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ABSTRACT

Learning the physical environment is an important yet chal-
lenging task in reverberant settings such as the underwater
and indoor acoustic domains. The locations of reflective
boundaries, for example, can be estimated using echoes and
leveraged for subsequent, more accurate localization. Current
boundary estimation methods are constrained to a regime of
high signal strength, or mitigate noise with heuristic (subop-
timal) filters. These limitations can lead to fragile estimators
that fail under non-ideal conditions. Furthermore, many al-
gorithms in the literature also require a correct assignment
of echoes to boundaries, which is combinatorially hard. To
evade these limitations, we develop a convolutional neural
network method for robust 2D boundary estimation, given
known emitter and receiver locations. Our method uses as its
input data format transform images, which are the potential
boundary locations mapped into curves. We demonstrated in
simulations that the proposed neural network method outper-
forms alternative state-of-the-art algorithms.

Index Terms— Convolutional neural networks, delay es-
timation, localization, underwater acoustics.

1. INTRODUCTION

Environmental learning in reverberant settings is an impor-
tant task for difficult domains such as underwater and indoor
acoustics [1–3]. Depending on the application, environment
learning itself may be the goal, or a step in a processing chain
for enhanced localization accuracy. For example, to passively
localize an unknown emitter with a collection of receivers,
line of sight (LOS) arrivals to the receivers are used for time
difference of arrival (TDOA) [4] or time of arrival (TOA) lo-
calization [5], [6]. Morevoer, leveraging the non-line of sight
(NLOS) arrivals can enhance localization performance [7].

Within the general scope of environment learning, we fo-
cus on reflective boundary estimation for shallow-water un-
derwater acoustics, as in Fig. 1. We envision estimating the
emitter location using LOS arrivals, and then using it and the
NLOS arrivals to accurately estimate the boundaries. While
prior knowledge of the sea surface and seafloor is typically
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Fig. 1: A general underwater acoustic setting, highlighting
the typical NLOS arrivals and corresponding virtual emitters.

available, more accurate estimates of their positions can be
required. Over short ranges, these boundaries can be approx-
imated as planar, thus giving rise to mirror images of the true
emitter as ‘virtual’ emitters, as per Snell’s Law. Euclidean
distance matrices (EDM) [8] or other methods [9] can then be
used for boundary estimation through virtual emitter localiza-
tion. Ocean applications, however, can feature low signal-to-
noise ratios (SNRs) [10] and model mismatch due to dynamic
environments, which is not addressed by existing methods.

An alternative boundary estimation approach leverages
the fact that in 2D, a NLOS arrival corresponds to a path dis-
tance of dNLOS and yields an ellipse whose foci are the emitter
and receiver location, as in Fig. 2. By definition, points on
the ellipse have a total distance of dNLOS to the emitter and
receiver, and the reflective boundary itself is a tangent to this
ellipse. With multiple receivers, multiple ellipses are defined
by such NLOS arrivals, and the boundary is their common
tangent. Therefore, by fitting common tangents to ellipses,
the boundaries can be estimated while avoiding the echo la-
beling problem in multipath environments, as illustrated in
Fig. 3. Assigning ellipses to tangents is combinatorially com-
plex [11] and complicated by missing or spurious arrivals,
motivating a solution that bypasses this task.

In light of these challenges, we propose a convolutional
neural network-based (CNN) method for boundary estima-
tion. We paramterize the tangents to ellipses by their range
ρ and azimuth θ [7], calling this ρ- and θ-space the common
tangents to spheroids (COTANS) domain. We then map theIC
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Fig. 2: NLOS arrivals define ellipses with foci at the emitter
and receiver positions.

Fig. 3: Illustration of a multipath setting: each NLOS arrival
gives rise to an emitter-receiver pair ellipse, as in Fig. 2.

environment and the time-delay estimates to images in the
COTANS domain, transforming the data into a more natural
input representation for the CNN. The proposed COTANS
neural network (NN), termed COTANS-NN, is a modified
AlexNet [12] that is trained on synthetic data to estimate
boundaries from unlabeled NLOS arrivals. The resulting NN
can be used with both simulated and recorded data.

