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In a cloud computing job with many parallel tasks, the tasks on the slowest machines (straggling tasks)
become the bottleneck in the job completion. Computing frameworks such as MapReduce and Spark tackle
this by replicating the straggling tasks and waiting for any one copy to finish. Despite being adopted in
practice, there is little analysis of how replication affects the latency and the cost of additional computing
resources. In this article, we provide a framework to analyze this latency-cost tradeoff and find the best
replication strategy by answering design questions, such as (1) when to replicate straggling tasks, (2) how
many replicas to launch, and (3) whether to kill the original copy or not. Our analysis reveals that for certain
execution time distributions, a small amount of task replication can drastically reduce both latency and the
cost of computing resources. We also propose an algorithm to estimate the latency and cost based on the
empirical distribution of task execution time. Evaluations using samples in the Google Cluster Trace suggest
further latency and cost reduction compared to the existing replication strategy used in MapReduce.
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1 INTRODUCTION

In cloud computing, large-scale sharing of computing resources provides users with great flexib-
lity and scalability. Computing frameworks such as MapReduce (Dean and Ghemawat 2008) and
Apache Spark (Zaharia et al. 2010) are developed to harness these benefits. These frameworks
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employ massive parallelization by dividing a large job into many tasks that can be executed in
parallel on different machines. These frameworks can be used to run optimization and machine
learning algorithms that can be easily divided into independent parallel tasks, such as alternat-
ing direction method of multipliers (ADMM) (Boyd et al. 2011) and Markov chain Monte Carlo
(MCMC) (Neiswanger et al. 2013).

The execution time of a task on a machine is subject to stochastic variations due to co-hosting,
virtualization, and other hardware and network variations (Dean and Barroso 2013). Thus, a key
challenge in executing a job that consists of a large number of parallel tasks is the latency in
waiting for the slowest tasks, or the “stragglers,” to finish. As pointed out in Dean and Barroso
(2013, Table 1), the latency of executing many parallel tasks could be significantly larger (140ms)
than the median latency of a single task (1ms).

In this work, we provide a mathematical framework to analyze how replication of straggling
tasks affects the latency and the cost of computing resources, and propose better scheduling policy
designs.

1.1 Related Prior Work

The idea of replicating tasks in parallel computing has been recognized by system designers (Ghare
and Leutenegger 2005) and was first adopted at a large scale via the “backup tasks” in MapReduce
(Dean and Ghemawat 2008). A line of systems work (Ananthanarayanan et al. 2013; Chen et al.
2014; Ousterhout et al. 2013; Xu and Lau 2014; Zaharia et al. 2012) and references therein further
developed this idea. For example, Apache Spark implements “speculative execution” to allow re-
launching slow running tasks. Distributed machine learning systems also suffer for the problem
of waiting for straggling learners to return gradients (Dean et al. 2012), and redundancy strategies
have been shown to be effective in reducing latency (Chen et al. 2016; Dutta et al. 2018).

Although task replication has been studied in systems literature and also adopted in practice,
there is not much work on mathematical analysis of replication strategies. Replication strategies
are analyzed in Wang et al. (2014), mainly for the single task case. In this work, we consider task
replication for a job consisting of a large number of tasks, which corresponds more closely to
today’s large-scale cloud computing frameworks. A shorter version of this work appeared in Wang
et al. (2015).

The use of redundancy to reduce latency has also attracted attention in other contexts, such as
cloud storage and networking (Gardner et al. 2015; Joshi et al. 2014, 2015; Shah et al. 2014; Sun
et al. 2015; Vulimiri et al. 2013). Most of these works that consider queueing focus on the case of
one task. Waiting for many tasks is harder to analyze, as indicated by fork-join queue analysis.

There is also an emerging body of work on using replication or erasure coding to mitigate strag-
glers in linear computations, such as matrix-vector multiplication (Dutta et al. 2016; Lee et al. 2016;
Mallick et al. 2018) and matrix-matrix multiplication (Yang et al. 2017; Yu et al. 2017), and machine
learning (Ferdinand and Draper 2016; Tandon et al. 2017). Our work is for general (possibly non-
linear) computations for which coding techniques cannot be directly applied, and we have to resort
to simpler task replication strategies.

1.2 Our Contributions

In this work, we propose a framework to analyze strategies for replicating straggling tasks of a
large computing job. In particular, we consider three parameters of a straggler replication strategy:
(1) the fraction of tasks declared as stragglers, (2) number of replicas for each straggling tasks, and
(3) whether the original copy should be killed or kept running. We characterize how these param-
eters impact the trade-off between latency and computing cost. Our characterizations allow us to
identify regimes with the surprising property that replicating a small fraction of tasks drastically
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reduces latency while saving computing cost. These insights allow one to apply optimization to
search for scheduling policies based on one’s sensitivity to computing latency and computing cost.

The rest of the article is organized as follows. In Section 2, we introduce notation, formulate the
problem, and define performance metrics used in the article. In Section 3, we provide an analysis
of single-fork task replication policies and defer all proofs to the Appendix. Then in Section 4,
we describe an algorithm that finds a good scheduling policy for execution time distributions that
are not analytically tractable (e.g., empirical distributions from real-world traces). In Section 5, we
conclude with a discussion of the implications and future perspectives.

2 PROBLEM FORMULATION
2.1 Notation

Lowercase letters (e.g., x) denote a particular value of the corresponding random variable, which
is denoted in uppercase letters (e.g., X). We denote the cumulative distribution function (c.d.f.) of
X by Fx (x). Its complement, the tail distribution, is denoted by Fx (x) £ 1 — Fx(x). We denote the
upper end point of Fx by

w(Fx) £ supfx : Fx(x) < 1}. (1)

For independent and identically distributed (i.i.d.) random variables Xi, Xz, . .., X, we define
Xj.n as the j-th order statistic (i.e., the j-th smallest of the n random variables).

