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Abstract—It is commonly believed that the hidden layers of
deep neural networks (DNNs) attempt to extract informative
features for learning tasks. In this paper, we formalize this
intuition by showing that the features extracted by DNN coincide
with the result of an optimization problem, which we call the
“universal feature selection” problem, in a local analysis regime.
We interpret the weights training in DNN as the projection of
feature functions between feature spaces, specified by the network
structure. Our formulation has direct operational meaning in
terms of the performance for inference tasks, and gives interpre-
tations to the internal computation results of DNNs. Results of
numerical experiments are provided to support the analysis.

1. INTRODUCTION

Due to the striking performance of deep learning in vari-
ous fields, deep neural networks (DNNs) have gained great
attentions in modern computer science. While it is a common
understanding that the features extracted from the hidden layers
of DNN are “informative” for learning tasks, the mathematical
meaning of informative features in DNN is generally not
clear. There have been numerous research efforts towards
this direction [1]. For instance, the information bottleneck [2]
employs the mutual information as the metric to quantify the
informativeness of features in DNN, and other information
metrics, such as the Kullback-Leibler (K-L) divergence [3] and
Weissenstein distance [4] are also used in different problems.
However, because of the complicated structure of DNNs, there
is a disconnection between these information metrics and the
performance objectives of the inference tasks that DNNs want
to solve. Therefore, it is in general difficult to match the
DNN learning with the optimization of a particular information
metric.

In this paper, our first contribution is to propose a learning
framework, called universal feature selection, which connects
the information metric of features and the performance eval-
uation of inference problems. Specifically for a pair of data
variables X and Y, the goal of universal feature selection is to
select features from X to infer about a targeted attribute V' of
Y, where V is only assumed with a rotationally uniform prior
over the attribute space of Y, but the precise statistical model
between V' and X is unknown. Thus, the selected features have
to be good for solving multiple inference problems, and should
be generally “informative” about Y. We show that in a local
analysis regime, the averaged performance of inferring V' by a
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selected feature of X is measured via a linear projection of
this feature, which leads to an information metric to features,
and the optimal features can be computed from the singular
value decomposition (SVD) of this linear projection.

More importantly, we show that in the local analysis
regime, the optimal features selected in DNNs from log-
loss optimization coincide with the solutions of universal
feature selection. Therefore, the information metric developed
in universal feature selection can be used to understand the
operations in DNNs. As a result, we observe that the DNN
weight updates in general can be interpreted as projecting
features between the feature spaces of data and label for
extracting the most correlated aspects between them, and
the iterative projections can be viewed as computing the
SVD of a linear projection between these feature spaces.
Moreover, our results also give an explicit interpretation of the
goal and the procedures of the BackProp/SGD operations in
deep learning. Finally, the theoretic results are validated via
numerical experiments.

Notations: Throughout this paper, we use X, X, Py, and
x to represent a discrete random variable, the range, the
probability distribution, and the value of X. In addition, for
any function s(X) € R* of X, we use 1 to denote the mean
of s(X), and “ to denote the mean removed version of a
variable; e.g., 5(X) = s(X)— . Finally, we use ||-|| and |- ||¢
to denote the /5-norm and the Frobenius norm, respectively.

II. PRELIMINARY AND DEFINITION

Given a pair of discrete random variables X,Y with the
joint distribution Pxy (z,y), the |Y| x |X| matrix B is defined

B(y,z) £ Pxy(2.y) — Px (@) Py (y)

vV Px (x) Py (y)

6]

where B(y,z) is the (y,z)th entry of B. The matrix B is
referred to as the canonical dependence matrix (CDM). The
SVD of B has the following properties [3].

Lemma 1. The SVD of B can be written as B =
YK o 1biy('¢/)iX)T, where K = min{|X|,|Y|}, and o; de-
notes the ith singular value with the ordering 1 > o1 >

- > o0 = 0, and 1/JZY and w,X are the corresponding
left and right singular vectors with V¥ (z) = \/Px () and

V() = V/Pr(y).
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This SVD decomposes the feature spaces of X,Y into
maximally correlated features. To see that, consider the
generalized canonical correlation analysis (CCA) problem:

k

D E[f(X) g:(Y)].

max
E[f; (X)]=E[g;(Y)]=0 i—1

E[f;(X) f;(30)]=E[g;(Y) ¢;(Y)]=1,—;
It can be shown that for any 1 < k < K — 1, the
optimal features are f;(z) = ¢;* (z)//Px(x), and g;(y) =
Y y)/\/ Py (y), for i = 0,..., K — 1, where w,X(x) and
e (y) are the xth and yth entries of X and 9, , respec-
tively [3]. The special case k = 1 corresponds to the HGR
maximal correlation [5]-[7], and the optimal features can be
computed from the ACE algorithm [8].
Moreover, in this paper we focus on a particular analysis
regime described as follows.

