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Abstract—Underwater communication signals typically suffer
from distortion due to motion-induced Doppler. Especially in
shallow water environments, recovering the signal is challenging
due to the time-varying Doppler effects distorting each path
differently. However, conventional Doppler estimation algorithms
typically model uniform Doppler across all paths and often fail
to provide robust Doppler tracking in multipath environments.
In this paper, we propose a dynamic programming-inspired
method, called online segmented recursive least-squares (OSRLS)
to sequentially estimate the time-varying non-uniform Doppler
across different multipath arrivals. By approximating the non-
linear time distortion as a piece-wise-linear Markov model, we
formulate the problem in a dynamic programming framework
known as segmented least-squares (SLS). In order to circumvent
an ill-conditioned formulation, perturbations are added to the
Doppler model during the linearization process. The successful
operation of the algorithm is demonstrated in a simulation on a
synthetic channel with time-varying non-uniform Doppler.

I. INTRODUCTION

Due to the motion of transmit and receive platforms as
well as that of scatterers in underwater acoustics, Doppler
estimation can be a critical part of underwater signal pro-
cessing applications, such as communication and localiza-
tion. Ambiguity-function based methods have been used for
Doppler compensation under mild conditions without substan-
tial multipath [1], [2], where gradient-based methods have
also proven useful [3]. For rapidly time-varying Doppler, the
performance of such methods degrades rapidly. Additionally,
such methods often fail to work in an environments with non-
uniform Doppler across different multipath arrivals, such as
shallow water in high sea states. As can be seen from Fig.
1 based on underwater acoustic measurements taken in the
presence of surface waves generated at the Scripps Ocean-
Atmosphere Research Simulator (SOARS) research facility,
sensor motion, surface waves, and multiple reflections result in
relative path-length variation along different multipath compo-
nents in realistic scenarios, which lead to non-uniform Doppler
that would pose significant challenges for single hydrophone
adaptive acoustic communication receivers.

Although there has been success in integrating Doppler
compensation in acoustic communication applications in gen-
eral, e.g. [3]–[6], and when a receive-array can spatially
separate distinct multi-path components that contain different
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Fig. 1: Channel impulse response from a single-hydrophone
recording made in a wave-tank at the SOARS facility at
the Scripps Institution of Oceanography. Surface waves with
approximately 0.6 Hz, 0.33 m peak-to-peak amplitude and
3 m wavelength were generated during the recording. The
transmitter and receiver were also moving due to the surface
waves. Peaks for direct, single surface bounce, and single
bottom bounce arrivals are denoted in the figure.

Doppler components such that each can be then separately
tracked and compensated, sequential tracking of individual
Doppler components along different multi-path components
that are not spatially separated remains an unsolved problem,
such as for single-hydrophone receivers.

One approach to resolving time-varying non-uniform
Doppler is a dynamic programming approach using dynamic
time-warping in [7]. However, this is a batch algorithm com-
puted in hindsight after all observations are available, which
can lead to unacceptably long delays in communications ap-
plications. Additionally, the accuracy of such discrete dynamic
time-warping methods is limited by the inherent quantization
of the time-scales considered.

In this paper, we propose a sequential Doppler estimation
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method, inspired by a dynamic programming approach for
piece-wise linear function approximation called Segmented
least-squares (SLS) and an online segmented recursive least-
squares variant (OSRLS) proposed in [8]. The main contribu-
tion of this paper is formulating the Doppler estimation prob-
lem as an SLS problem, by approximating the non-linear time
distortion via a piece-wise linear model, and linearizing the
received signal with respect to the linear time-scale coefficient.
The rest of the paper is organized as follows. In Section II,
we briefly review OSRLS. Section III is concerned with the
linearization of the received signal model and the formulation
of Doppler estimation via the SLS framework. In Section IV
we demonstrate the operation of the algorithm on synthetic
data consisting of a communication signal transmitted over
a simulated channel with non-uniform, time-varying Doppler
inspired by our observations in highly dynamic environments,
such as that shown Fig. 1. Section V offers some conclusions.

