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Abstract: As machine learning algorithms grow in popularity and diversify to many industries,
ethical and legal concerns regarding their fairness have become increasingly relevant. We explore
the problem of algorithmic fairness, taking an information–theoretic view. The maximal correlation
framework is introduced for expressing fairness constraints and is shown to be capable of being used
to derive regularizers that enforce independence and separation-based fairness criteria, which admit
optimization algorithms for both discrete and continuous variables that are more computationally
efficient than existing algorithms. We show that these algorithms provide smooth performance–
fairness tradeoff curves and perform competitively with state-of-the-art methods on both discrete
datasets (COMPAS, Adult) and continuous datasets (Communities and Crimes).

Keywords: fairness; HGR maximal correlation; independence criterion; separation criterion

1. Introduction

The use of machine learning in many industries has raised many ethical and legal
concerns, especially that of fairness and bias in predictions, e.g., [1,2]. As systems are
trusted to aid or make decisions regarding loan applications, criminal sentencing, and even
health care, it is vital that unfair biases do not influence them.

However, mitigating these biases is complicated by ever-changing perspectives on
fairness, and a good system for enforcing fairness must be adaptable to new settings. In
particular, there are often competing notions on fairness. Two of these popular notions
are independence and separation (a third condition, sufficiency, is beyond the scope of
this paper), as discussed in [3]. Independence ensures that predictions are independent
from membership in a protected class, so that one achieves equal favorable outcome rates
across all groups, and it arises in applications such as affirmative action [4]. Separation is
designed to achieve equal type I/II error rates across all groups by enforcing independence
between predictions and membership in a protected class conditional on the class label. This
criterion is used to measure fairness in recidivism predictions and bank loan applications.
A significant body of work, including [3,5–7], has gone into explaining that independence
and separation are inherently incompatible for non-trivial cases, and their applicability
needs to be determined by the application and the stakeholders. This motivates us to
construct a framework that is flexible enough to handle different fairness criteria and to do
it with different modalities of data (discrete vs. continuous data, for example).

This bias mitigation must also be balanced out with the system’s usefulness, and often,
one must tune the tradeoff between the fairness (as measured in the particular context) and
performance according to a current situation, which can be a difficult process if the tradeoff
curve is not smooth. Generating the frontier of possible values can be computationally
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infeasible or impossible if the algorithm does not have a regularization parameter to adjust
(see, [8,9]), thus making it difficult to achieve this balance, which makes the fast generation
of fair classifiers even more important.

Different contexts also require different points of intervention during the learning
process to ensure fairness. Pre-processing approaches ([8,10–14]) modify the data to eliminate
bias, whereas post-processing approaches ([15–18]) modify learned features/predictions
from existing models to be more fair. We focus on the in-processing approach [9,19–21],
where the fairness criteria are directly incorporated in the training objective to produce
fairer learned features. Motivated by few-shot applications where only a pre-trained
network and few samples labeled with the sensitive attribute are available, we also seek a
method that is applicable in a post-processing manner when we have access to only a small
number of samples labeled with the sensitive attribute that we wish to be fair about, which
would arise in settings where collecting this information can be very difficult.

In this paper, we frame the ideas of independence and separation in a way that allows a
relevant regularizer or penalty term to be derived in addition to a measure of fairness, which
is useful in enforcing fairness while also tractable, admitting an optimization algorithm
(e.g., if used as an objective for a neural net trained using gradient descent, it must be
differentiable), and easily computed. Existing approaches can struggle with efficiency, can
fail to provide good control over the performance–fairness tradeoff, and/or can only deal
with either discrete or continuous data.

We make the following contributions in this paper:

• We present a universal framework justified by an information–theoretic view that can
inherently handle the popular fairness criteria, namely independence and separation,
while seamlessly adopting both discrete and continuous cases, which uses the maximal
correlation to construct measures of fairness associated with different criteria; then,
we use these measures to further develop fair learning algorithms in a fast, efficient,
and effective manner.

• We show empirically that these algorithms can provide the desired smooth tradeoff
curve between the performance and the measures of fairness on several standard
datasets (COMPAS, Adult, and Communities and Crimes), so that a desired level of
fairness can be achieved.

