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Abstract—A bilateral (i.e., upper and lower) bound on the
mean-square error under a general model mismatch is developed.
The bound, which is derived from the variational representation
of the chi-square divergence, is applicable in the Bayesian and
nonBayesian frameworks to biased and unbiased estimators. Un-
like other classical MSE bounds that depend only on the model,
our bound is also estimator-dependent. Thus, it is applicable as
a tool for characterizing the MSE of a specific estimator. The
proposed bounding technique has a variety of applications, one
of which is a tool for proving the consistency of estimators for a
class of models. Furthermore, it provides insight as to why certain
estimators work well under general model mismatch conditions.

Index Terms—Parameter estimation, performance bounds, chi-
square divergence, model mismatch.

I. INTRODUCTION

Classical bounds on the mean-square error (MSE) in pa-
rameter estimation traditionally assume that the statistical
model, which describes the relation between the (random)
observations and the parameter of interest, is fully known.
Examples include the celebrated Cramér-Rao bound (CRB) for
the nonBayesian framework [1], Van Trees (Bayesian CRB)
[2], Barankin [3], Ziv-Zakai [4], Abel [5] and Weiss-Weinstein
[6] bounds. For a more complete survey, see, e.g., [7], [8].

While these classical bounds are key to understanding the
fundamental limitations in optimal parameter estimation, they
all refer to the case where the statistical model is exactly faith-
ful to the physics. A more realistic, and perhaps contemporary
approach acknowledges that the mathematical model does not
precisely describe the true underlying physics, and attempts
to account for this inherent, almost inevitable mismatch. Of
course, this is particularly important from an engineering
perspective, where approximations are often made, preferring
a mismatch for the benefit of simplicity in implementation.

In such cases, there is a need to understand the impact on
performance. From this perspective, practical upper and lower
bounds on the MSE under model mismatch are valuable, and
as such have been recently receiving increasing attention [9].
More generally, aspects of this topic have a long history, for a
variety of different forms of model mismatch and in a variety
of different problems. For a selective list of representative
examples, see, e.g., [10]–[22].

Alejandro Lancho has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 101024432. This work is also supported by the National
Science Foundation under Grant No CCF-2131115.

While much of the focus has been on lower bounds (e.g.,
the misspecified CRB (MCRB) [23]), upper bounds are also
important. For instance, it is often unclear when the MSE of
an estimator derived under a different model from the true
one will be bounded from above. While upper bounds on
MSE have been considered for some (mismatch-free) special
cases—including, e.g., [24]–[30]—we are not aware of tools
for upper bounding the MSE of a given estimator under
general model mismatch conditions. Such an upper bound
would provide a guarantee for the actual performance, even
if with a gap from the exact performance, which is at any rate
unknown since the true model is unknown.

In this paper, we develop a useful bilateral (i.e., upper and
lower) bound on MSE under a general model mismatch. The
bound is applicable to both biased and unbiased estimators,
and in both Bayesian and nonBayesian frameworks. It can
be used for establishing the consistency of estimators for a
class of models rather than for a single model. Furthermore,
it has the potential to be useful in understanding why certain
estimators are robust—i.e., work well for various models that
deviate from the true underlying (and unknown) model.

II. PRELIMINARIES AND BACKGROUND

Let Θ ⊆ RK×1 be a parameter space, and (X ,F ,P) be a
complete probability space, where X ,F and P = {Pθ : θ ∈
Θ} denote an observation (or sample) space, a σ-algebra on X ,
and a collection of probability distributions indexed by θ ∈
Θ over the common measurable space (X ,F), respectively.
We assume that all the distributions {Pθ ∈ P} are absolutely
continuous with respect to a measure µ, which is assumed to
be the Lebesgue measure unless stated otherwise. For brevity,
we write Pθ simply as P , except where emphasis is required.

We now provide the necessary background for our results.

A. f -divergence and Variational Representation

An f -divergence is the following measure of discrepancy
between distributions, defined over a measurable space [31].

