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ABSTRACT
In a growing number of applications, there is a need to digitize a (pos-
sibly high) number of correlated signals whose spectral characteristics
are challenging for traditional analog-to-digital converters (ADCs). Ex-
amples, among others, include multiple-input multiple-output systems
where the ADCs must acquire at once several signals at a very wide but
sparsely and dynamically occupied bandwidth supporting diverse ser-
vices. In such scenarios, the resolution requirements can be prohibitively
high. As an alternative, the recently proposed modulo-ADC architec-
ture can in principle require dramatically fewer bits in the conversion to
obtain the target �delity, but requires that spatiotemporal information
be known and explicitly taken into account by the analog and digital
processing in the converter, which is frequently impractical. Building on
our recent work, we address this limitation and develop a blind version
of the architecture that requires no such knowledge in the converter.
In particular, it features an automatic modulo-level adjustment and a
fully adaptive modulo-decoding mechanism, allowing it to asymptoti-
cally match the characteristics of the unknown input signal. Simulation
results demonstrate the successful operation of the proposed algorithm.

Index Terms— data conversion, blind signal processing, adaptive
�ltering, least-mean-squares algorithm.

1. INTRODUCTION
In a host of applications in communication and signal processing there is
often a need to digitize highly correlated analog signals, where each signal,
which in general may be temporally correlated in itself, is fed into a sepa-
rate analog-to-digital converter (ADC). One representative example is in
the context of a massive multiple-input multiple-output channels [1–3],
where the number of antennas can be of the order of tens and even hun-
dreds, whereas the number of users (/independent sources) it serves is
moderate, making the signals received by the antennas highly correlated.

In such scenarios, when the signals are (naively) acquired by standard
ADCs, there is a high degree of redundancy in the data. Naturally, this
redundancy can be exploited in many ways, depending on the processing
phase and the desired objective [4–8]. Particularly attractive is to utilize
this redundancy as early as the acquisition phase, namely in the analog to
digital conversion. By doing so, in principle, the signals could be digitized
at the same �delity using fewer bits, thus reducing power consumption,
which in general grows exponentially with the number of bits [9].
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Fig. 1. A schematic illustration of the proposed blind mod-ADCs.
One possible approach to put this notion into practice is to use the

recently proposedmodulo ADCs [10,11]. A modulo ADC �rst folds each
sample of the input process modulo ∆, where ∆ is a design parameter,
and only then quantizes the result using a traditional uniform quantizer.
The modulo operation limits the dynamic range of the signal to be quan-
tized, which in turns results in a quantization error whose magnitude is
proportional to ∆, rather than to the dynamic range of the original, un-
folded signal. In [10] it is shown that the observed signal can be reliably
unfolded, when the second-order statistics (SOSs) of the input signals are
known, and ∆ is set proportionally to the prediction error standard de-
viation. More recently, a blind mechanism for a single modulo ADC was
proposed [12], which adapts the e�ective modulo size (analogously to an
AGC mechanism in a standard ADC [13]) and learns the required SOSs
of the input, while unwrapping the folded signal with the same reliability.

In this work, we extend [12], and develop a blind mechanism for
multiple modulo ADCs working in parallel. Using spatiotemporal cor-
relations of the observed signals, the proposed solution learns the inputs’
underlying SOSs, adapts the e�ective modulo size, and for a given num-
ber of bits, considerably decreases the mean square error (MSE) distor-
tion in the reconstruction of the input signals relative to standard ADCs.

2. BRIEF REVIEW ONMODULO ADCS
For a positive number ∆ ∈ R+, we de�ne

[x] mod ∆ , x−∆ ·
⌊
x

∆

⌋
∈ [0,∆), ∀x ∈ R,

as the [·] mod ∆ operator, where bxc is the �oor operation, which re-
turns the largest integer smaller than or equal to x. An R-bit modulo
ADC with resolution parameterα, termed (R,α) mod-ADC, computes

[x]R,α , [bαxc] mod 2R ∈ {0, 1, . . . , 2R − 1}, (1)

and produces the binary representation of (1) as its output (Fig. 1, left).
Using subtractive dithers [14], an (R,α) mod-ADC can be modeled

as a stochastic channel, whose output y for an input x is given by

y = [αx+ z] mod 2R, (2)

where z ∼ Unif ((−1, 0]). Since the modulo operation is a form of
lossy compression, it is generally impossible to recover the unfolded sig-
nal (αx + z) from its folded version y in (2). Nevertheless, under rela-
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Algorithm 1: Oracle Spatiotemporal Modulo Unfolding
v̂oracle,n = OracleSTModUnfold (yn,v[n], {Rijx [`]}, α,R)

