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Abstract—In a growing number of applications, there is a need
to digitize signals whose spectral characteristics are challenging for
traditional analog-to-digital converters (ADCs). Examples, among
others, include systems where the ADC must acquire at once a very
wide but sparsely and dynamically occupied bandwidth supporting
diverse services, as well as systems where the signal of interest
is subject to strong narrowband co-channel interference. In such
scenarios, the resolution requirements can be prohibitively high.
As an alternative, the recently proposed modulo-ADC architecture
can in principle require dramatically fewer bits in the conversion
to obtain the target fidelity, but requires that information about
the spectrum be known and explicitly taken into account by the
analog and digital processing in the converter, which is frequently
impractical. To address this limitation, we develop a blind version
of the architecture that requires no such knowledge in the con-
verter, without sacrificing performance. In particular, it features
an automatic modulo-level adjustment and a fully adaptive modulo
unwrapping mechanism, allowing it to asymptotically match the
characteristics of the unknown input signal. In addition to detailed
analysis, simulations demonstrate the attractive performance char-
acteristics in representative settings.

Index Terms—Data conversion, automatic gain control, blind
signal processing, adaptive filtering, least-mean-squares.

I. INTRODUCTION

HE available spectrum for a communication system is
T increasingly congested and varies widely by location and
time. One strategy for operation in these dynamic conditions
is to scan the spectrum to find unoccupied bandwidth within
which to transmit. Historically, this has been a difficult task
since the fraction of all the potentially usable bandwidth that
can be scanned simultaneously is limited by the bandwidth of the
receiver front-end. In traditional system architectures, a narrow
analog filter matched to the desired communication band rejects
out-of-band transmissions from overwhelming the analog-to-
digital converter (ADC) prior to any digital processing. This
results in either a fixed-frequency system, or an expensive
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Fig. 1. A schematic block diagram illustration of the mod-ADC.
frequency-agile analog front-end for both the transmitter and
receiver. For narrowband systems, the fraction of potentially
available bandwidth that can be monitored at any instant can
be small, which slows down the response to potentially rapidly
changing channel conditions. The system is further complicated
by the need to coordinate between communication nodes what
frequencies are being used when.

The emergence of high speed ADCs with multiple GHz of
bandwidth enables affordable systems to be built, that can simul-
taneously scan large regions of the spectrum for unutilized band-
width to transmit in [1]. The congested nature of the spectrum,
however, requires robust front-end processing to accommodate
the large dynamic range required from multiple possibly strong
interfering sources [2]. A wide or changing frequency allocation
will by necessity allow these outside sources to be sampled
as well. While digital processing can in principle remove the
effect of the undesired signals, the ADC must still be able to
faithfully sample the entire bandwidth, containing all signals,
prior to any subsequent digital manipulation. Thus, despite the
strong structure and high predictability of the sampled signal,
a traditional ADC requires a high number of bits per-second in
order to allow for high-quality reconstruction.

One possible approach for addressing the inefficiency
described above, is using modulo ADCs [3] instead of a
traditional ADC. A modulo ADC first folds each sample of
the input process modulo A, where A is a design parameter,
and only then quantizes the result using a traditional uniform
quantizer. See Fig. 1 for a schematic description. The modulo
operation limits the dynamic range of the signal to be quantized,
which in turns results in a quantization error whose magnitude
is proportional to A, rather than to the dynamic range of the
original, unfolded signal. In [3] it is shown that the obtained
signal can be reliably unfolded, provided that A is appropriately
chosen proportionally to the standard deviation of the prediction
error in predicting the (quantized) input from its past. Thus,
when using a modulo ADC for digitizing a highly predictable
process, one can attain high resolution using far fewer bits than
for a white process. Simple recovery algorithms based on linear
prediction are also given in [3].

A major caveat of the modulo ADC framework developed
in [3] is that it assumes knowledge of the second-order statistics
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An illustrative scenario of interest. (a) Spectrogram of the ADC input: a bandlimited signal of interest in the presence of narrowband interferences (b) The

instantaneous squared errors of the outputs of a standard ADC and our proposed blind mod-ADC. Evidently, the blind mod-ADC achieves a significantly lower
MSE relative to a standard uniform ADC with a perfect (“oracle”) AGC mechanism.

(SOSs) of the input process. Such knowledge is crucial for opti-
mizing the modulo ADC parameter A, as well as for optimizing
the coefficients of the prediction filter used in the unwrapping
process. This is a significant impediment to the implementation
of modulo ADCs in practice, as commercial ADCs must be
robust to the characteristics of the process to be digitized. In
particular, traditional ADCs employ an automatic gain control
(AGC) mechanism [4], [5] for adapting the quantizers dynamic
range to that of the input signal.

In this work we develop a blind mechanism for modulo ADCs,
which adapts the effective modulo size (analogously to an AGC
mechanism in a standard ADC, see Subsection I-C), as well as
the coefficients of the unwrapping algorithm prediction filter,
to the unknown statistics of the input signal, resulting in a
robust ADC architecture. For a stationary input process, the
performance of the developed architecture converges to that of
the “informed” architecture in [3]. The developed architecture
is also dynamic, and quickly adapts to changes in the character-
istics of the input signal.

A. A Motivating Example

To illustrate the challenges in digitizing communication sig-
nals whose locations within the frequency band are unknown, we
consider the signal whose spectrogram is depicted in Fig. 2(a).
This spectrogram corresponds to a sampled binary phase-shift
keying (BPSK) signal together with three narrowband inter-
fering signals (specifically, pure tones), with each interferer
initiated at a different time. If the carrier frequency of the BPSK
signal were known in advance, one could first down-convert it
and use an analog low-pass filter to cancel out all interference
outside the frequency band it occupies, and only then sample
at the corresponding Nyquist rate. The discrete-time signal
resulting from this process is essentially “white” (i.e., temporally
uncorrelated), at least before the interfering tone is initiated,
and a standard uniform ADC would efficiently convert it to a
sequence of bits.

Unfortunately, as described earlier, estimating the carrier
frequency of the communication signal of interest is often a
highly challenging task under the required latency constraints.
Hence, the ADC must be applied to the sampled signal depicted
in Fig. 2(a). A standard ADC is extremely inefficient for such a

signal, as it fails to exploit its sparsity in the frequency domain.
The mean-squared error (MSE) attained by a standard ADC
is governed by its dynamic range, which is determined via an
AGC mechanism. In order to prevent overload errors that result
in saturation of the ADC, the dynamic range is set proportionally
to the signal’s average power. The signal’s power is unaffected by
the fact that the sampling rate is significantly higher than the size
of the essential support of the signal in the frequency domain.
Thus, the number of bits per-second a standard ADC must output
in order to reach some target MSE is significantly increased due
to the uncertainty in the carrier frequency of the signal of interest.

To tackle this shortcoming of standard ADCs, this work devel-
ops a robust architecture, based on the emerging modulo ADC
framework, which efficiently exploits the underlying structure
of the input signal. Previous work [3] has shown that when the
statistics of the signal to be acquired are known, or when its
power spectral density (PSD) is at least confined to a particular
frequency interval known in advance, modulo ADCs attain
significant performance gains over standard uniform ADCs.
Here, we develop an “AGC equivalent” mechanism for modulo
ADCs, that obviates the need for prior knowledge of the signal’s
statistics; See Fig. 3. This mechanism, together with suitably
designed adaptive filtering, results in a blind modulo ADC,
whose performance approaches that reported in [3] for stationary
signals with known PSD.

Fig. 2(b) depicts the instantaneous squared error attained by
the developed blind modulo ADC architecture for the signal
from Fig. 2(a). For comparison, we also plot the squared error
attained by a standard uniform ADC for the same signal. It is
assumed that a perfect AGC is used for the standard ADC, such
that its dynamic range is equal to x/Var(xy), where {z,} is
the input signal, and  is a confidence parameter determining the
overload probability. The same value of « is used for both the
standard and the modulo ADC systems, such that the overload
probabilities for the two systems are similar.! Furthermore, both
the standard and the blind modulo ADC systems use R =4
bits per sample. It is evident that: (i) The developed blind
modulo ADC architecture attains a significantly smaller MSE

The overload event for a modulo ADC is the event that the prediction
error’s magnitude exceeds the dynamic range, as will be explained in detail,
and explicitly defined in the sequel.
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than the one attained by a standard ADC; (ii) It quickly adapts to
changes in the characteristics of the input signals, as reflected by
Fig. 2(b); and (iii) While the addition of narrowband interferers
strongly degrades the performance of the standard ADC, the
MSE attained by the blind modulo ADC architecture is largely
unaffected.

B. Related Work

The idea of using modulo ADCs/quantizers for exploiting
temporal correlations within a stationary input process towards
reducing the quantization rate R, dates back, at least, to [6],
where a quantization scheme, called modulo-PCM, was intro-
duced. Under the so called “high-resolution” assumption, which
restricts the quantization’s error PSD to be much smaller than
that of the signal for all frequencies [7], the analysis in [6]
has shown that this scheme can attain distortion almost as
small as the fundamental information theoretic lower bounds.
Unfortunately, the “high-resolution” assumption breaks down
completely for processes whose PSD function is not supported
on the entire spectrum. Such processes include, for example,
the process from Fig. 2(a), as well as any oversampled process.
To that end, building on [7], a different modulo unwrapping
algorithm was developed in [3], and the resulting modulo ADC
system was shown to attain distortion close to the fundamental
information theoretic lower bounds, even for processes for which
the “high-resolution” assumption fails. Furthermore, relying on
the unwrapping techniques developed in [8], a modulo ADC
framework accompanied by an unwrapping algorithm was de-
veloped for vector processes, that are correlated in both space
and time. Finally [3] also developed an architecture for a ring-
oscillators-based circuit implementing a modulo ADC.