• Finally, we perform experiments to illustrate that our algorithms can be used to
impose fairness on a model originally trained without any fairness constraint in the
few-shot regime, which further demonstrates the versatility of our algorithms in a
post-processing setup.

2. Background
2.1. Fairness Objectives in Machine Learning

Consider the standard supervised learning scenario where we predict the value of a
target variable Y ∈ Y using a set of decision or predictive variables X ∈ X with training
samples {(x1, y1), . . . , (xn, yn)}. For example, X may be information about an individual’s
credit history, and Y is whether the individual will pay back a certain loan. In general,
we wish to find features f (x), which are predictive of Y, so that we can construct a good
predictor ŷ = T( f (x)) of y under some loss criteria L(ŷ, y).

Now, suppose we have some sensitive attributes D ∈ D we wish to be “fair” about
(e.g., race, gender), and training samples {(x1, y1, d1), . . . , (xn, yn, dn)}. For example, in the
criminal justice system, predictions about the chance of recidivism of a convicted criminal
(Y) given factors such as the nature of the crime and the number of prior arrests (X) should
not be determined by race (D). This is a known issue with the COMPAS recidivism score,
which, despite not using race as an input to make decisions, still leads to systematic bias
toward members of certain races in the output score as in [22,23].

The two most popular criteria for fairness are independence and separation. Inde-
pendence states that for a feature to be fair, it must satisfy the independence property
Ŷ ⊥ D or f (x) ⊥ D. The intuition is simple: if the prediction/feature is independent of
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the sensitive attribute, then no information about the sensitive attribute is used to predict
Y. This criterion has been studied under the lens of demographic parity and disparate impact
in [3], and it admits a class of fairness measures based on the degree of dependence between
f (X) and D. For example, independence is satisfied if and only if the mutual information
I( f (X); D) is zero. When D is binary, another popular class of measures used by the US
Equal Employment Opportunity Commission [4] is the disparate impact, which is defined

as D
(
P(Y|D = 1);P(Y|D = 0)

)
= P(Ŷ=1|D=0)

P(Ŷ=1|D=1)
.

Separation requires the conditional independence property (Ŷ ⊥ D)|Y or ( f (X) ⊥ D)|Y.
This criterion allows for a violation of demographic parity to the extent that it is justified
by the target variable. In the general case, this criterion suggests a fairness measure based
on the conditional dependence between Ŷ and D conditioned on Y. In the case where D is
binary, we obtain the equalized opportunities (EO) measures in [3], which are given by the
differences in error rates for the two groups (e.g., the difference between the false positive
rates for D = 0, 1). For a more complete discussion of the advantages and disadvantages of
these two criteria, please refer to [3].

2.2. Maximal Correlation

Since these fairness criteria are expressed as enforcing independencies with respect to
joint distributions, we look for constraints that reduce the dependency between variables.
In particular, the right formulation of correlation between learned features and sensitive
attributes can provide a framework for measuring and optimizing for fairness. One effective
measure applicable to both continuous and discrete data is the Hirschfeld–Gebelein–Renyi
(HGR) maximal correlation, which is a measure of nonlinear correlation that originated
in [24] and is further developed in [25,26]. The HGR maximal correlation between two
random variables is equal to zero if and only if the two variables are independent, and it
increases in value the more correlated they are (i.e., the more biased/unfair).

Definition 1. For two jointly distributed random variables X ∈ X and Y ∈ Y , given 1 ≤ k ≤
K− 1 with K = min{|X |, |Y|}, the HGR maximal correlation problem is

(f∗, g∗) , arg max
f : X→Rk , g : Y→Rk

E
[
fT(X) g(Y)

]
, (1)

with constraints

E[f(X)] = E[g(Y)] = 0, E
[
f(X)fT(X)

]
= E

[
g(Y)gT(Y)

]
= I, (2)

and expectations taken over PX,Y. We refer to f∗ and g∗ as maximal correlation functions, with
f∗ = ( f ∗1 , . . . , f ∗k )

T and g∗ = (g∗1 , . . . , g∗k )
T, and the associated maximal correlations are

σ( f ∗i g∗i ) , E[ f ∗i (X) g∗i (Y)], for i = 1, . . . , k, (3)

and the HGR maximal correlation is

HGRk(X, Y) , E
[
f∗T(X) g∗(Y)