Fitting tangent planes to spheroids for boundary esti-
mation was proposed in [13], [14] as the common tangent
(COTA) algorithm. In [15], a Hough transform-inspired
methodology was used, with provisions to reject incorrectly-
chosen echoes. To avoid conflating the plane-fitting method
with the Hough transform, we refer to a COTANS trans-
form and COTANS domain. These methods typically apply
a heuristic smoothing filter to COTANS images, followed
by the extraction of maxima. This hand-crafted approach is
generally suboptimal and setting-specific.

If, however, a NN is trained with a wide range of geome-
tries and realistic estimation errors, it can potentially learn
the optimal inference rule, which can be viewed as joint (and
implicit) filtering and peak extraction. The resulting NN can
also be re-trained for different environments, for applicability
to a wide range of settings (e.g., different numbers of bound-
aries and receivers). Our main contribution is exactly such an
architecture, which provides superior boundary estimates—
without echo labeling—using COTANS images as its input.

The paper is organized as follows. In Section 2, we for-
mulate the environment and signal models. The COTANS-
NN method is detailed in Section 3. Simulation results are
presented in Section 4, and final remarks in Section 5.

2. PROBLEM FORMULATION

We model a static 2D environment with N planar boundaries,
where N is known. These boundaries are described by the
range ρ ∈ R+ and azimuth θ ∈ [−π, π) of their normal vec-
tor relative to the (arbitrarily-chosen) origin. Thus, the j-th
boundary is parametrized as the vector ηj = [ρj θj ]

T, for
all boundaries j ∈ SN , where we denote SK ≜ {1, . . . ,K}
for some K ∈ N. We assume a single isotropic emitter in
the environment at a known location pe = [xe ye]

T, and M

isotropic receivers at known locations pr,i = [xi yi]
T
, i ∈

SM . The speed of sound, denoted by vs, is assumed to be
constant, which is a reasonable simplification at short ranges
in a well-mixed shallow-water underwater environment [16].

The received signal at the i-th receiver, ri(t) ∈ R, is mod-
eled as the sum of the LOS arrival and single-reflection NLOS
arrivals, delayed by their respective TOAs. The LOS TOA,
denoted by τi,0, is given by:

τi,0 =
∥pr,i − pe∥2

vs
, ∀i ∈ SM . (1)

For the j-th boundary, we obtain the virtual emitter location
pj by finding the corresponding reflection of pe (see Fig. 1).
The NLOS TOA to the i-th receiver from the j-th boundary,
denoted by τi,j , is equal to the TOA from the i-th receiver
(pr,i) to the corresponding j-th virtual emitter (pj):

τi,j =
∥pr,i − pj∥2

vs
≜

di,j
vs

, ∀i ∈ SM , ∀j ∈ SN . (2)

Merging the effects of attenuation and reflection into the
equivalent attenuation coefficient αi,j , the received signal at
the i-th receiver is modeled by:

ri(t) =

N∑
j=0

αi,js (t− τi,j) + ξi(t), (3)

where s(t) is the known emitted signal, and ξi(t) is a noise
signal that is a realization of a spectrally-flat Gaussian pro-
cess. Given the energy of a received (and attenuated) pulse as
Er, the SNR is defined as Er/N0, where N0 is the one-sided
power spectral density of the noise ξi(t). In practice, the en-
vironment can be reverberant, and ri(t) can feature higher-
order reflections and noise that may not be Gaussian [17]. We
work with a discrete-time sampled version of (3) as ri[n] ≜
{ri(t)|t=nTs

}n∈Z, where Ts is the sampling period.
The geometric information for boundary estimation con-

sists of the known pe and {pr,i}, and the unknown {τi,j}.
Hereafter, we assume that the NLOS TOAs are estimated us-
ing an (at least asymptotically) optimal estimator. For exam-
ple, these estimates can be obtained by matched-filtering ri[n]
with s[n] ≜ s(nTs) and picking the TOAs corresponding to
the N largest peaks in the result, after removing the LOS ar-
rival, as {τ̂i,j}. The distance estimates {d̂i,j ≜ vsτ̂i,j} (from
(2)) are then used for estimating the boundaries as {η̂j}Nj=1.

At high SNR, the error in τ̂i,j due to Gaussian noise in
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Fig. 4: Bounds on the range estimation root-mean squared
error (RMSE) for a Gaussian pulse of 15.4 kHz bandwidth.