2.2 System Model

We consider a job consisting of n parallel tasks, where n is large! and each task is assigned to a
different machine, and the job is said to be complete when all tasks are executed. Cloud service
providers such as Amazon Web Services (AWS) typically allow users to rent a large number of
servers, and thus it is possible to run a large number of parallel tasks. We do not consider queueing
of tasks at these servers. Analyzing a system with queueing of parallel tasks requires a fork-join
queueing analysis (Flatto and Hahn 1984; Joshi et al. 2012, 2014; Nelson and Tantawi 1988; Varki
et al. 2008), which is known to be very hard even for the simple two server model.

Many systems works (Ananthanarayanan et al. 2010, 2013; Dean and Barroso 2013; Ousterhout
et al. 2013) have observed that the same task can take drastically different execution time of
different servers. The execution time of tasks run at a server can be random for two reasons:
(1) variation in the server speed due to several factors such as virtualization, outages, and compet-
ing jobs, and (2) variation in the length of the tasks.

We use the probability distribution Fx to model the execution time due to the server and as-
sume that this execution time distribution is i.i.d.across machines. The identical assumption of Fx
implies that servers and tasks are homogeneous. In most embarrassingly parallel computations,
the job is divided into tasks of equal size, and thus we assume that there is no variability in task
lengths. The independent assumption of Fx could be satisfied when machine response times fluctu-
ate independently over time, or when each new task (or new replica) is assigned to a new machine
that is not previously used to run tasks of the current job. Note that we treat the variability that
Fx captures as an exogenous factor from a user’s perspective—in general, a user renting machines
from a cloud computing service has little or no control over other jobs that share the resources.?

! Analysis of real-world trace data shows that it is common for a job to contain hundreds or even thousands of tasks (Reiss
etal. 2012).

2 A system designer may be able to influence this variability by adjusting the resource sharing among different jobs, which
is another interesting direction that is beyond the scope of this work.
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Fig. 1. Single-fork policy illustration.

2.3 Scheduling Policy

A scheduling policy or scheduler assigns one or more replicas of each task to different machines,
possibly at different time instants. In this work, we assume the scheduler receives instantaneous
feedback notifying it when a machine finishes its assigned task and there is no intermediate feed-
back indicating the status of processing of a task. We focus our attention on a set of policies called
single-fork policies, defined as follows.

Definition 1 (Single-fork scheduling policy). A single-fork scheduling policy 7 (p, ) launches all
n tasks at time 0. It waits until (1 — p)n tasks finish. For each of the remaining pn straggling tasks,
it chooses one of the following two actions:

—replicate and keep the original copy (7ieep (p, r)): launch r new replicas;
—replicate and kill the original copy (i (p, r)): kill the original copy and launch r + 1
new replicas.

When the earliest replica of a task finishes, all the other remaining replicas of the same task are
terminated.

Note that in both scenarios, there are a total of r + 1 replicas running after the forking point.
Figure 1 illustrates these two cases of keeping or killing the original copy of a task. For simplicity of
notation, we assume that p is such that pn is an integer. We note that p = 0 corresponds to running
n tasks in parallel and waiting for all to finish, which is the baseline case without any replication
or killing any original tasks.

Remark 1 (Backup tasks in MapReduce and Spark). The idea of “backup tasks” in Google’s MapRe-
duce (Dean and Ghemawat 2008) and “speculative execution” in Apache Spark (Zaharia et al. 2010)
corresponds to a single-fork policy with r = 1 and 7yeep. The value of p is tuned dynamically and
hence not specified in Dean and Ghemawat (2008). The spark. speculation.quantile configu-
ration in Apache Spark corresponds to p in the single-fork policy.

Although we focus on single-fork policies in this article, the analysis can be generalized to
multi-fork policies, where new replicas of straggling tasks are launched at multiple times during
the execution of the job (Wang 2014, Section 6.4). Forking multiple times can achieve a better
latency-cost trade-off, but could be undesirable in practice due to additional delay and complexity
in obtaining new and killing existing replicas.

2.4 Performance Metrics

We now define the latency and cost metrics used to compare straggler replication policies and
understand when and how replication is useful.
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Fig. 2. Illustration of T and C for a job with two tasks, which are originally run on machines M; and Ms3.
Replicas of the tasks are added on machines My and My at times 2 and 5 respectively. The latency, or the
time to complete the job, is T = max(8, 10) = 10, and the computing cost is C = (8 + 6 + 10 + 5)/2 = 14.5.

Definition 2 (Expected Latency). Given a scheduling policy, the expected latency E[T] is the
expected value of T, the time taken for at least one replica of each of the n tasks to finish. It can be
expressed as

]E[T]:]E[ max T (2)

ie(l2,...n) ] ’
where T; is the time when at least one replica of task i finishes. More specifically, suppose the
scheduler launches r replicas of each of the n tasks at times t; j for j = 0,1,2,...r, then

T, = Il’l_il’l (ti,j + Xi,j)v (3)

0<j<r
where X; ; are ii.d., drawn from the execution time distribution Fy.

Definition 3 (Expected Cost). The expected computing cost E[C] is the sum of the running times
of all machines, normalized by n, the number of tasks in the job. The running time is the time
from when the task is launched on a machine until it finishes or is killed by the scheduler. More
specifically, suppose the scheduler launches r replicas of each of the n tasks at times t; ; for j =
0,1,2,...r, then

C £ Zn: zr:(Tl — ti,j)+, (4)

i=1 j=0

S|

where T; is given in (3) and (x)" = max(0, x).

Infrastructure as a Service (laaS) providers such as AWS, Microsoft Azure, and Google Cloud
Platform charge users by the time and the number of machines used. Then the money spent by a
user to rent the machines is proportional to our cost metric E[C].