1 Compute the Linear Minimum MSE (LMMSE) estimate of
vn based on v[n] (denoting 1

2
as the all- 1

2
vector)

v̂pLMMSE,n = Hp
opt
(
v[n] + 1

2

)
− 1

2
, (3)

whereHp
opt ∈ RK×Kp is the matrix �lter corresponding the

LMMSE predictor, computed based on {Rijx [`]} and α;
2 DenoteA = [a1 · · ·aK ]T, and solve [IF decoding matrix]

A , argmin
Ā∈ZK×K

det(Ā)6=0

max
k∈{1,...,K}

1

2
log2

Ä
aT
kΣpak

ä
, (4)

where Σp (6) is computed based on {Rijx [`]} and α;
3 ComputewLMMSE,n = [yn − v̂

p
LMMSE,n] mod 2R;

4 Compute g̃n ∈ RK×1 and the estimated prediction error,®
gkn ,

[
aT
kwLMMSE,n

]
mod 2R

g̃kn ,
[
gkn + 1

2
2R
]

mod 2R− 1
2
2R
⇒ ê pLMMSE,n,A

−1g̃n;

(5)
5 Return v̂oracle,n = v̂pLMMSE,n + ê pLMMSE,n.

tively mild conditions, when the input (possibly high-dimensional) sig-
nal is su�ciently temporally- and/or spatially-predictable, e.g., a corre-
lated random vector-process [10] or a deterministic bandlimited signal
[15, 16], it is in fact possible to perfectly recover the unfolded signal1 from
its past samples and its current folded sample via causal processing [17].

More generally, considerK parallel (R,α) mod-ADCs whose input
signals {xkn}, collected into a vectorxn ∈ RK×1, are zero-mean jointly
stationary processes, with known autocorrelation functions {Rijx [`] ,

E
î
xinx

j
n−`

ó
∈ R}. The output of theK mod-ADCs is then given by

yn = [αxn + zn] mod 2R ∈ RK×1, ∀n ∈ N+,

where {zkn ∼ Unif((−1, 0])}, modeling the quantization noises, are
independent, identically distributed (i.i.d.) stochastic processes, and the
modulo is elementwise. Further, de�ne the unfolded quantized signal,

vn , αxn + zn ∈ RK×1, ∀n ∈ N+,

and assume that the decoder has access to {vn−1, . . . ,vn−p}. Notice
that oncevn is recovered,xn is readily estimated as x̂n = (vn+ 1

2
)/α.

Thus, we focus on recovering vn based on yn and v[n] , vec (V n) ∈
RKp×1, whereV n , [vn−1 · · ·vn−p] ∈ RK×p.

The algorithm proposed in [10] for recovering vn with high proba-
bility (w.h.p.) when {vn−`}p`=1 and {Rijx [`]} are known, here referred
to as oracle spatiotemporal modulo unfolding, is given in Algorithm 1.
The key idea behind this method is that the modulo operation essentially
becomes invertible (w.h.p.) when statistical properties of the original (un-
folded) signal and correlated measurements to the modulo-folded signal
are available, provided that ∆ is proportional to the standard deviation
of the innovation process. In Algorithm 1, unfolding of the coordinates
of vn is done by using spatiotemporal (causal) linear �ltering, followed
by integer-forcing (IF) decoding [17–20], which exploits spatial correla-
tions in the prediction error vector. In this regard, solving (4) generally
requires a complexity exponential in K . However, the optimal integer
matrixA needs to be computed only once for the pair {Σp, α}, where

Σp , E
î
e pLMMSE,n

(
e pLMMSE,n

)Tó ∈ RK×K (6)

1With high probability for random signals, and to an arbitrary preci-
sion for deterministic bandlimited signals.

