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ABSTRACT

As machine learning algorithms grow in popularity and diver-
sify to many industries, ethical and legal concerns regarding
their fairness have become increasingly relevant. We explore
the problem of algorithmic fairness, taking an information-
theoretic view. The maximal correlation framework is in-
troduced for expressing fairness constraints and shown to be
capable of deriving regularizers that enforce independence
and separation-based fairness criteria, which admit optimiza-
tion algorithms that are more computationally efficient than
existing algorithms. We show that these algorithms provide
smooth performance-fairness tradeoff curves and perform
competitively with state-of-the-art methods on the Commu-
nities and Crimes dataset.

Index Terms— Fairness, HGR maximal correlation

1. INTRODUCTION

The use of machine learning in many industries has raised
numerous ethical and legal concerns, including fairness and
bias in predictions [1]. As systems are trusted to aid or make
decisions regarding loan approval, criminal sentencing, and
even health care, it is vital that unfair biases do not influence
them. However, mitigating these biases is complicated by
ever-changing perspectives on fairness, and a good system
for enforcing fairness must be adaptable to new settings.
In particular, there are often competing notions on fairness.
Two popular notions are independence and separation, as
discussed in [2]. Previous work, including [2], has proven
that independence and separation are inherently incompatible
for non-trivial cases and their applicability needs to be deter-
mined by the application and the stakeholders. This motivates
us to construct a framework that is flexible enough to handle
different fairness criteria.

This bias mitigation must also be balanced out with the
system’s usefulness, and often one must tune the tradeoff be-
tween the fairness (as measured based on the context) and

?Equal contribution. The work was done while J. Lee was at MIT; the
author is now with Snap. This work was supported, in part, by the MIT-IBM
Watson AI Lab under Agreement No. W1771646, and NSF under Grant No.
CCF-1717610.

performance according to current needs, which can be diffi-
cult if the tradeoff curve is not smooth. Generating the fron-
tier of possible values can be computationally infeasible or
impossible if the algorithm does not have a regularization pa-
rameter to adjust (see, [3, 4]), which makes fast generation of
fair classifiers even more important.

Different contexts also require different points of in-
tervention during the learning process to ensure fairness.
Pre-processing ([3, 5]) approaches modify the data to elim-
inate bias whereas post-processing ([6, 7]) modify learned
features/predictions from existing models to be more fair. We
focus on the in-processing approach ([8, 4]), where fairness
criteria are directly incorporated into the training objective
to produce fairer learned features. Motivated by few-shot
applications where only a pre-trained network and few sam-
ples labeled with the sensitive attribute are available, we also
seek a method that is applicable in a post-processing manner
when we have access to only a small number of samples
labeled with the sensitive attribute that we wish to be fair
about, which would arise in settings where collecting this
information can be very difficult.

As existing approaches can struggle with efficiency, can
fail to provide good control over the performance-fairness
tradeoff, and/or can only deal with discrete variables. In this
paper, we make the following contributions:

We present a framework justified by an information-
theoretic view that can inherently handle the popular fairness
criteria, namely independence and separation, which can
be applied to continuous labels and sensitive attributes, and
which uses the maximal correlation to construct measures
of fairness associated with different criteria, then uses these
measures to further develop fair learning algorithms in a fast,
efficient, and effective manner.

We show empirically that these algorithms provide the de-
sired smooth tradeoff curve between performance and fair-
ness on the Communities and Crimes dataset.

Finally, we perform experiments to illustrate that our al-
gorithms can be used to impose fairness on a model originally
trained without any fairness constraint in the few-shot regime,
which further demonstrates the versatility of our algorithms in
a post-processing setup.

3523978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

47
26

3

Authorized licensed use limited to: MIT Libraries. Downloaded on June 22,2022 at 17:22:55 UTC from IEEE Xplore.  Restrictions apply. 



2. BACKGROUND

2.1. Fairness Objectives in Machine Learning

Consider the standard supervised learning scenario where we
predict the value of a target variable Y ∈ Y using a set of
decision or predictive variables X ∈ X with training samples
{(x1, y1), . . . , (xn, yn)}. For example, X may be informa-
tion about an individual’s credit history, and Y is whether the
individual will pay back a certain loan. In general, we wish to
find features f(x), which are predictive of Y , so that we can
construct a good predictor ŷ = T (f(x)) of y under some loss
criteria L(ŷ, y).