Figure 2 illustrates the execution of a job with two tasks, as well as evaluation of the corre-
sponding latency T and cost C. Given two tasks, we launch two replicas of task 1 #;,; = 0 and
t1,2 = 2, and two replicas of task 2 at t,; = 0 and #; ; = 5. The task execution times are X; ; = 8,
Xi,2 =7, Xp1 =11, and X, , = 5. Machine M; finishes the task first at time ¢t = 8, T} = 8 and the
second replica running on M, is terminated before it finishes executing. Similarly, machine M,
finishes task 2 at time T = 10, and the replica running on Mj is terminated. Thus, the latency
of the job is T = max{Ty, T>} = 10. The cost is the sum of all running times normalized by n (i.e.,
C=(8+6+10+5)/2 =14.5).
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3 SINGLE-FORK POLICY ANALYSIS

In this section, we analyze the trade-off between the performance metrics E[T] and E[C] for the
single-fork policy defined in Definition 1. The choice of the best single-fork policy depends on the
tail of Fx, as we demonstrate for the shifted exponential and Pareto distributions. All proofs are
deferred to the Appendix.

3.1 Performance Characterization

THEOREM 1 (SINGLE-FORK LATENCY AND CoOST). For a computing job with n tasks, and task exe-
cution time distribution Fx, the latency and cost metrics satisfies

E[T] = F5'(1 - p) + E[T®] + 0(1/n), )
E[C] = fl_p Fx'(h)dh + pFy! (1= p) + E[C?] + O(1/n), (6)
0

where T® and C? are the latency and cost incurred after the forking point when we launch replicas
of the straggling tasks. Their expected values are

E[Zpn:pn] for man(p,r),
BT = (e e pgntT]] oo, 0
21 _ [(r+1p-E[Z] Sfor man(p, r),
E[C( )] - {(r +1)p-Erq []E [W|T(1)]] for Meep (P, 1), ()

where 7 = Xir41s T(l) = X(l—p)n:n and FWIT(1)=t1 (W) = F)}%((L(Z;l)ﬁ‘x(w)r The behavior Oprn:pn and

Wyn:pn for large n is given by the extreme value theorem (see Theorem 6).

The proof of Theorem 1 can be found in Appendix A.2. A key observation from Theorem 1 is
that the execution time before forking, Fy' (1 — p), is a quantity independent with respect to n and
monotonically non-increasing with p, whereas the latency after forking, E[T(?], is monotonically
non-decreasing with pn. In certain regimes, increasing p (and with proper choice of r), the time
reduction in the first stage outweighs the time increase in the second stage, reducing the overall
execution latency.

Using Theorem 1, we can determine the single-fork policy parameters p and r that give the best
latency-cost trade-off for a given execution time distribution Fx. To decide whether to kill or to
keep the original copy of the straggling task, we are essentially comparing the additional time
needed for the original copy to finish and the completion time for a new copy. In Lemma 1, we
identify when keeping the original task is better than killing the original task and vice versa.

LEmMA 1 (KiLr or KEEP ORIGINAL TASK). For a given 0 < p < 1, keeping the original task gives
lower latency and cost than killing the original task if
Pr(X > x+1)
Pr(X > t)

Conversely, if the inequality in (9) is reversed for all x,t > 0, then killing the original task is better.

<Pr(X >x) forallx,t>0. 9)

The proof is given in Appendix A.2. The class of distributions satisfying (9) are called new-
longer-than-used distributions (Kochar and Wiens 1987), and distributions that satisfy the reverse
inequality are called new-shorter-than-used distributions. An example of a new-longer-than-used
distribution is the shifted exponential distribution for which we analyze the latency-cost trade-off
in Section 3.2.
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Fig. 3. Comparison of the expected latency E[T] obtained from simulation (points) and analytical calcula-
tions (lines) for the shifted exponential distribution ShiftedExp (1, 1).

3.2 Single-Fork Scheduling With Analytical Execution Time Distributions

In this section, we evaluate the latency-cost trade-off in Theorem 1 for two execution time distri-
butions: shifted exponential and Pareto. The shifted exponential distribution has an exponential
tail, whereas Pareto distribution has a heavy tail.

3.2.1 Shifted Exponential Execution Time. Consider that the task execution time distribution
Fx is a shifted exponential distribution ShiftedExp(A, p). Its tail distribution function is given by

e H=D) for x > A,

. 10
1 otherwise. (10)

Pr(X > x) = {
The shifted exponential distribution has an exponentially decaying tail. It is lower bounded by a
constant A, aiming to capture the delay due to machine start-up or task initialization. Due to this
constant A, the shifted exponential distribution satisfies (9) for any 0 < p < 1. Thus, it is always
better to keep the original straggling task and launch additional replicas if necessary.

THEOREM 2. For a computing job with n tasks, if the execution time distribution of tasks are i.i.d.
ShiftedExp(A, 1), then the latency and cost metrics satisfy

2N + m(lnn —rlnp + yem) + O(1/n) for man(p,r) (11)

E[T] = {2:-:—11A + (r+11)” (Inn—rlnp+yem) + O(1/n) forﬂkeep(p, r)
A+ ﬁ +p [A + r(lfeu_w)] +0(1/n)  for Mieep(p,7)

A+ p(r+2)A+0(1/n) for mau(p.r)

E[C] =

where ygum is the Euler-Mascheroni constant,

A (11 N
y:fl (E_E)dXNO'SW' (13)

The proof is given in Appendix A.3. Figure 3 compares the latency obtained from Monte Carlo
simulation and analytical calculations for the shifted exponential distribution, indicating that the
latency obtained from analytical calculation is very close to the simulated performance for n > 100,
especially for the case with killing the original task. From Theorem 2, we observe that given r and
whether we kill or keep the original task, replicating earlier (larger p) gives an @(In p) decrease in
latency and a linear increase in the cost. This is also illustrated in Figure 4(a) and (b) for execution
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Fig. 4. Characterization for ShiftedExp (1, 1) and n = 400, by varying p in the range of [0.05, 0.95].

time distribution ShiftedExp (1,1) and n = 400. Figure 4(c) illustrates the latency-cost trade-off.
For the special case of A = 0 by Theorem 2, the cost E[C] = 1/p, which is independent of p and
r. But latency always decreases with r and p. This suggests that we can achieve arbitrarily low
latency without any increase in cost. However, in practice, the minimum time to complete a task
is strictly positive—that is A > 0.

