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Abstract— Various approaches have been developed to upper
bound the generalization error of a supervised learning
algorithm. However, existing bounds are often loose and even
vacuous when evaluated in practice. As a result, they may fail
to characterize the exact generalization ability of a learning
algorithm. Our main contributions are exact characterizations
of the expected generalization error of the well-known Gibbs
algorithm (a.k.a. Gibbs posterior) using different informa-
tion measures, in particular, the symmetrized KL information
between the input training samples and the output hypothesis.
Our result can be applied to tighten existing expected generaliza-
tion errors and PAC-Bayesian bounds. Our information-theoretic
approach is versatile, as it also characterizes the generalization
error of the Gibbs algorithm with a data-dependent regularizer
and that of the Gibbs algorithm in the asymptotic regime,
where it converges to the standard empirical risk minimization
algorithm. Of particular relevance, our results highlight the
role the symmetrized KL information plays in controlling the
generalization error of the Gibbs algorithm.

Index Terms— Empirical risk minimization, generalization
error, Gibbs algorithm, PAC-Bayesian learning, symmetrized KL
information.
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I. INTRODUCTION

UNDERSTANDING the generalization behavior of a
learning algorithm is one of the most important chal-

lenges in statistical learning theory. Various approaches
have been developed [2], including VC dimension-based
bounds [3], algorithmic stability-based bounds [4], algorith-
mic robustness-based bounds [5], PAC-Bayesian bounds [6],
and recently information-theoretic bounds [7].

However, upper bounds on the generalization error can-
not entirely capture the generalization ability of a learning
algorithm. One apparent reason is the tightness issue, and some
upper bounds [8] can be far away from the true generalization
error or even vacuous when evaluated in practice. More impor-
tantly, existing upper bounds do not fully characterize all the
aspects that could influence the generalization error of a super-
vised learning problem. For example, VC dimension-based
bounds depend only on the hypothesis class, and algorithmic
stability-based bounds only exploit the properties of the learn-
ing algorithm. As a consequence, both methods fail to capture
the fact that the generalization error depends strongly on the
interplay between the hypothesis class, learning algorithm,
and the underlying data-generating distribution, as discussed
in [9] and [7]. This paper adopts an information-theoretic
approach to overcome the above limitations by deriving exact
characterizations of the generalization error for a specific
supervised learning algorithm, namely the Gibbs algorithm.

A. Problem Formulation

Throughout the paper, upper-case letters denote random
variables (e.g., Z), lower-case letters denote the realizations
of random variables (e.g., z), and calligraphic letters denote
sets (e.g., Z). All the logarithms are natural ones, and all
the information measure units are nats. N (µ,Σ) denotes the
Gaussian distribution with mean µ and covariance matrix Σ.

Let S = {Zi}n
i=1 ∈ S be the training set, where each Zi =

{Xi, Yi} is defined on the same alphabet Z . Note that Zi is not
required to be i.i.d generated from the same data-generating
distribution PZ , and we denote the joint distribution of all
the training samples as PS . We also denote the hypotheses
by w ∈ W , where W is a hypothesis class. We denote the
space of probability distributions over W and S by P(W)
and P(S), respectively. The performance of the hypothesis is
measured by a non-negative loss function ℓ : W ×Z → R+
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and we define the empirical and population risks associated
with a given hypothesis w via

Le(w, s) ≜
1
n

n∑
i=1

ℓ(w, zi), (1)

Lp(w,PS) ≜ EPS
[Le(w, S)], (2)

respectively. A learning algorithm can be modeled as a ran-
domized mapping from the training set S onto a hypothesis
W ∈ W according to the conditional distribution PW |S . Thus,
the expected generalization error quantifying the degree of
over-fitting can be written as

gen(PW |S , PS) ≜ EPW,S
[Lp(W,PS)− Le(W,S)], (3)

where the expectation is taken over the joint distribution
PW,S = PW |S ⊗ PS .

B. Information Measures

The goal of this paper is to characterize the generalization
errors via various information measures. In particular, if P
and Q are probability measures over space X , and P is
absolutely continuous with respect to Q, the Kullback-Leibler
(KL) divergence between P and Q is given by

KL(P∥Q) ≜
∫
X

log
(
dP

dQ

)
dP. (4)

If Q is also absolutely continuous with respect to P , then
the symmetrized KL divergence (also referred to as Jeffrey’s
divergence [10]) is

DSKL(P∥Q) ≜ KL(P∥Q) + KL(Q∥P ). (5)

The mutual information between two random variables X
and Y is defined as the KL divergence between the joint
distribution and product-of-marginal distribution

I(X;Y ) ≜ KL(PX,Y ∥PX ⊗ PY ), (6)

or equivalently, the conditional KL divergence between PY |X
and PY over PX ,

KL(PY |X∥PY |PX) ≜
∫
X

KL(PY |X=x∥PY )dPX(x). (7)

Swapping the role of PX,Y and PX ⊗PY in mutual informa-
tion, we get the lautum information introduced by [11],

L(X;Y ) ≜ KL(PX ⊗ PY ∥PX,Y ). (8)

Finally, the symmetrized KL information [12] between X and
Y is given by

ISKL(X;Y ) ≜ DSKL(PX,Y ∥PX ⊗ PY )
= I(X;Y ) + L(X;Y ). (9)

The conditional mutual information between two random
variables X and Y conditioned on Z is the KL divergence
between PX,Y |Z and PX|Z ⊗ PY |Z averaged over PZ ,

I(X;Y |Z)≜
∫

KL(PX,Y |Z=z∥PY |Z=z⊗PX|Z=z)dPZ(z).

(10)

Similarly, we can also define the conditional lautum infor-
mation L(X;Y |Z), and the conditional symmetrized KL
information

ISKL(X;Y |Z) ≜ I(X;Y |Z) + L(X;Y |Z). (11)

C. Gibbs Algorithm

In this paper, we focus on the Gibbs algorithm (a.k.a. Gibbs
posterior [13]), first proposed by [14] in statistical mechanics
and further investigated by [15] in information theory.

The Gibbs algorithm arises when conditional KL-divergence
is used as a regularizer to penalize over-fitting in the infor-
mation risk minimization framework. The following lemma
from [7] demonstrates that the generalization error of any
learning algorithm PW |S can be upper bounded using mutual
information I(W ;S).

Lemma 1 ( [7, Theorem 1]): Suppose ℓ(w,Z) is σ2-sub-
Gaussian1 under Z ∼ PZ for all w ∈ W , then

|gen(PW |S , P
n
Z )| ≤

√
2σ2

n
I(S;W ). (12)

Thus, it is natural to construct a learning algorithm PW |S
by regularizing I(W ;S) during empirical risk minimization
(ERM). As computing I(W ;S) requires the knowledge of
PW , [7], [16], [17] propose the following information risk
minimization problem, which replaces I(W ;S) with an upper
bound KL(PW |S∥π|PS) ≥ I(W ;S), and

arg inf
PW |S

(
EPW,S

[Le(W,S)]+
1
γ

KL(PW |S∥π(W )|PS)
)
. (13)

Here, π ∈ P(W) is an arbitrary prior distribution, and γ con-
trols the regularization term and balances between minimizing
the empirical risk and generalization.

In particular, it is shown in [7], [16], and [18] that the
solution to this regularized ERM problem corresponds to the
(γ, π(w), Le(w, s))-Gibbs distribution, which is defined as:

P γ
W |S(w|s) ≜

π(w) e−γLe(w,s)

VLe(s, γ)
, γ ≥ 0, (14)

where γ is also called the inverse temperature, and

VLe(s, γ) ≜
∫
π(w)e−γLe(w,s)dw (15)

is the partition function.

D. Contributions

The core contribution of this paper (see Theorem 1) is
an exact characterization of the expected generalization error
for the Gibbs algorithm in terms of the symmetrized KL
information between the input training samples S and the
output hypothesis W , as follows:

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

.

We also discuss some general properties of the sym-
metrized KL information, which could be used to prove

1A random variable X is σ2-sub-Gaussian if log E[eλ(X−EX)] ≤ σ2λ2

2
,

∀λ ∈ R.
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the non-negativity and concavity of the expected generaliza-
tion error for the Gibbs algorithm. In addition, we provide
exact characterizations of the expected generalization error
using other information measures, including symmetrized KL
divergence, conditional symmetrized KL information, and
replace-one symmetrized KL divergence. These results high-
light the fundamental role of symmetrized KL information
(divergence) in learning theory that does not appear to have
been recognized before.

Building upon these results, we further expand our contri-
butions in various directions:
• In Section III, we tighten existing expected generalization

error bound (see Theorem 5, 6, 7 and 8) by combining our
exact characterizations of expected generalization error
with the existing bounding techniques.

• In Section III, we also tighten the PAC-Bayesian bound
(see Theorem 9) for Gibbs algorithm under i.i.d and
sub-Gaussian assumptions using symmetrized KL diver-
gence.

• In Section IV (Proposition 4 and 5), we show how to use
our method to characterize the asymptotic behavior of
the generalization error for Gibbs algorithm under large
inverse temperature limit γ →∞, where Gibbs algorithm
converges to the empirical risk minimization algorithm.
Note that existing bounds, such as [7], [19], and [20],
become vacuous in this regime.

• In Section V, we characterize the generalization error of
the Gibbs algorithm with a data-dependent regularizer
using symmetrized KL information, which provides some
insights on how to reduce the generalization error using
regularization.

Some of these results have been presented in part in [1].
However, this paper generalizes [1] by providing exact char-
acterizations using multiple different information measures.
We further utilize these exact characterizations to derive tighter
generalization error bounds.

E. Other Motivations for the Gibbs Algorithm

As discussed in I-C, the choice of the Gibbs algorithm is
not arbitrary, and it can be interpreted as the solution to the
information risk minimization problem. In addition, the Gibbs
algorithm is also sufficiently general to model many learning
algorithms used in practice.

1) Empirical Risk Minimization: The (γ, π(w), Le(w, s))-
Gibbs algorithm can be viewed as a randomized version of
empirical risk minimization. As the inverse temperature γ →
∞, the prior distribution π(w) becomes negligible, and the
hypothesis generated by the Gibbs algorithm converges to the
hypothesis corresponding to standard ERM.

2) PAC-Bayesian Bound: The following upper bound on
the population risk from [21] holds with probability at least
1− δ for 0 < δ < 1, and 0 < λ < 2 under distribution PS ,

EPW |S=s
[Lp(W,PS)] (16)

≤
EPW |S=s

[Le(W, s)]

1− λ
2

+
KL(PW |S=s∥π(W )) + log( 2

√
n

δ )
λ(1− λ

2 )n
.

If we fix λ, π(w) and optimize over PW |S=s, the distri-
bution that minimizes the PAC-Bayes bound in (16) is the
(nλ, π(w), Le(w, s))-Gibbs distribution. Similar bounds are
proposed in [13, Theorem 1.2.1] and [22, Lemma 10], where
optimizing over the posterior distribution would result in a
Gibbs distribution.

3) SGLD Algorithm: The continuous-time Langevin dif-
fusion is described by the following stochastic differential
equation of a random process W (t):

dW (t) = −∇Le(W (t), s) dt+
√

2
γ

dB(t), t ≥ 0, (17)

where B(t) is the standard Brownian motion. Under some
conditions on the loss function ℓ(w, z), [23], [24] shows
that in the continuous-time Langevin diffusion, the stationary
distribution of hypothesis W is the Gibbs distribution.

The Stochastic Gradient Langevin Dynamics (SGLD) can be
viewed as the discrete version of the continuous-time Langevin
diffusion, and it is defined as follows:

Wk+1 = Wk − β∇Le(Wk, s) +

√
2β
γ
ζk, (18)

for k = 0, 1, · · · , where ζk is a standard Gaussian random
vector and β > 0 is the step size. In [25], it is proved that
under some conditions on the loss function, the conditional
distribution PWk|S induced by SGLD algorithm is close to the
(γ, π(W0), Le(wk, s))-Gibbs distribution in the 2-Wasserstein
distance for sufficiently large k.

F. Other Related Work

1) Information-Theoretic Generalization Error Bounds:
Recently, [7], [26] propose to use the mutual information
between the input training set and the output hypothesis to
upper bound the expected generalization error. However, those
bounds are known not to be tight, and multiple approaches
have been proposed to tighten the mutual information-based
bound. Reference [27] provides tighter bounds by considering
the individual sample mutual information, [28], [29] propose
using chaining mutual information, and [30], [31], [32] advo-
cate the conditioning and processing techniques. Information-
theoretic generalization error bounds using other information
quantities are also studied, such as f -divergence [33], α-Rényi
divergence and maximal leakage [34], [35], Jensen-Shannon
divergence [36], [37] and Wasserstein distance [38], [39], [40],
[41]. In [42], upper bounds in terms of mutual information are
obtained by employing coupling and chaining techniques in
the space of probability measures. Using rate-distortion theory,
[43], [44], [45] provide information-theoretic generalization
error upper bounds for model misspecification and model
compression. The information-theoretic approaches are also
applied to understand generalization errors in other scenarios,
including semi-supervised learning [46], [47], transfer learn-
ing [48] and meta learning [49], [50].

2) PAC-Bayesian Generalization Error Bounds: First pro-
posed by [51], [52], and [6], PAC-Bayesian analysis provides
high probability bounds on the generalization error in terms of
KL divergence between the data-dependent posterior induced
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by the learning algorithm and a data-free prior that can be
chosen arbitrarily [53]. There are multiple ways to generalize
the standard PAC-Bayesian bounds, including using different
information measures other than the KL divergence [54],
[55], [56], [57], [58] and considering data-dependent priors
(prior depends on the training data) [13], [59], [60], [61],
[62], [63] or distribution-dependent priors (prior depends on
data-generating distribution) [64], [65], [66], [67]. In [68],
a more general PAC-Bayesian framework is proposed, which
provides a high probability bound on the convex function of
the expected population and empirical risk with respect to the
posterior distribution, whereas in [69] the connection between
Bayesian inference and PAC-Bayesian theorem is explored by
considering Gibbs posterior and negative log loss function.