(3) is Gaussian itself, with mean squared error (MSE) that
asymptotically coincides with the Cramér-Rao lower bound
(CRLB) for time-delay estimation [18]. However, there is
an SNR threshold below which large ‘global errors’ occur,
leading to a drastic performance reduction as captured by the
Ziv-Zakai lower bound (ZZLB) [19], depicted in Fig. 4. In
this case, the matched-filtered signal can have larger peaks
than the peak of the true arrival; picking such a spurious peak
causes τ̂i,j to be distributed uniformly on the observation time
interval. A global error yields an unserviceable time-delay
estimate for boundary estimation; thus, a practical estimation
method must be robust to large errors in a subset of {d̂i,j}.

A key motivation for the use of NNs in this context is that,
while it is reasonable to assume Gaussian noise in ri(t) (in
(3)), it is certainly not the case for errors in τ̂i,j . The nonlinear
time-delay estimation leads to a non-Gaussian estimation er-
ror. Hence, it is hard to analytically design a (non-asymptotic)
optimal estimator for the boundary locations based on {τ̂i,j},
encouraging a data-driven approach instead.

3. COTANS-NN FOR BOUNDARY ESTIMATION

We now discuss how the COTANS transform is used to gen-
erate images for a given geometry and the estimated {d̂i,j}.
We then detail the COTANS-NN method for estimating the
boundaries {ηj} from such images.

3.1. Generation of COTANS Images
In 2D, a boundary defined by ρ and θ can be conceptualized
as a point (ρ, θ) in a COTANS domain; working out the (ρ, θ)
expression of a line is to take its COTANS transform [20].
Discretizing the space ρ×θ as a matrix and incrementing this
‘accumulator’ over every potential (ρ, θ) for NLOS ellipses
yields a COTANS-domain image (as in Fig. 5), with maxima
at the true boundaries {(ρj , θj)} in the absence of errors.

For each θ, we obtain ρ for a standard ellipse (Fig. 6(a))
as:

ρ (θ) =
√
a2 cos2 θ + b2 sin2 θ, (4)

where a = dNLOS/2 and b =
√
d2NLOS − d2LOS/2, as in Fig. 2.

Then, (4) is used to generate the {(ρ, θ)} for a standard el-
lipse of the same size as the true ellipse (e.g., Fig. 6(b)). The
COTANS transform then modifies ρ and θ based on rotations
and translations that map one ellipse to the other.

In the absence of time-delay estimation errors, picking
the maxima in COTANS images yields the exact and correct

(a) (b)

Fig. 5: COTANS images for low SNR with dispersed curves
(a) and high SNR (b), with the true boundaries marked in red.

(a) (b)

Fig. 6: Taking a tangent’s COTANS transform: start from a
standard ellipse (a), and modify to match the true setting (b).

(ρj , θj) for each boundary. Plane-fitting boundary estimation
methods currently apply heuristic filters to these images, to
locally average COTANS curves that do not exactly intersect.
This methodology does not match the underlying statistics of
COTANS images, and requires hand-crafting parameters such
as filter sizes [7]. Our NN automates these tasks.
3.2. Proposed COTANS-NN Architecture
The COTANS-NN method re-purposes the 8-layer AlexNet
architecture [12] by replacing the classification layer with
a regression layer [21]. The inputs are COTANS images,
which encapsulate the relevant information for boundary
estimation. The outputs are boundary parameter estimates
[ρ̂1 · · · ρ̂N θ̂1 · · · θ̂N ]T, each scaled to a dimensionless range
of [0, 1] by dividing each ρ by a ρmax (10 m in our case), and
each θ by 360°. We use the correct [ρ1 · · · ρN θ1 · · · θN ]

T for
training, using MSE as the cost function. Thus, the output
size is 2N . Training images are generated by simulating
scenarios with randomized pe and {pr,i}, as in Fig. 7.

In this framework, the advantages of COTANS-NN rela-
tive to analytical methods become clearer. The least-squares
(LS) algorithm [22], for example, assumes that the distance
estimates are independently corrupted by Gaussian errors:

d̂i,j = di,j + ϵi,j , ϵi,j ∼ N
(
0, σ2

)
. (5)

Another example is the EDM algorithm [23], which mini-
mizes the following s-stress cost function (sequentially and
iteratively) over potential Cartesian coordinates x̃j and ỹj for
the virtual emitters [23, Eq. S15]:

C (x̃j , ỹj) =
∑
i

[
(x̃j − xi)

2
+ (ỹj − yi)

2 − d̂2i,j

]2
, (6)
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(a) (b)

Fig. 7: Random training settings and their NLOS ellipses:
dispersed at 2 dB SNR (a); and consistent at 20 dB SNR (b).

and is therefore also assuming (even if implicitly) statistically
independent Gaussian errors. As mentioned earlier, this as-
sumption is valid only at high SNR; furthermore, the echo la-
beling problem has to be solved as well to correctly group the
{d̂i,j} together for each j to achieve a reasonable estimate.