3.2.2  Pareto Execution Time. The tail distribution function of the Pareto distribution Pareto(«,
Xm) 1S
Xm \ &
7) X 2 Xm,

. (14)
otherwise.

Pr(X > x) & {S
The Pareto distribution has a heavy tail that decays polynomially. It has been observed to fit task
execution time distributions in data centers (Dean and Barroso 2013; Reiss et al. 2012). The mean
Pareto(«, xp,) is bounded only for @ > 1, and hence we focus on the cases where a > 1.

THEOREM 3. For a computing job with n tasks, if the execution time distribution of tasks are i.i.d.
Pareto(a, xp,), then for large n, the latency and cost metrics are

E[T] = xmpfl/“ +T (1 - ) dpn +0(1), (15)

(r+1)a
» plie . m ar( Fl(1-p) )ad 01
E[C] = Xmg—1 ~Xm Y1 (r+ )PJ;] (W) WrF(1-p) w+ O(1/n) forﬂkeep(P7r)
O(1/n) for man(p, 1),
(16)

where the value of G,, depends on whether we choose to keep or kill the original task, and is given by

a - Ve me(r+1)2
Xmg— ~—Xm g1 (r+l)a-1

dpn _ Eram [leT(1> ) ] for ”keep(P, r), )
(pr) 0 e for mgu(p, 1),
where FW‘Tu) (W) = (xm)a’(wﬂl)a

The proof is given in Appendix A.4. For the 7ycep case, it is difficult to numerically evaluate the
expectation over T in (17). We evaluate an asymptotic lower bound on the expected latency for
the 7ryeep case in Lemma 2.
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Fig. 5. Comparison of the expected latency E[T] obtained from simulation (points) and analytical calcula-
tions (lines) for the Pareto distribution Pareto (2, 2). For the Teep Case, the analytical plot of E[T] is the
asymptotic lower bound given by Lemma 2.
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Fig. 6. Characterization for Pareto (2, 2) and n = 400, by varying p in the range of [0.05,0.95].

LEMMA 2 (AsYMPTOTIC LOWER BOUND ON E[T] FOR THE Zieep CASE). For the myee, case, the
expected latency can be lower bounded as follows for large n:

e 1 - (1
E[T] = xpmp~ Y/ +F(1—m)FW1 (P—n)+o(1), (18)

-1
where Fyj, (w) = (%)ar(%)“

The proof follows from Fatou’s lemma and is given in Appendix A.4. Similar to Figure 3, Figure 5
compares the latency obtained from simulation and analytical calculations for the Pareto distribu-
tion, which again demonstrates the effectiveness of the asymptotic analysis and bound given by
Theorem 3 and Lemma 2.

In Figure 6(a) and (b), we plot the expected latency and cost as p varies, for different values of
r. For the 7yeep case, we plot the asymptotic lower bound on E[T] given by Lemma 2. The black
dot is the baseline case (p = 0), where no replication is used and we simply wait for the original
copies of all n tasks to finish. Note that r = 0 and keeping the original copy is also equivalent to
the baseline case, and thus not plotted in the figures. The diminishing return of increasing r in
terms of latency reduction is clearly demonstrated. In addition, we observe that a small amount of
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replication (small p and r) can reduce latency significantly in comparison with the baseline case.
But as p increases further, the latency may increase (as observed for r = 0) because of the second
term in (5).

Intuition suggests that replicating earlier (larger p) and more (higher r) will increase the cost
E[C]. But Figure 6(a) and (b) show that this is not necessarily true. Since we kill replicas of task
when one of its replicas finish, there could in fact be a saving in the computing cost. However, this
benefit diminishes as p and r increase above a certain threshold.

Figure 6(c) shows the latency versus the computing cost for different values of r, with p varying
along each curve. Depending upon the latency requirement and limit on the cost, one can choose an
appropriate operating point on this trade-off curve. This plot again demonstrates the non-intuitive
phenomenon that it is possible to reduce latency (from 70 to about 15 for r = 1 and r = 2 cases)
and computing cost simultaneously.

4 EMPIRICAL EXECUTION TIME DISTRIBUTIONS

In practice, it may be difficult to fit the empirical behavior of the task execution time to a well-
characterized distribution, thus making the latency-cost analysis using the framework presented
in Section 3 difficult. In this section, we propose an algorithm to estimate the latency and cost
from the empirical distribution of task execution time. This enables users to evaluate the latency-
cost trade-off of various replication strategies using execution trace directly instead of a fitted
execution time distribution. Applying our algorithm to the Google Cluster Trace data (Reiss et al.
2011), we show that it is possible to improve upon the performance of the default replication policy
in MapReduce-style frameworks.

4.1 Latency and Cost Estimation

To estimate the latency and cost from empirical execution time samples, we apply the bootstrap-
ping method (Efron and Tibshirani 1986) that uses the empirical distribution as an approximation
of the true distribution. We present the algorithm for performance characterization in Algorithm 1.

By the central value theorem (see Theorem 4 in Appendix A.1), the standard deviation of the
error in estimating E[C] and T}, first term in E[T], converges to zero as O(1/+/mn), where m is
the number of times the sampling procedure is repeated. And generally T,, the maximum order
statistic term in E[T], converges to zero as O(1/+/m). Thus, the estimation of C is more robust than
that of T. Nonetheless, with large enough m, we can make the estimation errors of both metrics
small enough.

4.2 Demonstration Using Google Cluster Trace

The Google Cluster Trace data (Reiss et al. 2011) gives timestamps of events such as SCHEDULE,
EVICT, FINISH, FAIL, and KILL for each of the tasks of computing jobs that are run on Google’s
cluster machines. In this section, we apply Algorithm 1 to two jobs in the Google Cluster Trace
and study the latency-cost trade-offs for these real-world task service distributions.