3) Generalization Error of Gibbs Algorithm: Both
information-theoretic and PAC-Bayesian approaches have
been used to bound the generalization error of the Gibbs
algorithm. An information-theoretic upper bound with a
convergence rate of O (γ/n) is provided in [20] for the Gibbs
algorithm with bounded loss function, and PAC-Bayesian
bounds using a variational approximation of Gibbs posteriors
are studied in [70]. [29, Appendix D] provides an upper bound
on the excess risk of the Gibbs algorithm under the sub-
Gaussian assumption. Reference [19] focuses on the excess
risk of the Gibbs algorithm, and a similar generalization
bound with a rate of O (γ/n) is provided under the sub-
Gaussian assumption. Although these bounds are tight in
terms of the sample complexity n, they become vacuous
when the inverse temperature γ → ∞, hence cannot capture
the behavior of the ERM algorithm. The sensitivity of the
expected empirical risk with respect to the Gibbs algorithm is
studied in [17]. The connection between population risk and
symmetrized KL divergence is studied in [71]. The expected
generalization error of the Gibbs measure as the solution
of the KL-regularized empirical risk minimization of the
overparameterized one-hidden layer neural network is studied
in [72].

Our work differs from this body of research because we
provide exact characterizations of the generalization error
of the Gibbs algorithm in terms of different information
measures. Our work further leverages this characterization
to tighten existing expected and PAC-Bayesian generalization
error bounds in literature such as [19] and [66].

II. GENERALIZATION ERROR OF THE GIBBS ALGORITHM

Our main result, which characterizes the exact expected gen-
eralization error of the Gibbs algorithm with prior distribution
π(w), is as follows:

Theorem 1: For (γ, π(w), Le(w, s))-Gibbs algorithm,

P γ
W |S(w|s) =

π(w) e−γLe(w,s)

VLe(s, γ)
, γ > 0, (19)

the expected generalization error is given by

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

. (20)

Sketch of Proof: It can be shown that the symmetrized
KL information can be written as

ISKL(W ;S) (21)
= EPW,S

[logP γ
W |S(W |S)]− EPW⊗PS

[logP γ
W |S(W |S)].

Just like the generalization error, the above expression
is the difference between the expectations of the same
function evaluated under the joint distribution and
the product-of-marginal distribution. Note that PW,S

and PW ⊗ PS share the same marginal distribution,
we have EPW,S

[log π(W )] = EPW
[log π(W )], and

EPW,S
[log VLe(S, γ)] = EPS

[log VLe(S, γ)]. Then, combining
(19) with (21) completes the proof. More details and the full
proof are provided in Appendix A-A. ■

To the best of our knowledge, this is the first exact char-
acterization of the expected generalization error for the Gibbs
algorithm. Note that Theorem 1 only assumes that the loss
function is non-negative, and it holds even for non-i.i.d training
samples S.

In Section II-A, we discuss some general properties of
the expected generalization error that can be derived directly
from the properties of symmetrized KL information. In
Section II-B, we provide a mean estimation example to show
that the symmetrized KL information can be computed exactly
for squared loss with Gaussian prior. In Section II-C, we pro-
vide some alternative exact characterizations of the expected
generalization error using other information measures.

A. General Properties

By Theorem 1, some basic properties of the expected
generalization error, e.g., non-negativity and concavity, can be
proved directly from the properties of symmetrized KL infor-
mation. We also discuss other properties of the symmetrized
KL divergence, including data processing inequality, chain
rule, and their implications in learning problems.

1) Non-Negativity: The non-negativity of the expected gen-
eralization error, i.e., gen(P γ

W |S , PS) ≥ 0, follows from
the non-negativity of the symmetrized KL information. Note
that the non-negativity result could also be proved using
[19, Appendix A.2] under much more stringent assumptions,
including i.i.d samples and a sub-Gaussian loss function.

2) Concavity: Using the exact characterization of the
expected generalization error in Theorem 1, we can show
that the expected generalization error of the Gibbs algorithm
is a concave function with respect to PS for a fixed Gibbs
algorithm as shown in the following Corollary.

Corollary 1: For a fixed (γ, π(w), Le(w, s))-Gibbs
algorithm P γ

W |S , the expected generalization error
gen(P γ

W |S , PS) is a concave function of PS .
Proof: From Theorem 1, we have,

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

. (22)

It is shown in [12] that the symmetrized KL information
ISKL(X;Y ) is a concave function of PX for fixed PY |X .
It completes the proof.

The concavity of the generalization error for the Gibbs
algorithm P γ

W |S can be immediately used to explain why
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training a model by mixing multiple datasets from different
domains could lead to poor generalization in some cases. Sup-
pose that the data-generating distribution is domain-dependent,
i.e., there exists a random variable D, such that D ↔ S ↔W
holds. Then, PS = EPD

[PS|D] can be viewed as the mixture
of the data-generating distribution across all domains. From
Corollary 1 and Jensen’s inequality, we have

gen(P γ
W |S , PS) ≥ EPD

[
gen(P γ

W |S , PS|D)
]
, (23)

which shows that the generalization error of the Gibbs
algorithm achieved with the mixture distribution PS is larger
than the averaged generalization error for each PS|D.

3) Lower Bound: Using Theorem 1 and Pinsker’s inequality
[11], we can also derive the following lower bound on the
expected generalization error in terms of total variation dis-
tance. As a comparison, an upper bound on the generalization
error of a learning algorithm in terms of total variation distance
is provided in [20].

Corollary 2: For (γ, π(w), Le(w, s))-Gibbs algorithm, the
following lower bound on the generalization error of the Gibbs
algorithm holds:

gen(P γ
W |S , PS) ≥ TV2(PW,S , PW ⊗ PS)

γ
, (24)

where

TV(PW,S , PW ⊗ PS) (25)

≜
∫
W

∫
S

∣∣PW,S(w, s)− PW (w)PS(s)
∣∣dw ds

denotes total variation distance.
Note that the right-hand side of the lower bound in Corol-

lary 2 is always bounded in [0, 4
γ ].

4) Upper Bound: We can derive an upper bound on the
expected generalization error in terms of symmetrized α-Rényi
divergence.

Corollary 3: For (γ, π(w), Le(w, s))-Gibbs algorithm, the
following upper bound on the generalization error of the Gibbs
algorithm holds for α > 1:

gen(P γ
W |S , PS) ≤ 1

γ
Rα

SKL(PW,S , PW ⊗ PS), (26)

where

Rα
SKL(PW,S , PW ⊗ PS) (27)

≜ Rα(PW,S∥PW ⊗ PS) + Rα(PW ⊗ PS∥PW,S), α ≥ 0,

and α-Rényi divergence is defined as

Rα(P∥Q) (28)

=
1

α− 1
log
(∫

W×S
P (w, s)α

(
Q(w, s)

)1−αdw ds
)
.

5) Data Processing Inequality: As the symmetrized KL
divergence is an f -divergence, with f(t) = (t − 1) log t,
then the data processing inequality holds for symmetrized KL
information [73].

Lemma 2 ( [73]): For Markov chain S ↔ W ↔ W ′,
the data processing inequality holds for symmetrized KL
information,

ISKL(S;W ) ≥ ISKL(S;W ′). (29)

Using the data processing inequality for mutual infor-
mation, [7], [44] show that pre/post-processing improves
generalization since these techniques give tighter mutual
information-based generalization error bounds. However, our
Theorem 1 only holds for the Gibbs algorithm, which cannot
characterize the generalization error for all conditional distri-
butions PW ′|S induced by the post-processing PW ′|W in the
Markov chain. Thus, it is hard to conclude that the pre/post-
processing will reduce the exact generalization error for the
Gibbs algorithm by directly applying the data processing
inequality.

6) Chain Rule: As shown in [44], using the chain rule
of mutual information, i.e., I(W ;S) =

∑n
i=1 I(W ;Zi|Zi−1)

and the fact that I(W ;Zi|Zi−1) ≥ I(W ;Zi) for i.i.d. samples,
the mutual information based generalization bound can be
tightened by considering the individual sample mutual infor-
mation I(W ;Zi).

However, lautum information does not satisfy the same
chain rule [11] as mutual information in general. Thus, it is
hard to characterize the generalization error of the Gibbs
algorithm using individual terms ISKL(W ;Zi). To see this,
we provide an example in Appendix A-B to show that the joint
symmetrized KL information ISKL(W ;S) can be either larger
or smaller than the sum of individual terms ISKL(W ;Zi).

B. Example: Mean Estimation

We now consider a simple learning problem, where
the symmetrized KL information can be computed exactly,
to demonstrate the usefulness of Theorem 1. All details are
provided in Appendix A-C.

Consider the problem of learning the mean µ ∈ Rd of a
random vector Z using n i.i.d training samples S = {Zi}n

i=1.
We assume that the covariance matrix of Z satisfies ΣZ =
σ2

ZId with unknown σ2
Z . We adopt the mean-squared loss

ℓ(w, z) = ∥z − w∥22, and assume a Gaussian prior for the
mean π(w) = N (µ0, σ

2
0Id). If we set inverse-temperature γ =

n
2σ̃2 , then the ( n

2σ̃2 ,N (µ0, σ
2
0Id), Le(w, s))-Gibbs algorithm

is given by the following posterior distribution [74],

P γ
W |S(w|Zn) ∼ N

(σ2
1

σ2
0

µ0 +
σ2

1

σ̃2

n∑
i=1

Zi, σ
2
1Id

)
, (30a)

with

σ2
1 =

σ2
0 σ̃

2

nσ2
0 + σ̃2

. (30b)

Since P γ
W |S is Gaussian, the mutual information and lautum

information are given by

I(S;W ) =
ndσ2

0σ
2
Z

2(nσ2
0 + σ̃2)σ̃2

−KL
(
PW ∥N (µW , σ2

1Id)
)
,

(31)

L(S;W ) =
ndσ2

0σ
2
Z

2(nσ2
0 + σ̃2)σ̃2

+ KL
(
PW ∥N (µW , σ2

1Id)
)
,

(32)

with

µW =
σ2

1

σ2
0

µ0 +
nσ2

1

σ̃2
µ. (33)
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For additive Gaussian channel PW |S , it is well known that
the Gaussian input distribution (which also gives a Gaussian
output distribution PW ) maximizes the mutual information
under a second-order moment constraint. As we can see from
the above expressions, the opposite is true for lautum informa-
tion. In addition, symmetrized KL information ISKL(W ;S) is
independent of the distribution of PZ , as long as ΣZ = σ2

ZId.
From Theorem 1, the generalization error of this algorithm

can be computed exactly as:

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

(34)

=
2dσ2

0σ
2
Z

nσ2
0 + σ̃2

=
2dσ2

0σ
2
Z

n(σ2
0 + 1

2γ )
,

which has the decay rate of O (1/n). As a comparison, the
individual sample mutual information (ISMI) bound from [27],
which is shown to be tighter than the mutual information-based
bound in Lemma 1, gives a sub-optimal bound with order
O (1/

√
n), as n→∞, (see Appendix A-D).

C. Other Characterizations

In this section, we provide other exact characterizations of
the Gibbs algorithm using different information measures. All
the proofs can be found in Appendix A-E.

1) Conditional Symmetrized KL Divergence: It is
well-known that mutual information has the following
variational characterization

I(W ;S) = inf
QW∈P(W)

KL(PW |S∥QW |PS)

= inf
QW∈P(W),QS∈P(S)

KL(PW,S∥QW ⊗QS), (35)

which implies that the product-of-marginal distribution mini-
mizes the KL divergence for a given joint distribution, and we
have for any QW ∈ P(W),

I(W ;S) ≤ KL(PW,S∥QW ⊗ PS). (36)

One may think that the counterpart for lautum information
would be infQW∈P(W) KL(PS⊗QW ∥PW,S), but it is not true
as shown in [11]. Therefore, there exists Q′W ∈ P(W) such
that

KL(Q′W ⊗ PS∥PW,S) ≤ L(W ;S), (37)

In the following proposition, we show that (36) and
(37) hold by selecting Q′W to be P

γ,Lp
W , which is

(γ, π(w), Lp(w,PS))-Gibbs algorithm. Note that P γ,Lp
W ∈

P(W), as it is defined using population risk Lp(w,PS), which
does not depend on the training data S.

Proposition 1: For (γ, π(w), Le(w, s))-Gibbs algorithm,
if we let Q′W = P

γ,Lp
W , we have

I(W ;S) ≤ KL(P γ
W |S∥P

γ,Lp
W |PS),

and L(W ;S) ≥ KL(P γ,Lp
W ∥P γ

W |S |PS). (38)

Therefore, for symmetrized KL information, it is possible
to find Q′W ∈ P(W), such that the following holds

ISKL(W ;S)=KL(PW |S∥Q′W |PS) + KL(Q′W ∥PW |S |PS).
(39)

In the following Lemma, we discuss the condition for the
distribution Q′W ∈ P(W) so that (39) holds.

Lemma 3: For a distribution QW ∈ P(W), equation (39)
holds if and only if

EPW
[EPS

[log(QW (W )/PW |S(W |S))]]

= EQW
[EPS

[log(QW (W )/PW |S(W |S))]]. (40)

Note that (40) holds for QW = PW . However, it can also
be verified that the condition (40) in Lemma 3 is satisfied,
if we set PW |S as the (γ, π(w), Le(w, s))-Gibbs algorithm,
and QW to be (γ, π(w), Lp(w,PS))-Gibbs algorithm, i.e.,
P

γ,Lp
W , respectively. Therefore,

ISKL(W ;S)

= KL(P γ
W |S∥P

γ,Lp
W |PS) + KL(P γ,Lp

W ∥P γ
W |S |PS). (41)

Inspired by (41), we can provide another exact characteriza-
tion of the expected generalization error of the Gibbs algorithm
in terms of symmetrized KL divergence.

