the insight that given matrices of

squared distances between nodes (receivers and virtual emit-

ters), the matrix with the correct permutation of entries (i.e.,

with proper echo labeling) will have the lowest rank. Thus, if

localization is performed on each permutation of echoes, we

simultaneously obtain the correct echo labeling and virtual

emitters (Dokmanic et al., 2013). Noise, however, makes it

difficult to use this (sensitive) rank criterion, and a heuristic

metric and optimization method is applied instead.

EDM uses the “s-stress criterion,” where given the mea-

sured fri;jg, the objective function to be minimized over ~xv;j

and ~yv;j is

s ~xv;j; ~yv;j

� � ¼X
i

~xv;j � xið Þ2 þ ~yv;j � yi
� �2 � r2

i;j

h i2

: (15)

Ideally, Eq. (15) is minimized by the correct echo labeling.

In our simulations, however, we had difficulty using s-stress

for noisy echo labeling, where the correct set of echoes does

not necessarily have the smallest s-stress. Therefore, in our

implementation of EDM, we use the correctly echo-sorted

results for boundary estimation, as with LS. Thus, we give

these methods an inherent advantage, here, of access to

knowledge that would need to be inferred in reality.

VI. CRLB FOR BOUNDARY RANGE ESTIMATION

We now derive a theoretical benchmark for the asymp-

totic performances of boundary estimation algorithms given

noisy range measurements, as in Eq. (11), which enables us

to verify their correct implementation, as well as assess the

fundamental limitation of the asymptotic accuracy. Our

starting point is the CRLB for emitter localization (Cheung

et al., 2004), which we modify to obtain the CRLB for

boundary estimation. The CRLB in Cheung et al. (2004) is

derived for variable SNR at each receiver; as we assume the

same SNR at each receiver (to present performance curves

with respect to overall SNR), we note that the case of equal

SNR is a special case of this CRLB formula.

The CRLB for estimating pe ¼ ½xe ye�T is obtained

through the Fisher information matrix,

IðpeÞ¢
I1;1 I1;2

I1;2 I2;2

� �
; (16)

where

I1;1 ¼
XM

i¼1

xe � xið Þ2

r2 xe � xið Þ2 þ ye � yið Þ2
	 
 ; (17)

FIG. 11. (Color online) Example of a second-stage zoomed COTANS

image, where finding the center of mass of the crossing lines is preferred to

training a new NN.
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I1;2 ¼
XM

i¼1

xe � xið Þ ye � yið Þ
r2 xe � xið Þ2 þ ye � yið Þ2
	 
 ; (18)

I2;2 ¼
XM

i¼1

ye � yið Þ2

r2 xe � xið Þ2 þ ye � yið Þ2
	 
 : (19)

Inverting Eq. (16) yields a matrix with terms J1;1; J1;2, and

J2;2. The (individual) CRLBs for the coordinates of pe are

CRLB x̂eð Þ ¼ J1;1 ¼
I2;2

I1;1I2;2 � I2
1;2

; (20)

CRLB ŷeð Þ ¼ J2;2 ¼
I1;1

I1;1I2;2 � I2
1;2

: (21)

We also have the cross term,

J1;2 ¼ �
I1;2

I1;1I2;2 � I2
1;2

: (22)

Then, the CRLB on the mean square range estimation error is

CRLBðx̂eÞ þ CRLBðŷeÞ (Jia and Buehrer, 2008). For virtual

emitters, pv ¼ ½xv yv�T is substituted into Eqs. (20) and (21).

We specify a given boundary by its q and h and use

the root-mean squared error (RMSE) range error as the

measure of performance of boundary estimation. Thus, we

transform the CRLB for p̂v into a CRLB for boundary

range estimation. Given pv, we obtain the orthogonal vec-

tor, qv, to the boundary, referring to Fig. 12. First, note that

nv, pointing from the emitter to the virtual emitter, has the

same direction as the unit normal n̂v from the origin to the

boundary:

n̂v ¼
xv� xeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xv� xeð Þ2þ yv� yeð Þ2
q yv� yeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xv� xeð Þ2þ yv� yeð Þ2
q" #T

:

(23)

The vector from the origin to the intersection point of the

boundary and nv is

bv ¼
xv þ xe

2

yv þ ye

2

� �T

: (24)

The orthogonal vector from the origin to the boundary

is then given by the orthogonal projection of bv onto n̂v, i.e.,

by ðbT
v n̂vÞn̂v. The result is

qv ¼
xv � xeð Þ x2

v � x2
e þ y2

v � y2
e

� �
2 xv � xeð Þ2 þ yv � yeð Þ2
	 
 yv � yeð Þ x2

v � x2
e þ y2

v � y2
e

� �
2 xv � xeð Þ2 þ yv � yeð Þ2
	 


2
4

3
5

T

: (25)

Finally, the range to the boundary is given by the mag-

nitude of qv, yielding

qv ¼
jx2

v � x2
e þ y2

v � y2
e j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xv � xeð Þ2 þ yv � yeð Þ2

q : (26)

This series of operations is the same as those used to

transform the LS and EDM virtual emitter estimates into

boundary estimates. Without loss of generality, we will

assume that x2
v � x2

e þ y2
v � y2

e > 0 for our subsequent

derivations.

