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Abstract—We address the problem of optimal feature selection
for a Gaussian vector pair in the weak dependence regime,
when the inference task is not known in advance. In particular,
we show that multiple formulations all yield the same solution,
and correspond to the singular value decomposition (SVD) of
the canonical correlation matrix. Our results reveal key con-
nections between canonical correlation analysis (CCA), principal
component analysis (PCA), the Gaussian information bottleneck,
Wyner’s common information, and the Ky Fan (nuclear) norms.

I. INTRODUCTION

Typical applications of machine learning involve data whose
dimension is high relative to the amount of training data that
is available. As a consequence, it is necessary to perform di-
mensionality reduction before the regression or other inference
task is carried out. This reduction corresponds to extracting a
set of comparatively low-dimensional features from the data.
When the inference task is fully specified, classical statistics
establishes that the appropriate features take the form of a
(minimal) sufficient statistic. However, in most contemporary
settings, the task is not known in advance—or equivalently
there are multiple tasks—and we require a set of universal
features that are, in an appropriate sense, uniformly good.

With this motivation, the Gaussian universal feature se-
lection problem can be expressed as: given a pair of high-
dimensional jointly distributed Gaussian data vectors X ∈
RKX and, Y ∈ RKY , how should we choose low-dimensional
features f(X) and g(Y ) before knowing the desired inference
task so to ensure that after the task is revealed, inference based
on the features performs as well as possible?

Mathematically, we express this problem as one of making
inference about latent variables U, V ∈ Rk, for 1 ≤ k ≤ K ,
min{KX ,KY }, in the Gauss-Markov chain

U ↔ X ↔ Y ↔ V, (1)
where the (Gaussian) distributions for these variables, i.e.,
PU , PX|U , PV , and PY |V are not known at the time of
feature extraction. Our results can be viewed as an extension
of the framework for discrete variables described in [1]. We
note in advance that to simplify the exposition, we treat
PX,Y as known, though in practice we must estimate the
relevant aspects of this distribution from training samples
{(x1, y1), . . . , (xn, yn)}.

Our contribution of this paper is summarized as follows. To
deal with the inference for unknown attributes, in section III

we define a rotation-invariant ensemble (RIE) that assigns a
uniform prior for the unknown attributes, and formulate a
universal feature selection problem that aims to select optimal
features minimizing the averaged MSE over RIE. We show
that the optimal features can be obtained from the SVD
of a canonical dependence matrix (CDM). In addition, we
demonstrate that in a weak dependence regime, this SVD
also provides the optimal features and solutions for several
problems, such as CCA, information bottleneck, and Wyner’s
common information, for jointly Gaussian variables. This
reveals important connections between information theory and
machine learning problems.

II. GAUSSIAN LOCAL ANALYSIS FRAMEWORK

In the sequel, we restrict our attention to zero-mean vari-
ables, for simplicity of exposition. In the model of interest,
X ∈ RKX and Y ∈ RKY . Moreover,

Z =

[
X
Y

]
∼ N(0,ΛZ), ΛZ = E

[
ZZT

]
=

[
ΛX ΛXY

ΛY X ΛY

]
,

so X ∼ N(0,ΛX), Y ∼ N(0,ΛY ), ΛY X = E
[
Y XT], and

ΛXY = ΛT
Y X . We assume without loss of generality that ΛX

and ΛY are (strictly) positive definite. The joint distribution
takes the form

PX,Y (x, y) = PZ(z) =
|ΛZ |

−1/2

(2π)KZ/2
exp

{
−1

2
zT Λ−1Z z

}
(2)

where KZ = KX+KY , and with |·| denoting the determinant
of its argument. It will be convenient to normalize X and Y
according to

X̃ = Λ
−1/2
X X and Ỹ = Λ

−1/2
Y Y

so that

Z̃ =

[
X̃

Ỹ

]
, ΛZ̃ =

[
I BT

B I

]
, (3)

where
B , Λ

−1/2
Y ΛY X Λ

−1/2
X = Λ

−1/2
Y ΓY |X Λ

1/2
X (4)

is called the canonical dependence matrix (CDM). CDM plays
the key role in Gaussian local analysis as the divergence
transfer matrix (DTM) does in the discrete case [1].