Theorem 2: For (γ, π(w), Le(w, s))-Gibbs algorithm, the
expected generalization error is given by

gen(P γ
W |S , PS) =

DSKL(P γ
W |S∥P

γ,Lp
W |PS)

γ
, (42)

where DSKL(P γ
W |S∥P

γ,Lp
W |PS) ≜ EPS

[DSKL(P γ
W |S∥P

γ,Lp
W )].

Using Theorem 2, we can prove similar properties, i.e. the
non-negativity and concavity of the expected generalization
error of the Gibbs algorithm.

2) Conditional Symmetrized KL Information: The super-
sample approach proposed in [30] tightens the mutual
information-based generalization bound using conditional
mutual information by considering extra 2n supersamples,
instead of n samples. Here, we introduce such an analysis
using the supersample method for completeness, which results
in an exact characterization of the generalization error for the
Gibbs algorithm using conditional symmetrized KL informa-
tion.

Let S̃ ∈ Zn×2 be a collection of 2n samples generated
from the data-generating distribution PS , grouped in n pairs,
i.e., S̃ = {(Z̃i,0, Z̃i,1)}n

i=1. Let U ∈ {0, 1}n be n i.i.d uniform
Bernoulli random variables, which specify which samples to
select from each pair to form the training set, i.e., S̃U =
{Z̃i,Ui

}n
i=1.

If we consider the following Gibbs algorithm using this
random selection process,

P γ

W |S̃,U
(w|s̃, u) =

π(w) e−γLe(w,s̃u)

VLe(s̃u, γ)
, γ > 0, (43)

we have the following result that characterizes the
expected generalization error of the (γ, π(w), Le(w, s̃u))-
Gibbs algorithm in terms of the conditional symmetrized KL
information.

Theorem 3: For (γ, π(w), Le(w, s̃u))-Gibbs algorithm, the
expected generalization error is given by

gen(P γ

W |S̃,U
, PS) =

2ISKL(W ;U |S̃)
γ

. (44)
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As a comparison, the CMI bound obtained in [30] applies to
any learning algorithm with bounded loss function, depending
on I(W ;U |S̃) using our notations.

3) Replace-One Symmetrized KL Divergence: Inspired by
the notion of on-average KL-privacy [75] and [19, Theo-
rem 1], we provide the following characterization of expected
generalization error in terms of symmetrized KL divergence
between the Gibbs algorithm and one-replace data sample
Gibbs algorithm.

Theorem 4: For (γ, π(w), Le(w, s))-Gibbs algorithm, the
expected generalization error is given by

gen(P γ
W |S , PS) =

∑n
i=1DSKL(P γ

W |S∥P
γ
W |S(i) |PS,Z̃)

2γ
, (45)

where S(i) = {Z1, · · · , Zi−1, Z̃, Zi+1, · · · , Zn} is a
replace-one training dataset, i.e., Zi is replaced by an indepen-
dent copy Z̃, and P γ

W |S(i) is the (γ, π(w), Le(w, s(i)))-Gibbs
algorithm.

III. TIGHTER GENERALIZATION ERROR UPPER BOUNDS

In this section, we show that by combining the exact char-
acterizations in the previous section, Theorem 1, Theorem 2,
Theorem 3 and Theorem 4 with existing information-theoretic
and PAC-Bayesian approaches, we can provide tighter gener-
alization error upper bounds for the Gibbs algorithm. These
bounds quantify how the generalization error of the Gibbs
algorithm depends on the number of samples n, and are useful
when directly evaluating the symmetrized KL information or
divergence is difficult.

A. Expected Generalization Error Parametric Upper Bound

We first provide parametric upper bounds on the expected
generalization error for the Gibbs algorithm using previous
exact characterizations of generalization error. All the proofs
can be found in Appendix B-B.

1) Parametric Upper Bound via Symmetrized KL Informa-
tion (Theorem 1): The following parametric upper bound
on the expected generalization error for the Gibbs algorithm
can be obtained by combining our Theorem 1 with the
information-theoretic bound in Lemma 1 proposed by [7]
under i.i.d and sub-Gaussian assumptions.

Theorem 5: Suppose that the training samples S =
{Zi}n

i=1 are i.i.d generated from the distribution PZ , and the
non-negative loss function ℓ(w,Z) is σ-sub-Gaussian on the
left-tail2 under distribution PZ for all w ∈ W . If we further
assume CI ≤ L(W ;S)/I(W ;S) for some CI ≥ 0, then for
the (γ, π(w), Le(w, s))-Gibbs algorithm, we have

0 ≤ gen(P γ
W |S , PS) ≤ 2σ2γ

(1 + CI)n
. (46)

Sketch of Proof: Combining Lemma 1 and Theorem 1,
we have,

I(W ;S)(1 + CI)
γ

≤ I(W ;S) + L(W ;S)
γ

2A random variable X is σ-sub-Gaussian on the left-tail if
log E[eλ(X−EX)] ≤ σ2λ2/2, ∀λ ≤ 0 .

= gen(P γ
W |S , PS)

≤
√

2σ2I(W ;S)
n

. (47)

Therefore,
√
I(W ;S) ≤ γ

(1+CI)

√
2σ2

n holds and it completes
the proof. ■

A general upper bound on the expected generalization
error under other concentration assumptions is provided in
Appendix B-B. We also provide upper bounds for the Gibbs
algorithm under sub-Exponential and sub-Gamma assump-
tions, which have the order of O(1/n) in both cases,
in Appendix B-C.

Theorem 5 establishes the convergence rate O(γ/n) for
the generalization error of Gibbs algorithm with i.i.d training
samples and suggests that a smaller inverse temperature γ
leads to a smaller generalization error. Note that all the σ-
sub-Gaussian loss functions are also σ-sub-Gaussian on the
left-tail under the same distribution (the mean-squared loss
function in Section II-B is sub-Gaussian on the left-tail under
PZ , but not sub-Gaussian). Therefore, our result also applies to
any bounded loss function ℓ : W ×Z → [a, b], since bounded
functions are (b− a)/2-sub-Gaussian.

Remark 1 (Previous Results): Using the fact that Gibbs
algorithm is differentially private [76] for bounded loss
functions ℓ ∈ [0, 1], directly applying Lemma 1 from
[7] gives a sub-optimal bound |gen(P γ

W |S , PS)| ≤
√

γ
n .

By further exploring the bounded loss assumption using
Hoeffding’s lemma, a tighter upper bound |gen(P γ

W |S , PS)| ≤
γ
2n is obtained in [20], which has the similar decay rate
order of O (γ/n). In [19, Theorem 1], the upper bound
gen(P γ

W |S , PS) ≤ 4σ2γ
n is derived with a different assumption,

i.e., ℓ(W, z) is σ-sub-Gaussian under Gibbs algorithm P γ
W |S .

In Theorem 5, we assume the loss function is σ-sub-Gaussian
on left-tail under data-generating distribution PZ for all w ∈
W , which is more general as we discussed above. Our upper
bound is also improved by a factor of 1

2(1+CI) compared to
the result in [19].

We can apply the upper bound in Theorem 5 to the mean
estimation example in Section II-B. As our loss function in the
mean estimation example is not sub-Gaussian on both tails, the
upper bounds in [19], [20], and [7] are not applicable here.

Proposition 2: Under the same assumptions in the mean
estimation example in Section II-B, the following upper bound
holds on the expected generalization error of the Gibbs
algorithm,

gen(P γ
W |S , PS) ≤ 2σ2γ

(1 + CI)n
, (48)

where the sub-Gaussian parameter σ is defined in Appendix A-
D, and

1 ≤ CI ≤ 1 +
2KL

(
PW ∥N (µW , σ2

1Id)
)

ndσ2
0σ2

Z

2(nσ2
0+σ̃2)σ̃2 −KL

(
PW ∥N (µW , σ2

1Id)
) .
(49)

Remark 2 (Choice of CI ): Since L(W ;S) > 0 when
I(W ;S) > 0, setting CI = 0 is always valid in Theorem 5,
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which gives gen(P γ
W |S , PS) ≤ 2σ2γ

n as non-vacuous upper
bound. We can also observe that in Proposition 2, we have
1 ≤ CI for mean estimation example. As shown in [11,
Theorem 15], L(S;W ) ≥ I(S;W ) holds for any Gaussian
channel PW |S . In addition, it is discussed in [11, Example 1],
if either the entropy of training data S or the hypothesis W is
small, I(S;W ) would be smaller than L(S;W ) (as it is not
upper-bounded by the entropy), which implies that the lautum
information term is not negligible in general.

2) Parametric Upper Bound via Symmetrized KL Diver-
gence (Theorem 2): We can also combine the following
upper bound on the expected generalization error of the Gibbs
algorithm in terms of KL divergence with Theorem 2 to pro-
vide another parametric upper bound on the Gibbs algorithm
under the sub-Gaussian assumption.

Proposition 3: Suppose that the training samples S =
{Zi}n

i=1 are i.i.d generated from the distribution PZ and the
loss function ℓ(w,Z) is σ-sub-Gaussian under distribution PZ

for all w ∈ W . Then for (γ, π(w), Le(w, s))-Gibbs algorithm
we have

0 ≤ gen(P γ
W |S , PS) ≤

√
2σ2KL(P γ

W |S∥P
γ,Lp
W |PS)

n
. (50)

The following theorem provides another parametric upper
bound on the expected generalization of the Gibbs algorithm
under a different sub-Gaussian assumption. The proof tech-
nique is similar to Theorem 5.

Theorem 6: Suppose that the training samples S =
{Zi}n

i=1 are i.i.d generated from the distribution PZ , and the
non-negative loss function ℓ(w,Z) is σ-sub-Gaussian under
distribution PZ for all w ∈ W . If we further assume CK ≤
KL(P γ,Lp

W ∥P γ
W |S |PS)/KL(P γ

W |S∥P
γ,Lp
W |PS) for some CK ≥

0, then for the (γ, π(w), Le(w, s))-Gibbs algorithm, we have

0 ≤ gen(P γ
W |S , PS) ≤ 2σ2γ

(1 + CK)n
. (51)

Remark 3 (Comparing CI and CK): From Proposition 1,
we can obtain

KL(P γ,Lp
W ∥P γ

W |S |PS)

KL(P γ
W |S∥P

γ,Lp
W |PS)

≤ L(W ;S)
I(W ;S)

. (52)

Thus, the maximum value of CI is larger than the maximum
value of CK .

3) Parametric Upper Bound via Conditional Symmetrized
KL Information (Theorem 3): We can combine our Theo-
rem 3 based on conditional symmetrized KL information with
generalization error upper bound using conditional mutual
information in [30] to provide another parametric upper bound
on the Gibbs algorithm under bounded loss condition. The
proof technique is similar to Theorem 5.

Theorem 7: Suppose that the 2n samples S̃ =
{(Z̃i,0, Z̃i,1)}n

i=1 are i.i.d generated from the distribution PZ ,
and n i.i.d uniform Bernoulli random variables U ∈ {0, 1}n

select from each pair to form the training set, and the
non-negative loss function ℓ(w, z) ∈ [0, 1] is bounded. If we
further assume CC ≤ L(W ;U |S̃)/I(W ;U |S̃) for some

CC ≥ 0, then for the (γ, π(w), Le(w, s))-Gibbs algorithm,
we have

gen(P γ
W |S , PS) ≤ γ

(1 + CC)n
. (53)

4) Parametric Upper Bound via Replace-One Symmetrized
KL Divergence (Theorem 4): The following result can be
obtained by combining our Theorem 4 and [19, Theorem 1].
The proof technique is similar to Theorem 5.

Theorem 8: Suppose that the training samples S = {Zi}n
i=1

are i.i.d generated from the distribution PZ , and the
non-negative loss function ℓ(w,Z) is σs-sub-Gaussian under
distribution PW |S=s for all s ∈ S. If we further assume CS ≤
minS(i) KL(P γ

W |S(i)∥P γ
W |S |PS,Z̃)/KL(P γ

W |S∥P
γ
W |S(i) |PS,Z̃)

for some CS ≥ 0, then for the (γ, π(w), Le(w, s))-Gibbs
algorithm, we have

0 ≤ gen(P γ
W |S , PS) ≤ 4σ2

sγ

(1 + CS)n
. (54)

Remark 4 (σ-sub-Gaussian Assumption): The sub-
Gaussian assumption in Theorem 8 is under the Gibbs
algorithm, P γ

W |S=s for all s ∈ S which is different from
the σ-sub-Gaussian assumption under distribution PZ for all
w ∈ W in Theorem 5 and Theorem 6.

We summarized all the exact characterizations of expected
generalization error and the tighter expected generalization
error upper bounds based on these exact characterizations in
Table I.

Remark 5 (Choice of CI , CK , CC and CS): It should be
noted that all the aforementioned quantities, namely CI , CK ,
CC , and CS , are restricted to non-negative values. When
these quantities take on a value of zero, the bounds presented
in Theorems 5, 6, 7, and 8 retain their significance and
are non-vacuous. As these quantities increase, the derived
bounds become tighter. Furthermore, it is crucial to highlight
that regardless of the specific values of these quantities, the
observed convergence rate is an order of O(γ/n) across all of
our results.

B. PAC-Bayesian Upper Bound

As discussed in Section I-F, the prior distribution used in
PAC-Bayesian bounds is different from the prior in Gibbs
algorithm, since the former priors can be chosen arbitrarily to
tighten the generalization error bound. In this section, we pro-
vide a tighter PAC-Bayesian bound based on the symmetrized
KL divergence as in Theorem 2, which is inspired by the
distribution-dependent PAC-Bayesian bound proposed in [66]
using (γ, π(w), Lp(w,PS))-Gibbs distribution as the PAC-
Bayesian prior.

As the data-generating distribution PS is unknown in prac-
tice, we consider the (γ, π(w), Lp(w,PS′))-Gibbs distribution
in the following discussion, where PS′ is an arbitrary data-
generating distribution. Since (γ, π(w), Lp(w,PS′))-Gibbs
distribution is independent of the samples S and only depends
on the population risk Lp(w,PS′), we can denote it as P

γ,L′p
W .