It should be noted that the results mentioned above rely on
complete knowledge of the statistical law governing the inputs
to the ADCs, with the exception of the result in [3], Section III],
which is robust, but is of a minimax nature, in contrast to the
pointwise optimality we seek here. For the case of temporally
uncorrelated vector processes, Romanov et al. [9] developed a
blind unwrapping algorithm which achieves performance close
to that of an informed unwrapping algorithm, fully aware of the
statistics. While a stationary process in time can be treated as a
vector process in high dimensions, the scaling of the sample
complexity of the algorithm from [9] renders it prohibitive
for the blind modulo ADC problem of time processes under
consideration in this work.

A schematic block diagram of the blind mod-ADC encoder-decoder. A block with a diagonal arrow represents an adaptive operation (e.g., filtering).

The line of research described above considers the improve-
ment modulo ADCs offer over standard ADCs in terms of the
trade-off between quantization rate and MSE distortion. The
current paper continues this line of work. Another line of work
which has received attention recently is that of the so-called “un-
limited sampling”. Under the unlimited sampling framework,
the quantization noise is usually not accounted for, and the focus
is on characterizing the conditions which guarantee that a signal
can be reconstructed from its folded version [10], [11], [12],
[13]. In particular, it was shown that under mild conditions,
a continuous time bandlimited signal can be recovered from
its modulo reduced samples, provided that the sampling rate
exceeds Nyquist’s rate [12], [14], [15], regardless of the modulo
size. Some of the more recent work on unlimited sampling [16],
[17] does take quantization noise into account, but adopts a
worst-case model for the input signal (over a predefined class
of signals), whereas here we model the input signal to the ADC
as a stochastic process, and accordingly, analyze the statistical
behavior of the MSE.

C. Contributions

In light of all the above, it is clear that a significant step
towards realizing the modulo ADC technology is by developing
the algorithmic framework, which will provide the essential
robustness with respect to different types of signals and
dynamic environments. Hence our motivation is developing
an architecture with the appropriate algorithmic framework,
which on one hand will be able to adapt quickly to changes
reflected in the temporal structure of the input signal, and on the
other hand will still provide reliable and stable high-resolution
analog-to-digital conversion.

In order to appreciate our contributions, it is instructive to
consider the trade-offs exhibited by several ADC architectures,
as summarized in Table I. The table compares between a standard
ADC, a standard ADC with AGC, an informed modulo ADC as
described in [3], and the blind modulo ADC architecture we
develop here. We compare the four solutions in terms of the
statistical knowledge they require, and their performance guar-
antees. To simplify the exposition, suppose, for example, that
the input to the ADC {z,,} is a zero-mean stationary Gaussian
process, with a (possibly unknown) PSD.

A standard (uniform) ADC has a fixed dynamic range. In order
for overload events to be rare, such that the ADC is usually not
saturated, the dynamic range must be greater than the standard
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TABLE I
COMPARISON OF STANDARD AND MODULO ADCS WITH AND WITHOUT SIDE
INFORMATION (ST) FOR STATIONARY GAUSSIAN PROCESSES INPUT SIGNALS

Standard ADC Informed Mod-ADC
Encoder SI Input signal variance, o2 Innovation variance
Decoder SI Input signal variance, o7 PSD of the input signal
Performance Near minimax optim al \;Vlth Near point-wise optimal

variance constraint o,
Standard ADC with AGC Blind Mod-ADC

Encoder S1 None None
Decoder SI None None
Performance tﬁ:iﬁ]ﬁ;&:{li’; \(/)ef)rtil;?lile f;)é Near point-wise optimal

deviation of {z,, }, denoted by .., by some constant factor. Thus,
in the design of the encoder and decoder, it is implicitly assumed
that (an upper bound on) o, is known. The standard ADC cannot
exploit any “memory” in the process {z, }, but for an i.i.d.
process it attains a rate-distortion trade-off which is quite close
to the fundamental information theoretic limits, characterized
by the rate-distortion function of the source [18]. Thus, it is
near minimax optimal with respect to the class of all PSDs with
variance 2. A standard ADC with an AGC automatically adapts
its dynamic range to o, and does not require prior knowledge of
it. Consequently, it attains near minimax optimality for the class
of all PSDs with variance 2, simultaneously for all values of 2.

The informed modulo ADC from [3] requires the encoder to
set the modulo size (or the signal scaling) appropriately, which
requires knowledge of the variance of the innovation process
(i.e., the error process due to optimal prediction). The decoder
requires knowledge of the entire PSD in order to compute
the coefficients of the optimal prediction filter it uses. It was
shown [3] that for input processes of finite differential entropy
rate, the rate-distortion trade-off this architecture attains is near
optimal, as the quantization rate increases.

Clearly, a commercial ADC cannot be designed under the
assumption that the innovation variance and the entire PSD of the
input process is known in advance. In this paper, we close this gap
and develop the blind modulo ADC architecture that makes no
assumptions on the input process in the design of the encoder and
the decoder, but nevertheless attains the same asymptotic perfor-
mance as the modulo ADC architecture from [3]. In particular,
our developed architecture asymptotically nearly attains the op-
timal rate-distortion trade-off simultaneously for all process with
a finite differential entropy rate. The blind modulo ADC scheme
we develop here adapts the modulo size / signal scaling at the en-
coder according to the associated innovation variance of the in-
put process. Note that this task is considerably more challenging
than that of an AGC in a standard ADC, since estimating the in-
novation variance is more involved than estimating the variance
itself. Moreover, the decoder in a blind modulo ADC is implicitly
estimating the necessary SOSs (for means of optimal prediction)
beyond merely variance, i.e., cross correlations between past and
present samples. Furthermore, the decoder blindly unwraps the
quantized signal from the modulo measurements.

Our two main contributions in this work are the following:

® Adaptive Algorithm for Blind Modulo Unwrapping: We

propose a feedback solution algorithm for a modulo ADC
encoder-decoder, which blindly unwraps the modulo fold-
ing of the input signal. That is, our algorithm does not
use prior knowledge on the temporal structure (i.e., the
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autocorrelation function) of input signal. Nevertheless,
using the least mean squares (LMS) algorithm [19], we
are able to learn (only) the required SOSs, which allow us
to exploit the unknown temporal structure, and gradually
increase the resolution of the modulo ADC. Consequently,
our developed blind modulo ADC architecture is more
robust and practical than the one proposed in [3], which
is designed based on such prior knowledge.

o Asymptotic Performance Analysis of the Blind Modulo
ADC Architecture: We analyze the asymptotic perfor-
mance of the developed algorithm in terms of the attainable
resolution. We derive and present an insightful closed-
form expression for the MSE distortion, which not only
forecasts the best attainable performance under the spec-
ified conditions (dictated by the system parameters), but
also intuitively explains the fundamental accuracy-stability
trade-off inherent to the blind nature of the problem under
consideration. Moreover, a steady state detector naturally
stems from this analysis, allowing us to estimate the time at
which the adaptive process can be (locally) paused. Conse-
quently, the stability of the proposed method is increased,
and as a (positive) byproduct, the overall computational
load is reduced.

D. Paper Organization

The rest of the paper is organized as follows. The remainder
of this section is devoted to a short outline of our notations.
Section Il is devoted to a brief review of the modulo ADC frame-
work previously presented in [3], setting the premises for the
current work. In Section III we formulate the problem of blind
modulo ADC. Our proposed adaptive solution algorithm is pre-
sented in Section IV, where we derive the different algorithmic
components, discuss key system parameters, trade-offs, and the
asymptotic performance. Simulation results, corroborating our
analytical derivation, are presented in Section V, and concluding
remarks are given in Section VL.

E. Notations

We use x and « for a scalar and a column vector, respectively.
The superscript ()T denotes the transposition. We use 14 to
denote the indicator function of the event .4, namely 1 4 = 1if A
istrue,and 1 4 = 0 otherwise. E[-] and Var(-) denote expectation
and variance, respectively, Tr(-) denotes the trace operator, and
znllex £ SUPpeq1,..., N} [Zn]- We use  to denote an estimator,
e.g., T is an estimator of .

II. REVIEW ON A MODULO ADC

In this section, we briefly review the modulo ADC (encoding-
decoding) algorithm previously proposed in [3] for scalar sta-
tionary processes. As our proposed blind method relies on some
similar fundamental concepts, it is instructive to review the
“informed” algorithm, which is described below.

For a positive number A € R*, we define

TN
[x) mod A =z — A LAJE[O,A), Vo € R,

as the [-] mod A operator, where |z] is the floor operation,
which returns the largest integer smaller than or equal to x. An
R-bit modulo ADC with resolution parameter «, termed (R, «)
mod-ADC, produces its output by first computing

[2]r.a £ [|z]] mod of ¢ {0,1,...,2R—1}7 )]
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and then producing the binary representation of (1). A schematic
illustration of the mod-ADC is given in Fig. 1.
Notice that when writing [z]g  as

[2]R.a = [ax + (laz] — az)] mod 27 = [ax + Z] mod 2%,
—_——

A~
=z

we identify Z € (—1,0] as the quantization error of a uniform
scalar quantizer [20]. Although Z'is a deterministic function of z,
this quantization error can be modeled quite accurately as addi-
tive random uniform noise. For details on the justification of this
(standard) assumption by using subtractive dithers [21], Ch. 4],
see [3], Section II]. We note, however, that in addition to the fact
that the mild conditions underlying this modeling assumption
are generally satisfied in our setting, the simulation results in
Section V also demonstrate that it is a good approximation to
the true nature of the quantization error. Under this assumption,
an (R, «) mod-ADC is viewed as a stochastic channel, whose
output y for an input x is given by
y = [ax + 2] mod 2%,

where z ~ Unif((—1, 0]). Obviously, since the modulo opera-
tion is a form of lossy compression, it is generally impossible
to recover the unfolded signal ax 4 z from its folded version
y = [ax + 2] mod 2%. Nevertheless, under relatively mild con-
ditions, when the input signal is “temporally-predictable” to
a sufficient degree, e.g., a correlated random process [3] or a
deterministic bandlimited signal [10], [14], it is in fact possible
to perfectly recover the unfolded signal® from its past samples
and its current folded sample via causal processing.