II. ONLINE SEGMENTED RECURSIVE LEAST-SQUARES

The OSRLS method is inspired by the SLS method devel-
oped by Bellman [9] for approximating a curve with piece-
wise linear segments. The goal of SLS is to minimize the
objective function

E(P ) = |P |C +
∑
pi∈P

epi (1)

by choosing segment set P ≜
⋃
pi where {pi} refer to

non-overlapping time segments, in which each segment has
a squared linear approximation error epi

. The constant C is
a penalty term for adding a segment and |P | denotes the
cardinality of the set P . The Bellman equation that recursively
solves for the optimal segmentation into piece-wise linear
regions can be formulated with slight abuse in notation as

E(bi) = min
1≤ai<bi

e(ai,bi) + C + E(ai), (2)

where each (ai, bi) pair refers to the segment pi expressed in
terms of its starting point and end point, respectively. Although
(2) is the optimal solution to (1), the solution can only be
obtained in hindsight when we have all observations for all
segment pairs. Also, it is computationally expensive since
computation over all (ai, bi) pairs is required.

The OSRLS leverages the approach behind the SLS par-
titioning but in a strongly sequential manner. A summarized
description of OSRLS is provided below. More details can be
found in [8].

At each iteration n, the LSE is computed for all (m,n)
pairs for m = 1, 2, . . . n. The LSE and the solution for each
(m,n) pair can be computed recursively using the Woodbury
identity and a recursive least-squares update [8]. At each n,
the solution to (2), E(n), is computed and compared with
E(n− 1). If there is an increase in the error by more than a
pre-chosen threshold, then the sequential algorithm (OSRLS)
assumes that a new segment has started and the RLS Riccati
equation is reset. In [8], sequential performance is shown to
compete well with batch performance for piece-wise stationary

sources. The algorithm has a computational cost of O(N2)
for a length-N observation and a low-complexity variation of
O(N) is also shown in [8].

III. PROBLEM FORMULATION

A. Linearization of Received Signal
We now formulate the time-varying non-uniform multipath

Doppler estimation problem in the SLS framework. In a mul-
tipath and non-uniform Doppler setting, a propagated acoustic
signal s(t) sampled at the receiver can be expressed as

r[n] =

L∑
ℓ=1

hℓs(αℓ(n)) + ω[n], (3)

where hℓ is a channel gain, ω[n] is a sampled white Gaussian
process, and αℓ(n) is a time distortion function of the receive
time of the nth sample to the corresponding transmission time
for each path ℓ amongst L paths in total.

If we assume that the first derivative of αℓ changes suf-
ficiently slowly relative to the sampling rate, we can model
αℓ as a piece-wise linear process with respect to n. For each
segment pi and sampling rate 1

T , the time distortion function
can be approximated linearly as

αℓ,pi
(n) ≈ dℓ,i(n− ai)T + τℓ,i, n ∈ pi. (4)

The process is characterized by the time scaling Doppler dℓ,i
and the segment delay τℓ,i for each segment i and path ℓ. Given
the initial arrival time τℓ,0, the segment delays are recursively
computed as

τℓ,i = τℓ,i−1 + dℓ,i−1(bi−1 − ai−1)T. (5)

Thus, the function αℓ can be parameterized by a set of Doppler
factors {dℓ,i} and segments {pi}. Assuming the channel gains
and the initial delay for each path are known, an estimate of
the received signal can be computed with Doppler dℓ,i and the
segment pi as

r̂pi
(n,di) =

L∑
ℓ=1

hℓs(dℓ,i(n− ai)T + τℓ,i), n ∈ pi, (6)

where di = [d1,i d2,i . . . dL,i]
T. The Doppler estimation ob-

jective now becomes an estimation of di and the corresponding
partition pi.

