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Abstract—Underwater acoustic localization has traditionally
been challenging due to the presence of unknown environmental
structure and dynamic conditions. The problem is richer still when
such structure includes occlusion, which causes the loss of line-
of-sight (LOS) between the acoustic source and the receivers, on
which many of the existing localization algorithms rely. We develop
a semi-blind passive localization method capable of accurately
estimating the source’s position even in the possible absence of
LOS between the source and all receivers. Based on typically-
available prior knowledge of the water surface and bottom, we
derive a closed-form expression for the optimal estimator under a
multi-ray propagation model, which is suitable for shallow-water
environments and high-frequency signals. By exploiting a compu-
tationally efficient form of this estimator, our methodology makes
comparatively high-resolution localization feasible. We also derive
the Cramér-Rao bound for this model, which can be used to guide
the placement of collections of receivers so as to optimize local-
ization accuracy. The method improves a balance of accuracy and
robustness to environmental model mismatch, relative to existing
localization methods that are useful in similar settings. The method
is validated with simulations and water tank experiments.

Index Terms—Localization, non-line-of-sight, underwater
acoustics, matched field processing, maximum likelihood,
Cramér-Rao bound, Cholesky decomposition.

I. INTRODUCTION

UNDERWATER localization of acoustic sources is an im-
portant and challenging problem, and arises in a wide

range of applications [1]–[3]. As such, it has been extensively
addressed in the literature, where early work dates back to
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at least the mid-1970s [4]. Fruitful combinations of advanced
signal processing methods and detailed underwater acoustic
propagation models have led to a variety of methods for different
regimes (shallow/deep water, short/long distances, etc.) [5], [6].

While an abundance of methods have been developed and
proposed over the years, only a portion of these survive the
ruthless test of practicality. Indeed, from a practical point of
view, a good applicable method is one that, on the one hand
exploits as much prior knowledge as possible, but on the other
hand does not go too far by assuming access to unavailable
information/resources. In the context of passive underwater
acoustic localization, our goal in this work is to provide a robust
algorithm, while judiciously balancing this trade-off.

In particular, we consider scenarios where the area of interest
is characterized by shallow waters (say, up to∼ 100m depth [7])
and relatively short distances (say, up to∼ 1 km). In this regime,
under a few additional realistic assumptions (stated explicitly in
the sequel), the acoustic signal propagation can be approximated
by ray trace modeling [7], [8]. This allows us to exploit the
multipath channel effect, rather than mitigate it. In other words,
we explicitly incorporate prior knowledge on the structure of
the environment, which either allows us to successfully localize
using fewer resources (e.g., sensors or measurements), or to
improve performance while using the same resources. Moreover,
we are capable of localizing a source in the complete absence
of line-of-sight (LOS) signal components, based on non-LOS
(NLOS) signal reflections. Naturally, these notions have already
been considered in some settings, as reviewed next.

A. Related Work: Underwater Acoustic Localization

For short-range localization in shallow-water environments,
straight-ray tracing is a widely-accepted approximation for
acoustic signal propagation [7], [8]. In such environments, the
speed of sound is (at least approximately) constant1 and known
in the relevant volume of interest. Therefore, propagation de-
lay, namely time of arrival (TOA) or time-difference of arrival
(TDOA) (e.g., [10], [11]), is usually employed as a basis for
different localization methods [12]. However, since the under-
water acoustic environment typically induces a rich multipath
channel [13], the measured signals contain both LOS and NLOS
components. Under such circumstances, the performance of
TOA/TDOA-based methods usually deteriorates, possibly up to
unacceptable error levels.

1Nearly constant sound speed may be found, e.g., in very shallow waters, or
shallow waters that are well-mixed [9].
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Since the complete multipath channel is (generally) unknown,
a possible remedy is to first identify and separate the LOS
components. Diamant, et al. propose in [14] a method for
classifying the signal components as LOS and NLOS, and
for subsequent range estimation based on the classified LOS
components. While this approach can certainly work, it does
not attempt to exploit the NLOS reflections, which contain
valuable information on the unknown source location. Emokpae
and Younis propose in [15] a surface-reflection-based method in
an active setting, where only the surface reflections are exploited.
In [16], Emokpae, et al. present an extended, enhanced version
of this notion, where a scheme that employs both the LOS and
surface-reflected NLOS components is developed to locate a lost
(drifted away) node of an underwater sensor network. To use this
method, all nodes in the network are required to have a sensor
array, with more than one sensor, and the waveform emitted from
the lost node (i.e., source) is assumed to be known, which is not
always possible and less common in passive settings. Assuming
that perfect knowledge of the physical model is available, which
translates into an equivalent impulse response, matched field
processing (MFP) [17] is a well-known technique that makes
full use of the environmental structure for enhanced localization.
However, as mentioned in [18], in realistic applications model
mismatch is a serious problem for MFP, on top of its heavy com-
putational workload. Recent increasing efforts towards reducing
system cost [19], [20] and computational complexity [21], [22],
while exploiting environmental structure [23], motivate our
current work.

B. Semi-Blind Localization: Motivation and Contributions

We propose a semi-blind localization (SBL) method that uses
a spatially diverse network of receivers. Each receiver is required
to have a single sensor (rather than a sensor array, as in [16]),
which reduces hardware requirements, and hence the overall
cost of the system.2 The information lost by restricting the
number of sensors is mitigated by leveraging available partial
prior knowledge on the structure of the environment, namely the
depths of the sensors and the ocean bottom. Our SBL method,
developed in a nonBayesian framework, jointly estimates the
associated parameters of the implied impulse response with the
unknown source position, and thus can be viewed as a form
of focalization [18]. However, it is more naturally related to the
direct position determination approach [25], originally proposed
for narrowband radio frequency signals. We show that with
some carefully chosen adaptations, a similar, though generalized
approach leads to our SBL method,3 which provides a good bal-
ance between accuracy and robustness to some physical model
mismatch. We demonstrate this via simulation experiments by
comparing to MFP and to the TDOA method referred to as
“generalized cross-correlation with phase transform” (GCC-
PHAT) [26]–[28], which is well-known due to its resilience to
multipath.

We note in passing that if additional knowledge of the
environment is available, one may consider taking a Bayesian

2In an application such as the ocean-of-things [3], an optimal subset of sensors
could be chosen from a larger set of sensors [24].

3In contrast to the previous claim in [25], that this approach “is suitable only
for RF signals and not for underwater emitter location”.

Fig. 1. A 2-dimensional illustration of the three-ray model. When the surface
and bottom are approximately flat in the operational area [33], [34], this model
enables NLOS-based localization in the potential absence of the LOS signal
component, e.g., due to an occluder.

approach, and incorporate the available knowledge by intro-
ducing an appropriate prior distribution on (all or some of) the
unknowns. In this work, we take a nonBayesian approach.

Our main contributions are the following:
� A novel SBL method for underwater acoustic sources: We

adopt the widely-accepted straight-ray tracing approach for
shallow-water to define a three-ray model, which explicitly
takes into account the NLOS surface and bottom signal
reflections. Consequently, on top of enhanced accuracy
due to this multipath model, our method is capable of
localization in the absence of LOS, due to a potential
occluder, such as a vessel or pier pilings.

� Computationally efficient direct localization: Contrary to
indirect (e.g., TDOA-based), standard localization meth-
ods (e.g., [29]–[31]), we take a different approach, in
which our algorithm is applied directly to the observed
signals. Consequently, the notion of TDOA is redundant in
our framework. Specifically, we assume that the source’s
waveform is unknown, and in particular, we do not assume
it is a pulse-type signal. We provide a computationally
efficient algorithm to the resulting nonlinear optimization
problem (see Section IV, Proposition 3), and demonstrate
that the algorithm works well for pulse- or non-pulse-type
signals in Section VI.

� Lower bound on asymptotic performance: We develop the
Cramér-Rao lower bound (CRLB) on the mean-squared
error (MSE) of any unbiased localization method for a
special case of our signal model, in which our proposed
solution coincides with the maximum likelihood estimate
(MLE) of the source position. We demonstrate the validity
of this bound with respect to ocean ambient noise, using
previously collected ocean acoustic recordings [32].