]
=

k

∑
i=1

σ( f ∗i g∗i ). (4)

Note that the original definition of HGR maximal correlation is the special case of
our definition when k = 1 (see, [27]). This generalization of maximal correlation analysis
enables us to produce more than one feature mapping by solving the maximal correlation
problem, and these feature mappings can be used in other applications, including ensemble
learning, multi-task learning, and transfer learning [28,29].
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2.3. Related Work

Independence and separation have been studied in many works. Most existing ap-
proaches fail to provide an efficient solution in both discrete/continuous settings. Ref. [11]
develops an optimizer using absolute difference in odds |P(Ŷ = 1|D = 1) − P(Ŷ =
1|D = 0)| as a regularizer, which requires discrete Y and D and was only applied to
Naïve Bayes and Logistic Regression to enforce the independence criterion. In [16], a
post-processing method is provided using a probabilistic combination of classifiers to
achieve the desired ROC curves, which only applies when D is discrete. Alternatively,
Ref. [8] proposes pre-processing the data beforehand to enforce fairness before learning,
based on randomized mappings of the data subject to a fairness constraint defined by

J = max(|P(Ŷ=1|D=1)
P(Ŷ=1|D=0)

− 1|, |P(Ŷ=1|D=0)
P(Ŷ=1|D=1)

− 1|). Again, this method is only designed for in-
dependence with discrete Y and D, and it requires processing the entire dataset, which
is computationally complex. Ref. [30] propose the use of a robust log-loss predictor for
fairness, but in practice, it requires that Y be discrete.

Other methods can also be limited in their ability to handle all dependencies between
variables. Ref. [31] uses a covariance-based constraint to enforce fairness, so it likely would
not do well on other metrics. Furthermore, it is strictly a linear penalty rather than our
non-linear formulation and penalizes the predictions of the system rather than the features
learned. This limits the relationships between variables it can capture. An adversarial
method is proposed in [20] to enforce independence or separation, but it requires the
training of an adversary to predict the sensitive attribute, which can introduce issues of
convergence and bias.

Recently, Ref. [9] propose the use of the HGR maximal correlation as a regularizer for
either the independence or the separation constraint. In contrast to our approach dealing
with the maximal correlation directly, they use a χ2 divergence computed over a mesh
grid to upper bound the HGR maximal correlation during the optimization of the classifier
(either a linear regressor or a Deep Neural Net (DNN)). This method applies to cases where
X is continuous and Y and D are either continuous or discrete variables, but it scales poorly
with the bandwidth and dimensionality of D, and it treats the discrete case in the same way
as the continuous case, resulting in slow performance on discrete datasets.

There are other works that use either an HGR-based or mutual information-based
formulation of fairness but do not generalize to more than one setting. Refs. [32,33] use
correlation-based regularizers but can only be used in the independence case. Furthermore,
Ref. [33] only works with discrete targets, and only uses a single mode of the HGR
maximal correlation (as opposed to multiple modes, which our method makes use of)
for regularization, which limits the information it can encapsulate, and it is also not
designed for continuous sensitive attributes. Ref. [34] also develops a method that can
only be used for independence, and it requires training an additional network in order to
evaluate a bound for the mutual information which can be used to as a fairness penalty,
thus increasing the complexity and required runtime. Finally, Ref. [35] approximates the
mutual information with a variational formulation, but it does not include a formulation
for continuous labels.

3. Maximal Correlation for Fairness

Equipped with the HGR maximal correlation as a measure of dependence, we explore
its use as a fairness penalty. Depending on the data modality (discrete/continuous) and
the fairness criteria (independence/separation), the resulting fair learning algorithm takes
different specifically tailored forms. In this section, we demonstrate how to derive these
regularizers and algorithms to ensure the aforementioned fairness objectives for both
discrete and continuous cases.

3.1. Maximal Correlation for Discrete Learning

In this subsection, the decision variable X, target variable Y, and sensitive attribute D
are discrete random variables defined on alphabets X , Y , and D, respectively.
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We first describe how to solve the discrete maximal correlation problem using a diver-
gence transfer matrix (DTM)-based approach. As it is shown later, it is more convenient to
work with their equivalent representation via DTM instead of the joint distribution PX,Y.