Given the partition pi, the respective LSE is written as

epi
= min

di

bi∑
n=ai

(r[n]− r̂(n,di))
2
. (7)

For a small change in Doppler per segment, (6) can be
approximated using a first-order Taylor expansion as

r̂(n,di) ≈ r̂(n,di−1) +∇T
di−1

r̂(n,di−1)∆di, (8)

for ∆di = di−di−1. Given the Doppler factor of the previous
partition, we can rewrite (7) as

epi = min
∆d

||rpi − r̂pi(di−1)−Ri−1∆di||2, (9)

where rpi
and r̂pi

are vectors with elements r[n] and
r̂(n,di−1) for all n ∈ pi, respectively, and Ri−1 is the
Jacobian matrix whose rows are {∇T

di−1
r̂(n,di−1}.
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B. Perturbation for Stability

For a special case where all elements of di−1 have the
same value, Ri−1 becomes a rank-1 matrix, making (9) an ill-
conditioned least-squares problem. To circumvent this possible
technical issue, and to ensure numerical stability, we add a
small perturbation to ensure that Ri−1 has full column rank.
For each nth received sample, the first order Taylor expansions
are computed with respect to di−1 + ϵℓ for ℓ = 1, 2, . . . , L,
where ϵℓ is a vector with some small value ϵ as the ℓth element
and zeros in all others. In this case, the perturbed linearization
of (8) is

r̂(n,di) ≈ r̂(n,di−1 + ϵℓ)

+∇T
di−1+ϵℓ

r̂(n,di−1 + ϵℓ)(∆di − ϵℓ),
(10)

For each new observation, the RLS update runs L + 1 times
with the original linearization and each perturbed linearization
model.

C. Proposed Algorithm

The summary of the perturbation-driven OSRLS algorithm
for Doppler estimation is given in Algorithm 1. The reduced
(linear) complexity variation is used since in practical appli-
cations for underwater acoustic Doppler estimation, such as
underwater acoustic communication, the observation length
is often large. In the linear variation, Ns segments with the
smallest LSE and Nr most recent segments are maintained.

IV. SIMULATION RESULTS

In this section, the OSRLS performance is evaluated for a
time-varying and non-uniform Doppler using a 3-ray model
[10] (consisting of direct, surface-reflected and bottom paths)
in a simulation, and is compared with a peak-tracking algo-
rithm on multipath delays. The simulation is generated based
on the settings in the SOARS experiment recordings used to
obtain the channel estimates in Fig. 1.

In our setting, a 20 kHz symbol rate quadrature phase-shift
keying (QPSK) signal with Gaussian-windowed pulse shaping
is used to ensure that the transmitted signal is differentiable.
The signal is modulated by a carrier frequency of 30 kHz and
sampled at 200 kHz. The bottom is assumed flat with a depth
of 1.8 m. A transmitter and receiver are located at depths of
0.46 m, and 1.45 m away from each other. The transmitter is
stationary and the receiver oscillates in the horizontal direction
with a 0.6 Hz sinusoidal motion with 0.25 m peak-to-peak
amplitude. The surface motion is modeled as a sinusoidal
fluctuation of 0.6 Hz and 0.33 m peak-to-peak amplitude. The
channel gains for direct, surface, and bottom arrivals are set
to 1, -0.8, and 0.5, respectively.

For the OSRLS algorithm parameters, segment penalty
C, segment detection threshold M , and the Doppler factor
perturbation value ϵ are chosen here as 0.01, 50, and 10−6,
respectively. The 20 most recent segments and 10 smallest LSE
value segments (excluding the 20 most recent) are selected for
the recursion at each iteration. For the peak-tracking algorithm,
we obtain a cross-correlation output between the received
signal and 3 ms segments of the transmitted signal for each

Algorithm 1: Online Segmented Recursive Least-
Squares for Multipath Doppler Tracking

Parameter:
C ∈ Z+ - Segment penalty term;
M ∈ Z+ - Segment detection threshold;
Ns ∈ Z+ - Memory for smallest LSE values;
Nr ∈ Z+ - Memory for recent LSE values;
[ϵ1, ϵ2, . . . ϵL]

T ∈ RL - Perturbation point;
Input :

r[n] - Sampled received signal;
s(t) - Transmission signal function;