Definition 1 (f -divergence): Let P,Q ∈ P be two prob-
ability distributions on X , such that P ≪ Q, namely, P is
absolutely continuous with respect to Q. Then, for any convex
function f : (0,∞) → R that: (i) is strictly convex at 1; and
(ii) f(1) = 0, the f -divergence of Q from P is defined as

Df (P ||Q) ≜ EQ

[
f

(
dP

dQ

)]
, (1)
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where dP
dQ : X → [0,∞) denotes the Radon-Nikodym

derivative of P with respect to Q.
An equivalent and useful form of (1) is by the variational
representation of f -divergence (e.g., [32]), which uses the
notion of convex conjugation, defined as follows.

Definition 2 (Convex conjugate): Let f : (0,∞) → R be a
convex function. The convex conjugate f∗ of f is defined by

f∗(x) ≜ sup
λ∈R

[
λx− f(λ)

]
≜ sup

λ∈R
f̃(x, λ).

Using the fact that a convex conjugate of a convex function
is also convex, and that (f∗)∗ = f , we obtain the variational
representation of f -divergence [32, Ch. 6.1.1] in terms of f∗,

Df (P ||Q) = sup
g:X→R

[
EP [g(x)]− EQ[f

∗(g(x))]
]
, (2)

where g is such that the expectations in (2) are finite.

B. Chi-square Divergence

Specializing (1) with the function f(x) = (x − 1)2, we
obtain the chi-square divergence (CSD, e.g, [33]),

χ2(P ||Q) ≜ EQ

[(
dP

dQ
− 1

)2
]
= EQ

[(
dP

dQ

)2
]
− 1.

Using the fact that the convex conjugate of f is given by

f∗(x) = sup
λ∈R

[λx− (x− 1)2],

and after a relatively simple change of (the maximization)
variable (see, e.g., [32, Ch. 6.1]), one obtains

χ2(P ||Q) = sup
g:X→R

(EP [g(x)]− EQ[g(x)])
2

VarQ(g(x))
, (3)

from which the Hammersley-Chapman-Robbins (HCR) [34],
[35] bound is readily derived [32, Ch. 6.2]. While the HCR
pertains to a mismatch-free setting, we consider the funda-
mentally different model mismatch setting, as described next.

III. ESTIMATION IN MODEL MISMATCH

Assume that the observations x1, . . . , xN , denoted collec-
tively as x ≜ [x1 · · · xN ]T ∈ X ,1 are available for estimation
of a vector of unknown parameters θ ∈ Θ, and that x and θ
are related via the model Pdata ∈ P . In a standard setting, Pdata

is assumed to be fully known, and given a proper criterion,2

θ can be estimated from x. Here, we consider the case where
Pdata, the true underlying relation between x and θ, is (possibly
partially) unknown. This setting is realistic in engineering
problems where a physical model is unknown, or simply too
complicated to describe analytically.

Since Pdata, the true relation between x and θ, is in general
unknown, the system designer chooses Qdata ∈ P to describe
this relation. This choice is possibly based on some partial
knowledge and/or simplifying approximations. Having chosen

1As in traditional notation of classical estimation, with a slight abuse of
notation, we assume henceforth that x (rather than x) is an element in X .

2Be it for the frequentist or the Bayesian approach.

Qdata, the system designer devises an estimator of θ based on
x, denoted by θ̂(x), with an estimation error ε ≜ θ̂(x)− θ.

Note that while the estimator θ̂(x) is designed based on
Qdata, its performance is affected by the true underlying model
Pdata. Specifically, if we denote the resulting distribution of the
squared estimation error as P ∈ P , namely ∥ε∥22 ∼ P , then
the actual MSE of this estimator is given by

MSEP

(
θ̂(x)

)
≜ EP

[
∥ε∥22

]
∈ R+. (4)

However, since Pdata is unknown, the resulting P is unknown,
and therefore (4) cannot be evaluated. Thus, the following
natural (informal) questions arise: (i) Is it still possible to pro-
vide some performance guarantees in such (common) model
mismatch situations? (ii) Is partial knowledge enough for some
strong guarantees (e.g., consistency)? If so, (iii) how much
knowledge about P (or Pdata) is required to this end?

Our main result below shows that the answer to questions
(i) and (ii) is yes. As for (iii), the more quantitative question,
our results provide one possible answer that offers a trade-
off between partial (reasonably available) knowledge and
performance guarantees in terms of MSE (e.g., Corollary 2).