Definition 2. The divergence transfer matrix (DTM) BY,X ∈ R|Y|×|X | associated with joint
distribution PX,Y is given by

BX,Y(x, y) ,
PX,Y(x, y)√

PX(x)
√

PY(y)
. (5)

The following useful result expresses that the maximal correlation problem can be
solved by simply computing the singular value decomposition (SVD) of the DTM B in the
discrete case.

Theorem 1 ([27]). Assume that the SVD of DTM BY,X takes the form

BY,X =
K−1

∑
i=0

σiψ
Y
i (ψ

X
i )

T, (6)

with singular values σ0 ≥ σ1 ≥ · · · ≥ σK−1, singular vectors ψY
i , ψX

i , and K = min{|X |, |Y|}.
Then, we have

σ0 = 1, ψX
0 (x) =

√
PX(x), ψY

0 (y) =
√

PY(y), (7)

and the maximal correlation functions are related to the singular vectors in the SVD:

f ∗i (x) =
ψX

i (x)√
PX(x)

, g∗i (x) =
ψY

i (y)√
PY(y)

, (8)

with associated maximal correlations σ( f ∗i g∗i ) = σi, for i = 1, · · · , K− 1. Thus, the conditional
distribution PY|X has the following decomposition:

PY|X(y|x) = PY(y)
[
1 +

K−1

∑
i=1

σi f ∗i (x)g∗i (y)
]
. (9)

As we can see from this theorem, the singular values σi (since the associated max-
imal correlations is equal to the corresponding singular values of DTM, we abuse the
notation a little bit and use σ to denote both of them) of the matrix BY,X essentially charac-
terize the dependence between two discrete random variables, and the singular vectors
ΦX = [ψX

1 , · · · , ψX
k ] and ΦY = [ψY

1 , · · · , ψY
k ] are equivalent to the maximal correlation func-

tions f and g.
Since our goal is to construct feature mappings f(x) under fairness constraints, our

algorithms in the discrete case are built on the following variational characterization of an
SVD, which does not involve g(y):

Lemma 1 ([36]). For any k ≤ K− 1 and ΦX ∈ R|X |×(k+1),

max
ΦT

XΦX=I
‖BΦX‖2

F =
k

∑
i=0

σ2
i , (10)

where ‖A‖F ,
√

tr(AT A) denotes the Frobenius norm.

3.1.1. Independence

To ensure sufficient independence, we must construct feature mappings f : X → Rk

so that the maximal correlations between f(X) and Y are large, while the ones between
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f(X) and D are small. Motivated by Lemma 1 and Theorem 1, we propose the following
DTM-based approach to construct f:

max
Φ∈R|X |×(k+1) :ΦTΦ=I

‖BY,XΦ‖2
F − λ‖BD,XΦ‖2

F, (11)

where BY,X and BD,X denote the DTMs of distribution PY,X and PD,X , respectively, and λ is
the regularization coefficient that controls the penalty of the maximal correlations between
f(X) and D. Φ∗ = [φ∗0 , φ∗1 , · · · , φ∗k ] is the solution of the optimization problem (11). As
shown in Theorem 1, BY,X and BD,X have a shared right singular vector

√
PX(x), and we

can let φ∗0 =
√

PX(x). Then, the feature mappings for independence can be obtained by
normalizing other column vectors in Φ∗

fi(x) = φ∗i (x)/
√

PX(x), i = 1, · · · , k. (12)

We have the following remarks:
(1) The optimization problem in (11) can be written as max tr(ΦT(BT

Y,XBY,X − λBT
D,X

BD,X
)
Φ), and it can be solved exactly by computing the eigen decomposition of BT

Y,XBY,X −
λBT

D,XBD,X .
(2) Lemma 1 states that the Frobenius norm squared ‖BY,X F‖2

F corresponds to the
squared sum of the singular values. Actually, the following lemma shows that ‖BY,X F‖2

F
can be further related to the mutual information I(X; Y) when the dependence between X
and Y is weak.