Definition 1 (e-Neighborhood). Let P denote the space of
distributions on some finite alphabet X, and let relint(P™)
denote the subset of strictly positive distributions. For a given
€ > 0, the e-neighborhood of a distribution Px € relint(ﬁ]’x)

is defined by the X2 divergence as
P
X 1‘)) <e }

{P e P*: Z
zeX

Definition 2 (e-Dependence). The random variables X,Y is

called e-dependent if Pyy € NX*Y(Py Py).

N (Py) £

Definition 3 (e-Attribute). A random variable U is called an
e-attribute of X if Pxy(-lu) € NSC(PX), Sor all uw € U.

Throughout this paper, we focus on the small € regime,
where we refer to as the local analysis regime. In addition, for
any P € P, we define the information vector ¢ and feature
function L(z) corresponding to P, with respect to a reference
distribution Py € relint(P™), as

N P(zx) — Px(z) ) 2 o(x)
o) £ O s S

This gives a three way correspondence P < ¢ <> L for
all distributions in N°(Py), which will be useful in our
derivations.

Due to the space limitations, we omit the proofs of the
lemmas and theorems in the rest of this paper, but refer the
readers to the extended version of this paper [9] for the detailed
proofs.

III. UNIVERSAL FEATURE SELECTION

Suppose that given random variables X,Y with joint
distribution Pyy, we want to infer about an attribute V' of
Y from observed i.i.d. samples x{,...,x, of X. When the
statistical model Py, is known, the optimal decision rule is
the log-likelihood ratio test, where the log-likelihood function
can be viewed as the optimal feature for inference. However,
in many practical situations [3], it is hard to identify the
model of the targeted attribute, and is necessary to select
low-dimensional informative features of X for inference tasks
before knowing the model. We call this universal feature
selection problem. To formalize this problem, for an attribute

V, wereferto Cy = {V, {Py(v), v €V}, {orV, we V}},
as the configuration of V, where ¢}V & Py vy (-|v) is the
information vector specifying the corresponding conditional
distribution Py |y (:|v). The configuration of V' models the
statistical correlation between V' and Y. In the sequel, we focus
on the local analysis regime, for which we assume that all the
attributes V' of our interests to detect are e-attributes of Y. As
a result, the corresponding configuration satisfies ||¢) V|| < e,
for all v € V. We refer to this as the e-configurations. The
configuration of V' is unknown in advance, but assumed to be
generated from a rotational invariant ensemble (RIE).

Definition 4 (RIE). Two configurations (3 and Gy defined as
(39—{\7 {Py(v), v eV}, {(;5 , vEV}H,
Cy 2 {V, {Py(v), veV}, {), veV}}
are called rotationally equivalent, if there exists a unitary
matrix Q such that qu/‘v =Q (;‘)ZW, for all v € V. Moreover,
a probability measure defined on a set of configurations is
called an RIE, if all rotationally equivalent configurations have
the same measure.

The RIE can be interpreted as assigning a uniform measure to
the attributes with the same level of distinguishability. To infer
about the attribute V', we construct a k-dimensional feature
vector h* = (hiy...,hy), for some 1 < k < K — 1, of the
form h; = %27:1 filxy), i=1,...,k, for some choices of
feature functions f;. Our goal is to determine the f; such that
the optimal decision rule based on h"* achieves the smallest
possible error probability, where the performance is averaged
over the possible Cy generated from an RIE. In turn, we denote
fl ~ f; as the correspondmg information vector, and define
the matrix = [El & ]

Theorem 1 (Universal Feature Selection). For v,v’ € V, let
E,x(v,v ") be the error exponent associated with the pairwise
error probability distinguishing v and v' based on K", then
the expectation of the error exponent over a given RIE defined
on the set of e-configuration is given by

E [E,«(v, v)]
[||¢Y|V
8[Y|

o, I

|B=* (=)=

where the expectations are taken over this RIE.

