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Abstract

Occluders, i.e. opaque objects, can be used in the apertures of cameras to supple-
ment or replace a traditional lens. This thesis describes a novel mutual information-
theoretic framework for analyzing and comparing occluders. It justifies the use of
uniformly-redundant arrays (URAs), a popular choice of occluding pattern in coded-
aperture imaging. This thesis shows these patterns to be optimal under ideal con-
ditions using this framework. Outside of those ideal conditions, this thesis proposes
a method for selecting between different URAs and compares it to other occluder-
selection methods, such as a greedy search, identifying under which conditions each
is preferable. It also shows, analytically and empirically, the superiority of designed
occluding patterns like URAs to random occluding patterns. The mutual-information
theoretic framework is compared to a similar, MSE-minimizing framework.

This thesis also considers the use of occluders in the context of non-line-of-sight
(NLoS) imaging, used as “accidental cameras.” The idea of the accidental camera
is to opportunistically make use of occluding objects that happen to be available as
ad-hoc coded apertures. Methods of this class, having originally been developed by
Torralba and Freeman in 2012, are extended in this thesis to a wide variety of different
scenarios, and used to solve formerly unsolved NLoS problems. These include imaging
around a corner using the corner as the occluder, imaging a light-field of an unknown
scene using a known, calibrated occluder, and imaging an unknown scene using an
unknown occluder. The tools of the aforementioned framework are used to draw
tentative conclusions about NLoS imaging systems, including resolution limitations
due to longer light wavelengths and the quality of reconstructions across different
systems.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering
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in Figure 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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3-7 Top left: the approximate effective pixels-per-side count of scenes gen-

erated with a given level of correlation (𝛽) and under a given signal-

to-noise ratio (SNR). Alternately, the plot shows which of the masks

shown in the top right is optimal, assuming you are forced to choose

one of those four. Top right: masks corresponding to each of the ef-

fective scene pixel counts. Bottom: the difference between the MI

performance of the best mask from among the four masks in the top

right and the best possible mask, as a percentage of the MI perfor-

mance of the best possible mask, as found by exhaustive search. Thus

for 𝑛 = 15, choosing your mask from only the four masks in the upper

right is no more than 0.2% worse than using the very best mask. . . . 88

3-8 Top left: the approximate effective pixels-per-side count of scenes gen-

erated with a given level of correlation (𝛽) and under a given signal-

to-noise ratio (SNR). Alternately, the plot shows which of the masks

shown in the top right is optimal, assuming you are forced to choose

one of those four. Top right: masks corresponding to each of the ef-

fective scene pixel counts. Bottom: the difference between the MI

performance of the best mask from among the seven masks in the top

right and the best mask found with a greedy search, as a percentage of

the best mask from among the seven masks in the top right. Positive

percentages mean that choosing the best mask from a menu is better;

negative percentages mean that a greedy search is better. We can see

that choosing from a menu of URAs at different scales outperforms

greedy search in the high-SNR regime, and does worst at the boundary

between masks at different scales, which is intuitive. . . . . . . . . . . 89

3-9 Reconstructions of a simulated scene with (lower-right) and without

(lower-left) a prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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3-10 The probability density function 𝑓𝑋(𝑥) = |𝑥|𝑒−𝑥2 , which characterizes

the probability of getting an eigenvalue of each possible magnitude for

a circulant matrix whose entries are IID with mean 0, variance 1, and

bounded third moment. As 𝑛 → ∞, this plot will look just like a

histogram of such a matrix’s eigenvalue magnitudes. . . . . . . . . . . 96

3-11 A plot of optimal transmissivity parameter 𝑝⋆ for random on-off pat-

terns in the IID scene model, as we vary shot noise power 𝐽 and signal

strength 𝜃 while ambient noise power 𝑊 is held fixed. See Remark 1. 98

3-12 Analytical formula follows Eqn. (3.23). Simulated data are averages of

200 randomly generated apertures of size 𝑛 = 251 for various different

values 𝑝. We set 𝐽/𝑊 = 0 dB and 𝜃/𝑊 = 30 dB. Simulations match

our analysis perfectly, providing support for the conjecture of (3.23). 103

3-13 In this figure we plot the mutual information of a random on-off mask as

a function of 𝑝. In blue is the simulated mutual information, obtained

by generating 100 random sample masks and averaging. In red is the

mutual information implied by Proposition 3.7.4. For both curves,

𝑚 = 𝑛 = 1000. The point here is we have some evidence for the truth

of the conjecture we made right above Equation 3.23. . . . . . . . . . 104

3-14 Two simulated reconstructions of a scene, using a random occluder

(left) and a spectrally-flat occluder (right). The SNR is 10dB. Recon-

structions are performed using the procedure described in Section 3.6,

using an exponential-decay prior with 𝛽 = 0.1. As can be seen, using

a spectrally-flat occluder results in substantially higher reconstruction

quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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3-15 Two simulated reconstructions of a scene, using a pinhole (left) and a

spectrally-flat occluder (right). The SNR is 10dB. Reconstructions

are performed using the procedure described in Section 3.6, using

an exponential-decay prior with 𝛽 = 0.1. As can be seen, using a

spectrally-flat occluder results in substantially higher reconstruction

quality. Note that the observation using a pinhole is much more in-

telligible than that obtained using a spectrally-flat occluder, but this

does not translate to higher reconstruction quality. . . . . . . . . . . 107

3-16 Three spectrally-flat sequences with transmissivities not equal to 1/2. 110

3-17 A pair of scatter plots comparing the LMMSE-minimizing metric to

the MI-maximizing one. In each case, we have 𝑡 = 1,𝑊 = 1, 𝐽 =

0, 𝜃 = 100. In the left plot, we have one point for every 11× 11 binary

circulant transfer matrix; in the right, we have one plot for each of

1000 randomly-chosen 100× 100 binary circulant transfer matrices. . 111

3-18 A side-by-side comparison of reconstructions of the same scene un-

der the same conditions, but using two different occluders: one (left)

preferred by the MSE-minimizing metric, the other (right) by the MI-

maximizing metric. As expected, the MSE of the right reconstruction

is worse, but the image appears to be somewhat sharper. . . . . . . . 112

3-19 A simple layout that explains the phenomenon whereby the relative

speeds of a light source and its shadow are given by the relative dis-

tances of the scene and the observation to the occluder. Suppose we

have a pinspeck occluder, and a light source that moves by an amount

∆1 to the right. If we suppose that its shadow moves by an amount

∆2 to the left, and that the occluder has a perpendicular distance 𝑑1

from the scene and 𝑑2 from the observation, then the fact that the top

and bottom triangles are similar tells us that ∆1/∆2 = 𝑑1/𝑑2. . . . . 114

3-20 Top row: five different scenarios with the occluder at five different

depths. Bottom row: the transfer matrices corresponding to each dif-

ferent scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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3-21 Top: a configuration with a planar occluder not halfway in between

the scene and the observation. If we take the distance between the

scene and observation to be 𝑑, then the distance between the scene and

occluder is 9
22
𝑑 and the distance between the occluder and observation

is 13
22
𝑑. We take a discretization level of 𝑛 = 11 (so for computational

reasons, we are modeling the scene and observation as vectors of 𝑛 = 11

constant entries, and the occluder as a vector of 2𝑛− 1 = 21 constant

entries). Bottom left: the true, continuous transfer matrix. Bottom

middle: the naive discrete 11×11 approximation of the transfer matrix,

using averaging to produce nonbinary elements. Bottom right: the

“stretched” 9 × 13 approximation of the transfer matrix, yielding a

rectangular matrix with Toeplitz structure and only binary elements. 118

3-22 A comparison of observed mutual information using either a square

matrix with non-binary averaged values, or a stretched rectangular

matrix, appropriately rescaled. In this example, 𝑛 = 61. It is apparent

that the effect of averaging values in the square matrix leads to a dra-

matic (and artifactual) decrease in the observed mutual information,

as well as artifacts at depths that make there be fewer nonbinary values

in the square matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3-23 Top: the approximate effective pixel count of scenes generated at dif-

ferent occluder depths. As expected, when the occluder is near the ob-

servation plane or the scene, it reduces the number of effective pixels.

Here the frequency attenuation coefficient 𝛽 = 0.1. Higher values of 𝛽

correspond to less correlated scenes. Bottom: masks corresponding to

each of the effective scene pixel counts. Note that these masks repeat

themselves once in each dimension, so each mask is 2𝑛− 1× 2𝑛− 1 if

the effective pixel count is 𝑛. This is due to the phenomenon described

in Figure 3-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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3-24 Left: the transfer matrix from a pinhole. Right: the transfer ma-

trix from very strong near-field effects (𝑑 = 0.01𝑥, where 𝑑 and 𝑥 are

the distance from scene to observation and size of observation, respec-

tively). As can be seen, the transfer matrices look identical but for a

vertical (or horizontal) reflection. . . . . . . . . . . . . . . . . . . . . 124

3-25 Left: the transfer matrix from an occluder-based imaging configuration

with strong near-field effects. Right: the imaging configuration. . . . 125

3-26 A resolution plot showing the effective pixels per side as a function of

the SNR and the distance of the scene from the observation. 𝛽 = 0.1.

The length of 𝑥max of the observation and scene is 𝑥max = 1. . . . . . 125

3-27 Left: a traditional pinhole of size 𝑟 = 0.1, and its associated transfer

matrix. Right: a circulant pinhole of size 𝑟 = 0.2, and its associ-

ated transfer matrix. Note that the transfer matrix on the left is not

circulant, but the one on the right is. . . . . . . . . . . . . . . . . . 127

3-28 Optimal (circulant) pinhole size, as a function of scene correlation and

SNR. Note that optimal pinhole size depends primarily on SNR, and

only secondarily on scene correlation. . . . . . . . . . . . . . . . . . 130

3-29 If you could perfectly reconstruct a light field using an occluder (the

chair, outlined in blue) the reconstruction would be what can be seen

on the right of this figure: the scene, as seen from every point (in green)

on the observation plane (outlined in red). . . . . . . . . . . . . . . . 135

3-30 Top: the configuration of the imaging system. The scene is made up

of two opaque frames, one red and one blue, at 𝑧 = 8 and 𝑧 = 11,

respectively. Bottom: the light-field corresponding to that configura-

tion (i.e. the appearance of the scene, viewed from every point on the

observation plane). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

23



3-31 Top: the estimated non-self-occluding 3D space, using a least-squares

method. Bottom: the light-field derived from that space. As can be

seen, despite the fact that the 3D space estimate is a terrible estiamte

of the true 3D space, the light-field that results is very close to the true

light-field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3-32 Top: the scene configuration. Note that we are using the paraxial

approximation, so the width of the scene and observation plane are

taken to be much smaller than the scale of this figure would suggest.

The optimal occluder (found by exhaustive search over all 210 occlusion

possibilities in the 2× 5 grid shown in grey) is not planar. The scene

is IID, 𝜎 = 103, 𝑘 = 10, 𝑛 = 100. Bottom: the 𝑛× 𝑘𝑛 transfer matrix

corresponding to the occluder shown above. . . . . . . . . . . . . . . 140

3-33 Top: the scene configuration. Note that we are using the paraxial ap-

proximation, so the width of the scene and observation plane are taken

to be much smaller than the scale of this figure would suggest. The

locally optimal occluder (found by greedy search over the 236 occlusion

possibilities in the 4× 9 grid shown in grey) is not planar. The scene

is IID, 𝜎 = 103, 𝑘 = 10, 𝑛 = 99. Bottom: the 𝑛 × 𝑘𝑛 transfer matrix

corresponding to the occluder shown above. . . . . . . . . . . . . . . 141

3-34 An example scene flattened using row-major order, and an example 2D

occluder’s corresponding convolutional transfer matrix. Note that the

transfer matrix is “2D-Toeplitz” without being Toeplitz in the ordinary

sense. This means that it will be near-diagonalized by the flattened

2D Fourier basis (rather than the 1D Fourier basis). . . . . . . . . . 145

3-35 This section’s definition of tensor-matrix multiplication, with a worked

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3-36 A circulant (3× 3)× (3× 3) tensor. . . . . . . . . . . . . . . . . . . 147
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3-37 Top: a flatland configuration with an edge occluder. Bottom left:

the transfer matrix corresponding to this occluder. Bottom right: the

inverse of that transfer matrix. The transfer matrix 𝐴 corresponds to

spatial integration, and its inverse 𝐴−1 to spatial differentiation. . . 148

3-38 Top: two imaging configurations near a doorway; the two different

scenes lead to two different light reflections on the ceiling. Note that the

observation on the ceiling is equal to the scene, integrated along both

spatial dimensions. Bottom: the inversion process for this occluder.

Because this occluder is separable, it suffices to do two operations, one

along one of the dimensions, and one along the other. . . . . . . . . . 150

3-39 A (2× 2)× (2× 2) separable transfer tensor 𝒜 (in black). Each of its

submatrices can be expressed as an outer product of vectors 𝑢𝑖 (blue)

and 𝑣𝑖 (red), each of which make up the matrices 𝑈 and 𝑉 respectively.

For all 2× 2 matrices 𝑋, we will have 𝒜𝑋 = 𝑈𝑋𝑉 𝑇 . . . . . . . . . 152

3-40 A simulated scene, transformed by two equivalent occluders, 𝐴1 and

𝐴2. Despite the fact that the two potential observations 𝑌1 and 𝑌2

you would get by transforming the scene 𝑋 by each of 𝐴1 and 𝐴2

look nothing alike, the reconstruction you get by computing 𝐴−1
2 𝑌1 is

almost identical to the scene. This is useful, because 𝐴2 is a separable

occluder and 𝐴1 is not. . . . . . . . . . . . . . . . . . . . . . . . . . 154

3-41 An experiment with a right-angle occluder (the stack of legos) where

one quadrant occludes and the other three do not. This occluder is

not separable, but it is equivalent to one that is. The ground truth

image was displayed on a monitor to yield the observation. Thus the

reconstruction can be obtained simply by taking the derivative of the

cropped observation along both spatial dimensions. Note that when

using a prior, this causes large, ugly artifacts to appear, especially near

the edge of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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3-42 Another family of equivalent occluders. Any of these occluders can be

freely substituted for any of the others, and most of the pixels of the

resulting image will be exactly correct. . . . . . . . . . . . . . . . . . 157

3-43 Left: a configuration with an edge occluder parallel to the scene. To

get a 1D reconstruction of the scene, we sum the intensities along

the 𝑦 dimension and differentiate along the 𝑥 dimension. Right: a

configuration with an edge occluder perpendicular to the scene. To get

a 1D reconstruction of the scene, we sum the intensities along the 𝑟

dimension and differentiate along the 𝜃 dimension. . . . . . . . . . . 157

3-44 A woman holding a flashlight above a book with one hand, and holding

a book above the table with the other, as described in the third para-

graph of Section 3.20. If she moves the flashlight around, it will move

the shadow edges 𝑢 and 𝑣, but 𝑢 and 𝑣, if extended, will always go

through 𝑝𝑢 and 𝑝𝑣, the focal points of this occluder, no matter where

the flashlight may be. The focal points 𝑝𝑢 and 𝑝𝑣 can be found by ex-

tending the edges of the book downward until they intersect the table.

𝑝𝑣 (in green) is to the right of the frame; it would appear when the

green dotted line intersected the table. . . . . . . . . . . . . . . . . . 159

3-45 The transformation from locations on the observation plane to points

in the scene, for a given pair of focal points. . . . . . . . . . . . . . . 160

3-46 Left: A Fresnel lens. Right: A convex lens of equivalent power. Note

that the thickness of the glass at each point on the Fresnel lens is

equal to that of the convex lens, modulo the maximum thickness of

the Fresnel lens. Image credit due to Wikipedia. . . . . . . . . . . . 162

3-47 The displacement 𝑑 of an incoming light ray increases with the thick-

ness 𝑡 of the glass, and with the incident angle 𝜃. . . . . . . . . . . . 163
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3-48 Top: the performances of optimal transmissive aperture frames for

three different choices of 𝑛2 (corresponding to the approximate refrac-

tive index of glass, diamond, and silicon, respectively), and for three

different choices of the glass’s thickness. Unsurprisingly, optimal per-

formance improves with higher thickness and higher refractive index.

Other parameter choices are 𝑛 = 8, 𝑥 = 1, 𝑦 = 1, the SNR 𝜎 = 103,

and the scene correlation coefficient 𝛽 = 0.1. Each sub-image shows

the form of the aperture frame on the left, and the corresponding trans-

fer matrix on the right. Bottom: for comparison, the performance of

the optimal occluding aperture frame, under identical conditions. As

can be seen, using an occluder substantially outperforms all but the

thickest glass, if the glass is assumed to be flat. . . . . . . . . . . . . 165

4-1 A method for constructing a 1-D video of an obscured scene. The far

left shows a diagram of a typical scenario: two people—one wearing red

and the other blue—are hidden from view by a wall. To an observer

walking around the occluding edge (along the magenta arrow), light

from different parts of the hidden scene becomes visible at different

angles (A). Ultimately, this scene information is captured in the inten-

sity and color of light reflected from the corresponding patch of ground

near the corner. Although these subtle irradiance variations are invis-

ible to the naked eye (B), they can be extracted and interpreted from

a camera position from which the entire obscured scene is hidden from

view. Image (C) visualizes these subtle variations in the highlighted

corner region. We use temporal frames of these radiance variations on

the ground to construct a 1-D video of motion evolution in the hidden

scene. Specifically, (D) shows the trajectories over time of hidden red

and blue subjects illuminated by a diffuse light in an otherwise dark

room. Figure originally from [16]. . . . . . . . . . . . . . . . . . . . 168

27



4-2 Left: the percent difference in performance between the edge camera

and optimal size of circulant pinhole for each value of SNR and 𝛽.

Negative values indicate that the pinhole outperforms the edge camera.

Right: the percent difference in performance between the edge camera

and a circulant pinhole camera with transmissivity 𝜌 = 1/4. . . . . . 169

4-3 Top left: an idealized setting in which scene, observation, and occluder

are all parallel. Bottom left: a simplified version of the setting in flat-

land, in which the region highlighted in cyan in the top left is averaged

to produce the region highlighted in cyan in the bottom left. Top

right: the real-world setting in which the occluder lies perpendicular

to the observation. Bottom right: a simplified version of the setting

in flatland, in which the region highlighted in cyan in the top right is

averaged to produce the region highlighted in cyan in the bottom right. 171

4-4 The example estimation gain image, showing the operation performed

on the observation to recover the scene. As we can see, it’s approxi-

mately a spatial derivative along the angular dimension. The spatial

derivative being taken has a “blurry” appearance because of the spatial

prior. Figure originally from [16]. . . . . . . . . . . . . . . . . . . . . 174

4-5 Indoor experiments for the corner camera. The subjects’ trajectories

are clear from the traces in the reconstructed 1D movie (right). Note

that the 𝑥-axis corresponds to time. Note, also, that the number of

subjects can be easily counted.Figure originally from [16]. . . . . . . . 175

4-6 Outdoor experiments for the corner camera. In sunny weather, the

subjects’ trajectories are very clear. In cloudy weather, the trajectories

are fainter but still clear upon closer examination. In rainy weather,

the raindrops create dark streaks in the reconstructed movie trace.

However, if we ignore those streaks, we can still see most of the subjects’

trajectories.Figure originally from [16]. . . . . . . . . . . . . . . . . . 175
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4-7 This figure shows the configuration for the toy problem of interest. The

scene consists of a single bright object, whose angular position 𝜃 we

want to learn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4-8 This figure shows the impact of a corner location error. In the error-

free case, we would sweep 𝜑 across the projection plane (shown in

green) hinging around the corner (the solid black line). But if we

made a corner location error, we would instead try to sweep 𝜑 across

the projection plane erroneously (shown in blue) hinging around the

false corner (shown with a dotted line). . . . . . . . . . . . . . . . . 178

4-9 This plot shows how the observed intensity values vary with 𝜑, in the

case of correct corner location (in blue) and a corner location error

((𝑑𝑥, 𝑑𝑦) = (0.1, 0.2), in red). Note that in the case of a corner location

error, the maximum value of the intensity does not reach 1. Note also

that 𝑑𝑥 and 𝑑𝑦 are as a fraction of the radius of the projection plane,

𝑟, which here is taken to be 1. . . . . . . . . . . . . . . . . . . . . . 179

4-10 This plot is intended as a reference for the meanings of each of the

variables used in the calculations of 𝜑 as a function of 𝜃. . . . . . . . 180

4-11 This plot shows the empirical mean (in blue) plus or minus one stan-

dard deviation (in red) of the error as a function of 𝜃. Here, 𝜎𝑥 = 10−4

and 𝜎𝑦 = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4-12 The empirical means plus or minus one standard deviation of the esti-

mated 𝑃𝑧 as a function of its 𝑥-coordinate, assuming true 𝑃𝑧 of 20, 40,

60, and 80. Here, the two corner location errors at each of the bound-

aries of the doorway are independent and subject to 𝜎2
Δ𝑥 = 𝜎2

Δ𝑧 = 0.04.

We sample from a set of 1000 corner errors to approximate the mean

and standard deviations empirically. . . . . . . . . . . . . . . . . . . 182

4-13 The reconstructed depths of objects at depths 1, 2, 3, and 4, given a

corner error of ∆𝑦1 = ∆𝑦2 = 0.02. . . . . . . . . . . . . . . . . . . . 183
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4-14 The reconstructed depths of objects at depths 1, 2, 3, and 4, given

a corner error of ∆𝑦1 = −0.02, ∆𝑦2 = 0.02. Note that because of

the different corner errors for each corner, there is the possibility of

asymmetric behavior on either side of the doorway. . . . . . . . . . . 184

4-15 The process of calibrating for the occluder, performed by lighting one

small region of the monitor on the left at a time, and recording the

shadow on the right that results. Note the similarity of this process to

the definition of the transfer matrix from Chapter 1. . . . . . . . . . . 186

4-16 a) Simplified 2D scenario, depicting all the elements of the scene (oc-

cluder, hidden scene and observation plane) and the parametrization

planes for the light field (dashed lines). (b) Discretized version of the

scenario, with the light field and the observation encoded as the dis-

crete vectors x and y, respectively. The transfer matrix is a sparse,

row-deficient matrix that encodes the occlusion and reflection in the

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4-17 a) Sketch of a 2D imaging scenario. (b) Resulting unoccluded light

field function 𝑙(𝑥, 𝑢) and observation. (c) The occluder visibility func-

tion 𝑣(𝑥, 𝑢). (d) Resulting occluded light field function 𝑙𝑜𝑐𝑐(𝑥, 𝑢) =

𝑣(𝑥, 𝑢)𝑙(𝑥, 𝑢) and observation. Note that the unoccluded observation

is almost constant in 𝑢, which is not true of the occluded observation;

the presence of the occluder makes the problem better-conditioned.

Figure originally from [12]. . . . . . . . . . . . . . . . . . . . . . . . . 188

4-18 Reconstructions of an experimental scene with two rectangles. (a)

Schematic of the setup. (b) Observation plane after background sub-

traction. (c) Six views of the true scene, shown in order to demonstrate

what the true light field would look like. These are taken with a stan-

dard camera from equivalent positions on the observation wall. (d)

Reconstructions of the light field for these views. The blue and red

targets measure 8× 12in and 6× 8in. Figure originally from [12]. . . 189
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4-19 Reconstructions of an experimental scene with a seated subject at the

scene plane. (a) Observation plane after background subtraction. (b)

Six views of the true scene.(c) Reconstructions of the light field for the

same views as in (b). Figure originally from [12]. . . . . . . . . . . . . 190

4-20 Left: a real-world scenario with a moving scene, an occluder, and an

observation wall. Right: our model of the scenario. . . . . . . . . . . 191

4-21 A worked example of initialization of Algorithm 1, followed by a single

pass through the for-loop. Continued in Fig. 4-22. . . . . . . . . . . . 197

4-22 A worked example of Algorithm 1. . . . . . . . . . . . . . . . . . . . 198

4-23 An illustration of the effects of the planarity assumption and the parax-

ial approximation on the reconstruction. The top row shows a sketch

of the true setup; in all three cases, the assumed setup is the one on the

left. The middle row shows what reconstructions, generated using the

approach described in Sec 4.5.7, of the leftmost image look like when

the assumptions used for that approach are violated. The bottom row

shows example impulse responses for each of the three scenarios. All

data shown here is simulated, with no noise, to isolate the effect of

each assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4-24 The output of the occluder-recovery and scene-reconstruction algo-

rithms presented in Secs. 4.5.3 and 4.5.7, using the difference frames

of a simulated observation at 25dB. . . . . . . . . . . . . . . . . . . . 204

4-25 The output of the occluder-recovery algorithm presented in Section 4.5.3

in the experimental setting, alongside the ground-truth occluder. This

is the occluder recovery used in the reconstruction shown in the second

row of Figure 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
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4-26 Still frames from reconstructed videos under a variety of different ex-
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Chapter 1

Introduction

What is a camera? The dictionary tells us that a camera is an “optical instrument to

record images.” When you think of a camera, you probably think of something with a

lens, like a digital camera or, more recently, a smartphone—or, in the future, perhaps

something else entirely. Lenses are very effective imaging tools—indeed, even our

eyes evolved to use them!—but cameras can be built without them. The first known

camera that could create permanent photographs was developed by Joseph Nicéphore

Niépce, who used a camera obscura, or pinhole camera, to project an image of a scene

onto dark pewter coated with bright bitumen [44]. The bitumen, exposed to light,

hardened and became insoluble, so that it would not wash off the pewter when rinsed

with water, leaving the parts exposed to the light to stay white while the rest turned

dark. See Figure 1-1 to see the earliest surviving photograph.

This photograph was created by a pinhole camera, which is part of a class of

cameras that I call “occluder-based” cameras. An occluder is any object that blocks

light; in the case of a pinhole camera, this object blocks nearly all of the light, except

for that which is allowed to pass through a tiny hole. Pinhole cameras are special,

because the image projected onto the pewter is identical to the scene, except that

it’s spatially reversed and blurred in proportion to the size of the hole. That makes

the design of a pinhole camera the simplest of the occluder-based cameras, because

the projected image is easily interpreted, without any need for further computation.

Simplest, however, does not mean best, and more recently-developed occluder-based

35



Figure 1-1: The earliest surviving photograph, taken by Joseph Nicéphore Niépce in
1825, using an occluder-based camera.
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cameras [9, 30, 102, 41] have abandoned the pinhole in favor of more complicated

patterns of occlusion. These more complicated patterns vary from implementation to

implementation, though the most popular choice is a set of patterns called “uniformly

redundant arrays.” Each of these non-pinhole patterns yield unintelligible projected

images, but enable much more accurate computational reconstructions in the presence

of noise. See Figure 1-2 for a side-by-side simulated comparison of the two methods.

One of the contributions of this thesis is provide a framework, based on information

theory, that explains why uniformly redundant arrays are better than pinholes. Using

this framework, I will describe the circumstances under which we know uniformly

redundant arrays are the best option, and how to choose which uniformly redundant

array to choose. This is what Chapter 3 is about: choosing the best occluder-based

camera system possible, given a particular set of imaging circumstances. Occluder-

based designer cameras aren’t the only topic of this thesis, however. In addition

to designer cameras, this thesis contributes to the field of occluder-based accidental

cameras.

Before I explain the concept of accidental cameras, let’s revisit the question we

began with. What is a camera? A camera is an optical instrument to record images.

What are cameras made of? Generally, cameras are the combination of two objects.

The first is what I will eventually call the “observation plane,” or more simply the

“observation.” This object is generally something photosensitive, like film, a digital

light sensor, or pewter coated with bitumen as in our earlier example. The second

is what I will eventually call the “aperture frame.” The purpose of this latter object

is simply to make the observation non-uniform. It’s necessary to have something in

between the scene and the observation, be it a lens or an occluder, because without it,

our observation would be uniformly illuminated. This, in turn, means the observation

would contain almost no information about the scene.

Accidental occluder-based cameras take a creative approach to both the obser-

vation and the aperture frame. In most of the accidental-camera systems described

in this thesis, the observation plane is a blank wall or floor, recorded by a digital

camera positioned elsewhere (the “observer”). The aperture frame is some occluding
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Figure 1-2: This figure will appear again, later in this thesis, when more context with
which to understand it has been given. The point here is that when the simulated
unknown scene (top middle) is projected through a pinhole occluder (top left), it
results in a more intelligible projected image, or “observation” (middle left) but a
lower-quality reconstruction of the scene (lower left). In constrast, when the simulated
unknown scene is projected through a more complicated occluder, in this case a
uniformly redundant array (top right), it results in a less intelligible projected image
(middle right) but a higher-quality reconstruction of the scene (lower right). It makes
sense that historically, the simpler (left) approach would be the first, because no
computation is required to understand the observation, but the more sophisticated
(right) approach is more powerful.
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object, like a wall (see Section 4.1) or any opaque object (see Section 4.3 or 4.5). One

possible purpose of an accidental occluder-based camera is non-line-of-sight (NLoS)

imaging: in other words, to “see” things are not directly in view of the observer. To

give a very basic example, imagine you are sitting in your room, with sunlight shining

in from a window. From the square of sunlight on the floor, and the location of your

window, you can infer in what direction the Sun is. In a certain sense, you have “seen”

the Sun; without actually looking out your window, you know where it appears in

the sky. Even if you don’t know exactly what you would see if you looked out your

window, you know where the Sun would be in that picture.

The same method that you used to infer the position of the Sun without looking

out your window, could in principle be used to infer the position of everything else

visible from your window, without looking out your window. This is because it’s not

just the Sun that emits light; visible objects are visible because they emit (reflected)

light, it’s just that they are emitting much less light. But even if it’s too subtle to be

seen with the naked eye, there is light streaming through your window that comes not

directly from the Sun, but reflected off something outside, and if you were sharp-eyed

enough to see it, you would be able to infer exactly what was outside your window,

without actually looking out your window. Indeed, this is more or less exactly what

was shown by Torralba and Freeman in 2012 [97], in one of the first publications to

discuss occluder-based accidental cameras.

What good is it to use sophisticated computational techniques to infer what you

would see if you were to look out a window? Why not just look out the window, like a

normal person? There are scenarios in which being able to solve analogous problems

can be very useful. For example, this style of imaging technique could let you “see”

into a room you didn’t want to enter (see Figure 1-3). Perhaps even more usefully,

occluder-based accidental cameras could be used to detect oncoming traffic around

a corner, and help prevent life-threatening collisions (see Figure 1-4). Additionally,

occluder-based systems can be used to create smaller cameras than lenses allow [9]

or to perform X-ray imaging, which is often incompatible with lenses [1].

Chapters 1 and 2 provide background, and Chapters 3 and 4 provide contributions.
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Figure 1-3: A hypothetical scenario in which occluder-based techniques could be
used for non-line-of-sight imaging. On the left, we can see a door, but we don’t know
anything about what’s in the room it leads to (shown on the right). Together, the
door and the chair inside the room form an accidental camera. Using the method
presented in Section 4.5, an onlooker could, in principle, try to reconstruct an image
of the room by observing the door by using the occlusion provided by the chair and
the motion provided by the person. This is true even though neither the chair nor the
person is visible to the onlooker! I say “in principle” because in practice, the signal
strength in the room as shown would be too weak to get a sharp reconstruction—
this is meant as an illustration of what is possible with accidental cameras, not a
description of current capabilities.
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Figure 1-4: Imagine you are in the blue car, approaching the intersection ahead.
There’s a green car headed towards the intersection around the corner, but you can’t
see it, because there’s a building blocking your view. However, the green car is
reflecting green light onto the street in front of you, and that green light is something
that is within your field of view, even if it’s too faint to be seen with the naked eye.
The intersection in front of you, combined with the building to your left, form an
accidental camera. An automatic driving system could use it to infer the angle from
the corner and the speed of the green car around the corner using the computational
imaging techniques described in Section 4.1. Systems like these could be used to avoid
a deadly collision, if the green car is about to run a red light.
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The contents of Chapter 3 (which is broadly about finding the best possible occluder-

based aperture frame) and those of Chapter 4 (which is about making use of whichever

occluders happen to be handy in NLoS settings) are largely separate. However, the

analysis of Chapter 3 is of obvious relevance to NLoS occluder-based imaging even

when finding an optimal occluder “in the wild” isn’t realistic.

The framework described and used in this thesis is a powerful tool for analyzing

occluder-based imaging. Occluder-based non-line-of-sight imaging remains a promis-

ing area for future research, with the deep image prior being particularly promising,

as discussed in Section 4.6.

1.1 Overview

This thesis is meant to serve a few purposes simultaneously. The first will be to

provide a clear and easy introduction to the core concepts of occluder-based imaging;

my hope is that anybody who wishes to learn more about the topic, either because

they are interested in an application in non-line-of-sight imaging purposes, coded-

aperture imaging, or some other application, will find this thesis to be helpful. I

am also hopeful that this thesis can be understood even by readers with relatively

little background; I intend for many of its sections to be comprehensible without any

background in physics or optics, and only an undergraduate-level understanding of

linear algebra, signal processing, and calculus (in decreasing order of importance).

Chapter 3 gives a complete treatment of which mask-based occluders are optimal,

under a variety of different scenarios, as well as a novel framework for analyzing

mask-based occluders. When optimality can’t be proven, Chapter 3 is still able

to give specific, helpful advice for which mask-based occluders are likely to perform

best. The contents of Chapter 3 will be helpful for designing an occluding-mask-based

camera. For other types of nontraditional cameras—cameras that use a different sort

of aperture frame, perhaps, but still not a lens (one example is the DiffuserCam [8])—

extending the analysis of Chapter 3 should prove straightforward.

As for Chapter 4, I recommend reading it to any reader whose primary research fo-
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cus is in non-line-of-sight imaging, especially passive non-line-of-sight imaging. Chap-

ter 4 describes how to solve non-line-of-sight imaging problems under a variety of

constraints.

1.2 Ray Optics and BRDFs

Throughout my thesis, unless I say otherwise, I’ll be using the ray optics model (also

known as the geometrical optics model) of light. This means that, as a convenient

abstraction, I’ll be assuming that light moves in a straight line through the air, can

be bent when it hits a different light-propagating medium (like a lens), and may be

absorbed or reflected by the materials it hits (like a wall). Moreover, I’ll be generally

assuming that light intensity is additive, meaning that two rays of light hitting the

same point will generate an intensity equal to the intensity that would be generated

by the sum of each individual ray. This corresponds to assuming that the light we care

about is incoherent and as such won’t interfere with itself—a reasonable assumption

when the light in question is coming from the sun or from a commercial electric light.

Finally, using the ray optics model means that I’ll be ignoring the effects of diffraction,

which is reasonable when modeling the behavior of visible-wavelength incoherent light

hitting macroscopic structures.

What happens when the light hits an opaque surface, according to this model?

Some of it will be absorbed, and some reflected. How much of it is reflected, and in

what directions, is described by the bidirectional reflectance distribution function, or

BRDF, of the surface. In flatland (meaning a 2D world), the BRDF is a function of

two variables, the angle of the incoming light 𝜔𝑖 and the angle of the outgoing light

𝜔𝑟, and returns the ratio of the reflected radiance (the outgoing power per unit angle

per unit projected area on the surface) along 𝜔𝑟 to the irradiance (the incoming power

per unit area) incident on the surface from 𝜔𝑖.