Algorithm 2: Blind Spatiotemporal Modulo Unfolding
v̂n, ê

p
n = BlindSTModUnfold (yn, v̂[n], Ĥ

p

n,“Σp, αn, R)

1 Compute the linear estimate of vn based on v[n]

v̂pn = Ĥ
p

nv̂[n] − 1
2

; (7)

2 Denote “A = [â1 · · · âK ]T, and solve“A , argmin
Ā∈ZK×K

det(Ā)6=0

max
k∈{1,...,K}

1

2
log2

Ä
aT
k
“Σpak

ä
; (8)

3 Computewn = [yn − v̂
p
n] mod 2R;

4 Compute ̂̃gn ∈ RK×1 and the estimated prediction error,®
ĝkn ,

î
âT
kwn

ó
mod 2R̂̃gkn ,

[
ĝkn + 1

2
2R
]

mod 2R− 1
2
2R
⇒ ê pn , “A−1̂̃gn; (9)

5 Return v̂n = v̂pn + ê pn , ê pn .

is the covariance matrix of the errore pLMMSE,n , vn−v̂pLMMSE,n in optimal
linear prediction, and v̂pLMMSE,n is de�ned in (3). Moreover, the LLL al-
gorithm [21] provides a sub-optimalAwith a complexityO(poly(K)).

Of course, in practice, devices such as ADCs usually operate un-
der dynamic conditions, giving rise to a wide range of possible inputs
with unknown characteristics, and must still maintain proper operation.
Therefore, a signi�cant step towards implementing mod-ADCs for real-
life applications can be made by relaxing the (too restrictive) assumption
that{Rijx [`]} are all known. Building on our recent work, in which a sin-
gle blind mod-ADC was developed based on temporal correlations, the
goal of this work is to take that important step for the general case ofK
parallel mod-ADCs, exploiting both temporal and spatial correlations.

3. PROBLEM FORMULATION
Consider K parallel (R,αn) mod-ADC as described in the previous
section, with a �xed modulo range ∆ = 2R, but an adaptable, possi-
bly time-varying resolution parameter αn ∈ R+. The mod-ADCs are
fed with the input signal {xn , x(nTs)}n∈N+ , acquired by sampling
the analog, continuous-time signal x(t) every Ts = f−1

s seconds. We
assume that {xkn} are zero-mean jointly stationary stochastic processes
with unknown correlation functions {Rijx [`]}. The observed, distorted
signals at the output of theK mod-ADCs are given (in vector form) by

yn = [αnxn + zn] mod 2R, ∀n ∈ N+,

where, as before, the quantization noise processes{zkn∼Unif((−1, 0])}
are i.i.d. Further, we rede�ne the unfolded quantized signal,

vn , αnxn + zn, ∀n ∈ N+, (10)

which, in general, is no longer stationary. Nonetheless, whenever αn is
held �xed,vn can be regarded as stationary on the respective time period.

As explained above, the goal in this context is to estimate the input
xn as accurately as possible based on the observed sequence {yn} at the
output of the mod-ADCs using a causal system. However, since vn is
merely a scaled version ofxn contaminated by white noise (10), the prob-
lem essentially boils down to recovering vn, and is stated as follows.
Problem Statement: For a fixed number of bits R, design
an adaptive mechanism for estimating {xn} from the mod-
ADCs’ outputs with the lowest possible MSE distortion, with-
out prior knowledge on the correlation functions {Rijx [`]}.
The above is interpreted as designing an update mechanism for causally
maximizing the resolution parameter αn, while still allowing for reliable
recovery ofvn from {yk}k≤n, and also design the recovery mechanism.

As explained in Section 2, provided vn is exactly recovered w.h.p.,
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i.e., v̂n
w.h.p.
= vn, the input signal is readily estimated as x̂n ,

“vn+
1
2

αn
,

where αn is a known parameter, and 1
2

is to compensate for the quanti-
zation noise (non-zero) expectation E[zn] = −1

2
(also in (3) and (7)).

4. BLINDMODULO ADC OF VECTOR PROCESSES
We now present the blind mod-ADC algorithm, which simultaneously
estimates the input xn, while learning the (possibly time-varying) SOSs
of the unfolded signal (10), necessary for estimation ofxn. The structure
of the proposed architecture is depicted in Fig. 1. In contrast to the oracle
mod-ADC (cf. Fig. 6 in [10]), here the encoder and decoder are adaptive,
and vary with time according to the statistical properties of the input.

The underlying concept of our approach is the following. For a �xed
resolution parameter αn, given that at any time instance n the unfolded
signal vn can be exactly recovered, we may estimate the optimal matrix
�lterHp

opt, corresponding to the LMMSE predictor of vn (3) based on
the previous samplesV n. This can be done using the least mean squares
(LMS) algorithm [22], which converges2 to Hp

opt. Upon convergence,
αn can be slightly increased, and as long as the spatiotemporal prediction
is su�ciently accurate to allow successful IF decoding as in (5), vn could
still be recovered using the same technique as in Algorithm 1. Fixing αn
again to its new value, the new optimal �lter is learned using LMS. The
process is repeated until the resolution parameterαn is su�ciently large.