We note that the MMSE estimate of Ỹ based on X̃ is
ˆ̃Y (X̃) = B X̃ , and the associated error ν̃ , Ỹ − ˆ̃Y (X̃)
has covariance E

[
ν̃ν̃T

]
= I − BBT, so the resulting MSE

is σ̃2
e = tr

(
I − BBT) = KY − ‖B‖

2
F. with ‖ · ‖F denoting

the Frobenius norm.



The SVD of B takes the form

B = ΨY Σ
(
ΨX)T =

K∑
i=1

σiψ
Y
i

(
ψXi
)T
, (5)

where K = min{KX ,KY } and where we order the singular
values according to σ1 ≥ · · · ≥ σK . Note that since (3) is
positive semidefinite, it follows that σi ≤ 1 for i = 1, . . . ,K.

As in the discrete case [1], it is useful to define a local
analysis regime for such variables. In particular, we make use
of the following notion of neighborhood.

Definition 1 (Gaussian ε-Neighborhood). For a given ε > 0,
the ε-neighborhood of a K0-dimensional Gaussian distribution
P0 = N(0,Λ0) is the set of Gaussian distributions in a
covariance-divergence ball of radius ε2 about P0, i.e.,
G
K0
ε (P0)

,
{
P = N(0,Λ) :

∥∥Λ−1/20

(
Λ−Λ0

)
Λ
−1/2
0

∥∥2
F
≤ ε2K0

}
Note that PX,Y lies in an ε-neighborhood of PXPY if and

only if PX̃,Ỹ lies in an ε-neighborhood of PX̃PỸ . Hence,
PX,Y ∈ G

KX+KY
ε (PXPY ) when ‖ΛZ̃ − I‖2F ≤ ε2(KX +

KY ). We conclude that the neighborhood constraint limits how
much the mean-square error (MSE) in the estimate of Ỹ based
on observing X̃ can be reduced relative to the MSE in the
estimate of Ỹ based on no data. In the rest of this paper, we
focus on the regime that ε is small. The K-L divergence and
mutual information in this regime admits the following useful
asymptotic expressions.

Lemma 1. In the weak dependence regime,

D(PY |X(·|x)‖PY ) =
1

2

∥∥Bx̃∥∥2 + o(ε2),

and

I(X;Y ) =
1

2

K∑
i=1

σ2
i + o(ε2). (6)

Proof. This is straightforward from the fact that, for an
arbitrary matrix A, ln |I− ε2A AT| = −ε2‖A‖2F+ o(ε2).

To interpret (6), consider the modal decomposition of PX,Y .
In particular, observe that as ε→ 0,

Λ−1
Z̃

=

[
I −BT

−B I

]
+ o(ε). (7)

Hence,

PX,Y (x, y) = PX(x)PY (y)

(
K∏
i=1

eσi f
∗
i (x) g

∗
i (y)

)(
1 + o(ε)

)
,

(8a)
where f∗i and g∗i are (linear) functions given by
f∗i (x) = (ψXi )TΛ

−1/2
X︸ ︷︷ ︸

,f
∗
i

T

x and g∗i (y) = (ψYi )
TΛ
−1/2
Y︸ ︷︷ ︸

,g
∗
i
T

y.

(8b)
Moreover, using (8b) with (4) and (5) we obtain the covariance
expansion

Λ−1Y ΛY X Λ−1X = Λ
−1/2
Y B Λ

−1/2
X =

K∑
i=1

σi g
∗
i f∗i

T
.

These linear functions can be computed from PX,Y (or esti-
mated from training data) using a linearly-constrained version
of the alternating conditional expectation (ACE) algorithm

[2], which interprets the power iteration method for SVD
computation.