� Applicability proof of concept: We provide a proof of con-
cept, demonstrated on acoustic measurements collected in
a well-controlled, small-scale water tank, which provides
an acoustically frequency-scaled model for the shallow-
water environment.

The rest of the paper is organized as follows. The remainder of
this section is devoted to an outline of our notation. In Section II
we formulate the problem for the three-ray signal model depicted
in Fig. 1, and the MFP solution of this model is presented
in Section III. The main results, including our proposed SBL
method, are presented in Section IV. In Section V we derive the
respective CRLB, and present empirical simulation results that
corroborate our analytical derivation in Section VI. Concluding
remarks are provided in Section VIII.
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C. Notation

We use x, x, and X for a scalar, column vector and matrix,
respectively. The superscripts (·)T, (·)∗, (·)H, and (·)−1 denote
the transposition, complex conjugation, conjugate transposition,
and inverse operators, respectively. We use IK to denote the
K ×K identity matrix, and O for the all-zeros matrix. The
pinning vector ek denotes the k-th column of the identity matrix,
with context-dependent dimension. Further, δk� � eTk e� denotes
the Kronecker delta of k and �.E[·] denotes expectation, λmax(·)
denotes the largest eigenvalue of its (square) matrix argument,
and theDiag(·) operator forms anM ×M diagonal matrix from
its M -dimensional vector argument. The Kronecker product is
denoted by ⊗. We use j (a dotless j) to denote

√−1; �{·}
and �{·} denote the real and imaginary parts (respectively) of
their complex-valued arguments. The �2 norm is denoted by
‖ · ‖2, and rank(·) denotes the rank of its matrix argument. The
symbols R and C denote the real line and complex plane, re-
spectively. We use x to denote the (normalized) discrete Fourier
transform (DFT) of x, and x̂ to denote an estimate thereof. We
use O(·) to denote the standard big O notation [35].

II. PROBLEM FORMULATION

Consider L spatially-diverse, time-synchronized receivers at
known locations, each consisting of a single omni-directional
hydrophone.4 Furthermore, consider the presence of an un-
known signal in an isotropic homogeneous medium, emitted
from a source whose deterministic, unknown position is denoted
by the vector of coordinates p ∈ R

3×1. We assume that the
source is static, and is located sufficiently far from allL receivers
to permit a planar wavefront (far-field) approximation in the
shallow-water waveguide. Each receiver records the measured
acoustic signal on a fixed observation time interval, which after
sampling and baseband conversion amounts to N samples. We
further assume that the area of operation can be considered as
a shallow-water environment, and that the ocean floor depth in
the relevant area of operation5 is approximately constant [36].
We restrict our scope to (approximately) isovelocity environ-
ments and high frequency signals, in which the straight-ray
model approximately holds. Since we focus on short ranges in
shallow-water environments, we neglect nonlinear propagation
effects in the waveguide. Although the underwater acoustic
channel generally gives rise to an equivalent rich multipath
channel, a relatively simple, yet useful, approach is the three-ray
model, illustrated in Fig. 1. In this approach, the modeled signal
components are:

1) The direct-path LOS component;
2) The surface reflection NLOS component; and
3) The bottom reflection NLOS component.
Accordingly, the associated distances traveled by these com-

ponents from the source to the �-th receiver are given by [37]

R1� � ‖p� − p‖2, (LOS) (1)

R2� �
√

ρ2� + (zp + z�)2, (NLOS surface) (2)

R3� �
√

ρ2� + (2h− zp − z�)2, (NLOS bottom) (3)

4We focus on the single sensor case for convenience. However, our method-
ology can in principle be used when the receivers have sensor arrays.

5The smallest rectangular area encompassing the source and receivers.

Fig. 2. A 3-dimensional illustration of the geometry leading to (1)–(3).

where p � [xp yp zp]
T; p� � [x� y� z�]

T is the position of the
�-th receiver; ρ� �

√
(xp − x�)2 + (yp − y�)2 is the horizontal

distance between the source and the �-th receiver; and h is
the bottom depth in the area of interest. An illustration of the
geometry associated with (1)–(3) in our coordinate system is
given in Fig. 2 . Therefore, assuming isovelocity, the associated
time-delays of these components are

τr�(p) �
Rr�

c
, r ∈ {1, 2, 3}, ∀� ∈ {1, . . . , L}, (4)

where c denotes the speed of sound, assumed to be known.
This model can be viewed as a third-order approximation

(with respect to the delayed signal components) of the equiv-
alent impulse response of an acoustic channel, whose energy
is concentrated in the three arrivals corresponding to the LOS
component, and the surface and bottom reflections. While some
unpredictable factors can give rise to additional components
in the induced impulse response, the surface and bottom of
the ocean are always present. Therefore, it is reasonable to
incorporate these additional signal components into the model.
Moreover, this simplified model allows for successful localiza-
tion in the absence of (even all) LOS components in the received
signals, a situation that may occur, e.g., due to the presence of
potential occluders. This will be demonstrated via simulations
and experiments with real data in Section VI.

A. Baseband Signal Model

Formally, and assuming the source has been detected in a
given frequency band, the sampled, baseband-converted signal
from the �-th receiver is given by

x�[n] =

3∑
r=1

br�sr�[n] + v�[n] � sT� [n]b� + v�[n] ∈ C,

∀n ∈ {1, . . . , N}, ∀� ∈ {1, . . . , L}, (5)

where we have defined s�[n] = [s1�[n] s2�[n] s3�[n]]
T ∈

C
3×1, b� = [b1� b2� b3�]

T ∈ C
3×1, and where

1) br� ∈ C denotes the unknown attenuation coefficient from
the source to the �-th sensor associated with the r-th
component (LOS or surface/bottom NLOS reflection);

2) sr�[n] � s(t− τr�(p))|t=nTs
∈ C denotes the sampled r-

th component of the unknown signal waveform at the �-
th sensor, where s(t− τr�(p)) is the analog, continuous-
time waveform delayed by τr�(p), and Ts is the (known)
sampling period; and
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3) v�[n] ∈ C denotes the additive noise at the �-th receiver,
representing the overall contributions of internal receiver
noise and ambient noise, modeled as a zero-mean random
process with an unknown variance σ2

v�
.

B. Equivalent Formulation in the Frequency Domain

Applying the normalized DFT to (5) yields the equivalent
frequency-domain representation for all � ∈ {1, . . . , L},

x̄�[k] =
3∑

r=1

br�s̄[k]e
−jωkτr�(p) + v̄�[k]

� s̄[k] · dH
� [k]b�︸ ︷︷ ︸
�h̄�[k]

+v̄�[k] = s̄[k] · h̄�[k] + v̄�[k] ∈ C, (6)

where we have defined

d�[k] � [e−jωkτ1�(p) e−jωkτ2�(p) e−jωkτ3�(p)]H ∈ C
3×1,

ωk � 2π(k − 1)

NTs
∈ R+, ∀k ∈ {1, . . . , N}.

For shorthand, we further define

x� � [x̄�[1] · · · x̄�[N ]]T ∈ C
N×1,X� � Diag(x�),

s � [s̄[1] · · · s̄[N ]]T ∈ C
N×1, S � Diag(s),

v� � [v̄�[1] · · · v̄�[N ]]T ∈ C
N×1,

D� � [d�[1] · · ·d�[N ]]T ∈ C
N×3,H� � Diag (D�b�) . (7)

Note that D� and H� are nonlinear functions of the unknown
emitter position p, as suggested by the definition of d�[k] above
and (1)–(4), though we omit this for brevity. With this notation,
we may now write (6) compactly as

x� = H�s+ v� ∈ C
N×1, ∀� ∈ {1, . . . , L}. (8)

Thus, the localization problem can be formulated as follows:
Problem: Given the measurements {x� ∈ C

N×1}L�=1 of the
signal model (8), localize the source, namely estimate p.
We emphasize that although we are interested solely in p, the
channel parameters {b�} and the DFT coefficients s of the
emitted waveform are unknown as well.