A. Main Results

We now state our main result—a bilateral bound on the
MSE in model mismatch.

Theorem 1: Let θ̂(x) be an estimator of θ, and ∥ε∥22 =
∥θ̂(x)−θ∥22 its associated squared estimation error, distributed
according to P , stemming from the data distribution Pdata.
Further, denote by Q ∈ P the distribution of ∥ε∥22, stemming
from the chosen (possibly mismatched) data distribution Qdata.
Then, the true MSE (4) is lower- and upper-bounded by

MSEP

(
θ̂(x)

)
≥ MSEQ

(
θ̂(x)

)
−∆

(
P,Q, θ̂(x)

)
, (5a)

MSEP

(
θ̂(x)

)
≤ MSEQ

(
θ̂(x)

)
+∆

(
P,Q, θ̂(x)

)
, (5b)

where ∆
(
P,Q, θ̂(x)

)
≜

√
VarQ(∥ε∥22) · χ2(P ||Q) ∈ R+.

Proof: It follows from (3) that

χ2(P ||Q) ≥ (EP [g(x)]− EQ[g(x)])
2

VarQ(g(x))
, (6)

for any g(·) for which the right-hand side in (6) is finite.
Now, choose g(t) = t and x = ∥ε∥22 such that P and Q

are the distributions of ∥ε∥22, induced by the data distributions
Pdata and Qdata, respectively. For this particular choice, using the
same definition (4) for Q as well, (6) specializes to

χ2(P ||Q) ≥

(
MSEP

(
θ̂(x)

)
−MSEQ

(
θ̂(x)

))2

VarQ(∥ε∥22)
.

Multiplying both sides by (the positive) VarQ
(
∥ε∥22

)
, taking

the square root, writing the two resulting inequalities, and
isolating MSEP

(
θ̂(x)

)
, readily gives (5a)–(5b).

Remark 1: In some cases, the terms that depend on Q only
(and not on P ), namely MSEQ

(
θ̂(x)

)
and VarQ

(
∥ε∥22

)
, can

be computed analytically, as they result from the chosen and
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known data distribution Qdata. Although Qdata may be different
from the true data distribution Pdata, this can be very useful,
e.g., for proving consistency (see Corollary 2 below).

Remark 2: A prior distribution may or may not be assigned
to θ, and (5) still holds (see Section III-C). Hence, the bound is
applicable for both the Bayesian and nonBayesian frameworks.

Remark 3: In the absence of model mismatch, i.e., when
the chosen data distribution accurately describes the data such
that Qdata = Pdata, the upper and lower bounds coincide, hence
MSEQ

(
θ̂(x)

)
= MSEP

(
θ̂(x)

)
, as expected. While this

property is trivial, it verifies that the bound (5) is sensible.
More generally, as long as the variance of the squared error is
bounded under Q, the accuracy of the bound improves as the
deviation (in the CSD sense) of Qdata from Pdata, and therefore
of Q from P , decreases. A desirable property, indeed.

Remark 4: The presumed, chosen model Qdata may be such
that MSEQ

(
θ̂(x)

)
≤ MSEP

(
θ̂(x)

)
(or even with strict in-

equality). However, (5) shows that for such “overly optimistic"
choices of Q, a sufficiently high penalty must be incurred to
the bound in the form of an increased ∆

(
P,Q, θ̂(x)

)
term.

This is demonstrated via a simple example in Section III-C.
Remark 5: Recall that the MSE under P cannot be com-

puted, since P is assumed to be partly or fully unknown. In
this case, any nontrivial information regarding the actual MSE
performance is valuable. As shown in Corollary 2 below, in
some cases it is enough to (only) bound the χ2(P ||Q) term in
order to attain nontrivial analytical performance guarantees.

While the expectation and variance under Q do not change
when computed under Qdata (due to the “law of the unconscious
statistician”, e.g., [36]), the CSD between the data distributions
may be easier to compute or bound. This is owing to the fact
that Q and P are transformed probability distributions, which
are determined by the estimation rule θ̂(x), and Qdata and Pdata.
This motivates the following corollary.