Output :
d1,d2, ... - Estimated multipath Doppler;
p1, p2, ... - Estimated segments;

init
i = 1;
a1 = 0;// Initial segment start point
mf = 0;// # of memory filled
d0 = [1 1 . . . 1]T;// Initial Doppler

while n = 1, 2, ... do
// Memory is full, discard one
if mf = Ns +Nr then

Discard the segment with largest LSE among
Ns;
mf = mf − 1;

end
// Update segments in the memory
while m = 1, 2, . . .mf do

while ℓ = 1, ...L do
Linearize (6) with di + ϵℓ;
Solve (9) for the (âm, n) segment using
RLS to obtain eâm,n and ∆d(âm,n);

end
end
// Add a new segment to the memory
Initialize a RLS algorithm at the segment starting
at âmf

= n− 1;
mf = mf + 1;
// Segment Detection
Compute E(n) and a∗n such that
E(n) = mina∗

n∈{â1...âmf
}(ea∗

n,n
+ C + E(a∗n));

if a∗n − a∗n−1 ≥ M then
di = di−1 +∆di;
pi = (ai, bi);
i = i+ 1;
ai = a∗n;
bi−1 = a∗n − 1;
∆di = ∆d(a∗

n,n)
;

Reset RLS-LSE Riccati equation with RLS
values from (a∗n, n) segment;

else
Update ∆di using RLS to solve for (9);

end
end
return {di, pi};
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Fig. 2: Time-varying Channel delay computed with Doppler
factor estimated from OSRLS (red line) and peak-tracking
method (blue line) on top of channel impulse response estimate
over time shown as a 2-dimensional surface plot where the
vertical axis is time (in s) and horizontal axis is delay (in ms).

sample iteration. At each iteration, peaks of matched filter
outputs are tracked by choosing the local maxima closest
to the previous peaks. Since these peaks are the maxima of
a sampled signal, time-delay for each path is estimated by
fitting a second-order polynomial through a maximum and two
neighboring points [11]. For both algorithms, we assume that
the initial time delays for all paths are known.

Fig. 2 illustrates the evolution of the simulated channel
delay over time. The direct path and the bottom bounce are
the first and third arrivals, respectively, on which we can
observe similar Doppler. The second arrival is the surface
reflection, which has a distinct time delay evolution different
from the other two arrivals due to the surface motion. Timing
estimates of samples are recovered using estimated Doppler
for OSRLS and peak delay for the peak-tracking method.
The errors between the ground truth and estimated values are
shown in Fig. 3 for both OSRLS and peak-tracking methods.
Given that the sample rate is 200 kHz, the timing error of
0.0025 ms could result in a missed sample. It can be observed
that the timing estimation error of the OSRLS-based approach
is always within a sample interval for this simulation, while
the peak detection shows occasional sample misses for the
direct and bottom reflections, and a bias larger than a sample
interval for the surface reflection after approximately 25000
iterations.

V. CONCLUSION

We presented an OSRLS-based sequential method, inspired
by SLS, for time-varying non-uniform Doppler estimation.
We formulated the problem in an SLS framework by using a
first-order Taylor expansion with respect to the change in the
Doppler factor. Further, we enhanced the numerical stability
of the algorithm through the use of a gradient perturbation.
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Fig. 3: Sample timing error recovered from the estimated
Doppler factor using OSRLS (top) and peak-tracking (bottom)
algorithms with sample rate of 200 kHz. The absolute valued
errors are averaged over 1000 samples.

The proposed algorithm was tested in simulation, and has
shown substantially improved performance as compared to
the peak-tracking method. Future work will be focused on
incorporating the OSRLS-based Doppler estimation algorithm
into the underwater communication framework. The first step
will be evaluating the algorithm with experimental measure-
ments and incorporation of joint Doppler and channel gain
estimation. In addition to the performance of the proposed
method with known transmission signal which is demonstrated
in this paper, further study will be made on the performance
under the decision-driven mode of an acoustic communication
system.
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