There are a variety of BRDFs that describe real-world surfaces, including the

specular BRDF (which describe mirrors and other shiny surfaces well) and Phong

BRDFs (due to [80], which describe glossy surfaces well). In this thesis, however, the
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focus is on the Lambertian BRDF, which is defined below:

𝑓Lambertian(𝜃in, 𝜃out) = 𝜌/𝜋

Surfaces that have this BRDF are often called Lambertian, matte, or diffuse sur-

faces, and I will use these terms interchangeably in this thesis. Intuitively, this BRDF

takes the incoming light and emits it “equally in all directions.” Once again 𝜌 is a

constant that determines the overall surface brightess. Note that the Lambertian

BRDF is completely independent of the angle of the incident light—it emits the light

it reflects in exactly the same way no matter where the light came from.1

1.3 The Paraxial Approximation

In this section, I introduce the paraxial approximation, a commonly used assumption

in computational imaging [109, 69, 94, 87, 25]. The idea is that when a light source

is far from a surface, its illumination of that surface will be approximately uniform.

1.3.1 A point light source and a nearby surface

Let’s suppose we live in a 2D world of Lambertian surfaces and diffuse light sources.

(When I say a “diffuse” light source, I mean that the light source emits light equally in

all directions.) Consider a point light source suspended at (0, 𝑦𝑝), with a Lambertian

surface at 𝑦 = 0 (see Figure 1-5). What pattern of illumination can we expect to see

on the surface?

The way we proceed with this analysis is to discretize the surface into many small

patches, and then to consider what fraction of the light radiating out of the point

light source hits any single given small patch of the surface. We assume each patch

is small enough that its apparent intensity is constant across the patch. Asking what

fraction of light radiating out of the point light source hitting any given patch is

1For a 2D surface living in a 3D world, the Lambertian surface BRDF is exactly the same, but
four arguments are required to fully parametrize the incoming and outgoing angles.
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Figure 1-5: A diagram illustrating the following configuration: a point light source
at (0, 𝑦𝑝), with a Lambertian surface at 𝑦 = 0. We are interested in the resulting
illumination pattern on the Lambertian surface; to investigate it, we measure the
illumination of a small patch on the surface that extends from (𝑥𝑐, 0) to (𝑥𝑐 + 𝑑𝑥, 0).
The illumination of that patch will be proportional to the angle 𝜃𝑐 of the point source’s
light subtended by the patch.

equivalent to asking what angle over the light source is subtended by that patch, and

then dividing that angle by 2𝜋.

Supposing that the patch extends from (𝑥𝑐, 0) to (𝑥𝑐 + 𝑑𝑥, 0), trigonometry tells

us that 𝜃𝑐, the angle subtended by the patch, is given by:

𝜃𝑐 = tan−1

(︂
𝑥𝑐 + 𝑑𝑥

𝑦𝑝

)︂
− tan−1

(︂
𝑥𝑐

𝑦𝑝

)︂
What happens as we consider increasingly smaller and smaller patches 𝑑𝑥? The

definition of the derivative tells us that lim𝑑𝑥→0 𝜃𝑐 = 𝑑𝑥· 𝑑
𝑑𝑥𝑐

(tan−1(𝑥𝑐+𝑑𝑥
𝑦𝑝

)) = 𝑑𝑥(𝑦𝑝/(𝑥2+

𝑦2𝑝)). Thus the luminance of a patch on the surface, assuming that the point source

had a luminance of 1, would be 𝑑𝑥(𝑦𝑝/(2𝜋(𝑥2 + 𝑦2𝑝))).We can say that the continuous

illumination function of the surface 𝐼(𝑥) is the following:

𝐼(𝑥) =
𝑦𝑝

2𝜋(𝑥2 + 𝑦2𝑝)

This simple formula captures a lot of interesting phenomena. Consider for instance

that we take 𝑥 = 0, meaning we consider the illumination only of the closest point
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Figure 1-6: Different illumination patterns depending on different possible values of
𝑦𝑝, with the Lambertian surface extending from 𝑥 = −10 to 𝑥 = 10. As this plot
shows, the paraxial approximation starts becomes reasonable around 𝑦𝑝 = 30.

on the surface to the point source. The formula tells us then that the illumination

of that point goes as 1/𝑦𝑝, meaning that it scales inversely with that point’s distance

from the point source. Now consider fixing 𝑦𝑝 = 1 and varying 𝑥. This gives us an

illumination pattern that scales with 1/(1+𝑥2). The closer the surface is to the point

source (meaning a smaller 𝑦), the narrower the hump will be (See Fig. 1-6). Also note

that no matter what 𝑦𝑝 is, we have:

∫︁ ∞

−∞

𝑦𝑝
2𝜋(𝑥2 + 𝑦2𝑝)

𝑑𝑥 = 1/2

It stands to reason that this is true, because no matter how far the surface is

from the point source, if the surface is infinitely broad, exactly half the light from

the point source will hit the surface. Additionally, for reference, I’ll provide here the

illumination function for the equivalent situation in three dimensions: a point source

of luminance 1 suspended at (0, 0, 𝑧𝑝), and a plane at 𝑧 = 0. Then, the illumination
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function 𝐼(𝑥, 𝑦) can be derived in much the same way as in the two-dimensional case.

This function is given by:

𝐼(𝑥, 𝑦) =
𝑧𝑝

4𝜋(𝑥2 + 𝑦2 + 𝑧2𝑝)3/2
(1.1)

The important thing at this point is that, as shown in Figure 1-6, the illumination

pattern becomes flatter and broader the further the point source is from the surface.

This phemonenon is what we rely on when we use the paraxial approximation. This

is the assumption that the contribution of a point light source to a faraway surface is

approximately constant across that surface. This assumption holds as long as the size

of the surface in question is much smaller than the distance of the point source to the

surface; that is, if, for all relevant values of 𝑥, 𝑥2 ≪ 𝑦2𝑝, then it follows that 𝐼(𝑥) holds

a constant value of approximately 1/(2𝜋𝑦𝑝) (1/(4𝜋𝑧2𝑝) in three dimensions), assuming

the point source has a luminance of 1.

Because of the quadratic dependence on 𝑥 and 𝑦𝑝 in Eq. 1.1, the paraxial ap-

proximation is reasonable even when the difference between 𝑥 and 𝑦𝑝 isn’t enormous;

for example, if you hold a diffuse light source three meters away from the center of

a flat surface two meters in diameter, the brightness of that surface won’t vary by

more than about 16% (compare 1/93/2 to 1/103/2). The paraxial approximation gets

relied on very heavily, both in my research and in work by others, and admittedly

the reason for that isn’t that it’s always a hugely robust assumption to real-world

situations (after all, depending on the application, sometimes 16% can matter a lot!).

The reason, rather, is that it’s an extremely convenient assumption. For the time

being I’ll leave it at that, but in later sections we will see that tolerating the paraxial

approximation grants us quite a lot of mathematical convenience.

1.4 The Standard Configuration

In this section, I will briefly describe what I call “the standard configuration,” and

introduce some terminology that I will use throughout the dissertation. The simplest

version of the standard configuration is shown in Fig. 1-7: three parallel frames in
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Figure 1-7: The standard configuration: three parallel frames in flatland, with the
“aperture frame” halfway in between the scene and the observation plane. The aper-
ture frame could be anything from an occluder, to a lens, to a random scattering
pattern.

flatland, with the “aperture frame” halfway in between the scene and the observation

plane. The presumption is that the observation is a known quantity, and we’d like

to infer what’s in the scene. Depending on the details of the problem, the aperture

frame may also be a known quantity, or its form may be unknown. In any case, we’d

like to see how much we’re able to infer about the scene from the observation thanks

to (or despite!) the presence of the aperture frame.

The term “aperture frame” is left deliberately vague. In an ordinary camera,

the aperture frame would be a lens. In most of this dissertation, I’ll be considering

aperture frames that don’t directly focus the light from the scene like a lens would,
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but partially occlude the scene. In principle, there are any number of other realistic

aperture frames.

Of course, there are many other ways to relax the standard configuration to make

it richer or more realistic. The aperture frame need not be halfway in between the

observation plane; the three frames need not be parallel to each other; the scene need

not be planar. And, of course, the real world isn’t flatland (a term which I will use

to refer to a 2D, rather than a 3D, world)! But the standard configuration is a great

starting point for any optical analysis.

There are two more things about the way I model the standard configuration that

must be mentioned here. The first is although the scene and observation plane will,

in reality, be continuously varying objects, I will by default be assuming them to be

𝑛-dimensional vectors, with each entry being the intensity of one little piece of the

observation. Obviously, this is an approximation of reality, since it assumes that the

intensity is uniform across each little piece. As 𝑛 gets larger, this approximation will

become closer and closer to reality.

The second thing is that the standard way I index the scene vector is left-to-

right, but the standard way I index the observation vector is right-to-left. (In a 3D

world, I would reverse the labeling along both dimensions.) In principle, you could do

everything I do in this thesis with the labeling of the observation going left-to-right,

but it would make the analysis much less pleasant. See Figure 1-8 to see a side-by-side

comparison of the true configuration and the modeled configuration.

1.4.1 The Transfer Matrix

Another critical concept in my dissertation is the transfer matrix. This is a standard

concept in computational imaging, used when linearity can be established [103, 71, 72].

The transfer matrix is a matrix that describes the action of an aperture frame on the

scene to create the observation. To be more precise, suppose we approximate the

scene by a vector 𝑥⃗, where each entry of that vector gives the illumination of a single

patch of the scene. Suppose that we approximate the observation plane in the same

way with a vector 𝑦⃗. Then, the transfer matrix, 𝐴, will be whichever matrix satisfies
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Figure 1-8: Left: the true configuration. Right: the modeled configuration, with the
resolution level being 𝑛 = 11. Note the labeling is reversed on the observation relative
to the scene. The faithfulness of the modeled configuration to the true configuration
will get better and better as 𝑛 increases.

𝑦⃗ = 𝐴𝑥⃗ for all possible pairs (𝑥⃗, 𝑦⃗).

How do we know that such a matrix even exists for all aperture frames? Well, if we

accept the assumptions implicit in the ray-optics model described in Sec. 1.2—that

is, we ignore the effects of diffraction and assume that light is incoherent—then what

you observe should be a linear function of the presence or absence of light sources.

That means that we call what you see if light 𝑎 is on 𝑓(𝑎), and what you see if light

𝑏 is on 𝑓(𝑏), then what you see when both lights are on, 𝑓(𝑎 + 𝑏), should be the sum

of what you saw in either case, 𝑓(𝑎) + 𝑓(𝑏).

Because we’re assuming that combining light sources behaves linearly, most real-

world objects we can put in between a scene and an observation plane should be

representable by a transfer matrix 𝐴. How do we actually construct this transfer

matrix? Each column of the transfer matrix corresponds to the illumination pattern

on the observation plane in response to an impulse light source at each different

patch in the scene; see Figure 1-9. One can actually empirically measure the transfer

matrix in real-world imaging systems using this method; Section 4.3, which describes
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Figure 1-9: How the transfer matrix comes out of the imaging system: each column of
the transfer matrix corresponds to the illumination pattern on the observation plane
in response to an impulse light source at each different point in the scene.

a calibrated occluder-based imaging system, does exactly this!

Transfer matrices take a variety of different forms depending on what the aperture

frame is and what it’s doing; Figure 1-10 shows the action of a variety of example

aperture frames, with an example transfer matrix corresponding to one of them. And

from the example transfer matrix shown in Figure 1-10, we can now understand

the choice to label the observation plane from right-to-left instead of left-to-right.

The bottom-most rows of the transfer matrix shown correspond to what the left-most

elements of the observation see, and correspondingly the top-most rows of the transfer

matrix shown correspond to what the right-most elements of the observation see. In

the transfer matrix we see in Fig. 1-10, the diagonals of constancy2 go from upper-

left to lower-right, but if we’d chosen the opposite labeling scheme, they would go
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Figure 1-10: Three imaging systems (left column, top-to-bottom): no aperture, a
pinhole and a lens. Arrows indicate paths light from the scene takes to a particular
point on the imaging plane. On the right is an arbitrary mask, an illustration of its
discretization and the corresponding transfer matrix.

from lower -left to upper -right. Transfer matrices with diagonals of constancy that go

from upper-left to lower-right are called Toeplitz matrices, and they are well-studied

and have many nice properties which will be helpful for the analysis that follows. A

special class of Toeplitz matrices, called circulant matrices, which will be described

later, have especially nice properties.

So suppose we have a scene 𝑥, an observation 𝑦, and a transfer matrix 𝐴 that

represents how the aperture frame distorts the scene to produce the observation. If

𝑦 = 𝐴𝑥, and we know 𝐴 and 𝑦, what transfer matrices 𝐴 are best? In the absence

of noise, any full-rank transfer matrix 𝐴 should allow us in principle to perfectly

reconstruct 𝑥 = 𝐴−1𝑦. That makes the question of which transfer matrix not very

interesting—it’s a multi-way tie between all full-rank transfer matrices, which make

up the vast majority of possible transfer matrices. This tie is broken in the presence

2The “diagonals of constancy” are the lines you can draw on certain matrices such that all values
on that line have the same value. For a discrete matrix, they can only go in four directions:
up to down, left to right, upper-left to lower-right, and upper-right to lower-left. However, for
a continuous matrix, they could in principle go in any direction. This phenomenon gets discussed
more in Section 3.11.
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of noise.

1.4.2 The probability distribution over scenes

Of course, it’s unrealistic to expect no noise. Every real-world imaging setting will

have at least some noise, and in any case it’s the presence of noise that makes the

problem interesting, and helps distinguish between better and worse transfer matrices,

even if both matrices have the same rank. The scene models described in this section

closely match those of [109], though the explanation here is more detailed.

Adding noise, our new equation becomes:

𝑦 = 𝐴𝑥 + 𝜂

where 𝜂 is another vector representing random noise. Now that we have introduced a

random variable into our equation, we will need to provide a probability distribution

not only for 𝜂 (to describe how the noise is distributed) but also for 𝑥.

Let’s start by discussing the probability distribution of the scene vector, 𝑥. The

simplest model to begin with is to have each entry of the scene be independent and

identically distributed (IID), and drawn from a Gaussian. For example, suppose that

each entry of the scene vector 𝑥 was independently drawn from a Gaussian with a

mean of 𝜇 and a standard deviation of 𝜎.3 To describe this situation, we can write:

𝑥 ∼ 𝒩 (𝜇𝐼, 𝜎2)

Before we can proceed with this model, there are a few problems to worry about.

The first is possible negative entries. Real scenes don’t cast negative light! To solve

this problem, we take 𝜇 ≫ 𝜎. That way, the probability of negative entries will be

vanishingly small. A vanishingly small chance of a negative entry is good enough; it

3This is, in fact, a realistic model in most passive imaging settings. In truth, the amount of light
from a light source is a Poisson distribution, with the intensity of the light source as its mean; but in
the limit of large mean, a Poisson distribution is well-approximated by a normal distribution. Any
ambiently-lit room will have more than enough light to be at the point where normal distribution
is an excellent approximation of the amount of light being emitted by the room’s light sources.
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means that our model’s distance from the real world due to this issue (where negative

entries are impossible) is also vanishingly small.

However, recall that 𝑥 is a discrete vector, but it is meant to represent a continuous

scene of fixed size. We haven’t yet talked about the number of entries in 𝑥, which we’ll

call 𝑛. The variable 𝑛 controls how finely we discretize the scene 𝑥. Ideally, choosing

𝑛 to be larger will mean that our discrete representation of the true continuous scene

will be more faithful (though perhaps at a computational cost). And we might also

hope that once 𝑛 gets large enough, that’s a close enough approximation to the real

scene that increasing it further won’t make the model noticeably better. That’s not

such an unrealistic expectation; after all, if you’re reading these words on a laptop

screen, you’re probably looking at a discrete array of a couple thousand by a thousand

pixels, and that’s plenty enough to give you the impression of a “continuous” image

on your screen. Tripling the number of pixels on your laptop without increasing

the size of your screen probably won’t improve your impression of how “continuous”

your screen looks by much, unless you’re very good at noticing this kind of thing.

We can convert a continuous scene to a discrete one simply by making each discrete

patch of the scene contain the average intensity within that patch, with the discrete

representation become increasingly faithful as the patches get smaller and smaller.

(See Figure 1-8)

There’s a problem with our model of 𝑥 as stated, the probability distribution over

scenes. The problem is this: varying 𝑛 should give us representations of the true,

continuous scene that are varyingly faithful. However, choosing a different value of

𝑛 shouldn’t qualitatively change what the scene looks like. It shouldn’t change the

underlying model of the continuous scene, only our representation of it.

So first, we need to make sure that the total luminance of the scene (in other

words, the total amount of light the scene emits) doesn’t depend on 𝑛. But we said

earlier that each entry of 𝑥 was IID with a mean of 𝜇, so at the moment the expected

total luminance of the scene is 𝑛𝜇. This means that 𝜇 is going to have to depend on

𝑛; in particular, we’ll say that 𝜇 = 𝐽/𝑛, where 𝐽 is a constant that represents the

total luminance of the scene.
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Figure 1-11: Top row: IID scenes with 𝜎 = 1, with three different levels of scene
discretization (𝑛 = 50, 𝑛 = 200, and 𝑛 = 1000). Bottom row: each of those scenes,
pixellated so that they have 50 pixels to a side. As you can see, the pixellated scenes
look different from each other—this is a problem, because how finely we choose to
discretize the scene shouldn’t make a difference to what the scene looks like. This
is why IID scenes of different levels of discretization are qualitatively different from
each other, unlike correlated scenes whose covariance matrices are chosen carefully to
scale properly with discretization level.

Additionally, there is the problem that of each entry of 𝑥 is IID and drawn from a

Gaussian, then instances of 𝑥 for different values of 𝑛 will be discrete representations

of different underlying scenes. See Figure 1-11.

The solution to this issue is for our model of the scene to include correlations

between nearby pixels. We can do this by supposing that the covariance matrix of

the scene includes off-diagonal elements:

𝑥 ∼ 𝒩 (Q, 𝜎2)

The covariance matrix Q captures the correlations between nearby pixels. In real
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scenes, the closer together two pixels are, the more correlated they’ll become. Our

model should be faithful to this as well—and in doing so, we will simultaneously

create the situation we wanted before, in which scenes with different values of 𝑛 look

qualitatively similar to each other, just at different levels of fidelity.

To make things concrete, I’ll provide an example of a scene covariance matrix,

which I’ll call the exponential-decay prior. Recall that an IID covariance matrix

would just be a multiple of the identity, Q = 𝜃
𝑛
𝐼, where 𝜃 is a constant in 𝑛. The

exponential-decay prior is given by Q = F*
𝑛D

⋆F𝑛, where F𝑛 is the normalized DFT

matrix of size 𝑛 and D⋆ is a diagonal matrix with the following entries: 𝑑1 = 1,

𝑑⋆𝑖 = 𝑑⋆𝑛−𝑖+1 = 𝜃
𝑛
𝛽

𝑖−1
⌈(𝑛−1)/2⌉ , 𝑖 = 2, . . . , ⌈(𝑛 + 1)/2⌉, for some frequency decay rate

parameter 0 < 𝛽 < 1. A lower 𝛽 implies a more strongly correlated scene. Scenes

discretized to different levels (varying 𝑛), generated with an exponential-decay prior

covariance matrix, will look qualitatively the same no matter what 𝑛 is—a desirable

property, because it means that no matter what we choose 𝑛 to be, we will be talking

about the different models for the same underlying continuous scene.

See Figure 1-12 for what these covariance matrices look like, and what scenes

generated from them look like.

Note that even if the notion of an IID scene is incoherent as we take 𝑛 → ∞,

an IID scene for a fixed value of 𝑛 can still represent something realistic. It’s just

that if one wants to then represent that same probability distribution over scenes at

a finer level of discretization, it will be necessary to introduce spatial correlations.

Put another way, two IID scene models with different values of 𝑛 can’t represent the

same underlying continuous scene, but they can each individually represent a model

of a continuous scene that makes sense.

1.4.3 Noise

Now that we have a model of the probability distribution over scenes, we need a

model for the probability distribution over the noise. This crucially depends on what

application it is we care about. We’ll try and make the noise model general enough

to apply well to all cases.
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Figure 1-12: Top row: Correlated 50×50 scenes with three different values of 𝛽. 𝛽 = 1
implies an IID scene, with increasing correlation as 𝛽 approaches 0. On bottom: the
covariance matrix with 𝛽 = 10−5. Note that the covariance matrix is 2500 × 2500,
since it describes the covariance of each of the 2500 scene pixels with each other pixel.
The pattern of banding that you see depends on how we choose to flatten the 50× 50
scene array into a 2500-entry vector; here, the scene is flattened in row-major order.
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We distinguish between two different types of noise.

(Ambient noise): This includes noise sources that are independent of the contribution

to the measurements due to the scene of interest. That means that the thing causing

the noise isn’t light coming from the scene; it’s light coming from somewhere else (i.e.

“glare”). We model it as additive Gaussian with variance 𝑊/𝑛, where 𝑊 denotes the

constant net noise power and each pixel absorbs power proportional to its size, giving

rise to the 1/𝑛 factor.

(Shot noise): This includes measurement noise that depends on the contribution

due to the scene of interest. This results in additive Gaussian noise of variance

𝜌 · 𝐽
𝑛

(proportional to the net power of light that goes through the aperture). This

noise model comes from the fact that photon detection in reality follows a Poisson

distribution; as the number of photons detected becomes large, that distribution

will approach a Gaussian distribution with identical mean and variance. Hence, the

variance of the number of detected photons (i.e. the strength of the shot noise) will

be proportional to the intensity of the received light from the scene.

Ambient noise should be more important in passive non-line-of-sight imaging ap-

plications using accidental cameras (in other words, the applications described in

Chapter 4) because in that application, the bulk of the light reaching the observa-

tion will generally come from sources that aren’t the scene of interest, like overhead

lighting or sunlight.

Shot noise should be more important in designer-camera applications using coded

apertures (in other words, the applications most relevant to the considerations de-

scribed in Chapter 3) because in those applications, the camera will presumably be

designed in such a way as to prevent glare.

Now that we’ve established the noise model, we can finally write down the equation

relating the scene to the observation.
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𝑦 = 𝐴𝑥 + 𝜂 (1.2)

𝑥 ∼ 𝒩 (𝜇1,Q) (1.3)

𝜂 ∼ 𝒩 (0, (𝑊 + 𝜌 · 𝐽)/𝑛) (1.4)

Q is the covariance matrix of the scene. 𝜇 = 𝐽/𝑛 as described earlier. 𝐽 is the

total radiance of the scene, whereas 𝑊 is a parameter that describes the level of glare

(the scene-independent noise).
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Chapter 2

Related Work

This thesis studies many aspects of occluder-based imaging, and as such relates to a

lot of different past work in different ways. The first and foremost contribution of the

thesis is the introduction of a mutual-information theoretic framework in Chapter 3

for comparing different imaging systems, but of course this thesis is not the first to

describe such a framework; Section 2.1 briefly describes others. Along the same vein,

Section 2.2 describes past work in coded-aperture imaging—which is most relevant,

once again, to Chapter 3, because implicit in the study of occluder optimization is the

assumption that you are designing your occluder, and can choose it to be whatever

you like.

Next, Section 2.3 describes the past work in non-line-of-sight imaging, both active

methods and passive. Section 2.4 describes other work that make use of the convolu-

tional nature of occlusion under certain conditions, a concept which is central to the

understanding of occlusion in this thesis. Finally, Section 2.5 describes recent work

in the field of non-line-of-sight (NLoS) imaging which makes use of machine-learning

techniques to improve upon the state of the art. Naturally, all three of these sections

relate more closely to Chapter 4, which is about opportunistic occluder-based imaging

systems, whose primary purpose is in NLoS imaging.
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2.1 Past frameworks for comparing imaging systems

There has been extensive past work studying the benefits of nontraditional cameras,

including coded-aperture cameras [82, 114, 40, 41, 66], plenoptic cameras [2, 76] and

phase plates [17, 37]. The focus of this thesis is on occluder-based cameras in particu-

lar, but the framework is flexible enough to handle a wide variety of different possible

imaging systems.

This work is not the first to try to build a common framework with which to

compare different imaging systems. Levin et al. [67] was one of the first pieces of

work to compare imaging performance across different modalities (where a “modality”

here means a lens-based camera, an occluder-based camera, a plenoptic camera, etc.)

analytically. The core idea of [67] is to compare the error in the reconstructed 4D

light-field, given a 2D observation at the sensor, across each modality. A “light-field”

here is defined as a 2D view of the scene, as seen from each point on a 2D sensor

array (hence the light field is a 2× 2 = 4 dimensional array). See Figure 3-29.

Naturally, this approach requires a prior. Without any prior (or, equivalently, a

uniform prior over all possible light-fields), different, non-degenerate imaging systems

will have equivalent performance; all of them will give an equally underconstrained

view of the light-field. Thus, that the metric of [67] will give very different results

depending on what prior you choose.

Fortunately, [67] also addresses the issue of light-field priors in detail. While

past work [46, 85] use a traditional Gaussian (or fat-tailed Gaussian) prior on light-

fields, the work of [67] uses a mixture-of-Gaussians prior, which allows them to better

model the special structure of most light-fields. Light-fields are unlike ordinary spaces

extrapolated into four dimensions, because variance along the “disparity slope” of a

light-field is usually much lower than the spatial variance. See Figure 2-1 for a brief

explanation of this concept.

This thesis mostly bypasses this issue altogether, as most of the analysis here is

restricted to planar reconstructions. This does mean that the framework presented
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Figure 2-1: This figure is due to the authors of [67]. Top: A 2D light-field of a 1D
scene. The horizontal axis indicates space in the scene, while the vertical axis indicates
spatial movement along the sensor array. Bottom: the green arrows, inferred by the
system of [67], point in the direction of the estimated disparity slope. Along them,
the variance of the light-field is very small. This phenomenon is due to the fact that
a light-field is simply the scene, seen from every possible sensor on the sensor array;
as you move your vantage point along the sensor array, the scene will be nearly the
same, except shifted.
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in this thesis is likely to be a worse choice that that of [67] if the application under

consideration involves depth perception, for example (which is unfortunate, since

resolving depth is one of the many applications of coded-aperture cameras, see [66,

114]). The framework proposed by this thesis can be adapted to light-fields, or other

situations where depth is relevant (as covered by Sections 3.15 and 3.16), but it’s not

its primary purpose.

However, by focusing not on light-fields but on planar reconstructions, the frame-

work proposed by this thesis has a few advantages. Firstly, its results are much less

dependent on the choice of prior over scenes. In particular, although the results vary

somewhat based on how strong the level of scene correlation is, the exact pattern

of scene correlation matters very little. Additionally, the results of this thesis are

expressed in terms of mutual information rather than mean-squared error (a choice

whose implications are explored in Section 3.10). Ordinary photography produces

planar reconstructions, and so planar reconstructions were the main focus of this

thesis as well.

Another framework for computational imaging was presented by [48]. Unlike this

thesis, the focus of their work was on active methods for computational imaging.

Moreover, the authors didn’t directly compare the different modalities. They did,

however, introduce a particular set of notation common to the different methods they

studied.

2.2 Coded-aperture imaging

Coded-aperture imaging is the study of imaging using a camera with a known pattern

of occlusion, either in combination with a lens, or without any lens at all. Among the

earliest and simplest instances of coded-aperture imaging are those based on pinhole

structure [41, 111] and pinspeck (anti-pinhole) structure [31], though more complex

structure is often used. Other methods involve cameras that uses a mask in addition

to a lens to, e.g., facilitate depth estimation [66], deblur out-of-focus elements in an

image [114], enable motion deblurring [82], and/or recover 4D lightfields [102]. Some
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forgo the lens altogether to decrease costs and/or meet physical constraints [38] [9],

or for applications that use wavelengths of light unsuitable for a lens, such as nuclear

medicine imaging [113]. More generally, a number of rich extensions to the basic

methodology have been developed; see, e.g., [18] and the references therein. A focus

of this thesis is spectrally flat sequences, also known as uniformly redundant arrays.

These arrays have a rich history in computational imaging, both for coded-aperture

cameras [47, 40, 41], and in tomography [27, 23].

Perhaps the earliest analysis in this area is that of [111], which studies the res-

olution limits of pinholes of various sizes. From this perspective, this thesis can

be viewed as extending and generalizing such analysis to a broader range of coded

aperture systems. The analysis of [111] is easily extended to an NLoS setting [32, 97].

Coded apertures can take on a variety of forms. Although this thesis concerns itself

only with square occlusion grids for 2D occluders, hexagonal grids exist which achieve

all of the desirable properties of coded apertures [55] (see Figure 2-2). Moreover,

although many coded-aperture systems use a mask in addition to a lens, this thesis

primarily analyzes systems that use only a mask and no lens (though there is no

reason why the framework described in Chap 3 can’t be used to analyze systems that

include both a lens and a mask).

2.3 Non-line-of-sight imaging

Occluder-based imaging methods, especially methods that make use of accidental

occluders, often have non-line-of-sight imaging (or NLoS imaging) as their primary

application. Non-line-of-sight imaging is the study of imaging objects that are out of

direct view.

Active Methods

Many approaches to NLoS imaging involve a combination of active laser illumination

and time-of-flight cameras [63, 88, 107]. These methods, called active methods, work

by illuminating a point on the visible region that projects light into the hidden scene.
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Figure 2-2: A hexagonal grid, due to [55], which achieves spectral flatness, making it
potentially desirable for coded-aperture imaging systems.
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Then, structure in the scene can be inferred from the time it takes for that light to

arrive at detectors [58, 89, 96, 98]. These methods have been used to count hidden

people [106], or to infer location, size and motion of objects [43, 57, 78].

Passive Methods

Other recent approaches, called passive methods, rely on ambient light from the hid-

den scene or elsewhere for inference. These approaches range from using naturally-

occurring pinholes or pinspecks [32, 97] to using edges [16] to resolve the scene. Passive

methods that make use of arbitrary occluders can be divided into calibrated meth-

ods [12, 8] and uncalibrated methods [110, 6], with the former algorithms requiring

a calibration stage in which careful measurements of the configuration are taken,

and the latter not requiring such a stage. In general, complex occluders or imaging

elements are easily handled by the former class of methods, but not by the latter

class.

Passive methods also sometimes make use of infra-red-spectrum (IR-spectrum)

light [70] or even higher-wavelength light [3] to sense emanations created by the scene

elements of interest themselves for non-line-of-sight imaging. The advantage provided

by IR-based methods over methods using visible light is twofold: firstly, there is

often light coming directly from the objects of interest in the scene, rather than as

a secondary reflection off of elements in the scene from an overhead light, or the

Sun. Secondly, higher-wavelength-light reflections are closer to being specular than

Lambertian on a matte wall, relative to visible-light reflections. (See Section 1.2 for

more explanation of what’s meant by this.) However, longer-wavelength light limits

the resolution of potential reconstructions. This gives shorter-wavelength light more

potential to yield high-resolution reconstructions; it should be admitted, however,

that the resolution of state-of-the-art passive NLoS reconstructions using visible light

remains far below that potential [110, 6, 16, 97].
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2.4 Convolutional models of occlusion

Accurate modeling of occlusion and light transport is a core problem in computer

graphics [112, 19, 105, 5]. One imporant difference between the study of occlusion

in the field of computer graphics and the field of computational imaging is that the

former is more interested in forward models (i.e. understanding what the observation

will look like, given the objects in the scene), whereas the latter is generally interested

both in forward and backward models (backward models meaning inferring the objects

in the scene from the observation).

Though the one major issue in graphical applications is hierarchical culling, i.e.

knowing which occluding layer to query in order to correctly display the environ-

ment [13, 35], which is not a problem of as much interest in the field of computational

imaging, there is nevertheless important overlap between the two fields. In particular,

a convolutional model of occlusion is common to both fields [91, 10, 109].

Recently, it was shown by that Ahn et al. [4] that active, time-of-flight methods

can also be modeled as using a convolutional operator in their forward model, leading

to computational savings.

2.5 Computational imaging using machine learning

Chapter 4 describes a variety of non-line-of-sight imaging methods. None of the

methods described, save for that in [6], use machine learning. As machine vision

techniques become increasingly powerful, however, machine-learning techniques are

becoming more popular as a means to automatically infer the forward and backward

models. They are of particular interest for blind problems, such as the blind occluder-

based recovery problem of [110] or the blind clutter-based recovery problem of [6].

The work of [6] uses the Deep Image Prior, a concept originally due to Ulyanov

et al. [100]. The “Deep Image Prior” is the remarkable discovery that due to their

structure, convolutional neural nets inherently impose a natural-image-like prior on

the outputs they generate, even when they are initialized with random weights and
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without any pretraining. Since the publication of [100], there have been several

other papers that make use of the Deep Image Prior for a variety of applications,

including compressed sensing [101], image decomposition [42], denoising [28], and

image compression [54].

Aittala et al. [6] use the Deep Image Prior to characterize the prior over transfer

matrices and over scenes—somewhat analogously to the work of Levin et al. [67],

because the core idea is introduced in order to better describe an object for which an

ordinary Gaussian spatial prior would be inadequate (in the former case a transfer

matrix, in the latter case a light field).

Other recent non-line-of-sight methods to incorporate general-purpose learning

algorithms are [99], which uses a Monte Carlo rendering phase first to estimate facet

locations, followed by a stochastic gradient descent (SGD) phase to synthesize those

estimates. Another such result is [61], which uses an iterative backprojection algo-

rithm to improve reconstructed estimates of 3D scenes.

69



70



Chapter 3

Analysis and Optimization of

Aperture Frames

The bulk of this chapter is concerned with which aperture frames (and which corre-

sponding transfer matrices) are best under which conditions; “best,” of course, requires

a metric to optimize over, and throughout most of this chapter I use maximizing mu-

tual information as this metric. Section 3.8 discusses minimizing mean-squared error

as a possible metric instead, and within that section, Subsection 3.10 explicitly com-

pares and contrasts the two metrics. (The one-sentence summary of Subsection 3.10

is that switching between these two metrics doesn’t change much.)

3.1 Mutual Information

Suppose that as described previously, we have:

𝑦 = ̃︀A𝑥 + 𝜂 (3.1)

𝑥 ∼ 𝒩 (𝜇1,Q) (3.2)

𝜂 ∼ 𝒩 (0, (𝑊 + 𝜌 · 𝐽)/𝑛) (3.3)

Here, ̃︀A is the transfer matrix, 𝑥 and 𝑦 are the scene and observation, respectively,
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Q is the covariance matrix of the scene, 𝑊 and 𝐽 are constants parametrizing the

strength of the ambient and shot noise, respectively, and 𝜌 is the transmissivity of

the aperture frame. (Recall that the ambient noise is noise due to nuisance light

sources, like glare from the Sun on your computer screen, and shot noise is noise due

to illumination from the scene.)

Then, the mutual information (MI) between the measurements 𝑦𝑗, 𝑗 ∈ [𝑛] and the

unknowns 𝑓𝑖, 𝑖 ∈ [1, 𝑛] of the imaging problem for model 3.3 is:

ℐ = log det

(︂
1

𝜎2
̃︀AQ̃︀A𝑇 + I

)︂
,

where the noise variance 𝜎2 = (𝑊 + 𝜌 · 𝐽)/𝑛.

We’ll define 𝐴 = 𝑛̃︀A, so we can equivalently write:

ℐ = log det

(︂
1

𝑛2𝜎2
𝐴Q𝐴𝑇 + I

)︂

3.2 High SNR, IID scene, Occluding mask

In this section, I will go into great detail about a regime that appears unphysical,

but gives us a lot of insight into a variety of different important regimes. It also has

important mathematical implications.