By exploiting the connection between the symmetrized KL
divergence DSKL

(
P γ

W |S=s

∥∥P γ,L′p
W

)
and the KL divergence
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TABLE I
THE EXACT CHARACTERIZATIONS AND PARAMETRIC UPPER BOUNDS OF EXPECTED GENERALIZATION ERROR FOR THE GIBBS ALGORITHM

term KL
(
P γ

W |S=s

∥∥P γ,L′p
W

)
in the PAC-Bayesian bound from

[66], the following PAC-Bayesian bound can be obtained
under i.i.d and sub-Gaussian assumptions.

Theorem 9: (proved in Appendix C) Suppose that the train-
ing samples S = {Zi}n

i=1 are i.i.d generated from the
distribution PZ , and the non-negative loss function ℓ(w,Z)
is σ-sub-Gaussian under data-generating distribution PZ for
all w ∈ W . If we use the (γ, π(w), Lp(w,PZ′))-Gibbs distri-
bution as the PAC-Bayesian prior, where PZ′ is an arbitrary
chosen (and known) distribution, the following upper bound
holds for the generalization error of (γ, π(w), Le(w, s))-Gibbs
algorithm with probability at least 1− 2δ, 0 < δ < 1/2 under
distribution PS ,∣∣∣EP γ

W |S=s
[Lp(W,PS)− Le(W, s)]

∣∣∣
≤ 2σ2γ

(1 + CP (s))n
(55)

+ 2

√
σ2γ

(1 + CP (s))n

(
4
√

2σ2KL(PZ′∥PZ) + ϵ
)

+ ϵ2,

where

ϵ≜
4

√
2σ2 log(1/δ)

n
and CP (s)≤

KL
(
P

γ,L′p
W

∥∥P γ
W |S=s

)
KL
(
P γ

W |S=s

∥∥P γ,L′p
W

) ,
(56)

for some CP (s) ≥ 0.
Remark 6 (Previous Result): We could recover the

distribution-dependent bound in [66, Theorem 6] by setting
PZ′ = PZ , choosing a bounded loss function in [0, 1] and
CP (s) = 0 in our Theorem 9. Note that multiple terms in
our upper bound in Theorem 9 are tightened by a factor of
1/(1 +CP (s)), and our result applies to σ-sub-Gaussian loss
functions.

Remark 7 (Choice of CP (s)): Since the distribution
PZ′ can be set arbitrarily, the prior distribution
P

γ,L′p
W is accessible. Then, we can optimize CP (s) =

KL
(
P

γ,L′p
W

∥∥P γ
W |S=s

)
/KL

(
P γ

W |S=s

∥∥P γ,L′p
W

)
to tighten the

bound, as it can be computed exactly using the training set.

IV. ASYMPTOTIC BEHAVIOR OF GENERALIZATION ERROR
FOR GIBBS ALGORITHM

In this section, we consider the asymptotic behavior of the
generalization error for the Gibbs algorithm as the inverse
temperature γ → ∞.3 Note that the upper bounds obtained
in the previous section, as well as the ones in the literature,
have the order O( γ

n ), which becomes vacuous in this regime.
However, it is known that the Gibbs algorithm will converge to
ERM as γ →∞, which has a finite generalization error with
a bounded loss function. To resolve this issue, we provide
an exact characterization of the generalization error in this
regime using Theorem 1. All the proofs can be found in
Appendix D-A.

It is shown in [77], [78], and [79] that the asymptotic
behavior of the Gibbs algorithm depends on the number
of minimizers for the empirical risk, so we consider the
single-well case and multiple-well case separately.

A. Single-Well Case

In this case, there exists a unique W ∗(S) that minimizes
the empirical risk, i.e.,

W ∗(S) = arg min
w∈W

Le(w, S). (57)

It is shown in [79] that if H∗(S) ≜ ∇2
wLe(w, S)

∣∣
w=W∗(S)

is
not singular, then

P γ
W |S → P̂ γ

W |S ≜ N (W ∗(S),
1
γ
H∗(S)−1), (58)

in Wasserstein distance as γ →∞. We also define

P γ
W ≜ EPS

[P γ
W |S(W |S)], P̂ γ

W ≜ EPS
[P̂ γ

W |S(W |S)]. (59)

Our results rely on the following two assumptions.
Assumption 1 (Continuity of Symmmetrized KL Divergence):

Assume that for the asymptotic regime γ →∞, the following
symmetrized KL divergence DSKL(P γ

W |S∥P
γ
W |PS) is

continuous with respect to γ, i.e.,

DSKL(P γ
W |S∥P

γ
W |PS) → DSKL(P̂ γ

W |S∥P̂
γ
W |PS). (60)

3As discussed in Appendix D-D, with regard to γ, the expected empirical
risk is a decreasing function, therefore it is worthwhile to look into large γ
behavior.
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Assumption 2 (Non-Singular Hessian): The Hessian matrix
H∗(S) is not singular.

Thus, the symmetrized KL information in Theorem 1 can
be evaluated using this Gaussian approximation, which gives
the following result.

Proposition 4: Under Assumptions 1 and 2 in the single-
well case, the generalization error of the Gibbs algorithm in
asymptotic regime (γ →∞) is

gen(P γ
W |S , PS)

= E∆W,S

[1
2
W⊤H∗(S)W

]
(61)

+ EPS

[
(W ∗(S)− E[W ∗(S)])⊤

· (H∗(S)W ∗(S)− E[H∗(S)W ∗(S)])
]
,

where

E∆W,S
[f(W,S)] ≜ EPW⊗PS

[f(W,S)]− EPW,S
[f(W,S)].

Proposition 4 shows that the generalization error of the
Gibbs algorithm in the limiting regime γ →∞ highly depends
on the landscape of the empirical risk function.

Remark 8 (Continuity of Symmetrized KL Divergence):
As discussed in [80, Section 4], the KL divergence is only
weakly lower semi-continuous. Therefore, the symmetrized
KL divergence DSKL(P∥Q), just like KL divergence,
is only weakly lower semi-continuous, which means that for
Pn → P , and Qn → Q, we can only obtain the result that

lim
n→∞

DSKL(Pn∥Qn) ≥ DSKL(P∥Q). (62)

Although Assumption 1 is difficult to verify in practice, in the
following examples, we use Proposition 4 to recover some
traditional results known in the literature, which implies that
symmetrized KL divergence is continuous in these cases.

As an example, we use Proposition 4 to obtain the general-
ization error of the maximum likelihood estimates (MLE) in
the asymptotic regime n → ∞. More specifically, suppose
that we have n i.i.d. training samples generated from the
distribution PZ , and we want to fit the training data with
a parametric distribution family {f(zi|w)}n

i=1, where w ∈
W ⊂ Rd denotes the parameter. Here, the true data-generating
distribution may not belong to the parametric family, i.e.,
PZ ̸= f(·|w) for any w ∈ W . If we use the log-loss
ℓ(w, z) = − log f(z|w) in the Gibbs algorithm, as γ → ∞,
it converges to the ERM algorithm, which is equivalent to
MLE, i.e.,

W ∗(S) = ŴML ≜ arg max
w∈W

n∑
i=1

log f(Zi|w). (63)

As n → ∞, under regularization conditions (details in
Appendix D-B) which guarantee that W ∗(S) is unique, the
asymptotic normality of the MLE [81] states that the distribu-
tion of ŴML converges to

PN ≜ N (w∗,
1
n
J(w∗)−1I(w∗)J(w∗)−1), (64)

with

w∗ ≜ arg min
w∈W

KL(PZ∥f(·|w)), (65)

J(w) ≜ EZ

[
−∇2

w log f(Z|w)
]

(66)

and

I(w) ≜ EZ

[
∇w log f(Z|w)∇w log f(Z|w)⊤

]
. (67)

In addition, the Hessian matrix H∗(S) → J(w∗) as n →
∞, which is independent of the training samples S. Thus,
E∆W,S

[ 12W
⊤H∗(S)W ] = 0, and Proposition 4 gives

gen(PN , PS) =
tr(I(w∗)J(w∗)−1)

n
. (68)

When the true model is in the parametric family PZ =
f(·|w∗), we have I(w∗) = J(w∗) and the above expression
reduces to gen(PN , PZ) = d/n, which corresponds to the
penalty term in the well-known Akaike information criterion
(AIC) [82] used in MLE model selection.

In Appendix D-C, we consider a slightly different asymp-
totic regime, where the Gibbs algorithm converges to the
Bayesian posterior instead of ERM. A similar result as in (68)
can be obtained from Bernstein–von–Mises theorem [83] and
the asymptotic normality of the MLE.

B. Multiple-Well Case

In this case, there exist M distinct W ∗
u (S) such that

W ∗
u (S) ∈ arg min

w∈W
Le(w, S), u ∈ {1, · · · ,M}, (69)

where M is a fixed constant, and all the minimizers W ∗
u (S)

are isolated, meaning that a sufficiently small neighborhood
of each W ∗

u (S) contains a unique minimum.
In this multiple-well case, it is shown in [78] that the Gibbs

algorithm can be approximated by a Gaussian mixture, as long
as H∗

u(S) ≜ ∇2
wLe(w, S)

∣∣
w=W∗

u (S)
is not singular for all

u ∈ {1, · · · ,M}. However, there is no closed form for the
symmetrized KL information for Gaussian mixtures. Thus,
we provide the following upper bound of the generalization
error by evaluating Theorem 1 under the following assumption.

Assumption 3 (Non-singular Hessian): Assume that π(W )
is a uniform distribution over W , and the Hessian matrix
H∗

u(S) ≜ ∇2
wLe(w, S)

∣∣
w=W∗

u (S)
is not singular for all u ∈

{1, · · · ,M}.
Proposition 5: Under Assumption 3 and, similar continuity

assumption as in Assumption 1, the generalization error of
the asymptotic Gibbs algorithm by considering the Gaussian
approximation in the multiple-well case can be bounded as

gen(P γ
W |S , PS)

≤ 1
M

M∑
u=1

[
E∆Wu,S

[1
2
W⊤

u H
∗
u(S)Wu

]
+ EPS

[
(W ∗

u (S)− E[W ∗
u (S)])⊤Hu

· (W ∗
u (S)− E[W ∗

u (S)])
]]
.

Compared with Proposition 4, Proposition 5 shows that
the global generalization error in the multiple-well case can
be upper bounded by the mean of the generalization errors
achieved by each local minimizer.
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V. REGULARIZED GIBBS ALGORITHM

In this section, we show how regularization will influ-
ence the generalization error of the Gibbs algorithm. Our
regularizer definition is more general than the standard data-
independent regularizer, as it may also depend on the training
samples. There are many applications of such data-dependent
regularization in the literature—e.g., data-dependent spectral
norm regularization proposed in [84], ℓ1 regularizer over
data-dependent hypothesis space studied in [85] and dropout
modeled as data-dependent ℓ2 regularization in [86]. All the
proofs can be found in Appendix E.

In the following proposition, we consider the Gibbs
algorithm with a regularization term R : W × Zn →
R+

0 and characterize the generalization error of this
(γ, π(w), Le(w, s)+λR(w, s))-Gibbs algorithm, which is the
solution of the following regularized ERM problem:

P ⋆
W |S = arg inf

PW |S

(
EPW,S

[Le(W,S) + λR(W,S)]

+
1
γ

KL(PW |S∥π(W )|PS)
)
, (70)

where λ ≥ 0 controls the regularization term.
Proposition 6: (proved in Appendix E) For

(γ, π(w), Le(w, s) + λR(w, s))-Gibbs algorithm, its expected
generalization error is given by

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

− λE∆W,S
[R(W,S)], (71)

where

E∆W,S
[R(W,S)] = EPW⊗PS

[R(W,S)]− EPW,S
[R(W,S)].

Proposition 6 holds for non-i.i.d samples and any
non-negative loss function, and it shows that in order to
improve the generalization ability of the Gibbs algorithm,
the data-dependent regularizer needs to 1) minimize the sym-
metrized KL information ISKL(W ;S) and 2) maximize the
E∆W,S

[R(W,S)] term which corresponds to a “generalization
error” defined with the regularization term R(W,S).

Remark 9: If the regularizer is independent of the data,
i.e., R(w, s) = R(w), we have E∆W,S

[R(W,S)] = 0, and
Proposition 6 gives gen(P γ

W |S , PS) = ISKL(W ;S)
γ , which

implies that the data-independent regularizer needs to improve
the generalization ability of learning algorithm by reducing the
symmetrized KL information ISKL(W ;S) alone.

As an example for the data-dependent regularizer, we pro-
pose ℓ2-regularizer inspired by the regularizer in [87] for
support vector machines. Applying Proposition 6 to this ℓ2-
regularizer gives the following Corollary.

Corollary 4: Suppose that we adopt the ℓ2-regularizer
R(w, s) = ∥w−T (s)∥22, where T (·) is an arbitrarily determin-
istic function T : Zn →W . Then, the expected generalization
error of (γ, π(w), Le(w, s) + λR(w, s))-Gibbs algorithm is

gen(P γ
W |S , PS) =

ISKL(W ;S)
γ

− λ tr
(
Cov[W,T (S)]

)
,

(72)

where Cov[W,T (S)] denotes the covariance matrix between
W and T (S).

The above result suggests that to reduce the generaliza-
tion error with data-dependent ℓ2-regularizer, the function
T (S) should be chosen in a way, such that the term
tr(Cov[W,T (S)]) is maximized. One way is to leave a part of
the training set and learn the T (S) function. Note that a similar
idea has been explored in the development of PAC-Bayesian
bound with data-dependent prior [63].

For general regularization function R(w, s), we can bound
the E∆W,S

[R(W,S)] term using the mutual information-based
generalization error bound in [27] and [7].