Corollary 1: Consider the setting of Theorem 1. Then, for
(the true and presumed) distributions Pdata, Qdata (respectively)
of any function of the raw data, from which the estimator θ̂(x)
may be computed, we have

MSEP

(
θ̂(x)

)
≥ MSEQ

(
θ̂(x)

)
−∆

(
Pdata, Qdata, θ̂(x)

)
, (7a)

MSEP

(
θ̂(x)

)
≤ MSEQ

(
θ̂(x)

)
+∆

(
Pdata, Qdata, θ̂(x)

)
, (7b)

Proof: By the data processing inequality (e.g., [31], [37]),

χ2(P ||Q) ≤ χ2(Pdata||Qdata)

=⇒ ∆
(
P,Q, θ̂(x)

)
≤ ∆

(
Pdata, Qdata, θ̂(x)

)
.

Since VarQ(∥ε∥22) = VarQdata(∥ε∥22), (7a) and (7b) bound from
below and above (5a) and (5b), respectively.

While (7) is weaker than (5), as explained in Remark 5,
it may be more convenient to work with; approximating the
estimation error distribution is less trivial than approximating
the distribution of the data, since in general we have access to
data. Further, (7) may already provide a satisfactory bound.

B. The Gaussian Signal Model

A particular case of high interest is when Qdata is chosen
as the Gaussian distribution. Indeed, in many applications,
such as communication, localization and image denoising, the
Gaussian signal model is used in order to derive different esti-
mators for various purposes, even though the actual measured
signals clearly do not follow a Gaussian distribution. However,
despite the model mismatch, many of these methods work well
on real data. This suggests that there exists a more fundamental
justification for this fact than simply a good empirical fit.

Theorem 1 provides such a justification, and in particular, an
accurate analytical description to the class of models for which
the (mismatched) Gaussian model still yields “good” (e.g.,
consistent) estimators. Consider, for example, the general,
ubiquitous signal model (e.g., as in [38])

xn = h(θ) + vn ∈ RM×1, n ∈ {1, . . . , N}, (8)

where h : RK×1 → RM×1 is a known (possibly random)
function, θ is deterministic and unknown, and {vn} are zero-
mean additive noise vectors with an unknown distribution.
If we nonetheless choose to assume that xn

iid∼ Qdata =
N (µ(θ),Λ(θ)),3 we may derive θ̂N

ML , the maximum-likelihood
estimator (MLE) of θ for this chosen model. However, the
performance of θ̂N

ML , which is not necessarily the MLE for
data Pdata when Pdata ̸= Qdata, is generally no longer necessarily
appealing. We emphasize that {xn} are generally not even iid
under Pdata. The following corollary describes the data distri-
butions for which θ̂N

ML is consistent despite model mismatch.
Corollary 2: Consider the signal model (8) and assume

that h is such that θ̂N
ML is consistent under xn

iid∼Qdata =

N (µ(θ),Λ(θ)), i.e., θ̂N
ML

p−−→ θ as N → ∞, where
p−−→

denotes convergence in probability. Define x̄ ≜ 1
N

∑N
n=1 xn,

and denote x̄ ∼ P̄data and Q̄data ≜ N (µ(θ), N−1 · Λ(θ)). If
P̄data, Q̄data are “not too far”, i.e.,4

χ2
(
P̄data||Q̄data

)
= o(N2), (9)

then the estimator θ̂N
ML is MSE-consistent under Pdata, namely,

lim
N→∞

MSEP

(
θ̂N

ML

)
= 0. (10)

Proof: For the model (8), under xn
iid∼ Qdata, a sufficient

statistic is x̄ ∼ N (µ(θ), N−1 · Λ(θ)) ≜ Q̄data. Therefore, x̄
can be treated as the observed data, with Q̄data and P̄data as
its hypothesized (possibly mismatched) and true distributions,
respectively. From Corollary 1, we have

MSEP

(
θ̂N

ML

)
≤ MSEQ

(
θ̂N

ML

)
+∆

(
P̄data, Q̄data, θ̂

N
ML

)
.