Consider the mutual information equation from the previous section:

ℐ = log det
(︀

1
𝜎2
̃︀AQ̃︀A𝑇 + I

)︀
Suppose we make the following assumptions:

1. The scene is IID, Q = 𝑘𝐼.

2. The SNR is very high, 𝜎 ≪ 𝑘, so we can ignore the identity term.

3. The aperture frame only occludes light or lets it through; it doesn’t redirect the

light.

4. The aperture frame is halfway in between the scene and observation plane.

5. The scene, aperture frame, and occluder are all planar.
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6. The observation plane is diffuse.

7. The paraxial approximation applies.

Suppose now that we want to find the best possible aperture frame under these

conditions, i.e. we want to find the best possible transfer matrix that satisfies the con-

straints above. Given the third point, we may call this aperture frame an “occluder,”

since it only occludes or doesn’t occlude light. What does this transfer matrix look

like? What are its elements? Each element ̃︀A𝑖𝑗 corresponds to the amount of light a

little piece of the scene 𝑥𝑖 will contribute to a little piece of the scene 𝑦𝑗. Obviously,

when the occluder blocks the light from getting from 𝑥𝑖 to 𝑦𝑗, ̃︀A𝑖𝑗 = 0. What about

when that doesn’t happen? We can look at Section 1.2 to remind ourselves of what

the Lambertian BRDF is. Because we are using the paraxial approximation (see our

last assumption), we’ll have:

̃︀A𝑖𝑗 =
1

2𝜋𝑑𝑛
(3.4)

in flatland, and:

̃︀A𝑖𝑗 =
1

4𝜋𝑑2𝑛
(3.5)

in a 3D world. Here, 𝑑 is the distance between scene and observation. The important

thing about Formulas 3.4 and 3.5 is their dependence on 1/𝑛, which is due to the

fact that as we discretize more and more finely, each little piece of the observation

will get smaller and smaller (and therefore get proportionally less light). In fact, if

we ignore the whole rest of the formula, then we get ̃︀A𝑖𝑗 = 1/𝑛. Doing so ignores

a constant; while it will cause us to get the wrong mutual information in the real

world (by an amount of 2𝑛 log
(︀

1
4𝜋𝑑2

)︀
), it won’t change the relative ranking of which

occluders are best, which is what we’re really interested in. And if we’re willing to

ignore that constant—or subsume it into 𝜎, which is also a constant—then something
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Figure 3-1: A once-repeating occluder, with its associated transfer matrix. As is
apparent, the transfer matrix is circulant, with each row of the transfer matrix being
a rotation of the pattern that is repeated once. See Figure 1-9 for a reminder on how
the transfer matrix is created from an aperture frame.

nice happens: given that ̃︀A’s entries will all be either 1/𝑛 or 0, 𝐴 will be a binary

matrix! (A binary matrix is one whose entries are all either 1 or 0, and 𝐴 = 𝑛̃︀A.)

This lets us express the mutual information in terms of a binary matrix, which is

tremendously convenient analytically; we’ll be using this fact a lot in the sections

that immediately follow.

Now, what transfer matrix maximizes the mutual information? Naturally, it will

be whichever transfer matrix maximizes log det
(︀

1
𝜎2𝐴Q𝐴𝑇/𝑛2 + I

)︀
, which given our

assumptions is equivalent to maximizing the determinant of 𝐴𝑇𝐴. This corresponds

to maximizing the product of the norms of the transfer matrix’s singular values, since

each eigenvalue of 𝐴𝑇𝐴 corresponds to the norm squared of one of the eigenvalues of

𝐴.

If we further assume that 𝐴 is circulant, not just Toeplitz, then that tells us

that in fact the singular values of ̃︀A have the same norm. This is a convenient

assumption that doesn’t necessarily match reality. Under which physical conditions

will the transfer matrix actually be circulant rather than Toeplitz? This is somewhat

unintuitive, but it corresponds to the scenario in which the occluding pattern of the

aperture frame repeats itself once. Once is enough! See Figure 3-1.

Assuming that the transfer matrix is circulant, not just Toeplitz, is tremendously
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convenient. It means that we can compute the mutual information between the

scene and the observation extremely efficiently, since the eigenvalues 𝜆𝑖 are given by

the Fourier transform of the first row of the transfer matrix, for which the time to

compute is log-linear in 𝑛 (as opposed to 𝑂(𝑛3) for a general determinant). And since

|𝜆𝑖| = |𝜎𝑖|, that gives us all the information we need to compute log det(𝐴𝐴𝑇 ).

But realistically speaking, can we restrict ourselves just to circulant transfer ma-

trices rather than Toeplitz ones? After all, occluders that give rise to that kind of

transfer matrix make up only a very small fraction of all possible occluders. The an-

swer is that it depends on what you want, but if you’re only concerned with finding

the best possible occluder, given all the assumptions we made previously, restrict-

ing your attention to circulant transfer matrices costs you very little. The following

section explains why that is.

3.2.1 Hadamard’s Bound

The purpose of this section is to justify the following bound on all {0, 1} matrices 𝐵.

This material also appears in [20].

| det𝐵| 6 2−𝑛(𝑛 + 1)(𝑛+1)/2, (3.6)

In this section, by a binary matrix we mean a matrix whose elements are in one

of the sets 𝑆01 := {0, 1} or 𝑆±1 := {−1, 1}. It will be clear from the context which of

these two cases is being considered. A binary circulant is a circulant matrix whose

elements are in 𝑆01 or 𝑆±1.

There is a natural correspondence between the integers {0, 1, . . . 2𝑛 − 1} and the

binary circulant matrices of order 𝑛. If 𝑁 ∈ {0, 1, . . . , 2𝑛 − 1} has the representation

𝑁 =
𝑛−1∑︁
𝑗=0

2𝑛−1−𝑗 𝑏𝑗,

so may be written in binary as 𝑏0 . . . 𝑏𝑛−1, we associate 𝑁 with circ(𝑎0, . . . , 𝑎𝑛−1),

where 𝑎𝑗 = 𝑏𝑗 in the case of 𝑆01, and 𝑎𝑗 = 2𝑏𝑗 − 1 in the case of 𝑆±1.
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The maximal determinant problem is concerned with the maximal value of | det𝐴|

for an 𝑛 × 𝑛 binary matrix 𝐴. The Hadamard bound [49] states that, in the case of

binary matrices 𝐴 over {±1}, we have

| det𝐴| 6 𝑛𝑛/2. (3.7)

Moreover, Hadamard’s inequality is sharp for infinitely many 𝑛, for example powers

of two or 𝑛 of the form 𝑞+1 where 𝑞 is a prime power and 𝑞 ≡ 3 (mod 4) (Paley [77]).

There is a well-known connection between the determinants of {0, 1}-matrices of

order 𝑛 and {±1}-matrices of order 𝑛 + 1. This implies that an (𝑛 + 1) × (𝑛 + 1)

{±1}-matrix always has determinant divisible by 2𝑛. See [75] for details. We give

an example with 𝑛 = 3, starting with an 𝑛× 𝑛 binary matrix 𝐵 and ending with an

(𝑛 + 1)× (𝑛 + 1) {±1}-matrix 𝐴, with det𝐴 = 2𝑛 det(𝐵).

𝐵 =

⎛⎜⎜⎜⎝
1 0 1

1 1 0

0 1 1

⎞⎟⎟⎟⎠ double

−→

⎛⎜⎜⎜⎝
2 0 2

2 2 0

0 2 2

⎞⎟⎟⎟⎠

border

−→

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

0 2 0 2

0 2 2 0

0 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎠
subtract

−→
first row

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ = 𝐴.

The doubling step is the only step where the determinant changes, and there it is

multiplied by 2𝑛.

Thus, Hadamard’s bound (3.7) gives the bound

| det𝐵| = 2−𝑛| det𝐴| 6 2−𝑛(𝑛 + 1)(𝑛+1)/2, (3.8)

which applies for all {0, 1}-matrices 𝐵 of order 𝑛. We shall refer to both (3.7) and

(3.8) as Hadamard’s inequality, since it will be clear from the context which inequality
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is intended.1

3.2.2 Binary Circulants Achieving Hadamard’s Bound

Now we get to the reason that, if you’re only concerned with finding the best possible

occluder, restricting your attention to circulant transfer matrices costs you very little.

The reason is that there are several constructions for binary circulant matrices that

achieve Hadamard’s bound—this despite the fact that Hadamard’s bound is general

for all binary matrices, not just circulant ones! It is very lucky that among the binary

circulant matrices, which comprise a tiny subset of all binary matrices, that some of

those binary circulant matrices achieve determinants as large as any from all binary

matrices of the same size. I’ll call these remarkable binary circulants “determinant-

maximizing binary circulants,” or DMBCs.

There are four known constructions for DMBCs. All four of these constructions

yield a matrix whose eigenvalues are all equal, save for the first; the first eigenvalue

has a value of (𝑛 + 1)/2, and every other eigenvalue has a value of
√
𝑛 + 1/2. The

dot product of any pair of rows in a DMBC from one of these four constructions

is (𝑛 + 1)/4. In each construction, there are (𝑛 + 1)/2 elements with value 1 and

(𝑛− 1)/2 elements with value −1. It follows from that last sentence that if you take

one of these constructions and replace all the 0 entries with −1 entries to yield a

{1,−1} matrix, the dot product of any pair of rows will be −1.

Thanks to this last point, DMBCs have a close relationship to Hadamard matrices.

Hadamard matrices are {1,−1} matrices (not necessarily circulant) for which every

pair of rows is orthogonal, that is, the dot product of any pair of rows is 0. (The same

is true of pairs of columns.) Any size-𝑛 DMBC from one of these four constructions

can be easily adapted to create a size-(𝑛 + 1) Hadamard matrix as follows: replace

all the 0 entries with −1 entries in the DMBC, and then add a first row and a first

column of all −1 entries. The dot product of the first row with any other row will be

0 (because every other but the first is exactly half 1 entries and half −1 entries). The

1In fact, Hadamard in [49] proved a more general inequality than (3.7), and as far as we are
aware he never stated (3.8) explicitly. A simple proof of (3.7) is given by Cameron [21].
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dot product of every row other than the first with any other row other than the first

will also be 0 (because the dot product of each pair of rows before adding the extra

row and column was −1, and then adding the extra column adds an extra 1 to the

dot product). Hence each size-𝑛 DMBC yields a size-(𝑛 + 1) Hadamard matrix.

Hadamard matrices of this kind are known in the literature as “Hadamard matrices

with circulant core.” Here is more detail about each of the known constructions:

Theorem 1 (Hadamard circulant core construction). A Hadamard matrix of order

𝑛 + 1 with circulant core of order 𝑛 exists if

(1) 𝑛 ≡ 3 (mod 4) is a prime;

(2) 𝑛 = 𝑝(𝑝 + 2), where 𝑝 and 𝑝 + 2 are prime;

(3) 𝑛 = 2𝑘 − 1, where 𝑘 is a positive integer; or

(4) 𝑛 = 4𝑘2 + 27, where 𝑘 is a positive integer and 𝑛 is a prime.

Proof. Case (1) is due to Paley [77]; case (2) is due to Stanton and Sprott [92] and

also Whiteman [104]; case (3) is due to Singer [90]; and case (4) is due to Hall [50,

Theorem 2.2].

Hall [50, p. 980] remarks that case (4) is subsumed by case (1), since 4𝑘2 + 27 ≡

3 (mod 4), but we mention case (4) since Hall’s construction is different from that of

Paley.

We do not know if the list given by Theorem 1 is exhaustive. The exhaustive

search given in [20] shows that for 1 6 𝑛 6 52, only those 𝑛 given by Theorem 1 can

provide a Hadamard matrix of order 𝑛 + 1 with a circulant core. Also, a circulant

{0, 1}-matrix of order 𝑛 6 52 can achieve the upper bound (3.8) if and only if 𝑛 6 4

or 𝑛 satisfies condition (1), (2) or (3) of Theorem 1.

This gives us the four known constructions for DMBCs. Note that the fourth

construction is completely redundant with the first, since any prime 𝑛 such that

𝑛 = 4𝑘2 + 27 where 𝑘 is a positive integer is guaranteed to also be prime and con-

gruent to 3 mod 4! It is only considered a separate construction because it yields an
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additional DMBC beyond the one given by the first construction (and isn’t a trivial

transformation). The fourth construction is therefore of no additional practical value

to us: we can’t use it to create a mask that images at any level of resolution not

already available to us.

It should be noted that sequences from all four of these constructions have a “flat

spectrum,” meaning that the magnitudes of all of the frequencies of each sequence have

a value of
√
𝑛 + 1/2 save the first, which has a magnitude of (𝑛 + 1)/2. This means

that these four constructions have identical performance; they differ only in what

values of 𝑛 they exist for. These sequences, which are sometimes called “spectrally-

flat sequences” or “uniformly redundant arrays,” have a rich history in coded-aperture

imaging [41, 47, 40] and tomography [23, 27, 23]. It’s well-known that these sequences

are good for coded-aperture imaging; moreover, it’s reassuring that they come out

on top in our mutual-information-based framework (provably under the simplified

conditions of this section, empirically under the more complex conditions of later

sections).

It’s worth giving more detail about the first construction, since it’s by far the most

common one over the real numbers; there are many more primes congruent to 3 mod

4 than there are powers of 2 or products of twin primes! Indeed, it’s common enough

that no matter what level of resolution you need, there will be a reasonably suitable

mask at a nearby resolution level, thanks to the first construction.

The first construction, due to Paley, is as follows:

If 𝑛 is prime and congruent to 3 mod 4:

𝑥𝑖 =

⎧⎪⎨⎪⎩1 if
(︀
𝑖
𝑛

)︀
= 0 or 1

0 otherwise

Here,
(︀
𝑖
𝑛

)︀
is the Legendre symbol. It’s equal to 0 if 𝑖 is a multiple of 𝑛, and is

otherwise equal to 1 if 𝑖 is a quadratic residue (meaning a perfect square) modulo 𝑝

and −1 if not. It’s very easily computed, since by Euler’s criterion, we have, for any

𝑎 and any prime 𝑝:
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Figure 3-2: These are the first few Paley sequences, i.e. on-off patterns whose spec-
trum is flat and that yield a DMBC (determinant-maximizing binary circulant) when
used as the first row of a circulant matrix. On the left is 𝑛, the number of on/off
patches used. Note that for a Paley sequence to exist, 𝑛 must be prime and congruent
to 3 mod 4.

(︂
𝑎

𝑝

)︂
≡ 𝑎(𝑝−1)/2 mod 𝑝

Figure 3-2 shows the first few sequences of the Paley construction. As you can

see, it has a very “random-looking” appearance. Of course, the construction is very

much non-random; what gives it that appearance, though, is its non-self-repeating

character. All four constructions, in fact, repeat themselves as little as possible.

That’s not surprising from the point of view of wanting to keep the sequence’s Fourier

spectrum flat, of course. But the way I like to think of it from an imaging point of

view is that these sequences try to make the different possible shadows cast by a

light source in a variety of different locations as different as possible from each other.

A light source at each possible point in the (implicitly planar) scene will yield a

different rotation of the occluding sequence, so the best sequences for distinguishing

light sources at different locations will be sequences that are orthogonal to their own

rotations. See Figure 3-3 for an explanation of this phenomenon.

In any event, because DMBCs achieve the maximal possible mutual information
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Figure 3-3: Paley sequences, the “optimal” occluding masks that be constructed from
them, and the transfer matrices associated with those masks. Left: we consider the
Paley construction applied to the case 𝑛 = 11. The Paley construction gives us a
binary sequence, with 1’s (white, or “on”) element 𝑖 of the sequence if 𝑖 is 0 or a
quadratic residue modulo 𝑛, and 0’s (black, or “off”) for elements 𝑖 of the sequence
if 𝑖 is not a quadratic residue modulo 𝑛. From this sequence we get an occluding
mask, which consists of the sequence twice; every element is repeated exactly once
except for the 0 element, which is in the center. Given the paraxial approximation
and assuming the occluder is halfway in between observation and scene, an impulse
scene will cast a shadow that corresponds to half the occluder, which is some rotation
of the original Paley sequence. Right: sequences given by the Paley construction (as
well as any other flat sequence) are as different as possible from their own rotations;
this means that depending on where the impulse light source is in the scene, the cast
shadows will be as different as possible. This makes reconstructing the location of a
point light source, given a cast shadow, as easy as possible.
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of any binary matrix of their size, the fact that we restricted our attention to circu-

lant matrices rather than considering all possible Toeplitz matrices doesn’t matter,

assuming the value of 𝑛 we’re using admits the existence of a DMBC. We therefore

know that the once-repeating occluder suggested by that DMBC outperforms all other

possible occluding aperture frames, including ones that don’t repeat themslves.

3.3 Maximizing binary determinants for all values of

𝑛

The problem of maximizing the determinant of a binary circulant matrix for general 𝑛

is much harder. In Brent and Yedidia [20], a method is described for finding maximal

determinants of binary circulant matrices at all values of 𝑛, but the method described

is essentially brute-force, with enough optimizations to make it substantially faster

than a naive algorithm, but nothing that changes the exponential base of its runtime.

One might expect a greedy algorithm for optimizing binary sequences to perform

well in practice as 𝑛 gets large. In fact, that is not the case. Figure 3-4 compares the

performance of four metrics: the best possible performance as given by Hadamard’s

upper bound (see Equation 3.8), the best possible performance at that value, as veri-

fied by an exhaustive search (as detailed in Computation of Maximal Determinants),

the performance of the outcome of a greedy search, and the performance of a binary

sequence chosen uniformly at random.

For completeness’ sake, I’ll briefly describe the greedy search algorithm used here.

The algorithm is simple: check a bit in the sequence, chosen uniformly at random.

If flipping that bit would improve the performance of the binary sequence, the bit is

flipped, otherwise it isn’t; this process is repeated until 3𝑛 consecutive steps go by in

which no bit is found which would improve the sequence. This algorithm is analogous

to the Metropolis-Hastings algorithm, without rejecting candidate moves.

It is plain from Figure 3-4 that the greedy algorithm does not keep pace with the

optimal possible performance, even asymptotically—in fact, it’s unclear if even the

82



best possible sequences at each value of 𝑛 without a known DMBC asymptotically

keep pace with Hadamard’s upper bound. This is a disappointing result. The failure

of greedy algorithms to do nearly as well as what is possible has to do with how

jagged the space being searched is; the space of determinants of binary circulants is

full of local optima, most of which fall well short of the global optimum.

To make this more concrete, I introduce here the concept of a satellite. A satellite

of a local optimum is a point in a space that will lead to that local optimum if a greedy

search is started with the satellite as the starting point. We can closely estimate how

many local optima exist by performing many greedy searches to estimate how many

satellites per local optimum there are in the space. The more satellites each local

optimum has, the fewer local optima must exist. Because there can be only one local

optimum per satellite, in fact, if there are 𝑓(𝑛) satellites per local optimum and 𝑔(𝑛)

total vertices (in this case, binary sequences) in the space to be searched, that implies

that there are 𝑔(𝑛)/𝑓(𝑛) local optima—and that an algorithm that uses repeated

greedy searches, initialized at random locations in the space, will take 𝑂(𝑔(𝑛)/𝑓(𝑛))

time, multiplied by the length of a search. (In this case, greedy searches empirically

take linear steps and quadratic time, though it’s hard to prove that this is guaranteed.)

Using sampling for small values of 𝑛, it’s possible to find out how many satellites

per local optimum there are in this space. In this case, it seems that the number

of satellites grows at a pace of about 1.22𝑛, implying that a greedy-search-based

algorithm should be able to achieve an asymptotic runtime of 𝑂̃(1.78𝑛) (meaning

that the base of the exponent is 1.78, and ignoring subexponential terms)—slightly

better than the brute-force algorithm, but not much. See Figure 3-5.

3.4 Maximizing the mutual information of correlated

scenes

One useful concept that in the sections that follow is the “effective resolution” (or

“effective pixel count”) of an imaging system. Given an SNR and a probability dis-
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Figure 3-4: Two plots of the ratio of the performance of various sequences to
Hadamard’s upper bound, 𝑈01(𝑛) = 2−𝑛(𝑛 + 1)(𝑛+1)/2. The left plot includes the
best possible binary matrix for each value of 𝑛 (note that the best possible binary
matrix achieves Hadamard’s upper bound when a known construction for a DMBC
exists, and not otherwise). The right plot extends the plot up to higher values of 𝑛,
but can’t include the performance of the best possible binary matrix, because it takes
too long to find for values of 𝑛 much greater than 50.

Figure 3-5: The number of satellites per local optimum, as estimated by sampling,
including a line of best fit. This suggests approximately 1.22𝑛 satellites per local
optimum in the space of maximal determinants of binary sequences, implying a simple
search algorithm should be able to find the global optimum in 𝑂(𝑛21.78𝑛) time.
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tribution over scenes, the effective resolution will be the best possible reconstruction

resolution provided by any occluding aperture frame. We can approximate the ef-

fective resolution of an imaging system by considering which scale of spectrally-flat

occluder will perform best; see Figure 3-6. This concept is related to, but not the same

as, the Nyquist rate (which describes the minimum rate at which a finite bandwidth

signal needs to be sampled to retain all of the information). The effective resolution

of an imaging system is different because it takes the entire imaging system into ac-

count; for example, considering where the aperture frame is positioned relative to the

scene and observation plane (as we will do in a later section) will change the effective

resolution of the imaging system.

Figure 3-6 is a plot of the approximate number of effective pixels in the system,

as a function of the SNR and 𝛽 (i.e. the level of correlation in the scene).

3.5 Using the best URA as a proxy for the best oc-

cluder

As an aside, the sort of plot shown in Figure 3-6 is one I will show a lot, in that section

as well as future ones. While the best occluder chosen from among only spectrally-flat

masks at various scales is of course not guaranteed to be the best occluder overall, it

does a surprisingly close impression of the best occluder overall, as well as giving an

easily-digestible sense of the effective resolution of the reconstruction that you can

expect.

How close does the best spectrally-flat mask come to the overall occluder in per-

formance? Because we can only estimate the optimal occluder for small values of 𝑛,

I’ve duplicated Figure 3-6 but with 𝑛 = 15 in Figure 3-7. Figure 3-7 additionally com-

pares the performance of the best spectrally-flat occluder from among the four shown

with the performance of the actual best occluder under each set of conditions, found

by exhaustive search. As can be seen, the difference in performance is non-existent

for both the low-SNR/high-correlation and the high-SNR/low-correlation regimes,
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Figure 3-6: Left: the approximate effective pixels-per-side count of scenes generated
with a given level of correlation (𝛽) and under a given signal-to-noise ratio (SNR).
𝑛 = 1023. As expected, more correlated scenes and noisier scenes both have fewer
effective pixels. Note, however, that even highly correlated scenes can have high
effective pixel counts if the SNR is high enough, but if the SNR is low enough the
scene will always have a low effective pixel count. Effective pixel count was estimated
by choosing which of the nine spectrally-flat masks shown on bottom yielded the
highest mutual information. Right: masks corresponding to each of the effective
scene pixel counts. Note that these masks repeat themselves once in each dimension,
so each mask is 2𝑛 − 1 × 2𝑛 − 1 if the effective pixel count is 𝑛. This is due to the
phenomenon described in Figure 3-3.
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since the empty occluder and the finest spectrally-flat occluder are optimal in each

of those regimes, respectively. Only in the intermediate regimes is one of the four

spectrally-flat occluders not optimal, and even in those, the difference between those

and the true optimal occluder is miniscule (note the scale of the difference plot!).

For larger values of 𝑛 (𝑛 = 127), we can compare the performance of picking the

best spectrally-flat occluder from among 7 spectrally-flat occluders at different scales

to the performance achieved by an occluder found via a greedy search over occluders.

See Figure 3-8.

3.6 Reconstructing with a prior

The problem of reconstructing a scene from an observation, given a known scene

covariance matrix 𝑄 and a known SNR term 𝜎, has a simple MSE solution:

𝑥̂ = 𝜎(𝜎𝐴𝑇𝑄𝐴 + 𝐼)−1𝐴𝑇𝑦,

where 𝑦 is the observation, 𝑥̂ is the reconstructed scene, 𝐴 is the known transfer

matrix, 𝑄 is the known covariance matrix, and 𝜎 is the known SNR. In practice, 𝑄

and 𝜎 may not be known; they can be guessed, either through trial and error (to

produce the best-looking reconstruction) or estimated.

Figure 3-9 shows a comparison with and without a non-identity covariance matrix

𝑄, which I will also refer to as inverting with or without a prior, respectively. As can

be seen, the effect of including a non-identity 𝑄 (𝛽 = 0.1, using the exponential-decay

prior explained in Section 1.4.2) is to reduce the spatial variation in the reconstruction.

3.7 Results from Analysis and Optimization of Aper-

ture Design in Computational Imaging

The following sections use material from [109]. They are meant to summarize the

results of that paper in a way that will be familiar to a reader of this thesis.
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Figure 3-7: Top left: the approximate effective pixels-per-side count of scenes gen-
erated with a given level of correlation (𝛽) and under a given signal-to-noise ratio
(SNR). Alternately, the plot shows which of the masks shown in the top right is
optimal, assuming you are forced to choose one of those four. Top right: masks corre-
sponding to each of the effective scene pixel counts. Bottom: the difference between
the MI performance of the best mask from among the four masks in the top right and
the best possible mask, as a percentage of the MI performance of the best possible
mask, as found by exhaustive search. Thus for 𝑛 = 15, choosing your mask from only
the four masks in the upper right is no more than 0.2% worse than using the very
best mask.

88



Figure 3-8: Top left: the approximate effective pixels-per-side count of scenes gen-
erated with a given level of correlation (𝛽) and under a given signal-to-noise ratio
(SNR). Alternately, the plot shows which of the masks shown in the top right is
optimal, assuming you are forced to choose one of those four. Top right: masks corre-
sponding to each of the effective scene pixel counts. Bottom: the difference between
the MI performance of the best mask from among the seven masks in the top right
and the best mask found with a greedy search, as a percentage of the best mask from
among the seven masks in the top right. Positive percentages mean that choosing the
best mask from a menu is better; negative percentages mean that a greedy search is
better. We can see that choosing from a menu of URAs at different scales outper-
forms greedy search in the high-SNR regime, and does worst at the boundary between
masks at different scales, which is intuitive.
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Figure 3-9: Reconstructions of a simulated scene with (lower-right) and without
(lower-left) a prior.
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This paper aims to analyze which occluders are optimal under most of the condi-

tions described in Section 3.2; in particular, the analysis of [109] focuses on occluding

frames, and it assumes parallel and planar occluder, scene, and observation, a dif-

fuse observation plane, and the paraxial approximation, in flatland. It also restricts

its analysis to “circulant occluders,” that is, occluders that repeat themselves once,

thereby yielding a circulant transfer matrix. The analysis of [109] is related to other

work that considers the impact of coded apertures, such as [66, 82, 114, 67].

3.7.1 Results

As originally introduced in Section 1.4.3, we are considering two separate sources of

noise: the first, 𝑊 , being a fixed source of noise (“ambient” noise), and the second,

𝐽 , scaling with the amount of light from the scene. In fact, in this paper, 𝐽 is

straightfowardly taken to be the mean total intensity of the scene itself, and so we

get a number of photons arriving at the observation plane behaving like a Gaussian

with mean and variance 𝜌𝐽 from the limit of a Poisson distribution. This paper

also introduces 𝜃, which is the variance of the scene intensity. Though this may

seem counterintuitive, this corresponds to the “signal” in the signal-to-noise ratio;

the variance in the scene is the information we are interested in, and the higher 𝜃 is

relative to the sources of noise, the higher a fraction of the variation on the observation

plane is due to information we care about.

The 𝜌 used above is the transmissivity of the aperture frame; it’s the fraction of the

light from the scene that the aperture frame lets through. In the case of an occluding

aperture frame (that repeats itself once), the transmissivity is simply the fraction

of the occluder that lets through light. For example, an occluder characterized by

𝑛 = 7 patches, where 4 of those patches let through light and 3 didn’t, would have a

transmissivity of 𝜌 = 4/7.

As described previously: the mutual information (MI) between the measurements

𝑦𝑗, 𝑗 ∈ [𝑛] and the unknowns 𝑓𝑖, 𝑖 ∈ [1, 𝑛] of the imaging problem is given as
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ℐ =
𝑛∑︁

𝑖=1

log

(︂
1

𝑊 + 𝜌 · 𝐽
· 𝑑𝑖 ·

|𝜆𝑖(A)|2

𝑛
+ 1

)︂
, (3.9)

where 𝜆𝑖(A) denotes the eigenvalue of A corresponding to the 𝑖th frequency and 𝑑𝑖

denotes the 𝑖th entry on the diagonal of D. We often write 𝜆𝑖 when clear from context.

Throughout this subsection we study the IID scene model. It is sometimes con-

venient to work with the normalized mutual information per pixel ℐ := ℐ/𝑛. This

makes sense particularly for IID scenes, since scene-wide, the total amount of possi-

ble information to be communicated in the scene will go to infinity as 𝑛 → ∞. It is

convenient to define 𝛾𝜌 = 𝜃/(𝑊 + 𝜌𝐽), for 0 < 𝜌 < 1. This is the SNR term. We use

log(.) and ln(.) to denote the base-2 and base-𝑒 logarithms, respectively. We express

all values for the MI in bits.

Pinhole

The MI of a pinhole is given by

𝑛∑︁
𝑖=1

log

(︂
1

𝑊 + 𝐽/𝑛
· 𝑑𝑖 ·

1

𝑛
+ 1

)︂
.

In the case of an i.i.d. scene (𝑑𝑖 = 1) this further simplifies to the following

ℐpinhole = 𝑛 log (𝜃/(𝑛(𝑛𝑊 + 𝐽)) + 1) . (3.10)

where, we use ℐ = 1
𝑛
ℐ to denote the normalized MI per pixel. This is easily derived

from the frequencies of an impulse. By allowing only a fraction of 1/𝑛 of the light

to go through, the formula justifies that the performance of a pinhole deteriorates

drastically for large 𝑛 (cf., MI goes to zero, unless either 𝑊 or 1/𝐽 becomes negligible,

e.g., unless it scales inversely proportionally to 1/𝑛). In the coming sections, our MI

analysis will further justify that the problem is solved by using patterns with higher

transmissivity value 𝜌 (in particular, constant with respect to 𝑛). Note that this
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result applies only to a vanishingly small pinhole (decreasing in size as 𝑛 increases);

see Section 3.13 for an analysis of fixed-size pinholes, which are the more physically

relevant object.

Lens

Treating the lens transfer matrix as the identity (not scaling with 1/𝑛 as occluder-

based transfer matrices do), the normalized MI of a lens is given by 1
𝑛
ℐ lens = log( 𝜃

𝑊+𝐽
+

1). This is easily derived from the fact that the eigenvalues of the identity matrix are

all 1. Thus lenses outperform any purely absorbing (mask-based) aperture.

Spectrally-flat patterns

In this section, we show that the spectrally-flat patterns maximize the MI criterion for

IID scene models and dominant noise of Type-I. This is summarized in the following

proposition.

Proposition 3.7.1. Consider the IID scene model. Let ℐSF be the mutual information

of a spectrally-flat pattern for an odd 𝑛.2 It holds that:

lim
𝑛→∞

ℐSF = log
(︁𝛾1/2

4
+ 1
)︁

+
𝛾1/2

4 ln(2)
. (3.11)

Note that this is a separate result from the result of Section 3.2; though both

conclude that spectrally-flat patterns are optimal, this result is actually the stronger

of the two results. The result of Section 3.2 considers the limit of high SNR; this result

only requires that ambient noise dominate shot noise (𝑊 ≫ 𝐽) without considering

the strength of the signal.

Proof sketch. The proof follows straightforwardly from the fact that the first eigen-

value (i.e. the DC frequency) of the transfer matrix is (𝑛+1)/2, and every other eigen-

value has a magnitude of
√
𝑛 + 1/2, as explained in Section 3.2.2. Consider Equa-

2Here, we implicitly assume that 𝑛 is such that a spectrally flat pattern is known to exist—see
Section 3.2.2 for which values of 𝑛 have that property.
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tion (3.9). Because the scene is taken to be IID, we have 𝑑𝑖 = 𝜃/𝑛. Moreover, because

the occluder is spectrally flat, we have |𝜆1(A)| = (𝑛 + 1)/2 and |𝜆𝑘(A)| =
√
𝑛 + 1/2.

In the limit of 𝑛 → ∞, we have (𝑛 + 1)/2 ≈ 𝑛/2 and
√
𝑛 + 1/2 ≈

√
𝑛/2. Recall

also that 𝛾𝜌 = 𝜃/(𝑊 + 𝜌𝐽). Hence, the first term in the sum given by Equation (3.9)

is due to the DC term, and for that term, the factors of 𝑛 cancel and we are left with

log(𝛾1/2/4 + 1).

Every other term in the sum is identically equal to log(𝛾1/2/(4𝑛)+1), and there are

𝑛− 1 such terms. Because we are expressing the final mutual information in bits, the

log(·) function is assumed to be base 2. Using the Taylor series-based approximation

of log(𝜖 + 1) ≈ 𝜖/ ln(2) for vanishingly small 𝜖, each of the terms in the sum is

identically equal to 𝛾1/2/(4𝑛 ln(2)) as 𝑛 → ∞, and because there are 𝑛 − 1 terms,

we are left with a contribution of 𝛾1/2/(4 ln(2)) to the mutual information from every

term in the sum save the first. This concludes the proof.

3.7.2 Random on-off patterns

We study the MI performance of random patterns under different scenarios on the

distribution of the scene and on the noise type. Our theoretical results in this section

use tools from random matrix theory (RMT) and are thus asymptotic in nature.

However, we include numerical simulations that show accuracy of the predictions for

𝑛 on the order of a few hundreds.

Our reason for studying random on-off patterns is because as we’ll soon see, un-

der conditions different from those we just studied, we should expect the optimal

transmissivity of the occluder to move away from 0.5, and under such conditions,

spectrally-flat patterns are no longer easily found. (Not always impossible to find,

as we’ll see later in the thesis, but much rarer.) Random on-off patterns tend to

do worse than spectrally-flat patterns under low-correlation or high-SNR conditions,

admittedly, because of their different spectral properties; however, it’s easy to gener-

ate them at any transmissivity 𝜌 = 𝑝 we like, simply by making each occluder patch

independently let through light with probability 𝑝, for any 𝑝 we want. Hence, they’re

a useful tool for studying which occluder transmissivities are best under which condi-
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tions, by comparing random occluders with one transmissivity to random occluders

with another.

This is the first result in this thesis that deals with the expected mutual information

we’ll get from random occluders, and not deterministic occluders like we’re used to.

With the tools we’ve used up until this point, such analysis would be infeasible as

𝑛 became large, considering that the number of possible occluders to consider is

exponential in 𝑛.

Fortunately, there’s a key fact that’s going to allow us to comfortably analyze

random occluders, due to [15]. The key fact is this: circulant matrices whose en-

tries are drawn IID from a particular family of probability distributions (that is, any

distribution with mean 0, variance 1, and bounded third moment as 𝑛 → ∞) have

eigenvalues whose magnitude are drawn IID from another known probability distri-

bution. In particular, each eigenvalue is drawn from the probability density function

𝑓𝑋(𝑥) = |𝑥|𝑒−𝑥2 (see Figure 3-10).

Once we’ve established that, the proof follows from shifting and scaling the transfer

matrix 𝐴 as a function of 𝑝 so that its entries have the property we’re looking for.