COTANS-NN, by contrast, is data-driven over a synthetic
dataset of both small and large errors. Using COTANS im-
ages eliminates the need to solve the echo labeling problem
altogether: the input to the NN is a transformation of all the
unlabeled {d̂i,j}, rather than a sorted version of them.

4. SIMULATION RESULTS
We now present the performance of COTANS-NN in a simu-
lation setting that is representative of the shallow-water un-
derwater acoustic channel (i.e., with two boundaries), and
compare it to the LS and EDM algorithms.

We train COTANS-NN on 14 SNR levels, equally spaced
in the 10 to 20 dB SNR range (covering the transition re-
gion of global errors and the high-SNR regime), generating
50,000 training, 3,000 validation, and 50,000 test images
per SNR. One boundary has its ρ- and θ-parameters as uni-
formly distributed random variables supported on the inter-
vals [3m, 3.5m] and [260◦, 280◦], respectively, and similarly
for the other boundary on [6m, 6.5m] and [80◦, 100◦]. This
yields a scenario where boundaries are known to be roughly at
(3m, 270◦) and (6.25m, 90◦). The pe and {pr,i} are drawn
from a uniform distribution over 2 meter-wide areas centered
on the points (3.5, 0.5) m and (−2.5, 3.5) m, respectively.
Our performance metric is the range RMSE (in m) over all N
boundaries and K environment realizations for each SNR S:

ρRMSE(S) ≜

√√√√∑N
j=1

∑K
k=1

(
ρ
(S)
j,k − ρ̂

(S)
j,k

)2

NK
. (7)

While we have simulated three-boundary environments as
well, and have also estimated θ, the resulting performance
curves are qualitatively similar to the performance for ρ pre-
sented here. Hence, we only present the range estimation re-
sults for two-boundary environments.

We compare COTANS-NN to LS and EDM when these
alternative methods are initialized with correct echo labeling.

Fig. 8: Average range RMSE vs. SNR of COTANS-NN, LS
and EDM. COTANS-NN is uniformly superior.

Note that unlike its competitors, COTANS-NN does not re-
quire such side-information, or an initialization at all, since
it is by nature a non-iterative method. Fig. 8 shows the aver-
age range RMSE of the two boundaries vs. the SNR for the
three methods. Evidently, COTANS-NN outperforms LS and
EDM by a wide margin of up to 9 dB SNR, and maintains
its stability despite global errors. When global errors arise,
LS and EDM severely deteriorate, demonstrating that their
‘small-error’ assumption plays a vital role in their proper op-
eration. In tougher error regimes, COTANS-NN is not merely
robust but also continues to perform well.

LS and EDM perform very similarly, which arises from
how they both minimize the squared error between measured
and estimated distances, albeit with different optimization
routines and cost functions. Since LS and EDM require echo
labeling that in practice can also cause large errors, their per-
formances will be worse than what is reported in Fig. 8. In
contrast, COTANS-NN does not require echo labeling, and
therefore cannot suffer from such performance deterioration.

5. CONCLUDING REMARKS

We propose the COTANS-NN method for 2D boundary es-
timation, exploiting the multiscale filtering capabilities of
CNNs. Our method leverages a large training set covering
SNR regimes with both large and small estimation errors to
deliver robust performance, which is superior to the state-
of-the-art alternatives that rely on high-SNR assumptions.
COTANS-NN avoids the echo labeling and ad-hoc image
filtering steps that further degrade the performance of alter-
native methods. It simplifies the use of domain knowledge to
aid the boundary estimation task, and is capable of learning
and using the true time-delay estimation error statistics.

Future work will focus on applying COTANS-NN to
real-world data, with larger parameter spaces and model mis-
match, to quantify its robustness. Derivation of theoretical re-
sults on boundary estimation will also help assess COTANS-
NN’s performance. While COTANS-NN was presented in
a 2D setting, its operation can be extended to 3D. However,
this may already be computationally non-trivial, and some
algorithmic modifications could be required. Among other
aspects, future work will also address this generalization.
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