As a result of (3), designing the 51 as the singular vectors
¢z of B for i =1,...,k, optimizes (3) for all RIEs, pairs
of (vm/), and e-conﬁgurations. Thus, the feature functions
corresponding to ;" are universally optimal for inferring
the unknown attribute V. Moreover, (3) naturally leads to an
information metric |BE~ ((:X)T:X) 3 | for any feature
=% of X, measured by projecting the normalized = through
a linear projection B. This information metric quantifies how
informative a feature of X is when solving inference problems
with respect to Y, and is optimized when designing features
by singular vectors of B. Thus, we can interpret the universal
feature selection as solving the most informative features for
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Fig. 1: A simple neural network with one layer of hidden nodes
with softmax output.

data inferences via the SVD of B, which also coincides with
the maximally correlated features in Section II. Later on we
will show that the feature selections in DNN share the same
information metric as universal feature selection in the local
analysis regime.

IV. INTERPRETING SOFTMAX REGRESSION

To begin, recall that for a data vector X and label Y
with labeled samples (z;,vy;), for ¢ = 1,...,n, the softmax

regression generally uses a discriminative model of the form
e W)s(@)+(y)
“)

Py (ylz) &
y'ey
to address the classification problems, where s(z) € R” is a
k-dimensional representation of X used to predict the label,
and v(y) € R* and b(y) € R are the parameters required to

be learned from

N
* 1 (v
(v,b)* = ar% rgax v > log wa»g(yim). )
v, i—1

As depicted in Fig. 1, the ordirllgry softmax regression corre-
sponds to s(x) = x. More generally, s(z) can be the output of
the previous hidden layer of a neural network, i.e., the selected
feature of x fed into the softmax regression. In the rest of
this section, we will show that when XY are e-dependent,
the functions s(z) and v(y) coincide with the solutions of the
universal feature selection.

First, we use Pxy to denote the joint empirical distri-
bution of the labeled samples (x;,y;),? = 1,...,N, and
Py, Py to denote the corresponding marginal distributions.
Then, the objective function in the optimization problem
(5) is precisely the empirical average of the log-likelihood,

. N 5(v,b 5 (v,b

ie. £3N 1og PV (vilz;) = Epy, [1ogP;”‘X)(Y|X) .
Therefore, maximizing this empirical average is equivalent
as minimizing the K-L divergence:

. . 5 (0,
(v,b)" = argmin  D(Pxy||Px Px(f|x))’

oV (W)s(@)+b(y)

(6)

v,
This can be interpreted as finding the best fitting to empirical
joint distribution Py by distributions of the form Py ]51(/”;).
In our development, it is more convenient to denote the bias
by d(y) = b(y) — log Py (y), for y € Y. Then, the following
lemma illustrates the explicit constraint on the problem (6) in
the local analysis regime.

Lemma 2. [f X|Y are e-dependent, then the optimal v,d
for (6) satisfy

|77 (y)s(x) + d(y)| = O(e), forallx€X, y€Y. (7)

In turn, we take (7) as the constraint for solving the
problem (6) in the local analysis regime. Moreover, we
define the information vectors for zero-mean vectors S, v as

¥ (@) = /Px(2)3(z), € (y) = /Py (y) 9(y), and define
matrices "

B 2 [V () AGDINE

=¥ 2 [¥() ()"

Lemma 3. The K-L divergence (0) in the local analysis
regime (7) can be expressed as
~(v,b
D(Pxy||Px PY)
e v T2 . 1 e
= §||B -2 (%) HF + 577( )(s) + o(e?),
where 0" () £ Ep, [(ujfz(Y) +d(v))?.

®)

Eq. (8) reveals key insights for feature selection in neural
networks, which are illustrated by the following three learning
problems, depending on if the weights, input feature, or both
can be trained from data.

A. Forward Feature Projection

For the case that s is fixed, we can optimize (8) with =X
fixed and get the following optimal weights:

Theorem 2. For fixed =% and ls, the optimal =Y 1o
minimize (8) is given by -
= =B=Y(E")"gY) ", ©)

and the optimal weights v and bias d* are

5 (5) = By, [Aslo 3X) | Y =y], d'(5) = —ul 5(Y).
(10

where A xy denotes the covariance matrix of 5(X).

Eq. (9) can be viewed as a projection of the input feature
5(z), to a feature v(y) computable from the value of y, which
is the most correlated feature to 5(x). The solution is given
by left multiplying the B matrix. We call this the “forward
feature projection”.

Remark 1. While we assume the continuous input s(z) is a
function of a discrete variable X, we only need the labeled
samples between s and 'Y to compute the weights and bias from
the conditional expectation (10), and the correlation between
X and s is irrelevant. Thus, our analysis for weights and bias
can be applied to continuous input networks by just ignoring
X and taking s as the real network input.