IID scene

First, for IID scenes we explicitly compute the asymptotic value of the MI for random

on-off and uniform patterns. The result is summarized in the proposition below.

Proposition 3.7.2 (Random on-off). Consider the IID scene model. Let 𝛼𝑝 =√
𝑝(1−𝑝)

2
and 𝑋 be a random variable with density 𝑓𝑋(𝑥) = |𝑥|𝑒−𝑥2. The mutual infor-

mation ℐ𝑝 for a random on-off circulant system with parameter 0 < 𝑝 < 1 converges

in probability with 𝑛 to:

̃︀ℐ𝑝 = E𝑋

[︂
log

(︂
𝑝(1− 𝑝)

𝑊 + 𝑝𝐽
𝑋2 + 1

)︂]︂
. (3.12)

Proof sketch. The proof leverages the following result of [15]. Consider a reverse

circulant matrix 1√
𝑛
B with entries 𝐵𝑗𝑖 = 𝑏𝑗+𝑖−2 mod 𝑛 and (𝑏0, 𝑏1, . . . , 𝑏𝑛) a sequence

of IID random variables with mean zero, unit variance and bounded third moment
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Figure 3-10: The probability density function 𝑓𝑋(𝑥) = |𝑥|𝑒−𝑥2 , which characterizes
the probability of getting an eigenvalue of each possible magnitude for a circulant
matrix whose entries are IID with mean 0, variance 1, and bounded third moment.
As 𝑛 → ∞, this plot will look just like a histogram of such a matrix’s eigenvalue
magnitudes.

(see also [14]). Then, the empirical spectral density (ESD) of B converges to the

limiting spectral distribution with density 𝑓𝑋(𝑥). In our setting, we are interested on

the ESD of AA𝑇 for A that has entries Bern(𝑝). We consider the following centering

of A:

̃︀A =
1√︀

𝑝(1− 𝑝)
A− 𝑝√︀

𝑝(1− 𝑝)
11𝑇 . (3.13)

The entries of ̃︀A now have zero mean and unit variance. Moreover, we have that
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𝜆𝑗(̃︀A) = 𝜆𝑗(A)/
√︀

𝑝(1− 𝑝) for 𝑗 = 2, . . . , 𝑛. It can be shown (see for example [15,

Lem. 1]) that |𝜆𝑗(̃︀A)|2 = 𝜆2
𝑗(B). Applying these to (3.9) gives

ℐ =
1

𝑛

𝑛∑︁
𝑖=1

log

(︂
𝑝(1− 𝑝)

𝑊 + 𝑝𝐽
· 𝜆2

𝑖

(︂
1√
𝑛
B

)︂
+ 1

)︂
𝑛→∞→ ̃︀ℐ𝑝,

where the convergence result follows from [15], as mentioned. Combining these con-

cludes the proof of the lemma.

Remark 1 (Optimal 𝑝). Maximizing (3.12) over 𝑝 informs us on the optimal choice

of the transmissivity parameter for random occluders. It can be shown that the

maximum occurs at

𝑝⋆ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2
, if 𝐽 = 0,

1, if 𝑊 = 0,

𝑊
𝐽

(︁√︀
1 + 𝐽/𝑊 − 1

)︁
, else.

(3.14)

𝑝⋆ =
𝑊

𝐽

(︁√︀
1 + 𝐽/𝑊 − 1

)︁
. (3.15)

In particular, when ambient noise is dominant (𝑊 ≫ 𝐽), then using
√︁

1 + 𝐽
𝑊
≈

1 + 𝐽
2𝑊

, gives 𝑝⋆ ≈ 1
2
. On the other hand, when shot noise is dominant (𝐽 ≫ 𝑊 ),

then 𝑝⋆ ≈
√︁

1
𝐽
; thus, fewer open holes in the aperture design are desirable. This

makes sense; if the dominant source of noise is coming from the scene, then letting

in less light from the scene is better. Moreover, if the dominant source of noise is not

coming from elsewhere, and the SNR is very low, then letting in lots of light from the

scene is good, because it gives a better estimate of the total intensity of the scene.

Remark 2 (Comparison with spectrally-flat designs). Using Lemma 3.7.2 we can com-

pare the MI performance of random Bern(1/2) masks with that of spectrally-flat

designs, which is computed in Lemma 3.7.1. This is illustrated in Figure 3-11.

Remark 3. In this section, we saw that for IID scenes, when ambient noise is dominant,
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Figure 3-11: A plot of optimal transmissivity parameter 𝑝⋆ for random on-off patterns
in the IID scene model, as we vary shot noise power 𝐽 and signal strength 𝜃 while
ambient noise power 𝑊 is held fixed. See Remark 1.

a flat spectrum is optimal. However, this doesn’t always hold true for correlated

scenes. In the next section, we study the performance of different types of random

masks for correlated scenes.

3.7.3 Random uniform patterns

We evaluate the MI performance of random uniform patterns as presented in the

proposition below. Similarly to Proposition 3.7.2, we leverage results of [15] to evalu-

ate the MI performance of random uniform patterns; we omit the details due to space

limitations.

Proposition 3.7.3. Consider the IID scene model. The mutual information ℐuniform
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for a random uniform circulant system converges in probability with 𝑛 to:

̃︀ℐuniform = E𝑋

[︂
log

(︂
1/24

𝑊 + 𝐽/2
𝑋2 + 1

)︂]︂
. (3.16)

̃︀ℐuniform = log
(︁𝛾

4
+ 1
)︁

+
𝛾

12 ln(2)
, (3.17)

𝛾 =
𝜃

𝑊 + 𝐽/2
. (3.18)

The proof of this proposition proceeds identically to the proof of Proposition 3.7.2,

taking each element of the system to be a random uniform variable on [0, 1] instead

of a Bernoulli random variable, and accounting for the fact that its variance is 1/12

in the former case (as opposed to 𝑝(1− 𝑝) in the latter case).

Comparing the formula of the proposition to Proposition 3.7.2, reveals that

̃︀ℐuniform < ̃︀ℐ𝑝, for all 𝑝 ∈
[︂

1

2
,
1

2
+

1√
6

]︂
. (3.19)

In particular, at high-SNR (𝑊 + 𝐽/2 ≪ 1) it holds ̃︀ℐ 1
2
− ̃︀ℐuniform ≈ log(6). Hence,

random on-off masks in this range of 𝑝 outperform random uniform masks. In short, if

physical limitations prevent the use of apertures that can redirect light, but can only

absorb it, then absorbing all or nothing (with appropriate 𝑝) is better than partial

absorption (at least for random designs). This is relatively unsurprising—while other

publications [7, 20] have found occasional minor improvements to be possible under

certain conditions by choosing a single element of an occluder array to be in between

0 and 1, in general we should expect occluders with mostly 1s and 0s to outperform

occluders with many elements in between—after all, we want different shadows cast

by the occluder to look as different as possible, and when many elements are between

0 and 1, we are throwing away some of that potential difference.

I (Adam Yedidia, not necessarily my co-authors on [109]) conjecture that as 𝑛→

∞, there will exist a maximal-determinant 𝑛× 𝑛 circulant matrix with 𝑂(𝑛) entries

between 0 and 1 exclusive (so 𝑂(1) such entries in a single row), over all possible

𝑛× 𝑛 circulant matrices with entries between 0 and 1 inclusive.

In other words, when trying to solve the maximal determinants of binary circulant
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matrices, it won’t help to set more than 𝑂(1) of the entries in a row to be between 0

and 1, as 𝑛→∞.

3.7.4 Correlated scene

We extend the “worst-case" analysis of the previous section regarding IID scenes to

correlated ones. We follow the 𝛽−𝑑 scene prior model. We restrict the exposition

to spectrally-flat and random on-off patterns. For convenience, we assume 𝑛 is odd,

though this will become unimportant in the limit of large 𝑛.

Introducing a non-identity covariance matrix over scenes makes the model more

realistic, and makes the notion of limiting behavior in 𝑛 coherent, but introduces

substantial difficulties analytically. For this reason, we won’t always be able to prove

the results we want as cleanly as we could in the previous section; we’ll occasionally

have to rely on unproven conjectures.

Spectrally-flat patterns: For large enough 𝑛, we find that the MI of spectrally-flat

patterns corresponds to:

lim
𝑛→∞

ℐSF = log
(︁𝛾1/2

4
+ 1
)︁

+
𝛾1/2(1− 𝛽)

4 ln(2) ln(1/𝛽)
. (3.20)

The derivation of this result is a straightforward extension of (3.11).

Remark 4. In the 𝛽 → 1 limit, correlations between the 𝑥𝑖 approach 0, and it can be

shown that the formula above approaches that in (3.11), as expected.

Random on-off patterns

Contrary to the case of IID scenes where knowledge of the limiting spectral density

of A suffices to characterize the MI, for correlated scenes each eigenvalue is weighted

differently. Hence, the behavior of the MI depends on the statistics of each individ-

ual eigenvalue. Since A is circulant, the eigenvalues of 𝐴 are exactly the Fourier

coefficients of the entries of the generating vector a, i.e., 𝜆1 =
∑︀𝑛−1

ℓ=0 𝑎ℓ, and, for

𝑘 = 2, . . . , (𝑛 − 1)/2 (assume 𝑛 is odd for simplicity): 𝜆2
𝑘 = 𝜆2

𝑛−𝑘 = 𝑔2𝑘 + ℎ2
𝑘, where
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Specifically, (assume 𝑛 is odd for simplicity)

𝑔𝑘 :=
𝑛−1∑︁
ℓ=0

𝑎ℓ · cos

(︂
ℓ𝑘

2𝜋

𝑛

)︂
, ℎ𝑘 :=

𝑛−1∑︁
ℓ=0

𝑎ℓ · sin
(︂
ℓ𝑘

2𝜋

𝑛

)︂
. (3.21)

Note the similar form of Equations 3.21 to the simpler scenario we considered earlier

of the circulant pinhole, in Section 3.13.

If the 𝑎𝑖’s were standard Gaussians, then the following statements would hold: (a)

𝜆1 is distributed 𝒩 (0, 𝑛). (b) 𝑔𝑘’s and ℎ𝑘’s are IID 𝒩 (0, 1/2); therefore, 𝜆2
𝑘

iid∼ 𝜒2
2/2

where 𝜒2
2 denotes a chi-squared random variable with two degrees of freedom. This

leads to the following conclusion:

Lemma 3.7.1. Let the first row of a circulant A have entries drawn IID from stan-

dard Gaussians and let the MI be given as in (3.9) for 𝑑𝑖 = 𝑑⋆𝑖 and for some average

transmissivity 𝜌. Then, E[ℐ] equals

E𝐺∼𝒩 (0,1) log
(︀
𝛾𝜌𝐺

2 + 1
)︀

+ 2

𝑛+1
2∑︁

𝑘=2

E𝑋∼𝜒2
2

log

(︃
𝛾𝜌

𝑋𝛽
𝑘−1

(𝑛−1)/2

2𝑛
+ 1

)︃
. (3.22)

For 𝑘 = 2, 3, . . . let 𝜑𝑘 : R+ → R+ be such that

𝜇 := lim
𝑛→∞

𝑛∑︁
𝑘=2

E𝑋∼𝜒2
2
[𝜑𝑘(𝑋2/2)] <∞,

exists. Then, the following convergence holds:

lim
𝑛→∞

E

[︃
𝑛∑︁

𝑘=2

𝜑𝑘(𝜆2
𝑘(A))

]︃
𝑛→∞−→= 𝜇.

Define the ℐ of A as in formula (3.9). Then,

ℐ 𝑛→∞−→ lim
𝑛→∞

2

𝑛

𝑛
2
−1∑︁

𝑖=2

log

(︂
1

𝑖

𝑝(1− 𝑝)

2
(𝜒2)

2
𝑖 + 1

)︂

We conjecture that in the 𝑛→∞ limit, the conclusion of Lemma 3.7.1 is universal

over the distribution of the entries of a𝑇 , i.e., it holds for entries that have zero mean,
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unit variance, and bounded third moment. Based on this assumption, we posit that

the expected mutual information E[ℐ𝑝] for a random on-off circulant system with

parameter 0 < 𝑝 < 1 for the correlated scene model is given by:

E𝐺∼𝒩 (0,1) log

(︂
1

𝑛
𝛾𝑝(
√︀
𝑝(1− 𝑝) ·𝐺+ 𝑝

√
𝑛)2 + 1

)︂

+ 2

𝑛+1
2∑︁

𝑘=2

E𝑋∼𝜒2
2
log

(︂
1

2𝑛
𝛾𝑝𝑝(1− 𝑝)𝑋𝛽

𝑘−1
(𝑛−1)/2 + 1

)︂
. (3.23)

Remark 5. It is apparent from inspection of (3.23) that a lower 𝛽 (i.e. a more

correlated scene) implies a higher 𝑝⋆. This effect can be observed in Figure 3-12, which

also compares (3.23) against simulated data. Once again, this is to be expected; if

𝛽 becomes sufficiently low, then the total intensity of the scene constitutes all of the

information about the scene that there exists to be learned. Comparing Figures 3-12

and 3-11 shows us that the effects of SNR, and which source of noise is dominant,

have a vastly more important effect on 𝑝⋆, however.

Proposition 3.7.4. Assume the universality of Proposition 3.7.1, consider the cor-

related scene model and let 𝜇𝑝 be defined as:

𝜇𝑝 := lim
𝑛→∞

2

𝑛− 3

𝑛−1
2∑︁

𝑘=1

E𝑋∼𝜒2
2

[︂
log

(︂
1

𝑊 + 𝑝𝐽

𝑝(1− 𝑝)

2𝑘2
𝑋2

)︂]︂
,

𝜇𝑝 := lim
𝑛→∞

𝑛∑︁
𝑘=2

E𝑋∼𝜒2
2

[︂
log

(︂
1

𝑊 + 𝑝𝐽

𝑝(1− 𝑝)

2𝑘2
𝑋2 + 1

)︂]︂
,

𝛼𝑝 =

√
𝑝(1−𝑝)

2
and Then, the mutual information ℐ𝑝 for a random on-off circulant

system with parameter 0 < 𝑝 < 1 converges in probability with 𝑛 to:

̂︀ℐ𝑝 := lim
𝑛→∞

E[ℐ𝑝] = 𝜇𝑝 (3.24)

The proof of the proposition is similar to the proof of Proposition 3.7.2 and further

uses Proposition 3.7.1. We numerically validate the correctness of the proposition in
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Figure 3-12: Analytical formula follows Eqn. (3.23). Simulated data are averages
of 200 randomly generated apertures of size 𝑛 = 251 for various different values 𝑝.
We set 𝐽/𝑊 = 0 dB and 𝜃/𝑊 = 30 dB. Simulations match our analysis perfectly,
providing support for the conjecture of (3.23).
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Figure 3-13: In this figure we plot the mutual information of a random on-off mask as
a function of 𝑝. In blue is the simulated mutual information, obtained by generating
100 random sample masks and averaging. In red is the mutual information implied
by Proposition 3.7.4. For both curves, 𝑚 = 𝑛 = 1000. The point here is we have some
evidence for the truth of the conjecture we made right above Equation 3.23.

Figure 3-13.

We can use (3.24) to compute the value of 𝑝 that maximizes the MI performance.

Since log is increasing, this happens exactly at the value of 𝑝 that maximizes the

argument 𝑝(1 − 𝑝)/(𝑊 + 𝑝𝐽), i.e., for 𝑝⋆ as given in (3.15). Therefore, the same

conclusions can be drawn as in Remark 1. Finally, using Proposition 3.7.4 we can

compare the MI of random Bern(()1/2) pattern (which is optimal for 𝐽 ≫ 𝑊 , cf.

Remark 1) to the performance of spectrally flat designs for correlated scenes.
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The MI of the latter can be computed similar to Proposition 3.7.1:

log(
𝑛/4

𝑊 + 𝐽/2
+ 1) + 2

𝑛−1
2∑︁

𝑘=2

log

(︂
1/4

𝑊 + 𝐽/2

1

𝑘2
+ 1

)︂
, (3.25)

for large 𝑛.

Redirection techniques

The apertures that we studied thus far physically impose a maximum-value constraint

of 1 on each entry of the corresponding transfer matrix A. Here, we study a more

general family of apertures, where the only constraints that are imposed are the

following: (i) the entries of A are nonnegative; (ii) the total power along each light

ray can’t be increased. Thus, the column sum of each of the columns of A is bounded

by 𝑛. Since the matrix 1
𝑛
𝐴 is then left stochastic, we have that |𝜆𝑖(A)| 6 𝑛. Thus,

from formula (3.9) and Jensen’s inequality, the MI is maximized when all eigenvalues

are equal to 𝑛. This corresponds to A = 𝑛I (or, a permutation of identity), i.e., a lens.

The 𝜆𝑖 are the eigenvalues of 𝐴. If we are considering scenes that are IID, 𝑑𝑖 = 1; if

we are considering scenes with a 1/𝑓 2 frequency spectrum, then 𝑑𝑖 = 1
𝑖
. In this case,

it matters little. Because 𝐴 is left stochastic, we know that |𝜆𝑖| 6 1. This is because

we know that
∑︀

𝑖 𝐴𝑥𝑖 =
∑︀

𝑖 𝑥𝑖, so if 𝐴𝑥 = 𝜆𝑥, then it cannot be that scaling 𝑥 by 𝜆

is increasing the sum of the entries in 𝑥, so |𝜆| 6 1. It is therefore self-evident that

the mutual information will be maximized when all eigenvalues have |𝜆𝑖| = 1. This

will occur when the transfer matrix values are concentrated on the diagonal: that is,

when the transfer matrix is the identity, or, in the language of optics, the aperture

frame is a lens.

3.7.5 Comparing the performance of spectrally-flat occluders

and others

One of the main takeaways of Section 3.7—in particular Subsection 3.7.2—is that

random occluders really do perform substantially worse than spectrally-flat occluders.
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Figure 3-14: Two simulated reconstructions of a scene, using a random occluder (left)
and a spectrally-flat occluder (right). The SNR is 10dB. Reconstructions are per-
formed using the procedure described in Section 3.6, using an exponential-decay prior
with 𝛽 = 0.1. As can be seen, using a spectrally-flat occluder results in substantially
higher reconstruction quality.

Contrary to intuition, random on/off occluders do not approach spectral flatness,

but rather have a limiting spectral distribution of 𝑓𝑋(𝑥) = |𝑥|𝑒−𝑥2 (as explained in

Section 3.7.2). To give the reader a sense of exactly how much deterioration in quality

this causes in practice, see Figure 3-14.

Another salient point of comparison is with the pinhole occluder. Pinhole oc-

cluders have gained outsize prominence as occluder-based cameras for historical rea-

sons [56] and in particular because no computation is required in order to use them;

the observation itself provides an adequate reconstruction of the scene. However, they

nevertheless perform importantly worse than spectrally-flat occluders.
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Figure 3-15: Two simulated reconstructions of a scene, using a pinhole (left) and a
spectrally-flat occluder (right). The SNR is 10dB. Reconstructions are performed
using the procedure described in Section 3.6, using an exponential-decay prior with
𝛽 = 0.1. As can be seen, using a spectrally-flat occluder results in substantially
higher reconstruction quality. Note that the observation using a pinhole is much
more intelligible than that obtained using a spectrally-flat occluder, but this does not
translate to higher reconstruction quality.
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3.8 Near-Optimal Coded Apertures for Imaging Via

Nazarov’s Theorem

This section is devoted to a brief discussion of Near-Optimal Coded Apertures for

Imaging Via Nazarov’s Theorem [7]. This paper builds upon the work of [109] and

contributes many useful concepts and ideas. Among them:

1. Describing spectrally-flat sequences with other transmissivities.

2. Using mean-squared error (MSE) rather than mutual information as a metric

to optimize.

3. Using exposure time as an additional parameter of comparison for different

imaging systems (analogously to how SNR and scene correlation are used in

this thesis).

4. With mean-squared error as a metric, proving a bound on the performance of a

greedy algorithm similar to the one described in Section 3.3; [7] shows that the

performance of the occluders found by the greedy algorithm is within a constant

factor of the performance of the optimal occluder. This constant factor is in

terms of the exposure time required to get an equivalent MSE.

Of course, this extremely brief summary does not do the paper justice; I encourage

the reader to read the paper itself. However, I’ll go into a little bit more detail about

the first two points.

3.9 Spectrally-flat sequences at different transmis-

sivities

Section 3.2.2 describes several different constructions for binary spectrally flat se-

quences with 𝜌 approaching 0.5 as 𝑛 → ∞ (meaning that the fraction of entries in

the sequence that are 1 approaches 0.5). Section 3.7 described conditions under which
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the ideal occluder would have a transmissivity 𝜌 other than 0.5; because no spectrally-

flat sequence constructions are known for most values of 𝜌, it transitioned to analyzing

random sequences as potential occluders rather than spectrally-flat sequences. How-

ever, if spectrally-flat sequence constructions were known for other values of 𝜌 than

0.5, they would of course be preferable to random sequences.

In [7], spectrally-flat sequence constructions for 𝜌 = 1/4 and 𝜌 = 1/8 are given,

which are loosely analogous to the Paley construction [77], but use quartic and octic

residues, respectively, rather than quadratic residues. (Quartic and octic residues

measure whether or not something is a power of 4 or 8, respectively, modulo 𝑛.)

This is potentially useful for IID scenes where a low transmissivity is desirable; for

instance, if shot noise was the dominant source of noise, as we saw in Section 3.7.

These constructions are originally due to [29] and [64], respectively.

Unfortunately, unlike for the 𝜌 = 1/2 constructions, it is not known whether there

are an infinite number of 𝑛s for which a spectrally-flat sequences exists for 𝜌 = 1/4

and 𝜌 = 1/8; in the case of 𝜌 = 1/8, so few are known that the practicality of

this observation is diminished, with the two smallest known sequences being 𝑛 = 73

and 𝑛 = 26041. See Figure 3-16 for examples of spectrally-flat sequences with those

transmissivities.

Note that, like in Section 3.7, the focus is on circulant occluders; the above con-

structions would repeat themselves once if they were to be used in an imaging system.

3.10 Discussion of two occluder scoring metrics

It’s not obvious that the best occluder-scoring metric would be mutual information,

and since the publication of [109], there has been further work in [7] that instead

primarily relies on minimizing mean-squared error, rather than maximizing mutual

information. This is a reasonable choice; the purpose of this section is to briefly

discuss the impact of this choice.

Here are the two metrics, for an IID scene with signal strength 𝜃:
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Figure 3-16: Three spectrally-flat sequences with transmissivities not equal to 1/2.

𝑀𝑆𝐸𝑚𝑖𝑛(𝑛, 𝑡,𝑊, 𝐽, 𝜆) = −
𝑛−1∑︁
𝑖=0

1
1
𝜃

+ 𝑡|𝜆𝑖|2
𝑛(𝑊+𝐽𝜌)

𝑀𝐼𝑚𝑎𝑥(𝑛,𝑊, 𝐽, 𝜆) =
𝑛−1∑︁
𝑖=0

log

(︂
𝜃

𝑛𝑊 + 𝜌𝐽

|𝜆𝑖|2

𝑛
+ 1

)︂
In the above, the 𝜆𝑖 denote the frequencies of the occluder (or eigenvalues of

the transfer matrix). We’re assuming a circulant transfer matrix, and in the second

formula, we’ve subsumed the exposure time into the signal strength (equivalently, we

can take 𝑡 = 1 in the first formula).

The two metrics are different, of course, but they’re very similar in many important

ways. For one thing, they both privilege spectrally-flat occluders over all alternatives

in the limit of high SNR. But even at lower SNRs, they agree closely. To give a sense

of how closely, Figure 3-17 shows a pair of scatter plots. As we can see from the

figure, the two metrics are very highly correlated with each other.

That doesn’t tell us quite what each metric is optimizing for, though. As discussed

earlier, one advantage of the MSE-minimizing metric is that it’s much clearer what
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Figure 3-17: A pair of scatter plots comparing the LMMSE-minimizing metric to the
MI-maximizing one. In each case, we have 𝑡 = 1,𝑊 = 1, 𝐽 = 0, 𝜃 = 100. In the
left plot, we have one point for every 11× 11 binary circulant transfer matrix; in the
right, we have one plot for each of 1000 randomly-chosen 100× 100 binary circulant
transfer matrices.

it’s doing. To compare the two metrics in a more concrete way, I found a pair of

occluders, one preferred by one metric, one preferred by the other. (Because the

two metrics are so closely correlated, both are still about equally preferred by both!)

But the subtle differences in reconstruction quality are illuminating. See Figure 3-18

for a side-by-side comparison of reconstructions of the same scene under the same

conditions, but using each of these two different occluders.

Evaluating reconstructions such as these, beyond simply reporting their mean-

squared error, is a subjective business. As we expect to see, the reconstruction using

the occluder that is better for reducing the reconstruction MSE has the lower MSE.

But the other reconstruction does seem a bit sharper it is instructive to see what it

might mean to increase the “information content” of the reconstruction, and reassuring

that it seems to correspond to something meaningful. Moreover, The scatter plot

of Figure 3-17 suggests that the choice between maximizing mutual information or

minimizing MSE matters relatively little.
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Figure 3-18: A side-by-side comparison of reconstructions of the same scene under the
same conditions, but using two different occluders: one (left) preferred by the MSE-
minimizing metric, the other (right) by the MI-maximizing metric. As expected, the
MSE of the right reconstruction is worse, but the image appears to be somewhat
sharper.

3.11 Varying the distance between observation, oc-

cluder, and scene

Let’s continue examining each of the design constraints of the idealized model. Con-

sider the assumption that the occluder lies exactly halfway in between the scene and

observation plane. This was a tremenously convenient assumption because it allowed

us to assume that the occluder’s transfer matrix had Toeplitz structure. But in the

real world, the assumption is completely unrealistic. In a designer-mask camera ap-

plication, the occluder will presumably be much closer to the camera’s photosensitive
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material than to the scene, and even in an accidental-camera application, we can’t as-

sume that the occluder will be exactly halfway between the wall we’re looking at and

whatever it is we’re trying to image. So let’s try removing the assumption and seeing

what happens. Note that we’ll still be assuming that scene and occluder are both

planar—we’ll get to that eventually, but not yet. And we’re still using the paraxial

approximation—meaning that regardless of what we are taking as the relative dis-

tances of the occluder to the scene and observation, we are always assuming that the

distance between scene and observation to be much bigger than the size of the scene

or observation.

Note that we are continuing to assume that the scene and observation are the

same size. If we make the scene bigger in proportion to its distance from the occluder

(that is, if the ratio of the distance from the scene to the occluder to the distance from

the occluder to the observation equals the ratio of the size of the scene to the size of

the observation), then the tools of analysis described in this section are actually not

necessary. It would suffice in that case to simply discretize the scene more coarsely

in proportion to its size, in which case all of the conclusions of previous sections (and

the diagram in Figure 1-10) would still apply.

What exactly is it about an occluder halfway between the scene and observation

that gives us Toeplitz transfer matrices? The answer is that when the occluder

is halfway bewteen the scene and observation, the shadow cast by a moving light

source will move at exactly the speed the light source is moving, but in the opposite

direction. Try holding a flashlight (such as one from a smartphone) with your right

hand, illuminating a table or a wall, and then hold your left hand halfway in between

the flashlight and the table. (I encourage you to actually do this!) Keep your left

hand steady, and then move the flashlight around. You can see that your hand’s

shadow moves at the same speed your flashlight does, and in the opposite direction.

Now try varying the height of your left hand relative to the table. What happens

to the speed of your hand’s shadow relative to the speed at which you move the

flashlight? The answer is that when your hand is closer to the table than to the

flashlight, your hand’s shadow will move more slowly than the flashlight; and when
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Figure 3-19: A simple layout that explains the phenomenon whereby the relative
speeds of a light source and its shadow are given by the relative distances of the scene
and the observation to the occluder. Suppose we have a pinspeck occluder, and a light
source that moves by an amount ∆1 to the right. If we suppose that its shadow moves
by an amount ∆2 to the left, and that the occluder has a perpendicular distance 𝑑1
from the scene and 𝑑2 from the observation, then the fact that the top and bottom
triangles are similar tells us that ∆1/∆2 = 𝑑1/𝑑2.

your hand is closer to the flashlight than to the table, your hand’s shadow will move

faster than the flashlight. (Of course, your hand’s shadow will always in the opposite

direction from the shadow—that part won’t change.)

In fact, to be more precise, the “speed multiplier” that your hand’s shadow gets

relative to the flashlight—that is, your hand’s shadow’s speed divided by the flash-

light’s speed—is the same as the distance between your hand and the table divided

by the distance between your hand and the flashlight. Figure 3-19 gives a visual

explanation of this phenomenon.

This “speed multiplier” concept is crucial to understanding how varying the oc-

cluder’s depth warps the resulting transfer matrix. Remember that each column of

the transfer matrix tells us what the observation will look like in response to a point

light source at each different location in the scene. If we imagine, then, a point light
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source moving at a constant speed of 1 space-unit per time-unit across the scene, then

we can imagine the transfer matrix as a movie of the observation plane while that

happens, with each column of the transfer matrix being one frame of that movie.

When the occluder is halfway in between the scene and observation plane, we

know exactly what that movie should look like: the shadow should move at the same

speed as the point light source. That is, it should move at a speed of 1 space-unit (1

“bin,” or 1/𝑛) per time unit (1 “frame,” or column of the transfer matrix), assuming

we discretize the scene and the observation plane equally finely.

It’s for this reason that the occluder being halfway between the scene and obser-

vation gives us the perfect, constant diagonals that characterize a Toeplitz matrix.

Compare a column of the transfer matrix to the column adjacent to it, and you should

see a copy of that column, but shifted by one row.

What if we continue to imagine that the transfer matrix is a movie of the shadow

cast by a point light source moving a constant speed of 1 space-unit per time-unit—

but now we supposed that the occluder was twice as close to the scene as it was to the

observation plane? We know from Figure 3-19 that that means that the shadow must

move at a speed of 2 space-units per time-unit. Therefore, on the transfer matrix,

moving one column (time-unit) to the right will cause the shadow to shift two rows

(space-units) down. (Remember that we are sticking to our convention of labeling the

observation plane right-to-left instead of left-to-right, as explained in Section 1.4—if

we weren’t, that would cause the shadow to shift two rows up!)

Similarly, if the occluder was twice as close to the observation plane as to the

scene, the shadow would move at a speed of 0.5 space-units per time-unit. And if

the occluder was right up against the observation plane, the shadow wouldn’t move

at all—and if the occluder was right up against the scene, there would be no shadow!

Figure 3-20 shows some example transfer matrices for each of these scenarios.

If you look carefully at Figure 3-20—in particular the second and fourth con-

figurations, in which the occluder is a quarter or three-quarters of the way to the

scene—you’ll see that the transfer matrix isn’t perfectly binary, like some of the pre-

vious transfer matrices we’ve looked at. It contains a few entries that lie between

115



Figure 3-20: Top row: five different scenarios with the occluder at five different
depths. Bottom row: the transfer matrices corresponding to each different scenario.

0 and 1. This isn’t for any legitimate reason, like a partially opaque occluder; this

is purely a modeling issue. It has to do with the fact that, in order to approximate

the scene and observation, we’ve partitioned them both into discrete patches. If they

were both perfectly continuous, their transfer matrices would both be completely bi-

nary, as we’d hope to see. The problem is, though, this isn’t quite an issue we can

wish away by appealing to what happens in the limit as our discretization becomes

finer and finer: even if our discretization was extremely fine, the absolute number of

nonbinary elements in our transfer matrix wouldn’t shrink; in fact, it would grow!

Granted, the fraction of nonbinary elements in our transfer matrix would shrink, but

even that isn’t true if we also suppose that our occluders become increasingly complex

(with more and more interfaces between occluding and not-occluding). So our model

remains annoyingly unfaithful to reality even when we discretize very finely.

Why is having nonbinary elements in our transfer matrix a problem? Beyond

the simple fact that it doesn’t accurately describe reality, it will result in our un-

derestimating the mutual information of configurations where the occluder is not

exactly halfway in between scene and occluder. This is because nonbinary elements
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in the transfer matrix (or the occluder, for that reason!) tend to lead to low mutual

information, for reasons described in more detail in Section 3.7.3. This effect gets

exacerbated when the occluder is just a little bit off from being halfway in between

the scene and occluder. For example, suppose the occluder is 5/11 of the way between

the observation and the scene; the resulting transfer matrix will have its diagonals

of constancy be terribly skew to the diagonals of the matrix, resulting in a lot of

nonbinary elements.

Fortunately, there’s an easy solution to this modeling issue, and it doesn’t require

us to treat everything as fully continuous.3 The key fact here is that we can relate

the eigenvalues of the Gram matrix 𝐴𝑄𝐴𝑇 + 𝐼 derived from the true, continuous

transfer matrix 𝐴 (which is square) to the eigenvalues of the equivalent Gram matrix

𝐴𝑟𝑄𝐴𝑇 + 𝐼 derived from a rectangular version 𝐴𝑟 of the transfer matrix 𝐴.

The way we obtain 𝐴𝑟 from 𝐴 is simply to “stretch” the matrix 𝐴 (whose lines

of constancy lie skew to the diagonals of the transfer matrix) until we get a version

whose diagonals align with the diagonals of the transfer matrix. Figure 3-21 shows

how this works.

To figure out how much to rescale in response to the stretching of the matrix, it

is instructive to consider the all-ones transfer matrix (corresponding to no occlusion

in the paraxial limit). This is a helpful transfer matrix for gaining intuitions about

these configurations in general; it will be very helpful here.

Because the all-ones transfer matrix corresponds to no occlusion, we can equiv-

alently posit the occluder “plane” to be at any depth. Let’s imagine it’s 𝑤/(𝑤 + ℎ)

of the way to the scene (meaning that if the distance between scene and observation

is 𝑑, then the distance between the occluder and the scene is ℎ𝑑/(𝑤 + ℎ) and the

distance between the occluder and the observation is 𝑤𝑑/(𝑤 + ℎ).) As Figure 3-21

shows us, that tells us that if the true transfer matrix has a width-to-height ratio of

1:1, the stretched transfer matrix will have a width-to-height ratio of 𝑤:ℎ.

3Note that this is by no means the only solution to the problem of modeling continuous operators
discretely [74]. Sampling theory gives us ways of approximating integral operators other than naive
linear interpolation, as depicted in Figure 3-21. However, this trick of considering a rectangular
proxy for a square transfer matrix is simple, and what I use in my later analysis and simulations.
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Figure 3-21: Top: a configuration with a planar occluder not halfway in between the
scene and the observation. If we take the distance between the scene and observation
to be 𝑑, then the distance between the scene and occluder is 9

22
𝑑 and the distance

between the occluder and observation is 13
22
𝑑. We take a discretization level of 𝑛 = 11

(so for computational reasons, we are modeling the scene and observation as vectors of
𝑛 = 11 constant entries, and the occluder as a vector of 2𝑛−1 = 21 constant entries).
Bottom left: the true, continuous transfer matrix. Bottom middle: the naive discrete
11× 11 approximation of the transfer matrix, using averaging to produce nonbinary
elements. Bottom right: the “stretched” 9× 13 approximation of the transfer matrix,
yielding a rectangular matrix with Toeplitz structure and only binary elements.
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This has two impacts on the value of the determinant of 𝐴𝑇𝑄𝐴 + 𝐼. The first is

that 𝐴𝑇𝑄𝐴 + 𝐼 is a bigger matrix, which will cause the value of the determinant to

increase. The second is that each entry of 𝐴𝑇𝑄𝐴 is smaller, because 𝐴𝑇 is narrower

and 𝐴 is shorter; this will cause the value of the determinant to decrease. To rectify

the first effect, it is necessary to rescale 𝐴𝑇𝑄𝐴 by a factor of 𝑛2/𝑤2. To rectify the

second, it is necessary to rescale each eigenvalue of the 𝐴𝑇𝑄𝐴 by a factor of 𝑛/ℎ (so

that taking the determinant of 𝐴𝑇𝑄𝐴+ 𝐼 means taking the product
∏︀

𝑖 1 +𝜆𝑖(𝑛/ℎ)),

where 𝜆𝑖 denotes the 𝑖th eigenvalue of the (rescaled) matrix 𝐴𝑇𝑄𝐴.