III. THE MATCHED FIELD PROCESSING SOLUTION

The key assumption of MFP approaches is that, for a given
hypothesized emitter location p, the channel response H� is
fully predictable.6 For the model (5), the attenuation coefficients
{b�} can be assumed to be given by7

b1� =
1

R1�
, (LOS attenuation) (9)

b2� =
−1

R2�
, (NLOS surface reflection attenuation) (10)

b3� =
κb

R3�
, (NLOS bottom reflection attenuation) (11)

for all � ∈ {1, . . . , L}, where κb is the bottom reflection coef-
ficient, which (presumably) can be determined based on prior

6Otherwise, infeasible high-dimensional optimization is required.
7Ignoring the effects of volume absorption in water, which are minimal.

physical knowledge (e.g., assuming the bottom is sand, silt, clay,
rock, etc.) and the angle of incidence, and is assumed to be known
within the MFP framework for a given hypothesized emitter
location p. For (10), we assumed a perfectly reflecting ocean
surface [8], [38], which approximately holds for calm shallow
waters. Based on this knowledge, the channel responses {H�}
can be readily computed.

The MFP solution for the three-ray model, denoted for con-
venience as MFP3, is then given by

p̂MFP3 � argmin
p∈R3×1

min
s̄∈CN×1

C̃MFP3(p, s), (12)

where

C̃MFP3(p, s) �
L∑

�=1

‖x� −H�(p)s‖22 , (13)

and here we write H�(p) (rather than H�) to emphasize the
dependence on p. The simplified MFP3 solution is given by

p̂MFP3 = argmax
p∈R3×1

N∑
k=1

∣∣x[k]Hhk(p)
∣∣2

‖hk(p)‖2
, (14)

where we have defined, for every k-th DFT component,

x[k] � [x̄1[k] · · · x̄L[k]]
T ∈ C

L×1,

hk(p) �
[
h̄1[k] · · · h̄L[k]

]T ∈ C
L×1,

using hk(p) (rather than hk) to emphasize the dependence
on p. For completeness of the exposition, the derivation
of the simplified form (14) is given in the supplementary
materials.

In (14), the channel impulse response hk(p) is considered to
be fully known for any given hypothesized positionp (via (1)–(4)
and (9)–(11)). In other words, assuming perfect knowledge of
b1, . . . , bL means that any relevant physical parameter, such as
the ocean bottom sediment coefficient κb in (11), is assumed to
be perfectly known as well. We relax this (somewhat unrealistic)
assumption in our semi-blind localization approach described
next.

IV. THE PROPOSED SEMI-BLIND LOCALIZATION METHOD

As our semi-blind framework, we only assume that the bottom
depth h is known, but we do not assume that we have any prior
knowledge of the channel attenuation coefficients. Thus, since
the waveform emitted from the source is also unknown, we
may assume without loss of generality (w.l.o.g.) that ‖s‖2 = 1,
viz., s ∈ SN � {z ∈ C

N×1 : ‖z‖2 = 1}, where SN is the N -
dimensional unit sphere. This assumption, which is common in
similar (semi-)blind formulations (e.g., [39]), is justified due to
the inherent scaling ambiguity in (8),

α∈C : H�s = Diag (D�b�) s=Diag
(
D�

(
1
αb�︸︷︷︸
� b̃�

))
( αs︸︷︷︸
� s̃

)

= Diag
(
D�b̃�

)
︸ ︷︷ ︸

� H̃�

s̃ = H̃�s̃, ∀� ∈ {1, . . . , L},

which, granted, is immaterial to our localization problem.
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Our proposed SBL solution can be viewed as the MLE of
p, obtained by joint estimation of all the unknown deterministic
model parameters, under the assumption that the noise processes
{v�}L�=1 from all different sensors are temporally white complex
normal (CN) processes, mutually statistically independent, with
equal variances. In this case, the MLE of p is the solution to the
nonlinear least squares problem

p̂SBL �argmin
p∈R3×1

min
s̄∈SN

B∈C3×L

C̃SBL(p, s,B)

︸ ︷︷ ︸
CSBL(p)

�argmin
p∈R3×1

CSBL(p), (15)

where the objective function C̃SBL(p, s,B) is defined as

C̃SBL(p, s,B) �
L∑

�=1

‖x� −Diag (D�(p)b�) s‖22 , (16)

and here we write D�(p) (rather than D�) to emphasize the
dependence on p. In contrast to the MFP3 solution (12), our
proposed solution (15) is due to joint estimation of all the
unknown model parameters p, s and B � [b1 . . . bL] ∈ C

3×L,
including the channel coefficients B. Thus, in our proposed
approach, we do not assume that the channel response is fully
known for a given hypothesized position p of the source.

Intuitively, this approach should lead to a more robust so-
lution than MFP3 with respect to deviations from the channel
knowledge (9)–(11), at the cost of extra computational effort.
Fortunately, as we show in Section IV, by exploiting the low-
dimensional structure of the data, the additional computational
cost is negligible. Moreover, although (15) defines a nonlin-
ear high-dimensional optimization problem with 3L additional
unknowns relative to MFP3, it boils down to a 3-dimensional
optimization problem, similar to (14).

Our main result is the following localization algorithm:

The SBL Estimator:
Input: {x�}L�=1, c, h, 3D grid of the volume of interest.
Output: The SBL estimate, p̂SBL.

1. For every candidate p on the grid:
1.1. Compute the matrices {DT

� D
∗
�}L�=1;

1.2. Compute the Cholesky decompositions

DT
� D

∗
� � ΓH

� Γ� ∈ C
3×3, ∀� ∈ {1, . . . , L}, (17)

and obtain the matrices {Γ�}L�=1;
1.3. Compute the matrix

U(p)�
[
X1D

∗
1Γ

−1
1 · · ·XLD

∗
LΓ

−1
L

]∈C
N×3L,

(18)
and construct the matrix

Q̃(p) � U(p)HU(p) ∈ C
3L×3L. (19)

1.4. Compute λmax

(
Q̃(p)

)
;

2. Find p̂SBL,grid, the maximizer point on the grid.
3. Return p̂SBL, the solution of a nonlinear optimization

solver (e.g., trust-region [40]) initialized by p̂SBL,grid.

We now provide the analysis, based on which the algorithm
above is derived. For convenience, we define

P s̄ � Diag(|s|2) � Ps · (IN + E) ∈ R
N×N
+ , (20)

wherePs ∈ R+ is the average signal power (with | · |2 operating
elementwise), and E is a diagonal matrix with “small” elements,
such that εmax � |λmax(E)| < 1.

Proposition 1 (SBL for Spectrally Flat Waveforms). Consider
the case where E = O, and define the data-dependent matrix,

Q(p) �
L∑

�=1

X�D
∗
�

(
DT

� D
∗
�

)−1 (
X�D

∗
�

)H ∈ C
N×N , (21)

for any hypothesized source position p. Then,

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) . (22)

Proposition 1, whose proof is given in Appendix A, tells us
that, for spectrally flat waveforms s, the source’s position esti-
mator can be computed based only on λmax(Q(p)). Moreover,
although our model has more unknowns, (22) is obtained by
(only) a 3-dimensional optimization.

The next proposition, whose proof appears in Appendix B,
states that the simplified form λmax(Q(p)) of the objective
function can be a good approximation to (15) when E �= O,
namely for waveforms that are not spectrally flat. In turn, this
implies that (22) can be used to localize a source emitting a
general waveform.
Proposition 2 (SBL for General Waveforms). Consider the case
where E is not necessarily equal to O. Then,

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) +O(εmax).

It follows that whenever εmax � 1, we have

p̂SBL ≈ argmax
p∈R3×1

λmax (Q(p)) .