More specifically, consider an (R,«) mod-ADC whose
input signal z,, iS a zero-mean stationary random process,
with aknown autocorrelation function R, [¢] = E[z,2,¢] € R,
whose one-sided support is assumed to be at least of (discrete)
length p € N*. The output of the mod-ADC is given by

Yn = oz, + 2z,] mod 2F Wn e NT,

where {z,, ~ Unif((—1, 0])}, modeling the quantization noise,
is an independent, identically distributed (i.i.d.) stochastic pro-
cess. Further, define the unfolded quantized signal,

A
Up = Oy + Zn, Vn € N+a

and assume that the decoder has access to {vUp—1,...,Un—p},
which is equivalent to assuming that the last p samples of y,, were
correctly decoded. This can be achieved, for example, by proper
initialization with a sufficiently small resolution parameter «, a
notion that will also be used as part of our proposed method. For
additional justifications of this assumption, see [3], Section II-
A. Note that once v,, is recovered, z,, is readily estimated as

~ vn+l . .

T, = —=2. Thus, the focus is on recovering v,, from y,, and
A T x1

Uy = [Upo1 - Upp] € RPXL

The decoding algorithm proposed in [3] for recovering v,
w.h.p. when R, [/] is known, here referred to as oracle modulo
unfolding, is given in Algorithm 1. The main idea behind the
prescribed technical steps is the following. Every number v €
RT (similarly for v € R™) can be represented as

y=A+A+.. . +A)+ymod A=K,A+e,, (2)

K., eN+ times

Y
ey

2With high probability (w.h.p.) for random signals, and to an arbitrary
precision for deterministic bandlimited signals (“w.h.p.” in the sense that the
probability of prefect recovery can be made arbitrarily large by increasing R).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Algorithm 1: Oracle Modulo Unfolding
Voracle,n, = ModUnfold(yy,, vy, R [{], o, R).
Input: y,,, v, R, [{],, R Output: Toycle n,
1 Compute the linear minimum MSE (LMMSE) predictor of
v,, based on v,,

T
{}\fMMSEJL = hopt (v’ﬂ + %1) - %a (3)
where hoy € RP*! is the length-p finite impulse response

(FIR) filter yielding the LMMSE predictor, computed
based on R, [¢], and the shifts are to compensate for the

non-zero mean E[z,| = _%;
2 Compute
n R
Wymmsg,n = [yn — ’UfMMSE’n] mod 2 ,
e 4 19R R 16R.
egAMSE,n: ([wLMMSE,n + 52 ] mod 2 ) — 52 ;

= _ b =P
3 Return Voracle,n = ULMMSE,n + €LMMSE, n -

where, intuitively, K, and ¢, correspond to coarse and fine
information, respectively, in the “A-representation” (2). The
mod-ADC records only the fine information ¢, in . Hence,
for perfect reconstruction, only K is required (assuming A is
known). Conceptually, this means that as long as an estimator
of v, (possibly linear) has a minimal accuracy level, such that
its residual estimation error lie in [0, A), K, can be recovered,
which, in turn, means that v,, can be perfectly recovered.

An elaborate analysis of Algorithm 1 is provided in [3],
wherein analytical performance guarantees are derived in the
form of upper bounds on the probability of the overload event,
which inflicts v, # v,,, and is defined as

* ] R > ]
EOLTL = {|eI{}MMSE,n‘ Z %2 } = {efMMSE,n 7& eI{}MMSE,n}’ (4)
where €f\wise,n = Un — Uhwwse,n» and on the conditional MSE,
DAE [(xn - mﬂgan} . )
Specifically, it was shown that [3, Proposition 1],
Pr (€6Ln) < 2exp {—%QQ(R*% 10g2(1203MMSE,p))} )

D < [1222(1-Pr (g5 )], ©6)

where 02, ., £ E[(ef\se,n)?] is the MSE of the LMMSE
predictor based on the previous p samples, as in (3).

Algorithm 1, along with its information-theoretic analysis [3],
provide strong evidence regarding the potential feasibility and
merits of mod-ADCs, which are attractive for approaching the
minimal number of raw output bits per sample, for a given
sampling frequency fs and a prespecified distortion level D.

Yet, devices such as ADCs usually operate under dynamic
conditions, giving rise to a wide range of possible inputs with
unknown characteristics, and must still maintain proper op-
eration. Therefore, one significant step towards implementing
mod-ADCs for real-life applications can be made by relaxing
the (sometimes too restrictive) assumption that R, [¢] is known.
We take this significant step in the next sections.

III. PROBLEM FORMULATION

Consider an (R, a;,) mod-ADC as described in the previous
section, with a fixed modulo range A = 2% but an adaptable,
possibly time-varying resolution parameter cv,, € R™. The mod-
ADC is fed with the input discrete-time signal {z,, £ z(nT}) €
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R}, en+, acquired by sampling the analog, continuous-time
signal z(t) every Ty = f;! seconds. We assume that z,, is
a zero-mean stationary stochastic process with an unknown
autocorrelation function R, [¢] £ E[x,2,,_¢]. The observed, dis-
torted signal at the output of the mod-ADC reads

Yn = [@nZn + 2] mod 2f wn e NT, @)

where the quantization noise process {z, ~ Unif((—1,0])} is
i.i.d. Further, we redefine the unfolded quantized signal,

Un 2 oy + 2n, ¥n € NT, (8)
which, in general, is no longer stationary. Nonetheless, when «,
is held fixed on a specific time interval, then v,, can be regarded
as stationary on that particular interval.

The primary goal in this context is to estimate the input signal
T, as accurately as possible based on the observed sequence
{yn } at the output of the mod-ADC using a causal system. How-
ever, since v,, is merely a scaled version of x,, contaminated by
white noise (8), the problem essentially boils down to recovering
vy, and is stated concisely as follows.

Problem Statement: For a fixed number of bits 7, de-
sign an adaptive mechanism for estimating {z,, } from
the output of the mod-ADC with the lowest possible
MSE distortion, without prior knowledge on R,|[{].

An interpretation of this problem statement is to design an
update mechanism for maximizing the resolution parameter cv,,
while still allowing for reliable recovery of v,, from {yy }r<n.,
and design the recovery mechanism.

As explained in Section I, provided v, is exactly recovered

. whp . . . . .
w.h.p., i.e., U, V2P, the input signal is readily estimated as

22 ©)

On

where «,, is a known system parameter, and % is to compensate

for the quantization noise (non-zero) expectation E[z,] = — %

IV. BLIND MODULO ADC CONVERSION

In this section, we present the blind mod-ADC algorithm,
which simultaneously estimates the input signal x,, and per-
forms online learning of the (possibly time-varying) SOSs of
the unfolded quantized signal (8), necessary for estimation of
x,. We note that a key characterizing quantity of interest, to be
used at some parts of the following derivation, is the ratio

A A 2R

Qn an

dubbed the effective modulo range, rather than A or o, indi-

vidually. Although theoretically M,, could be adapted by fixing

the resolution parameter and adapting the modulo range, due

to practical considerations in the actual implementation of the

modulo operation, we keep A fixed, and vary the resolution

parameter «,,. This mechanism can be realized by changing the
gain of the input x,, before feeding it to the mod-ADC.

The structure of the proposed blind mod-ADC is depicted in
Fig. 3. Note that, in contrast to an informed mod-ADC (cf. Fig.
3 in [3]), here both the encoder and decoder are adaptive, and
vary with time according to the statistical properties of the input
signal. The price paid for the expected robustness we enjoy by
using the blind mod-ADC is mainly in the form of an adaptive
filter, rather than a pre-defined, constant one.

The underlying concept of our approach is the following.
For a fixed resolution parameter «,,, given that at any time

€ R, (10)
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instance n the unfolded signal v,, can be exactly recovered, we
may estimate the optimal length-p FIR filter Ay, corresponding
to the optimal LMMSE predictor of v,, based on the last con-
secutive p samples {v,,_1,...,v,—p}. This can be done, e.g.,
using the celebrated LMS algorithm [19], which converges®
to hop. Upon convergence, the resolution parameter c, can
be slightly increased, and as long as the prediction error of
the linear causal prediction—currently no longer optimal—is
sufficiently small, v,, could still be recovered using the same
technique as in Algorithm 1. Now, fixing «,, again to its new
value, the FIR filter can be adapted again to the optimal one
using the LMS algorithm. The process is repeated until a certain
level of effective modulo range is attained. This level, reflecting
the desired trade-off between the MSE distortion D (5) and
the probability of an overload event £y, (4), will be later on
discussed in detail.

Intuitively, and informally, only appropriate initial conditions
and sufficiently smooth transitions from one resolution level
to another are required for convergence of the above adaptive
process. Conceptually, once these are fulfilled, we attain suc-
cessful steady state operation of a blind mod-ADC (i.e., R,[/]
unknown), in the desired effective modulo range.