Lemma 2 ([27]). Let X ∈ X and Y ∈ Y be ε-dependent random variables; i.e., the χ2-divergence
is bounded Dχ2(PX,Y‖PXPY) ≤ ε, then

I(X; Y) =
1
2

K−1

∑
i=1

σ2
i + o(ε2). (13)

(3) As suggested by Lemma 2, the optimization problem in (11) can also be interpreted
as maximizing the mutual information between f(X) and Y while penalizing the mutual
information I(f(X); D).

Once we solve (11) and obtain the feature mappings f(x), we can obtain the corre-
sponding maximal correlation function g(y) for the target variable Y via one step of the
alternating conditional expectations algorithm by [37]:

gi(y) ∝ EpX|Y(·|y)[ fi(X)], i = 1, . . . , k. (14)

In turn, g(y) can be computed by further normalizing the conditional expectations of
f(X), so that the condition E

[
g(Y)gT(Y)

]
= I is satisfied. Finally, the predictions Ŷ can be

made following the Maximum A Posteriori (MAP) rule, where the posteriori distribution
PY|X(y|x) can be approximately computed by plugging the learned feature mappings f(X)
and g(Y) into (9), i.e.,

Ŷ = arg max
y∈Y

PY(y)
[
1 +

k

∑
i=1

σi fi(x)gi(y)
]
. (15)

3.1.2. Separation

For the separation criterion, we want to ensure sufficient conditional independence
( f (X) ⊥ D)|Y. Here, we cannot simply replace the BD,X in (11) with a conditional DTM, as
it involves three random variables and thus cannot be usefully expressed as a matrix. Since
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maximal correlation is related to mutual information as shown in Lemma 2, we consider
the following formulation:

max
f

I(f(X); Y)− λI(f(X); D, Y)

= max
f

I(f(X); Y)− λ
(

I(f(X); Y) + I(f(X); D|Y)
)

= max
f

(1− λ)I(f(X); Y)− λI(f(X); D|Y), (16)

where the first equality follows from the chain rule of mutual information and λ ∈ (0, 1).
Thus, we can control the conditional mutual information I(f(X); D|Y) by adding the joint
mutual information I(f(X); D, Y) as a regularizer in the training process.

Note that Lemma 1 and Lemma 2 imply that mutual information can be approximated
using DTM, as shown in (11) in an independence case. Accordingly, we approximate (16) us-
ing the following optimization problem to ensure the separation criterion for discrete data:

max
Φ∈R|X |×(k+1) :ΦTΦ=I

‖BY,XΦ‖2
F − λ‖BD⊗Y,XΦ‖2

F, (17)

where D⊗Y is the Cartesian product of D and Y, and BD⊗Y,X denotes the DTM of distri-
bution PD⊗Y,X . Once we obtained the solution Φ∗, we could follow similar steps as in the
independence case to get f(x) and g(y) and make predictions for the test samples.

3.2. Maximal Correlation for Continuous Learning

When X, Y, and D are all continuous and real-valued, computing the HGR maximal
correlation becomes much more difficult, since the space of functions over real numbers is
not tractable. Thus, we turn to approximations and begin by limiting our scope of learning
algorithms to those that train models (e.g., neural nets) via gradient descent (or SGD) using
samples, which encompasses most of the commonly used methods. Then, it follows that
any approximation of the HGR maximal correlation used must be differentiable to calculate
the gradient. Thus, we restrict the space of maximal correlation functions to be the family
of functions that can be learned by neural nets, allowing us to compute the gradient while
still providing a rich set of functions to search over.

3.2.1. Independence

To ensure sufficient independence, we want to minimize the loss function L(Ŷ, Y)
and the maximal correlation between f(X) and D. Then, our optimization (for a given
λ) becomes:

min
f : X→Rm

T : Rm→Y

L(T(f(X)), Y) + λHGRk(f(X), D), (18)

where HGRk(f(X), D) = maxg, h E
[
gT(f(X))h(D)

]
, with E[g(f(X))] = E[h(D)] = 0, and

E
[
g(f(X))gT(f(X))

]
= E

[
h(D)hT(D)

]
= I. m is the dimension of the features f(X), k

is the number of maximal correlation functions, and g : Rm → Rk, h : D → Rk are the
maximal correlation functions relating f(X) with D. Given the difficulty of enforcing the
orthogonalization constraint, we use a variational characterization of the HGR maximal
correlation called Soft-HGR proposed in [29], which relaxes the orthogonal constraint:

HGRsoft(X, Y) , max
E[g(X)]=0
E[h(Y)]=0

E
[
gT(X)h(Y)

]
− 1

2
tr(cov[g(X)] cov[h(Y)]), (19)
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where cov[X] is the covariance matrix of X. [29] shows that this Soft-HGR formulation can
be viewed as a low-rank approximation of the original HGR maximal correlation problem
in the discrete case. Then, our learning objective becomes:

min
f : X→Rm

T : Rm→Y

max
g : Rm→Rk , h : D→Rk

E[g(f(X))]=E[h(D)]=0

C, (20)

where

C = L(T(f(X)), Y) + λE
[
gT(f(X))h(D)

]
− λ

2
tr
(

cov[g(f(X))] cov[h(D)]
)
.

We solve this optimization by alternating between optimizing f, T and optimizing
g, h. In practice, we implement this by alternating between one step of gradient descent
for f and T and five steps of gradient descent on g and h to allow the maximal correlation
functions to adapt to the changing of features f.

3.2.2. Separation

For separation, we use a similar argument as in the discrete case to ensure the condi-
tional independence. Specifically, we solve the following optimization problem:

min
f : X→Rm

T : Rm→Y

L(T(f(X)), Y) + λ
(
HGRsoft( f (X), D⊗Y)−HGRsoft( f (X), Y)

)
. (21)

Note that for the first Soft-HGR term, we use g, h to denote the maximal correlation
functions and g′, h′ to denote the functions for the second term. Similar to the discrete case,
the difference term allows us to approximate the conditional mutual information using
two unconditional terms. Once again, we solve this optimization by alternating between
optimizing f, T and optimizing g, h, g′, h′.

3.2.3. Few-Shot Learning

In the continuous case, our learning objective can also be applied a posteriori in a
few-shot setting with a clasifier that has already been trained in a fairness-unaware manner
on a large number of samples without the sensitive attribute label. In this case, we can
formulate our objective as before and use the few samples containing the sensitive attribute
to further train the network and force it to learn fairer features that are still predictive of
the desired labels.

4. Experimental Results

In order to illustrate the effectiveness of our algorithms, we run experiments using the
proposed algorithms on discrete (Adult and COMPAS) and continuous (Communities and
Crimes) datasets.

4.1. Discrete Case

We test the proposed DTM-based approach on the ProPublica’s COMPAS recidivism
dataset (https://github.com/propublica/compas-analysis (accessed on 14 February 2022))
and the UCI Adult dataset (https://archive.ics.uci.edu/ml/datasets/adult (accessed on 14
February 2022)), which were chosen as they contain categorical features and are used in
prior works. More experiments for the discrete case can be found in the Appendix A.

For the COMPAS dataset, the goal is to predict whether the individual recidivated
(re-offended) (Y) using the severity of charge, number of prior crimes, and age category
as the decision variables (X). As discussed in [8], COMPAS scores are biased against
African-Americans, so race is set to be the sensitive attribute (D) and filtered to contain
only Caucasian and African-American individuals. As for the Adult dataset, the goal is
to predict the binary indicator (Y) of whether the income of the individual is more than

https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/adult
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50K or not based on the following decision variables (X): age (quantized to decades) and
education (in years), and the sensitive attribute (D) is the gender of the individual.

For both datasets, we randomly split all data into 80%/20% training/test samples.
We first construct an estimate of DTM B̂ with the empirical distribution of the training set;
then, we solve the proposed optimization in (11) and (17) using B̂ to obtain fair feature
mappings f̂(x), ĝ(y). The predictions Ŷ of the test samples X′ are given by plugging the
learned feature mappings f̂(x′), ĝ(y) into the MAP rule (15), where PY can be estimated
from the empirical distribution P̂Y on the training set.