In our demonstration, we only consider tasks with SCHEDULE and FINISH times, as we would
like to obtain samples that represent a normal execution (not killed or evicted). In a few rare cases,
a task is associated with multiple SCHEDULE and FINISH events due to duplicate execution. For
these, we choose to keep the first occurrences in each event category.

We choose two jobs (Job IDs 6252284914 and 6252315810) with different numbers of tasks. For
each task in a job, we obtain the task execution time by calculating the time difference between
SCHEDULE and FINISH. The normalized histograms of the task execution times of the two jobs
are shown in Figure 7(a) and Figure 7(b), respectively. Both the distributions have straggling tasks
whose execution time is significantly longer than average. We then apply these execution time
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ALGORITHM 1: Latency and cost estimation

INPUT: x = [x1,x3,...,xn], N task execution duration samples (no replication, no original task
killing)

Compute the empirical c.d.f. Fx (x) from x

Computing the empirical c.d.f. Fz(z) of Z = X141

for i=1,2,...mdo

Draw n samples X = [x1, X3, . . ., X] from Fy
Sort X in ascending order: [X(1), X(2), - - - » X(m)]

k—n(l—-p)k’ < np
Tl(i) « X(x) (the k-th smallest sample in %)
¢ — £ %)
if 7 = my) then
Draw k’ samples § = [{1, {2, . . . , ] from Fz(2)
else
Compute empirical CDF of W as given in Theorem 1
Draw k’ samples § = [{y, iz, . . . , ] from Fyy (w)
end if
Tz(l) — max;gj<k’ Uj
Ys(ll)m « 25;1 gj
C‘éi) — pnfl(i) + (r+ 1)YS(,?m
0 7O 4 F0
c0 1A e
end for
T « mean of T® for i = 1,2,...m
C —meanof CD fori=1,2,...m
OUTPUT: [T, C]

samples as inputs to Algorithm 1 with m = 1,000. By varying the value of r (r € {1,2,3}) and p
(0 < p <0.5), we plot the E[T]-E[C] trade-offs for all three jobs in Figures 8 and 9. Comparing
the latency-cost performance of replication strategies for Job 1 and Job 2 provides helpful insights
into when straggler replication helps and when it is too expensive.

For the two Google cluster jobs (Jobs 1 and 2), we observe that a small amount of replication
(small p) reduces both E[T] significantly as compared to the baseline case (p = 0), demonstrating
the effectiveness of replication for real-world execution time distributions. The decrease is sharper
when we kill and relaunch the original copy (7)) as compared to keeping the original copy (7ieep)-
However, the expected cost with m is larger than with 7eep. Similarly, adding more replicas
(larger r) reduces latency but results in a higher expected cost per task.

Recall that the back-up tasks option in MapReduce uses r = 1 and keeps the original task.
Figures 8 and 9 demonstrate that it may be more desirable to improve the performance trade-
off by using more replicas, such as in Job 1, where a higher r could lead to lower latency E[T] with
a slightly higher cost E[C]. For Job 2, the trade-off improvement via using a higher r is less signif-
icant, as Figure 9 indicates. We conjecture that this is due to the tail in Figure 7(a) being heavier
than that in Figure 7(b). Observe that for Job 1, the fraction of tasks that take longer than the most
likely duration (~600 seconds) is larger (a significant fraction can take around ~1,000 seconds,
in addition to the small fraction of tasks taking ~5,000 seconds). However, for Job 2, most jobs
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Fig. 7. Normalized histogram of the task execution times.
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Fig. 8. The E[T]-E[C] trade-off for Job 1 (ID 6252284914) with 1,026 tasks. Each pair of adjacent dots corre-
sponds to change in p by 0.025.

finish within 300 seconds, with only a small probability of straggling and taking ~1,450 seconds
to finish.

4.3 Scheduling Policy Selection

With the trade-off between latency E[T] and computing cost E[C] provided in Algorithm 1, a
user can formulate an optimization problem to choose the best scheduling policy based on one’s
sensitivity to latency and computing cost. In addition, one can incorporate additional constraints,
such as ryay, the maximum number of copies to replicate, due to the communication overhead of
issuing and canceling tasks.

For example, a latency-sensitive user may choose to define the optimal scheduling policy via
the following constrained optimization problem:

minimize E[T(r)], (19)
subjectto E[C(r)] < (1 + p)E[C(m)],
7 < Tmax,
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Fig. 9. The E[T]-E[C] trade-off for Job 2 (ID 6252315810) with 488 tasks. Each pair of adjacent dots corre-
sponds to change in p by 0.025.

Table 1. Scheduling Policy Obtained via Latency-Sensitive Optimization in (19)
and Cost-Sensitive Optimization in (20)

Baseline Latency Sensitive With y = 0.1 Cost Sensitive With A =5
Job E[T] E[C] p* r*  Keep/Kill E[T] E[C] p* r*  Keep/Kill E[T] E[C]
Job1 | 5,068 882 0.177 3 Keep 1,939 970 0.142 2 Keep 2,111 920
Job 2 1,418 296 0.400 2 Keep 591 325 0.106 2 Keep 639 306

where 7 is the baseline scheduling policy without replication, y the allowed additional computing
cost, and rp,y the maximum allowed number of copies for a task. However, a cost-sensitive user
may choose to define the optimal scheduling policy via the following optimization problem:

minimize E[T(x)] + AE[C(x)], (20)
subjectto 7 < rpax,

where A indicates the relative importance of computing cost, because E[C] is approximately pro-
portional to the cost of cloud computing instances. Although it is difficult to determine closed-form
optimal solutions to (19) and (20), we observe that constrained optimization methods such as the
constrained optimization by linear approximation (COBYLA) method (Powell 2007) are effective
in searching for the optimal solution due to the low dimensionality of the search space. In Table 1,
we present the scheduling policies obtained via these two different optimization formulations.