To be a bit more concrete: recall our original formula for computing the mutual

information of an occlusion-based system. Let 𝐴 be the transfer matrix of the system,

scaled to be binary-valued. Now let 𝐴𝑟 be the rectangular equivalent of that transfer

matrix, stretched so that the diagonals of constancy are the actual diagonals of the

matrix. Ordinarily, we would write (as we described in Section 3.1) that the mutual

information ℐ is given by:

ℐ = log det(𝜎𝐴𝑇𝑄(𝑛)𝐴/𝑛2 + 𝐼) = log
∏︁
𝑖

(1 + 𝜆𝑖(𝜎𝐴
𝑇𝑄(𝑛)𝐴/𝑛2))

where 𝑄(𝑛) is the covariance matrix of the scene, 𝜎 is the signal-to-noise ratio, and

𝜆𝑖(𝐴
𝑇𝑄𝐴) denotes the 𝑖th eigenvalue of 𝐴𝑇𝑄𝐴.

Instead of taking 𝐴 to be a square matrix with diagonals of constancy that are

skew to the actual diagonals of the matrix, we stretch it so that its width to height

ratio is 𝑤:ℎ. Let’s take its dimensions to be 𝑤 × ℎ. Call this new, stretched matrix

𝐴𝑟. Now we can write:

ℐ = log
∏︁
𝑖

(1 +
𝑛

ℎ
𝜆𝑖(𝜎𝐴

𝑇
𝑟 𝑄(𝑤)𝐴𝑟/𝑤

2))

In the limit of continuous transfer matrices, these two formulations are perfectly

equivalent. But when we approximate the continuous transfer matrix by using a

discrete matrix, the difference between these two “equivalent” formulations can be

dramatic—and, of course, it’s the rectangular formulation that gets closer to the

truth. See Figure 3-22 for a side-by-side comparison.
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Figure 3-22: A comparison of observed mutual information using either a square ma-
trix with non-binary averaged values, or a stretched rectangular matrix, appropriately
rescaled. In this example, 𝑛 = 61. It is apparent that the effect of averaging values
in the square matrix leads to a dramatic (and artifactual) decrease in the observed
mutual information, as well as artifacts at depths that make there be fewer nonbinary
values in the square matrix.

120



This trick lets us faithfully represent systems involving occluders at 2𝑛−1 different

depths, where 𝑛 is the level of discretization of the scene. This is tremendously

convenient! It lets us do an accurate study of how much having occluders not exactly

halfway in between the scene and observation harms performance. We know, of

course, that it must: DMBCs have diagonals of constancy in line with the matrix’s

diagonals, and skewing those diagonals decreases the rank of the resulting transfer

matrix! But by how much is an interesting question. Figure 3-23 gives an answer.

Just like Figure 3-6, it helps us estimate the effective pixel count of the configurations

involving occluders at different depths. As expected, moving the occluder away from

the halfway point reduces the configuration’s effective pixel count—but interestingly,

the effective pixel count doesn’t change much until the occluder is moved far from

the halfway point (e.g. 10% or 90% of the way to the scene). This tells us that using

a good occluder matters a lot more than making sure it’s exactly halfway between

scene and observation, for the purposes of maximizing mutual information.

3.12 Near-field scenes

Next, we tackle the question of what happens to our analysis when we discard the

paraxial approximation. Real scenes, after all, don’t lie infinitely far away from our

cameras. And though we saw in Section 1.3 that the paraxial approximation is de-

ceptively robust, because of the quadratic dependence on distance in the illumination

function (see Equation 1.1), that doesn’t mean it’s right. So let’s analyze our standard

configuration more carefully, without using the paraxial approximation.

Way back in Section 1.4, we decided to use a reversed labeling system, such that

the scene vectors were ordered left-to-right (as normal) but the observation vectors

were ordered right-to-left. This was so that the diagonals of constancy of the resulting

transfer matrices would go from upper-left to lower-right. This lets us work with

circulant and Toeplitz matrices, rather than Hankel matrices. Of course, in the end,

it doesn’t matter what labeling scheme we use: the math must work out the same

in either case. However, this reverse labeling was more convenient in the previous
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Figure 3-23: Top: the approximate effective pixel count of scenes generated at differ-
ent occluder depths. As expected, when the occluder is near the observation plane or
the scene, it reduces the number of effective pixels. Here the frequency attenuation
coefficient 𝛽 = 0.1. Higher values of 𝛽 correspond to less correlated scenes. Bot-
tom: masks corresponding to each of the effective scene pixel counts. Note that these
masks repeat themselves once in each dimension, so each mask is 2𝑛−1×2𝑛−1 if the
effective pixel count is 𝑛. This is due to the phenomenon described in Figure 3-23.

122



sections.

In this section, to avoid confusion, we’ll stick with the same convention as we

used in previous sections. Unfortunately, though, in this section, it won’t buy us

any convenience at all. The reason is this: the near-field effects map in exactly the

opposite direction to the occlusion effects! Consider a configuration with the scene

plane at 𝑦 = 1, the observation plane at 𝑦 = −1, and the occluder frame at 𝑦 = 0.

Suppose that the occluder frame includes an aperture (meaning no occlusion) at the

point (𝑥, 𝑦) = (0, 0). Now each point on the observation is guaranteed a contribution

from the point across from it in the scene; that is, a point at (𝑥,−1) on the observation

is guaranteed a contribution from point (−𝑥, 1) in the scene. It’s that negation that

drove us to swap the index order of scene and observation, so that scene went from

−𝑥𝑚𝑎𝑥 to 𝑥𝑚𝑎𝑥 and observation from 𝑥𝑚𝑎𝑥 to −𝑥𝑚𝑎𝑥.

But now let’s think about the near-field effects. Ignoring the effects of occlusion,

a point at (𝑥,−1) on the observation will get the most light from the point nearest

to it in the scene—that is, (𝑥, 1). That light will fall off as 𝐼 = 𝑦/(𝑥2 + 𝑦2), as we saw

earlier. This is exactly the reverse of the occlusion phenomenon. So if the diagonals

of constancy of transfer matrices in a world with occlusion but no near-field effects

go from upper-left to lower-right, the diagonals of constancy of transfer matrices in

a world without occlusion, but with near-field effects, must go from upper-right to

lower-left. We just can’t win!

So what happens when we have both occlusion and near-field effects? The answer

is simple: we take the Hadamard product—i.e. the elementwise product—of the

two transfer matrices with each individual effect. Unfortunately, not much is known

that can be said about the eigenvalues of the Hadamard product of two matrices

analytically. We can still say interesting things about it through a combination of

common sense and simulations, however.

Let’s start with the common sense. When the scene is close enough to the obser-

vation plane, the near-field effects are effectively a blurry pinhole, but one that treats

the scene as reversed relative to how an actual blurry pinhole would treat the scene.

(See Figure 3-24.) When we take the Hadamard product of these two matrices, it’s
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Figure 3-24: Left: the transfer matrix from a pinhole. Right: the transfer matrix from
very strong near-field effects (𝑑 = 0.01𝑥, where 𝑑 and 𝑥 are the distance from scene
to observation and size of observation, respectively). As can be seen, the transfer
matrices look identical but for a vertical (or horizontal) reflection.

intuitive that it would the determinant of the matrix that results. After all, the de-

terminant of a matrix is a sum of permutations; when we take the Hadamard product

of these two matrices whose permutations are non-overlapping, it makes sense that

they would interact destructively. In other words, it won’t help to have both the

near-field effect and the occlusion effect happening at once; the result won’t be better

than either having the near-field effect alone, or the occlusion effect alone. Which one

of those two is better, of course depends on the details: what occluder are we talking

about, and how strong is the near-field effect?

If we’re to talk about which occluder is optimal under these conditions, we might

expect, then, that while near-field effects are weak, the optimal occluder continues to

be whatever was optimal without the near-field effects; as we gradually strengthen

the near-field effects, at some point the optimal occluder will suddenly switch to

being a completely open aperture. This should happen once a simple pinhole starts

outperforming a spectrally-flat occluder that is being marred by increasingly strong

near-field effects. See Figure 3-25 for an example of a transfer matrix near-field effects

strong enough to be approaching that threshold.

And indeed, that’s what we see in our simulations! See Figure 3-26. As can be

seen, the optimal occluder suddenly becomes the empty occluder beyond a certain

threshold based on the strength of near-field effects.
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Figure 3-25: Left: the transfer matrix from an occluder-based imaging configuration
with strong near-field effects. Right: the imaging configuration.

Figure 3-26: A resolution plot showing the effective pixels per side as a function of
the SNR and the distance of the scene from the observation. 𝛽 = 0.1. The length of
𝑥max of the observation and scene is 𝑥max = 1.
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3.13 The Optimal Pinhole

What size of pinhole is optimal, given our standard assumptions? This might seem

to be an irrelevant question—the optimal occluding frame is not a pinhole, so why

should we care what size of pinhole is optimal?

It is a simple enough question that we are able to solve it analytically, which is

nice. It can come up that you only have a pinhole and all you can control is its size. It

is a good and intuitive test case for a lot of the mutual-information-based machinery

that has been introduced so far. But more importantly, it will later be useful for us

to have analyzed this question, as the idea of a “wide pinhole” will be a useful analogy

for near-field effects.

First of all, at a high level, what is the fundamental tradeoff around pinhole size?

The answer is that smaller pinholes let in less light, but larger pinholes give you a

blurrier image. If you’re nearsighted, you can see this tradeoff in action by squinting—

squinting lets you get sharper view of whatever it is you’re looking at, but squint too

much and your eyes won’t get enough light to see anything! It’s intuitive, then,

that a high SNR would make the optimal pinhole smaller (to get a sharper image),

whereas a low SNR would make the optimal pinhole larger (to get more total light).

Indeed, this is exactly what our pupils do! But it’s satisfying to see this justified by

our information-theoretic model, so let’s proceed with that now. Note, also, that for

sufficiently small pinholes, the effects of diffraction play an important role [34]. We

are ignoring the effects of diffraction in this section. When the SNR is very high,

however, a very small pinhole will be optimal, so the results of this section may not

apply to very high-SNR regimes.

I will begin by considering not pinholes in the traditional sense, but pinholes

in which not only the center of the occluder, but also the edges, transmit light.

This implies that the resulting transfer matrix will be circulant, which will make the

resulting analysis simpler. For this reason, I will call this kind of occluder frame a

“circulant pinhole.” In the case of either circulant or traditional pinholes, I will refer

to the size of a pinhole by the fraction of the occluder frame that transmits light.
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Figure 3-27: Left: a traditional pinhole of size 𝑟 = 0.1, and its associated transfer
matrix. Right: a circulant pinhole of size 𝑟 = 0.2, and its associated transfer matrix.
Note that the transfer matrix on the left is not circulant, but the one on the right is.

Note that this means that the central hole of a traditional pinhole of size 𝑟 = 0.1 will

have the same size as the central hole of a circulant pinhole of size 𝑟 = 0.2, and that a

pinhole of size 1, circulant or otherwise, implies an occluder frame with no occlusion

at all. See Figure 3-27 for a diagram for what these pinholes may look like.

Consider the formula we considered earlier for the mutual information of any

occluder. We have:

ℐ = log det
(︀
𝜎𝐴𝑇𝑄(𝑛)𝐴/𝑛2 + 𝐼

)︀
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Here, 𝑄(𝑛) is a the covariance matrix of the scene. It takes the form 𝐹𝐷𝐹 *, where

𝐷 is a diagonal matrix with entries 𝑑𝑖. 𝜎 is the signal-to-noise ratio; by default, it’s

going to be 𝜃/(𝑟𝐽 + 𝑊 ), where 𝜃 is the mean intensity of the scene, 𝐽 is the “shot

noise” or measurement noise, and 𝑊 is the “ambient noise” or noise from glare. To

simplify things, we’ll take 𝐽 = 0 in this analysis, so that 𝜎 is constant in 𝑟.

Given that 𝐴 is circulant, it can be written in the form 𝐹Λ𝐹 *, where Λ is a

diagonal matrix containing the eigenvalues of 𝐴 (equivalently, the frequencies of the

first row of 𝐴), which I’ll refer to as 𝜆𝑖. It follows that:

ℐ = log det
(︀
𝜎𝐹 |Λ|2𝐷𝐹 */𝑛2 + 𝐼

)︀
Using the fact that the eigenvalues of 𝐴 + 𝐼 are 𝜆(𝐴) + 1, it follows that the

eigenvalues of the matrix 𝜎𝐹 |Λ|2𝐷𝐹 *+𝐼 are 𝜎|𝜆𝑖|2𝑑𝑖/𝑛2+1. Because the determinant

is the product of the eigenvalues, and the log of a product is a sum, we can write the

mutual information as follows:

ℐ =
𝑛∑︁

𝑗=0

log
(︀
𝜎|𝜆𝑗|2𝑑𝑗/𝑛2 + 1

)︀
Note that so far, we haven’t used the fact that the occluder is a pinhole at all,

only the fact that it’s circulant. Everything so far has been general in the form of the

occluder.

But given a specific occluder, we can go further. The eigenvalues 𝜆𝑗, using the

fact that they must be frequencies of the first row of 𝐴, 𝑎𝑗, are:

ℐ =
𝑛∑︁

𝑗=0

log

⎛⎝𝜎

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=0

𝑎𝑗𝑒
−2𝜋𝑖𝑗𝑘

𝑛

⃒⃒⃒⃒
⃒
2

𝑑𝑗/𝑛
2 + 1

⎞⎠
In the case of the circulant pinhole, of course, we have 𝑎𝑗 = 1 for 𝑘 6 𝑟𝑛, and

𝑎𝑗 = 0 otherwise. (Strictly speaking, this is a rotation of the occluder frame we’re

considering, but for circulant occluders, this will make no difference.)
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ℐ =
𝑛∑︁

𝑗=0

log

⎛⎝𝜎

⃒⃒⃒⃒
⃒

𝑟𝑛∑︁
𝑘=0

𝑒
−2𝜋𝑖𝑗𝑘

𝑛

⃒⃒⃒⃒
⃒
2

𝑑𝑗/𝑛
2 + 1

⎞⎠

ℐ =
𝑛∑︁

𝑗=0

log

(︃
𝜎

⃒⃒⃒⃒
1− 𝑒2𝜋𝑖𝑗𝑟

1− 𝑒2𝜋𝑖𝑘/𝑛

⃒⃒⃒⃒2
𝑑𝑗/𝑛

2 + 1

)︃

ℐ =
𝑛∑︁

𝑗=0

log

(︃
𝜎

⃒⃒⃒⃒
1− (cos(2𝜋𝑖𝑗𝑟) + 𝑖 sin(2𝜋𝑖𝑗𝑟))

1− (cos(2𝜋𝑖𝑗/𝑛) + 𝑖 sin(2𝜋𝑖𝑗/𝑛))

⃒⃒⃒⃒2
𝑑𝑗/𝑛

2 + 1

)︃

ℐ =
𝑛∑︁

𝑗=0

log

(︂
𝜎

(1− cos(2𝜋𝑖𝑗𝑟))2 + sin2(2𝜋𝑖𝑗𝑟)

(1− cos(2𝜋𝑖𝑗/𝑛))2 + sin2(2𝜋𝑖𝑗/𝑛)
𝑑𝑗/𝑛

2 + 1

)︂

ℐ =
𝑛∑︁

𝑗=0

log

(︂
𝜎

2− 2 cos(2𝜋𝑖𝑗𝑟)

2− 2 cos(2𝜋𝑖𝑗/𝑛)
𝑑𝑗/𝑛

2 + 1

)︂

ℐ =
𝑛∑︁

𝑗=0

log

(︂
𝜎

sin2(𝜋𝑖𝑗𝑟)

sin2(𝜋𝑖𝑗/𝑛)
𝑑𝑗/𝑛

2 + 1

)︂

Sadly, this is as far as it’s easy to go, without making further assumptions or

simplifications. In the limit of finer discretization (𝑛 → ∞), the outer sum will

become an integral, and we’ll need to take an integral resembling
∫︀

log(sin2(𝑥) + 1).

Unfortunately, this integral doesn’t have a closed-form solution, given its complicated

dependence on Jonquière’s function. Nevertheless, this shows how to perform similar

analysis for other kinds of occluders, and we’ve reduced a complicated expression

involving matrices to a single integral.

So what pinhole size is optimal, as a function of scene correlation and SNR?

Fortunately, with only a single integral, this can be computed quickly. See Figure 3-

28 for a plot of the optimal pinhole size as a function of those two parameters. As is

apparent, the SNR is of primary importance, with optimal pinhole size having little

dependence on scene correlation.
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Figure 3-28: Optimal (circulant) pinhole size, as a function of scene correlation and
SNR. Note that optimal pinhole size depends primarily on SNR, and only secondarily
on scene correlation.
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3.14 Szegö’s theorem and Toeplitz transfer matrices

We’d like to be able to use techniques like those used in the previous section to analyze

Toeplitz transfer matrices, not just circulant ones. In particular, we’d like to be able

to express the mutual information directly in terms of the elements of the transfer

matrix, as we did earlier:

ℐ =
𝑛∑︁

𝑗=0

log

⎛⎝𝜎

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=0

𝑎𝑗𝑒
−2𝜋𝑖𝑗𝑘

𝑛

⃒⃒⃒⃒
⃒
2

𝑑𝑗/𝑛
2 + 1

⎞⎠
This was only possible because of the special property of circulant matrices, that

the eigenvalues of a circulant matrix are the Fourier transform of any row or column of

the matrix. That property does not hold for Toeplitz matrices. Instead, for Toeplitz

matrices 𝐴, we have Szegö’s theorem, which tells us that, for any continuous function

𝐹 (·):

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑗=0

𝐹 (𝜆𝑗) =
1

2𝜋

∫︁ 2𝜋

0

𝐹 (𝑎̂(𝑓))𝑑𝑓 (3.26)

where the 𝜆𝑗 are the eigenvalues of 𝐴 and

𝑎̂(𝑓) = lim
𝑛→∞

𝑛∑︁
𝑘=−𝑛

𝑡𝑘𝑒
𝑖𝑘𝑓

In order for the theorem to hold, we must also have that

∞∑︁
−∞

|𝑡𝑘|2 <∞ (3.27)

In Eqs. (3.26) and (3.27), the 𝑡𝑘 denote the elements of the first row and first

column of the Toeplitz matrix 𝐴, with 𝑡−𝑛 being the bottom element of the first

column, 𝑡0 being the top element of the first column (or the first element of the top

row), and 𝑡𝑛 being the last element of the top row. Given all the 𝑡𝑘 from −𝑛 6 𝑘 6 𝑛,

we have fully specified the Toeplitz matrix 𝐴.

At a very high level, we can think of Szegö’s theorem as saying something analo-

gous to what we know about circulant ones: the sum of any function of the eigenvalues
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of a Toeplitz matrix (the left-hand side of Eq. (3.26)) is equal to the sum of that same

function of the frequencies of that Toeplitz matrix’s elements (the right hand side of

Eq. (3.26)). This is similar to, but not the same as, the eigenvalues of a Toeplitz

matrix just being equal to those frequencies, which is what circulant matrices give

us.

Note that Szegö’s theorem applies only in the 𝑛→∞ limit: the limit of very fine

discretization. In fact, it doesn’t even apply to specific Toeplitz matrices, only to

families of Toeplitz matrices, which must be well-defined as you take 𝑛 → ∞. For-

tunately, that’s exactly the case we care about! Our transfer matrices are families of

matrices, parametrized by 𝑛, the discretization level; and because their every element

is 0 or 1/𝑛, the sum of the first row and column will always be less than or equal to

2. So Szegö’s theorem applies in our case.

However, we can’t quite use Szegö’s theorem as presented. Recall that we are

interested in the sum of the logs of the eigenvalues of 𝜎𝐴𝑇𝐴+𝐼 (using 𝐴 = 𝐴/𝑛, with

𝐴 a binary matrix, as defined previously). We’d like to relate the sum of the logs of

the eigenvalues of 𝜎𝐴𝑇𝐴 + 𝐼 to the elements of 𝐴, but Szegö’s theorem only lets us

relate the eigenvalues of 𝐴 to the elements of 𝐴. And unfortunately, we can’t directly

relate the eigenvalues of 𝜎𝐴𝑇𝐴+ 𝐼 to the eigenvalues of 𝐴. When 𝐴 is circulant, then

𝜆(𝜎𝐴𝑇𝐴 + 𝐼) = |𝜆(𝐴)|2 + 1, but the same is not true of Toeplitz matrices. (To see

why this cannot be true in general at a glance, Toeplitz matrices can be rectangular,

and rectangular matrices don’t have eigenvalues!) Instead, what we can say is that

𝜆(𝜎𝐴𝑇𝐴 + 𝐼) = |𝑠(𝐴)|2 + 1, where 𝑠(𝐴) denotes the singular values of 𝐴.

So now we can relate the eigenvalues of 𝜎𝐴𝑇𝐴 + 𝐼, which is what we care about,

to the singular values of 𝐴. Can we relate the singular values of 𝐴 to the elements

of 𝐴? Fortunately, we can! Thanks to an extension of Szegö’s theorem due to S.

Parter [79], we have:

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑗=0

𝐹 (𝑠𝑗) =
1

2𝜋

∫︁ 2𝜋

0

𝐹 (|𝑎̂(𝑓)|)𝑑𝑓 (3.28)

where 𝑠𝑗 is the 𝑗th singular value of 𝐴. Note that this equation is nearly identical
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to Equation (3.26), with the only difference being that we take the norm of each

frequency before feeding it to the function 𝐹 , on the right-hand side of the equation.

Now that we have this, how do we use it to compute the mutual information we’d

get from a given Toeplitz transfer matrix? We know that the mutual information of

a configuration with transfer matrix 𝐴, an SNR of 𝜎, and an IID scene distribution

is given by:

𝑛−1∑︁
𝑗=0

log(𝜎|𝑠𝑗|2 + 1)

(Note that because we’re using 𝐴 and not 𝐴, there’s no factor of 1/𝑛2 in the

formula.)

This means that the function 𝐹 we’re interested in is defined as:

𝐹 (𝑥) = log(𝜎|𝑥|2 + 1).

Thus, thanks to Parter’s extension of Szegö’s theorem, we can cleanly express the

mutual information directly in terms of the elements of the transfer matrix, at least

under certain conditions. We have:

lim
𝑛→∞

ℐ =
1

2𝜋

∫︁ 2𝜋

0

log(𝜎|𝑎̂(𝑓)|2 + 1)𝑑𝑓

where, as before,

𝑎̂(𝑓) = lim
𝑛→∞

𝑛∑︁
𝑘=−𝑛

𝑡𝑘𝑒
𝑖𝑘𝑓

and the 𝑡𝑘 are the elements of the first row and first column of the Toeplitz matrix.

Szegö’s theorem is a nice tool to have for studying Toeplitz transfer matrices.

The best way to use it may be to find covariance matrices Q that will happen to be

diagonalized by the same matrices that diagonalize 𝐴, in which case we will be able

to find coherent families of Toeplitz matrices to analyze.
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3.15 The tomography model and the light-field model,

compared

Planar scenes are very convenient to represent and analyze, which is why so much

of this thesis considers them in particular. Moreover, suppose we are already taking

the paraxial approximation, which, as described in Section 1.3, is fairly realistic for

scenes that are twice as far from the observation as the observation is wide. In those

cases, assuming a non-planar scene to be planar produces no additional distortion

over that introduced by the paraxial approximation already, besides, of course, the

fact that you’re only getting a 2D view of a 3D object. This isn’t as bad as it sounds,

since after all, a photograph is only a 2D view of a 3D object! Despite that, we’re

usually able to get a good sense of what a scene looks like from a photograph.

So in fact, in general, assuming scenes are planar won’t deny you that much

information about the scene, if you can get a high-quality 2D reconstruction. That

said, there are certainly applications where depth is the main thing you care about,

foremost among them coded-aperture cameras, one of the applications of which is

that they give you depth information that an ordinary lens-based camera wouldn’t;

see for example [66]. In those cases, assuming the scene is planar will defeat the

whole purpose of what you’re doing, and because coded apertures are an important

application of the occluder-based imaging model that I’m presenting here, that’s a

big problem. So it’s important that we be able to remove the assumption that scenes

are planar and still be able to apply the transfer-matrix-based style of analysis we’re

used to.

Thus the question: how do we represent the scene, which is now a 3D object?

The easiest way to do it while preserving linearity, which is crucial in order for the

transfer matrix to make sense as a representation of the action of the occluder (see

Subsec. 1.4.1 for a refresher), is to represent the scene as a light-field. A “light-field”

here is defined as a 2D view of the scene, as seen from each point on a 2D sensor

array. See Figure 3-29 for an example of what a perfect light field reconstruction

would look like in a real-world setting.
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Figure 3-29: If you could perfectly reconstruct a light field using an occluder (the
chair, outlined in blue) the reconstruction would be what can be seen on the right of
this figure: the scene, as seen from every point (in green) on the observation plane
(outlined in red).

A light field is more than enough to represent an entire 3D scene; after all, if you

can see the scene from every point on the observation plane, you know everything

there is to know about the scene (or at least, everything that could possibly be

learned by studying the observation plane). And the notion of the transfer matrix

is easily extended to a light-field; just put a 1 in every entry of the transfer matrix

corresponding to an scene-point/observation-point pair with an unoccluded view of

each other, and a 0 elsewhere. (See Fig. 4-16)

So what’s wrong with a light-field as a means of representing a 3D scene? The

problem is that it’s wasteful. Assuming the scene is 𝑛× 𝑛× 𝑛, it should only require

𝑛3 vector entries to represent it; yet an (𝑛 × 𝑛) × (𝑛 × 𝑛) light field will require 𝑛4

entries to represent it.4 The scene could have been more parsimoniously represented,

and as a result the reconstruction algorithm will take longer to run than necessary

(because the transfer matrix will be bigger than it needed to be). Fortunately, the

dependence on the transfer matrix size will only be linear; the algorithmic bottleneck

will be in computing 𝐴𝑄𝐴𝑇 when 𝐴 is an 𝑛2 × 𝑛4 matrix. This takes 𝑂(𝑛6) time,

when if we’d represented the scene as a length-𝑛3 vector, it would have taken only

𝑂(𝑛5) time.

4Note that this tradeoff doesn’t exist in flatland; both a voxelized scene with depth and a light-

135



The other obvious way to represent a 3D scene is to voxelize it and treat it as

a 3D array of light sources. This works perfectly if the application is tomography,

where there’s no or little self-occlusion within the 3D scene space (hence the term

“tomography model”); however, if there’s substantial self-occlusion within the scene,

then this approach offers us no way to model it. Occlusion between different scene

elements, after all, behaves nonlinearly with respect to the amount of light hitting

the observation plane. To explain what I mean by this, I’ll give a concrete example.

Suppose that we are interested in one point in the observation plane, whose intensity

we’ll call 𝑐(𝑎, 𝑏). Suppose now that there are two possible light sources in the scene,

𝑎 and 𝑏, which can be 0 or 1, and that 𝑏 occludes 𝑎. Linear behavior would be if (for

example) 𝑐(𝑎, 𝑏) = 𝑎+ 𝑏. But if 𝑏 occludes 𝑎, then instead what we have is 𝑐(𝑎, 𝑏) = 𝑏

if 𝑏 = 1, and 𝑐(𝑎, 𝑏) = 𝑎 otherwise. This is nonlinear!

The least-squares 3D non-self-occluding representation of a 4D light-field can be

obtained using the 𝑛4 × 𝑛3 matrix that converts 3D non-self-occluding spaces to

4D light-fields. Such a matrix exists for non-self-occluding spaces, but not for self-

occluding ones, since only the former spaces behave linearly. If we call this matrix

𝑀 , we can generate the least-squares estimate for which 3D non-self-occluding space

would generate a given light-field 𝑙 by computing (𝑀𝑇𝑀 + 𝜆𝐼)−1𝑀𝑇 𝑙, where 𝜆 is a

regularization term. Figure 3-31 was generated with this method using 𝜆 = 10−3.

How much distortion is introduced by simply ignoring the nonlinearity? Quite a

lot, depending on what representation you use at the end. In Figure 3-30 we have a

simulated three-dimensional scene with two frames, the red one partially occluding the

blue one. If we take the light-field that results and try to estimate a non-self-occluding

3D space that generates it (which is impossible, of course, since the true scene does

self-occlude), the least-squares solution 3D space looks like complete nonsense (see

Figure 3-31). However, the light-field representation of the nonsense 3D space does

indeed come very close to the true light-field! This is one example where the wrong

field will require 𝑛2 vector entries to represent, making the light-field representation strictly better.
In general, representing a 𝑑-dimensional space in a 𝑑-dimensional world will require 𝑛𝑑 entreis to
represent the traditional way, and 𝑛2(𝑑−1) entries to represent using a light-field, making light-fields
less and less efficient as 𝑑 grows.
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model is, unfortunately, not useful.

3.16 Non-planar occluders and scenes

This section explores what happens when we relax the requirement that occluders

and scenes be planar. Under such circumstances, which occluders are optimal?

The easiest case to consider is the case where the scene is still presumed to be

planar, but the occluder need not be. In this case, an optimal planar occluder still

exists, since a spectrally flat occluder halfway in between the scene and observation

plane achieves Hadamard’s bound, and all transfer matrices in this case will still be

square binary matrices.

If we relax the planarity requirement for both the scene and the occluder, analysis

once again becomes very challenging, for many of the same reasons as described in

Section 3.11. If we give the scene depth, the transfer matrix will be the horizontal

concatenation of several different transfer submatrices, with each one corresponding

to a planar scene at that depth (see for instance the bottom of Figure 3-32). If we

call each of these transfer submatrices 𝐴𝑖, the overall transfer matrix will be given

as 𝐴 = {𝐴1, . . . , 𝐴𝑘}, where 𝑘 is the number of discrete depths in the scene we are

considering. Ignoring scene correlations, we can then express the mutual information

in terms of a sum over the submatrices:

ℐ = log det

(︂
𝜎
𝐴𝐴𝑇

𝑛2
+ 𝐼

)︂
= log det

(︃
𝜎

1

𝑛2

𝑘∑︁
𝑖=1

𝐴𝑖𝐴
𝑇 + 𝐼

)︃

Unfortunately, there’s not very much further you can go from here, that I know of;

there’s not much to be said that’s known about the determinant of a sum of matrices,

even if, as in this case, those matrices are known to be positive semidefinite.

That said, it would be nice to gather empirical evidence for or against the con-

jecture that planar occluders are optimal even for non-planar scenes. To do this,

I performed an exhaustive and a greedy search, shown in Figs 3-32 and 3-33, re-

spectively, over binary occluders at multiple depths. If the optimizations returned
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Figure 3-30: Top: the configuration of the imaging system. The scene is made up of
two opaque frames, one red and one blue, at 𝑧 = 8 and 𝑧 = 11, respectively. Bottom:
the light-field corresponding to that configuration (i.e. the appearance of the scene,
viewed from every point on the observation plane).
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Figure 3-31: Top: the estimated non-self-occluding 3D space, using a least-squares
method. Bottom: the light-field derived from that space. As can be seen, despite
the fact that the 3D space estimate is a terrible estiamte of the true 3D space, the
light-field that results is very close to the true light-field.
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Figure 3-32: Top: the scene configuration. Note that we are using the paraxial
approximation, so the width of the scene and observation plane are taken to be much
smaller than the scale of this figure would suggest. The optimal occluder (found by
exhaustive search over all 210 occlusion possibilities in the 2×5 grid shown in grey) is
not planar. The scene is IID, 𝜎 = 103, 𝑘 = 10, 𝑛 = 100. Bottom: the 𝑛× 𝑘𝑛 transfer
matrix corresponding to the occluder shown above.

occluders at a single depth despite having the option of putting occlusion at multi-

ple different depths, that would be some evidence in favor of the conjecture; if not,

that would be strong evidence against it. Both optimizations returned occluders with

occlusion at multiple different depths, strongly suggesting that optimal occluders for

non-planar scenes are not planar either.

3.17 Extensions into the 3D world

Throughout this chapter, the default model analyzed has been a “flatland”—i.e. a 2D

world—model. I’ve alluded on several occasions to generalizations of the model to a

3D world, and I keep the bulk of my analysis in 2D because it’s both the case that

those generalizations are generally intuitive and straightforward, and that keeping

things in 2D helps avoid unnecessary complexity, and makes situations much easier
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Figure 3-33: Top: the scene configuration. Note that we are using the paraxial
approximation, so the width of the scene and observation plane are taken to be much
smaller than the scale of this figure would suggest. The locally optimal occluder
(found by greedy search over the 236 occlusion possibilities in the 4× 9 grid shown in
grey) is not planar. The scene is IID, 𝜎 = 103, 𝑘 = 10, 𝑛 = 99. Bottom: the 𝑛× 𝑘𝑛
transfer matrix corresponding to the occluder shown above.
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to visualize on a 2D page. That said, my analysis would not be complete if I did not

make explicit how to generalize from 2D to 3D.

First of all, as previously mentioned, 2D analysis can be useful when integrating

over one dimension of space. Why would one want to integrate over one dimension?

There are a variety of reasons. One is to increase the SNR of the problem, since

you are increasing your signal strength by a factor of 𝑛, if you are integrating along

one dimension of an 𝑛 × 𝑛 observation plane. Another is because the dimension

you’re integrating along doesn’t have much information contained in it anyway; for an

example of a problem with that property, see Section 4.1. When looking at the shadow

cast by a building’s corner, it’s not that the variation along radial lines outward from

the corner contains no information about the hidden scene; it’s that the amount of

information along the 𝑟 direction is far less than that along the 𝜃 direction, so you’re

better served by integrating along the less informative direction.

What about cases where both dimensions are equally informative, though? In

such cases, it’s useful to be able to generalize cleanly from 2D to 3D. Fortunately, in

most cases the generalization is very simple. I’ll go through each case individually.

3.17.1 The illumination function in 3D

As explained in Section 1.3, in a 2D world, the illumination function of a flat surface

at 𝑦 = 0 by a point light source at (0, 𝑦𝑝) is given by:

𝐼(𝑥) =
𝑦𝑝

2𝜋(𝑥2 + 𝑦2𝑝)

whereas in a 3D world, the illumination function of a flat surface at 𝑧 = 0 by a point

light source at (0, 0, 𝑧𝑝) is given by:

𝐼(𝑥, 𝑦) =
𝑧𝑝

4𝜋(𝑥2 + 𝑦2 + 𝑧2𝑝)3/2
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3.17.2 Spectrally-flat occluders in 3D

Note that this generalization is still assuming a flat occluder, if not a flat world; that

means that if the world is going from 2D to 3D, the occluder is going from 1D to 2D.