However, as we demonstrate via simulations and real data in
Section VI, our proposed estimator exhibits good performance
even for waveforms that are far from being spectrally flat. Thus,
Proposition 2 implies that only λmax(Q(p)) is required for
approximately optimal localization. In particular, it suffices to
use, e.g., the power method, rather than computing the complete
eigenvalue decomposition ofQ(p). However, the computational
complexity can be reduced even more, as implied by the follow-
ing proposition, whose proof is given in Appendix C.
Proposition 3 (Efficient Computation of the SBL Objective
Function). Let Q(p) ∈ C

N×N be defined as in (21). Then,

λmax (Q(p)) = λmax

(
Q̃(p)

)
, (23)

and the complexity of computing (23) is (only) O(NL3).
Note that a naïve application of, e.g., the power method to

Q(p)would costO(N2). This is already prohibitively expensive
for reasonable sample sizes on the order of N ∼ 103.

We emphasize that our proposed estimator implicitly opti-
mizes over an additional 2 · 3L unknown parameters—the chan-
nel attenuation coefficients b1, . . . , bL—relative to the MFP
estimator of this model, while retaining the same order of
computational complexity in terms of N (sample size). As an
intermediate summary, a comparison of several attributes of the
proposed SBL with MFP3 is given in Table I.

For the actual computation of the estimate p̂SBL, we propose a
two-phased approach. The first phase consists of a coarse grid
search over the relevant volume of interest. In the second phase,
a general purpose nonlinear optimization algorithm (e.g., trust-
region methods [40]) is applied, where the solution from the first
phase is used for initialization.
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TABLE I
COMPARISON OF THE PRIMARY ATTRIBUTES OF TRADITIONAL MFP3 AND THE

PROPOSED ESTIMATOR, SBL, FOR THE THREE-RAY MODEL

A. Interpretation of the SBL Solution

We now provide a useful interpretation of the closed-form
expression (22) of our proposed solution, based on the derivation
presented in Appendix A. We begin by explaining the first step,
the estimation of b�. From (36), when S and D� (defined in (7))
are treated as known, we see that this first step can be regarded
as compensation (or, rectification) of the attenuations of each of
the three signal components. It is also enlightening to see this
from the noiseless case, where

x� = SD�b� =⇒ S
−1
x�︸ ︷︷ ︸

per-frequency
elementwise division

= D�b�︸ ︷︷ ︸
per-frequency weighted

sum of b1�,b2�,b3�

. (24)

Substituting {b̂�} (defined in (40)) into (16) yields after simpli-
fication (42)—the “b�’s-rectified” objective, where the rectifi-
cation is based on the intermediate estimators {b̂�}, which still
depend on the unknown S and p at this phase.

Moving forward, we momentarily focus on a single (matrix)
element of the sum (42). Rearranging this term, we see that

sHX�D
∗
�

(
D�

TP s̄D
∗
�

)−1 (
X�D

∗
�

)H
s

= xT
� S

∗
D∗

�

(
D�

TS
T
S

∗
D∗

�

)−1

DT
� S

T
x∗
�. (25)

Again, focusing on the noiseless case to gain intuition, by
substituting x� = SD�b�, we have

xT
� S

∗
D∗

�

(
D�

TS
T
S

∗
D∗

�

)−1

DT
� S

T
x∗
�

= bT� D
T
� S

T
S

∗
D∗

�

(
D�

TS
T
S

∗
D∗

�

)−1

DT
� S

T
S

∗
D∗

�b
∗
�

= bT� D
T
� S

T
S

∗
D∗

�b
∗
� = ‖SD�b�‖2 =

N∑
k=1

∣∣s̄[k]dH
� [k]b�

∣∣2
2
.

Therefore, we interpret the maximization (42)—for a single
receiver—as choosing the best set of parameters {s,p, b�}, in
the sense that the total energy of the received signal from the
source is maximized, under the hypothesized set of parameters.

Generalizing this intuition for a signal in noise, after substi-
tuting x� into (25), for a sufficiently large N , the signal-noise
cross product terms will tend to zero by virtue of the law of large
numbers, since the noise DFT coefficients are uncorrelated and
zero-mean.

Lastly, we generalize the intuition above from a single receiver
to multiple receivers. For this, recall that (42) is in fact a joint
maximization of the total energy of all L received signals from

the same source. Therefore, it weights the L signals from differ-
ent relative locations to the source while taking into account that
they all contain shifted versions of the same waveform. This is
essentially the connecting link, and the advantage in processing
the data jointly (rather than individually). This joint weighting
is nontrivial in the general case. However, when the source is
spectrally flat, i.e.,E = O, the optimal way (in the sense of (15))
to weight and combine the data from the receivers is to form the
matrix Q(p) as in (21), and to compute its maximal eigenvalue
(22). A natural interpretation of the maximal eigenvalue of a
semi-positive definite matrix is the energy distributed along
the dominant direction (orthogonal to all others) in the space
spanned by the columns of this matrix. With this interpretation,
the final form of the SBL solution given in (22) is now intuitive.

V. THE CRAMÉR-RAO LOWER BOUND FOR SBL

We now analyze the localization accuracy limitations of the
proposed solution in terms of the MSE,

MSE(p̂,p) � E

[
‖p̂− p‖22

]
. (26)

Specifically, we derive the CRLB for the special case E = O.
Unlike the common approach (e.g., as in [41], [42]), wherein
both the unknown source signal and noise are considered to
be random, in our model only the noise is considered random.
Thus, for a given waveform, the bound can be used as a tool
for designing the deployment of a network of receivers, so as to
maximize accuracy in regions of higher importance.

Regardless of the constant spectral level (i.e., E = O), in
our general framework s ∈ SN w.l.o.g., hence in this particular
case Ps =

1
N . Consequently, s̄[k] = 1√

N
ejφs[k] for all k, and the

only waveform-related unknowns are the phases8 of the DFT
coefficients, denoted collectively by φs � [φs[2] . . . φs[N ]] ∈
R

(N−1)×1.
To facilitate the following derivation, we introduce a more

compact representation of the measured signals. Specifically,
let x � [x1 . . .xL]

T ∈ C
NL×1. Thus, (8) reads

x = Hs+ v ∈ C
NL×1, (27)

where H � [HT
1 . . .HT

L]
T ∈ C

NL×N and v � [v1 . . .vL]
T.

Denoting σ2
v � [σ2

v1
. . . σ2

vL
]T ∈ R

L×1
+ , it follows that

x ∼ CN (
Hs,Diag(σ2

v)⊗ IN

)
. (28)

It is well-known that for the CN signal model CN (μ,R),
the Fisher information matrix (FIM) elements are given
by9 [43]

J [θi, θj ] = Tr

(
R−1 ∂R

∂θi
R−1 ∂R

∂θj

)
+ 2�

{
∂μH

∂θi
R−1 ∂μ

∂θj

}
,

∀i, j ∈ {1, . . . ,Kθ},
where we have defined the vector of all the real-valued unknown
deterministic parameters

θ�
[
pT vec(φs)

T vec(�{B})T vec(�{B})T σ2
v

]T∈R
Kθ×1,

(29)
with Kθ = 3 + (N − 1) + 2 · 3L+ L, and J(θ) is the FIM.

8Note that although there areN elements inφs, there are onlyN − 1 degrees
of freedom, since the (complex-valued) channel attenuation coefficients are
considered unknown as well. Therefore, we assume w.l.o.g. that the first element
of φs, considered as a reference phase, is zero.

9For the sake of clarity, we specifically use a different notation for the FIM’s
elements, with slight abuse of notation also in (30)–(32).
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It is readily seen from (28), that in our model the mean
vector and covariance matrix are functions of distinct unknown
parameters. This immediately implies that

J [σ2
v�1

, σ2
v�2

] = N · δ�1�2 , ∀�1, �2 ∈ {1, . . . , L}, (30)

J [σ2
v�
, θ] = 0, ∀θ �= σ2

v�
, (31)

namely the FIM has a block diagonal structure. Furthermore, for
the signal-related block, we have

J [θi, θj ] = 2�
{
∂(Hs)H

∂θi

(
Diag−1(σ2

v)⊗ IN

) ∂Hs

∂θj

}
,

∀i, j ∈ {1, . . . ,Kθ}, ∀� ∈ {1, . . . , L}. (32)

When σ2
v�

= σ2
v for all �, it can be observed from (32) that the

signal-related FIM block is inversely proportional to the noise
variance. Hence, the associated signal-related CRLB block is
inversely proportional to the signal-to-noise ratio (SNR).