Conceptually, only appropriate initial conditions and su�ciently
smooth transitions from one resolution level to another are required for
convergence of this process. Once these are ful�lled, we attain successful
steady state operation of the K blind mod-ADCs. We now formalize
this concept, and develop the desired adaptive mechanism.
4.1. Phase 1: Initialization and Learning the Optimal Decoding
We begin with a “small” initial value for the resolution parameter, α0,
that ensures a degenerated modulo operation, i.e., ỹn = vn, where

ỹn ,
Äî
yn + 1

2
2R
ó

mod 2R
ä
− 1

2
2R,

such that ỹn is the “modulo-shifted” version of yn. For purposes that
will become clear in the sequel, we further de�ne for convenience

vn ,
(
vn + 1

2

)
/αn = xn +

(
zn + 1

2

)
/αn, (11)

the “αn-standardized” version of vn. Note that E [vn] = 0, and the
covariance of vn is dominated by the covariance ofxn whenαn is large.

Assuming ỹn = vn as long as αn = α0 is �xed, the optimal �lter
for prediction of vn (10) based on v[n] , vec ([vn−1 · · ·vn−p]) ∈
RKp×1, can be estimated with the LMS algorithm [22], via the updates

Ĥ
p

n = Ĥ
p

n−1 + µ · epnvT
[n] ∈ RK×Kp.

Here, Ĥ
p

n is the �lter used in Algorithm 2 for the prediction of vn, µ is
the learning rate (or step size), and

epn , vn − v̂pn ∈ RK×1 (12)

is the prediction error of the linear predictor v̂pn as in (7). In addition,
rather than using {vn} (10), we use the standardized process {vn} as the
observations in (7), since as the adaptive process evolves andαn increases,
the SOSs of vn become less a�ected by αn, alleviating the LMS. Details
regarding the convergence of the LMS algorithm, as well as the proper
setting of the step size µ which guarantees this convergence, are omitted
due to space limitation (see [12] for the same guiding principles). From
now on, assume that µ is chosen so as to ensure that [23],

αn = α0 : lim
n→∞

E
î
Ĥ
p

n

ó
= Hp

opt. (13)

After enough iterations, since we assume thatα0 is su�ciently small

2In the mean sense, under mild conditions; see Subsection 4.1.

to ensure that v̂n = vn for every n during initialization, which gives us
access to êpn = epn (12), the �lter Ĥ

p

n will approximately converge to an
unbiased estimate ofHp

opt, as in (13). Further, during the initialization
we can compute the empirical covariance“Σp , 1

n

∑n
`=1 ê

p
` (êp` )

T, and
use it for IF decoding as in (8). Assumingµ is su�ciently small, the MSE
of v̂pn will approximately converge to the MSE of v̂pLMMSE,n (with αn re-
placing α, according to the de�nition (10)),

∃N0 : ∀n > N0 : E
î
epn (epn)T

ó
≈
µ�1

Σp. (14)

Once (14) is accurate enough and “Σp ≈ Σp, by [10, Prop. 5], we have

Pr(EOLn) , Pr (v̂n 6= vn) ≈ Pr (v̂oracle,n 6= vn)|A=Â

≤ 2K exp

ß
−3

2
22(R−RIF(A))

™∣∣∣∣
A=Â

,
(15)

where EOLn is referred to as the overload event,

RIF(A) , max
k∈{1,...,K}

1

2
log2

Ä
aT
kΣpak

ä
,

1

2
log2

Ä
σ2

max

ä
,

andvn is recovered w.h.p. The approximation in (15) is mostly due to es-
timation errors; a sharper analysis is omitted due to lack of space. Having
learned the optimal decoding, we can increase the resolution parameter
αn, and use the quantizers’ output bits to a �ner description of inputs.
4.2. Phase 2: Updating the Resolution Parameter
As shown in [10, Prop. 5], the no overload event E∗OLn

, {v̂poracle,n =

vn} of the oracle mod-ADCs is equivalent to {maxk |gkn| < ∆
2
},

where gkn , Aepn. Therefore, in order to increase αn, we must some-
how detect that the �lterHp

n already approximates the optimal one well
enough, such that the transformed prediction errors {gkn} are su�ciently
small with respect to the dynamic range ∆. In this case, a small change
in the resolution would not a�ect our ability to recover vn w.h.p. Due
to space limitation, we refer the reader to [12], Subsection IV-B, for a
detailed justi�cation for a single mod-ADC, based on similar principles.