One simple and intuitive generalization is: given two spectrally-flat 1D occluders

𝑎 and 𝑏, you can make a spectrally-flat 2D occluder 𝐶 by taking the XOR outer

product:

𝐶𝑖𝑗 = 𝑎𝑖 ⊕ 𝑏𝑗,

where ⊕ denotes XOR. Here I mean “spectrally-flat” in the non-trivial sense described

in Section 3.2.2. Given that, let’s suppose that 𝑎 has 𝑛 elements and 𝑏 has 𝑚 elements.

All the frequencies of 𝑎 have a magnitude of
√
𝑛 + 1/2, except for the DC term, which

has a magnitude of (𝑛 + 1)/2. Similarly, all the frequencies of 𝑏 have a magnitude of
√
𝑚 + 1/2, except for the DC term, which has a magnitude of (𝑚 + 1)/2.

It’s easy to check that 𝐶, as defined above, will also be spectrally flat in a similar

sense. Taking the Fourier transform of 𝐶 to be 𝐶, the magnitude of the DC-DC term,

|𝐶00|, is given by:

|𝐶00| = (𝑚𝑛 + 1)

The magnitudes of the DC-AC and AC-DC terms, |𝐶0𝑗| and |𝐶𝑖0| (assuming 𝑖 > 0

and 𝑗 > 0), are given by:

|𝐶0𝑗| =
√
𝑚 + 1/2

|𝐶𝑖0| =
√
𝑛 + 1/2

Finally, the magnitudes of the bulk of the frequencies, the AC-AC terms, are

indeed flat (this is the defining feature of a 2D spectrally-flat occluder):

|𝐶𝑖𝑗| =
√︀

(𝑚 + 1)(𝑛 + 1)/2
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So we maintain this desirable property of spectral flatness from 1D to 2 via a

simple outer product.

It is important to note that while this is useful construction to create spectrally-

flat 2D occluders, it is by no means, the only construction; others exist as well that

do not have the property that they are the XOR outer product of two 1D spectrally

flat patterns. For an example of such, see Figure 2-2.

3.17.3 Convolutional transfer matrices in 3D

I’ve described in Section 1.4.1 why it is that transfer matrices corresponding to occlud-

ers should be Toeplitz, or, when they repeat themselves once, circulant (see Figure 3-1

if you’ve forgotten why that follows). It’s natural to ask the question: what about

transfer matrices corresponding to 2D occluders? What do they look like?

Exactly what they look like is a question of notation. Throughout this thesis, I

generally assume that 2D scenes and observations are being represented by vectors.

Of course, representing a 2D object with a vector, rather than a matrix, requires you

to flatten the object somehow; you have to represent the image using a vector using

(for example) row-major order.

This is fine, but if this is the notation style you use, a convolutional transfer

matrix—meaning one that represents the action of a 2D occluder—won’t be circulant

or Toeplitz in the traditional sense. Rather, just as a circulant matrix is diagonalized

by the Fourier basis, a “2D-circulant” matrix will be diagonalized by the flattened

Fourier basis, and multiplication by a 2D-convolutional matrix will be equivalent to

a 2D convolution. Rather than multiplying by such a matrix, it will be much more

computationally efficient to just perform the convolution, for exactly the same reasons

as in 1D.

In the future, when I reference convolutional transfer matrices corresponding to

2D occluders, I’ll be referring to matrices that have the property of being equivalent

to a convolution in 2D, and being diagonalized or near-diagonalized by the 2D Fourier

basis. See Figure 3-34 for an diagram of matrices with this property.
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Figure 3-34: An example scene flattened using row-major order, and an example 2D
occluder’s corresponding convolutional transfer matrix. Note that the transfer matrix
is “2D-Toeplitz” without being Toeplitz in the ordinary sense. This means that it will
be near-diagonalized by the flattened 2D Fourier basis (rather than the 1D Fourier
basis).
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3.17.4 Tensor notation for convolutional transfer matrices

An alternate and equivalent way to represent convolutional transfer matrices in 3D is

to use matrices to represent the scene and observation planes, and to have a transfer

tensor represent the action of the occluder. For example, suppose we had a 𝑥𝑠 × 𝑦𝑠

scene 𝑋, and a 𝑥𝑜 × 𝑦𝑜 observation plane 𝑌 . We could, as described in the previous

section, flatten the scene and observation and represent them as length-𝑥𝑠𝑦𝑠 and

length-𝑥𝑜𝑦𝑜 vectors, respectively, and the transfer matrix as a 𝑥𝑜𝑦𝑜 × 𝑥𝑠𝑦𝑠 matrix.

Alternately, we could formulate the action of the occluder as a (𝑥𝑜 × 𝑦𝑜)× (𝑥𝑠 × 𝑦𝑠)

tensor 𝒜.

The easiest way to think about 𝒜 is as a 𝑥𝑜 × 𝑦𝑜 matrix, where every element of

that matrix is itself a 𝑥𝑠 × 𝑦𝑠 matrix. Then, the product of 𝒜 and a 𝑥𝑠 × 𝑦𝑠 matrix

(such as 𝑌 , the matrix that represents the scene) is by returning a 𝑥𝑜 × 𝑦𝑜 matrix,

whose every element is the Frobenius inner product of each element of 𝒜 with 𝑋.

The Frobenius inner product is the product that takes in two matrices with iden-

tical shapes, and returns a scalar. It’s the sum of the elementwise product of the two

matrices; informally speaking, it’s the “dot product” of the two matrices. From now

on, I’ll use the ⊕ operation to denote it. 𝑈 ⊕ 𝑉 = 𝑡𝑟(𝑈𝑇𝑉 ) =
∑︀

𝑖𝑗 𝑈𝑖𝑗𝑉𝑖𝑗.

So more formally, the product of the (𝑥𝑜 × 𝑦𝑜) × (𝑥𝑠 × 𝑦𝑠) transfer tensor 𝒜 and

a 𝑥𝑠 × 𝑦𝑠 matrix 𝑋 is defined as follows:

(𝒜𝑋)𝑖𝑗 = 𝒜𝑖𝑗 ⊕ 𝑌, 1 6 𝑖 6 𝑥𝑜, 1 6 𝑗 6 𝑦𝑜

See Figure 3-35 for a worked example of tensor multiplication as defined here.

Within this framework, a circulant transfer tensor is a straightforward extension

of the notion of a circulant transfer matrix. Submatrices in the transfer tensor are

analogous to rows in the transfer matrix, so horizontally adjacent submatrices of a

circulant transfer tensor are horizontal shifts of one another, and ditto with vertically

adjacent transfer matrices. See Figure 3-36 for an example of a circulant transfer

tensor.
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Figure 3-35: This section’s definition of tensor-matrix multiplication, with a worked
example.

Figure 3-36: A circulant (3× 3)× (3× 3) tensor.
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Figure 3-37: Top: a flatland configuration with an edge occluder. Bottom left: the
transfer matrix corresponding to this occluder. Bottom right: the inverse of that
transfer matrix. The transfer matrix 𝐴 corresponds to spatial integration, and its
inverse 𝐴−1 to spatial differentiation.

3.18 Separable Occluders

Certain 2D occluders have a special property, which I refer to as separability. The

action of such occluders can be described in terms of two ordinary “flatland” opera-

tions.

Before defining what I mean formally, I’ll give a simple example, because I think

it helps a lot to clarify this concept. Consider an “edge” occluder in flatland, meaning

an occluder whose left half transmits light, and whose right half occludes it. It follows

that this occluder’s corresponding transfer matrix is the upper-triangular matrix of

1’s.

The upper-triangular matrix of 1’s is the discrete integral operator; it integrates

the scene to produce the observation. It follows, of course, that the inverse matrix is

the discrete spatial derivative operator (See Figure 3-37). (This insight is crucial to

imaging system described in Section 4.1.)

What’s the equivalent outside of flatland? The equivalent 2D occluder is an oc-
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cluder divided into four quadrants, where one of the four quadrants transmits light,

and the other three occlude it. Happily, this is a pattern that shows up a lot in

real life, such as in doorways or near windows. (See Figure 3-38) The action of such

an occluder is to integrate the scene along both spatial dimensions. To invert it, it

suffices to differentiate along both spatial dimensions.

This particular occluder has an additional wonderful property. Because integration

along both spatial dimensions is commutative in which spatial dimension you integrate

along first (and ditto for differentiation), this occluder is separable. This means

that in order to recover the scene from the observation, rather than multiplying

the observation matrix by the inverse of the transfer tensor, it suffices to multiply the

observation matrix by two matrices; one to invert the integration in the 𝑥-coordinate,

and the other to invert the integration in the 𝑦-coordinate. In other words, rather

than needing to do 𝑋 = 𝒜−1𝑌 (which requires an expensive operation on the full

(𝑥𝑜 × 𝑦𝑜)× (𝑥𝑠 × 𝑦𝑠) transfer tensor), it suffices instead to do 𝑋 = 𝑈−1𝑌 (𝑉 −1)𝑇 , for

particular matrices 𝑈−1 and 𝑉 −1. In this particular instances, those matrices 𝑈−1

and 𝑉 −1 are both equal to the discrete derivative matrix (see Figure 3-37 if you’ve

forgotten what that looks like); multiplying the observation by the same discrete

derivative matrix on right and left means taking the derivative along the 𝑥- and 𝑦-

coordinates.

So what exactly does it mean for a (𝑥𝑜 × 𝑦𝑜) × (𝑥𝑠 × 𝑦𝑠) transfer tensor 𝒜 to be

separable? It means that:

𝒜𝑋 = 𝑈𝑋𝑉 𝑇

for all 𝑥𝑠 × 𝑦𝑠 scenes 𝑋, and for some particular co-transfer matrices 𝑈 and 𝑉 , of

shapes 𝑥𝑜 × 𝑥𝑠 and 𝑦𝑜 × 𝑦𝑠, respectively. And given that 𝒜 is separable, the same

must, of course, work for its inverse:

𝒜−1𝑌 = 𝑈−1𝑌 (𝑉 −1)𝑇 .

And happily, if the transfer tensor 𝒜 is separable, and circulant or Toeplitz, the
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Figure 3-38: Top: two imaging configurations near a doorway; the two different scenes
lead to two different light reflections on the ceiling. Note that the observation on the
ceiling is equal to the scene, integrated along both spatial dimensions. Bottom: the
inversion process for this occluder. Because this occluder is separable, it suffices to
do two operations, one along one of the dimensions, and one along the other.

150



matrices 𝑈 and 𝑉 will also be circulant or Toeplitz (as well their inverses).

A transfer tensor being separable obviously makes reconstruction much faster,

since matrix multiplication is much faster than tensor-matrix multiplication. Just

to give a basic sense of how much faster, if we take 𝑥𝑜 = 𝑦𝑜 = 𝑥𝑠 = 𝑦𝑠 = 𝑛, tensor-

matrix multiplication will take Θ(𝑛4) time, whereas the reconstruction using separable

occluders will take Θ(𝑛Ω) time, where Ω is the matrix multiplication runtime exponent

(somewhere between 2 and 3).

We can call occluders whose transfer matrices will be separable “separable occlud-

ers.” Which occluders are separable? It turns out that it is very straightforward to

identify them. An occluder is separable if, when represented with a matrix 𝑀 of

0’s and 1’s (with 1’s representing the transmissive elements of the occluder, and 0’s

representing the occluding elements), 𝑀 is rank-1. (Note that 𝑀 is not a transfer

matrix!)

How can we find the matrices 𝑈 and 𝑉 that do the same thing as multiplying

by the transfer tensor 𝒜? Thankfully, that, too, is easy. If 𝒜 has the property that

each of its submatrices is rank-1 (which would follow from being a transfer tensor

representing a rank-1 occluder), then we can write each sub-matrix of 𝒜 as the outer

product of two vectors, of length 𝑥𝑠 and 𝑦𝑠, respectively. Each of those vectors is

drawn from two sets of vectors, of sizes 𝑥𝑜 and 𝑦𝑜, respectively.

𝒜𝑖𝑗 = 𝑢𝑖𝑣
𝑇
𝑗 , 1 6 𝑖 6 𝑥𝑜, 1 6 𝑗 6 𝑦𝑜.

It is easy to guess what 𝑈 and 𝑉 must be: they are the sets of vectors {𝑢1, . . . , 𝑢𝑜}

and {𝑣1, . . . , 𝑣𝑜}, respectively, stacked on top of each other! See Figure 3-39 for a

worked example.

3.19 Equivalent Occluders

This section introduces the concept of equivalent occluders. Equivalent occluders are

a phenomenon whereby certain transfer matrices or tensors can be substituted for

others while still accurately reconstructing the scene. The main use I have found
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Figure 3-39: A (2 × 2) × (2 × 2) separable transfer tensor 𝒜 (in black). Each of its
submatrices can be expressed as an outer product of vectors 𝑢𝑖 (blue) and 𝑣𝑖 (red),
each of which make up the matrices 𝑈 and 𝑉 respectively. For all 2× 2 matrices 𝑋,
we will have 𝒜𝑋 = 𝑈𝑋𝑉 𝑇 .
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for this phenomenon is substituting a separable occluder for a non-separable one

(that is, inverting a separable transfer tensor that is equivalent to the “real” transfer

tensor). In particular, an occluder frame that is an “anti-doorway”—one divided into

quadrants where one of the quadrants occludes light while the other three transmit—

is not separable, but is equivalent to the doorway occluder from Figure 3-38, which

is. This lets you use the techniques from the previous section to invert, which can be

tremendously convenient, since this is a common kind of occluder in the real world

(such as in the case of using furniture as an occluder).

Beyond that, I’m not sure yet what the applications of families of equivalent

occluders might be, but it seems that it could be potentially useful.

To give an example, I’ll start with the pair of equivalent occluders that I described

earlier: the right-angle occluder (one quadrant off, three quadrants on), and the right-

angle non-occluder (one quadrant on, three quadrants off). Let’s call the former 𝐴1,

and the latter 𝐴2. Suppose that in reality, the occluder frame is represented by

the transfer matrix (or tensor, if you prefer that notation) 𝐴1, so that 𝑌 = 𝐴1𝑋.

We know from the previous section, though, that because 𝐴2 is separable and 𝐴1

isn’t, that 𝐴−1
2 𝑌 will be easier to compute than 𝐴−1

1 𝑋. What happens if we try to

reconstruct 𝑋 by calculating 𝐴−1
2 𝑌 , even though 𝑌 = 𝐴1𝑋? In other words, if we let

𝑋̂ = 𝐴−1
2 𝐴1𝑋, how close will 𝑋 be to 𝑋̂?

As we can see from Figure 3-40, surprisingly close, for this particular choice of 𝐴1

and 𝐴2. All the pixels not on the border of the reconstructed image agree exactly.

This is very strange! The two potential observations that we’d get from multiplying

𝑋 from each of 𝐴1 and 𝐴2 look completely different from each other. But it turns

out that pairs of occluder frames 𝑀1 and 𝑀2 such that 𝑑
𝑑𝑥

𝑑
𝑑𝑦
𝑀1 = 𝑑

𝑑𝑥
𝑑
𝑑𝑦
𝑀2 have this

interesting and occasionally useful property, of being able to freely substitute one for

the other while doing almost no damage to the reconstruction you get.

Not all the reconstructed pixels are exactly correct, though. The pixels at the

edge of the reconstruction 𝑋̂ = 𝐴−1
2 𝐴1𝑋 are wrong; and not just that—they’re very

wrong! In fact, the magnitude of the pixels at the edge of the image is greater than

the pixels not at the edge of the image by a factor of the total number of pixels in
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Figure 3-40: A simulated scene, transformed by two equivalent occluders, 𝐴1 and
𝐴2. Despite the fact that the two potential observations 𝑌1 and 𝑌2 you would get by
transforming the scene 𝑋 by each of 𝐴1 and 𝐴2 look nothing alike, the reconstruction
you get by computing 𝐴−1

2 𝑌1 is almost identical to the scene. This is useful, because
𝐴2 is a separable occluder and 𝐴1 is not.
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the image! The display you see in 3-40 clips their values from above and below, but

if it weren’t for that they would be blindingly bright.

This causes serious problems when inverting using a prior, as described in Sec-

tion 3.6. This is because spatial priors make the assumption that the intensity of the

recovered pixels won’t vary sharply, but reconstructions that make use of the equiva-

lent occluders in this way rely on recovered pixels varying unrealistically in intensity

near the edges of the recovered image. Using a prior and equivalent occluders at the

same time can cause nasty artifacts to appear when the priors cause the degenerate

pixels to “bleed” into the rest of the image. In such cases, you’re better off zeroing out

the pixels on the edges, then using a Gaussian blur on the reconstruction, to simulate

the effects of a spatial prior. See Figure 3-41.

Many other families of equivalent occluder frames are easily found by finding pairs

of occluder frames 𝑀1 and 𝑀2 such that 𝑑
𝑑𝑥

𝑑
𝑑𝑦
𝑀1 = 𝑑

𝑑𝑥
𝑑
𝑑𝑦
𝑀2. Figure 3-42 gives an

example of one.

3.20 Non-parallel Occluder Imaging

In Section 4.1, a method for imaging scenes around a corner is described. For the most

part (ignoring the stereo camera), the only reconstructions we get are 1-dimensional,

because we integrate along one of the dimensions of space on the observation plane.

This method is closely analogous to the method we might use assuming the standard

configuration, with an occluder that was half-on and half-off (see Fig. 3-43). Yet,

despite being closely analogous, the two situations are not the same; in the former

case, we sum the intensities radially and differentiate along the angular dimension to

reconstruct a 1D view of the scene, and in the latter case, we sum the intensities along

one Cartesian dimension and differentiate along the other in order to reconstruct the

scene. This difference is owed to the fact that in the former case, the occluder is

perpendicular to the observation plane, whereas in the latter case, it’s parallel; but

how can we generalize this? How will our reconstruction algorithms behave as a

function of the angle of a planar occluder to the scene?
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Figure 3-41: An experiment with a right-angle occluder (the stack of legos) where one
quadrant occludes and the other three do not. This occluder is not separable, but it
is equivalent to one that is. The ground truth image was displayed on a monitor to
yield the observation. Thus the reconstruction can be obtained simply by taking the
derivative of the cropped observation along both spatial dimensions. Note that when
using a prior, this causes large, ugly artifacts to appear, especially near the edge of
the image.
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Figure 3-42: Another family of equivalent occluders. Any of these occluders can be
freely substituted for any of the others, and most of the pixels of the resulting image
will be exactly correct.

Figure 3-43: Left: a configuration with an edge occluder parallel to the scene. To get
a 1D reconstruction of the scene, we sum the intensities along the 𝑦 dimension and
differentiate along the 𝑥 dimension. Right: a configuration with an edge occluder
perpendicular to the scene. To get a 1D reconstruction of the scene, we sum the
intensities along the 𝑟 dimension and differentiate along the 𝜃 dimension.
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Sections 3.11 and 3.16 describe how to handle occluders at weird locations, or

non-planar occluders, so we could simply voxelize the space in between scene and

observation, and simulate a plane that’s at a weird angle as several small occlud-

ers at different depths. This is unsatisfying, though, and causes us to miss out on

some fascinating geometry that will more cleanly describe the phenomenon we see in

Figure 3-43.

At this point, if you can, I recommend getting out a sheet of paper (or any other

opaque flat object made up of straight lines—a book will do as well) and hold it

up, at a downward-slanted angle, above a flat surface such as a table, using your left

hand. If you’re using a sheet of paper, do your best to hold it rigid; don’t let it droop.

With your right hand, hold a flashlight, pointed downward (such as the one on your

smartphone). Keeping the paper in place, move the flashlight around—horizontally,

vertically, whatever you like. You should see two lines on the table that define the

shape of the paper’s shadow; those two lines will meet at the paper’s corner’s shadow.

Let’s call those lines 𝑢 and 𝑣, respectively. Of course, those two lines will move as

you move your flashlight around. So really, there’s some set 𝑈 of possible lines 𝑢 that

will appear on the table, depending on where you’re holding the flashlight; similarly,

there’s a second set 𝑉 of possible lines 𝑣.

At this point, you may notice that all of the lines 𝑢 in 𝑈 all meet at a single

point, and that the same is true of all of the lines 𝑣 in 𝑉 . This is remarkable; a

set of more than two lines won’t necessarily have a single point where they all meet.

Let’s call these two points 𝑝𝑢 and 𝑝𝑣 at which all lines meet focal points. The two

focal points of your occluder are the points at which, if you continued the two lines

that form the edges of your sheet of paper downward, those lines would intersect the

table. If any of this paragraph or the previous one didn’t make sense, see Figure 3-

44, which demonstrates the proper technique for holding occluders above tables, and

shows where 𝑝𝑢 and 𝑝𝑣 are on the table given the angle of the occluder.

These two focal points tell us how to reconstruct from a given occluder made up

of straight lines, suspended above the observation plane at some arbitrary angle. We

have to find the focal points of those lines, and it will be our angle from each of those
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Figure 3-44: A woman holding a flashlight above a book with one hand, and holding
a book above the table with the other, as described in the third paragraph of Sec-
tion 3.20. If she moves the flashlight around, it will move the shadow edges 𝑢 and 𝑣,
but 𝑢 and 𝑣, if extended, will always go through 𝑝𝑢 and 𝑝𝑣, the focal points of this
occluder, no matter where the flashlight may be. The focal points 𝑝𝑢 and 𝑝𝑣 can be
found by extending the edges of the book downward until they intersect the table.
𝑝𝑣 (in green) is to the right of the frame; it would appear when the green dotted line
intersected the table.
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Figure 3-45: The transformation from locations on the observation plane to points in
the scene, for a given pair of focal points.

focal points that tells us where points in the scene might be. See Figure 3-45 for an

example transformation from locations on the observation plane to locations on the

scene, for a given pair of focal points.

And now we can understand why, when the occluder is perpendicular to the floor,

we have a focal point at the point where the occluder meets the floor. And when

the occluder is parallel to the floor, well, the two focal points are at infinity! No

transformation is necessary then, since the angle from a point at infinity is equivalent

to Cartesian distance.

Given a right-angle occluder such as a book or a piece of paper, we can reconstruct

the scene above by performing the above-described transformation, then differentiat-

ing along both Cartesian coordinates in the transformed space (the right space shown

in Fig. 3-45). It should even be possible, in principle, to blindly reconstruct the

angle from the observation plane of a right-angle occluder, by measuring the direc-

tions of greatest variation on the observation plane (those directions are likely to be

perpendicular to the focal points).
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3.21 Optimal lenses under thickness and curvature

constraints

This section examines what happens when we explore not only occluding aperture

frames but aperture frames that can redirect the light as well. Being able to freely

redirect light corresponds to the constraint of considering only left-stochastic matrices

(i.e. matrices whose columns must sum to 1). This is because each column of the

transfer matrix corresponds to the impulse response to the light in one location. If

each column of the transfer matrix sums to 1, that corresponds to saying: all of the

light that enters the aperture frame must leave, no more and no less.

Optimizing for mutual information when we can freely redirect the light leads to

the natural conclusion that the identity transfer matrix is optimal; it’s well-known

that over left-stochastic matrices, the determinant is maximized by the identity matrix

(or any other permutation matrix) [45]. This transfer matrix can be achieved with a

traditional lens, with the scene in the lens’ focal plane.

If we limit the thickness of the aperture frame, then a Fresnel lens will be opti-

mal [84] (see Figure 3-46). If we also impose the constraint that the glass cannot

be curved, however, we are left with an interesting problem. This has the additional

benefit of equalizing the number of degrees of freedom between our study of occluders

and our study of glass aperture frames (if we divide our frame into 𝑛 patches, we are

left with 2𝑛 possibilities in both the former and latter case, but we would be left

with more possibilities than that in the latter case if we also needed to consider glass

curvature). This constraint also potentially reduces the cost of the frame.

This pair of constraints corresponds to a limitation on the distance by which we

can redirect light, and the amount we can change the direction of the light. As we

can see from Figure 3-47, a flat glass plane will redirect the light increasingly with the

incident angle, the thickness of the glass, and the ratio of the refractive index of air 𝑛1

to the refractive index of the glass 𝑛2. Suppose that the scene and observation plane

are represented by vectors of length 𝑛, and suppose they are separated by a distance

𝑦 and each have length 𝑥. Consider a binary array of aperture frame elements 𝑔𝑖
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Figure 3-46: Left: A Fresnel lens. Right: A convex lens of equivalent power. Note
that the thickness of the glass at each point on the Fresnel lens is equal to that of the
convex lens, modulo the maximum thickness of the Fresnel lens. Image credit due to
Wikipedia.
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Figure 3-47: The displacement 𝑑 of an incoming light ray increases with the thickness
𝑡 of the glass, and with the incident angle 𝜃.

where there is a piece of transparent material at position 𝑥/(2𝑛 − 1) if 𝑔𝑖 = 1, and

no glass-like material otherwise. Assuming there is glass-like material, suppose it has

thickness 𝑡 and refractive index 𝑛2 (and we’ll take the refractive index of air to be 1).

In that case, we can use Snell’s law to build the transfer matrix corresponding to the

flat glass array 𝑔𝑖 as follows:

𝐴← 0

Initialize the transfer matrix to the all-zeros matrix.

∀0 6 𝑖, 𝑗 < 𝑛
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∆𝑥 =
𝑥

2𝑛
(𝑖− 𝑗)

This ∆𝑥 is the light’s displacement on its way from the scene to the aperture

frame (this is ignoring the thickness of the aperture frame, assuming 𝑦 ≫ 𝑡).

𝑙 =
𝑦

𝑛(𝑦2 + ∆𝑥2)

The amount of light that would hit the observation from the point 𝑋𝑖 in the scene

to 𝑌𝑖 on the observation if the glass were absent, accounting for near-field effects.

𝜃𝑖 = tan−1

(︂
2∆𝑥

𝑦

)︂
The angle of the incident light to the aperture frame, relative to the aperture

frame’s normal.

𝜃𝑔 = sin−1

(︂
𝑛1

𝑛2

𝜃𝑖

)︂
The angle of the light while it’s inside the glass, derived using Snell’s law.

𝑑 =
2𝑛

𝑥
𝑡𝑔𝑖+𝑗(sin(𝜃𝑔)− sin(𝜃𝑖))

The displacement 𝑑 caused by the glass.

𝐴𝑖+𝑑,𝑗 ← 𝐴𝑖+𝑑,𝑗 + 𝑙

Increment the corresponding element of 𝐴 by the amount 𝑙. Note that while using

finite matrices 𝐴, 𝑑 may not be an integer. If this is the case, we can use a linear

approximation by incrementing each of 𝐴⌊𝑖+𝑑⌋,𝑗 and 𝐴⌈𝑖+𝑑⌉,𝑗 by amounts scaled by

1− 𝑟𝑒𝑚(𝑑, 1) and 𝑟𝑒𝑚(𝑑, 1), respectively.

Using this procedure, we can compute the transfer matrix 𝐴 for a given glass array

𝑔. Figure 3-48 shows the performance of optimal glass frames for three different glass

thicknesses and three different refractive indices, found using exhaustive search.
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Figure 3-48: Top: the performances of optimal transmissive aperture frames for three
different choices of 𝑛2 (corresponding to the approximate refractive index of glass, dia-
mond, and silicon, respectively), and for three different choices of the glass’s thickness.
Unsurprisingly, optimal performance improves with higher thickness and higher re-
fractive index. Other parameter choices are 𝑛 = 8, 𝑥 = 1, 𝑦 = 1, the SNR 𝜎 = 103,
and the scene correlation coefficient 𝛽 = 0.1. Each sub-image shows the form of the
aperture frame on the left, and the corresponding transfer matrix on the right. Bot-
tom: for comparison, the performance of the optimal occluding aperture frame, under
identical conditions. As can be seen, using an occluder substantially outperforms all
but the thickest glass, if the glass is assumed to be flat.
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3.22 Optimal phase arrays

The earlier bound in Equation 3.8, implied by Hadamard’s bound, on the determi-

nants of circulant matrices assumed binary (meaning {0, 1}) matrices. To recall, that

bound was:

| det𝐵| 6 2−𝑛(𝑛 + 1)(𝑛+1)/2

for a binary matrix 𝐵. For {1,−1} matrices 𝐶, recall that Hadamard’s bound

directly states:

| det𝐶| 6 𝑛𝑛/2.

What about for matrices 𝐷 that contain any complex number with norm at most

1? In a real-world setting, this might correspond to an aperture frame capable of

modulating the phase of the incoming light. In this case, the optimal sequence 𝑑𝑖 (i.e.

the first row of 𝐷) is a complex quadratic, and is given by:

𝑑𝑘 = exp

(︂
2𝜋𝑖(𝑘2 − 𝑘)

2𝑛

)︂
, 𝑘 odd

𝑑𝑘 = exp

(︂
2𝜋𝑖(𝑘2 − 2𝑘 + 1)

2𝑛

)︂
, 𝑘 even

Note that the pattern of a quadratic with a modulus applied closely mirrors the

Fresnel lens (see Figure 3-46).
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Chapter 4

Occluder-based Non-line-of-sight

Imaging

4.1 Turning Corners into Cameras

4.1.1 Introduction

Most of the content in this section is taken from Turning Corners into Cameras:

Principles and Methods [16]. My contributions to this project were mainly in helping

to run many of the experiments, making figures, editing the writing, and analysis

of the effects of corner errors. This publication describes an occluder-based imaging

system that maps neatly onto the “standard configuration,” using an “edge occluder”

as the occluding aperture frame. An “edge occluder” means an occluding frame that

lets through half the light and occludes the other half. This section will summarize

the methods and results of [16], and provide some analysis of edge occluders within

the framework presented in Chapter 3.

This particular type of occluder also has the additional nice property of having, like

the pinhole, a particularly recognizable reconstruction algorithm. A pinhole inverts

(and blurs) the scene but otherwise doesn’t distort it, so that the observation matches

the image; an edge occluder integrates the scene, so that if the scene intensity function

is 𝑓(𝑥), the observation intensity function will be
∫︀
𝑓(𝑥)𝑑𝑥. That means that in

167



Figure 4-1: A method for constructing a 1-D video of an obscured scene. The far
left shows a diagram of a typical scenario: two people—one wearing red and the
other blue—are hidden from view by a wall. To an observer walking around the
occluding edge (along the magenta arrow), light from different parts of the hidden
scene becomes visible at different angles (A). Ultimately, this scene information is
captured in the intensity and color of light reflected from the corresponding patch
of ground near the corner. Although these subtle irradiance variations are invisible
to the naked eye (B), they can be extracted and interpreted from a camera position
from which the entire obscured scene is hidden from view. Image (C) visualizes these
subtle variations in the highlighted corner region. We use temporal frames of these
radiance variations on the ground to construct a 1-D video of motion evolution in the
hidden scene. Specifically, (D) shows the trajectories over time of hidden red and blue
subjects illuminated by a diffuse light in an otherwise dark room. Figure originally
from [16].

order to reconstruct, all you have to do is take the derivative of your scene with

respect to space. This is convenient not only because it means the core algorithm

is simple, but also because some cameras already exist which automatically record

spatial derivatives at the hardware level [73].

The headline figure from Turning Corners into Cameras explains this idea well;

see Fig. 4-1. Note how the colors on the floor give us a 1D view of what’s in the

scene, integrated over space. This is exactly what we expected to see from an edge

occluder, given our analysis in the previous chapter. The fact that in this case, the

observation plane (i.e. the floor) is perpendicular to the occluder frame (i.e. the wall)

is what makes the spatial variation on the floor be a function of angle from the wall,

rather than just the 𝑥-coordinate. This is a direct consequence of the phenomenon

discussed in Section 3.20.
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Figure 4-2: Left: the percent difference in performance between the edge camera
and optimal size of circulant pinhole for each value of SNR and 𝛽. Negative values
indicate that the pinhole outperforms the edge camera. Right: the percent differ-
ence in performance between the edge camera and a circulant pinhole camera with
transmissivity 𝜌 = 1/4.

4.1.2 A comparison of the edge camera to the pinhole camera

How does an edge occluder compare to other types of 1D occluders? One salient point

of comparison is the pinhole. Obviously, the quality of pinholes varies as a function

of their size (see Section 3.13), which makes a direct comparison between the edge

camera and the pinhole camera challenging. Using Figure 3-28 as a reference for what

the optimal pinhole size is at each point in the SNR/scene correlation matrix, we can

compare the performance of the edge camera at each such point to whatever the

optimal 1D circulant pinhole is at that point. See Figure 4-2 to see this comparison.

As can be seen from Figure 4-2, the edge camera is always outperformed by the ideally-

sized pinhole, sometimes substantially so; however, perhaps a fairer comparison would

be between the edge camera and a single, fixed size of pinhole, since the edge camera

has no parameter which can be optimized in the way the pinhole does. We can see that

the edge camera performs similarly overall to a pinhole camera with transmissivity

𝜌 = 1/4.

Figure 4-2 shows that the edge camera is similar in quality to a 1D pinhole camera.

We know, however, that pinhole cameras are far from optimal. The thing that makes

edge cameras interesting is not the direct interpretability of the observation plane (as
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it is for a pinhole camera) nor is it optimality or near-optimality (as for a spectrally

flat occluder). Rather, it’s their ubiquity. Anywhere that a wall corner blocks your

vision, an edge camera is available for use in reconstructions. And the fact that this

method is relatively less ambitious, yielding only a 1D reconstruction, means that

the SNR of the method will be correspondingly much higher, because we can average

over an entire dimension.

4.1.3 Averaging in space and in time

The impressive robustness and practicality of this method is due to the trick of aver-

aging in space and in time to reduce the variance and the bias of our reconstruction,

respectively. Briefly, I will explain how and why this works in the language of the

previous chapter.

First, we can improve the effective SNR of the imaging system—thereby reducing

the variance of the reconstruction—by averaging over the dimension parallel to the

edge, in the simplified setting where scene, observation, and occluder are all parallel.

Assuming the paraxial approximation, any reconstruction would be uniform along

that dimension anyway, given the form of the occluder; there is no way to distinguish

the location of a light source in the scene along that dimension.

In the real-world setting where the occluder lies perpendicular to the observation,

this “dimension of constancy” will no longer be parallel to the edge, but will rather

extend outward radially from that edge (see Section 3.20 for more discussion). This

means that the spatial averaging will take place instead over a narrow triangular slice

of the observation. See Figure 4-3 for an illustration.

Second, we can correct for the effect of varying albedo on the observation, as

well as the effects of nuisance light illuminating the observation non-uniformly by

subtracting the average of our observation over time. This will reduce the bias of our

reconstruction. Recall that we intend to reconstruct the scene from the observation

basically by taking a spatial derivative of what we see on the observation; but if

our observation plane is a non-uniform patterned floor, the subtle effects we hope to

measure from the light coming from the scene will be drowned out by the patterns on
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Figure 4-3: Top left: an idealized setting in which scene, observation, and occluder are
all parallel. Bottom left: a simplified version of the setting in flatland, in which the
region highlighted in cyan in the top left is averaged to produce the region highlighted
in cyan in the bottom left. Top right: the real-world setting in which the occluder lies
perpendicular to the observation. Bottom right: a simplified version of the setting
in flatland, in which the region highlighted in cyan in the top right is averaged to
produce the region highlighted in cyan in the bottom right.
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the floor. We would like to take a spatial derivative not of our raw observation, but

of our observation after subtracting away the floor’s pattern. Ideally, we would know

the floor’s pattern by observing what it looks like in response to an “empty scene”;

in practice, we usually have no way to know that, since we don’t know what’s in the

scene, so we don’t know when it’s empty.