Fortunately, with careful attention to more, important and
relevant, details, this idea can be realized, and is rigorously
described as our algorithm in the following subsections.

A. Phase 1: Initialization

We begin with a “small” initial value for the resolution param-
eter, a (equivalently, My = on /@), that ensures an essentially
degenerated modulo operation, i.e., ¥,, = v,,, where

1 1
({yn + 22R] mod 2R> — §2R,

such that y,, is the “modulo-shifted” version of y,,. Note that,
since x,, is zero-mean, ¥,, actually undergoes a modulo operation
quite often (roughly half of the time when Pr(z,, < 0) = 0.5).
However, this is not an essential modulo due to a large amplitude
of the input v, z,,, and is merely due to the fact that the dynamic
range under consideration is [0, 27%), rather than [—327%, $27).
Nevertheless, we stick to this formulation as it more accurately
describes the actual realization of our proposed method. For
purposes that will become clear in the sequel, we further define
for convenience

~ A

Un

1
Up + 5 Zn + 5
2= Z = Tn + = 2a
Qi Qi
the “a,-standardized” version of v,,. Note that (12) still depends
on the resolution parameter «,,. However, since

E[v,] = E[z,] + 22tz — g,

(12)

2
B[R] =E[2) + Lo a2y 0

n

13)

when «,, is sufficiently large, the variance of v,, is dominated
by o2, and can be considered to be approximately independent
of the system parameter «,, for certain needs. Of course, during
the initialization phase, this is (still) not the case.

Assuming that y,, = v,, as long as «,, = «q is fixed, the
opt1ma1 length-p FIR filter for prediction of v,, (8) based on
Dy 2 [Up1-Vnp|T € RP*L (12), which is merely a shifted-
scaled version of v,,, can be estimated with the LMS algorithm

3In the mean sense, under mild conditions stated explicitly in the sequel.
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Algorithm 2: Blind Modulo Unfolding
Up, 0P = BlindModUnfold(y,,, 0, h,, R).
Input: y,,, v,,, iAzm R Output: v,,, 0P

1 Compute the linear predictor of v,, based on v,,
~T~

o £ h,v, — 3, (14)
where the shift is to compensate for E[v,] = 1 (8);

2 Compute

Wy = [yn — 0F] mod 2%,

el = ([wy + 22%] mod 2%) — 127, (15)
3 Return 0,, £ 07 +€P, oP.

using the following update equation [19],
By = Rpyq + 11 Tl (16)

Here, ﬁn is the FIR filter used in Algorithm 2 for the recovery
of v,,, v is the learning rate (or step size), and

a7

is the prediction error of the linear predictor ¥P as in (14). It
should be emphasized that, in practice, we never have access
to the true error e?, but only to €5 , defined in (15). However,
for simplicity of the exposition*, and as mentioned above, we
assume that y,, = v,,, which means that e? = ¢P, during the
entire initialization phase, hence el appears in (16).

In addition, rather than using {v,} (8), we use the “ay,-
standardized” process {7, } as the observations in (14), since
as the adaptive process evolves and «,, increases, the SOSs of
v, gradually become less affected by «,, (13). This alleviates
the estimation (/learning) of the optimal filter coefficients, as
explained in detail in Appendix A.

A discussion on the convergence of the LMS algorithm,
as well as how to choose the appropriate step size p which
guarantees this convergence, will be given in Subsection IV-D.
For now, assume that p is chosen so as to ensure that [22],
lim E [ﬁn} = hopy,

n—00

p A _ P
€, = Unp — Uy,

(18)

Qy = O -

where hgp is the optimal length-p filter corresponding to the
oracle LMMSE predictor, a function of o, = e and R, [¢].
As an intermediate summary for the initialization, we have:

rPhase 1: Initialization. Input: fALO, Qg. )
1. Fix vy, = ayp, and accumulate p + 1 samples {y; }7~ +11 ;
2. Compute {yl = }_, asin (11), and v, as in (12);
3. Set hp+1 = ho,
4, Forn=p+1,p+2,...do
4.1. Dy, o2 = BlindModUnfold(y,,, B, b, R):

| 42 By = hy + ek )

After enough iterations, since we assume that oy is sufficiently
small to ensure that v,, = v,, for every n during initialization,

which gives us access to e (17), the filter iALn will approximately
converge to an unbiased estimate of gy, as in (18). Assuming

4The initial resolution parameter g can be chosen such that Pr@ff =eb)

is arbitrarily close to 1. It can even be exactly equal to 1 in case some (possibly
partial) knowledge about the support of x,, is available. At any rate, we touch
upon and handle this aspect more accurately in the next subsection.
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the learning rate p is sufficiently small the MSE of 02 will ap-
proximately converge to the MSE of v vLMMSE,n (with oy, replacmg
a, according to the definition (8)),

Ny :Vn> Ny : E [(eﬁ)ﬂ ~ ol

el LMMSE,p*
Accordingly, once E[(e2)?] is close enough to 02, _p» DY virtue
of (6), an overload will not occur w.h.p., namely,
Pr(&oL,) £ Pr (el > 22%) ~ Pr (€5 ), (19)

where £5;  (4) refers to the overload event of the informed
mod-ADC. In other words, the no overload event &gy, 2 fer =
el }—the complement of the overload event Eop,,—occurs
w.h.p. At this point, we can increase the resolution parameter
Qp, SO as to decrease M,,, and use the quantizer’s output raw
bits to a finer description of the input signal.

B. Phase 2: Updating the Resolution Parameter

As explained above, in order to increase «,,, we must some-

how detect that the filter h,, already approximates the optimal
one well enough, such that the prediction errors e are suffi-
ciently small with respect to the dynamic range A = 2R. When
this is the case, a small change in the resolution would not affect
our ability to recover v,, w.h.p. from y,, and 0%

To see this, assume that we increase the resolution parameter
Qo = Qo + €4, Where €, € R is a small increment, and ac-
cordingly also scale the respective filter coefficients by ao““.

Now, hn is no longer optimal, since the second-order statlsncal
properties of {T; }¢>,, are different than those of {T;} ¢, based

on which h,, has been estimated thus far. However, if ¢, is suf-
ficiently small, a straightforward “small-error” analysis yields
that h,, will now only slightly deviate from the (approximately)
optimal filter to the new value of «,,, such that right after
increasing the resolution,

~ ~0
ap =g +€, = hy, = h’n + €n,

where h(; denotes an unbiased estimator of the optimal FIR filter
corresponding to the LMMSE predictor of v,, for the updated
resolution parameter g + €4, and €, € RP*! is a vector of
“small” biases, due to €. Accordingly, the MSE of the (currently
no longer optimal) linear predictor , conditioned on the p no

overload past events® L ﬂ &or,_,, enabling the exact

recovery of v,,, will be shghtly 1ncreased6

02 2E[(| €8 | = o2y + 7
~

Due to €,

(20)

Nonetheless, aslong as o, ,, < %2R, such that Eﬁn still occurs
w.h.p., v, is still exactly recovered w.h.p. using Algorithm 2.
Indeed, an important observation is that v,, can be recovered
using Algorithm 2 even when a suboptimal linear predictor is
used in (14). For successful operation, we only require that the
linear predictor is accurate enough to ensure that &gy~ occurs

SStrictly speaking, O'EMMSE’p in (20) of the blind mod-ADC is not equal
to the MSE of (3), since for informed mod-ADC we do not condition on
5@ . However, under mild conditions, stated explicitly below, the difference

n
is negligible, hence we use the same notation for simplicity.

SFor simplicity, we assume here that prior to increasing the resolution ag’n =

UEMMSE,p’ such that o2 is only due to €. In practice, we have ‘7;2;,n R G’EMMSE’p,

such that a? encapsulates estimation errors due to h,, as well. Still, after
changing o, 0'? will be dominated by errors due to €.
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w.h.p. Consequently, for short transition periods in which the
optimal filter is learned, a suboptimal filter would suffice.

Hence, we conclude the following:

(1) Ifthe resolution parameter is adapted in small increments,
we are able to maintain sufficiently small prediction er-
rors, and safely continue recovering v,, w.h.p.; and

(2) Before increasing the resolution, we desire to arrive at an
intermediate steady state, wherein E5r or, occurs w.h.p.

Since €, is a user-controlled system parameter @ can be

easily achieved. As for (2), since we are operating in a blind
scenario, where the distribution of the input x,, is unknown,
it is generally unclear how to ensure rarity of no overload.
Therefore, for this purpose only, we take the simplifying, but use-
ful, assumption that efl|5gn ~ N(0, Ufm). Note, however, that
this assumption is not strictly required in order to analytically
justify the derivation which follows, and is merely to simplify
the exposition. In this case, o, is directly related to 6'@",

conditioned on 8% . Specifically, if A/2 = k- g, ,, for some

k € RT, then we have
Pr (|eg\ > 12F| ) ) =2Q (2

where Q(z) £ [ F e t/2d¢ is the Q-function. Put simply,

if the hnear predictor is good enough, such that half the modulo
range A/2 is  times greater than its root MSE (RMSE), and k

is sufficiently large, &5 |€%’ occurs w.h.p. This provides the

conditions to re-learn the filter corresponding to the LMMSE
predictor of v,, with the updated resolution av,,.