Now suppose we have some sensitive attributes D ∈ D
we wish to be “fair” about (e.g. race, gender), and training
samples {(x1, y1, d1), . . . , (xn, yn, dn)}. For example, in the
criminal justice system, predictions about the chance of re-
cidivism of a convicted criminal (Y ) given factors such as the
nature of the crime and the number of prior arrests (X) should
not be determined by race (D). This is a known issue with the
COMPAS recidivism score, which, despite not using race as
an input to make decisions, still leads to systematic bias to-
wards members of certain races in the output score [9].

The two most popular criteria for fairness are indepen-
dence and separation. Independence states that for a feature
to be fair, it must satisfy the independence property Ŷ ⊥ D or
f(x) ⊥ D. The intuition is simple: if the prediction/feature
is independent of the sensitive attribute, then no information
about the sensitive attribute is used to predict Y . This crite-
rion has been studied under the lens of demographic parity
and disparate impact in [2], and admits a class of fairness
measures based on the degree of dependence between f(X)
and D. For example, independence is satisfied if and only if
the mutual information I(f(X);D) is zero.

Separation requires the conditional independence prop-
erty (Ŷ ⊥ D)|Y or (f(X) ⊥ D)|Y . This criterion allows for
violation of demographic parity to the extent that it is justified
by the target variable. In the general case, this criterion sug-
gests a fairness measure based on the conditional dependence
between Ŷ and D conditioned on Y . For a more complete
discussion of the advantages and disadvantages of these two
criteria, please refer to [2].

2.2. Maximal Correlation

Since these fairness criteria are expressed as enforcing in-
dependencies with respect to joint distributions, we look for
constraints that reduce dependency between variables. In par-
ticular, the right formulation of correlation between learned
features and sensitive attributes can provide a framework for
measuring and optimizing for fairness. One effective mea-
sure applicable to both continuous and discrete data is the
Hirschfeld-Gebelein-Renyi (HGR) maximal correlation, a
measure of nonlinear correlation which originated in [10] and
is further developed in [11, 12]. The HGR maximal correla-

tion between two random variables is equal to zero if and only
if the two variables are independent, and increases in value
the more correlated they are (i.e., the more biased/unfair).

Definition 1 For two jointly distributed random variables
X ∈ X and Y ∈ Y , given 1 ≤ k ≤ K − 1 with K =
min{|X |, |Y|}, the HGR maximal correlation problem is

(f∗,g∗) , argmax
f : X→Rk, g : Y→Rk

E
[
fT(X)g(Y )

]
, (1)

with constraints E [f(X)] = E [g(Y )] = 0, E
[
f(X)fT(X)

]
=

E
[
g(Y )gT(Y )

]
= I, and expectations taken over PX,Y . We

refer to f∗ = (f∗1 , . . . , f
∗
k )

T and g∗ = (g∗1 , . . . , g
∗
k)

T as
maximal correlation functions, and the associated maximal
correlations are

σi , E [f∗i (X) g∗i (Y )] , for i = 1, . . . , k, (2)

and the HGR maximal correlation is HGRk(X,Y ) ,
∑k

i=1 σi.

Note that the original definition of HGR maximal corre-
lation is the special case of our definition when k = 1 (see,
[13]). This generalization of maximal correlation analysis en-
ables us to produce more than one feature mapping by solving
the maximal correlation problem, and these feature mappings
can be used in other applications, including ensemble learn-
ing, multi-task learning, and transfer learning [14, 15].

The HGR is also linked to the mutual information via the
following approximation, which holds when the joint distri-
bution of X and Y are close to being independent [13]:

I(X;Y ) ≈ 1

2

K−1∑
i=1

σ2
i . (3)

2.3. Related Work

Independence and separation have been studied in many
works. Most existing approaches fail to provide an efficient
solution in the continuous settings [6]. Other methods can
also be limited in their ability to handle all dependencies
between variables. Zafar et al. [16] uses a covariance-based
constraint to enforce fairness, so it likely would not do well
on other metrics. Furthermore, it is strictly a linear penalty
rather than our non-linear formulation and penalizes the pre-
dictions of the system rather than the features learned. This
limits the relationships between variables it can capture.