So as a proxy for what the floor’s pattern is, we can instead use the average over

a long time period of what the floor looks like. We hope that after averaging over

that time period, the resulting time-averaged scene is approximately uniform. This

lets us correct for nuisance non-uniformities in the imaging system.

Unlike the previous idea, this idea is very general, and tremendously useful in

uncalibrated passive non-line-of-sight imaging systems; it will get used again in Sec-

tion 4.5.

4.1.4 Other differences

Of course, the reconstruction algorithm isn’t purely a spatial derivative; that’s an

oversimplification. In reality, the method of [16] relies on a maximum a posteriori

(MAP) estimate of the scene using an L2 regularizer. While not exactly the same as

the reconstruction algorithm described in Section 3.6, it is similar. From Figure 4-4,

we can see that the reconstruciton algorithm roughly corresponds to a “blurry” spatial

derivative.

4.1.5 Selected Results

In the following sections I’ll show a few results from the original paper.

The algorithm reconstructs a 1-D video of a hidden scene from behind an occluding

edge, allowing users to track the motions of obscured, moving objects. In all results

shown, the subject was not visible to an observer at the camera.

Fig. 4-5 shows a few examples of 1-D videos recovered from indoor edge cameras.

In these sequences, the environment was well-lit. The subjects occluded the bright

ambient light, resulting in the reconstruction’s dark trajectory. Note that in all the
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reconstructions, it is possible to count the number of people in the hidden scene,

and to recover important information such as their angular size and speed, and the

characteristics of their motion.

Outdoor: In Fig. 4-6 we show the results of a number of videos taken at a com-

mon outdoor location, but in different weather conditions. The top sequences were

recorded during a sunny day, while the bottom two sequences were recorded while it

was cloudy. Additionally, in the bottom sequence, raindrops appeared on the ground

during recording, while in the middle sequence the ground was fully saturated with

water. Although the raindrops cause artifacts in the reconstructed space-time images,

you can still discern the trajectory of people hidden behind the wall.
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Figure 4-4: The example estimation gain image, showing the operation performed
on the observation to recover the scene. As we can see, it’s approximately a spatial
derivative along the angular dimension. The spatial derivative being taken has a
“blurry” appearance because of the spatial prior. Figure originally from [16].
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Figure 4-5: Indoor experiments for the corner camera. The subjects’ trajectories
are clear from the traces in the reconstructed 1D movie (right). Note that the 𝑥-
axis corresponds to time. Note, also, that the number of subjects can be easily
counted.Figure originally from [16].

Figure 4-6: Outdoor experiments for the corner camera. In sunny weather, the
subjects’ trajectories are very clear. In cloudy weather, the trajectories are fainter
but still clear upon closer examination. In rainy weather, the raindrops create dark
streaks in the reconstructed movie trace. However, if we ignore those streaks, we can
still see most of the subjects’ trajectories.Figure originally from [16].

See the paper itself [16] details about the method and for more results.

4.2 The effects of corner errors

One important source of error in the edge camera is the corner location error. When

studying a movie of the projection plane, it’s important to know where the corner of

the wall is in order to make an accurate reconstruction. Corner location errors occur

when the corner of the wall is erroneously chosen to be the wrong place. Corner

location errors introduce systematic error into the scene’s reconstruction.

The corner occluder can be chosen automatically (by minimizing the intensity
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variation along the “rays” emanating from the corner onto the projection plane) or

manually (by clicking by hand on where the corner is in the image). Both of these

methods have the potential to introduce a corner location error.

4.2.1 Edge Camera

Exactly how bad are corner location errors? To answer this question, we consider the

situation shown in Fig. 4-7. Imagine a dark scene with a single bright object. We

want to find the angular position of the bright object in the scene. We can do this

by measuring 𝜃: the angle of the shadow it casts against the wall. When we find the

angle at which the projection plane goes from light to dark, we will know what 𝜃 is.

This story is simple in the case when there is no corner location error. But what

about the case where there is such an error?

Fig. 4-8 shows this scenario. We can “sweep” the angle 𝜑 across the projection

plane, and at the point where 𝜑 is midway between dark and light, we can presume

that that is the object’s angular position. When there is no corner location error, we

will naturally get 𝜃 = 𝜑, but when there is a corner location error, 𝜑 will depend on

𝜃 and other parameters in a more complicated way.

Fig. 4-9 plots intensity against the sweeping angle 𝜑, both with and without a

corner location error. Note that in the case where there is a corner location error, the

maximum intensity value no longer takes on a maximum value of 1, but a value below

1. In the analysis that follows, we will call that value 𝑙max, and we will use 𝑙max/2 as

the “transition point” between light and dark. In other words, we will choose the 𝜑

that gives an intensity of 𝑙max/2 as our estimate for 𝜃.

Fig. 4-10 is a detailed illustration of the situation, showing the names for the

variables that we’ll use in our analysis. As the figure shows, we are presuming a

corner location error of (𝑑𝑥, 𝑑𝑦) and a projection plane radius of 𝑟. We want to find

what our estimate 𝜃, 𝜑, will be as a function of 𝜃 and in terms of 𝑑𝑥, 𝑑𝑦, and 𝑟.

Using Fig. 4-10 as a reference, we can make the following observations:
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Figure 4-7: This figure shows the configuration for the toy problem of interest. The
scene consists of a single bright object, whose angular position 𝜃 we want to learn.
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Figure 4-8: This figure shows the impact of a corner location error. In the error-free
case, we would sweep 𝜑 across the projection plane (shown in green) hinging around
the corner (the solid black line). But if we made a corner location error, we would
instead try to sweep 𝜑 across the projection plane erroneously (shown in blue) hinging
around the false corner (shown with a dotted line).
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Figure 4-9: This plot shows how the observed intensity values vary with 𝜑, in the case
of correct corner location (in blue) and a corner location error ((𝑑𝑥, 𝑑𝑦) = (0.1, 0.2),
in red). Note that in the case of a corner location error, the maximum value of the
intensity does not reach 1. Note also that 𝑑𝑥 and 𝑑𝑦 are as a fraction of the radius of
the projection plane, 𝑟, which here is taken to be 1.

𝛽 = tan−1

(︂
𝑑𝑥
𝑑𝑦

)︂
𝑙max = 𝑟 − 𝑑𝑦 tan(𝜃) + 𝑑𝑥

𝑓 = 𝑟 − 𝑙max

2

𝛼 = sin−1

(︃√︀
𝑑2𝑥 + 𝑑2𝑦 sin(𝜃 − 𝛽)

𝑓

)︃
𝛾 = 𝜋 − 𝛼− 𝜃 + 𝛽

𝜑 = 𝜋 − 𝛾 + 𝛽

This is how 𝜑 is expressed in terms of the parameters of the problem (𝜃, 𝑑𝑥, 𝑑𝑦, 𝑟).

What sort of error does this introduce? In order to study this question, we assumed

that 𝑑𝑥 and 𝑑𝑦 were normally distributed with means of 0 and small (relative to 𝑟2)

variances 𝜎2
𝑥 and 𝜎2

𝑦. We generated many sample (𝜃, 𝜑) pairs for each 𝜃 between 0 and

𝜋/2. We then measured the empirical means and variances of these pairs. Fig 4-11
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Figure 4-10: This plot is intended as a reference for the meanings of each of the
variables used in the calculations of 𝜑 as a function of 𝜃.
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Figure 4-11: This plot shows the empirical mean (in blue) plus or minus one standard
deviation (in red) of the error as a function of 𝜃. Here, 𝜎𝑥 = 10−4 and 𝜎𝑦 = 10−3.

shows a few of our results.

Here were a few of our empirical findings:

1. The mean error was always 0 for all values of 𝜃, 𝜎𝑥 and 𝜎𝑦.

2. When 𝜎𝑥 = 𝜎𝑦, the standard deviation of the error 𝜎𝜖 was 2𝜎𝑥 for all values of

𝜃.

3. When 𝜎𝑥 ̸= 𝜎𝑦, the standard deviation of the error 𝜎𝜖 varied between 2𝜎𝑥 (for

𝜃 = 0) and 2𝜎𝑦 (for 𝜃 = 𝜋/2).

4.2.2 Stereo Camera

Another situation in which it makes sense to study corner location errors is in the

case where there is a doorway just before the hidden scene, in which case we can

use stereo vision to locate a moving object in two dimensions. What effect do corner

location errors have on depth estimates, which are generally quite sensitive to noise?

To be more precise, suppose that we call the axis along which the doorway lies the
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Figure 4-12: The empirical means plus or minus one standard deviation of the esti-
mated 𝑃𝑧 as a function of its 𝑥-coordinate, assuming true 𝑃𝑧 of 20, 40, 60, and 80.
Here, the two corner location errors at each of the boundaries of the doorway are
independent and subject to 𝜎2

Δ𝑥 = 𝜎2
Δ𝑧 = 0.04. We sample from a set of 1000 corner

errors to approximate the mean and standard deviations empirically.

“𝑥-axis,” and suppose we call the perpendicular axis (of depth into the room) the

“𝑧-axis.” Then, how much noise in the 𝑧 dimension will a corner location error cause?

To give an approximate sense of how much error results in the recovered 𝑧 position,

we show the mean +/- one standard deviation in the 𝑧 dimension as a function of the

true 𝑥-position of the object in Fig. 4-12

Note that the empirical means are centered at the true depths of the objects.

This does not mean that any single corner location error won’t cause the depth of

the reconstruction to be off systematically, only that on average, corner location

errors that are normally distributed around the corners in question will push the

reconstructed depths away as much as they pull them closer.

To see this systematic bias on its own, we can also study how a single corner error

introduces systematic error in our reconstructions—after all, for a single experiment,

we are likely to make a single corner error, and the resulting error in the depth

calculations will extend across many 𝑥-coordinates as the subject of the experiment
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Figure 4-13: The reconstructed depths of objects at depths 1, 2, 3, and 4, given a
corner error of ∆𝑦1 = ∆𝑦2 = 0.02.

walks back and forth in the hidden scene. Figs. 4-13 and 4-14 show the systematic

bias for two distinct specific corner location errors.
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Figure 4-14: The reconstructed depths of objects at depths 1, 2, 3, and 4, given a
corner error of ∆𝑦1 = −0.02, ∆𝑦2 = 0.02. Note that because of the different corner
errors for each corner, there is the possibility of asymmetric behavior on either side
of the doorway.
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4.3 Inferring Light Fields from Shadows

The content in this section is taken from Inferring Light Fields from Shadows [12].

Having joined late in the project, my main contributions to this work were the writ-

ing and figures, as well as a few of the later experiments. This section will briefly

summarize the methods and results of [12], providing a reader unfamiliar with the

topic with an introduction to occluder-based light-field reconstruction.

The goal of the system described in [12] is straightforward but ambitious: using

an known occluder, can a 4D light-field be reconstructed from a 2D passive NLoS

observation? The occluder is not assumed to be planar, nor is the scene. The task

here is very difficult, as it is ill-posed: it requires reconstructing a 4D object from a

2D observation (and the 4D known occluder).

Key to this method is the strategy of estimating the transfer matrix with pre-

calibration, as shown in Figure 4-15. Note that this method of calibration is directly

analogous to the very definition of the transfer matrix presented in Chapter 1 (see

Figure 1-9)!

4.3.1 Overview

In order to reconstruct light fields using secondary reflections from the scene, our

imaging method has two main components. The first is a linear forward model that

computes observations from light fields, i.e. a transfer matrix A, that has many

columns but is sparse. The transfer matrix for an arbitrary scene is depicted schemat-

ically in Fig. 4-16.

The second is a prior distribution on light fields that allows reducing the effective

dimensionality of the inverse problem, turning this ill-posed problem into one that is

well posed and computationally feasible. This strategy is better than other methods

for reducing the dimensionality of the inverse problem (for example, naively down-

sampling the forward model and inverting). Light field sampling theory [24] and novel

light field priors [65] inform how we reduce the dimensionality of the inverse problem

given mild assumptions of the elements that produce the light field to be recovered.
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Figure 4-15: The process of calibrating for the occluder, performed by lighting one
small region of the monitor on the left at a time, and recording the shadow on the
right that results. Note the similarity of this process to the definition of the transfer
matrix from Chapter 1.

The work of [12] parametrizes the occluded light-field (meaning the light-field

that results from the presence of both the scene and the occluded) as the elementwise

product of the native scene light-field and the occluder visibility function (see Figure 4-

17). Note the slanted pattern of occlusion created by the occluders at different depths,

as discussed in Sections 3.11 and 3.16.

The details of the method can be found in the paper itself [12].

4.4 Selected Results

This section contains a few results taken from [12]; these results were obtained under

heavy illumination. See Figs. 4-18 and 4-19. As we can see, the reconstructions are

blurry but recognizable, and the reconstructed light-field includes a noticeable and

realistic parallax effect.
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Figure 4-16: a) Simplified 2D scenario, depicting all the elements of the scene (oc-
cluder, hidden scene and observation plane) and the parametrization planes for the
light field (dashed lines). (b) Discretized version of the scenario, with the light field
and the observation encoded as the discrete vectors x and y, respectively. The trans-
fer matrix is a sparse, row-deficient matrix that encodes the occlusion and reflection
in the system.
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Figure 4-17: a) Sketch of a 2D imaging scenario. (b) Resulting unoccluded light
field function 𝑙(𝑥, 𝑢) and observation. (c) The occluder visibility function 𝑣(𝑥, 𝑢).
(d) Resulting occluded light field function 𝑙𝑜𝑐𝑐(𝑥, 𝑢) = 𝑣(𝑥, 𝑢)𝑙(𝑥, 𝑢) and observation.
Note that the unoccluded observation is almost constant in 𝑢, which is not true of
the occluded observation; the presence of the occluder makes the problem better-
conditioned. Figure originally from [12].
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d) Selected views of recovered light field

c) Selected views of true scenea) Scene setup

a = 0.5

Scene

Occluders

Observation

Figure 4-18: Reconstructions of an experimental scene with two rectangles. (a)
Schematic of the setup. (b) Observation plane after background subtraction. (c)
Six views of the true scene, shown in order to demonstrate what the true light field
would look like. These are taken with a standard camera from equivalent positions
on the observation wall. (d) Reconstructions of the light field for these views. The
blue and red targets measure 8× 12in and 6× 8in. Figure originally from [12].

4.5 Blind Deconvolution

Most of the content in this section is taken from Using Unknown Occluders to Recover

Hidden Scenes [110]. This section reproduces most of the paper, but includes a few

additional sections, in particular, a section about alternate attempts to solve the same

problem that we tried but didn’t work (Section 4.5.15) and a section (Section 4.5.16)

about the modifications made to the algorithm to make it run “online” (i.e. in real

time).
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a) Observation

c) Selected views of recovered light field

b) Selected views of true scene

Figure 4-19: Reconstructions of an experimental scene with a seated subject at the
scene plane. (a) Observation plane after background subtraction. (b) Six views of the
true scene.(c) Reconstructions of the light field for the same views as in (b). Figure
originally from [12].
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Figure 4-20: Left: a real-world scenario with a moving scene, an occluder, and an
observation wall. Right: our model of the scenario.

4.5.1 Scenario

Our model of the scenario consists of three elements: a hidden moving scene, an

occluder, and the observation plane. We model each of these elements as parallel 2D

planes. See Fig. 4-20 for an illustration.

The hidden scene is presumed to be a collection of diffuse reflectors, shining light

uniformly in all directions and towards the occluder and observation plane. The

hidden scene is also presumed to contain some motion. The unknown occluder is

presumed to be a set of perfectly opaque objects lying on a common plane. We

assume the hidden scene, unknown occluder, and observation planes to each be a

substantial distance apart, relative to their sizes. This allows us to invoke paraxial

imaging assumptions, like in [109, 16].

The observation plane is presumed to be perfectly Lambertian. In simulations,

we also presume the observation plane to be white and uniform, and that all of the

light reaching the observation plane comes from the scene; in the experiment, we use

mean-subtraction to account for non-white, non-uniform observations with ambient

“nuisance” light sources, a method also employed in other work (e.g. [16]). This allows
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us to apply our method to most realistic scenarios with minimal adaptations to the

core algorithm. We explore the effect of other deviations from the idealized scenario

we present here in Section 4.5.8.

4.5.2 Light Propagation

The assumptions we describe in Subsection 4.5.1 imply that translating a light source

in the scene will correspond to a simple translation of the shadow it casts on the

observation plane in the opposite direction. For a more detailed explanation of why

that is, and how that model deviates from reality when those assumptions are violated,

see Section 4.5.8.

We model the propagation of light through the system as a 2D convolution of the

scene with the occluder. This follows from the fact that a translation of an impulse

light source will simply translate the shadow cast by the occluder, and from the fact

that the observed light can be modeled as a linear combination of light emanating

from different sources in the scene. See e.g. [109], who use the same convolution-based

model of light propagation that we do. In Section 4.5.8, we go into some detail on

how robust this model is, and in Section 4.5.12 we present the results of experiments,

including real-world experiments.

In the simulations presented in this paper, we assume that we see the full con-

volution of the scene and the occluder on the wall. If the scene is a plane of size

𝑥𝑠× 𝑦𝑠 and the occluder a plane of size 𝑥occ× 𝑦occ, this corresponds to an observation

of (𝑥𝑠 + 2𝑥occ) × (𝑦𝑠 + 2𝑦occ). However, in practical settings, it may not be possible

to see the full convolution of the scene and occluder on the wall. In the experimental

case, therefore, we express the size of the observed part of the wall as 𝑥obs × 𝑦obs. It

is easy to adapt our algorithm to the case when only part of the convolution between

scene and occluder is visible, as explained in Sections 4.5.3 and 4.5.7. But of course,

the larger 𝑥obs and 𝑦obs are, the more information about the hidden scene will be

available, and the better the reconstructions will be.
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4.5.3 Occluder Estimation

Our blind deconvolution algorithm consists of two steps. The first step estimates the

2D occluder from the observation movie and is the primary contribution of this paper.

We describe this step in this section. In Section 4.5.7, we describe the more standard

second step, which recovers the movie using the estimated occluder.

4.5.4 Preliminaries

Let 𝑌 = {𝑌 [0], . . . , 𝑌 [𝑇 ]} be the observed video, with each 𝑌 [𝑡] corresponding to a

video frame. Let 𝑌 = 1
𝑇

∑︀
𝑡 𝑌 [𝑡] be the “average frame” of the video, i.e., the frame

such that each of its pixels is equal to the temporal average of that pixel across the

entire video. Also, consider: (a) the mean-subtracted video 𝑌𝜇 = {𝑌 [0]−𝑌 , . . . , 𝑌 [𝑇 ]−

𝑌 }, i.e., the video of differences from the mean of the original video; (b) the difference

video 𝑌𝐷 = {𝑌 [1]− 𝑌 [0], . . . , 𝑌 [𝑇 ]− 𝑌 [𝑇 − 1]}, i.e., the discrete temporal derivative

of the observed video. Similarly, let 𝑋 = {𝑋[0], . . . , 𝑋[𝑇 ]} be the ground-truth video

of the scene, and let 𝑋𝜇 and 𝑋𝐷 be the mean-subtracted ground-truth video of the

scene and the discrete temporal derivative of the ground-truth video, respectively.

𝑋𝜇 and 𝑋𝐷 are defined relative to 𝑋 in the same way as above.

At this point, note the subtle but important difference between the mean-subtracted

video and the difference video, which will play different roles in the algorithm. We

use the observed difference video to estimate the occluder, and we use the observed

mean-subtracted video when reconstructing the moving scene. What makes the dif-

ference video preferable for occluder estimation is the fact that most realistic moving

scenes have just a few moving objects in them; thus each frame of the difference video

is sparse.1

Finally, we let 𝐴 be the occluder. Each element of the occluder is either 0 or 1,

with 1 being no occlusion, 0 being occlusion.

1The sparsity of the difference video is necessary for our algorithm to work. Note, however that
taking temporal derivatives amplifies the noise relative to the signal. Therefore, in situations in
which the mean-subtracted ground-truth video is sparse, it is preferable to use the mean-subtracted
observation video instead of the difference observation video for the task of occluder estimation.
Sparse mean-subtracted ground-truth video would occur for example when most of the light in the
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As explained in Section 4.5.1, we can express the observation as the convolution

of the scene and the occluder2. Thus, for all 0 6 𝑡 6 𝑇 ,

𝑌 [𝑡] = 𝐴 *𝑋[𝑡], 𝑌𝜇[𝑡] = 𝐴 *𝑋𝜇[𝑡], 𝑌𝐷[𝑡] = 𝐴 *𝑋𝐷[𝑡]. (4.1)

Given 𝑌 (and by extension 𝑌𝜇 and 𝑌𝐷), our goal is to learn both 𝑋 and 𝐴. We will

exploit the fact that each of the 𝑋𝐷[𝑡] is sparse and the fact that 𝐴 is binary-valued.

Next, we describe an algorithm that uses 𝑌𝐷[𝑡] to infer an estimate of 𝐴, which we

denote 𝐴.

4.5.5 Algorithm Description

Informally, we estimate the occluder by successively multiplying together randomly-

chosen difference frames of the observation video with each other. Before doing so,

we want to shift them such that their dot product is maximized. We can efficiently

compute the set of all possible dot products of two frames, up to shifts, by computing

the correlation between the two frames. Thanks to the sparsity of the difference

frames, the aggregated overlap between the random difference frames that we choose

will likely correspond to the shape of the occluder.

The algorithm’s pseudocode is given as Algorithm 1. Therein and onwards, we

use superscripts (such as 𝑋 𝑖,𝑗) to denote a single pixel of an image or a single entry of

a matrix, and single bars (such as |𝑋|) to denote the elementwise absolute value of a

matrix. Note that the occluder estimate 𝐴 evolves over the course of the algorithm.

For the reader’s convenience, we provide a detailed illustration of the first two rounds

of the algorithm in Fig. 4-21.

Our algorithm consists of three steps which we repeat until a maximum iteration

count is reached. First, there is a pre-processing step, the goal of which is to select

scene is being emitted by a single source.

2In the case that the observation is in color, Equation 4.1 will be true for each color channel
individually. Then, we can run the same algorithm as otherwise, but choosing at each step a single
color channel of each difference frame.
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observed difference frames corresponding to sparse ground-truth difference frames.

In particular, Algorithm 1 performs the preprocessing step by randomly selecting

frames. We have empirically observed that this simple solution produces satisfactory

results.

Next comes the alignment step. In the first iteration, we randomly select an

absolute difference frame to be our first estimate of the occluder 𝐴1. At each iteration

𝑘 = 2, . . . that follows, we treat 𝐴𝑘−1 as a video frame which we align with a randomly

selected new frame to obtain a refined estimate of the occluder 𝐴𝑘.

In order to better understand the details of the alignment procedure and the

reason why it yields an estimate of the occluder, it is instructive to consider the

simple example of “ideally sparse" frames. Suppose we had a difference ground-truth

frame that was a perfect impulse at (𝑖1, 𝑗1), i.e., 𝑋𝐷[1]𝑖,𝑗 = 𝛿(𝑖 − 𝑖1, 𝑗 − 𝑗1), where

𝛿 is the 2D Kronecker-𝛿 function. Then, clearly, 𝑌𝐷[1] is nothing but a shift of the

occluder 𝐴 by (𝑖1, 𝑗1). In this ideal case, we immediately obtain a good picture of

the occluder just by looking at a single difference observation frame. Unfortunately,

in practice ground-truth video frames are only approximately sparse. We therefore

model the difference observation frames as noisy shifts of the occluder. In particular,

for two such frames let 𝑌𝐷[1]𝑖,𝑗 = 𝐴𝑖−𝑖1,𝑗−𝑗1 + 𝑛1 and 𝑌𝐷[2]𝑖,𝑗 = 𝐴𝑖−𝑖2,𝑗−𝑗2 + 𝑛2, where

𝑛1 and 𝑛2 denote noise. The goal of the alignment step is to create “aligned" versions

of 𝑌𝐷[1] and 𝑌𝐷[2], which we will call 𝑍𝐷[1] and 𝑍𝐷[2], and for which:

𝑍𝐷[1]𝑖,𝑗 = 𝑌𝐷[1]𝑖,𝑗 = 𝐴𝑖−𝑖1,𝑗−𝑗1 + 𝑛̃1, (4.2)

𝑍𝐷[2]𝑖,𝑗 = 𝑌𝐷[2]𝑖−(𝑖2−𝑖1),𝑗−(𝑗2−𝑗1) = 𝐴𝑖−𝑖1,𝑗−𝑗1 + 𝑛̃2.

This is achieved in Algorithm 1 by cross-correlating 𝑌𝐷[1] and 𝑌𝐷[2], finding where

the max of the correlation occurs and appropriately shifting the original frames. This

will approximately minimize the noise terms 𝑛̃1 and 𝑛̃2. See also Figure 4-21.

The goal of the third step is to reduce the noise terms in (4.2) and improve the

estimate of the hidden 𝐴 matrix. The simplest de-noising rule would be to return

the average of 𝑍𝐷[1] and 𝑍𝐷[2]. We have found instead that performing the average
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on the logarithms of the absolute values of the frames performs better. This explains

the “geometric-mean" step in Algorithm 1.

Running the full occluder-estimation algorithm by sampling 100 frames takes a

few minutes on a laptop.

Algorithm 1 Our algorithm for estimating the occluder.
Set 𝑡 to a random integer in [0, 𝑇 ]. Set 𝐴1 = |𝑌𝐷[𝑡]|.
for 𝑘 in [2,NumIter] do

Set 𝑡𝑘 to a random integer in [0, 𝑇 ].
Compute 𝐶 = 𝐴𝑘−1 * |𝑌𝐷[𝑡𝑘]|.
Find (𝑖, 𝑗) := argmax𝑖,𝑗𝐶

𝑖,𝑗, where by convention we take 𝐶0,0 to be the central
element of 𝐶𝑖,𝑗.
Let 𝑆𝑖,𝑗(|𝑌𝐷[𝑡𝑘]|) be |𝑌𝐷[𝑡𝑘]| shifted horizontally by 𝑖 pixels and vertically by 𝑗
pixels.
𝐴𝑘 := (𝐴𝑘−1)

(𝑘−1/𝑘) · (|𝑌𝐷[𝑡𝑘]|)(1/𝑘).
◁ In the line above, the superscripts denote elementwise exponentiation.
Crop the zero-valued entries of the resulting 𝐴𝑘 until it is the same shape as 𝐴𝑘−1.

end

4.5.6 Comparison to other methods

It is instructive to describe the differences between our application and that of most

of the previous literature in blind deconvolution. Past work in blind deconvolution

has largely focused on applications in image deblurring [68, 26, 59, 22]. Typically,

this means that, given a single blurry image taken with a shaky camera, we would

like to express the blurry image as the convolution of an unknown sharp image and

an unknown blur kernel.

This problem differs from ours in three ways. First, unlike in our problem, one

can assume that the unknown blur kernel is not only sparse but localized to a small

region. Second, in our problem, we have additional information about the occluder:

in particular, we assume it to be binary-valued. Finally, in our problem, we have

many frames, each of which is a different (unknown) sparse kernel convolved with the

occluder, which gives us much more information to work with.

The first difference means we have many more potential degrees of freedom to

handle in our reconstruction algorithm; local search algorithms, used for deblurring
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Figure 4-21: A worked example of initialization of Algorithm 1, followed by a single
pass through the for-loop. Continued in Fig. 4-22.
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Figure 4-22: A worked example of Algorithm 1.
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in [26, 108], encounter difficulties when the potential size of the kernel is greatly

increased. This makes it challenging to directly port blind-deconvolution algorithms

used for image deblurring to our application.

Moreover, the many extra frames we have give us more information to work with.

In particular, each frame shows us the occluder convolved by a different sparse kernel.

This gives us many different “views” of the same occluder; it seems natural that as

the length of the video goes to infinity, we should, in principle, be able to precisely

characterize the shape of the occluder, even in the presence of arbitrary finite noise.

How this intuition should extend to actual videos with a fixed number of frames is

unclear, of course, but the nature of the problem (a fixed occluder with a non-fixed

moving scene) lends itself naturally to an approach in which we estimate the occluder

first, and then attempt deconvolution by the occluder estimate to recover the scene,

rather than vice-versa.

Before settling on the method we used in this paper, we tried a variety of other

methods, all of which failed. We tried a root-finding approach to the blind-deconvolution

problem, a phase-retrieval-based approach (using ADMM), and we tried a simple gra-

dient descent over the scene and the occluder jointly.

4.5.7 Scene Reconstruction

This section describes our method for reconstructing the moving scene, given an

estimate of the occluder. In general, we reconstruct the moving scene from the mean-

subtracted observation movie 𝑌𝜇
3.

To perform the reconstruction, we first formulate the matrix Â, which describes

the linear transformation corresponding to convolution by the estimated occluder 𝐴.

If 𝑌𝜇 is of size 𝑥obs × 𝑦obs, and the part of the scene containing movement is of size

𝑥𝑠 × 𝑦𝑠, then by necessity, Â will be a matrix of size (𝑥obs𝑦obs)× (𝑥𝑠𝑦𝑠)
4.

3If the observation plane is perfectly white and uniform, and there are no “nuisance light” sources
from anywhere besides the scene, the raw observation movie may be used instead.

4In an experimental setting, it’s possible that the size of the moving scene (𝑥𝑠, 𝑦𝑠) will be unknown.
In this case, we recommend tuning the size of the scene by hand, erring on the side of larger (𝑥̂𝑠, 𝑦𝑠).
If the chosen (𝑥̂𝑠, 𝑦𝑠) are too small, the reconstruction will be overconstrained and will produce
nonsense; if, on the other hand, the chosen (𝑥̂𝑠, 𝑦𝑠) are too large, the expanded area will contain
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Once we’ve formulated the forward model Â, we can reconstruct the moving scene

simply by inverting Â with regularization:

𝑋̂𝜇 = 𝜆(Â𝑇 Â + 𝜆𝐼)−1Â𝑇𝑌𝜇 (4.3)

Note that in Equation 4.3, 𝑋̂𝜇 and 𝑌𝜇 have both been flattened into vectors; that

is, instead of being matrices of size (𝑥𝑠, 𝑦𝑠) and (𝑥obs, 𝑦obs), respectively, they are

vectors of size 𝑥𝑠𝑦𝑠 and 𝑥obs𝑦obs.

If we are reconstructing an RGB image, we do the calculation of Equation 4.3 for

each of the three color channels individually, and then assemble them into a single

image.

In Equation 4.3, the regularization parameter 𝜆 can be tuned for optimal per-

formance. We generally found that a value of 𝜆 between 1 and 10 yielded the best

reconstructions in experimental settings.

4.5.8 Deviations

In Section 4.5.1, we described assumptions that we made in order to guarantee that

the observation would reflect the convolution of the occluder with the scene. For

clarity, we repeat these assumptions here. First, we assume that the scene, occluder,

and observation lie on parallel 2D planes. Second, we assume that the scene, occluder,

and observation are far apart relative to their size. And third, we assume that the

observation plane is perfectly Lambertian, white, or uniform.

Naturally, in most real-world settings, few, if any, of these assumptions will hold.

So is the algorithm we present here useless in practice? No, in fact. If nothing else,

in Section 4.5.12, we present the results of our algorithm in experimental settings in

which all of these assumptions are violated, and these results demonstrate that our

algorithm can be used in real-world settings to approximately recover hidden scenes

and occluders.

We do, however, consider it instructive to describe in more detail the distortions

noise, but the subset of the scene corresponding to the signal will remain intelligible.
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introduced by violating the aforementioned assumptions.

4.5.9 Non-planar or non-parallel objects

Consider the following example of an incorrect planarity assumption: suppose that

we assume the occluder to be a disk, but it is in fact a sphere.

As explained in Sec. 4.5.1, the observation is the convolution of the occluder with

the scene because translating an impulse light source in the scene corresponds to

translating its corresponding shadow on the observation. This will be true if the

occluder is a disk, but not if it is a sphere. In general, the shadow of a parallel disk

on the observation plane will be a circle, but the shadow of a sphere will be an ellipse

whose eccentricity will vary with the (𝑥, 𝑦)-position of the light source. Figure 4-23

illustrates this, and shows a reconstruction of a simple scene using when incorrectly

assuming the occluding sphere to be a disk.

4.5.10 Nearby objects

Assuming that the scene, occluder, and observation are far apart from each other

relative to their size is common in occluder-based imaging [109, 16], and is generally

called the paraxial approximation. The benefit of making the assumption is that it

lets you ignore the effects of distance attenuation. The ray optics model tells us that

if a small, flat surface of area 𝑑𝐴 is a distance 𝑟 from a light source of intensity 𝐼, and

the surface normal is at an angle of 𝜃 from the incident light, then the contribution

𝑐 of the light source to the light intensity on the surface will go as:

𝑐 ∼ 𝐼
𝑑𝐴 cos(𝜃)

𝑟2
(4.4)

Suppose we have two parallel planes, 𝑝1 and 𝑝2, a distance 𝑧 apart. In that case,

we can use Eq. 4.4 to derive the contribution of a light source of intensity 𝐼 at (0, 0)

on one of the two planes to a small patch at (𝑥, 𝑦) with area 𝑑𝐴 on the other. In this

case, the contribution simplifies to:
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𝑐 ∼ 𝐼
𝑧𝑑𝐴

(𝑥2 + 𝑦2 + 𝑧2)3/2
(4.5)

Now we can see what is meant more precisely by the scene, occluder, and obser-

vation being “far apart relative to their size.” When 𝑧 ≫
√︀
𝑥2 + 𝑦2 for all (𝑥, 𝑦) on

either plane, then Eq. 4.5 simplifies to 𝑐 ∼ 𝐼 𝑑𝐴
𝑧2

, and the contribution of a source of

light at any point on 𝑝1 to any point on 𝑝2 will be the same, irrespective of their

locations on either plane. This is a necessary condition for a translation of a light

source in the scene to simply translate its observed shadow, which is in turn a nec-

essary condition for the observation plane to reflect the convolution of the scene and

occluder, as discussed in Section 4.5.1.

See Fig. 4-23 for a simulated reconstruction of a nearby scene while incorrectly

assuming it to be far away.

4.5.11 Imperfections on the observation plane

Most surfaces are not perfectly uniform and white. Subtracting the mean frame

from the observation video will help to reduce the effects of imperfections on the

observation plane, to an extent. Color variations on the observation plane will still

cause visible artifacts, however, because a darker region of the observation plane will

respond less to overall increases in luminosity than a brighter region.

Non-Lambertian surfaces pose even more of a challenge. If the observation plane

is sufficiently non-Lambertian, then the most important reflections off the surface will

not be diffuse, but will vary strongly as a function of the angle of the incident light.

This will confuse our algorithm, and probably render its output useless. However, a

sufficiently non-Lambertian surface may also make the problem much easier to solve,

if the observation plane is mirror-like!

We don’t show a simulated example corresponding to imperfections on the obser-

vation plane in Fig. 4-23, because their effect isn’t much different from simple noise,

which we account for using regularization (as explained in Section 4.5.7). However, in

Section 4.5.12, we show experimental results for which the observation plane includes
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Figure 4-23: An illustration of the effects of the planarity assumption and the paraxial
approximation on the reconstruction. The top row shows a sketch of the true setup;
in all three cases, the assumed setup is the one on the left. The middle row shows
what reconstructions, generated using the approach described in Sec 4.5.7, of the
leftmost image look like when the assumptions used for that approach are violated.
The bottom row shows example impulse responses for each of the three scenarios. All
data shown here is simulated, with no noise, to isolate the effect of each assumption.

visible imperfections.