In practice, though, since R,[¢] is unknown, afm

. —~  w.hp.
not known as well. Nevertheless, since v,, =P v, throughout
the adaptive process, we can estimate o, ,, online by

Gon & - Z Onk =)0 G 2 \f52, (22)

where Ly € NT is a moving average window length, and is
also set to be the minimal (discrete) time stabilization interval
wherein «, is kept fixed after its last update. More details on
the parameters L and « are given in Subsection IV-D. Thus, to
achieve (2), we increase v, only when L1a,n = 1, where

2)=20(k), @D

is clearly

1, K-Gppn<2
Lo &9 7 P77 %L 23
tem {0, K- Opn > % (23)

Whenever 1+, = 0, we infer that the prediction errors are not
satisfactorily small. In these cases, we decrease the resolution so
as to resort to a state where v,, is again recovered w.h.p. By this,
we allow the LMS filter (16) to converge to the desired filter, and
then safely increase the resolution again. Following our previous
observation on the accuracy required by the linear predictor v2

at this point the desired filter is not necessarily the optimal one,
butis merely one attaining 14, = 1. Accordingly, itis certainly

possible that «,, would be increased before ﬁn would converge
to the optimal filter (at least before steady state, as discussed in
the next subsections).

Note that, conditioned on 5 (L )

,(22)1is a consistent estimate

a1
(withrespectto L) of oy 1, for a w1de class of signals, even when

S(P)

the errors e? | or, are non-Gaussian. Hence, this mechanism

is generally robust, and relies on Gaussianity only for (21).
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Naturally, this assumption implies that the expected stability
would be obtained for sub-Gaussian’ errors as well.
Upon updating «,,, we also appropriately update the filter

h,, since the input signal v, is scaled with «,, as well (12).
Therefore, it is convenient to use multiplicative updates, rather

than additive, to «,, and lAln For a fixed §,, € (0, 1), we update

Increase Resolution : «,, = 6;104”,1, h, = 5;1hn,1,

B = Guhn 1.
A summary for the resolution updating phase is as follows:

Decrease Resolution : a,, = dq0t,_1,

Phase 2: Resolution Update. Input: k, .
Assumption: «,, was held fixed (at least) Ly samples.

1. On+1 = []-Ta,n ' i + (]lTa,n - 1) . 5&] Qp;
2. g1 = [Ltam - 3= + (Ttam — 1) - 00 hn.

It is now straightforward to generalize this adaptive process,
since, conceptually, we now only need to repeatedly execute the
properly interlaced Phases 1 and 2. In the repeated Phase 1, the
“initial” values for h,,, o, would be the corresponding values
of the prev10us tlme step. Additionally, w,, will be replaced by

A
Tp 2 [Uno1 - Onp)" € RPL, whose entries
oo~ vn + §
n — x'n/ - b)
Qo

(24)

<=h

~ w.h.p. _ P . .
are {U,—; = Up_i},_,, assuming previous successful recov-

eries w.h.p. The repeated Phase 2 would then be executed after
(at least) L time steps with the updated resolution.

Note that we intentionally use in (24), and hereafter, the
(seemingly redundant) notation %n rather than 7,,, since in this
context we are actually trying to perfectly recover v,,, defined
in (12), rather than to estimate x,,. This is to enable the proper
operation of the LMS algorithm (16), whose input should be
{Un—i}¥_;, and not {x,,_; }*_; [3], [7].

Ideally, alternating between these two phases would lead to
convergence near the limit s - 0, , = %, as in (23), up to small
fluctuations due to the limited-resolution adaptation step J,

and estimation errors in &, ,,. However, recall that 5OL \5(()’2 s
which implies that €&, = eP, and in turn v,, = v,,, is only w.h. p .
and in practice this is certainly not true for all n € NT. Indeed,
whenever Eor,, = {0, # vy} occurs, an extremely fast and
destructive error propagation process begins. To detect such
errors and prevent the consequent error propagation, we propose

the defense mechanism presented next.

C. Error Propagation Prevention

One natural way of coping, and eventually preventing the
aforementioned error propagation is by splitting the problem
into two parts. The first part is to detect that an error has
occurred, namely that v,, has not been perfectly recovered. In
other words, the event £or,, = {¥,, # v, } has to be detected,
and as quickly as possible. The second part is, given that oy,
has been detected, to mitigate the error effect so as to reclaim a
high-resolution functioning mod-ADC steady state.

Provided that an error event has been detected, a simple,
though conservative mitigation solution is to fully “re-open”

"The real-valued random variable w is called sub-Gaussian if 3¢,y € Rt
such that V¢ > 0 : Pr(|u| > t) < ¢ - exp{—7t3}.
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the effective modulo range (10) to its initial value M, for (at
least) p time steps. By this, we effectively initialize the process
and guarantee that no errors occur, at the expense of (locally)
retreating to a low-resolution regime. This solution, however,
is useful only if the detection of £or,, can be handled very
accurately, i.e., with a very low false-alarm rate. Otherwise,
the average operational time percentage of the mod-ADC in
a degenerate modulo state (corresponding to a large M,,) would
be high, and there would be no gain in using amod-ADC. Hence,
we turn our attention to the detection of £or, , .

Formally, our goal now is to derive an estimator /]IgOLn S
{0, 1} of the oracle indicator

1, gOLn

A 1,
]lgOL" - {O gﬁ - {O

Since this is required at every time step n, and assuming that
with M,, = M, there are no overload events, this is essentially
a change detection problem (e.g., [23]). In particular, since
EOLH‘S%" (= &Hy, > (19)) is rare (6), it can also be viewed
as a special instance of the fraud detection problem [24], where
vy, is pretending to be v,,, while in fact it is not, viz., U, # v.,.

Fortunately, our specific problem has favorable properties that
allow us to develop an accurate detector. In particular, observe
that increasing «v,, essentially “pushes” v,, towards approximate
wide-sense stationarity. Specifically, using (12),

1
1202

671 #vn
Uy = Uy,

, VneNT.

= R, [{] + T¢=o, (25)

E [0,T—¢]
such that even if «,, changes over time, for sufficiently large
values of «,,, the autocorrelation of v,,—even when unknown—
can be considered as being approximately a function of ¢ only.
Furthermore, it is seen from (25) that the variance of 7,, (13) is
the only source of non-stationarity.

Similarly to our comment above (21), in our blind scenario,
information such as (25) is not necessarily sufficient to be able to
design an accurate detector of the event £o1,,, . Therefore, at this
point we again invoke Gaussianity, and assume that {z,,} is a
Gaussian process with an autocorrelation function R,[¢]. Under
this assumption, we have the following result, whose proof is
given in Appendix B.

Proposition 1: Assume min,{«,} = «ag. Under no over-

loads, i.e., 5 (n ) , in the absence of estimation errors in Epyn,
and with an mﬁmte resolution step size 6, — 1, define
1
oo A Un + 2

. A — —o0\2| & 2
lim ap, = e, 7, =—=, E [(Un) ] 0%,
n—00 Qo

(26)

as the asymptotic resolution parameter, the ideal steady state

process and its variance, respectively. Then, if the “decaying”
£—00

condition R, [(] - log(¢) —— 0 holds, if follows that

: (wssn% :

This means that, asymptotically, knowing only the variance of
the process v,,, and observing its magnitudes, is sufficient in
order to detect almost surely an abnormality in the form of a
large, improbable deviation exceeding the threshold in (27).
Now, observe that an overload event Eor,,, inflicts a prediction

error in 0y, and in turn in O, of the order of A. Clearly, this

N—o0

202 log(N)> —— 0. 27
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creates a large “discontinuity”®, which is exactly the abnormality

form we can identify w.h.p. according to (27). In light of all the
above, we propose

1, o 262 .1
]lgOLn é ) |/Un‘ > J'u,n Og(n)7 VTL Z Ns; (28)
0, otherwise
as the detector of an error event due to £or,, , Where
1
~2 =
G2, 2 — ;vk, Vn > 2, (29)

and N, € N1 is a fixed stabilization time-interval, wherein
(28) is still not sufficiently accurate, and we enforce a simple,
more conservative condition for the transition phase n < Nj.
For example, one reasonable choice could be

N 1,
T, 2 {0

where 3 € RT is some predefined number (e.g., 3 = 5). From
practical considerations, since the threshold value in (28) in-
crease logarithmically with n, a plausible solution would be to
reset the time-index in this threshold every error event Eor,,, -
Once we observe igOLn =1, we set a,+1 = @, and reset
the process as described in the beginning of this subsection. The
proposed defense mechanism is summarized as follows:

‘%n| > 6 : aﬁ,n

! Vn < N,
otherwise ’ 5

" Error Propagation Defense Mechanism A
Assumption: n > p.
~ _ A2
1. Update 62, = =2 .52 |+ -5 7, _;
2. If Tg,, =1
2.1. Reset a,+1 = v, and adapt iALnH =20 ﬁn
- n 4

We note that, conditioned on the no overload event Sﬁ s

and assuming (26) holds, (29) is consistent, i.e., a —> af

where - denotes convergence in probability as n — oo. Thus,

the decision rule in (28) becomes increasingly accurate as we
approach steady state, indeed, a desirable outcome.

D. Key System Parameters and Corresponding Trade-Offs

First and foremost, convergence of the adaptive process de-
scribed above is conditioned on the no overload event. Therefore,
the parameter &, settin § the probability that the prediction errors
el are kept inside (— ) must be sufficiently large, so as to
ensure that (21) is sufﬁ01ently low. For example, choosing k = 7

already gives Pr(Eor,, [£®) ) oc 10712, Yet, as r increases, the

oL,
asymptotic resolution vy (26) decreases, as already alluded
from (23). A formal characterization of this asymptotic trade-off
is provided in the next subsection.