Since the resolution update rule is a user-controlled system parame-
ter, it can be easily set to be small enough, so as to maintain su�ciently
small transformed prediction errors, and safely continue recovering vn
w.h.p. after the update. It remains only to make sure that before the res-
olution parameter is increased, we arrive at an intermediate steady state,
wherein EOLn

occurs w.h.p. A plausible way of achieving this, is to up-
dateαn only when the maximum variance of the transformed prediction
errors is much smaller than ∆, i.e., when κ · σmax <

∆
2

for some large
enough non-negative constant κ ∈ R+. If the prediction errors were
Gaussian, this would provide a direct proxy for the overload probability,
and increasing κ would exponentially decrease the overload probability.
This provides the conditions to re-learn the optimal �lter corresponding
to the LMMSE predictor of vn with the updated resolution αn.

Recall that in practice, though, since {Rijx [`]} are unknown, σmax

is clearly not known as well. Nevertheless, since v̂n
w.h.p.
= vn ⇔ ĝn

w.h.p.
=

gn throughout the adaptive process, we can estimate σmax online by

σ̂2
k,n ,

1

Ls

Ls−1∑
`=0

Ä
ĝkn−`

ä2
, σ̂max,n , max

k∈{1,...,K}

»
σ̂2
k,n.

where Ls ∈ N+ is a moving-average window length, and is also set to
be the minimal time stabilization interval whereinαn must be kept �xed
after its last update. Thus, we increaseαn only when 1↑α,n = 1, where

1↑α,n ,

®
1, κ · σ̂max,n <

∆
2

0, κ · σ̂max,n >
∆
2

. (16)

Whenever 1↑α,n = 0, we infer that the prediction errors are not satis-
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factorily small. In these cases, we decrease the resolution so as to resort to
a state where vn is again recovered w.h.p, which allows the LMS to con-
verge to the desired �lter, and then safely increase the resolution again.

Upon updating αn, we also appropriately update the �lter Ĥ
p

n,
since the input signal vn is scaled with αn as well (11). Thus, we update

αn+1 =
î
1↑α,n · δ−1

α + (1↑α,n − 1) · δα
ó
αn,

Ĥ
p

n+1 =
î
1↑α,n · δ−1

α + (1↑α,n − 1) · δα
ó
Ĥ
p

n,

where δα ∈ (0, 1) is the update resolution parameter.
It is now straightforward to generalize this adaptive process, since,

conceptually, we now only need to repeatedly execute the properly in-
terlaced Phase 1 and Phase 2. In the repeated Phase 1, the “initial” val-
ues for the �lter and resolution parameter would be the corresponding
values of the previous time step. Additionally, v[n] will be replaced by
v̂[n] , vec

Äî
v̂n−1 · · · v̂n−p

óä
∈ RKp×1, whose vector-elements3

v̂n , x̂n =
(
v̂n + 1

2

)
/αn (17)

are {v̂i
w.h.p.
= vi}n−pi=n−1. The repeated Phase 2 would then be executed

after (at least)Ls time steps with the updated resolution.
4.3. Detecting an Overload, and Preventing Error Propagation
Given there is no overload, which holds w.h.p. whenκ is large enough, al-
ternating between these two phases leads to convergence near the limiting
�xed pointκ·σmax,n = ∆

2
, as in (16), up to small �uctuations due to the

limited-resolution adaptation step δα and estimation errors in σ̂max,n.
However, the overload event still has non-zero probability, and must be
taken into account. Indeed, whenever EOLn = {v̂n 6= vn} occurs,
an extremely fast error propagation process begins. To detect such errors
and prevent the consequent error propagation, we propose a generalized
version of the detector developed in [12] (Subsection IV-C therein),

1̂EOLn
,

1,
K⋃
k=1

{
|v̂kn| >

»
2σ̂2

v̄k,n
log(n)

}
0, otherwise

, ∀n ≥ Ns, (18)

such that (18) detects an outlier with a large magnitude w.h.p.4, and

σ̂2
v̄k,n ,

1

n− 1

n−1∑
`=1

(
v̂
k

`

)2

, ∀n ≥ 2.