4.5.12 Results

In this section we present a summary of our results, both simulated and experi-

mental. We show our reconstructions of occluders, along with a few still frames of

reconstructed video. We leave the bulk of our results to the supplementary materials,

however, as reconstructions of moving scenes are best seen in video form.
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Figure 4-24: The output of the occluder-recovery and scene-reconstruction algorithms
presented in Secs. 4.5.3 and 4.5.7, using the difference frames of a simulated observa-
tion at 25dB.

4.5.13 Simulations

In this section we show the result of simulations in an ideal scenario (all of the

assumptions explored in Section 4.5.8 are assumed to hold perfectly). The moving

scene is the introduction to a popular television show. The ground-truth occluder

was generated via a random correlated process. The observation plane is assumed to

display the full convolution of the moving scene with the occluder, plus additive IID

Gaussian noise. The signal-to-noise ratio on the observation plane is 25 dB.

Figure 4-24 shows the result of occluder recovery, as well as a recovered still frame

from the moving scene.
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4.5.14 Experiments and Comparisons to Past Work

There has been surprisingly little past work as of this writing that does computational

periscopy with the aim of recovering a head-on (as opposed to top-down) full-color

2D image of a scene in the passive setting (that is, without making use of active,

directed illumination). Until 2019, the closest would have been the work of Bouman

et al. in [16], but the full-color reconstructions shown in that work focus on 1D scene

reconstructions, not 2D.

In 2019, however, Saunders et al. [86] showed that high-fidelity 2D full-color images

could be recovered using a pinspeck occluder. Their experimental results differ from

ours in two important ways. Firstly, they presume knowledge of the shape of the

occluder (a pinspeck), though not its location in three-dimensional space. This gives

them full knowledge of the imaging system, up to translation and scaling of the

output. Second, their results are gathered from a still image with 3.5s of effective

exposure time, whereas ours are drawn from a 100-FPS video of a moving scene

(although the reconstruction shown is averaged over 5 frames of the ground-truth

video, representing about 0.05s of exposure time). This implies a difference in signal

strength. Only results from LCD monitor scenes are shown in [86]; to make it easy to

compare our results with theirs, we include scenes from a cartoon shown on an LCD

monitor as well as real-life scenes under heavy illumination in Figure 4-26.

As we can see in Figure 4-26, our monitor-based reconstructions are substantially

lower-quality than those of [86]. We believe that this difference in reconstruction

quality is primarily due to our system’s imperfect knowledge of the occluder’s form,

which is a problem that the system of [86] does not have. We believe that the

difference in SNR between the two settings may play a minor role as well.

Figure 4-25 shows the result of occluder recovery alongside its ground-truth coun-

terpart. This recovered occluder is used for scene reconstruction in the live-action

experiment in Figure 4-26.
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Figure 4-25: The output of the occluder-recovery algorithm presented in Section 4.5.3
in the experimental setting, alongside the ground-truth occluder. This is the occluder
recovery used in the reconstruction shown in the second row of Figure 4-26.

4.5.15 Failed Attempts

Of course, for every good algorithm, there are any number of bad algorithms. How-

ever, the reviewers of [110], seeing that the algorithm we used was unconventional,

asked in their comments why we didn’t try using a few other methods instead. The

answer in several cases was that we had tried them first, but found them insufficient

to solve the problem. It’s worth going over them, so that the reader is aware of them,

both to be aware that they failed in our case but also in case they think they can

make them work. Especially in the case of the phase-retrieval-approach, there may

well be a possible algorithm that proves effective.

Failed Alternate Approach: Phase Retrieval

At first blush, a phase-retrieval algorithm seems like a natural approach to solving

the problem at hand. After all, one can straightforwardly use the full observed movie

to get a good estimate of the frequency magnitudes of the occluder, as follows.

Let 𝑌 , 𝑋, and 𝐴 be the observation movie, ground-truth movie, and occluder, as

before. Moreover, let 𝑌 (𝜔), 𝑋̃(𝜔), and 𝐴(𝜔) be the spatial 2D Fourier transforms of

each of 𝑌 , 𝑋, and 𝐴. By Equation 4.1, we have, for all 𝑡 and 𝜔:

𝑌 [𝑡](𝜔) = 𝐴(𝜔) · 𝑋̃[𝑡](𝜔) (4.6)

Suppose we also have a prior distribution on the average frequency magnitudes of
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Figure 4-26: Still frames from reconstructed videos under a variety of different exper-
imental settings. Top row: the scene is a cartoon video, playing on an LCD monitor.
Middle row: the scene is a moving man, illuminated by 200W of directed lighting.
Bottom: the results of Saunders et al. [86], presented for comparison. The results
of Saunders et al. demonstrate the potential improvement over our result when the
form of the occluder is known. See Subsec. 4.5.14 for further discussion.
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natural images 𝜒(𝜔), and the ground-truth frames of 𝑋 have frequency magnitudes

|𝑋[𝑡](𝜔)| drawn from this distribution. Such prior distributions exist and are well-

studied; examples include [62]. Then we can also write the following:

lim
𝑇→∞

1

𝑇

∑︁
𝑡 = 1∞|𝑋̃[𝑡](𝜔)| = 𝜒(𝜔) (4.7)

It follows that

lim
𝑇→∞

1

𝑇

∞∑︁
𝑡=1

|𝑌 [𝑡](𝜔)𝐴(𝜔)| = 𝜒(𝜔)

lim
𝑇→∞

1

𝑇

∞∑︁
𝑡=1

|𝑌 [𝑡](𝜔)|/𝜒(𝜔) = |𝐴(𝜔)|

Both |𝑌 [𝑡](𝜔)| and 𝜒(𝜔) are known; hence, we can recover |𝐴(𝜔)|. The next step

is to solve a phase-retrieval problem; given |𝐴(𝜔)| and the knowledge that 𝐴(𝜔) is

binary-valued, can we recover 𝐴(𝜔) (and therefore 𝐴 itself)? We found that using

alternating projections, we could solve the problem for 1D sequences of length 25 or

less, or 2D sequences of size 5 × 5 or smaller, but for occluders much larger than

that, the phase-retrieval problem quickly became intractable—especially when the

frequency magnitude estimates were imperfect. In particular, the search algorithm

would get stuck in local optima, or would return solutions that had frequency mag-

nitudes very close to the correct ones but would look dramatically different from the

true occluder in the primal domain. This remained true even when initializing to an

occluder close in the primal domain to the correct one.

Failed Alternate Approach: Greedy Search

A greedy-search approach is another natural try at solving the problem. Even be-

yond simple sparsity, most natural ground-truth difference movies will be heavily

constrained. For example, they are likely to have low spatial variation [16]. Hence,

one can initialize the estimate of the occluder and the estimate of the ground-truth

difference movie to a plausible guess, and seek to minimize a penalty function. A
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well-chosen penalty function of this kind would likely be formulated as a weighted

sum of individual penalty terms, which could include:

1. A penalty for deviations from the observation, 𝜆1

∑︀
𝑡 ||𝑌 [𝑡]− 𝐴 * 𝑋̂[𝑡]||

2. A penalty for high temporal deviations (in other words, non-sparsity in the

difference movie), 𝜆2

∑︀
𝑡 ||𝑋̂𝐷[𝑡]||

3. A penalty for high spatial deviations, 𝜆3

∑︀
𝑡

∑︀
𝑖

∑︀
𝑗 ||𝑋 𝑖,𝑗[𝑡] − 𝑋𝑖 + 1, 𝑗[𝑡]|| +

||𝑋 𝑖,𝑗[𝑡]−𝑋𝑖, 𝑗 + 1[𝑡]||

Of course, there could be other terms in such a penalty function as well.

When we tried using gradient or stochastic gradient descent to minimize this kind

of penalty function jointly over the value of the occluder and the ground-truth scene

movie, we generally found that the greedy search quickly got stuck in a local opti-

mum, even with relatively favorable initialization. We think this is because important

factors in the reward function, most notably sparsity in the estimated ground-truth

difference movie, only appear when the occluder estimate is almost exactly right.

4.5.16 Online Modifications

I later modified the blind-deconvolution algorithm to make it usable as an online

algorithm. I wanted it to be able to handle a changing or moving occluder, to rely

only on recent data (in case the occluder changed) and to be able to recover from

incorrectly guessing the shape of the occluder (so that it wouldn’t always return a

bad result forevermore).

I aimed also in this modification to make the overall algorithm simpler and faster.

As such, the algorithm stores only a minimal amount of state while running, and

doesn’t perform the expensive self-correlation operations described in Section 4.5.3.

Rather, the core idea of the online algorithm is as follows: for each color-frame,

evaluate how close the frame is to a shadow cast by something approximating an

impulse light source. (By a color-frame, I mean one color channel of a single recorded

frame. So one recorded frame yields three color-frames.) Each color frame can be
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recovered from either the difference video or the mean-subtracted video, depending

on the setup (the difference video will do better if the SNR is very high and there is

localized movement in the scene, but the mean-subtracted video will do better if the

scene contains only a few objects and the SNR is worse). I recommend trying both

and seeing which works better in your application.

Each color-frame 𝐶 is given a penalty according to a formula 𝑓 that, at a high

level, rewards low spatial variation, contiguity, and well-defined boundaries (on the

assumption that most real-world occluders will have these properties). In addition,

each color frame’s penalty increases exponentially over time, parametrized by a growth

rate 𝑘2. If the new color-frame 𝐶new has a lower penalty than the previously chosen

color-frame 𝐶old, meaning that 𝑓(𝐶new) < 𝑓(𝐶old)𝑘1𝑒
𝑘2𝑡 (where 𝐶old is 𝑡 frames old) a

new occluder estimate 𝑔(𝐶new is derived from 𝐶new. The details of the scoring function

𝑓(𝐶) and how an occluder estimate is derived from a color frame are described below.

The scoring function

The scoring function 𝑓(𝐶) is in fact the sum of six penalty or reward subfunctions:

𝑓(𝐶) = 𝜆1𝑓var(𝐶) + 𝜆2𝑓diff + 𝜆3𝑓unif + 𝜆4𝑓edge + 𝜆5𝑓chunk + 𝜆6𝑓mat

The first of these, 𝑓𝑣𝑎𝑟(𝐶), is a penalty for high spatial variation. It is given as

follows:

𝑓var(𝐶) =
∑︁
𝑖𝑗

𝑑

𝑑𝑖

(︂
𝑑

𝑑𝑗

(︁
|𝐶𝑖𝑗|

1
4

)︁)︂
,

where 𝑑
𝑑𝑖

and 𝑑
𝑑𝑗

denote discrete derivatives with respect to the pixels’ 𝑥 and 𝑦 coor-

dinates, respectively. 𝜆1 = 1.

The second of these, 𝑓diff(𝐶), is a reward for high overall variation (meaning that

pixels are different from the mean, which implies non-trivial occluder estimates). We

have:
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𝑓diff(𝐶) =
∑︁
𝑖𝑗

√︁
|𝐶𝑖𝑗 − 𝐶|,

where 𝐶 =
∑︀

𝑖𝑗 𝐶𝑖𝑗/(𝑥𝑦), where 𝑥 and 𝑦 denote the dimensions of 𝐶. 𝜆2 = −0.1.

The third of these, 𝑓unif(𝐶), is a penalty for occluder estimates that are all-on or

all-off (even if that is the correct occluder, it’s unlikely to yield a good reconstruction,

which renders the point moot). Let 𝑔(𝐶) be the occluder estimate that would be

derived from 𝐶. If we have 𝐶 =
∑︀

𝑖𝑗 𝑔(𝐶)𝑖𝑗/(𝑥𝑦) (𝑤 here is the fraction of the

candidate occluder frame 𝑔(𝐶) that is “on,” meaning transmissive to light), then

𝑓unif(𝐶) = 𝐶 log(𝐶)− (1− 𝐶) log(1− 𝐶), 𝜆3 = 100.

The fourth of these, 𝑓edge(𝐶), penalizes occluder frames in which the a lot of the

occluder is on the edge of the frame. This is because that probably means the entire

form of the occluder isn’t in the frame at once, making this frame unsuitable for

estimating the occluder. We have:

𝑓edge(𝐶) = 3
∑︁
𝑖𝑗

(1− 𝑔(𝐶)𝑖𝑗)𝑒(𝑔(𝐶)𝑖𝑗) + 0.04
∑︁
𝑖𝑗

𝑔(𝐶𝑖𝑗)(1− 𝑒(𝑔(𝐶)𝑖𝑗)),

where 𝑒(𝑝) is an indicator function that returns 1 when the pixel 𝑝 is on the edge of

the frame. 𝜆4 = 2.

The fifth of these, 𝑓chunk(𝐶), is a penalty on the fraction of pixels that are not

part of the largest contiguous chunk of the reconstructed occluder. If we let the

fraction of pixels that are on but not part of the largest contiguous chunk be 𝑟, then

𝑓chunk = 𝑟. (If this isn’t clear yet, it will hopefully become clearer after you read

about the occluder estimation function 𝑔(𝐶)). 𝜆5 = 100.

The sixth and last, 𝑓mat, is a reward for having the form of 𝑔(𝐶) match 𝐶. It’s

given by

𝑓mat =
𝐶 · 𝑔(𝐶)∑︀
𝑖𝑗 𝑔(𝐶)𝑖𝑗

.
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𝜆6 = −40. Finally, 𝑘1 = 0.8 and 𝑘2 = 0.997 (meaning that a new occluder should be

chosen approximately every 75 frames, since the condition for choosing a new occluder

is that 𝑓(𝐶new) < 𝑓(𝐶old)𝑘1𝑒
𝑘2𝑡).

The occluder recovery function

Given that a frame has been judged suitable for occluder recovery, how does the

algorithm use it to recover an occluder? To keep the algorithm fast and simple, the

occluder estimate is simply the color-frame, thresholded at its average value. That is,

𝑔(𝐶)𝑖𝑗 = 1 if 𝐶𝑖𝑗 > 𝐶, and 0 otherwise, where 𝐶 =
∑︀

𝑖𝑗 𝑔(𝐶)𝑖𝑗/(𝑥𝑦). Then, optionally,

only the largest contiguous chunk of 0’s is kept in 𝑔(𝐶), with the rest set to 1.

This algorithm, while more ad-hoc than the one described in Section 4.5.3, has

the advantage of working nearly as well, while working in an online setting and at

much lower computational cost.

4.6 Computational Mirrors: Blind Inverse Light Trans-

port by Deep Matrix Factorization

Soon after the publication of [110], Aittala et al. [6] presented an alternate approach

to the general problem of blind non-line-of-sight imaging. While this new approach

doesn’t use occluders to reconstruct the scene, the problem it seeks to solve is closely

related to the problem solved in [110], even if the method used to solve it is very

different.

In [6], the method presented is designed to reconstruct a moving, hidden scene

using reflections from a “pile of clutter,” whose reflectance properties are unknown.

This is analogous to the problem of [110], which is to reconstruct a hidden scene using

shadows cast by an unknown occluder. The former problem is a more general version

of the latter problem, however. In both cases, we are given a system that can be

modeled as 𝑌 = 𝐴𝑋 + 𝜂, where 𝑌 is the observation movie, 𝑋 is the hidden scene

movie, 𝜂 is a noise term, and 𝐴 is the action of some unknown object, either a pile of
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Figure 4-27: Blind light transport factorization using the method of [6]. The first
three sequences are projected onto a wall behind the camera. The Lego sequence is
performed live in front of the illuminated wall. Figure originally from [6].

clutter in the former case or an occluding object in the latter case.

Combined with the assumptions made in [110], 𝐴 is known to be convolutional

in the former case, but the restrictions on the form of 𝐴 in the latter case are both

fewer, and harder to describe. For that reason, the problem in the latter case is more

difficult to solve. Accordingly, it makes use of a different method, relying on the Deep

Image Prior (DIP) [100] to characterize the distribution over transfer matrices 𝐴 (as

well as over the scene movie). I recommend reading the paper in full if the topic is

interesting, but in the interest of presenting a few of its results for comparison, I show

some results from [6] in Figure 4-27.

Given the fact that the problem described in Using Unknown Occluders is so

much narrower than that described in Computational Mirrors—with the requirement

of an occluder-based imaging system in the first but not the second—what explains

why the results are comparable in quality? After all, the later work had to contend

with a completely unknown transfer matrix 𝐴, which at least in principle has many,

many more degrees of freedom than a transfer matrix 𝐴 that is constrained to be

convolutional.

I think there are three major differences. The first is simply that the SNR was
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higher in the second work—the scenes were from a projector, after all. The second is

that the second work’s standard experimental setting is a “pile of junk” with lots of

specular reflections, whereas the first not only assumes but requires a matte wall as

its observation. This makes the first narrower, of course, but this time not necessarily

easier; it’s fairly natural that the specular reflections from shiny objects will carry a

lot more information than diffuse reflections off of a matte wall. But the third reason

is that I believe that the methods used in Computational Mirrors are better, and

will likely work better in the future. Not only are they somewhat less ad-hoc, but

the power of deep learning-based methods are likely only to grow as the tools and

algorithms for machine learning improve. Moreover, I consider the Deep Image Prior

to be a perfect fit for NLoS imaging problems in general. For that reason, I believe

that those hoping to improve upon the state of the art in blind occluder-based imaging

will be well-served to use the kinds of methods described in Computational Mirrors

over those used in Using Unknown Occluders. And indeed, others in my academic

group are working on improving upon the work in Using Unknown Occluders using

methods similar to those described in Computational Mirrors now.

Additionally, see Section 5.5.1 for discussion of a third approach to this flavor of

problem.
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Chapter 5

Concluding Discussion

The breadth of this thesis makes it difficult to boil its conclusions down to just a few

points; nevertheless, this chapter is meant to summarize the key points of the thesis,

describe a tentative conclusion that could be drawn from the analysis of Chapter 3,

and provide some directions for future work.

5.1 The Standard Configuration, and the Mutual In-

formation Metric

The standard configuration as described in Section 1.4 is a useful starting point for

analyses, both for optimizing occluder frames in a coded-aperture setting (see Sec-

tions 3.2 and 3.4), and for analyzing accidental-camera systems (see Sections 4.1, 4.6,

and 4.5). Additionally, the mutual information metric is useful for comparing differ-

ent occluders to each other. Of course, it’s not the only metric we can use here (see

Section 3.10 for a comparison with the MMSE metric; the two work out to do very

similar things). This metric, and the surrounding analysis, is a novel contribution of

this thesis.
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5.2 Choosing an optimal occluder under varied con-

ditions

Chapter 3 shed light on how to think about what the optimal occluder might be, and

how to adjust for different experimental conditions. While there are a few simplified

scenarios in which explicit solutions are possible (see Secs. 3.13 and 3.2.2), in most

we have to rely on brute-force search or on heuristics to find the best occluder we

can. Greedy searches aren’t well-suited to this problem (see Section 3.3). However,

it’s empirically the case that choosing the best spectrally-flat mask from a menu of

spectrally-flat masks at different scales performs very close to optimally, and vastly

outperforms other possible methods like a greedy search; see Section 3.5.

Empirical evidence from Chapter 3 suggests that even when most of the assump-

tions of the Standard Configuration are relaxed, planar, spectrally-flat masks at differ-

ent scales perform close to optimally. One exception is given in 3.16, where empirical

evidence suggests that non-planar occluders are better than planar ones for perceiving

depth.

5.3 Accidental Cameras

Chapter 4 describes accidental camera constructions under a variety of scenarios. Sec-

tion 4.1 describes the simplest and most robust of the constructions, in part because

it is able to use spatial averaging to increase the effective SNR of the imaging system.

Section 4.3 describes a calibrated system for reconstructing light fields. The prin-

ciples at play relate closely to the discussion in Section 3.15.

Section 4.5 describes an uncalibrated system for blindly reconstructing occluders

and scenes when neither is known, and Section 4.6 uses a different set of methods

to attack the broader version of the problem, which includes non-occluder aperture

frames. Rather than assuming a diffuse, planar observation, it actually relies on a

heterogeneous observation.
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5.4 Choosing a wavelength for NLoS imaging

Suppose that you want to build a non-line-of-sight occluder-based imaging system.

You’re not sure whether use a passive method, i.e. one that relies on light that

ambient in or generated by the scene, or an active method, i.e. one that introduces

its own light into the scene. You’re also not sure what wavelength of light to use. You

could rely on visible light, like in the NLoS systems described in Sections 4.1, 4.3, 4.5,

and 4.6. You could also rely on light at other wavelengths, such as light in the infra-

red (IR) spectrum, or even WiFi, as used by Adib and Katabi [3]. What are the

tradeoffs inherent to each of these choices?

Imaging using IR light, even near-IR, confers a few powerful advantages. The

first is that many objects of interest don’t just reflect IR light, they emit it. The

typical temperature of human skin is 305K. At that temperature, the peak wavelength

of light emitted through black-body radiation is around 10 microns, due to Wien’s

displacement law [93]. A car engine will usually get up to about 330-350K, which

will result in a peak wavelength of radiated light in the 8-9 micron range. In either

case, this corresponds to the near-to-mid IR spectrum. If you are primarily interested

in imaging objects that are generally hotter than their surroundings, like humans or

cars, imaging using IR confers the great advantage that your objects of interest are

generating their light at a different wavelength from their surroundings. This makes

it much easier to separate the signal from the noise.

Another quasi-advantage of infra-red light is that the BRDFs of many surfaces

with respect to it become closer to specular than if visible light were used. That is,

a table that appears matte when illuminated with visible light may become almost

mirror-like when illuminated with infra-red light. This is because matte surfaces are

matte because they are jagged at a microscopic level. To oversimplify a little bit1,

it’s roughly the case that if a surface looks flat at the scale of the wavelength of the

incoming light, the BRDF of the surface will be approximately specular; if a surface

looks jagged at the scale of the wavelength of the incoming light, the BRDF of the

surface will be approximately Lambertian [52]. Thus, if a surface (as many do) looks
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Figure 5-1: Left: an 10𝜇𝑚 IR image of a faint reflection of a human hand, reflected
by marble that appears matte in visible light. Lighter colors correspond to higher
intensities. Right: a speculative depiction of the surface of the marble. Because it
appears matte in visible light but is specular in IR, we can infer that it is likely jagged
on a scale between 700𝑛𝑚 and 10𝜇𝑚.

matte in visible light but specular in 10𝜇𝑚 IR light, probably it is jagged on a scale

somewhere in between 700𝑛𝑚 and 10𝜇𝑚. See Figure 5-1.

I said that this is a quasi-advantage because specular surfaces often makes NLoS

imaging easier, but not always. Obviously, there are plenty of situations where a

specular surface makes a “NLoS imaging” problem trivial. Consider the case where

you are driving a car and want to see behind you without turning your head. Looking

in your rear-view mirror (a specular surface) is a great way to see objects not in

your direct line of sight; no sophisticated computational techniques are necessary!

However, if you are trying to see around corners described in Section 4.1, a specular

floor will actually make the method unusable, while not letting you see around the

corner through some other method. So while this is usually an advantage of using IR

over visible light, it isn’t always an unalloyed positive.

Imaging using longer wavelengths, such as 12𝑐𝑚 light as used by Adib and Katabi [3],

confers an additional powerful advantage: it lets you see not just around walls but

1This is an oversimplification because a lot of surfaces are Lambertian not only because of the
scale of structures on the surface but also because of structures a little bit beneath the surface. Light
with a wavelength of 𝜆 will penetrate into a surfaces to a depth of about 𝜆, so any structures at that
depth will be relevant.
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through them. Light will sometimes go through opaque surfaces whose thicknesses

are at the scale of its wavelength, and many walls are less than 12𝑐𝑚 in thickness.

This lets you solve NLoS imaging problems which would be simply impossible using

shorter-wavelength light.

What is the advantage of visible light? One benefit is that most commercial

cameras can record visible light, but not light at other wavelengths (though infra-red

cameras have become cheaper in the last decade, with low-quality options available

for a few hundred dollars or less).

Another advantage, however, is that shorter-wavelength light enables sharper re-

constructions, at least in principle. When light strikes near the boundary of a surface,

its probability of being reflected is proportional to the fraction of a wavelength cov-

ered by the surface. That causes the edges of a surface, seen in light of wavelength

𝜆, to be blurred with a kernel of length approximately equal to 𝜆, which imposes

a fundamental limitation on the resolution of the image you see. The shorter the

wavelength of light you use for imaging, the more this upper bound on imaging is

relaxed. This resolution limit can be relevant to radio astronomy, though it usually

isn’t the true resolution bottleneck [33].

What about in non-line-of-sight occluder-based imaging? Is the wavelength of

visible or infra-red light a bottleneck on resolution? In short, no. The notion that with

current methods, you could reconstruct non-visible scenes from secondary reflections

to micron or even millimeter resolution defies common sense, assuming we are trying

to reconstruct macroscopic scenes. We can use the analysis of Chapter 3 to make this

point more carefully. The resolution plots of Chapter 3, which give us the approximate

resolution of the reconstruction we can expect if we use the best possible occluder,

take as input the spatial correlation of the scene (in the form of the parameter 𝛽) and

the signal-to-noise ratio.

This latter parameter is difficult to estimate directly from the brightness of various

objects. It’s not enough to simply divide the illumination of the observation by the

scene by the illumination of the observation of nuisance objects; that will represent

a dramatic underestimate of the signal-to-noise ratio, because although the signal

219



strength is indeed the strength of the light from the scene hitting the observation, the

noise comes from the variance of the light coming from nuisance objects, or camera

noise. Light coming from nuisance objects (or “glare”), if it’s constant and well-

modeled, can simply be subtracted off. And of course, modeling error itself can be

interpreted as noise.

That said, we can estimate the SNR in experimental settings empirically by an-

alyzing the variance of reconstructed images, or difference images. Because, during

reconstruction, the estimated SNR is a tunable hyperparameter, you can also get

a rough estimate of the SNR by assuming it’s equal to whichever value makes the

reconstruction most accurate. In the experiment shown in Figure 3-41, you could

reasonably estimate an SNR anywhere between 30 and 300 using these techniques.

(Note, though, that this is a scene displayed on a computer monitor, with an 8-second

exposure time!) Furthermore, by empirically analyzing difference frames from the ob-

servation in the problem of blind deconvolution in Section 4.5, you could estimate an

SNR anywhere between 3 (from videos without additional heavy illumination from

100W lights, and with nuisance overhead lighting) to 100 (from videos with 100W

lights, and without nuisance overhead lighting). Moreover, we can empirically esti-

mate 𝛽 through hyperparameter tuning; values of 𝛽 between 0.3 and 0.03 yield the

best reconstructions.

If we suppose that our scene and observation planes are each 2𝑚 to a side, and we

are attempting to get a 2D reconstruction using an ideal (spectrally flat) occluder, we

can adapt the method used to generate Figure 3-7 to create a new figure, Figure 5-

2, which estimates the best possible resolution as a function of the SNR and 𝛽.

We can see from Figure 5-2 that even under the very most optimistic conditions,

using the best possible occluder we can only expect centimeter-level resolution in our

reconstruction. This leads us to the conclusion that we have nothing whatsoever to

fear from using IR light rather than visible light, and only under the very best of

plausible conditions can we expect to be bottlenecked on the wavelength of WiFi

as used by Adib and Katabi (12𝑐𝑚). All of this assumes a 2D reconstruction and

a solely occluder-based approach, of course; it’s possible that dramatically better
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Figure 5-2: A reprint of Figure 3-7, assuming a 2𝑚 scene and observation. The dark
rectangle indicates a range of realistic experimental settings for a 2D passive occluder-
based reconstruction. As shown above, even with the ideal occluder, resolution on a
scale of centimeters is very difficult to achieve.

performance could be achieved with some other approach. Until then, however, we

would do well not to fear using millimeter- or even centimeter-wave light for non-line-

of-sight imaging.

5.5 Future Work

This section provides a few interesting directions for future work.

5.5.1 Blind inversion as video unscrambling

In the vein of Section 4.6, there is possible approach that may prove useful, perhaps

in conjunction with other methods. Its core configuration is nearly as narrow as that
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of [6], but it makes nearly opposite assumptions. Rather than assuming an occluder

in between the scene and observation, and a perfectly matte observation plane, it

assumes no occluder and a perfectly specular (but warped) observation plane.

In the language of 𝑌 = 𝐴𝑋 +𝜂, this time our assumption is that 𝐴 is an unknown

permutation of the identity matrix. This sounds unrealistic, but in fact it’s not

necessarily far from the truth. If we pay attention only to the shiny objects around

us, and they’re pointing to something random, then the transfer matrix that results

(after we’ve thrown away all the non-specular observations) will look a lot like a

permutation matrix.

The problem that results is very interesting. In fact, it’s something like a jigsaw

puzzle. The observation movie we get is exactly the scene movie, but the pixels’ order

has been scrambled. How do we tell which pixel should go where? Well, the answer

is that if two pixels are similar over the course of the movie, they should be near each

other.

Indeed, the input to this miniature version of the blind inversion problem is just

a scrambled movie, not scrambled in time but in space, so that each pixel plays the

movie in sequence but from an unknown location. If we are willing to accept that

pixels that have similar “histories” (i.e. look similar over the course of the movie)

should be nearby, then the problem effectively becomes a dimensionality-reduction

problem. Each pixel’s history is a 𝑡-dimensional vector, where 𝑡 is the number of

frames in the scrambled movie2; its location in space is a 2-dimensional vector. We

would like to find a 2-dimensional embedding for the movie, so that for each pair of

pixels that’s nearby in the high-dimensional embedding (i.e. those two pixels have

similar histories), that pair of pixels is nearby in the 2-dimensional embedding (i.e.

they’re close to each other in the recovered movie).

There are a variety of different well-known dimensionality-reduction algorithms

already implented efficiently, and any of these can be applied to the problem. While

it’s not a perfect fit, because they are often used to identify clusters of data rather

2In fact, in an ordinary color movie, it’s a 3𝑡-dimensional vector; each color channel produces one
number, for each frame. But this is only a minor complication.

222



than putting together a puzzle, most of them work well. I have had the most success

using the so-called Isomap algorithm, developed by Tenenbaum et al. in 2000 [95].

See Figure 5-3 for a comparison of different stock dimensionality-reduction algorithms

in simulation.

We can apply this technique to an experimental “unscrambling” problem: recon-

structing a video seen only through an object that produces unknown distortions.

In Figure 5-4, we view a medium-length (approx. 3000 frames) video through a wa-

ter bottle, and attempt to reconstruct the true video. Before we directly apply a

dimensionality-reduction method, we want to use a method to exclude pixels that

don’t provide much additional information, either because they’re constant in value

(and thus not actually transmitting light from the video) or are too similar to another

pixel (and won’t provide information above and beyond what that pixel is providing).

This latter point is important, because of the way the bottle (and many other reflec-

tive surfaces) warps; along some dimensions, the bottle’s intensity changes rapidly,

whereas along others, it stays almost constant. It’s a huge computational win to be

able to exclude redundant pixels.

To do this, the ball-tree data structure is a very natural choice. The ball-tree

allows querying the existence of other elements within a certain radius (or “ball”) of

a given point. In this case, what we can do is enter a new pixel color history into

the ball-tree only if no other existing pixel color history has been entered into the

ball-tree within a given radius (that is, no other pixel has a history too similar to

the new one). In the experiment shown in Figure 5-4, it allows us to cut down from

almost 500,000 raw pixels to only about 10,000 pixels.

While these results show promise for real-world applications—the hope would be

to be able to reconstruct an entire scene surrounding a single irregular but specular

object simply by filming the object from different vantage points—the problem be-

comes much harder when the video doesn’t include “scene changes,” as the videos in

Figs. 5-3 and 5-4 did. This is because scene changes give us many different views of

the same pixels, letting us learn which pixels are truly nearby; with only one scene,

pixels that are part of the background and far apart, but with similar colors, will be
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Figure 5-3: Top: The unscrambling results using each of four different dimensionality
reduction algorithms for a short (624-frame) video, scrambled uniformly at random,
with the best results achieved by Isomap, followed by Locally Linear Embedding.
Bottom: A comparison of a reconstructed (unscrambled) frame with a ground-truth
frame from the original video, using a Voronoi mapping of colors to locations in the
unscrambled video. As can be seen, the reconstruction is quite good, except at the
edges of the frame where the scale is wrong.
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Figure 5-4: We can use dimensionality-reduction techniques and the ball-tree data
structure to reconstruct a 3000-frame video seen through a water bottle. Shown is
a single frame of the reconstructed video. Note that because of fundamental am-
biguities, the reconstructed frame is a rotation and reflection of the ground-truth
frame.
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erroneously identified as near each other. With enough movement in the scene, the

problem is still solvable, but becomes much more challenging.

5.5.2 Using perpendicular occlusion to gain parallax

This is an idea first put into practice in the latter half of [16], in which two edge

cameras are combined at a doorway to create a parallax effect which enables the

perception of depth. However, the discussion in Section 3.20 suggests that this kind

of technique (of using multiple 1D occluders in tandem to infer depth) is possible

whenever the occluder is perpendicular to the observation plane. Moreover, as we

saw in Section 4.1, edge cameras are actually one of the least effective 1D occluding

patterns that nevertheless enable full reconstruction. Might this technique be possible

with other relatively ubiquitous 1D occluders?

One example of a fairly common pattern is a “signpost” camera, which could use

two signposts as 1D pinspeck cameras, and use parallax to infer depth, as before,

perhaps to infer the locations of cars on a nearby street. Figure 4-2 suggests that

an equivalent SNR would be able to produce results at least as good as those in the

latter half of [16], and one might hope cars, because of how reflective they are, could

yield a better experimental SNR than the doorway camera. (Of course, at night, with

headlights on, the problem becomes particularly easy!)

See Figure 5-5 for an image of what an example observation plane might look like.

5.5.3 Applying machine learning for NLoS imaging techniques

Of all the directions for future work presented here, this is certainly the most promis-

ing one, or at least the broadest. Recently, there have been several results that make

use of machine learning techniques for the purpose of NLoS imaging [99, 61, 6]. Ad-

ditionally, there is active research on improving upon the results of [110], which I

expect will soon succeed.

Using machine learning for general NLoS imaging problems is a very natural

choice, especially as the state of general-purpose machine vision algorithms contin-
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Figure 5-5: A possible observation plane that could make use of parallax from multiple
1D occluders. Each of the signpoles near the road act as 1D pinspeck occluders, but
light sources in the street will cause them to cast shadows that extend in different
directions, creating a potentially useful parallax effect.

ues to improve, as it has throughout this decade [60, 83, 39]. Indeed, at this point,

image recognition using machine learning has arguably surpassed human-level perfor-

mance [53]. Moreover, generative models for image models have drastically improved

in the last few years, thanks to generative adversarial networks [81, 11, 36]. These

techniques work well true even for generating highly technical images that exist only

in a particular domain, such as medical images [51]. Such techniques seem like a very

natural fit for generating reconstructions in the context of NLoS imaging.

More generally, while the NLoS imaging techniques described in Chapter 4 work

well for their particular applications, as long as the algorithms underlying them are

designed by humans and not learned by machines, they will never be able to make

use of all of the information existent in the observation plane, especially in the case

of uncalibrated systems like [110]. Optimistically, a machine learning system might

be able to make use of information that a human designer would never think to bake

into their algorithm.
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The field of passive NLoS imaging, which barely existed a decade ago, will, I

anticipate, flourish in the decade to come, perhaps thanks to the impressive power

and generality of deep learning when applied to image problems. I look forward to

seeing the results that will come next.
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