From this perspective, we see that approximations to PX,Y
can be obtained by truncating the representation (8) to the first
k < K of the terms in the product, yielding

P
X

(k)
,Y

(k)(x, y)

= PX(x)PY (y)

(
k∏
i=1

eσi f
∗
i (x) g

∗
i (y)

)(
1 + o(ε)

)
,

This corresponds to jointly Gaussian X(k) and Y (k) with the
same marginals as X and Y , respectively, but

Λ
Y

(k)
X

(k) = Λ
1/2
Y

(
k∑
i=1

σiψ
Y
i

(
ψXi
)T

︸ ︷︷ ︸
,B

(k)

)
Λ

1/2
X , (9)

so

I(X(k);Y (k)) =
1

2

k∑
i=1

σ2
i + o(ε2).

III. UNIVERSAL LINEAR FEATURE SELECTION

We use our framework to address the problem of Gaussian
universal feature selection. In our analysis, Ũ , X̃, Ỹ , Ṽ denote
normalized versions of the variables in (1), so are N(0, I)
random vectors of appropriate dimension. In the sequel, we
consider several different formulations, all of which yield the
same linear features, and coincide with those defined by the
modal expansion (8). In our development, the following lemma
will be useful (see, e.g., [3, Corollary 4.3.39, p. 248]).

Lemma 2. Given an arbitrary k1 × k2 matrix A and any
k ∈

{
1, . . . ,min{k1, k2}

}
, we have

max
{M∈Rk2×k

: M
T
M=I}

∥∥AM
∥∥2
F
=

k∑
i=1

σi(A)2, (10)

with σ1(A) ≥ · · · ≥ σmin{k1,k2}(A) denoting the (ordered)
singular values of A. Moreover, the maximum in (10) is
achieved by M =

[
ψ1(A) · · · ψk(A)

]
, with ψi(A) de-

noting the right singular vector of A corresponding to σi(A),
for i = 1, . . . ,min{k1, k2}.
A. Optimum Features, Rotation-Invariant Ensembles

In this formulation, we seek to determine optimum features
for estimating an unknown k-dimensional U from Y , in the
case where U and X are weakly dependent; specifically,
PX,U ∈ G

KX+k
ε (PXPU ). Accordingly, from the innovations

form X̃ = εΦX|U Ũ + νŨ→X̃ , where Ũ and νŨ→X̃ are
independent, it follows that weak dependence means, using
Definition 1, that ΦX|U satisfies∥∥ΦX|U∥∥2

F
≤ 1

2
(KX + k), (11)

but is otherwise unknown.
We observe Ỹ = B X̃ + νX̃→Ỹ = εB ΦX|U Ũ + νŨ→Ỹ .

From this data—and before knowing ΦX|U—we construct a
linear feature (statistic) of the form

T =
(
ΞY )T Ỹ , (12)

which we normalize for convenience (and without loss of
generality) according to(

ΞY )TΞY = I, (13)



so T = T̃ since ΛT = I. We refer to ΞY as the feature
weights associated with the linear feature T . When ΦX|U is
determined, we can generate the MMSE estimate of U based
on T , and express the resulting MSE in the form

tr(ΛU |T ) = trΛU − ε
2
∥∥(ΞY )T B ΦX|U Λ

1/2
U

∥∥2
F
. (14)

Since ΦX|U is unknown, to determine the optimum choice of
ΞY , we assume that (X,U) configuration is randomly drawn
from a rotation-invariant ensemble (RIE), defined as follows.

Definition 2. RIE is a collection of configurations such that
given any ΦX|U , ΦX|U d

= QΦX|U for any unitary matrix Q,
where d

= denotes the two configurations have equal probability,
i.e., the prior distribution of ΦX|U is spherically symmetric.

To derive the optimal features, the following lemma from
[4] is useful.

Lemma 3. Let Z be a k1 × k2 spherically symmetric [4]
random matrix, i.e., for any orthogonal k1 × k1 and k2 × k2
matrices Q1 and Q2, respectively, we have Z

d
= QT

1 Z Q2.
Then if A1 and A2 are any fixed matrices of appropriate
dimension, then

E
[∥∥AT

1 ZA2

∥∥2
F

]
=

1

k1k2

∥∥A1

∥∥2
F

∥∥A2

∥∥2
F
E
[∥∥Z∥∥2

F

]
.