Given that k was chosen properly, we continue with the con-
vergence and asymptotic analysis, conditioned on no overload.
Specifically, we now focus on the learning rate ;. Assuming
momentarily that «,, is fixed, based on the well-established

8This, of course, is not a discontinuity in the formal sense as defined for
deterministic functions. Rather, we use this term here informally to refer to an
improbable transition from one value to another, in a manner that is inconsistent
with R [¢], governing the statistical nature of {T,, }.
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theory of the LMS algorithm [19], if we choose p such that

0<u<[HOEWﬁfDr1=&*@3+u@) ’

then the FIR filter h,, would converge in the sense (18), namely
it will randomly fluctuate about hgp, corresponding to the
LMMSE predictor. Recall that conditioned on no overload,
%n = U,,and when «,, is fixed, v,, is stationary in the respective
time interval, hence the diagonal elements of E[v,, 0, ] € RP*?
are all equal to the variance (13), and the right hand side of (30)
follows. Now, since «, is in fact time-varying, we would like to
choose y such that

(30)

1 1
= . (3D
p- (o7 + 12mi111n{a%}) p-(0F+ 121(13)
However, the upper bound (31) is unknown, since O'g is un-
known. Therefore, we propose to choose 1 =€, /(p- 02 1),
where ¢, € R is some small constant (e.g., 10’2), and 3§’p+1

(29) can be computed during the initialization phase. Since c 2
is typically small, and thus a?w 11 is dominated by o2, our

O<pu<

0
empirical experience indicates that choosing €, appropriately,
S0 as to ensure the desired stability, is rather easy. Furthermore,
a longer initialization phase could be performed to yield a more
accurate estimate of the variance of U,,. Lastly, and although
not necessary, u could be easily adapted throughout the process
based on the online estimate (29).

Another system parameter is L, the minimal discrete-time
interval in which the resolution «,, is held fixed before another
resolution update is allowed. In the extreme case Ly — 0o, we

have the highest stability (v, is fixed, h,, converges) but the
slowest (zero) progress towards high resolution. In the other
extreme case Ly = 1, o, can be updated at all times, but the es-
timate (22), and therefore the detector (23), becomes extremely
inaccurate. Therefore, L should be set so as to appropriately
handle this trade-off. Since Algorithm 2 assumes that the pre-
vious p samples of 7,, are available (via %n), it is reasonable to
choose L proportional to p (e.g., round(p/2)).

The resolution step size parameter ,, € (0, 1) also balances
a similar trade-off. As d,, decreases, the convergence towards
Qo 18 faster. However, the LMS would be required to cope with
more abrupt changes in the variance of v,,, harming the predictor
o, and thus locally inflicting larger prediction errors e, which
in turn promote overload events. On the other hand, as 6,1~
approaches 1 (from below), the transition becomes smoother,
allowing the LMS to adjust conveniently, and as explained
above, decrease the probability of overload events. Naturally,
this comes at the cost of slower convergence to .

To conclude this section, we refer to the parameter p, the
length of the FIR filter of the linear predictor vZ. Preferably, p
should be chosen based on some prior knowledge related to
the specific application the mod-ADC is used. In particular,
if the effective support’ L, of the unknown autocorrelation
function R[] is known even approximately, then an educated
choice would be p = L,. Indeed, if the (one-sided) support of
R.[{] is precisely L, + 1, then the causal Wiener filter [25],
i.e., the optimal (generally not FIR) filter of the causal LMMSE
predictor, for predicting the process {v,, } based on {Uj, } <, is
an FIR filter of length p = L,. Note in passing that L, can be
estimated during initialization, since y,, = v,, (w.h.p.).

For some € > 0, the e-effective support of R [¢] is the number L, € Nt
for which V|¢| > L, : |[R;[{]| < e. Loosely speaking, we say that L, is the
effective support of R, [¢] when V|¢| > L, : |R.[¢]| = 0.
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E. The Asymptotic Performance of a Blind Mod-ADC

Let us assume that all the parameters have been chosen such
that an overload does not occur. In this ideal (merely theoretical)
case, if we assume further that 3>, = o2 , and that an infinitely
fine step size d, — 1 is used, the resolution of the blind mod-
ADC converges to s, (26). In this asymptotic state, we have
the following equilibrium proposition, whose proof appears in
Appendix C.

Proposition 2: Assume that an overload does not occur,

Eg’n = ag,n and 6, — 1. Then, as n — 0o, we have
1 A , My
1o =— . — = — 32
Tpoe = 5 Qoo 2k’ (32)
where
2
_2 A _ =~p (n) _92 N _92
Ton = E [(”" -7) EOLHJ = Tpeo = 00 Tpms
(33)

and the linear predictor of the “o,,-standardized” process vy,
which appears in (33), is defined as,
1
=P A 62 + 2
v =

n b)
Qp

Vn >p+1. (34)

Of course, in practice, both 37>, # o2, and the occurrence
of an overload event at some point are with probability 1, and
in any case d,, is obviously finite. Nevertheless, Proposition 2
implies that even under the best theoretical conditions, for a
particular set of system parameters, the highest resolution is
limited. This motivates us to identify the point in time at which
the system has reached its limiting capability, and stop the
resolution adaptation—which yields stationarity henceforth—
favoring stability and reducing the computational load. Clearly,
the optimal scenario is when the adaptation-free mod-ADC is
working constantly at the highest attainable resolution .

In view of (32) of Proposition 2, we propose the following

Steady State Detector

~ 1, 7 M,
T2 7207 % yn> N, (39)
' 0, otherwise
where
2 a4 1 (: :;D)2 +
= — E — , Yne NT. 36
Tpn - Vi — U, n (36)

k=1

In words, when the estimated RMSE of the linear predictor %Z
is k times greater than half the effective modulo range, we infer
that the mod-ADC has reached the limit of its capability, in terms
of the highest attainable resolution for the given set of system
parameters. Note the difference between (23) and (35), where
the former uses ), and the latter uses ﬁpyn, respectively. As
seen from its definition (22), 7, is a “short-term” memory
estimate of the “local” standard deviation of v,,. In contrast, as
seen from (36), 7, , is a “long-term” memory estimate of the
average standard deviation of v,,, which converges to @, », in
the absence of an overload,

E[

UP:”

(n) n—oo.  _9
OL,+1 7 Op,ooy

as shown in Appendix D, with further discussion on (36).
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Hence, as the adaptive process unfolds, the condition gpm >
M. ' \which is a practical proxy for the ideal (merely theoret-

2K
ical) condition %,,,n = ]‘2/[—; and is essentially a decision rule
for detecting the limit resolution a.,, becomes increasingly
accurate. Although the ideal conditions hold only approximately
in practice, as we show in Section V via simulations, the steady
state detector (35) works quite well and is fairly accurate.

It is also instructive to express the asymptotic resolution cvo,

via (32) and A = 2% as,

1 1
Moo = — - <2R> . ;’
K \2 Op,oo

which provides several insightful observations. First, and
most obviously, increasing the number of bits R increases
the asymptotic resolution. Second, the trade-off in choosing
the confidence level parameter x is now apparent. Indeed,
increasing  leads to an exponential decrease in overload
probability (21), but at the same time decreases the asymptotic
resolution (37). Third, the inverse RMSE 1/7, » reflects the
unknown causal and linear predictability accuracy. That is, how
accurately the current sample of 7,, can be predicted, using a
linear causal predictor, based on the previous p samples vU,,.
The lower 7, , the higher the predictability, and accordingly,
the higher the asymptotic resolution cv.

Interestingly, (37) also provides a fresh look at the result [3,
Eq. 6]. Indeed, if we assume that the filter learned by the LMS
asymptotically converged exactly to the optimal one, implying
that o ywse,p = Qoo * Op o0, then combined with (37) written as
My, = 2K0p, o0, the bound [3, Eq. 6] reads,

P (E0r,) < 2exp { -3 maizetue, )|

gexp{zQQM&(ﬁﬁim)}

L 2
= 26xp{222log’2(¢5)} Qexp{I;}.

(3%

That is, for this ideal case, the blind mod-ADC coincides with
the oracle mod-ADC, and the overload probability decreases
exponentially with 2. This is in perfect agreement with (21).
Yet another way to see the consistency of the blind mod-ADC
asymptotic performance with the that of the informed mod-ADC
is via the asymptotic rate. By isolating R in (37), and using

(37

UEMMSE,p = 0420 : 5121,00 as above, we have
1 2 K
R=log, | 5= | +1lo (>
2 %% (122&) 52 V3
1
= 5 log, (]'QO—EMMSEJ)) + Ors (39)

which, again, is in perfect compliance with [3], (12) therein,
such that « controls the overload probability, and inevitably the
excess rate d,, with respect to Shannon’s lower bound [18].
Having described in detail all the individual components, the
complete algorithm of the blind mod-ADC is given in Algorithm
3. An important observation is that our algorithm can work
without incorporating the steady state detector. Thus, (35) is not
anecessary component in order to ensure proper operation of the
blind mod-ADC. Moreover, when working in highly dynamic
environments, we might intentionally disable this detector,

allowing the LMS to constantly adapt the filter fzn according to
the input, which can possibly be only “quasi-stationary” with
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SOSs that change sufficiently slow (relative to the sampling
period T) over time.

V. SIMULATION RESULTS

In this section, we present empirical results of two simulation
experiments that demonstrate the successful operation of the
proposed algorithm. These results corroborate our analytical
derivations, and to the best of our knowledge, serve as the
first empirical evidence for the implementation feasibility of a
blind mod-ADC for scalar time series input signals. Additional
illustrations for these simulations are given in Appendix E.