It only remains to compute the derivatives ofHswith respect
to the parameters of θ, excluding σ2

v , which is merely technical.
We defer the details of these calculations, as well as the final
expressions of all the signal-related elements of the FIM to the
supplementary materials, along with a Matlab implementation
of this bound. Finally, the CRLB is given by10

E

[(
θ̂ − θ

)(
θ̂ − θ

)T]
� J−1(θ) � CRLB(θ) ∈ R

Kθ×Kθ

=⇒ MSE(p̂,p) ≥
3∑

i=1

[CRLB(θ)]ii , (33)

for any unbiased estimator θ̂, and the implied p̂ (see (29)).

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we consider simulation and physical experi-
ments of source localization for different scenarios in order to
corroborate our analytical derivations. First, we begin by the
evaluation and visualization of the CRLB for a hybrid signal,
wherein the signal-related component, namely Hs from (27),
is synthetic, and the noise-related component, namely v from
(27), is taken from previously collected ambient noise recordings
from the Kauai ACOMMS ONR MURI 2011 (KAM11) experi-
ment [32]. Second, we simulate a different scenario, wherein the
receivers are deployed in a linear formation. For this setting, we
evaluate the performance with respect to varying SNR, model
mismatch (to assess robustness), and missing LOS components
due to occluders. In these simulations, we compare our proposed
method to the MFP3 solution (14) and to GCC-PHAT [27], a
TDOA-based localization method, which is considered as highly
robust to multipath effects. In the third experiment we compare
the algorithms on data recorded from a water tank testbed.

A. Validation of the CRLB for Ocean Ambient Noise

We consider a scenario with L = 4 receivers, in an area with
bottom depth h = 100 m. The locations of the receivers and
the source are given in Table II. The attenuation coefficients
were drawn (once, and then fixed) independently from the

10A � B is to be interpreted to mean that A−B is semi-positive definite.

TABLE II
POSITIONS OF THE SOURCE AND THE FOUR RECEIVERS FOR THE SETTING

CONSIDERED IN SUBSECTION VI-A, DEPICTED IN FIG. 3 (LEFT), WITH

Ts = 10−3 S. NOTE THAT THE SOURCE POSITION IS NOT LOCATED ON A

(DISCRETE) GRID POINT

circularly-symmetric CN distribution, such that E[|brl|2] = 1,
with variance 0.12. The speed of sound was set to c = 1500 m/s,
and the sample size to N = 30. We consider the case E = O,
such that the waveform’s DFT coefficients are s̄[k] = 1√

N
ejφs[k],

and the phases {φs[k]}Nk=2 were drawn11 (once, and then fixed)
independently from the uniform distribution U(0, 2π). In this
case, p̂SBL is the MLE, and the CRLB accurately predicts its
asymptotic variance. The received signals were generated ac-
cording to (6), where the noise realization for all four sensors
were taken from recordings of ocean ambient noise from the
KAM11 experiment [32]. This way, we obtain a hybrid signal
for this simulation, which allows us to test the validity of the
bound on real ambient noise, which is potentially not CN and
temporally white. Since the CRLB is informative only asymptot-
ically (in the “small errors” regime), we set the noise variance12

to σ2
v�

= σ2
v = 0.1 for all � ∈ {1, 2, 3, 4}, to have an SNR of

‖s‖22/σ2
v = 10 dB.

Fig. 3 presents the 2-dimensional setting under consideration,
and the 95% confidence ellipse computed using the CRLB (33),
with superimposed estimates p̂SBL obtained for 100 different
noise recordings. Despite the model mismatch with respect to
the noise distribution, a good fit is seen between the empirical
results and the predicted theoretical accuracy due to the CRLB.
Fig. 4 reflects the same fit in the 3-dimensional space. This
not only agrees with our analytical derivation of the bound, but
also provides an empirical justification for our stochastic noise
model. In this regard, we note further that the hybrid signals we
use allow us to essentially isolate the (potential) noise-related
model mismatch effects, and test our proposed solution with
respect to deviations of this sort only.

B. Comparison With GCC-PHAT and MFP3

We now compare the proposed SBL method with MFP3
and the GCC-PHAT localization methods. In this simulated
experiment, we consider the setup depicted in Fig. 5, namely
a linear deployment of the receivers. Such a deployment is con-
ceivable for naval defense purposes near the shoreline, or harbor
monitoring [44]. The positions of the source and the receivers,
and all relevant system and environmental parameters are given
in Table III. The source’s DFT coefficients s̄[k], as well as the
noise realizations {v̄�[k]}, were drawn independently from the

11Except for the (immaterial) φs[1] = 0, due to our semi-blind setting.
12We do so by first normalizing the recorded ambient noise to have unit

variance, and then scale it accordingly to have the desired level of SNR.
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Fig. 3. Validation of the predicted asymptotic performance using the CRLB
for the hybrid signal, containing recordings of ocean ambient noise collected in
the KAM11 experiment. Left: The 2-dimensional setting of the scenario under
consideration. Right: The 95%-confidence ellipse, as predicted by the CRLB
(33), with 100 superimposed estimates.

Fig. 4. Two different points of views for the (same) 3-dimensional 95%-
confidence ellipsoid based on the CRLB, with 100 SBL estimates superimposed
(legend as in Fig. 3, right). The CRLB accurately quantifies how the variance of
the proposed solution is spread in the 3-dimensional space.

standard CN distribution in each trial. The noise variance of the
�-th receiver is set as σ2

v�
= σ2

v · ‖b�‖2, and the SNR is defined
here as E[|s̄[k]|2]/σ2

v = 1/σ2
v . All empirical results presented in

this subsection are based on averaging 104 independent trials.
We first compare the localization accuracies of the methods

for different SNRs. Fig. 6 presents the root mean squared (RMS)
miss distance, i.e., the square root of (26), vs. the SNR for each
method. A 2D slice at the receiver’s depth of the objective
functions of each of the algorithms for a typical realization
at 5 dB SNR is given in Fig. 5. For MFP3, we show the
performance obtained with perfect knowledge of the channel
(“Perfect Model”), i.e., when b1, . . . , bL and κb are known
exactly; and when this perfect knowledge is accurate except
for the phases of b1, . . . , bL (“Imperfect Model”), which are
drawn independently from U(0, 2π). As observed, although
GCC-PHAT improves when the SNR increases, it essentially
cannot cope well—in a 3-dimensional space optimization—with
the addition of the surface and bottom reflections. It is also seen
the MFP3 is highly sensitive to deviations from the assumed
channel response. In contrast, such deviations are completely
transparent to SBL, as it considers these parameters as unknown,
and implicitly optimizes over them jointly with all the other
unknowns (see (36), Appendix A). The robustness at the mod-
erate cost in performance relative to MFP3 is evident. Note

TABLE III
THE SETTING CONSIDERED IN SUBSECTION VI-B

that MFP3’s superior performance is guaranteed only asymp-
totically, in agreement with the results in Fig. 6.

Next, we compare the performances of the three different
methods with respect to perturbations in the expected channel
attenuations, as prescribed by the physical model (9)–(11).
This form of model mismatch is likely to occur in practice
due to nonidealities13 (e.g., inaccurate prior knowledge of κb).
Formally, we model these deviations by generating the channel
attenuation coefficients as

br�(ε) = (1− ε · γr�)br� · ej2πε·ϕr� ,

r ∈ {1, 2, 3}, � ∈ {1, 2, 3, 4}, (34)

where {γr� ∼ U(0, 0.5)} and {ϕr� ∼ U(0, 1)} are independent.
In (34), ε ∈ [0, 1] is a parameter controlling the deviation from
the physical model, where ε = 0 corresponds to no deviation
from (9)–(11).

Fig. 7 presents the RMS miss distance vs. ε. As expected, we
observe an overall accuracy-robustness superiority of SBL rela-
tive to the competing algorithms. While MFP3 is superior when
perfect knowledge of the channel parameters κb, b1, . . . , bL is
available, SBL is inherently indifferent to deviations from their
ideal physical values. GCC-PHAT is also robust to such devia-
tions, but completely ignores (by design) the multipath channel,
and therefore cannot exploit additional signal components, such
as surface and bottom reflections.