5 CONCLUDING REMARKS
5.1 Main Implications

Replication of the slowest tasks of a computing job (straggling tasks) has been observed to be
highly effective in practice to speed up job completion. In this article, we provide a theoretical
framework to understand the effect of straggler replication on the job completion latency and
the additional computing time spent on running the replicas. Our latency-cost analysis gives the
insight that the scaling of job completion latency with the number of tasks depends on the tail of
the per-task execution time. We identify regimes where replicating a small fraction of stragglers
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can drastically reduce latency and computing cost simultaneously. With the guidance from this
asymptotic analysis, we propose a bootstrapping-based algorithm to estimate the latency and cost
from empirical traces of execution time. The effectiveness of this algorithm is demonstrated on
the Google Cluster Trace data, where we show that careful choice of the replication strategy can
improve the latency-cost trade-off as compared to the default option in MapReduce.

5.2 Future Directions

Generalizations of this straggler replication model include considering heterogeneous servers, de-
pendencies between tasks (some tasks need to complete to begin others), and taking into account
queueing delay of tasks as considered in Gardner et al. (2015, 2016), Joshi (2016), and Joshi et al.
(2015) for the single task case. Another direction is to analyze approximate computing, where we
need only a subset of the tasks of a job to complete, which is a relevant model for information re-
trieval and machine learning jobs. This idea is developed in the context of coded distributed storage
in Joshi et al. (2014) and Shah et al. (2014). We also aim to develop an algorithm that learns the
task execution time distribution Fx online, and we use it to decide when and how many replicas
to launch. This has an exploration-exploitation trade-off, similar to the multi-arm bandit problems
studied in reinforcement learning (Sutton and Barto 1998).

More broadly, our analysis framework can be applied to other systems with stochastically vary-
ing components. For example, in crowdsourcing, each worker may take a variable amount of time
to complete a task (Wang 2014).

A APPENDIX
A.1 Results From Order Statistics

In this section, we present results from order statistics that are used in our analysis.

THEOREM 4 (CENTRAL VALUE THEOREM (THEOREM 10.3 IN DAVID AND NAGARAJA (2003))). Given
X1, X2y, Xn BLd- Fx, if0<p <1 and 0 < f(x,) < 0o, where x, = F;!(p), then for k = np +
o(\/n), the k-th order statistic is asymptotically normal,

d p(1-p)
" r f z (xp)

d
where f(-) is the p.d.f. that corresponds to Fx and — denotes convergence in distribution as n — co.

Extreme value theory (EVT) is an asymptotic theory of extremes (i.e., minima and maxima).
It shows that if a distribution belongs to one of three families of distributions (specified in The-
orem 5), then its maxima can be well characterized asymptotically by Theorem 6, which is also
referred to as the Fisher-Tippett-Gnedenko theorem.

THEOREM 5 (DOMAINS OF ATTRACTION). A distribution function Fx has one of the following do-
mains of attraction if it satisfies the conditions of the extreme value distribution G(x) if and only
if

(1) Fx € DA(A) if and only if there exists n(x) > 0 such that
Fat i) _
x—w(F)~ F(x)
(2) Fx € DA(®y) if and only if w(F) = oo and

F(t
(x)—t’f, t>0,

5

lim — =
e ()
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(3) Fx € DA(Y¥¢) if and only if w(F) < oo and
F(w(F) -
FoB) -t e o,
x—0* F(w(F) — x)
where w(F) = sup{x : Fx(x) < 1}, the upper end point of the distribution Fx.

Intuitively, F € DA(A) corresponds to the case that F has an exponentially decaying tail,
F € DA(®¢) corresponds to the case that F has heavy tail (e.g., polynomially decaying), and
F € DA(¥¢) corresponds to the case that F has a short tail with finite upper bound.

THEOREM 6 (EXTREME VALUE THEOREM (THEOREM 1.1.3 IN DE HAAN AND FERREIRA
(2006))). Given Xy, ..., X, L. F, if there exist sequences of constants a,, > 0 and b, € R such that
P[(Xn:n = bn)/an < x] = G(x) (21)
as n — oo and G(-) is a non-degenerate distribution. The extreme value distribution G(x) and the

values of a,, and b, depend on the domain of attraction (and hence the tail behavior) of Fx given by
Theorem 5.

(1) For Fx € DA(A),

an = n(F~'(1-1/n)), (22)
b, = F'(1-1/n), (23)
G(x) = A(x) = exp{—exp(—x)}, (24)
where A(x) is called the Gumbel distribution.
(2) For Fx € DA(®y),
a, = F1(1-1/n), (25)
b, =0, (26)
Glx) = Dy (x) = {gxp{_x_f} e (27)
where ®(x) is called the Fréchet distribution.
(3) For Fx € DA(Y¥:),
an = o(F) — F (1 —1/n), (28)
by = w(F), (29)
Gx) = ¥ (x) = {elzxp{—(—x)s”} z ; g: (30)

where V¢ (x) is called the reversed-Weibull distribution.
Based on Theorem 6, we can derive the expected value of extreme values, as shown in Lemma 3.

LeEMmMA 3 (ExPECTED EXTREME VALUES). For Fx € DA(G),

E[Xn.n] = a,E[G] + b, + 0(1), (31)
where G € {A, @¢, ¥¢} and
E[A] = yem,
_JT-1/§) &>1
E[®;] = {+oo otherwise,

E[¥] = -T(1+1/§),
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where yg\ is the Euler-Mascheroni constant and T'(+) is the Gamma function—that is,
(9]
I'(t) & f x' e ™ dx.
0

Proor. Theorem 6 shows that the extreme values of i.i.d. random variables converges in distri-
bution to the extreme value distribution G(x). Although, in general, convergence in distribution
does not imply convergence in expectation, it holds for extreme values of i.i.d. random variables,
as shown in Pickands (1968). Therefore, the expected value of extreme values equals the expecta-
tion of its corresponding extreme value distribution E[G] with an asymptotically varnishing error
term o(1), and E[G] can be computed straightforwardly. O

In addition to the expectation of extreme values, the central quantiles can be characterized by
the following lemma, which is adapted from Equations (10.2.1) and (10.2.2) in David and Nagaraja
(2003).