Mary et al. [4] propose the use of the HGR maximal corre-
lation as a regularizer for either the independence or the sepa-
ration constraint. In contrast to our approach dealing with the
maximal correlation directly, they use a χ2 divergence com-
puted over a mesh grid to upper bound the HGR maximal
correlation during the optimization of the classifier (either a
linear regressor or a Deep Neural Net (DNN)). This method
applies to cases where X is continuous and Y and D are ei-
ther continuous or discrete variables, but scales poorly with
the bandwidth and dimensionality of D.
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There are other works which use either an HGR-based or
mutual information-based formulation of fairness, but do not
generalize to more than one setting. Grari et al. [17] and Ba-
harlouei et al. [18] use correlation-based regularizers, but can
only be used in the independence case. Furthermore, [18]
only uses a single mode of the HGR maximal correlation
(as opposed to multiple modes used here) for regularization,
which limits the information it can encapsulate, and is also
not designed for continuous sensitive attributes. Moyer et al.
[19] also develops a method which can only be used for in-
dependence, and requires training an additional network in
order to evaluate a bound for the mutual information which
can be used to as a fairness penalty, thus increasing the com-
plexity and required runtime. Finally, Cho et al. [20] approx-
imates the mutual information with a variational formulation,
but does not include a formulation for continuous labels.

3. MAXIMAL CORRELATION FOR FAIRNESS

Equipped with the HGR maximal correlation as a measure of
dependence, we explore its use as a fairness penalty in the
case where X , Y , and D are all continuous and real-valued.

In order to make the space of maximal correlation func-
tions tractable, we first limit our scope of learning algorithms
to those which train models (e.g. neural nets) via gradient
descent using samples, which encompasses most commonly-
used methods. We thus restrict the space of maximal correla-
tion functions to be the family of functions that can be learned
by neural nets, allowing us to compute the gradient while still
providing a rich set of functions to search over.

3.1. Independence

To ensure sufficient independence, we want to minimize the
loss function L(Ŷ , Y ) and the maximal correlation between
f(X) and D. Our optimization (for a given λ) then becomes:

min
f : X→Rm

T : Rm→Y

L(T (f(X)), Y ) + λHGRk(f(X), D), (4)

where HGRk(f(X), D) = maxg, h E
[
gT(f(X))h(D)

]
,

E [g(f(X))] = E [h(D)] = 0, and E
[
g(f(X))gT(f(X))

]
=

E
[
h(D)hT(D)

]
= I. m is the dimension of the features

f(X), k is the number of maximal correlation functions, and
g : Rm → Rk, h : D → Rk are the maximal correlation func-
tions relating f(X) with D. Given the difficulty of enforcing
the orthogonalization constraint, we use a variational charac-
terization of the HGR maximal correlation called Soft-HGR
proposed in [15] which relaxes the orthogonal constraint:

HGRsoft(X,Y ) ,

max
E[g(X)]=0
E[h(Y )]=0

E
[
gT(X)h(Y )

]
− 1

2
tr(cov[g(X)] cov[h(Y )]),

where cov[X] is the covariance matrix of X . [15] shows that
this Soft-HGR formulation can be viewed as a low-rank ap-

proximation of the original HGR maximal correlation prob-
lem in the discrete case. Then,our learning objective becomes:

min
f : X→Rm

T : Rm→Y

max
g : Rm→Rk, h : D→Rk

E[g(f(X))]=E[h(D)]=0

C, (5)

with C =L(T (f(X)), Y ) + λE
[
gT(f(X))h(D)

]
− λ

2
tr
(
cov[g(f(X))] cov[h(D)]

)
.

We solve this optimization by alternating between optimizing
f , T and optimizing g,h. In practice, we implement this by
alternating between one step of gradient descent for f and T
and 5 steps of gradient descent on g and h to allow the maxi-
mal correlation functions to adapt to the changing of f .

3.2. Separation

For the separation criterion, we want to ensure sufficient con-
ditional independence (f(X) ⊥ D)|Y . Since maximal cor-
relation is related to mutual information, we consider the fol-
lowing formulation:

I(f(X);D,Y ) = I(f(X);Y ) + I(f(X);D|Y ) (6)

where the equality follows from the chain rule of mutual in-
formation. Thus, we can control the conditional mutual infor-
mation I(f(X);D|Y ), by using I(f(X);D,Y )−I(f(X);Y )
as a regularizer in the training process.