Theorem 1. The optimal features T∗ to minimize the averaged
MSE (14) over the RIE prior is given by T∗ = g∗(Y ), where
g∗(Y ) is from the Gaussian modal decomposition from (8).

Proof. Taking the expectation of (14) over the RIE and
applying Lemma 3, with some computations, we obtain that
the averaged MSE is
E
[
tr(ΛU |T )

]
= tr(ΛU )

(
1− ε2

2

(
1

k
+

1

KX

) ∥∥(ΞY )TB
∥∥2
F

)
. (15)

Then via Lemma 2 it follows that (15) is minimized subject
to (13) by choosing the columns of ΞY as the left singular
vectors of B corresponding to the k largest singular values,
i.e., ΞY = ΨY

(k) ,
[
ψY1 · · · ψYk

]
. Hence, the optimum

feature vector for inferences about the resulting variable U
from Y is, via (12),
T∗ =

(
ΨY

(k)

)T
Λ
−1/2
Y Y =

[
g∗1(Y ) · · · g∗k(Y )

]T︸ ︷︷ ︸
,g

∗
(Y )

, (16)

which we note coincides with the features of Y that arise in
the Gaussian modal decomposition (8).

By symmetry, an analogous derivation yields the corre-
sponding results for constructing feature weights ΞX and
linear feature (statistic)

S =
(
ΞX)TX̃ (17)

with [cf. (13)] (
ΞX)TΞX = I (18)

for estimating an unknown V from X . Similarly, we obtain
that the optimal ΞX has as its columns the right singular

vectors ΨX
(k) ,

[
ψX1 · · · ψXk

]
of B corresponding to the

k largest singular values, and the optimum feature vector
S∗ =

(
ΨX

(k)

)T
Λ
−1/2
X X =

[
f∗1 (X) · · · f∗k (X)

]T︸ ︷︷ ︸
,f

∗
(X)

, (19)

is from the Gaussian modal decomposition (8).

B. Cooperative Optimization and CCA

In this subsection, we consider a variant optimization prob-
lem, where the system designer and nature share the goal of
constructing and estimating U from Y in the chain (1) so as
to minimize the relative MSE subject to the weak dependence
constraint PX,U ∈ G

KX+k
ε (PXPU ). In this game, nature

chooses the variable U via ΦX|U and attribute covariance ΛU

and the system designer chooses the feature weights ΞY for
the statistic (12). Nature is constrained in that ΛU cannot have
eigenvalues larger than 1, i.e., its spectral norm ‖ · ‖s, denoted
the largest eigenvalue, satisfies

∥∥ΛU

∥∥
s
≤ 1, and ΦX|U is

constrained according to [cf. (11)]∥∥ΦX|U∥∥2
F
≤ 1

2

KX + k

k
. (20)

The system designer is constrained in that the columns of ΞY

must be orthonormal, i.e., (13) must be satisfied.

Theorem 2. To minimize the MSE (14), in the cooperative
game the nature should choose ΛU = I and ΦX|U = ΨX

(k),
and the system designer should choose ΞY = ΨY

(k).

Proof. Although we omit the steps due to space constraints,
it is straightforward to show, again using Lemma 2, that

tr(ΛU )− tr(ΛU |T ) ≤
ε2

2

KX + k

k

k∑
i=1

σ2
i , (21)

and the equality holds when nature chooses the variable U
according to ΛU = I and ΦX|U = ΨX

(k), and the system
designer chooses the feature weights according to ΞY = ΨY

(k).

Note that the analysis of this section is not asymptotic; it
holds for all ε sufficiently small. We further emphasize that
this analysis establishes that (16) is a sufficient statistic for
inferences about the resulting variable U from Y .