While we use θ̂N
ML for brevity, we emphasize that in this case

we have θ̂N
ML(x̄), since x̄ is a sufficient statistic. Now, since

θ̂N
ML is asymptotically efficient under Qdata,

ε = θ̂N
ML − θ

d−−→ N
(
0, N−1I−1(θ)

)
, (11)

3The symbol iid∼ stands for independent, identically distributed (iid).
4The “little-o” notation an = o(bn) means that limn→∞ an · b−1

n = 0.
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where d−−→ denotes convergence in distribution, 0 is the all-
zeros vector (with proper dimensions), and I(θ)∈ RK×K is
the Fisher information matrix (see, e.g., [39, Ch. 11.10]) of a
single observation xn, hence

MSEQ

(
θ̂N

ML

)
=

1

N

K∑
k=1

[
I−1(θ)

]
kk︸ ︷︷ ︸

≜σ2
CRB,k

N→∞−−−−→ 0.

It remains to show that ∆
(
P̄data, Q̄data, θ̂

N
ML

)
N→∞−−−−→ 0, where

∆
(
P̄data, Q̄data, θ̂

N
ML

)
=

√
VarQ̄data

(∥ε∥22) · χ2
(
P̄data||Q̄data

)
.

Focusing on the variance of the squared (norm of the) error,

VarQ̄data

(
∥ε∥22

)
=

K∑
k=1

VarQ̄data

(
ε2k
)
+

K∑
k,ℓ=1
k ̸=ℓ

COVQ̄data

(
ε2k, ε

2
ℓ

)
,

(12)

where COVQ̄data
(a, b) denotes the covariance of a and b,

evaluated under Q̄data. Due to (11), we have, asymptotically,

VarQ̄data

(
ε2k
)
= E

[
ε4k
]︸ ︷︷ ︸

3
σ4

CRB,k
N2

− E2
[
ε2k
]︸ ︷︷ ︸(

σ2
CRB,k
N

)2

=
2σ4

CRB,k

N2
, (13)

where we have used Isserlis’ theorem [40] to compute E
[
ε4k
]
.

As for the covariance terms in (12), applying the Cauchy-
Schwarz inequality and (13), we obtain

COVQ̄data

(
ε2k, ε

2
ℓ

)
≤

√
VarQ̄data

(ε2k)VarQ̄data
(ε2ℓ)

=
2σ2

CRB,kσ
2
CRB,ℓ

N2
.

Therefore, an upper bound on (12) is

VarQ̄data

(
∥ε∥22

)
≤ 2

N2
∥Σ∥2F︸ ︷︷ ︸

independent of N

, (14)

where ∥ · ∥F denotes the Frobenius norm and the entries of
the auxiliary matrix Σ ∈ RK×K are defined as

[Σ]kℓ ≜

{
σ2

CRB,k, k = ℓ,

σCRB,kσCRB,ℓ, k ̸= ℓ.
(15)

Using the bound (14) and assumption (9), we conclude that

∆
(
P̄data, Q̄data, θ̂

N
ML

)
≤

√
2∥Σ∥2F
N2

· χ2
(
P̄data||Q̄data

) N→∞−−−−→ 0,

and (10) follows.
Remark 6: For simplicity, in the proof of Corollary 2 we

assume that the “standard” regularity conditions hold (e.g.,
[41]), such that θ̂N

ML under Qdata is asymptotically efficient,
and the Fisher information matrix exists. However, consistency
(rather than asymptotic efficiency) of θ̂N

ML can suffice for (10).
It is interesting to note that, similarly to the requirement (9),
the Barankin bound also requires a (finiteness) condition on
the CSD [42, Eq. 6] (though different in nature).

Fig. 1. MSE and the upper bound (16) vs. φ̃ in “DOA-mismatched” esti-
mation for φ = 55◦, SNR = 10. Here, MSEQ (̂s) is independent of (φ, φ̃).

The importance of Corollary 2 is that it provides an ana-
lytical characterization, in the form of a sufficient condition,
for the success of the Gaussian quasi-ML approach [11] in
terms of MSE-consistency. Put simply, the condition (9) means
that as long as the data distribution is not “too far” from the
Gaussian distribution, using the Gaussian MLE is a reasonable
approach for estimation, at least asymptotically.