Proposition 7: Suppose that the regularizer function
R(w, s) satisfies ΛR(w,s)(λ) ≤ ψ(λ), for λ ∈ (−b, b),
b > 0 under data-generating distribution PZ for all w ∈ W .
Then the following lower and upper bounds hold for
(γ, π(w), Le(w, s) + λR(w, s))-Gibbs algorithm:

ISKL(W ;S)
γ

− λψ∗−1(I(W ;S)) (73)

≤ gen(P γ
W |S , PS) ≤ ISKL(W ;S)

γ
+ λψ∗−1(I(W ;S)).

In contrast to the assumption of Theorem 10, the bounded
CGF assumption here is on the regularizer function R(w, s).
We could consider different tail behaviors for R(w, s) ψ(λ) in
Proposition 7, including sub-Gaussian, sub-Exponential, and
sub-Gamma. We provide the bound under the sub-Gaussian
assumption in the following corollary for simplicity.

Corollary 5: Suppose that the regularizer function R(w, s)
is σ-sub-Gaussian under the distribution PS for all w ∈ W .
Then the following bounds holds for (γ, π(w), Le(w, s) +
λR(w, s))-Gibbs algorithm:

ISKL(W ;S)
γ

− λ
√

2σ2I(W ;S) (74)

≤ gen(P γ
W |S , PS) ≤ ISKL(W ;S)

γ
+ λ

√
2σ2I(W ;S).

VI. CONCLUSION AND FUTURE WORKS

In this paper, we provide four different (but equivalent)
characterizations of the generalization error for the Gibbs
algorithm using symmetrized KL information, symmetrized
KL divergence, conditional KL information, and replace-one
symmetrized KL divergence, respectively. We demonstrate the
power and versatility of our approaches by tightening the
expected generalization error using our exact characterizations
of generalization error.

In addition, our information-theoretic method can be applied
to provide novel PAC-Bayesian bounds and characterize the
behaviors of the Gibbs algorithm with large inverse tempera-
ture and the regularized Gibbs algorithm.

Recently, a method involving coupling and chaining in
the space of probability measures has been introduced to
establish an upper bound on expected generalization error [42].
As future work, we aim to derive new upper bounds on the
expected generalization error of the Gibbs algorithm by com-
bining coupling and symmetrization techniques (as proposed
in [42]) with our approach. Our work also motivates further
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investigation of the Gibbs algorithm in various settings, includ-
ing extending our results to characterize the generalization
ability of an over-parameterized Gibbs algorithm, which could
potentially provide more understanding of the generalization
ability for deep learning.

APPENDIX A
GENERALIZATION ERROR OF GIBBS ALGORITHM

A. Details of Theorem 1

We start with the following two Lemmas:
Lemma 4: We define the following Je(w, S) function as a

proxy for the empirical risk, i.e.,

Je(w, S) ≜
γ

n

n∑
i=1

ℓ(w,Zi) + g(w) + h(S), (75)

where γ ∈ R+
0 , g : W → R, h : Zn → R, and the function

Jp(w,PS) ≜ EPS
[Je(w, S)]

as a proxy for the population risk. Then

EPW,S
[Jp(W,PS)− Je(W,S)] = γ gen(PW |S , PS). (76)

Proof:

EPW,S
[Jp(W,PS)− Je(W,S)]

= EPW,S

[
EPS

[
γ

n

n∑
i=1

ℓ(W,Zi)]−
γ

n

n∑
i=1

ℓ(W,Zi)
]

+ EPW

[
g(W ) + EPS

[h(S)]
]
− EPW,S

[
g(W ) + h(S)

]
= γ EPW

[
Lp(W,PS)

]
− EPW,S

[
Le(W,S)

]
= γ EPW,S

[Lp(W,PS)− Le(W,S)]

= γ gen(PW |S , PS). (77)

Lemma 5: Consider a learning algorithm PW |S , if we set
the proxy function Je(w, zn) = − logPW |S(w|s), then

EPW,S
[Jp(W,PS)− Je(W,S)] = ISKL(W ;S). (78)

Proof:

I(W ;S) + L(W ;S)

= EPW,S

[
log

PW |S(W |S)
PW (W )

]
+ EPW⊗PS

[
log

PW (W )
PW |S(W |S)

]
= EPW,S

[
logPW |S(W |S)

]
− EPW⊗PS

[
logPW |S(W |S)

]
= EPW,S

[−EPS
[logPW |S(W |S)] + logPW |S(W |S)]

= EPW,S
[Jp(W,PS)− Je(W,S)]. (79)

Note that, the last equality holds as EPS
[logPW |S(W |S)]

is not a function of input training samples S, and we have

EPW,S

[
− EPS

[logPW |S(W |S)]
]

= EPW

[
− EPS

[logPW |S(W |S)]
]

= EPW

[
Jp(W,PS)

]
. (80)

Proof of Theorem 1: Considering Lemma 4 and Lemma 5,
we just need to verify that Je(w, s) = − logPW |S(w|s) can be
decomposed into Je(w, s) = γ

n

∑n
i=1 ℓ(w, zi) + g(w) + h(s),

for γ > 0. Note that

Je(w, s) = − logP γ
W |S(w|s)

= γ Le(w, s)− log π(w) + log VLe(s, γ), (81)

then we have

ISKL(W ;S) = EPW,S
[Jp(W,PS)− Je(W,S)]

= γ gen(P γ
W |S , PS). (82)

■
Proof of Corollary 2: This can be proved immediately by

combining Theorem 1 with Pinsker’s inequality [11],

TV (PW,S , PW ⊗ PS) ≤
√

2 min(I(W ;S), L(W ;S)). (83)

■
Proof of Corollary 3: First, for α ≥ 1 we have:

Rα
SKL(PW,S , PW ⊗ PS)

= Rα(PW,S∥PW ⊗ PS) + Rα(PW ⊗ PS∥PW,S)

≥ KL(PW,S∥PW ⊗ PS) + KL(PW ⊗ PS∥PW,S), (84)

where the last inequality is based on the fact that α-
Rényi divergence is an increasing function with respect to α
(see, [88]) and R1(PW,S∥PW ⊗PS) = KL(PW,S∥PW ⊗PS).
■

B. Chain-Rule and Symmetrized KL Information

In the following example, we show that the chain rule does
not hold for symmetrized KL information.

Example 1: Consider the following joint distribution for
binary random variables W,Z1, Z2 ∈ {0, 1},

PW,Z1,Z2(w, z1, z2) =


1
8 , (z1, z2) = (0, 0),
1
4 − ϵ, w = 1, (z1, z2) ̸= (0, 0),

ϵ, otherwise.

It can be verified that Z1 and Z2 are mutually independent
Bernoulli random variable with p = 1

2 , and the conditional
distribution is symmetric in the sense that PW |Z1,Z2(w|0, 1) =
PW |Z1,Z2(w|1, 0).

Case I: When ϵ = 0.0001, we have

I(W ;Z1) = I(W ;Z2) = 0.0943,

I(W ;Z1, Z2) = 0.2014,

which satisfies the bound

I(W ;Z1, Z2) ≥ I(W ;Z1) + I(W ;Z2)

However, we also have

L(W ;Z1) = L(W ;Z2) = 0.3257,
L(W ;Z1, Z2) = 0.5315,
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which satisfies

L(W ;Z1) + L(W ;Z2) > L(W ;Z1, Z2),

ISKL(W ;Z1) = ISKL(W ;Z2) = 0.4200,

ISKL(W ;Z1, Z2) = 0.7329,

and, thus,

ISKL(W ;Z1) + ISKL(W ;Z2) > ISKL(W ;Z1, Z2).

Case II: When ϵ = 0.01, it can be verified we have

ISKL(W ;Z1) = ISKL(W ;Z2) = 0.1255,

ISKL(W ;Z1, Z2) = 0.2741,

and, hence,

ISKL(W ;Z1) + ISKL(W ;Z2) < ISKL(W ;Z1, Z2).

Thus, individual sample symmetrized KL information cannot
be used to characterize the behavior of ISKL(W ;S) in general.

C. Example Details: Mean Estimation

1) Generalization Error: We first evaluate the generaliza-
tion error of the learning algorithm in (30) directly. Note that
the output W can be written as

W =
σ2

1

σ2
0

µ0 +
σ2

1

σ̃2

n∑
i=1

Zi +N, with σ2
1 =

σ2
0 σ̃

2

nσ2
0 + σ̃2

,

(85)

where N ∼ N (0, σ2
1Id) is independent from the training

samples S = {Zi}n
i=1. Thus,

gen(PW |S , PS)

= EPW,S

[
EPZ̃

[
∥W − Z̃∥22

]
− 1
n

n∑
i=1

∥W − Zi∥22
]

(a)
= EPW,Zi

⊗PZ̃

[
(2W − Z̃ − Zi)⊤(Zi − Z̃)

]
= E

[
2
(

(
σ2

1

σ2
0

µ0 +
σ2

1

σ̃2

n∑
i=1

Zi +N)⊤(Zi − Z̃)
)

− (Zi + Z̃)⊤(Zi − Z̃)
]

(b)
=

2σ2
1

σ̃2
E
[
Z⊤i (Zi − Z̃)

]
=

2dσ2
1σ

2
Z

σ̃2
=

2dσ2
0σ

2
Z

nσ2
0 + σ̃2

, (86)

where Z̃ ∼ N (µ, σ2
ZId) denotes an independent copy of the

training sample, (a) follows due to the fact that Zn are i.i.d,
and (b) follows from the fact that Zi− Z̃ has zero mean, and
it is only correlated with Zi.

2) Symmetrized KL Divergence: The following lemma from
[11] characterizes the mutual and lautum information for the
Gaussian channel.

Lemma 6: [11, Theorem 14] Consider the following model

Y = AX + NG, (87)

where X ∈ RdX denotes the input random vector with zero
mean (not necessarily Gaussian), A ∈ RdY ×dX denotes the
linear transformation undergone by the input, Y ∈ RdY is
the output vector, and NG ∈ RdY is a Gaussian noise vector
independent of X . The input and the noise covariance matrices
are given by Σ and ΣNG . Then, we have

I(X; Y ) =
1
2

tr
(
Σ−1

NG
AΣA⊤

)
−KL

(
PY ∥PNG

)
, (88)

L(X; Y ) =
1
2

tr
(
Σ−1

NG
AΣA⊤

)
+ KL

(
PY ∥PNG

)
. (89)

In our example, the output W can be written as

W =
σ2

1

σ2
0

µ0 +
σ2

1

σ̃2

n∑
i=1

Zi +N

=
σ2

1

σ̃2

n∑
i=1

(Zi − µ) +
σ2

1

σ2
0

µ0 +
nσ2

1

σ̃2
µ +N, (90)

where N ∼ N (0, σ2
1Id). Setting

PNG ∼ N
(σ2

1

σ2
0

µ0 +
nσ2

1

σ̃2
µ, σ2

1Id

)
, (91)

and Σ = σ2
ZInd in Lemma 6 gives

tr
(
Σ−1

NG
AΣA⊤

)
= tr

(σ2
Z

σ2
1

AA⊤
)
, (92)

and noticing that AA⊤ = nσ4
1

σ̃4 Id completes the proof.

D. ISMI Bound

In this subsection, we evaluate the following individual
sample mutual information (ISMI) bound from [27, Theorem
2] for the example discussed in Section II-B with i.i.d. samples
generated from Gaussian distribution PZ ∼ N (µ, σ2

ZId).
Lemma 7: [27, Theorem 2] Suppose ℓ(W̃ , Z̃) satisfies

Λ
ℓ(W̃ ,Z̃)

(λ) ≤ ψ+(λ) for λ ∈ [0, b+), and Λ
ℓ(W̃ ,Z̃)

(λ) ≤
ψ−(−λ) for λ ∈ (b−, 0] under P

Z̃,W̃
= PZ ⊗ PW , where

0 < b+ ≤ ∞ and −∞ ≤ b− < 0. Then,

gen(PW |S , PS) ≤ 1
n

n∑
i=1

ψ∗−1
−

(
I(W ;Zi)

)
, (93)

−gen(PW |S , PS) ≤ 1
n

n∑
i=1

ψ∗−1
+

(
I(W ;Zi)

)
. (94)

We need to compute the mutual information between each
individual sample and the output hypothesis I(W ;Zi), and the
CGF of ℓ(W̃ , Z̃), where W̃ , Z̃ are independent copies of W
and Z with the same marginal distribution, respectively.

Since W and Zi are Gaussian, I(W ;Zi) can be computed
exactly using covariance matrix:

Cov[Zi,W ] =

 σ2
ZId

σ2
1

σ̃2σ
2
ZId

σ2
1

σ̃2σ
2
ZId

(
nσ4

1
σ̃4 σ

2
Z + σ2

1

)
Id

 , (95)
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then, we have

I(W ;Zi) =
d

2
log

nσ4
1

σ̃4 σ
2
Z + σ2

1

(n−1)σ4
1

σ̃4 σ2
Z + σ2

1

=
d

2
log
(
1 +

σ2
1σ

2
Z

(n− 1)σ2
1σ

2
Z + σ̃4

)
(96)

=
d

2
log
(
1 +

σ2
0σ

2
Z

(n− 1)σ2
0σ

2
Z + nσ2

0 σ̃
2 + σ̃4

)
,

for i = 1, · · · , n, n ≥ 2. In addition, since

W ∼ N
(σ2

1

σ2
0

µ0 +
nσ2

1

σ̃2
µ,
(nσ4

1

σ̃4
σ2

Z + σ2
1

)
Id

)
, (97)

it can be shown that ℓ(W̃ , Z̃) = ∥Z̃ − W̃∥2 is a scaled
non-central chi-square distribution with d degrees of freedom,
where the scaling factor σ2

ℓ ≜ (nσ4
1

σ̃4 + 1)σ2
Z + σ2

1 and its
non-centrality parameter η ≜ σ̃2

nσ2
0+σ̃2 ∥µ0 − µ∥22.