An identical analysis yields the solution to the cooperative
game for estimating V from X . In particular, nature chooses
the variable V according to ΛV = I and ΦY |V = ΨY

(k),
and the system designer chooses the feature weights according
to ΞX = ΨX

(k). Moreover, analogously, (19) is a sufficient
statistic for inferences about the resulting variable V from X .

CCA Interpretation: The cooperative game can be viewed
as selecting the most detectable attribute of X and detecting
this attribute by the most correlated feature of Y . These
optimizations can be equivalently and directly interpreted via
CCA [5]. To demonstrate the connection, the following (von
Neumann) lemma (see, e.g., [6]), is useful.



Lemma 4. Given an arbitrary k1 × k2 matrix A and any
k ∈

{
1, . . . ,min{k1, k2}

}
, we have

max
{M1∈R

k1×k
, M2∈R

k2×k
:

M
T
1 M1=M

T
2 M2=I}

tr
(
MT

1 AM2

)
=

k∑
i=1

σi(A), (22)

with σ1(A) ≥ · · · ≥ σmin{k1,k2}(A) denoting the (ordered)
singular values of A. Moreover, the maximum in (22) is
achieved by Mj =

[
ψ

(j)
1 (A) · · · ψ

(j)
k (A)

]
, j = 1, 2,

with ψ(1)
i (A) and ψ(2)

i (A) denoting the left and right sin-
gular vectors, respectively, of A corresponding to σi(A), for
i = 1, . . . ,min{k1, k2}.

To develop this perspective, first note that for zero-mean
random vectors X ∈ RKX an Y ∈ RKY with given covariance
structure ΛX,Y , CCA seeks to find k-dimensional linear
feature vectors f(X) =

(
ΞX)TX̃ and g(Y ) =

(
ΞY )TỸ , for

k ≤ K, normalized according to (18) and (13) so that
E [f(X)] = E [g(X)] = 0 (23a)

E
[
f(X) f(X)T

]
= E

[
g(Y )g(Y )T

]
= I, (23b)

so as to maximize the vector correlation (generalized Pearson
correlation coefficient)

σ(f ,g) , E
[
f(X)Tg(Y )

]
=
(
ΞY )TB ΞX , (24)

which via Lemma 4 immediately yields that the optimizing f
an g are as given by (19) and (16), and the maximal correlation
is σ(f∗,g∗) =

∑k
i=1 σi, which corresponds to the Ky Fan k-

norm of B. Note that the special case k = 1 corresponds to
standard CCA [5].

C. The Local Gaussian Information Bottleneck

For the Gauss-Markov chain (1), we want to determine the
Gaussian vector U = (U1, . . . , Uk) that maximizes I(Y ;U)
subject to the constraints: 1) Ui are i.i.d. and unit-variance; 2)
I(X;Ui) ≤ ε2/2 for all i; 3) Ui and Uj are conditionally
independent given X . This can be viewed as a variation
of the Gaussian information bottleneck problem [7] in the
weak dependence regime. In this subsection, we illustrate the
connection between our optimal features and this information
bottleneck problem.

Theorem 3. Denote the innovations form of U as X̃ =

εΦX|U Ũ + νŨ→X̃ , and Ui as Ui = ε
(
φX|Ui

)T
X̃ + νX̃→Ui

,
then the ΦX|U maximizing I(Y ;U) is given by ΨX

(k).

Proof. Note that the constraint 1 expresses ΛU = I, and
via the innovations form Ui = ε

(
φX|Ui

)T
X̃ + νX̃→Ui

,
Constraint 2 imposes that

∥∥φX|Ui
∥∥ ≤ 1 + o(1) for all i.

Finally, Constraint 3 imposes that the νX̃→Ui
are indepen-

dent for different i, thus I − ε2
(
ΦX|U)TΦX|U is diagonal,

where ΦX|U =
[
φX|U1 · · · φX|Uk

]
, which, in turn, means(

φX|Ui
)T
φX|Uj = 0 for i 6= j.

Hence, it follows from —omitting the computations due to
space limitations—using Lemma 1 and Lemma 2 that

I(Y ;U) ≤ ε2

2

k∑
i=1

σ2
i + o(ε2), (25)

with equality when ΦX|U defining U is given by ΨX
(k).