Note further that the proof can be generalized for a non-
Gaussian Qdata, as long as a similar condition as (9) holds.
Moreover, theoretically, it is possible to take the infimum of
(7b) over the parameters of the chosen Qdata—for example,
in the Gaussian case, over the mean vector µ(θ) and the
positive-definite covariance matrix Λ(θ)—to get the tightest
upper bound of this type.
C. Example Calculation

The following example, which permits an analytical calcula-
tion of the bound, demonstrates aspects of the bound behavior.
In particular, we consider the optimal multi-sensor receiver
with angular mismatch. More specifically, consider a Bayesian
version of (8), with h(θ) = a(φ)s, where θ = s ∼ N (0, 1) is
the estimand (i.e., K = 1 and N = 1) and a(φ) ∈ RM×1 is
a (unit-norm) steering vector as a function of the direction-
of-arrival (DOA) φ ∈ [0◦, 180◦), and v ∼ N (0, 1

SNR
IM ).5

In this case, the minimum MSE (MMSE) estimator of s is
given by ŝ(φ, SNR) ≜ SNR

1+SNR
a(φ)Tx, when φ is known. In

practice, however, φ is known only up to some accuracy level.
Consequently, if some φ̃ is used in place of φ, then6

ε = ŝ(φ̃, SNR)− s ∼

{
P =N

(
0, σ2

)
, for Pdata ↔ φ̃ ̸= φ,

Q=N
(
0, 1

1+SNR

)
, for Qdata ↔ φ̃ = φ,

σ2︸︷︷︸
MSEP (̂s)

≜ 1
1+SNR︸ ︷︷ ︸

MSEQ (̂s)

·
[
3− 2a(φ)Ta(φ̃) +

(SNR(1−a(φ)Ta(φ̃)))
2

1+SNR

]
︸ ︷︷ ︸

≜1/γ2(SNR,φ,φ̃)≥ 1 (“inflation factor”)

.

Moreover, in this case the CSD is given by

χ2(P ||Q) =
γ2√

2γ2 − 1
− 1 ≜ c2(SNR, φ, φ̃), ∀γ >

1√
2
,

5This example in fact deals with the linear minimum MSE (LMMSE)
receiver [43] of a single-input multiple-output (SIMO) communication system.

6Here, P and Q are the error (rather than the squared error) distributions.
Thus, by virtue of Corollary 1, we consider a slight variant of Theorem 1.
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where γ is shorthand for γ(SNR, φ, φ̃). Thus, using (5b),

MSEP (̂s) ≤
(1 + c(SNR, φ, φ̃)

√
2)

1 + SNR
≜ UB(SNR, φ, φ̃), (16)

where an obvious lower bound is MSEQ(̂s), since the MSE is
minimized for the true DOA. Fig. 1 shows the MSE under P
and the upper bound (16) (i.e., (5b)) vs. the mismatched DOA
φ̃ for an angular uncertainty of 10◦ centered at the true DOA
φ = 55◦ for SNR = 10 dB; the tightness of (5b) is evident.

An intuitive interpretation of the above is that Qdata repre-
sents an “overly optimistic” point of view (γ ≤ 1), where
the assumed DOA is exact: φ̃ = φ. Thus, the upper bound
is closer to the true performance curve, and the lower bound
becomes less informative. Clearly, here MSEQ(̂s) ≤ MSEP (̂s)
for any (DOA) mismatch. Furthermore, MSEQ(̂s) is greater
than the lower bound (5a). Evidently, this example reveals
that the bounds (5a) and (5b) are not always simultaneously
informative. However, perhaps surprisingly, in some situations
they are, as demonstrated in the next section.

IV. REPRESENTATIVE APPLICATION OF THE BOUND

We now consider a representative application of the bound
in a nonBayesian framework (in contrast to that of Section
III-C), which showcases bilateral tightness, as well as an
improvement over the MCRB in the non-asymptotic regime.

Consider the time-of-arrival (TOA) estimation problem,
which is instrumental in a host of engineering applications,
e.g., [44]–[46]. Specifically, we focus on the case study of a
mismatched waveform considered in [21], which is a special
case of (8), with θ = τ (i.e., K = 1), v ∼ N (0, σ2IM ), and

hm(τ) = e
−
(

t−τ
Tp

)2
∣∣∣∣
t=mTs

≜ hm(τ, Tp), m ∈ {1, . . . ,M},

where τ is the unknown TOA, hm(τ, Tp) is the m-th sample
of a τ -shifted Gaussian pulse with pulse width Tp, and Ts is
the sampling period, hence MTs is the observation interval.