Here, Ns ∈ N+ is the length of a �xed stabilization time-interval,
wherein (18) is still not su�ciently accurate, and we enforce a simple,
more conservative condition for the transition phasen ≤ Ns (e.g., simi-
larly to Eq. (49) in [12]). The justi�cation for (18) is omitted due to space
limitation, though a similar derivation appears in [12], Subsection IV-C.
Thus, the error propagation prevention mechanism is implemented by

1̂EOLn
= 1⇒ Reset: αn+1 = α0, Ĥ

p

n+1 = (α0/αn) · Ĥ
p

n. (19)

To Summarize, our proposed algorithm for the implementation of
the parallel mod-ADCs is executed by iteratively repeating Phases 1 and
2, where after each call to BlindSTModUnfold (Algorithm 2) in the
repeated Phase 1, we check (18) and reset the resolution if necessary (19).

5. SIMULATION RESULTS
We consider K = 10 parallel mod-ADCs, operating blindly according
to the algorithm described above, whose inputs are the noisy mixtures,

xn = Γsn + ξn ∈ RK×1,

3We use in (17) the notation v̂n rather than x̂n, since in this context
we trying to perfectly recover vn, rather than to estimate xn.

4Holds when {vkn} are sub-Gaussian random variables.

Fig. 2. Input spectrogram, simulation results, and rate-distortion curves.
where sn ∈ RKs×1 is a collection ofKs = 4 zero-mean, unit-variance
spectrally-�at uncorrelated Gaussian bandlimited sources, Γ ∈ RK×Ks

represents the (spatial) channel response, and ξn is an additive white
Gaussian noise, with E

[
ξnξ

T
n−`
]

= 1`=0 · σ2IK . We set R = 10,
α0 = ∆

5K
,κ = 7, p = 30,Ls = 2.5p, and the entries of Γ were drawn

independently from the standard Gaussian distribution. Other system
parameters, such as µ and Ns, were set according to the same guiding
principles presented in [12], Subsection IV-D. We de�ne SNR , 1/σ2.

For an input of length N = 105, Fig. 2(a) presents the spectro-
gram of x7

n (as a representative example), a noisy linear mixture of the
sources sn, in which the bands of the sources are clearly seen. Fig. 2(b)
presents the average instantaneous squared error in dB of x̂n, attained
by our blind mod-ADCs algorithm for SNR = 30dB. The empiri-
cal error probability in perfectly recovering vn is P̂r(vn 6= v̂n) ,
1
N

∑N
`=1 1vn 6=v̂n

= 0.001%, which allows for accurate estimation of
xn, asymptotically matching the limiting quantization noise level (gov-
erned by the resolution parameter αn). Fig. 2(c) presents the e�ective
modulo size ∆/αn, which is inversely proportional to the resolution
parameter. It is seen that due to successful learning of the optimal �lter
Ĥn and the decoding matrix “A, the resolution parameter gradually
increases, and converges to an asymptotic value near the theoretical limit
for which κ · σmax = ∆

2
(see (16)), where σmax is a function of the res-

olution parameter. Lastly, Fig. 2(d) presents the rate-distortion curves of
standard ADCs, individual blind mod-ADCs, exploiting only temporal
correlations (T-Mod), which corresponds to the special case “A = IK
(i.e., without IF decoding), and the predicted, as well as the empirical,
rate-distortion operating point of the proposed spatiotemporal mod-
ADCs with R = 10 at the asymptotic value of αn (ST-Mod). We also
present the curve of the oracle decoder (Algorithm 1) and Shannon’s
Lower Bound (SLB, [10]) as theoretical benchmarks. Our blind method
achieves the oracle performance, and the gap from SLB is governed
mainly by κ, controlling the overload probability as implied by (16) (see
also [12], Subsection IV-E), with a small gap due to IF sub-optimality.
The substantial gain relative to the competing methods is evident.

6. CONCLUSION
In the context of analog-to-digital conversion, we presented an adaptive
algorithm, allowing for a stable and reliable blind operation ofK parallel
mod-ADCs, i.e., without access to prior knowledge of the input signals.
Speci�cally, we extended our recent work, in which only temporal cor-
relations were exploited, to the more general case where spatiotemporal
correlations are utilized for accurate estimation and subsequent decod-
ing. We demonstrated in simulation the successful operation of the pro-
posed solution, corroborating our derivation and the underlying theory.
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