In the last simulation for this setup, we model the effect of a
potential occluder between some of the receivers and the source.
Specifically, for the second and third receivers (i.e., at p2 and
p3), we introduce an attenuation coefficient β ∈ [0, 1] to the
LOS components, such that

b1�(β) = β · b1� · ej2π(1−β)ϕ1� , � ∈ {2, 3}. (35)

When β = 1, there is no occlusion, and when β = 0, the LOS
components of receivers � = 2, 3 are completely lost. The phase
perturbation models the interaction with the occluder.

Fig. 8 presents the RMS miss distance vs.β. It is observed that
the accuracy obtained by GCC-PHAT is on the same order of the
distances (∼25m) corresponding to the time delays between the
LOS and NLOS components. This level of accuracy is stable, but
is not satisfactory for an SNR level of 10 dB (here, σ2

v = 0.1). It
is also seen that in the absence of a modeling error (i.e., β = 1),
MFP3 attains the highest accuracy. However, deviations from the
ideal signal model, in the form of occluded LOS components of
two receivers, inflict a severe performance deterioration.

13Within the three-ray model. Of course, in practice there are more modeling
mismatch factors due to the simplified three-ray model. The effects of some of
these nonidealities will be evaluated in the next experiment, where we apply our
method to real data, and demonstrate successful localization.
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Fig. 5. 2-dimensional slices at the source depth (z = zp) of the objective function for typical realizations at 5 dB SNR. (a) GCC-PHAT (b) MFP3 with perfect
model (c) MFP3 with unknown phases of b1 . . . , bL (d) SBL. Evidently, GCC-PHAT and MFP3 without perfect knowledge are considerably more fragile than
the proposed method, which is similar to MFP3 with perfect knowledge with respect to stability, at the cost of a higher variance.

Fig. 6. RMS miss distance vs. SNR, for T = 100. At very low SNR, all
methods perform poorly. As the SNR increases, GCC-PHAT improves only
moderately, while SBL improves significantly.

As we have demonstrated in Fig. 5(c) and Fig. 6, when MFP3
is actually mis-matched, it could perform even worse than what
is presented in Fig. 8. Still, even in this setting, our method
exhibits the best accuracy-stability trade-off.

C. Experimental Results

We now demonstrate the performance of our proposed method
on acoustic data acquired in our water tank testbed—the high
frequency autonomous acoustic tank. This system, presented in
Fig. 9, is (roughly) of size 25 cm × 32 cm × 15 cm, and enables
us to create a controlled and challenging setting for frequency-
scaled underwater localization.

Although the water tank environment is only a scale model
of a shallow-water environment, it nevertheless poses a chal-
lenging scenario. In addition to the modeled bottom and surface
reflections, the water tank has four additional sides, that are
reflective boundaries. These thin plastic boundaries are highly
reflective, so that the test environment is highly reverberant,

Fig. 7. RMS miss distance vs. ε, quantifying a deviation from the physical
model, forT = 100 andσ2

v�
= 0.1. MFP3 is sensitive to such model deviations,

while GCC-PHAT and SBL are robust.

Fig. 8. RMS miss distance vs. β, the LOS attenuation coefficient of re-
ceivers � = 2, 3, for T = 100 and σ2

v�
= 0.1. Our proposed SBL offer the

best accuracy-stability balance out of the three methods.
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Fig. 9. A picture of our water tank. Our testbed provides high frequency
(200–400 kHz) noisy acoustic data from a complex reverberant environment.

giving rise to a rich multipath channel. In particular, the mag-
nitudes of the unmodeled reflections are comparable to the
modeled ones in our three-ray model.

In this experiment, the source is transmitting a Gaussian pulse
at a carrier frequency of 280 kHz, and the speed of sound in the
water tank is c = 1485 m/s. To maintain consistency across
different trials, the source and receivers were set at the same
depth. In this case, spatial diversity in the depth-direction is
limited, hence we assume here that the source’s depth is known,
and approach this 2-dimensional problem.

The received signals were sampled at 2 GHz. Before applying
the localization method, the signals were decimated by a factor
of 2× 103, to obtain 1 MHz bandwidth signals. For each setting,
in which the source and receivers were static, the observation
interval was 0.5 ms long. More technical details are given in the
supplementary materials.

Figs. 10, 11 and 12 present the objective functions of GCC-
PHAT, MFP3 and the proposed method, respectively, for three
different source locations. Here, the search area is a 30× 30 cm2

square, centered around the first receiver. Note that we inten-
tionally did not align the search area with the one dictated by
the boundaries of the tank, since we assume that such prior
knowledge is unavailable as in a real problem setting.

As was observed in the simulations, it is seen that in the
presence of strong multipath, GCC-PHAT suffers from the worst
performance degradation, and MFP3 is the most accurate, best
exploiting the environmental prior knowledge. SBL is less ac-
curate than MFP3, but still provides reasonable estimates in the
vicinity of the source’s true location.

Next, we repeat the experiment but now with the presence of
an unknown object—a cylinder, stretching from the bottom to
the surface of the tank, placed in the area between the source and
the receivers, as depicted in Figs. 13–15. This unknown feature
causes severe model mismatch; critically, if it blocks the LOS
between the source and a receiver, then all the three modeled
rays—LOS, and surface and bottom reflections—are essentially
blocked. A flexible algorithm can in principle select (possibly
implicitly) which receivers to use, and would be able to reject
uninformative measurements, such as the ones acquired by a
receiver “viewing” the occluded scenery.

Figs. 13, 14 and 15, presenting the objective functions
of GCC-PHAT, MFP3 and SBL, respectively, for the same
scenarios but with an occluder, corroborate the robustness of the
SBL method. It is seen that GCC-PHAT and MFP3 are fragile
when such unknown environmental features are present. The
SBL method, which exhibits robustness in the presence of the
occluder, is still able to localize the source. Since the attenuation
coefficients are considered to be unknown, and are implicitly
estimated (36), a perfectly valid estimated value (for some of
them) is a value close or equal to zero. This essentially means
that the SBL assigns different weights to measurements from
different receivers, thus implicitly choosing to effectively ignore
the less informative data acquired by receivers with occluded
scenery.

VII. DISCUSSION AND EXTENSIONS

A natural extension of the direct localization problem that
we considered, is to the case of multiple sources and/or a more
complex channel model, which is beyond the scope of this paper
and is left for future work. However, in this section we outline
some key challenges of this setting to motivate this non-trivial
extended problem. We then discuss the potential use of the SBL
estimator in such scenarios, and point out important aspects of
identifiability. Before addressing these topics, we first discuss
some system design considerations for the particular setting
described in Section II.

A. System Design Considerations

For given, limited resources, one may be interested in en-
hancing the performance of a system as much as possible with
respect to the available degrees of freedom. In the specific case
of our localization problem, performance can be understood as
accuracy (e.g., in terms of (26)), and resources, perhaps, as the
number of receivers, L.14 While we defer the formulation of
this notion into a well-defined problem (possibly using some
function of the bound (33)) to future work, we comment on the
important related aspects of the topology and the number of
receivers.

Recall that a single receiver, equipped with a single sensor,
receives (in general) three signal components, two of which are
reflected from the surface and the bottom, which are respectively
above and under the receiver. Thus, environmental knowledge
regarding the position of the surface and the bottom is equivalent,
in some sense, to having additional virtual receivers (e.g., [45])
above and under the surface and the bottom, respectively. In
this respect, a single receiver already provides some vertical
spatial diversity. Still, due to the blind nature of the problem,
in which the emitted waveform and the channel coefficients are
unknown, the information from a single sensor is insufficient for
localization.