An analogous development determines the Gaussian vector
V that maximizes I(X;V ) subject to the constraints: 1) Vi are
i.i.d. and unit-variance; 2) I(Y ;Vi) ≤ ε

2/2 for all i; 3) Vi and
Vj are conditionally independent given Y . In particular, via the
innovations form Ṽi = ε

(
φY |Vi

)T
Ỹ + νỸ→Ṽi

with ΦY |V =[
φY |V1 · · · φY |Vk

]
, we obtain I(X;V ) ≤ ε

2

2

∑k
i=1 σ

2
i +

o(ε2), with equality when ΦY |V defining V is given by ΨY
(k).

D. Most Strongly Revealed Joint Dependency

In this formulation, for the Gauss-Markov chain (1) we
determine Gaussian U, V ∈ Rk that maximize I(U ;V ) subject
to the constraints: 1) the elements of U and V are each i.i.d.
with unit-variance; 2) I(X;Ui) ≤ ε2/2 and I(Y ;Vi) ≤ ε2/2
for all i; 3) Ui and Uj are conditionally independent given X ,
and Vi and Vj are conditionally independent given Y .

Theorem 4. The optimal ΦX|U and ΦY |V in the innovations
form of U and V that maximizes I(U ;V ) are given by ΨX

(k)

and ΨY
(k), respectively.

Proof. Using the fact that
ΛUV = ε2

(
ΦX|U)TBTΦY |V . (26)

we obtain, using Lemma 1 and Lemma 2 and the analysis of
Section III-C (again, omitted the computations),

I(U ;V ) ≤ ε4

2

k∑
i=1

σ2
i + o(ε4), (27)

which is achieved with equality when ΦY |V and ΦX|U are
given by the singular vectors ΨY

(k) and ΨX
(k), respectively.

The resulting optimizing (jointly Gaussian) U, V then has
covariance ΛUV = ε2 Σ(k), where Σ(k) is diagonal with
diagonal elements σ1, . . . , σk, so E

[
Ui Vj

]
= ε2 σi 1i=j and

I(Ui;Vj) =
ε4

2
σ2
i 1i=j + o(ε4).

Note, finally, that (S, T ) given by (19) and (16) are sufficient
statistics for inferences about the resulting (U, V ), which we
emphasize are obtained by separate processing of X and Y .

IV. GAUSSIAN COMMON INFORMATION

We interpret the dominant structure in terms of the common
information associated with the jointly Gaussian pair (X,Y )
as defined by Wyner [8]. In our analysis, the following
(variational) characterization of the Ky Fan (nuclear) norm
(see, e.g., [9], [10]) is useful.

Lemma 5. Given an arbitrary k1 × k2 matrix A and any
positive integer k, we have

min
{M1∈R

k1×k
, M2∈R

k×k2 :

M1M2=A}

(
1

2
‖M1‖

2
F +

1

2
‖M2‖

2
F

)
= ‖A‖∗

(28)
where ‖ · ‖∗ denotes the Ky Fan norm, i.e.,

‖A‖∗ , tr
(√

ATA
)
=

k∗,min{k1,k2}∑
i=1

σi(A), (29)



with σ1(A), . . . , σk∗(A) denoting the singular values of A.

To begin, we express the common information C(X,Y ) as
C(X,Y ) = min I(W̃ ; X̃, Ỹ ), (30)

where the minimum is over all (zero-mean) random vectors
W̃ ∈ Rk for some k such that (W̃ , X̃, Ỹ ) are jointly Gaussian
and have the Markov structure X̃ ↔ W̃ ↔ Ỹ , and where we
have normalized W̃ such that ΛW̃ = I. This corresponds to
the Wyner’s common information for Gaussian vectors [13].
Then, we express this Gaussian structure via innovations form

Z̃ =

[
AX

AY

]
W̃ + νW→Z , (31)

where AX and AY are KX × k and KY × k matrices,
respectively.