LEMMA 4 (EXPANSION OF QUANTILES). Given X1, Xz, ..., X bidop if Fx has finite mean and
a bounded second derivative in a neighborhood of x, with f(x,) > 0, where 0 < p < 1, x, = Fy' (p),
then for any k = np + O(1/n), the following approximation holds:

1 n
= " Bi _p
Xpoy = Xp — n&i=1 7o p ,
nor fxp) "
where {B;,i = 1,2,...,n} are i.i.d. Bernoulli random variables with mean p, and almost surely

Ry =0 (n"#(logn)? (loglog n) )
asn — oo,

Equation (10.2.6) in David and Nagaraja (2003) also provides a sharper bound on the expectation
of quantiles, as shown in Lemma 5.

LEMMA 5 (EXPECTATION OF QUANTILES). Given Xy, Xa, ..., X, i d- Fx, if Fx has finite mean and
a bounded second derivative in a neighborhood of x, with f(x,) > 0, where 0 < p < 1,x, = Fy'(p),
then for any k = np + O(1/n), the following approximation holds:

E[Xk:n] = x, + O(1/n).

A.2  Proofs of Single-Fork Analysis

Proor oF THEOREM 1. The expected latency E[T] can be divided into two parts: before and after
replication:

E[T] = E[T"] + E[1®].
The time before forking TV is the time until (1 — p)n of the n tasks launched at time 0 finish.

Thus, its expected value E[T™M] is the expectation of the (1 - p)n-th order statistic X(1_p)n:n of n
i.i.d. random variables with distribution Fx. By Lemma 4,

E[TO] = E[Xa-pynn],

1
:F;(1—p)+o(-). (32)
n
The expected time after forking is given by
E[T®] = Eqo [E[max(¥:, Ya,. .., V) |[TO = 1], (33)
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where Y is the residual time of the i-th straggling task given T!) = t;. We find E[T®] separately
for the two cases: 7y and yeep.

For 7)1, where we kill the original copy of the straggling task, the residual execution times are
independent of T, and they are the minimum of r + 1 ii.d. random variables with distribution
Fx. We denote this by the random variable Z = Xj.,;1. Hence,

IE[T(Z)] = E[Zpnpn]  for mn. (34)

For 7yeep, there is one original replica and r new replicas of each of the straggling tasks. Let the
residual time be denoted by W. Its tail distribution is given by

Pr(W > w) = Pr(X; > w+ t1|X; > t1) - Pr(min(Xs, . .. X;41) > w), (35)
- FX(W + tl) _
Fy(w) = ————Fx(w)". (36)
Fx(t1)
Hence, the expected time after forking is given by
E[T?] = Ero [EMWpnpnl]  for meep (p. 7). (37)

Recall from Definition 3 that the expected cost E[C] is the sum of the running times of all
machines, normalized by the number of tasks n. We can analyze E[C] by dividing it into sum of
machine runtimes before and after forking:

E[C] = E[c] + E[c?], (38)
(1-p)n
E[cV] = % Zp" E[X;n] + %E[T(l)] (39)
i=1
(1-p)n .
=2 2 (W) o) e (rea-n+o(7)) (@
—fl_pF‘l(h)dh+ (1 o 41
= | Emdnpra-p o (). (a)
pn
E[c®] = %Z(r+ DE[Y;] (42)
j=1
3 {(r +1)p-E[Z] for min(p, 7). (3)
T+ 0)p Eqo [E[W[TO = 4] for meep (0. 7).

The cost before forking E[C(] consists of the cost for the (1 — p)n tasks that finish first, plus
the cost for the pn straggling tasks. The first term in (39) is the sum of the expected values of
the smallest (1 — p)n execution times. Lemma 5 indicates that the i-th term in the summation is
asymptotically Fy'(i/n), resulting the first term in (40). The analysis of Riemann sum indicates
it converges to the integral in the first term of (41) with error term O(1/n). The second term in
(39) is the normalized running time of the pn straggling tasks before forking. Similarly, we apply
Lemma 5 to E[T()] to arrive at the second term in (40).

The cost after forking, E[C(z)], is the normalized sum of the runtimes of the r + 1 replicas of
each of the pn straggling tasks. The residual execution time of the j-th straggling task is Y;. For my,
it is Z = X141, and for meep, it is W, whose tail distribution is given by (36). Since the scheduler
kills all replicas as soon as one replica finishes, the expected runtime for the j*# straggling task is
(r + 1)E[Y;]. Thus, the cost in (42) is the sum of (r + 1)E[Y;] over the pn tasks, normalized by n,
which can be reduced to (43). O
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Proor or LEMMA 1. When we keep the original copy, the residual execution time of a straggling
task is

W = min {Xy.., (X[X > T®)}, (44)

JPr(X > x +TW)

Pr(W >x)=Pr(X >x) ——=
( ) ( ) Pr(X > TM)

, (45)

where P[X > x + T® || X > TV] is the additional time needed for the original copy to finish after

forking time T(Y. When we kill the original copy,  + 1 new copies of the straggling task are
launched at the forking point. Thus, the residual execution time is

7 = min{Xy.,, X}, (46)

Pr(Z > x) = Pr(X > x)"*1. (47)

Keeping the original task is better than killing it if Z stochastically dominates W—that is, Pr(W >

x) < Pr(Z > x) for all x. This is true if the condition (9) is satisfied. Conversely, killing the original
task is better when the reverse condition holds. O

A.3 Analysis for Shifted Exponential Execution Time

ProoF oF THEOREM 2. By Theorem 1,

E[T] = F{(1 —p)+0(%) +E[T¢] (48)
:A—;lllnp+o(%)+E[T<2>] (49)
1-p
E[C] = f Fx'(hydh + pF5' (1 = p) + E[C?] + O(1/n) (50)
0
I=p 1 1
- f (A - In(1 - h)) dh+p (A - lnp) +E[c?] +0(1/n) (51)
0
= A1 +p)+ 1%1’ +0(1/n) + E[C?)]. (52)

To find E[T®] and E[C?®], we consider the cases of killing and keeping the original task
separately.