However, two sensors already contain six signal components,
and can in principle contain sufficient information for localiza-
tion. Intuitively, breaking the symmetry “as much as possible”
relative to the environment in which the system is deployed
would lead to better performance. In the two receivers case,
placing the second receiver in a different horizontal location

14which are also the number of sensors in our formulation.
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Fig. 10. GCC-PHAT experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

Fig. 11. MFP3 experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

Fig. 12. SBL experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

than the first would lead to an increased horizontal spatial di-
versity, which would in turn lead to enhanced performance. The
principle of increasing spatial diversity with a fixed resources
allocation can be formulated in some settings (e.g., [46]), and
provides guidance and intuition for the design of a sensors
network spatial distribution. For example, one may consider
deploying a linear network of sensors obliquely relative to the
surface.

B. Key Challenges in Extended Models

Incorporating multiple sources into the 3-ray signal model
(5) changes the interplay between the (consequently increased)

number of unknown parameters. As a result, it is no longer
clear whether a simplified, efficiently computable expression
for the objective function—as (22) in Proposition 1—can be
obtained. Recall that this has a significant effect on the overall
computational complexity of the method.

Moreover, assume that there are M sources to be localized
(where M is known), and further assume that we have obtained
such a simplified, computationally efficient expression for the
objective function, which is a function of the sources’ positions
only, denoted by, say, p(1), . . . ,p(M) ∈ R

3×1. At this point, in
order to obtain the optimal direct localization solution (in the
sense of the extended criterion of (15)) for all M sources, one
is required to solve a 3M -dimensional nonlinear optimization
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Fig. 13. GCC-PHAT experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence of
an unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

Fig. 14. MFP3 experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence of an
unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

Fig. 15. SBL experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence of an
unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

problem, which may well be non-convex. Consequently, even
for M = 2 sources, this is already difficult with a naive ex-
tension of our current proposed method, as it would require a
6-dimensional grid search (referring to the first step of the pro-
posed solution), which is infeasible for reasonable resolutions.
Hence, a different approach is perhaps required in order to solve
the multiple sources direct localization problem.

Focusing again on the single source case, one may consider
an extended K-ray model (with K > 3), assuming it would
accurately describe the signal propagation, such that the K rays
include primary and second- and higher-order reflections. In
that case, the performance (i.e., accuracy) improvement would
be due to an increased effective/post-processing SNR. This can
be understood from the interpretation given in Subsection IV-A,
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Fig. 16. A 2-dimensional illustration of the special case described in Sub-
section VII-C, wherein the sources are “acoustically invisible” in terms of the
three-ray model, and cannot be localized by the SBL estimator.

where the SBL method is seen as an implicit way to coherently
add all the K reflections from all L sensors.

However, and since the ray-based propagation model is an ap-
proximation, while the deviations from the 3 primary rays can be
small, the aggregated approximation errors in the time-delays of
the higher-order reflections are likely to no longer be negligible.
In that case, on top of additional computational burden, a naive
extension of the current approach might yield a more fragile es-
timator, which is sensitive to model mismatch. The challenging
task of exploiting more complex propagation-related phenom-
ena for enhanced, computationally attractive direct localization
remains to be explored in future work.

C. SBL as a Solution for Multiple Sources

Notwithstanding the above, our proposed algorithm can still
be used for multiple sources localization as a sub-optimal, yet
computationally feasible solution. Indeed, (22) can be viewed
as a spatial quasi-likelihood map (as a function of p), whose
M highest maxima correspond to the M points in space, where
sources are most likely to be present (under the mismatched
model (5), treating, for each source, all the other M − 1 sources
as additive noise). While providing analytical guarantees for
this case is beyond the scope of the current work, using the
Matlab package provided in the supplementary material, one
could easily verify that the SBL method still serves as a viable
localization solution for this extended setting.

Given any set of parameters that describe a particular localiza-
tion problem (i.e., bottom depth, locations of the receivers, etc.),
the model (5) is guaranteed to be identifiable when the FIM is
nonsingular, namelydet(J(θ)) �= 0, and (33) is finite. However,
when using the SBL for localization of multiple source (i.e.,
under mismatched model) as described above, this is obviously
no longer true. Indeed, as least theoretically, there are certain
“special” (however somewhat extreme) scenarios in which the
sources not only could not be localized (reliably, or at all), but
may also “disappear” from the resulting heatmap.

To illustrate this, consider the following case, which is de-
picted in Fig. 16. Assume, for example, that L receivers are all
deployed at the same depth h/2 in a linear structure, namely
z� = z0 = h/2, y� = y0 and x� = x0 +Δ(�− 1) for all � ∈
{1, . . . , L}, where Δ is the spacing between the receivers. Now,
further assume that two sources are present, such that the second
source is located at the same horizontal location as the first, but
is located symmetrically about the half depth h/2 relative to the

first. That is, if the first source is atp = (xp, yp, zp), the second is
at p̃ = (xp, yp, h− zp). Finally, assume that an occluding object
is present, such that (only) all LOS components at allL receivers
are blocked from both of the sources. Denoting by R̃2�, R̃3� the
distances traveled by the NLOS surface and bottom associated
rays, respectively, from the second source, it readily follows
from (2)–(4) that R̃2� = R3�, R̃3� = R2�, hence

τ2�(p) = τ3�(p̃), τ3�(p) = τ2�(p̃).

In this case, if κb = 1 (of (11)), and if the two sources are
collaborating and coordinated, then by transmitting the same
waveform, they are essentially “acoustically invisible” (under
the three ray model). Indeed, if we denote the waveform of
the second source by s̃(t) = s(t), the baseband-converted signal
from the �-th receiver (as in (5)) would then be

x�[n] =

3∑
r=2

br� s (t− τr�(p))|t=nTs

+

3∑
r=2

b̃r� s̃ (t− τr�(p̃))|t=nTs︸ ︷︷ ︸
=−∑3

r=2 br� s(t−τr�(p))|t=nTs

+v�[n] = v�[n],

since b̃2� =
−1
R3�

= −b3� and b̃3� =
1

R2�
= −b2�, and we recall

that due to the occluder, b1� = b̃1� = 0 for all � ∈ {1, . . . , L}.
Thus, only noise is observed, and all the information is lost.

While the scenario above can certainly inspire underwater
acoustic warfare techniques devised against single-source meth-
ods like the SBL, it nonetheless describes an extreme case of a
perfectly tailored setting, where several conditions, which are
exceptionally difficult to ensure, are fulfilled simultaneously.
Therefore, and while this is only one example of a potential
failure mechanism of the proposed method when used for lo-
calization of multiple sources, one may still gain a general im-
pression of what should happen in order for SBL to completely
fail in this setting. Generally, when the sources are not collab-
orating/coordinated and/or the symmetry is broken (e.g., by a
non-regular deployment of the receivers), it is reasonable that
the proposed method would still provide reliable localization for
multiple sources.

VIII. CONCLUDING REMARKS

In the general context of underwater acoustics, based on
the three-ray propagation model, we presented a semi-blind
localization method, which incorporates environmental knowl-
edge. A closed-form expression for the objective function was
derived, along with an equivalent expression, which is more
computationally appealing. Thanks to additional degrees of
freedom in our model, the proposed method is more robust
than its MFP counterpart, and can successfully localize a source
in the absence of LOS components. Further, it exhibits stable
performance enhancement with respect to methods modeling
only LOS components, such as GCC-PHAT.