B. Backward Feature Projection

It is also useful to consider the “backward problem”, which
attempts to find informative feature s*(X) to minimize the
loss (8) with given weights and bias.

Theorem 3. For fixed o, B,

minimize (8) is given by
=X _gT=Y (=Y Toy\—1
=X =B =" (") "8"),

and J, the optimal =5 10

(1D
and the optimal feature function s*, which are decomposed to
5% and pl, are given by

~% -1 ~

§(x) = EPY\X [Aﬂ(y)v(Y)‘X = x} ,
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w = —Asl Ep, [50)d(Y)] (12)

where Ay denotes the covariance matrix of 9(Y).

The solution of this backward feature projection is precisely
symmetric to the forward one. Note we assumed here that the
feature s(X) can be selected as any desired function. This is
only true in the ideal case where the previous hidden layers of
the neural network have sufficient expressive power. That is,
it can generate the desired feature function as given in (12).
In general, however, the form of feature functions that can
be generalized is often limited by the network structure. In
the next section, we discuss such cases, where we do know
the most desirable feature function as given in (12), and the
question is how does a network with limited expressive power
approximate this optimal solution.

C. Universal Feature Selection
) (and hence =X, 2", d) can be

When both s and (v,b
designed, the optimal (EY, EX) corresponds to the low rank
factorization of B, and the solutions coincide with the universal

feature selection.

Theorem 4. The optimal solutions for weights and bias to
maximize (8) are given by d(y) = —us o(y), and (EY, E)i)*

chosen as the largest k left and right singular vectors of B.

Therefore, we conclude that the softmax regression, when
both s and (v, b) are designable, is to extract the most correlated
aspects of the input data X and the label Y that are informative
features for data inferences from universal feature selection.

In the learning process of DNN, the BackProp procedure
alternatively chooses the weights of the softmax layer and
those on the previous layer(s). In each step, the weights on the
rest of the network are fixed. This is equivalent as alternating
between the forward and the backward feature projections, i.e.
it alternates between (9) and (11). This is in fact the power
method to solve the SVD for B [10], which is also known as
the Alternating Conditional Expectation (ACE) algorithm [8].

V. MULTI-LAYER NETWORK ANALYSIS

From the previous discussions, the performance of the
softmax regression not only depends on the weight and bias
(v(y),b(y)), but the input feature s(x) has to be informative.
It turns out that the hidden layers of neural networks, which
are known to have strong expressive power of features, are
essentially extracting such informative features. For illustration,
we consider the neural network with a hidden layer of k£ nodes,
and a zero-mean continuous input t = [t; --- ,,]" € R™ to
this hidden layer, where ¢ is assumed to be a function ¢(z) of
some discrete variable X'. Our goal is to analyze the weights
and bias in this layer with labeled samples (¢(z;),y;). Assume
the activation function of the hidden layer is a generally smooth

'As discussed in Remark 1, X is assumed only for the convenience of
analysis, and the computation of weights and bias only needs ¢, but not
X. Moreover, the input ¢ to the hidden layer can be either directly from
data or the output of previous hidden layers in a DNN, which we model as
“pre-processing” as shown in Fig. 2.

@MH‘U

Fig. 2: A multi-layer network: all hidden layers previous to ¢
are labeled as “pre-processing”.

function o(-), then the output s,(X) of the z-th hidden node
is
s,(x) =0 (wT(z)t(x) + c(z)) , forz=1,...k, z€X,
(13)
where w(z) € R™ and c(z) € R are the weights and bias
from input layer to hidden layer as shown in Fig. 2. We denote
s =11 - sk}T as the input vector to the output softmax
regression layer.

To interpret the feature selection in hidden layers, we fix
(v(y),b(y)) at the output layer, and consider the problem of
designing (w(z),c(z)) to minimize the loss function (6) of
the softmax regression at the output layer. Ideally, we should
have picked w(z) and c(z) to generate s(z) to match s*(z)
from (12), which minimizes the loss. However, here we have the
constraint that s(x) must take the form of (13), and intuitively
the network should select w(z), ¢(z) so that s(z) is close to
s*(z). Our goal is to quantify the notion of closeness in the
local analysis regime.