Case 1: Killing the original task (si;). The residual execution time of each straggling task after
killing and relaunching the original task, and launching r additional replicas, is

Z =min{Xy, Xz, . .. X;4+1} ~ ShiftedExp(A, (r + 1)p). (53)
Based on Theorem 5, for n(z) = 1/((r + 1)p), we have

Frrun@) _

~ (54)
z—w(Fz) Fz(z)

By Theorem 6 and Theorem 5, the maximum of shifted exponential belongs to the Gumbel family
with

_ 1

e

_gl(l/n) =A+

apn

In(pn)
plr+1)°

bpn
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Thus, the expected latency after forking is given by

E[T®] = dpnE[A] + bpn (55)
B In(pn)
Cop(1+7r) Vem A+ u(r+1) 6)
E[c®] = (r+ 1)p-E[Z] (57)
1
=@r+1)p (A+ (r+1)p)' (58)

Case 2: Keeping the original task (syccp). Due to the memoryless property of the tail of the
shifted exponential distribution, the residual execution time W is independent of T and is given
by

W = min {Exp(p), A + Exp(rp)}.
The first term does not include A because for large n, the original task would have run for at least
A seconds. Thus, the tail distribution of W is given by

- e Hv 0<w<A,
Fw(w) = {eyrAe—y(rH)w w > A. (59)
By Theorem 6 and Theorem 5, the maximum of W’s belongs to the Gumbel family with
1
pn = ———,
P (1)

T A4 In(pn) '
+1 pu(r+1)

bpn =F17\/1(1/n) = .

Thus, we have

E[T®] = apnE[A] + bpn (60)
B 1 In(pn)
_y(1+r)yEM+r+lA+y(r+1) (61)

E[C®] = (r+ 1)p- E[W] (62)

A o
=(r+1)p (f e "dw + f e”rAe”('“)W) , (63)
0 A
1)(1—e#A —HA
_pr+DH—e )+pey _ (64)
I
Substituting these in (49) and (52), we get the result. O

A.4 Analysis for Pareto Execution Time

ProoF oF THEOREM 3. From Theorem 1, we have

E[T] = F5'(1 - p) + E[T®] + 0(1/n) (65)
= xmp /* + E[T?] + O(1/n) (66)
1_
E[C] = f g Fg'(hydh + pF! (1= p) + E[C?] + O(1/n) (67)
0 -
= X f (1= B)™Vdh + pxmp™/* + E[CP] + O(1/n) (68)
0
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= xmaf (1= p T ! E[c®] +0(1/n) (69)
1-1/«a

= Xm—— —xm = + E[c®] + O(1/n). (70)
a-—1 a—1

To obtain (66), we use the tail distribution of Pareto given in (14). To derive the expected cost
(70), we substitute F)_(l(h) = x,n(1 — h)"Y% in the first and second terms in (67) and simplify the
expression. Next we find E[T®] and E[C®®] separately for the cases of killing the original task
(i) and keeping the original task (7ieep)-

Case 1: Killing the original task (). For a single-fork policy that kills the original task, the
scheduler waits for (1 — p)n tasks to finish and then relaunches each of the pn straggler tasks on
a new machine, and also launches r additional replicas per task. Thus, the residual execution time
of each straggling task is

Z = mil’l(Xl,Xz, .. .Xr+1),
Z ~ Pareto((r + )&, xp,). (71)

From Theorem 6, we can show that F; € DA(®(,11)¢). And from (25), we can evaluate d,, as
follows

1
ST R
n

Substituting this in from Lemma 3, we have

(1] = EZpugn) =T (1= =2 om0 o) (72)

r+1a
And E[C®] can be evaluated as

Xm(r+1a

IE[C(Z)] =(r+1)p-E[Z]=(+1)p- GaDaT

(73)

Case 2: Keeping the original task (7yeep). For a single-fork policy that keeps the original task,
the scheduler keeps the original copy and adds r additional replicas for each straggling task. Thus,
the residual execution time can be expressed as

W = min(Pareto(a, t;) — t1, Pareto(ra, x,)), (74)
B Xm \ " t 4
Fyir=p, (w) = (7) (w+ t1) . (75)

We can show that Fyy € DA(®(,1)¢). From (25) in Theorem 6, d,, = F;vlml) (#). Substituting this

into (7), we can show that the expected value of T is

E[T(Z)] =E;q0 [apn -T (1 — - +11)0() ‘T(l) =t |+o0(1), (76)
_ 1
=Ero [F;;lm (ﬁ) TV = tl] T (1 -G 1)O() +o(1), (77)
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where T = X(1_p)nn. And E[C®)] is given by

E[C?] = (r+1)p-Ero [E[WIT® = 1]] (78)
= (r+p-Eqo [ fo ) (Z)" (W%) dw] (79)

© xm\er [ Fi-p) \°
=(r+1)p‘j; (7) m dw, (80)

where (80) follows from Theorem 4 and the monotone convergence theorem. Substituting E[T?]
and E[C®] into (66) and (70) yields the result. O

PrOOF OF LEMMA 2. As given by (77) shown earlier, the expected latency after forking for 7yeep
and large n,

_ 1 1
@] = -1 | T® = . -
E[T®] = Erq) [FWle (pn) T = tl] r(1 = 1)a) +0o(1). (81)
Since Fv_vl|T(1> (+) is always non-negative, we can apply Fatou’s lemma to show that

_ 1
(1) — i -1 il
TV =t| 2 Ern [hrrlrilor(}waml) (pn)

_ 1
=F!(—]). 83
v (pn) &
Since the limits exist on both sides, we can replace lim inf by lim in (82). For large n, TY) concen-

trates around Fy! (1 — p), and thus we can replace T by F;!'(1 — p) on the right-hand side of (82).
By substituting (83) into (81), we obtain the result. O

_ 1
.. -1 1) —
hrrlrilorgf Era [FW|T(1) (p_n) TV = tl] (82)
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