A. A Gaussian Input Signal

We consider the case where the input signal x,, is Gaussian.
This is quite a common assumption; for example, digital com-
munication signals are commonly modeled as Gaussian, see,
e.g., [26]. Specifically, we generate the input as

1 L,.—1
Tp = —F7— fnffv
>

where {¢, } is a zero-mean unit-variance Gaussian i.i.d. process.
Accordingly, the autocorrelation function of z,,, assumed to be

unknown, is given by R, [(] = (1 — %) “Lyg<r, -

We simulate a quantizer with R = 10 bits, and generate the
signal v,, according to (8). We then apply the 2/*-modulo opera-
tor to v, which yields the simulated mod-ADC output process
Un» as in (7). The chosen set of required system parameters, pre-
scribed in the input to Algorithm 3, is given in Table II. Further,
we set L, = 15, and emphasize that we intentionally choose
p # L, and specifically p > L. This simulates the more prob-
able scenario, in which the support of R[] is unknown, hence

the length of the FIR filter h,, will not be matched to the
length of the optimal LMMSE causal filter, which is of length
L, — 1in this case. We also choose L = p to demonstrate that
calibration of the system parameters could be simple, and rather
straightforward. Note also that we choose x = 4.5, which gives
Pr(|er| > 12R|EP) ) = 2Q(4.5) ~ 6.7953 x 1075,

Fig. 4 presents the effective modulo range M, (10) vs.
discrete-time for an input of length N = 10* samples. Starting
from My = 10.24, more than 10 times the standard deviation of
x,, effectively guarantees that v,, = ¥, i.e., no folding during
the initialization phase. This enables the LMS algorithm to learn
the optimal filter. When C,, > L, aresolution update is allowed,
and o, is increased, as can be seen conveniently in superimposed
“close-up” of the convergence interval.

The adaptive process continues with updates of multiplicative
step-sizes d,,, and whenever required, is also decreased. Further-
more, it is seen that at some point, the steady state detector 1 Ma,n
is turned on, indicating that the asymptotic resolution has been
approximately attained. Indeed, the convergence is not exactly
to M, (equivalently to cv.), since in practice 5 ,, # o7 ,, with
probability 1 and the adaptations of «,, are of finite resolution.
Nonetheless, as evident from Fig. 4, our asymptotic analysis,
carried out under ideal theoretical conditions, provides a con-
siderably accurate forecast.

We repeat the experiment in exactly the same setting, only now
with k = 3.5. Hence, we expect to observe an increased asymp-
totic resolution, at the cost of more frequent overload events.
Fig. 5, presenting the corresponding plot as in Fig. 4, reflects
exactly this trend. Nevertheless, in the case of an overload event,
our error propagation defense mechanism comes into play, and
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Algorithm 3: Blind Modulo ADC Encoding-Decoding.

Input: Signal: {z(t)|,_, 1 }, System Parameters: R, a, p, i'\Lo, Ky Lg, Ns, €y, 0q, 8

Output: {7, }

1 Set oy, = g, C, =0, and ﬁpH = ﬁo, and accumulate p + 1 sample {y;}
2 Compute {7; = v;}t_; as in (11), U1 as in (12), and set Vpp1 = Vpi1;
3 Compute 52 ,,; as in (29), and set = ¢,/ (p- G2 ,,,) as in Subsection IV-D;

4 Set C, =0and 1, =0;
forn=p+1,p+2,...do
s | ©,, 02 = BlindModUnfold(y,,, Dp, A, R);

n

o~

~2 _ n=2 = 1 P .
6 | Update 05, = =% 05 -1+ 5777 " Up_1;

if igOLn =1 then

7 Reset apq1 = g, Co =0 and by = 5% - hy;

n+p+1

8 Accumulate (p + 1) new samples {y;};"", compute {y; = v Y P 15
9 Output the respective estimates {Z; = (v; + 3) /ao}

10 Continue from n =n+p+ 1;
else
1 Output Z,, = (U, + 1) /v

pil > Set initial parameters
> First p samples are not folded
> Compute the LMS learning rate

> C,: # iterations after adapting «,,, 1ys_: M flag

> Re-open modulo range
> Re-initialization

n+p .
i—ny1 Of the accumulated samples;

12 Compute the estimated error el =70, — 0%, and the estimated MSE &7, as in (22);

13 Update hpr1 = by + 14 %na‘l’, and increase Cp, = C, + 1;

if C, > LyN 1y =0 then

14 An41 = {]]-Ta,n : % + (]lTa,n - 1) . 5(! ns Coz =0;

~

|a
15 hn+1 = {chx,n . i + (]lTa,n - 1) . 504] En;
16 ifiMm’nzlﬁllTam:lthen 1y, =1

> LMS learning step

> Update the resolution

> Adapt the filter accordingly
> Steady state detection;

TABLE I
CHOSEN SYSTEM PARAMETERS FOR SIMULATION EXPERIMENT 1

Value
p =40

Value Parameter
R (— A =2F) 10 (— 1024) Ls
ag (— Mo =2%/ap) | 100 (— 10.24) Ns
D 40 e 10—2
ho € RP*1 1o --- 0T Sa 0.9
K 4.5 B 5

Parameter

maintains proper continuous operation, as observed from Fig. 5.
Thus, the blind mod-ADC automatically balances the trade-off
between effective quantization and continuous operation, which
is highly important in practice. These results corroborate our
analysis leading to the detector (28).

B. A Bandlimited Input With Narrowband Interferers

In this experiment we consider a non-Gaussian signal of
interest (SOI), and the presence of narrowband interferences.
Specifically, here the SOI =z, is generated by applying a
non-ideal, minimum-order filter with a stopband attenuation
of 60 dB, to the driving noise {&,}, which is drawn from
the Rademacher distribution, namely Pr(¢, = 1) = Pr(¢,, =
-1)= % We then normalize the output, such that z,, is a
zero-mean unit-variance process. In addition, we consider the
presence of narrowband interference signals, a particularly rel-
evant scenario in the context of communication systems.

Thus, the input to the blind mod-ADC in this experiment,
which is of length N = 10° samples, is given by

3 3
i=1 i=1

.
2}

(40)

6x10°  8x10°

n

0 2x10°  4x10%

Fig. 4. Experiment 1: The effective modulo range M, vs. discrete-time, with
x = 4.5. Since on this time interval an overload did not occur, the resolution
., approximately converged to the asymptotic resolution a, as predicted by
our analytical asymptotic analysis. Upon convergence, stability is also evident,
and this is due to the successful operation of the steady state detector (35).

where 7,, simulates the SOI, and {¢%}?_, simulate three nar-
rowband interference signals. Here, for the interference (;, the
parameters g;, ¢;, w; and 7; are the unknown gain, phase, carrier
(angular) frequency and transmission start time, respectively.
We draw ¢; ~ Unif((0, 27]) independently, and set the rest of
the parameters as reported in Table TIL.'° We also fix 1 M. tO
zero, to demonstrate the unnecessity of the steady state detector
for a successful operation.

19Note that ws is not a rational multiplication of 7, hence ¢3 is not a periodic
signal.
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10 1
8 i
S

S| _
4 L 4

2 1 1 1

0 2x10°  4x10®°  6x10°  8x10® 10
n
Fig.5. Experiment 1: M,, vs. discrete-time, but with £ = 3.5 (instead of Kk =

4.5). For a lower value of k, overload events are more frequent. Nonetheless,
our algorithm successfully detects these events, and automatically decreases the
resolution to maintain proper continuous operation of the blind mod-ADC.

TABLE III
CHOSEN INTERFERENCE PARAMETERS FOR SIMULATION EXPERIMENT 2

|| Parameter | =1 | =2 | =3 ||
gi
w; w/4 47 /5 V2r/3
Ti 2x10* | 4x10* | 7x10*

The spectrogram of the input z,, is presented in Fig. 2(a).
During the starting period (n < 2 x 10%), the blind mod-ADC
operates in the presence of the SOI z,, only. Once n > 71, the
first interference is added, and the scenario becomes harder after
To and 73, where the SOI is impaired by the interferes.

Fig. 6 presents the evolution of the effective modulo range M,
in (discrete) time. Whenever an interference starts transmitting,
the SOSs of the input signal abruptly changes, and as a result
the prediction error €? increases dramatically, thus causing an
overload event. We recall that an overload, by definition (see
(19)), does not mean that the amplitude of the input signal
exceeds the modulo range A = 2% as in a standard ADC.
Rather, an overload event occurs when the magnitude of the
prediction error e? exceeds half the modulo range. In these
cases, our overload detector detects these large prediction errors,
and the effective range is re-opened. This way, a stream of
low-resolution, though unfolded samples are produced, allowing
the LMS algorithm to re-learn the new (and different) optimal
filter. This process happens right after 7 , 72 and 73, but operation
in high-resolution is gained anew.

We also report the average number of failures in perfectly

recovering v, Pr(v, # ) 2 & S0, Ly, 20, = 7.8 - 1074

Evidently, the blind mod-ADC provides highly reliable recovery
of the unfolded signal, and in turn, allows for highly accurate
estimation of the input z,, via (9). In this specific scenario, since
the input (40) is perfectly recovered (almost everywhere), the
narrowband interferers can be easily detected and filtered out
(e.g., using notch filters). This digital solution, which is now
simple thanks to the modulo-ADC, could not have been achieved
by a standard, probably saturated ADC.

The results reported in this Section were verified by multiple
runs, and were consistently observed for different realizations.
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n

Fig. 6. The effective modulo range M, vs. discrete-time. Our adaptive algo-
rithm quickly recovers from the abrupt changes due to the interferences, re-learns
the suitable filter, and returns to a high-resolution operational mode.