While the true model of the observation x is Pdata =
N (h(τ, Tp), σ

2IM ), if there is imprecise knowledge of the
pulse width,7 and it is assumed to be TQ, we have Qdata =
N (h(τ, TQ), σ

2IM ). When the estimator τ̂ is designed based
on TQ, and the system designer is aware of the potential mis-
match due to some inherent physical uncertainty, performance
guarantees (upper bounds) and fundamental limitation (lower
bounds) of the actual MSE can be of high practical value.

Remark 7: Although we do not use the looser version of
the bound (Corollary 1), we now show that in this problem,
the CSD of the data distributions can be computed in closed-
form. It is known that for two multivariate normal distributions
P = N (µP ,Λ), Q = N (µQ,Λ) [48],

Df (P ||Q) = Df (N (0, 1)||N (δΛ(µP ,µQ), 1)), (17)

where δ2Λ(µP ,µQ) ≜ (µP −µQ)
TΛ−1(µP −µQ) is the Ma-

halanobis generalized distance. Hence, in our TOA estimation
problem, we have (e.g., [26])

χ2(Pdata||Qdata) = exp
{

∥h(τ,TP )−h(τ,TQ)∥2
2

σ2

}
− 1. (18)

7Such a mismatch can occur, for example, in ultrasound [47].

Fig. 2. Root MSE (RMSE) vs. SNR in TOA estimation, for Ts =
10−2µs, TP = 2µs, TQ = 1.1 · TP ,M = 2 · 103 and τ ∼ Unif(−5, 5)µs.

However, as explained in [21], for Gaussian pulses, the
squared-norm in (18) can be approximated (with exponentially
vanishing approximation errors) by an integral over the whole
real line, after which a trivial change of integration variable
shows that the squared norm in (18) is independent of τ .

It is well-known that in this problem, at low signal-to-
noise ratios (SNRs), the estimation error (of any reasonable
estimator) is uniformly distributed on the uncertainty time-
interval. Furthermore, at high SNRs, a cross-correlation-based
estimator (CCE) is normally distributed around the true TOA,
where the optimal CCE attains the minimal attainable variance.
Thus, we expect that the CSD between the error distributions
of two slightly different CCEs will not differ significantly.

To compute the CSD between the distributions of the
squared errors resulting from Pdata and Qdata (Theorem 1), we
use the data-dependent partition divergence estimator [49, Eq.
6]. For the lower bound, we also use the (trivial) fact that
the MSE is a monotonic nonincreasing function of the SNR,
namely that MSE(SNR1) ≤ MSE(SNR2) for all SNR1 ≥ SNR2.
Hence, a refinement of the lower bound (5a) in this case is

LB(SNR) ≜ max{LBThm1(ϱ
2) : ϱ2 ≥ SNR}, (19)

where LBThm1(ϱ
2) denotes (19) at an SNR level of ϱ2.

Fig. 2 presents the MSE vs. the SNR of the CCE, designed
based on TQ = 1.1 · TP (namely, erroneously assuming
x ∼ Qdata), the MCRB [21, Eq. 14], and the proposed (refined)
lower (19) and upper (5b) bounds (LB and UB, respectively).
Evidently, the proposed LB is tighter than the MCRB at the
low SNR regime, where the MCRB is not only uninformative,
but no longer serves as a legitimate lower bound. In the
transition region, the LB and UB satisfactorily capture the
threshold phenomenon (e.g., [50], [51]). Moreover, the UB
(5b) provides the guaranteed accuracy despite the mismatch.

V. CONCLUDING REMARKS

We develop a bilateral bound on MSE that is applicable
to a general (not necessarily unbiased) estimator derived
under a mismatched model. The bound provides performance
guarantees for the operation of estimators that are designed to
operate in one setting, but are then applied in a different one.

An interesting direction for future research is the potential
applications of the bound in the context of machine learn-
ing, such as supervised regression, where the presence and
assumption of model mismatch is ubiquitous.
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