For the independence case, we compare the tradeoff between the performance and the
discrimination achieved by our method with that of the optimized pre-processing methods
proposed in [8]. Note that we adopt the same settings as the experiments in [8] to do a fair
comparison, and the reported results for their method are from their work. We plot the
area under the ROC curve (AUC) of P̂Y|X′(y|x′) compared to the true test labels Y′ against
the following standard discrimination measure derived from legal proceedings [4]:

J = max
d,d′∈D

∣∣PŶ|D(1|d)/PŶ|D(1|d
′)− 1

∣∣. (22)

Figures 1 and 2 (Top) show the results. For both datasets, it can be seen that simply dropping
the sensitive attribute D and applying logistic regression (LR) and random forest (RF)
algorithms cannot ensure independence between Ŷ and D. However, the proposed DTM-
based algorithm provides a tradeoff between performance and discrimination by varying
the value of the regularizer λ in the optimization (11), which outperforms the optimized
pre-processing methods in [8] on the Adult dataset and achieves similar performance on the
COMPAS dataset. More importantly, the DTM-based algorithm provides a smooth tradeoff
curve between the performance and discrimination, so that a desired level of fairness can
be achieved by setting λ in practice. In addition, since our method only requires us to
perform eigen-decomposition, it runs significantly faster than the optimized pre-processing
method, which needs to solve a much more complex optimization problem. Empirically,
we find at least a tenfold speed up in runtime compared to the existing methods.

Figure 1. Regularization results on the COMPAS dataset, with AUC plotted against discrimination
measure for independence (Top), and accuracy plotted against DEO for separation (Bottom), respec-
tively.
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Figure 2. Regularization results on Adult dataset, with AUC plotted against discrimination measure
for independence (Top), and accuracy plotted against DEO for separation (Bottom), respectively.

For the separation criterion, we compare the balanced accuracy achieved by our
algorithm with that of the adversarial debiasing method in [20] (implementation given
in [2]) against the difference in equalized opportunities (DEO), which is another standard
measure used commonly in the literature:

DEO =
∣∣P(Ŷ=1|D=1, Y=1)−P(Ŷ=1|D=0, Y=1)

∣∣. (23)

The results on the COMPAS and Adult datasets are presented in Figures 1 and 2 (Bottom).
Compared to the naïve logistic regression, the proposed DTM-based algorithm dramatically
decreases the DEO while maintaining similar accuracy performance on both datasets, which
outperforms the adversarial debiasing method in [20] on the Adult dataset. We note that
the accuracy and DEO curve achieved by the proposed algorithm in the separation setting
has a smaller range compared to that in the independence setting. This is because the value
of the regularizer λ is restricted in the separation optimization problem (17) to λ ∈ [0, 1),
but only to λ > 0 for the optimization in (11). More details about the influence of the
regularizer λ can be found in Appendix A.

4.2. Continuous Case

In the continuous case, we experiment on the Communities and Crimes (C&C) dataset
(http://archive.ics.uci.edu/ml/datasets/communities+and+crime (accessed on 14 Febru-
ary 2022)). The goal is to predict the crime rate Y of a community given a set of 121 statistics
X (distributions of income, age, urban/rural, etc.). The 122-th statistic (percentage of
black people in the community) is used as the sensitive variable D. All variables in this
dataset are real-valued. The dataset was split into 1794 training and 200 test samples.
Following [9], we use a Neural Net with a 50-node hidden layer (which we denote as
f (x)) and train a predictor ŷ = T( f (x)) with the mean squared error (MSE) loss and the
Soft-HGR penalty, varying λ. For Soft-HGR, we use two two-layer NNs with scalar outputs
as the two maximal correlation functions g and h, and then, we trained them according
to (20) (independence) or (21) (separation). Then, we computed the test MSE and test
“discrimination” in each case.

http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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For independence, our metric was I(Ŷ; D), which was approximated using a standard
kNN-based mutual information estimator [38]. For separation, we computed I(Ŷ; D|Y)
using the same estimator. We report the results of our experiment as well as that of the χ2

method of [9] with the same architecture. The results of the experiments are presented in
Figure 3.

Figure 3. Independence (top) and Separation (bottom) regularization on the C&C dataset, with MSE
plotted against I(Ŷ; D|Y).

As expected, we see a tradeoff between the MSE and discrimination, creating a frontier
of possible values. We also see that the Soft-HGR penalty provides modest gains compared
to the χ2 method for both independence and separation.