We have now obtained the range as a function of xv

and yv, where xe and ye are known constants. The CRLBs

for xv and yv can now be transformed into a CRLB for qv.

We calculate the derivatives of qv with respect to xv and yv

as

@qv

@xv

¼
xv xv � xeð Þ2 þ yv � yeð Þ2
	 

xv � xeð Þ2 þ yv � yeð Þ2

	 
3=2

�
xv � xeð Þ x2

v � x2
e þ y2

v � y2
e

� �
2 xv � xeð Þ2 þ yv � yeð Þ2
	 
3=2

; (27)

@qv

@yv

¼
yv xv � xeð Þ2 þ yv � yeð Þ2
	 

xv � xeð Þ2 þ yv � yeð Þ2

	 
3=2

�
yv � yeð Þ x2

v � x2
e þ y2

v � y2
e

� �
2 xv � xeð Þ2 þ yv � yeð Þ2
	 
3=2

: (28)FIG. 12. (Color online) A geometric reference for the transformation of the

CRLB for virtual emitter positions into the CRLB for boundary range

estimation.
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The resulting CRLB for qv is obtained by the transformation

of parameters as

CRLB q̂vð Þ ¼
@qv

@xv

@qv

@yv

� �
I�1
1;1 I�1

1;2

I�1
1;2 I�1

2;2

" # @qv

@xv

@qv

@yv

2
6664

3
7775

¼ I�1
1;1

@qv

@xv

� �2

þ 2I�1
1;2

@qv

@xv

@qv

@yv

þ I�1
2;2

@qv

@yv

� �2

:

(29)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBðq̂vÞ

p
is, therefore, the lower bound on the RMSE

boundary range estimation error. It will be observed that the

CRLB falls exponentially with SNR, as will be shown for a

case example in Fig. 14.

VII. SIMULATION AND EXPERIMENTAL RESULTS

We study the performance of Neuro-COTANS, obtain-

ing time-delay estimates as per Sec. III, and evaluating the

NN method first in simulation to compare its performance to

LS and EDM and also to the CRLB derived in Sec. VI.

After retraining Neuro-COTANS, we apply it to a real-life

underwater acoustic setting, where it outperforms LS.

Finally, we conduct simulations that demonstrate the robust-

ness of Neuro-COTANS to model mismatch and reduce

prior knowledge of the environment.

A. Simulated performances

We test Neuro-COTANS on K ¼ 50 000 COTANS

images per SNR value, having trained it previously on 14

different SNRs in the 10–30 dB SNR range (which covers

low, medium, and high SNRs for this particular scenario).

Once Neuro-COTANS has been trained on this wide range

of representative SNRs, it is applied to different ranges of

SNRs without needing to be retrained. One boundary has its

q and h parameters uniformly drawn from the intervals

½3; 3:5�m and ½260; 280��, respectively, whereas the other

has parameters in ½6; 6:5�m and ½80; 100��. These bound-

aries model a sea surface and shallow bottom, as in Fig. 8.

The variations in range/angles of the boundaries could arise

from either surface wave motion in the case of the sea sur-

face or bathymetric variations in the case of the seafloor.

The pe and fpr;ig are uniformly drawn from the vicinities of

two fixed points, ð3:5; 0:5Þ and ð�2:5; 3:5Þ, respectively.

Although we have conducted simulation experiments with

three boundaries as well, the resulting performance curves

are qualitatively similar to the two-boundary case. Hence,

we only present the two-boundary simulation results. Also,

we only present the range estimates as the azimuth estimates

are likewise qualitatively similar.