To develop insights on feature selection in hidden layers, we
again focus on the local analysis regime, where the weights

and bias are assumed with the local constraint

T T

o (y)s(z) + d | = O(e), ’w ’ =
Then, since ¢ is zero-mean, we can express (13) as

s.(2) = o (W' (2)t(x) + e(2))
= w" (2)i(x) - o’ (¢(2)) + 0 (e(2)) + ole),

Moreover, we define a matrix B; with the (z,z)th entry
Bl(z $) _ ,/PX(JJ ~
generahzed DTM %or the hidden layer. Furthermore, we denote
& (z) = ( )t(x) as the information vector of ¢(x) with

the matrix = defined as 2 £ (&5 (1) §f((DC|)]T,
and we also define
w(2), - wk)]"
(0(2))a e 70/(C(k))}'

W = [w(),
The following theorem characterizes the loss (6).

5.(x), which can be interpreted as a

J £ diag{o'(c(1)),0’

Theorem 5. Given the weights and bias (v,b) at the output
layer, and for any input feature s, we denote L(s) as the
loss (6) evaluated with respect to (v,b) and s. Then, with the
constraints (14)

L(s) — L(s")
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1, = =x\ T2 1 (e 2

= 5H@Bl —-OW(EY) || + 5/4:(1) )(s,5") + o(€?), (15)

where © 2 ((EY)TE.Y)UQJ, and the term £\"Y(s,s*) =
T

(ﬂ’s - 1“’3*) Af/(Y) (us - /'Ls*)

Eq. (15) quantifies the closeness between s and s* in terms
of the loss (6). Then, our goal is to minimize (15), which can
be separated to two optimization problems:

* . = —_X\T 2
W* = arg min HG)Bl - OW(EY) HF, (16)
w

[ty = arg min n(“’b)(s,s*). (17)

First note that the OSf}mization problem (16) is similar to the
ordinary softmax regression depicted in Section IV, and the
optimal solution is given by W* = ElEf{((Ef)TEf)_l
Therefore, solving the optimal weights in the hidden layer
can be interpreted as projecting 5" (z) to the subspace of
feature functions spanned by ¢(z) to find the closest expressible
function. Finally, the problem (17) is to choose u, (and hence
the bias ¢(z)) to minimize the quadratic term similar to """ (s)
in (8), and the optimal solution of (17) is referred to [9].

Overall, we observe the correspondence between (9), (12),
and (16), (17), and interpret both operations as feature projec-
tions. Our argument can be generalized to any intermediate
layer in a multi-layer network, with all the previous layers
viewed as the fixed pre-processing that specifies ¢(x), and all
the layers after determining s*. Then the iterative procedure
in back-propagation can be viewed as alternating projection
finding the fixed-point solution over the entire network. This
final fixed-point solution, even under the local assumption,
might not be the SVD solution as in Theorem 4. This is
because the limited expressive power of the network often
makes it impossible to generate the desired feature function.
In such cases, the concept of feature projection can be used
to quantify this gap, and thus to measure the quality of the
selected features.

VI. EXPERIMENTAL VALIDATION

We first validate the feature projection in Theorem 4. For this
purpose, we construct the NN as shown in Fig. 1 with k =1,
|X| =8, and |Y| = 6, and the input feature s(X) is generated
from a sigmoid layer with the one-hot encoded X as the input.
Note that with proper weights in the sigmoid layer, s(X) can
express any desired function, up to scaling and shifting. To
compare the result trained by the neural network and that in
Theorem 4, we first randomly generate a distribution Py,
and then generate n = 100, 000 samples of (X,Y") pair. Using
these data to train the neural network, the corresponding results
of s(x),v(y) and b(y) are shown in Fig. 3 with a comparison
to theoretical result, where the training results match our theory.
In addition, we validate Theorem 5 by the NN depicted in
Fig. 2, with the same setup of X,Y. The number of neurons
in hidden layers are m = 4 and k = 3, and the input ¢(X) is
some randomly chosen function of X, and the activation o (-)
is the sigmoid function. We then fix the weights and bias at
the output layer and train the weights w(1),w(2), w(3), and

0.0

L0 05
05 0.0
0.0 05
05

A L0

—0.5

104 == Training ~1.0 == Training = Training
w= == Theoretical 1 === Theoretical L5 me Theoretical
1.5 -
1 2 3 45 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6
(a) s(x) () v(y) (©) b(y)

Fig. 3: The comparisons of the weights and bias in softmax
regression.

0.150 =

0.125
o4 04 03 0.100
02 0.075
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) E 1

3
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= =_ Theoretical 0.6 === Theoretical

1 2 3 1 1

(2) w(1l),w(2) and w(3)

1 2 3 1 1 2 3
®) ¢

Fig. 4: The comparisons of the weights and bias in the hidden
layer.

bias ¢ in the hidden layer to optimize the Log-Loss. Fig. 3
shows the matching between our results and the experiment.
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