Note that the expectation of chi-square distribution with
non-centrality parameter η and d degrees of freedom is d+ η
and its moment generating function is exp( ηλ

1−2λ )(1−2λ)−d/2.
Therefore, the CGF of ℓ(W̃ , Z̃) is given by

Λ
ℓ(W̃ ,Z̃)

(λ) = −(dσ2
ℓ + η)λ+

ηλ

1− 2σ2
ℓλ
− d

2
log(1− 2σ2

ℓλ),

for λ ∈ (−∞, 1
2σ2

ℓ
). Since gen(PW |S , PZ) ≥ 0, we only need

to consider the case λ < 0. It can be shown that:

Λ
ℓ(W̃ ,Z̃)

(λ) = −dσ2
ℓλ−

d

2
log(1− 2σ2

ℓλ) +
2σ2

ℓ ηλ
2

1− 2σ2
ℓλ

=
d

2
(−u− log(1− u)) +

2σ2
ℓ ηλ

2

1− 2σ2
ℓλ
, (98)

where u ≜ 2σ2
ℓλ. Further note that

−u− log(1− u) ≤ u2

2
, u < 0, (99)

2σ2
ℓ ηλ

2

1− 2σ2
ℓλ

≤ 2σ2
ℓ ηλ

2, λ < 0. (100)

We have the following upper bound on the CGF of ℓ(W̃ , Z̃):

Λ
ℓ(W̃ ,Z̃)

(λ) ≤ (dσ4
ℓ + 2σ2

ℓ η)λ
2, λ < 0, (101)

which means that ℓ(W̃ , Z̃) is
√
dσ4

ℓ + 2σ2
ℓ η-sub-Gaussian for

λ < 0. Combining the results in (96), Lemma 7 gives the
following bound

gen(PW |S , PS) (102)

≤

√
d2σ4

ℓ + 2dσ2
ℓ η

2
log
(
1 +

σ2
0σ

2
Z

(n− 1)σ2
0σ

2
Z + nσ2

0 σ̃
2 + σ̃4

)
.

If σ̃2 = n
2γ is a constant, i.e., γ = O(n), then as n → ∞,

σ2
1 = O

(
1
n

)
and σ2

ℓ = O(1), and the above bound isO
(

1√
n

)
.

E. Other Characterizations

Proof of Lemma 3: Consider QW as an arbitrary distribu-
tion on hypothesis space, then the variational representations
of mutual information and lautum information are given by

I(W ;S) = KL(PW,S∥QW ⊗ PS)−KL(PW ∥QW ) (103)

L(W ;S) = EPS⊗PW
[log(QW (W )/PW |S(W |S))] (104)

+ KL(PW ∥QW ).

Now for ISKL(W ;S) we have

ISKL(W ;S) = I(W ;S) + L(W ;S)

= KL(PW,S∥QW ⊗ PS) (105)

+ EPS⊗PW
[log(QW (W )/PW |S(W |S))],

which is valid for all QW . We compare this representation
with the following

KL(PW,S∥QW ⊗ PS) + KL(QW ⊗ PS∥PW,S). (106)

The difference between these two expressions is

ISKL(W ;S)−KL(PW,S∥QW ⊗ PS)−KL(QW ⊗ PS∥PW,S)

= EPS⊗PW
[log(QW (W )/PW |S(W |S))]

−KL(QW ⊗ PS∥PW,S)

= EPS⊗PW
[log(QW (W )/PW |S(W |S))]

− EPS⊗QW
[log(QW (W )/PW |S(W |S))]

= EPW
[EPS

[log(QW (W )/PW |S(W |S))]]

− EQW
[EPS

[log(QW (W )/PW |S(W |S))]], (107)

which completes the proof. ■
The following lemma provides an operational interpretation

of the symmetrized KL divergence between the Gibbs poste-
rior P γ

W |S and the prior distribution P
γ,L′p
W .

Lemma 8: Let us denote the (γ, π(w), Le(w, s))-Gibbs
algorithm as P γ

W |S and the (γ, π(w), Lp(w,PS′))-Gibbs

algorithm as P
γ,L′p
W . Then, the following equality holds for

these two Gibbs distributions with the same inverse tempera-
ture and prior distribution

E
∆(P γ

W |S=s
,P

γ,L′p
W )

[Lp(W,PS′)− Le(W, s)]

=
DSKL(P γ

W |S=s∥P
γ,L′p
W )

γ
, (108)

where

E
∆(P γ

W |S=s
,P

γ,L′p
W )

[f(W )]=EP γ
W |S=s

[f(W )]− E
P

γ,L′p
W

[f(W )].

Proof:

DSKL(P γ
W |S=s∥P

γ,L′p
W )

= EP γ
W |S=s

[
log

P γ
W |S=s(W )

P
γ,L′p
W (W )

]
−E

P
γ,L′p
W

[
log

P γ
W |S=s(W )

P
γ,L′p
W (W )

]
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(a)
= E

∆(P γ
W |S=s

,P
γ,L′p
W )

[
log(e−γ(Le(W,s)−Lp(W,PS′ )))

]
= γ E

∆(P γ
W |S=s

,P
γ,L′p
W )

[
Lp(W,PS′)− Le(W, s)

]
, (109)

where (a) follows by the fact that partition functions VLe(s, γ)
do not depend on W .

Proof of Theorem 2: In Lemma 8, if we consider PS′ =
PS and take expectation over PS in (108) and notice the fact
that E

P
γ,Lp
W ⊗PS

[Le(W,S)] = E
P

γ,Lp
W

[Lp(W,PS)], we obtain
a characterization of the expected generalization error in terms
of the symmetrized KL divergence, i.e.,

gen(P γ
W |S , PS) =

DSKL(P γ
W |S∥P

γ,Lp
W |PS)

γ
. (110)

■
Proof of Proposition 1: From Theorem 2 and Theorem 1,

we have the following equation for (γ, π(w), Le(w, s))-Gibbs
algorithm,

I(W ;S) + L(W ;S) (111)

= KL(P γ
W |S∥P

γ,Lp
W |PS) + KL(P γ,Lp

W ∥P γ
W |S |PS).

Note that mutual information has the following variational
representation:

I(W ;S) = KL(PW,S∥QW ⊗ PS)−KL(PW ∥QW ). (112)

Let QW = P
γ,Lp
W in (112), we have

I(W ;S) ≤ KL(P γ
W |S∥P

γ,Lp
W |PS). (113)

Using (111) and (113), the following holds

L(W ;S) ≥ KL(P γ,Lp
W ∥P γ

W |S |PS). (114)

■
Proof of Theorem 3:

ISKL(W ;U |S̃)

= EPS̃

[
EPW,U|S̃

[
log

P γ

W |S̃,U

PW |S̃

]
+ EPW |S̃⊗PU|S̃

[
log

PW |S̃

P γ

W |S̃,U

]]

= EPS̃

[
EPW,U|S̃

[
log

P γ

W |S̃,U

PW |S̃

]
− EPW |S̃⊗PU

[
log

P γ

W |S̃,U

PW |S̃

]]
= EPS̃

[
EPW,U|S̃

[
logP γ

W |S̃,U

]
− EPW |S̃⊗PU

[
logP γ

W |S̃,U

]]
= γEPS̃

[
EPW,U|S̃

[
Le(W, S̃U )

]
− EPW |S̃⊗PU

[
Le(W, S̃U )

]]
(a)
= γEPW,U,S̃

[
Le(W, S̃U )

]
− γ

2

[
EPW,U,S̃

[
Le(W, S̃U )

]
+ Lp(W,PS)

]
=
γ

2
gen(P γ

W |S , PS). (115)

where (a) follows from the fact that if we independently draw
n samples from S̃, on average n

2 of them will be training
samples, and the remain n

2 samples are test samples. ■

Proof of Theorem 4: As shown in the proof of [19,
Theorem 1],

gen(P γ
W |S , PS) (116)

=
1
n

n∑
i=1

(
EPS,Z

[
EP

W |S(i) [ℓ(W,Zi)]− EPW |S [ℓ(W,Zi)]
])
.

The conditional symmetrized KL divergence, i.e.,
DSKL(P γ

W |S∥P
γ
W |S(i) |PS,Z), can be represented as follows

DSKL(P γ
W |S∥P

γ
W |S(i) |PS,Z)

= EPS,Z
[KL(P γ

W |S∥P
γ
W |S(i)) + KL(P γ

W |S(i)∥P γ
W |S)] (117)

= EPS,Z
[
γ

n
(EPW |S [ℓ(W,Z)]− EPW |S [ℓ(W,Zi)])]

+ EPS,Z
[
γ

n
(EP

W |S(i) [ℓ(W,Zi)]− EP
W |S(i) [ℓ(W,Z)])].

Due to the fact that Z and Zi are exchangeable, we have

EPS,Z

[
EP

W |S(i) [ℓ(W,Zi)]− EPW |S [ℓ(W,Zi)]
]

(118)

= EPS,Z

[
EPW |S [ℓ(W,Z)]− EP

W |S(i) [ℓ(W,Z)]
]
,

the final result holds. ■

APPENDIX B
EXPECTED GENERALIZATION ERROR UPPER BOUND

A. Preliminaries

To present the existing information-theoretic generalization
error bounds, we start with the introduction of the cumulant
generating function, which characterizes different tail behav-
iors of random variables.

Definition 1: The cumulant generating function (CGF) of a
random variable X is defined as

ΛX(λ) ≜ log E[eλ(X−EX)]. (119)

Assuming ΛX(λ) exists, it can be verified that ΛX(0) =
Λ′X(0) = 0, and that it is convex.

Definition 2: For a convex function ψ defined on the inter-
val [0, b), where 0 < b ≤ ∞, its Legendre dual ψ⋆ is defined
as

ψ⋆(x) ≜ sup
λ∈[0,b)

(
λx− ψ(λ)

)
. (120)

The following lemma characterizes a useful property of the
Legendre dual and its inverse function.

Lemma 9: [89, Lemma 2.4] Assume that ψ(0) = ψ′(0) =
0. Then ψ⋆(x) defined above is a non-negative convex and
non-decreasing function on [0,∞) with ψ⋆(0) = 0. Moreover,
its inverse function ψ⋆−1(y) = inf{x ≥ 0: ψ⋆(x) ≥ y} is
concave, and can be written as

ψ⋆−1(y) = inf
λ∈[0,b)

(y + ψ(λ)
λ

)
, b > 0. (121)

Here, we consider the distributions with the following tail
behaviors:
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• Sub-Gaussian: A random variable X is σ-sub-Gaussian,
if ψ(λ) = σ2λ2

2 is an upper bound of ΛX(λ), for λ ∈ R.
Then by Lemma 9,

ψ⋆−1(y) =
√

2σ2y.

• Sub-Exponential: A random variable X is (σ2
e , b)-sub-

Exponential, if ψ(λ) = σ2
eλ2

2 is an upper bound of ΛX(λ),
for 0 ≤ |λ| ≤ 1

b and b > 0. By Lemma 9, we have

ψ⋆−1(y) =


√

2σ2
ey, y ≤ σ2

e

2b ;

by + σ2
e

2b , otherwise.

• Sub-Gamma: A random variable X is Γ(τ2, cs)-sub-
Gamma [90], if ψ(λ) = λ2τ2

2(1−cs|λ|) is an upper bound
of ΛX(λ), for 0 < |λ| < 1

cs
and cs > 0. By Lemma 9,

we have
ψ⋆−1(y) =

√
2τ2y + csy.

The sub-Exponential condition is slightly milder compared
with the sub-Gaussian condition. All the definitions above can
be generalized by considering only the left (λ < 0) or right
(λ > 0) tails, e.g., σ-sub-Gaussian in the left tail.

B. Proofs of Upper Bounds

We prove a slightly more general form of Theorem 5 as
follows:

Theorem 10: Suppose that the training samples S =
{Zi}n

i=1 are i.i.d generated from the distribution PZ and
the loss function ℓ(w,Z) satisfies Λℓ(w,Z)(λ) ≤ ψ(−λ), for
λ ∈ (−b, 0), b > 0 under data-generating distribution PZ for
all w ∈ W . Let us assume there exists CI ∈ R+

0 such that
L(W ;S)
I(W ;S) ≥ CI , and we further assume there exists 0 < κ <∞
such that

ψ⋆−1
(κ
n

)
− (1 + CI)κ

γ
= 0. (122)

Then, the following upper bound holds for the expected
generalization error of (γ, π(w), Le(w, s))-Gibbs algorithm:

0 ≤ gen(P γ
W |S , PS) ≤ (1 + CI)κ

γ
. (123)

Proof of Theorem 10: It is shown in [27, Proposition 2]
that the following generalization error bound holds,

gen(P γ
W |S , PS) ≤ ψ⋆−1

(I(W ;S)
n

)
. (124)

By Theorem 1 and the assumption on CI , we have

gen(P γ
W |S , PS) =

I(W ;S) + L(W ;S)
γ

≥ (1 + CI)I(W ;S)
γ

. (125)

Therefore,

(1 + CI)I(W ;S)
γ

≤ ψ⋆−1
(I(W ;S)

n

)
. (126)

Consider the function F (u) ≜ ψ⋆−1(u
n ) − (1+CI)u

γ , which
is concave and satisfies F (0) = 0 by Lemma 9. If there

exists 0 < κ < ∞, such that F (κ) = 0, then F (I(W ;S)) ≥
0 implies that

0 ≤ I(W ;S) ≤ κ. (127)

Since ψ⋆−1(·) is non-decreasing, we have

gen(P γ
W |S , PS) ≤ ψ⋆−1

(κ
n

)
=

(1 + CI)κ
γ

. (128)

■
Note that Theorem 10 can be applied to the cases where

the loss functions have different tail distributions discussed in
Section B-A. However, the upper bound in [19, Theorem 1]
is only applicable with sub-Gaussian assumption.

We can specify the different forms of ψ(λ) function in
Theorem 10 to capture different tail behaviors of the loss
function. We first consider the σ-sub-Gaussian assumption.