Since the proposed method is able to coherently “collect”
three signal components from each sensor, the post-processing
SNR is consequently higher than any LOS-based method, which
collect only one. This way, a given level of localization accuracy
can generally be attained with shorter observation intervals. In
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turn, it is easier to incorporate the SBL method within an appro-
priate tracking algorithm (such as Kalman filtering), allowing for
a more general framework that localizes the source and tracks
its movement, assuming the source’s velocity is sufficiently low.
As a topic for future research, in such cases it may be possible to
develop a computationally efficient update scheme for the objec-
tive function (23), based on eigenvalue perturbation theory. An-
other direction for future research, that is of great practical inter-
est, is to apply coarse quantization to the collected data [47], thus
reducing the required bandwidth for communication between
the different receivers. The above is also true for the potential
extensions for multiple sources, and for extended propagation
models.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Using the identity Diag(D�(p)b�)s = SD�b�, it is
easily seen that, for every � ∈ {1, . . . , L}, C̃SBL(p, s,B) of (16)
is minimized with respect to b� by

b̂� =
((

SD�

)H
SD�

)−1 (
SD�

)H
x�, (36)

assuming15 rank(D�) = 3 for all � ∈ {1, . . . , L} hereafter. Sub-
stituting B̂ � [b̂1 · · · b̂L] into C̃(p, s,B) yields

C̆SBL(p, s) � C̃SBL(p, s, B̂) =

L∑
�=1

∥∥∥x� − SD�b̂�

∥∥∥2
2

=
L∑

�=1

[
xH
� x� − xH

� SD�b̂� − b̂
H

�

(
SD�

)H
x�

+ b̂
H

�

(
SD�

)H
SD�b̂�

]
. (37)

From (36), we observe that

b̂
H

�

(
SD�

)H
SD�b̂� = b̂

H

�

(
SD�

)H
x�,

with which (37) simplifies to

C̆SBL(p, s) =

L∑
�=1

xH
� x�︸ ︷︷ ︸

constant with respect to
p and s̄

−
L∑

�=1

xH
� SD�b̂�. (38)

Therefore, using (38), CSBL(p) in (15) can now be written as

min
s̄∈SN

B∈C3×L

C̃SBL(p, s,B) = max
s̄∈SN

L∑
�=1

xH
� SD�b̂�. (39)

At this point, notice that using

xH
� S = sTX

∗
� =⇒

(
SD�

)H
x� =

(
X

H
� D�

)H
s∗,

we may write

b̂� =
(
DH

� S
H
SD�

)−1

DH
� X�s

∗. (40)

15We ignore the extreme, unrealistic cases in which D� are not full rank,
which occur only for very specific settings of the receivers’ and source’s
positions. Nonetheless, the initial optimization is performed via a grid search,
hence we can discard points giving rise to these rare, singular settings.

Substituting b̂� from (40) into (39), using (40), S
H
S =

Diag(|s|2) � P s̄ and simplifying further yields

max
s̄∈SN

L∑
�=1

xH
� SD�b̂�

= max
s̄∈SN

L∑
�=1

sTX
∗
�D�

(
D�

HP s̄D�

)−1
DH

� X�s
∗ (41)

= max
s̄∈SN

sH

(
L∑

�=1

X�D
∗
�

(
D�

TP s̄D
∗
�

)−1 (
X�D

∗
�

)H)
s,

(42)

where from (41) to (42) we have used that P s̄ ∈ R
N×N
+ , and

that (41) is real-valued (and nonnegative).
By assumption, E = O, hence P s̄ = Ps · IN from (20).

Thus, in this case (42) simplifies further to

max
s̄∈SN

sH

(
L∑

�=1

X�D
∗
�

(
DT

� D
∗
�

)−1 (
X�D

∗
�

)H)
s

= max
s̄∈SN

sHQ(p)s = λmax (Q(p)) ,

whereQ(p) is defined in (21). Therefore, we conclude that when
E = O, the SBL position estimate is given by

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) .

�

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Observe that in the proof of Proposition A, (42) holds
for the general case, where E is not necessarily equal to O.
Therefore, starting from (42), and focusing on the inverse matrix
of a single matrix element in the sum, we now have(

DT
� P s̄D

∗
�

)−1
=

1

Ps

(
DT

� (IN + E)D∗
�

)−1

=
1

Ps

(
DT

� D
∗
� +DT

� ED∗
�

)−1

=
1

Ps

[(
I3 +DT

� ED∗
�

(
DT

� D
∗
�

)−1
) (

DT
� D

∗
�

)]−1

=
1

Ps

(
DT

� D
∗
�

)−1
(
I3 +DT

� ED∗
�

(
DT

� D
∗
�

)−1
)−1

.

Hence, using the Neumann series [48], we have16(
I3 +DT

� ED∗
�

(
DT

� D
∗
�

)−1
)−1

= I3 +O(E) =⇒
(
DT

� P s̄D
∗
�

)−1
=

1

Ps

[(
DT

� D
∗
�

)−1
+O(E)

]
. (43)

As expected, the last term in (43) indicates that this approx-
imation holds when the deviations from a constant spectral
level, quantified here by E , are sufficiently small with respect
to the normalized average power (see (20)). Proceeding, by

16By denoting Φ = O(E), we mean that |λmax(Φ)| = O(εmax), where
εmax = |λmax(E)|. Therefore, Φ → O when εmax → 0.
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substituting (43) into (42), and using well-known eigenvalue
perturbation theory results [49], we obtain

max
s̄∈SN

sH

(
L∑

�=1

X�D
∗
�

(
DT

� P s̄D
∗
�

)−1 (
X�D

∗
�

)H)
s

= max
s̄∈SN

sH

(
L∑

�=1

X�D
∗
�

[(
DT

� D
∗
�

)−1
+O(E)

] (
X�D

∗
�

)H)
s

= max
s̄∈SN

sH [Q(p) +O(E)] s = λmax (Q(p)) +O(εmax),

where we recall that εmax = |λmax(E)| (see (20)). It follows
that

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) +O(εmax).

�

APPENDIX C
PROOF OF PROPOSITION 3

Proof: A key observation is that Q(p) is low-rank. Indeed,
by definition, Q(p) is a sum of the following L matrices,

Q�(p) � X�D
∗
�

(
DT

� D
∗
�

)−1 (
X�D

∗
�

)H ∈ C
N×N , (44)

where each is low-rank. Specifically, recall that D(�) ∈ C
N×3,

hence(
DT

� D
∗
�

)−1 ∈ C
3×3 =⇒ rank

((
DT

� D
∗
�

)−1
)
= 3, (45)

where we recall that rank(D�) = 3 by assumption. In turn, this
implies that

rank (Q�(p)) = rank
(
X�D

∗
�

(
DT

� D
∗
�

)−1 (
X�D

∗
�

)H)
= 3

=⇒ rank (Q(p)) = 3L,

assuming {Q�(p)} are linearly independent.17 Thus, we con-
clude that Q(p) has only 3L nonzero eigenvalues. Since typi-
cally L � N , we have established that Q(p) is low-rank.

Next, observe that Q(p) is a sum of L positive semi-definite
matrices, and is therefore a positive semi-definite matrix as well.
Due to its special structure (21), it is possible to compute a
different matrix, Q̃(p), with exactly the same eigenvalues as
those ofQ(p). For this, define the Cholesky decompositions [50]

DT
� D

∗
� � ΓH

� Γ� ∈ C
3×3, ∀� ∈ {1, . . . , L}, (46)

where Γ� ∈ C
3×3. With these L 3-dimensional square matrices,

substituting (46) into (21), we may now write

Q(p) =
L∑

�=1

X�D
∗
�Γ

−1
�

(
X�D

∗
�Γ

−1
�

)H ∈ C
N×N ,

where we emphasize that det(Γ�) �= 0 is guaranteed for all � ∈
{1, . . . , L} due to (45). Now, define (as in (18))

U(p) �
[
X1D

∗
1Γ

−1
1 · · · XLD

∗
LΓ

−1
L

] ∈ C
N×3L,

with which

Q(p) = U(p)U(p)H.

17This holds with probability one, due to the randomness in {X�}.

However, we have that

Λ+ (Q(p)) = Λ+

(
U(p)U(p)H

)
= Λ+

(
U(p)HU(p)

)
= Λ+

(
Q̃(p)

)
,

where Λ+(C) denotes the set of the nonzero eigenvalues of
the semi-positive definite matrix C, and Q̃(p) ∈ C

3L×3L. Put
simply, Q̃(p) has the same spectrum as Q(p). In particular,

λmax (Q(p)) = λmax

(
Q̃(p)

)
.

Since dim
(
Q̃(p)

)
= 3L < N = dim(Q(p)), we have re-

duced the computational burden, which is now governed by
L, rather than N . Specifically, the complexity is O(NL3), due
to the required Cholesky decompositions (46) applied to L
3-dimensional matrices [50], and the subsequent application of
the power method to the 3L-dimensional matrix Q̃(p). �
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