We first compare Neuro-COTANS to an ideal LS

implementation, which is initialized at the ground truth loca-

tions of the fpv;jg with correct echo labeling and virtual

emitter solutions constrained to lie within the same parame-

ter space that Neuro-COTANS is trained on. Our perfor-

mance metric is the range RMSE (in m) over all N reflective

boundaries and all K environment realizations for each SNR

S, which are defined as

qRMSEðSÞ¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

XK

k¼1

qðSÞj;k � q̂ðSÞj;k

	 
2

NK

vuuuut
: (30)

Figure 13(a) demonstrates that Neuro-COTANS and

LS performances are nearly identical for SNR greater than

23 dB, a high-SNR operating regime in which global

errors are rare and the fŝi;jg are accurate due to small

noise. Below 23 dB SNR, as global errors become increas-

ingly common and we transition to an intermediate-SNR

regime, Neuro-COTANS outperforms LS by up to 6 dB

SNR. This performance advantage narrows at low SNRs,

where accurate boundary estimation becomes infeasible

using either method.

In Fig. 13(a), it appears that Neuro-COTANS merely

outperforms LS at SNR less than 23 dB and has equivalent

performance otherwise. In fact, the LS sometimes suffers

failures due to global errors, which are constrained to lie

within a relatively narrow parameter space. We conduct the

same experiment with unconstrained LS solutions and also

FIG. 13. (Color online) Neuro-COTANS performance compared to constrained LS (a) and LS and EDM (b).
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apply EDM to obtain Fig. 13(b). Neuro-COTANS outper-

forms LS and EDM by up to 9 dB SNR and marginally out-

performs them in the high-SNR regime as well. LS and

EDM have similar performances, which arises from how

they both minimize the squared error between measured and

estimated distances.

Finally, we conduct simulations with different noise real-

izations and a fixed environment, allowing us to compare

against the CRLB in Sec. VI for a single boundary present in

the environment. Because LS localization performance

comes close to the CRLB for emitter localization at high

SNR, LS virtual emitter localization should similarly come

close to the boundary range estimation CRLB. We observe

that this is the case in Fig. 14, confirming that the CRLB has

been formulated correctly and is a benchmark for perfor-

mance in the high-SNR regime as intended.

B. Underwater acoustic experiment results

To verify that Neuro-COTANS performs well under real-

istic conditions, we perform experiments in a controlled

underwater acoustic setting. We use the Scripps Ocean-

Atmosphere Research Simulator (SOARS) wave tank facility

[Fig. 15(a)] with the top-view of the experiment geometry as

in Fig. 15(b). The hydrophones are suspended at the same

depth such that we have a 2D estimation problem for the side

walls, located at y ¼ �1:235 m and y¼ 1.235 m. The NLOS

reflections from the other boundaries arrive later and, there-

fore, were time gated to reduce the problem to a 2D case.

We retrain the Neuro-COTANS approach of Fig. 13(b)

on a dataset that is similar to the geometric scenario of

SOARS. We then use the COTANS image generated from

the SOARS experiment to estimate the boundaries. The

results with Neuro-COTANS and LS are given in Table III.

Neuro-COTANS achieves an accuracy on the order of centi-

meters in q and a few degrees in h. LS suffers a large error

for one boundary and is consistently outperformed by

Neuro-COTANS.

C. Neuro-COTANS robustness analysis

We now present simulation results that study Neuro-

COTANS’s robustness. A common pitfall in NN design is to

overtrain on a particular dataset, yielding a network that is

fragile to model mismatch or one that only works with a nar-

row parameter space. A robust method will have a gradual

performance decline under model mismatch rather than

abrupt deterioration and remain functional for difficult esti-

mation scenarios.

First, we explore the effect of model mismatch in the pe

assumed in generating the training data. We train Neuro-

COTANS with pe drawn randomly from a square 0.25 m

wide, centered at ð3:5; 0:5Þ. We progressively shift the cen-

ter of this square by 0.25 m in x and y while continuing to

use Neuro-COTANS as trained on source locations within

the original square region. We thereby obtain the results in

FIG. 14. (Color online) The CRLB for single boundary range estimation,

calculated for a fixed scenario, and compared against the Neuro-COTANS

and LS performances for the same scenario.

FIG. 15. (Color online) Emitter deploy-

ment in the SOARS water tank (a) and

the top-view schematic of the water

tank illustrating the experiment geome-

try and the estimation results (b).

TABLE III. SOARS estimation error magnitudes for boundaries, with dras-

tic errors bolded.

Parameter q1 q2 h1 h2

Neuro-COTANS 0.083 m 0.019 m 0.7� 2.4�

LS 0.134 m 0.025 m 174� 5.7�
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Fig. 16, where Neuro-COTANS continues to be stable despite

increasingly worse performance as model mismatch creates

estimation biases that are unaccounted for. In this experiment,

Fine-NN does not yield a performance improvement over

Coarse-NN as the error due to mismatch is dominant.