Moreover, our method runs significantly faster than the χ2 method (on the order
of seconds per iteration for our method versus just under a minute per iteration for the
comparison method), as the χ2 method requires computation over a mesh grid of a Gaussian
KDE, which scales with the product of the number of “bins” (mesh points) and the number
of training samples, while our method only scales with the number of samples (O(n)),
since it only requires passing over all the training samples a constant number of times
per iteration. For large bandwidths, d can become quite large. KDE methods also scale
poorly with dimensionality (see, [39]) in an exponential manner, and thus, if d is high-
dimensional, the χ2 method would run much slower than our method, which can take in an
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arbitrarily-sized input and scale linearly with the dimensionality of the input multiplied by
the number of samples. Empirically, we find that our method runs around five times faster.

We also run experiments to illustrate how our method’s simplicity allows it to adapt
to the few-shot, few-epoch regime faster than that of the χ2 method. We take 10 “few-shot”
samples from the training set; then, we train a network to predict Y from X without any
fairness regularizer using the full training set. Then, we run five more iterations of gradient
descent on the trained model using the fairness-regularized objective and the 10 few-shot
samples, and we compare the separation results between the Soft-HGR and χ2 regularizer.
We choose to compare to the χ2 regularizer as it is one of the few methods designed to
handle continuous D. The results are shown in Figure 4. Once again, we see the tradeoff
curve, and we see that our method outperform the χ2 method, and that it appears to be
competitive with the standard case in just a few iterations, while the χ2 method is still far
from achieving the original MSE. We also vastly outperform the baseline (before fairness
regularization) model in reducing discrimination, at the cost of only a small increase in
error. Thus, in situations where, due to ethical/legal issues, only a few samples labeled
with the sensitive attribute can be collected, fairness can still be enforced.

Figure 4. Independence (top) and Separation (bottom) regularization on the C&C dataset in the
few-shot settings, with MSE plotted against I(Ŷ; D|Y).
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5. Conclusions

As machine learning algorithms gain more relevance, more focus will be placed
upon ensuring their fairness. We have presented a framework using the HGR maximal
correlation, which provides effective and computationally efficient methods for enforcing
independence and separation constraints, and derived algorithms for fair learning on
discrete and continuous data, which provide competitive tradeoff curves. In addition, we
have also shown promising results in the few-shot setting and suggested a method for
rapidly adapting a classifier to improve fairness. In the future, it would be beneficial to
extend this framework to other criteria (e.g., sufficiency) and to to determine how to use
this framework to enforce fairness in a transfer learning setup coupled with the few-shot
setting, to determine how to fairly adapt a classifier to a new task.

However, this method requires knowledge of the sensitive attribute for all samples
during the training time, which can be impractical in some cases. Further extension into
developing these regularizers with a limited number of such samples would be very useful.
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Appendix A. Effect of the Regularizer in Discrete Case

In this section, we provide additional experiment results to demonstrate how the
performance of classification and fairness measures change with different values of the
regularizer.

We use the same setup described in Section 4.1 and present the results in Figures A1–A4.
In Figures A1 and A2, we plot the achieved AUC and Discrimination (measured with
J in (21)) versus the value of λ for both COMPAS and Adult data using independence
criterion. In Figures A3 and A4, we plot the accuracy of the classifier and DEO versus λ for
both datasets using separation criterion. As shown by all the figures, the performance of
classification and fairness measures are all decreasing as we increase λ, and the proposed
DTM-based algorithm is able to provide a smooth tradeoff curve between the performance
and fairness measures.

Note that the value of the regularizer λ is restricted in the separation optimization prob-
lem to λ ∈ [0, 1); therefore, the range of the achieved performance in Figures A3 and A4 is
smaller than that in Figures A1 and A2.
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Figure A1. Results for independence regularization on the discrete COMPAS dataset, AUC results
(Top) and discrimination measure J (Bottom) are plotted with respect to different values of λ.

Figure A2. Results for independence regularization on the discrete Adult dataset, AUC results (Top)
and discrimination measure J (Bottom) are plotted with respect to different values of λ.

Figure A3. Results for separation regularization on the discrete COMPAS dataset, accuracy (Top)
and DEO (Bottom) are plotted with respect to different values of λ.
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Figure A4. Results for separation regularization on the discrete Adult dataset, accuracy (Top) and
DEO (Bottom) are plotted with respect to different values of λ.
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