We focus on the case where PX|W (·|w) ∈ G
KX
ε (PX) and

PY |W (·|w) ∈ G
KY
ε (PY ), so ‖AX‖F ≤ ε and ‖AY ‖F ≤ ε. In

addition, note that AX and AY are related according to
E
[
Ỹ X̃T

]
= AY AT

X = B. (32)

Theorem 5. The optimal AX and AY that maximizes (30) are
given by ΨX

(K)Σ
1/2
(K) and ΨY

(K)Σ
1/2
(K), where Σ(k) is diagonal

with diagonal elements σ1, . . . , σk.

Proof. Note that via Lemma 1—but omitting the computations
due to space constraints—we obtain

I(W̃ ; X̃, Ỹ ) =
1

2
tr
(
AT
XAX

)
+

1

2
tr
(
AT
Y AY

)
+ o(ε2) (33)

Minimizing (33) subject to the constraint (32) yields, via
Lemma 5,

C(X,Y ) = min
{AX ,AY :

AY A
T
X=B}

I(W̃ ; X̃, Ỹ ) =

K∑
i=1

σi + o(ε2),

for which an optimizing W is defined via[
AX

AY

]
=

[
ΨX

(K)

ΨY
(K)

]
Σ

1/2
(K). (34)

In addition, we note that R , S + T—with S and T from
(19) and (16)—is a sufficient statistic for inferences about W .

We can interpret the common information variable Wi as
capturing the common information between Ui and Vi. Indeed,
it can be verified that C(Ui, Vi) = σi+ o(ε2) = I(Wi;X,Y ).

V. CONNECTION TO PCA

PCA [11], [12] can be interpreted as a special case of
the preceding results. Specifically, in some instances, the
dimensionality reduction realized by PCA corresponds to the
optimum statistics defined in (19) and (16), respectively, for
the universal estimation of the unknown attributes U and
V under any of our formulations.

Example 1. Suppose we have the innovations form Y =
X + νX→Y , where X and Y are K-dimensional, and where
Λν = σ2

ν I but ΛX is arbitrary. Moreover, let ΛX = Υ Λ ΥT

denote the diagonalization of ΛX , so the columns of Υ are
orthonormal, and Λ is diagonal with entries λ1 ≥ λ2 ≥ · · · ≥
λK . Then it is immediate that ΛY = Υ

(
Λ + σ2

ν I
)
ΥT, so

B = Λ
−1/2
Y Λ

1/2
X = Υ

(
I + σ2

ν Λ−1
)−1/2

ΥT. (35)

As a result, we have that (19) specializes to
f∗(X) = Λ

−1/2
(k) ΥT

(k)X, (36a)
where Υ(k) denotes the K× k matrix consisting of the first k
columns of Υ, and where Λ(k) denotes the k × k upper left
submatrix of Λ. In turn, it follows that the k-dimensional PCA
vector

SPCA = fPCA(X) , ΥT
(k)X (36b)

is a sufficient statistic for inferences about the unknown V .
Via a similar analysis

TPCA = gPCA(Y ) , ΥT
(k) Y (36c)

is a sufficient statistic for inferences about the un-
known U in this case. More generally (SPCA, TPCA) =
(fPCA(X),gPCA(Y )) is a sufficient statistic pair for infer-
ences about (U, V ).

Beyond this example, for a general jointly Gaussian pair
(X,Y ), our statistics S = f(X) and T = g(Y ) specialize
to the PCA statistics (36) whenever KX = KY = K and
ΛX and ΛY are simultaneously diagonalizable, i.e., when
they share the same set of eigenvectors, which is equivalent
to the condition that ΛX and ΛY commute (see, e.g., [3,
Theorem 1.3.12]). In fact, if ΛX has distinct eigenvalues and
commutes with ΛY , then there is a polynomial π(·) of degree
at most K − 1 such that ΛY = π(ΛX), which follows from
the Cayley-Hamilton theorem (see, e.g., [3, Theorem 2.4.3.2
and Problem 1.3.P4]).
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