VI. CONCLUDING REMARKS

In the context of analog-to-digital conversion, we present an
algorithmic framework, allowing for a stable and reliable oper-
ation of a mod-ADC without access to prior knowledge of the
input signal’s SOSs. We put forth the key design parameters, and
discuss the corresponding trade-offs. In addition, we derive the
asymptotic resolution of the proposed blind mod-ADC, and link
our current results with the performance of the oracle mod-ADC
presented in [3]. We demonstrate by simulations the successful
operation of the proposed solution, which corroborates its un-
derlying theoretical infrastructure. Furthermore, we demonstrate
the advantage in using amod-ADC in an environment of multiple
interference signals.

As ADCs are being used in a host of applications, more
often than not when perfect knowledge on the input signal
is not available (if at all), the robustness of such devices is
imperative, and almost crucial. The ability of operating blindly
under dynamic conditions is essential for practical purposes,
and constitutes a key advantage in effective sensing. Therefore,
this work is yet another important step towards realization of
mod-ADCs, shrinking the gap between sensing performance in
practice and the respective theoretical limits.

Based on the principles presented in this work, in [27] our
results are extended to the spatiotemporal case, where blind
mod-ADCs for vector processes are developed and analyzed.
The results in [27] can serve as a starting point for developing
additional mod-ADC-based architectures with accompanying
algorithms for various applications in array processing.

There are a number of important research directions associ-
ated with this work that remain to be explored. One that is central
relates to the hardware implementation of the basic modulo ADC
unit. Based on a given implementation design, addressing the
nonidealities and inherent physical limitations/impairments via
efficient (digital) algorithmic solutions is key to the success of
using the modulo concept in sensing.

Another important issue pertains to the blind mod-ADC’s
reaction upon detection of an overload event. As observed from
Fig. 2(b), in these cases the instantaneous squared error in-
creases significantly. While standard ADCs with a (causal) AGC
generally also suffer from such spikes in their reconstruction
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error process, it is possible that this phenomenon can be further
mitigated (for example, with additional resources).

Other, more theoretical avenues related to the proposed algo-
rithm are a non-asymptotic performance analysis of the over-
load detector (28), and of the typical convergence time to the
asymptotic resolution (37). Such analyses could yield valuable
characterization of the resolution adaptation evolution process
in terms of key system parameters, which is instructive for a
comprehensive evaluation of the mod-ADC architecture.

APPENDIX A
SOSS OF THE PROCESSES v,, AND T,

As explained in Subsection IV-A, when «,, increases, the
SOSs of {v,} gradually become less affected by ,, which
is not true for {v,, }. To see this more clearly, observe that the
autocorrelation function of {7, } is given by

A .

R;[0) £ E[0,0n—¢] = Ra[f] + Lo—o 1202’
where we have used (i) the definition (12); (ii) the fact that x,, and
zp, are statistically independent; and (iii) z,, is an i.i.d. process.
In contrast, the autocovariance of {v,, } is given by

R0 28| (v~ 3) (e 3 )]

= ananféRz[é] + :H-Z:() : %a
and we examine the autocovariance (rather than the
autocorrelation) since E[v,,] = % Evidently, for any non-zero
lag ¢ # 0, R;[¢] = R.[{], and in particular R;[¢] is independent
of a, for £ € {1,...,p}. Clearly, this is not the case for R, [].
Moreover, the variance R;[0], also given in (13), approaches
o2 as «, increases. Since R;[/] is less sensitive than R,[(]
to adaptations in «,,, by using the recovered values of {7, }
rather than {v,} as the observations in (14) (as opposed to
(3)), we alleviate the estimation (/learning) of the optimal filter
coefficients, which depend on the SOSs of the observations,

throughout the adaptive process.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: Tt is known that [28], if

{00

R[] - log(¢) —= 0,
then
N—oo

Pr (chn”é?\‘, < /202 log(N)) —=1.

Since {z,, € (—1,0]} is a process with bounded support, assum-
ing that min,, {a, } = «ag, we also have

_ 1
Pr (”’WL”Z?@ < \/2 (Jazc + 12()[2) 10g(N)>
0

Recall, however, that { v, } is typically an increasing sequence

N—o0
— 1.

on average, and conditioned on no overload events &

converges (up to small fluctuations) to the value for which
K-Opp = %, as explained in Subsection IV-B. Thus, under
Mk=111éo, = 0}, in the absence of estimation errors in &, ,,
and with an infinite resolution step size d, — 1,

1
lim oy, = @, = lim E [@?L] = 03. + =02

n—00 n—00 120[30 v
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Hence, for the ideal steady state process 75, we have

P (17l < /2o o8

or, equivalently,

Pr (||vff||g;§ > /202 log(N)> Ao,

APPENDIX C
PROOF OF PROPOSITION 2

N—00
— 1,

Proof: In the asymptotic state under the assumptions stated
in the proposition, we have the equilibrium

A
COpoo = —, 41
K Op, 5 41
where
~2 A i =2 ~2 A p\2| o(n)
T ® 0 T T SE[FER ] @

and notice the difference between 512,7,1 in (42) and afm in (20).
Now, recall that o2 is a function of ©,, (14), which, asymptot-
ically, is a function of «a.,. Hence 52700 is also a function of
Qoo. Thus, under the ideal (only theoretical) conditions stated in
the proposition, the highest resolution attainable for a particular
fixed set of system parameters (e.g., k, p, A = 2) is governed
by the equilibrium (41).

Now, observe that the linear predictor of the “ay,-
standardized” process v,,, defined in (34), has the following
conditional MSE,

9 ~2
Ton=E [(vn —%Z) gr) } = Ton

OLnit| ~ a2

Therefore, under the ideal (theoretical) conditions stated in the
proposition, asymptotically,

~2 32
. A . — . n o0
72 2 lim 72, = lim 2" = 2%
P n—ooo P n—o0 Qi ago

(43)

= Op,c0 = Qoo * Op oo-

Substituting (43) into (41) gives the equivalent equilibrium

_ 1 A . My
g = — — = —
P9k e 2K
[ |
APPENDIX D

THE ASYMPTOTIC RMSE ESTIMATOR

Further analytical justification of (35) is gained by

n
=2 (n) o l = ~p\ 2 (n)
E [am zﬁm] = nkZIE {(vk—vk) &
=1
R S A )
= E [(vk — Uk) Emn+1]
k=1
1w~ 1 2| o(n)
R ]E[ 2| gln) }
K kE::l o (€k) OLn41
~2
n—o0 p,00 —2
@ aZ poe?

where we have used:
(1) Linearity of the expectation; _
@ Under Sﬁk, Vp =V = U = Uk,
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Fig. 7. Experiment 1 with k = 4.5: The estimated error process el vs.

discrete-time. It is seen that [ef| < 12% for the entire time interval. Since

here ef} = el, an overload event £oy,,, did not occur, and perfect recovery of

vy, is attained.

(3) By definition (12), (34), (17), Ty — Dy, = € /a3 and
(4) Under the same ideal conditions described at the outset of
Proppsition 2, 3N, € Nt :a, = oy, Vn > N, ; See
the discussion below regarding this analysis.
Although 312,’”, defined in (36), is perhaps the most intuitive
estimator of Efm, an exact analysis of its asymptotic properties
is far from trivial. Indeed, since it is a random process whose
statistical properties are implicitly determined by the resolution
update, error propagation prevention and steady state detection
rules (steps 14, 7 and 16 in Algorithm 3, respectively), it is even
non-stationary to begin with.
However, to further justify our proposed steady state detector

(35), which is based on gi-,n (36), it suffices to consider a
simplified scenario, in which an overload event never occurs.
Of course, this happens with probability zero when considering
an infinitely long observation of the error process {eF }, since we
assume efl|5%n ~ N(0,07 ). Nevertheless, such an analysis
is informative for finite, but sufficiently long realizations, in
which our proposed adaptive mechanism for the blind mod-ADC
converges to steady state, i.e., 1 M.,,n = 1, which occurs w.h.p.
with proper selection of the system parameters.

The simulation results presented in Section V corroborate this
argument, and further justifies this approach for a simplified,
yet informative analysis, resulting in (37), which is consistent
with the analysis of the informed mod-ADC presented in [3], as
evident from (38) and (39).

APPENDIX E
SIMULATION RESULTS: ADDITIONAL ILLUSTRATIONS

We provide additional illustrations of the results of the two
simulation experiments presented in Section V. The estimated
prediction errors e? of the linear predictor v%, are presented
in Fig. 7. Recall that in order to unfold ¥,, these prediction
errors (15) are necessary, and ¢X = eP holds only when there is
no overload. As reflected from Fig. 7, this is exactly the case,
since &g = {leh| < 527} = {€F = eb}. Accordingly, in this

. s 1 N SN2
experiment the averaged squared erroris - > ', (v, — Up)* =
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Fig. 8. Results of simulation experiment 1, but with £ = 3.5 instead of kK =
4.5: The estimated error process e? vs. discrete-time. For a lower value of
K, overload events are more frequent. Nonetheless, our algorithm successfully
detects these events, and automatically lowers the resolution in order to maintain
proper continuous operation of the blind mod-ADC.

5.067 x 10727, which is clearly due to machine accuracy lim-
itations, thus implying perfect recovery of the signal v,,, from
which x,, can be readily estimated.

For the repeated experiment with a smaller value of kK = 3.5,
it is seen in Fig. 7, presenting the corresponding plot to Fig. 8
that three overload event have occurred, successfully detected,
and mitigated.
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