Proof of Theorem 5: If the loss function is σ-sub-
Gaussian on the left-tail we have ψ⋆−1(y) =

√
2σ2y. Using

Theorem 10 we have√
2σ2

κ

n
− (1 + CI)κ

γ
= 0, (129)

and the solution is κ = 2σ2

n
γ2

(1+CI)2 . Therefore,

gen(P γ
W |S , PS) ≤ (1 + CI)κ

γ
=

2σ2γ

n(1 + CI)
. (130)

■
Proof of Proposition 2: From (101), it is shown that the

mean-squared loss is
√
dσ4

ℓ + 2σ2
ℓ η-sub-Gaussian on left-tail

under data generating distribution PZ . For CI we have

0 ≤ CI

≤ L(S;W )
I(S;W )

=

ndσ2
0σ2

Z

2(nσ2
0+σ̃2)σ̃2 + KL

(
PW ∥N (µW , σ2

1Id)
)

ndσ2
0σ2

Z

2(nσ2
0+σ̃2)σ̃2 −KL

(
PW ∥N (µW , σ2

1Id)
)

= 1 +
2KL

(
PW ∥N (µW , σ2

1Id)
)

ndσ2
0σ2

Z

2(nσ2
0+σ̃2)σ̃2 −KL

(
PW ∥N (µW , σ2

1Id)
) . (131)

The final result follows from the fact that σ2 =
√
dσ4

ℓ + 2σ2
ℓ η

and Theorem 5. ■
Proof of Proposition 3: From Proposition 1, we have

I(W ;S) ≤ KL(P γ
W |S∥P

γ,Lp
W |PS). (132)

Substituting the mutual information with
KL(P γ

W |S∥P
γ,Lp
W |PS) in lemma 1, the final result holds. ■

Proof of Theorem 6: Combining Theorem 2 and Propo-
sition 3, we have

(1 + CK)KL(P γ
W |S∥P

γ,Lp
W |PS)

γ

≤ gen(P γ
W |S , PS)

=
DSKL(P γ

W |S∥P
γ,Lp
W |PS)

γ
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=
KL(P γ

W |S∥P
γ,Lp
W |PS) + KL(P γ,Lp

W ∥P γ
W |S |PS)

γ

≤

√
2σ2KL(P γ

W |S∥P
γ,Lp
W |PS)

n
. (133)

Then, the following upper bound holds for
KL(P γ

W |S∥P
γ,Lp
W |PS)

KL(P γ
W |S∥P

γ,Lp
W |PS) ≤ 2σ2γ2

n(1 + CK)2
. (134)

Using (134) in Proposition 3, the final result holds. ■
Proof of Theorem 7: From Theorem 3, and the definition

of CC , we have

gen(P γ
W |S , PS) =

2ISKL(W ;U |S̃)
γ

≥ 2(1 + CC)I(W ;U |S̃)
γ

. (135)

Combining with [30, Theorem 1.2], which states that

gen(P γ
W |S , PS) ≤

√
2I(W ;U |S̃)

n
, (136)

we have

2(1 + CC)I(W ;U |S̃)
γ

≤

√
2I(W ;U |S̃)

n
, (137)

which gives

gen(P γ
W |S , PS) ≤ γ

(1 + CC)n
. (138)

■
Proof of Theorem 8: Using the sub-Gaussianity assump-

tion under the Gibbs algorithm and [7, Lemma 1], the
following inequality holds,

EPS,Z̃

[
EP

W |S(i) [ℓ(W, Z̃)]− EPW |S [ℓ(W, Z̃)]
]

(139)

≤
√

2σ2
sKL(PW |S(i)∥PW |S |PS,Z̃),

Plugging (139) into (116), the following upper bound on
expected generalization error holds:

gen(P γ
W |S , PS) ≤

∑n
i=1

√
2σ2

sKL(PW |S(i)∥PW |S |PS,Z̃)

n

(140)

Comparing (140) with Theorem 4, we have:

(1 + CS)
∑n

i=1 KL(P γ
W |S(i)∥P γ

W |S |PS,Z̃)

2γ

≤
∑n

i=1DSKL(P γ
W |S∥P

γ
W |S(i) |PS,Z̃)

2γ

≤

∑n
i=1

√
2σ2

sKL(PW |S(i)∥PW |S |PS,Z̃)

n

≤

√∑n
i=1 2σ2

sKL(PW |S(i)∥PW |S |PS,Z̃)
n

, (141)

And we can derive the following upper bound on∑n
i=1

√
KL(PW |S(i)∥PW |S |PS,Z̃), as follows:√√√√ n∑

i=1

KL(PW |S(i)∥PW |S |PS,Z̃) ≤
2γ
√

2σ2
s√

n(1 + CS)
. (142)

The final result holds by substituting the upper bound in (142)
with (141). ■

C. Other Tail Distributions

Corollary 6: Suppose that the training samples S =
{Zi}n

i=1 are i.i.d generated from the distribution PZ , and the
non-negative loss function ℓ(w,Z) is (σ2

e , b)-sub-Exponential
on the left-tail4 under distribution PZ for all w ∈ W . If we
further assume CI ≤ L(W ;S)

I(W ;S) for some CI ≥ 0, then for the
(γ, π(w), Le(w, s))-Gibbs algorithm, we have

gen(P γ
W |S , PS) (143)

≤


2σ2

eγ
n(1+CI) , n ≥ 2bI(W ;S)

σ2
e

;
σ2

e

2b

(
γb

(n(1+CI)−γb) + 1
)
, ⌈ γb

1+CI
⌉ < n < 2bI(W ;S)

σ2
e

.

Proof of Corollary 6: If the loss function is
sub-Exponential on the left-tail we have

ψ⋆−1(y) =

{ √
2σ2

ey, y ≤ σ2
e

2b ;

by + σ2
e

2b , otherwise.
(144)

If I(W ;S)
n ≤ σ2

e

2b , by Theorem 10, we have

(1 + CI)I(W ;S)
γ

≤
√

2σ2
e

I(W ;S)
n

, (145)

then the following upper bound holds,

I(W ;S) ≤ 2σ2
eγ

2

(1 + CI)2n
, (146)

which gives

gen(P γ
W |S , PS) ≤ 2σ2

eγ

n(1 + CI)
. (147)

If I(W ;S)
n >

σ2
e

2b , we have

I(W ;S)(1 + CI)
γ

≤ bI(W ;S)
n

+
σ2

e

2b
, (148)

then the following upper bound holds when n > γb
1+CI

,

I(W ;S) ≤ γnσ2
e

2b(n(1 + CI)− γb)
, (149)

which gives

gen(P γ
W |S , PS) ≤ σ2

e

2b

( γb

(n(1 + CI)− γb)
+ 1
)
. (150)

■
Corollary 7: Suppose that the training samples S =

{Zi}n
i=1 are i.i.d generated from the distribution PZ , and the

4A random variable X is (σ2
e , b)-sub-Exponential on the left-tail if

log E[eλ(X−EX)] ≤ σ2
eλ2

2
, − 1

b
≤ λ ≤ 0 .
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non-negative loss function ℓ(w,Z) is Γ(τ2, cs)-sub-Gamma
on the left-tail5 under distribution PZ for all w ∈ W . If we
further assume CI ≤ L(W ;S)

I(W ;S) for some CI ≥ 0, then for the
(γ, π(w), Le(w, s))-Gibbs algorithm, if n > csγ

(1+CI) , we have

gen(P γ
W |S , PS) ≤ 2τ2γ

(1 + CI)n− γcs

(
1 +

γcs
(1 + CI)n− γcs

)
.

(151)

Proof of Corollary 7: By considering ψ⋆−1(y) =√
2τ2y + csy in Theorem 10, we have

(1 + CI)I(W ;S)
γ

≤
√

2τ2
I(W ;S)

n
+ cs

I(W ;S)
n

. (152)

Then the following upper bound holds when n > csγ
(1+CI) ,

I(W ;S) ≤
( γ

(1 + CI)n− γcs

)2

2nτ2, (153)

which gives

gen(P γ
W |S , PS) ≤ 2τ2γ(1 + CI)n(

(1 + CI)n− γcs

)2 . (154)

■
The authors in [54] and [26] consider the sub-Exponential

assumption for general learning algorithms and provide
PAC-Bayesian upper bounds. Similarly, the sub-Gamma
assumption is considered in [91] and [69] and PAC-Bayesian
upper bounds are provided. Our Corollary 6 and 7 provide
upper bounds with order O(1/n) on the expected generaliza-
tion error for Gibbs algorithm under these assumptions.

APPENDIX C
PAC-BAYESIAN UPPER BOUND

Since the (γ, π(w), Lp(w,PS′))-Gibbs distribution only
depends on the population risk Lp(w,PS′) and is independent

of the samples S, we can denote it as P
γ,L′p
W .

Proof of Theorem 9: Using Lemma 8, we have

DSKL(P γ
W |S∥P

γ,L′p
W )

= γ(EP γ
W |S=s

[Lp(W,PZ′)]− EP γ
W |S=s

[Le(W, s)])

− γ(E
P

γ,L′p
W

[Lp(W,PZ′)]− E
P

γ,L′p
W

[Le(W, s)])

≤ γ
∣∣∣EP γ

W |S=s
[Lp(W,PZ′)]− EP γ

W |S=s
[Le(W, s)]

∣∣∣
+ γ

∣∣∣∣(EP
γ,L′p
W

[Lp(W,PZ′)]− E
P

γ,L′p
W

[Le(W, s)]
∣∣∣∣

≤ γ
∣∣∣EP γ

W |S=s
[Lp(W,PZ′)]− EP γ

W |S=s
[Lp(W,PZ)]

∣∣∣ (155)

+ γ
∣∣∣EP γ

W |S=s
[Lp(W,PZ)]− EP γ

W |S=s
[Le(W, s)]

∣∣∣
+ γ

∣∣∣∣EP
γ,L′p
W

[Lp(W,PZ′)]− E
P

γ,L′p
W

[Lp(W,PZ)]
∣∣∣∣

5A random variable X is Γ(τ2, cs)-sub-Gamma on the left-tail if
log E[eλ(X−EX)] ≤ λ2τ2

2(1−c|λ|) , for − 1
cs

< λ < 0.

+ γ

∣∣∣∣EP
γ,L′p
W

[Lp(W,PZ)]− E
P

γ,L′p
W

[Le(W, s)]
∣∣∣∣ ,

and we just need to bound the four terms in the above
inequality.

The first and the third term in (155) can be bounded
using the Donsker-Varadhan variational characterization of KL
divergence, note that for all λ ∈ R,

KL(PZ′∥PZ) ≥ EPZ′ [λℓ(w,Z
′)]− log EPZ

[eλℓ(w,Z)]

≥ λ(Lp(w,PZ′)− Lp(w,PZ))− λ2σ2

2
,

(156)

where the last step follows from the sub-Gaussian assumption.
Since the above inequality holds for all λ ∈ R, the discrimi-
nant must be non-positive, which implies

|Lp(w,PZ′)− Lp(w,PZ)| ≤
√

2σ2KL(PZ′∥PZ), (157)

holds for w ∈ W . We use the PAC-Bayesian bound in
[92, Proposition 3] to bound the second and the fourth term
in (155). For any posterior distribution QW |S=s, and prior
distribution QW , if ℓ(w,Z) is σ-sub-Gaussian under PZ for
all w ∈ W , the following bound holds with probability 1− δ,∣∣EQW |S=s

[Lp(W,PZ)]− EQW |S=s
[Le(W, s)]

∣∣
≤

√
2σ2
(
KL(QW |S=s∥QW ) + log(1/δ)

)
n

. (158)

If we choose P γ
W |S as the posterior distribution and P

γ,L′p
W as

the prior distribution, we have∣∣∣EP γ
W |S=s

[Lp(W,PZ)]− EP γ
W |S=s

[Le(W, s)]
∣∣∣

≤

√
2σ2
(
KL(P γ

W |S=s∥P
γ,L′p
W ) + log(1/δ)

)
n

(159)

holds with probability 1 − δ. If we set QW |S=s = QW =

P
γ,L′p
W , we have∣∣∣∣EP

γ,L′p
W

[Lp(W,PZ)]−E
P

γ,L′p
W

[Le(W, s)]
∣∣∣∣≤
√

2σ2 log(1/δ)
n

.

(160)

Combining the bounds in (157), (159) and (160) with (155),
we have

DSKL(P γ
W |S∥P

γ,L′p
W )

≤ γ

√
2σ2
(
KL(P γ

W |S=s∥P
γ,L′p
W |S ) + log(1/δ)

)
n

+ γ

√
2σ2 log(1/δ)

n
+ 2γ

√
2σ2KL(PZ′∥PZ). (161)

Then, using the assumption that

(1 + CP (s))KL(P γ
W |S=s∥P

γ,L′p
W )≤DSKL(P γ

W |S∥P
γ,Lp

W |S ),
(162)
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we have

(1 + CP (s))KL(P γ
W |S=s∥P

γ,L′p
W )

≤ γ

√
2σ2
(
KL(P γ

W |S=s∥P
γ,L′p
W ) + log(1/δ)

)
n

+ γ

√
2σ2 log(1/δ)

n
+ 2γ

√
2σ2KL(PZ′∥PZ).

(163)

Denote γ′ ≜ γ/(1 + CP (s)), then we have

KL(P γ
W |S=s∥P

γ,L′p
W )

−

√
2γ′2σ2 log(1/δ)

n
−
√

8γ′2σ2KL(PZ′∥PZ)

≤

√
2γ′2σ2

(
KL(P γ

W |S=s∥P
γ,L′p
W ) + log(1/δ)

)
n

. (164)

If we have

0 ≤ KL(P γ
W |S=s∥P

γ,L′p
W )

≤

√
2γ′2σ2 (log(1/δ))

n
+
√

8γ′2σ2KL(PZ′∥PZ), (165)

then the above inequality holds. Otherwise, we could take
square over both sides in (164), and denote

A ≜ C +

√
2σ2γ′2 log(1/δ)

n
, B ≜

√
8γ′2σ2KL(PZ′∥PZ),

(166)

where C ≜ σ2γ′
2
/n, then we have

D2(P γ
W |S=s∥P

γ,L′p
W ) (167)

− 2KL(P γ
W |S=s∥P

γ,L′p
W )(A+B) +B2+2(A−C)B ≤ 0.