By replace the mutual information terms with the maxi-
mal correlation terms, our optimization problem becomes:

min
f : X→Rm

T : Rm→Y

L(T (f(X)), Y )+ (7)

λ(HGRsoft(f(X), (D × Y ))−HGRsoft(f(X), Y )).

Note that for the first soft-HGR term, we use g,h to denote
the maximal correlation functions, and g′,h′ to denote the
functions for the second term. Once again, we solve this op-
timization by alternating between optimizing f , T and opti-
mizing g,h,g′,h′.

3.3. Few-shot Learning

Our learning objective can also be applied a posteriori in a
few-shot setting with a classifier that has already been trained
in a fairness-unaware manner on a large number of samples
without the sensitive attribute label. In this case, we can for-
mulate our objective as before, and use the few samples con-
taining the sensitive attribute to further train the network and
force it to learn fairer features that are still predictive of the
desired labels.

4. EXPERIMENTAL RESULTS

In order to illustrate the effectiveness of our algorithms, we
experiment on the Communities and Crimes (C&C) dataset1.

1http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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Fig. 1. Independence (top) and Separation (bottom) result on
the C&C dataset.

The goal is to predict the crime rate Y of a community given
a set of 121 statistics X (distributions of income, age, ur-
ban/rural, etc.). The 122-th statistic (percentage of black peo-
ple in the community) is used as the sensitive variable D. All
variables in this dataset are real-valued. The dataset was split
into 1794 training and 200 test samples. Following [4], we
use a Neural Net with a 50-node hidden layer (which we de-
note as f(x)) and train a predictor ŷ = T (f(x)) with the
mean squared error (MSE) loss and the soft-HGR penalty,
varying λ. For soft-HGR, we use two 2-layer NNs with scalar
outputs as the two maximal correlation functions g and h, and
trained them according to (5) (independence) or (7) (separa-
tion). We then computed the test MSE and test “discrimina-
tion” in each case.

For independence, our metric was I(Ŷ ;D), approximated
using a standard kNN-based mutual information estimator
[21]. For separation, we computed I(Ŷ ;D|Y ) with the same
estimator. We report the results of our experiment as well as
that of the χ2 method of [4] with the same architecture. The
results of the experiments are presented in Figure 1.

As expected, we see a tradeoff between the MSE and dis-
crimination, creating a frontier of possible values. We also see
that the Soft-HGR penalty provides gains compared to the χ2

method for both independence and separation. Moreover, our
method runs significantly faster than the χ2 method (on the
order of seconds per iteration for our method versus just under
a minute per iteration for the comparison method), as the χ2

method requires computation over a mesh grid of a Gaussian

Fig. 2. Independence (top) and Separation (bottom) result on
the C&C dataset in the few-shot settings.

KDE, which scales with the product of the number of “bins”
(mesh points) and the number of training samples, while our
method only scales with the number of samples (O(n)). KDE
methods also scale poorly with dimensionality (see, [22]) in
an exponential manner, and thus if d is high-dimensional, the
χ2 method would run much slower than our method, which
can take in an arbitrarily-sized input and scale linearly with
the dimensionality of the input.

We also run experiments to illustrate how our method’s
simplicity allows it to adapt to the few-shot, few-epoch
regime faster than that of the χ2 method. We take 10 “few-
shot” samples from the training set, then train a network to
predict Y from X without any fairness regularizer using the
full training set. Then, we run 5 more iterations of gradient
descent on the trained model using the fairness-regularized
objective and the 10 few-shot samples, and compare the re-
sults between the Soft-HGR and χ2 regularizer. We choose to
compare to the χ2 regularizer as it is one of the few methods
designed to handle continuous D. The results are shown in
Figure 2. Once again, we see the tradeoff curve, and see our
method outperform the χ2 method, and that it appears to be
competitive with the standard case in just a few iterations,
while the χ2 method is still far from achieving the original
MSE. We also vastly outperform the baseline (before fairness
regularization) model in reducing discrimination, at the cost
of only a small increase in error. Thus, in situations where
only a few samples labeled with the sensitive attribute can be
collected, fairness can still be enforced.
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