Whereas the source and receiver locations may have

discrepancies with the assumed ground truth, larger errors

are more likely to occur in the emitter rather than in the

receiver locations. We have control over receiver deploy-

ment, and the error here is mainly the result of measurement

errors under realistic dynamic sea conditions. The emitter

position, however, is an estimate from a previous localiza-

tion stage, which is assumed here to be the ground truth

position for environment estimation. Thus, we expect the

main source of model mismatch errors to be the discrepancy

in the emitter position rather than in the receivers.

In a different experiment, we relax the bounds on h that

the gj can have such that Neuro-COTANS handles a larger

parameter space. We retrain Neuro-COTANS, originally

having a 610� h-margin as in Sec. VII A, with 620� and

630� h-margins as well. A larger parameter space requires a

correspondingly larger training set, but we instead use

50 000 training images per SNR as before to assess Neuro-

COTANS’s robustness. Our results in Fig. 17(a) indicate

that Neuro-COTANS remains stable despite being trained

on harder scenarios.

To analyze the deterioration caused by a larger parame-

ter space, we retrain Neuro-COTANS to operate on a 620�

h-margin, and then test it on the same 610� h-margin data-

set of the original NN. The resulting performances in Fig.

17(b) indicate that by sequentially using Neuro-COTANS

on progressively smaller parameter spaces, we could

achieve greater accuracy.

VIII. CONCLUDING REMARKS

In this paper, we propose the Neuro-COTANS image

regression method for 2D reflective boundary estimation,

exploiting the multi-scale filtering and domain adaptation

capabilities of CNNs. Our method leverages prior knowl-

edge of the environment to deliver robust performance in

simulation and experimental underwater acoustic settings

despite model mismatch, in part, by avoiding separated sub-

optimal echo labeling and filtering steps, which are fragile

without high SNR. These experiments demonstrated that

Neuro-COTANS was consistently accurate even when large

errors were present in the time-delay estimates, outperform-

ing alternative state-of-the-art boundary estimation

methods.

The richness of deep learning techniques enables a

range of potential improvements and extensions to Neuro-

COTANS. Neuro-COTANS currently works in 2D, and

extending it to 3D is nontrivial. Although replacing the 2D

convolutional layers with 3D layers is a first step, the key

difficulty is that 3D data increases computational demands

dramatically (the “curse of dimensionality”). Hence, a 3D

Neuro-COTANS requires a network and data structure that

makes more efficient use of computational resources.

The fact that the NNs have to be retrained at all is an

important limitation of the proposed Neuro-COTANS

method, which will have to be addressed in future work.

Ideally, we would train the NNs on a much wider variety of

boundary, emitter, and receiver positions, and the method

would provide a good estimate for any feasible estimation

scenario without the need for retraining. The current limita-

tion is a result of the NN architecture being used, rather than

being a limitation of the overall methodology. AlexNet,

which we adopted early on because of its proven track

record in image regression, requires too many images per

SNR level for training to generalize to a wider range of

FIG. 16. (Color online) Performance of Neuro-COTANS as the average

assumed emitter position increasingly deviates from the true one.

FIG. 17. (Color online) Neuro-COTANS performance on progressively larger h-margins (a) and performance on the same margin after being trained on dif-

ferent margins (b).
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problem geometries. Our main motivation in envisioning a

custom NN architecture for the future is to overcome this

limitation.

Neuro-COTANS currently estimates the locations of

reflective boundaries but could potentially be modified to

solve related problems as well. While the final layer of the

NN only provides the boundary location parameters, we

could expand the network’s capabilities to label the arrivals,

estimate the number of boundaries present, or produce a

metric of confidence in the estimation results. If the NLOS

TOAs come from an underwater acoustic simulator, such as

Bellhop (Porter, 2011), the training dataset would be richer

than our current signal model, potentially leading to better

performance in ocean deployments.

This work calls for a number of studies to potentially

improve Neuro-COTANS. There are alternative ways of

assembling the training data such as incorporating attenua-

tion coefficients by scaling each NLOS curve by its magni-

tude in the COTANS images. It may also be possible to

modify the network inputs, providing this data to the NN in

other formats than COTANS images, to explore a wider

range of estimation methods. The MSE-based cost function

is heuristic and its modification can also improve perfor-

mance (Huang et al., 2018). The further derivation in 3D of

a CRLB for the azimuth, h, and elevation, /, for each

boundary would lead to important insights. Neuro-

COTANS’s demonstration of the feasibility and desirability

of transform-based NN boundary estimation is encouraging

for these future studies.
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