Solving the above inequality gives:

0 ≤ KL(P γ
W |S=s∥P

γ,L′p
W ) ≤

√
A2 + 2BC +A+B. (168)

As
√
x+ y ≤

√
x+

√
y for positive x, y and A ≥ C, we have

KL(P γ
W |S=s∥P

γ,L′p
W ) ≤ 2A+B +

√
2BC

≤ 2A+B +
√

2AB

≤ (
√

2A+
√
B)2. (169)

Now using (169) in (159) and applying the inequality√
x+ y ≤

√
x+

√
y, we have∣∣∣EP γ

W |S=s
[Lp(W,µ)− Le(W, s)]

∣∣∣
≤

√
2σ2(

√
2A+

√
B)2 + 2σ2 log(1/δ)
n

≤
√

4σ2A

n
+

√
2σ2B

n
+

√
2σ2 log(1/δ)

n

≤ 2γσ2

(1 + CP (s))n
+

√
2σ2 (log(1/δ))

n
(170)

+ 2

√
γσ2

(1 + CP (s))n

·

(
4

√
2σ2 log(1/δ)

n
+ 4
√

2σ2KL(PZ′∥PZ)

)
.

As both (159) and (160) hold with probability at least 1− δ,
the above inequality holds with probability at least 1− 2δ by
the union bound [93]. ■

APPENDIX D
ASYMPTOTIC BEHAVIOR OF GENERALIZATION ERROR FOR

GIBBS ALGORITHM

A. Large Inverse Temperature Details

Proof of Proposition 4: It is shown in [79] that if the
following Hessian matrix

H∗(S) = ∇2
wLe(w, S)

∣∣
w=W∗(S)

, (171)

is not singular, then as γ →∞

P γ
W |S → N (W ∗(S),

1
γ
H∗(S)−1), (172)

in Wasserstein distance. Then, the mean of the marginal
distribution PW equals to the mean of W ∗(S), i.e.,

EPW
[W ] = EPS

[W ∗(S)]. (173)

Under the continuity assumption, we apply Theorem 1 by eval-
uating the symmetrized KL information using the Gaussian
approximation:

I(W ;S) + L(W ;S)

= EPW,S
[logP γ

W |S ]− EPW⊗PS
[logP γ

W |S ]

= EPW,S

[
−γ

2
(W −W ∗(S))⊤H∗(S)(W −W ∗(S))

]
+ EPW⊗PS

[γ
2
(W −W ∗(S))⊤H∗(S)(W −W ∗(S))

]
= EPW⊗PS

[γ
2
W⊤H∗(S)W

]
− EPW,S

[γ
2
W⊤H∗(S)W

]
+ EPS⊗PW

[γ
2

(
tr
(
H∗(S)(W ∗(S)W ∗(S)⊤

−WW ∗(S)⊤ −W ∗(S)W⊤)
))]

− EPS⊗PW |S

[γ
2

(
tr
(
H∗(S)(W ∗(S)W ∗(S)⊤

−WW ∗(S)⊤ −W ∗(S)W⊤)
))]

. (174)

Note that EPW
[W ] = EPS

[W ∗(S)] and EPW |S [W ] = W ∗(S).
Then in asymptotic regime (γ →∞), we have

gen(P γ
W |S , µ)
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=
I(W ;S) + L(W ;S)

γ
(175)

= EPW⊗PS

[1
2
W⊤H∗(S)W

]
− EPW,S

[1
2
W⊤H∗(S)W

]
+ EPS

[1
2

(
tr
(
H∗(S)

(
−E[W ∗(S)]W ∗(S)⊤

−W ∗(S) E[W ∗(S)]⊤
)))]

− EPS

[1
2

(
tr
(
H∗(S)

(
−W ∗(S)W ∗(S)⊤

−W ∗(S)W ∗(S)⊤
)))]

= EPW⊗PS

[1
2
W⊤H∗(S)W

]
− EPW,S

[1
2
W⊤H∗(S)W

]
+ EPS

[
(W ∗(S)− E[W ∗(S)])⊤

·
(
H∗(S)W ∗(S)− E[H∗(S)W ∗(S)]

)]
.

■
Proof of Proposition 5: In this multiple-well case, it is

shown in [79] that the Gibbs algorithm can be approximated
by the following Gaussian mixture distribution

P γ
W |S →

∑M
u=1 π

(
W ∗

u (S)
)
N
(
W ∗

u (S), 1
γH

∗
u(S)−1

)∑M
u=1 π(W ∗

u (S))
, (176)

as long as H∗
u(S) ≜ ∇2

wLe(w, S)
∣∣
w=W∗

u (S)
is not singular for

all u ∈ {1, · · · ,M}.
However, there is no closed form for the symmetrized KL

information for Gaussian mixtures. Thus, we use Theorem 1
to construct an upper bound of the generalization error.

Consider the latent random variable U ∈ {1, · · · ,M} which
denotes the index of the Gaussian component of P γ

W |S . Then,
conditioning on U and S, W is a Gaussian random variable.
Moreover, since π(W ) is a uniform prior, U is a discrete
uniform distribution PU (U = u) = 1

M , and U ⊥ S. Note
that for mutual information, we have

I(S;W |U) = I(S;W |U) + I(S;U)

= I(S;W,U)

= I(S;W ) + I(S;U |W )

≥ I(S;W ), (177)

and for lautum information

L(W ;S)
(a)

≤ L(W,U ;S)

(b)
= L(U ;S) + L(W ;S|U)

= L(W ;S|U), (178)

where (a) is due to the data processing inequality for any f -
divergence, and (b) follows by the fact that the chain rule of
lautum information holds when U ⊥ S as shown in [11].

Then we can upper bound I(S;W ) and L(S;W ) with
I(S;W |U) and L(S;W |U), respectively. Finally, Under the
similar continuity assumption for the Gibbs algorithm and the

Gaussian mixture distribution, in asymptotic regime (γ →∞),
we have

gen(P γ
W |S , µ)

= lim
γ→∞

I(S;W ) + L(S;W )
γ

≤ lim
γ→∞

I(S;W |U) + L(S;W |U)
γ

= EU

[
EPW |U⊗PS

[1
2
W⊤H(w∗u(S), S)W

]]
− EU

[
EPW,S|U

[1
2
W⊤H(w∗U (S), S)W

]]
(179)

+ EU

[
EPS

[
(w∗U (S)− E[w∗U (S)])⊤

·
(
H(w∗U (S), S)w∗U (S)− E[H(w∗U (S), S)w∗U (S)]

)]]
.

■

B. Regularity Conditions for MLE

In this section, we present the regularity conditions required
by the asymptotic normality [81] of maximum likelihood
estimates.

Assumption 4 (Regularity Conditions for MLE): 1)
f(z|w) ̸= f(z|w′) for w ̸= w′.

2) W is an open subset of Rd.
3) The function log f(z|w) is three times continuously

differentiable with respect to w.
4) There exist functions F1(z) : Z → R, F2(z) : Z → R

and M(z) : Z → R, such that

EZ∼f(z|w)[M(Z)] <∞,

and the following inequalities hold for any w ∈ W:∣∣∣∣∂ log f(z|w)
∂wi

∣∣∣∣ < F1(z),
∣∣∣∣∂2 log f(z|w)

∂wi∂wj

∣∣∣∣ < F2(z),∣∣∣∣∂3 log f(z|w)
∂wi∂wj∂wk

∣∣∣∣ < M(z), i, j, k = 1, 2, · · · , d.

5) The following inequality holds for an arbitrary w ∈ W
and i, j = 1, 2, · · · , d:

0 < EZ∼f(z|w)

[
∂ log f(z|w)

∂wi

∂ log f(z|w)
∂wj

]
<∞.

C. Bayesian Learning Algorithm

In this section, we show that the symmetrized KL informa-
tion can be used to characterize the generalization error of the
Gibbs algorithm in a different asymptotic regime, i.e., inverse
temperature γ = n, then γ and n go to infinity simultaneously.
In this regime, the Gibbs algorithm is equivalent to the
Bayesian posterior distribution instead of ERM.

Suppose that we have n i.i.d. training samples S = {Zi}n
i=1

generated from the distribution PZ defined on Z , and we want
to fit the training data with a parametric distribution family
{f(zi|w)}n

i=1, where w ∈ W ⊂ Rd denotes the parameter and
π(w) denotes a pre-selected prior distribution. Here, the true
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data-generating distribution may not belong to the parametric
family, i.e., PZ ̸= f(·|w) for w ∈ W . The following Bayesian
posterior distribution

PW |S(w|zn) =
π(w)

∏n
i f(zi|w)

V (zn)
, (180a)

with

V (zn) =
∫
π(w)

n∏
i

f(zi|w) dw, (180b)

is equivalent to the (n, π(w), Le(w, s))-Gibbs algorithm with
log-loss ℓ(w, z) = − log f(z|w). Thus, Theorem 1 can be
applied directly, and we just need to evaluate ISKL(W ;S).

We further assume that the parametric family {f(z|w),w ∈
W} and prior π(w) satisfy all the regularization conditions
required for the Bernstein–von-Mises theorem [81] and the
asymptotic Normality of the maximum likelihood estimate
(MLE), including Assumption 4 and the condition that π(w)
is continuous and π(w) > 0 for all w ∈ W .

In the asymptotic regime n → ∞, Bernstein–von-Mises
theorem under model mismatch [81], [83] states that we could
approximate the Bayesian posterior distribution PW |S in (180)
by

N (ŴML,
1
n
J(w∗)−1), (181)

where

ŴML ≜ arg max
w∈W

n∑
i=1

log f(Zi|w), (182)

denotes the MLE and

J(w) ≜ EZ

[
−∇2

w log f(Z|w)
]

(183)

with

w∗ ≜ arg min
w∈W

KL(PZ∥f(·|w)). (184)

The asymptotic Normality of the MLE states that the distri-
bution of ŴML will converge to

N (w∗,
1
n
J(w∗)−1I(w∗)J(w∗)−1) (185)

with

I(w) ≜ EZ

[
∇w log f(Z|w)∇w log f(Z|w)⊤

]
, (186)

as n → ∞. Thus, the marginal distribution PW can be
approximated by a Gaussian distribution regardless of the
choice of prior π(w).

Then, the symmetrized KL information can be computed
using Lemma 6. By Theorem 1, we have,

gen(PW |S , PZ) =
ISKL(S;W )

n
=

tr(I(w∗)J(w∗)−1)
n

.

(187)

When the true model is in the parametric family PZ =
f(·|w∗), we have I(w∗) = J(w∗), which gives the Fisher
information matrix and gen(PW |S , PZ) = d

n . This result
suggests that the expected generalization error of MLE and
that of the Bayesian posterior distribution are the same under
suitable regularity conditions.

D. Behavior of Empirical Risk

As an aside, we show that the empirical risk is a decreasing
function of the inverse temperature γ. To see this, we first note
that the derivative of P γ

W |S with respect to γ is given by

dP γ
W |S(w|s)

dγ
= P γ

W |S(w|s)
(
EP γ

W |S
[Le(w, S)]− Le(w, S)

)
.

(188)

Then, we can compute the derivative of the empirical risk with
respect to γ as follows:

dEPW,S
[Le(W,S)]
dγ

= EPS
[
dEP γ

W |S
[Le(W,S)]

dγ
]

= EPS

[∫
W
Le(w, S)

dP γ
W |S(w|S)

dγ
dw

]

= EPS

[∫
W
P γ

W |S(w|s)
(
Le(w, S) EP γ

W |S
[Le(w, S)]

− L2
e(w, S)

)
dw
]

= EPS

[
E2

P γ
W |S

[Le(w, S)]− EP γ
W |S

[L2
e(w, S)]

]
= −EPS

[VarP γ
W |S

[Le(W,S)]] ≤ 0 (189)

When γ = 0, it can be shown that (0, π(w), Le(w, s))-Gibbs
algorithm has zero generalization error. However, the empirical
risk in this case could be large, since the training samples are
not used at all. As γ → ∞, the empirical risk is decreasing,
but the generalization error could be large. Thus, the inverse
temperature γ controls the trade-off between the empirical risk
and the generalization error.

APPENDIX E
REGULARIZED GIBBS ALGORITHM

Proof of Proposition 6: For (γ, π(w), Le(w, s) +
λR(w, s))-Gibbs algorithm, we have

ISKL(W ;S)

= EPW,S
[log(P γ

W |S)]− EPW⊗PS
[log(P γ

W |S)]

= γ
(
EPW⊗PS

[Le(W,S)]− EPW,S
[Le(W,S)]

)
+ γλ

(
EPW⊗PS

[R(W,S)]− EPW,S
[R(W,S)]

)
= γgen(P γ

W |S , PS) + γλE∆W,S
[R(W,S)]. (190)

■
Proof of Corollary 4: We just need to compute

E∆W,S
[R(W,S)] by considering R(w, s) = ∥w − T (s)∥22,

EPW⊗PS
[R(W,S)]− EPW,S

[R(W,S)]

= EPW⊗PS

[
∥W − T (S)∥22

]
− EPW,S

[
∥W − T (S)∥22

]
= EPW,S

[
WTT (S)

]
− EPW⊗PS

[
WTT (S)

]
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= tr(Cov(W,T (S))). (191)

■
Proof of Proposition 7: Using the decoupling lemma from

[27, Theorem 1], we have:

|E∆W,S
[R(W,S)]| ≤ ψ∗−1(I(W ;S)), (192)

which means that

−ψ∗−1(I(W ;S))≤E∆W,S
[R(W,S)]≤ψ∗−1(I(W ;S)).

(193)

The final result in (73) follows directly from (193) and
Proposition 6. ■

Proof of Corollary 5: Considering ψ∗−1(I(W ;S)) =√
2σ2I(W ;S) in Proposition 7 completes the proof. ■
By assuming σ-sub-Gaussianity for both loss function

and the regularizer, we provide a generalization error upper
bound for the regularized Gibbs algorithm in the following
proposition.
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