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A Modulo-Based Architecture for
Analog-to-Digital Conversion

Or Ordentlich , Gizem Tabak, Pavan Kumar Hanumolu, Andrew C. Singer, and Gregory W. Wornell

Abstract—Systems that capture and process analog signals must
first acquire them through an analog-to-digital converter. While
subsequent digital processing can remove statistical correlations
present in the acquired data, the dynamic range of the converter is
typically scaled to match that of the input analog signal. The present
paper develops an approach for analog-to-digital conversion that
aims at minimizing the number of bits per sample at the output
of the converter. This is attained by reducing the dynamic range
of the analog signal by performing a modulo operation on its am-
plitude, and then quantizing the result. While the converter itself
is universal and agnostic of the statistics of the signal, the decoder
operation on the output of the quantizer can exploit the statistical
structure in order to unwrap the modulo folding. The performance
of this method is shown to approach information theoretical limits,
as captured by the rate-distortion function, in various settings. An
architecture for modulo analog-to-digital conversion via ring oscil-
lators is suggested, and its merits are numerically demonstrated.

I. INTRODUCTION

ANALOG-TO-DIGITAL converters (ADCs) are an essen-
tial component in any device that manipulates analog sig-

nals in a digital manner. While digital systems have benefited
tremendously from scaling, their analog counterparts have be-
come increasingly challenging. Consequently, it is often the case
that the ADC constitutes the main bottleneck in a system, both
in terms of power consumption and real estate, and in terms of
the quality of the system’s output. Developing more efficient
ADCs is therefore of great interest [1], [2].

The quality of an ADC is measured via the tradeoff between
various parameters such as power consumption, size, cost of
manufacturing, and the distortion between the input signal and
its digitally-based representation. For the sake of a unified,
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technology-independent, discussion, it is convenient to restrict
the characterization of an ADC quality to three basic parame-
ters: 1) The number of analog samples per second FS ; 2) The
number of “raw” output bits R the ADC produces per sample
(before subsequent possible lossless compression); 3) The mean
squared error (MSE) distortion D between the input signal and
a reconstruction that is based on the output of the ADC.

While different applications may require different tradeoffs
between FS , R and D, it is always desirable to design the ADC
such that all three parameters are as small as possible. The
focus of this work is on the quantization rate R. For a given
sampling frequency FS , and a given target distortion D, our
goal is to design ADCs that use the smallest possible number of
raw output bits per sample.

The problem of analog-to-digital conversion can be seen as
an instance of the lossy source coding/lossy compression prob-
lem [3]–[5], as the output of an ADC is a binary sequence,
which represents the analog source. A unique key feature of the
analog-to-digital conversion problem is that the encoding of the
source is carried out in the analog domain, while the decod-
ing procedure is purely digital. Given the limitations of analog
processing, it is therefore generally only practical to exploit the
source structure at the decoder. Hence, the type of source coding
schemes that are suitable for data conversion, are those that ap-
proach fundamental limits without requiring knowledge of the
source structure at the encoder. In addition, latency and com-
plexity constraints in data conversion, typically preclude the use
of schemes other than those based on scalar quantization.

The input signal to an ADC is often known to have struc-
ture that could be exploited to reduce the overall bit rate of
its representation, R. In our analysis, it will be convenient
to express this structure using a stochastic model for the in-
put. Consequently, throughout the paper, we will model the
input to the ADC as a stationary stochastic Gaussian process
X(t), whose power spectral density (PSD) encapsulates the
assumed structure. More generally, we will sometimes also
consider the problem of analog-to-digital conversion of a vec-
tor X(t) = {X1(t), . . . , XK (t)} of jointly stationary stochastic
Gaussian processes, via K parallel ADCs, the input to each one
of them is one of the K processes.

Under such stochastic modeling, rate-distortion the-
ory [3] provides the fundamental lower bound Fs · R >
RX (D) for any ADC (and corresponding decoder) that
achieves distortion D, where RX (D) is the rate-distortion
function of the process X(t) in bits per second. In general,
achieving the rate-distortion function of a source requires using
sophisticated high-dimensional quantizers, whereas analog-to-
digital conversion is invariably done via scalar uniform quan-
tizers. Thus, achieving this lower bound with ADCs seems
overly optimistic. Nevertheless, as we shall see, approaching the
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Fig. 1. A schematic illustration of the modulo ADC.

rate-distortion bound, up to some inevitable loss due to the one-
dimensional nature of the quantization, is sometimes possible by
a simple modification of the scalar uniform quantizer, namely,
a modulo ADC, followed by a digital decoder that efficiently
exploits the source structure.

Instead of sampling and quantizing the process X(t), a mod-
ulo ADC samples and quantizes the process [X(t)] mod ∆,
where the modulo size ∆ is a design parameter. See Figure 1.
Equivalently, a modulo ADC can be thought of as a standard
uniform scalar ADC with step-size δ and an arbitrarily large dy-
namic range/support, but that outputs only the R least significant
bits in the description of each sample, where 2R = ∆

δ , such that
the encoding rate is R. The benefit of applying the modulo op-
eration on X(t) is in reducing its dynamic range/support, which
in turn enables a reduction of the number of bits per sample
produced by the ADC, without increasing the quantizer’s step-
size. This operation, which corresponds to disregarding coarse
information about X(t), will otherwise substantially degrade
the source reconstruction. However, by properly accounting for
the modulo operation and appropriately choosing its parameter
∆, we can unwrap the modulo operation with high probability
using previous samples of X(t) and exploiting the (redundant)
structure in the signal.

Following standard system design methodology, in the per-
formance analysis of a modulo ADC, we distinguish between
two events: 1) The no-overload event ĒOL where the decoder
was able to correctly unwrap the modulo operation. We require
the MSE distortion, conditioned on this event, to be at most D;
2) The overload event EOL where the decoder fails in unwrap-
ping the modulo operation. We require the probability of this
event Pr(EOL) to be small, but do not concern ourselves with
the MSE distortion conditioned on the occurrence of this event.

A. Our Contributions

This work further develops the modulo ADC framework in
three complementary directions, as specified below.

1) Oversampled Modulo ADC: We show that a modulo
ADC can be used as an alternative to Σ∆ converters. A Σ∆
converter is based on oversampling the input process X(t),
i.e., sampling above the Nyquist rate, in conjunction with
noise-shaping, which pushes much of the energy of the quantiza-
tion noise to high frequencies, where there is no signal content.
See Figure 2. The noise shaping operation requires incorporat-
ing an elaborate mixed signal feedback circuit. In particular, the
circuit first generates the quantization noise, which necessitates
using not only an ADC, but also an accurately-matched digital-
to-analog converter (DAC), and then applies an analog filter.
The analog nature of the signal processing makes it challenging
to use filters of high-orders, which in turn limits performance.

Fig. 2. Schematic architecture for oversampled Σ∆ converter. {Xn } is ob-
tained by sampling the process X (t).

Fig. 3. Schematic architecture for oversampled modulo ADC. The same ar-
chitecture, without the low-pass filter (LPF) is also suitable for modulo ADC for
a general stationary process. {Xn } is obtained by sampling the process X (t).

Fig. 4. A schematic illustration of a ring oscillator with N = 5 inverters. The
states of all N inverter are measured every TS seconds.

We develop an alternative architecture (Section III) that shifts
much of the complexity to the decoder, whereas the “encoder”
is simply a modulo ADC. See Figure 3. The parameter ∆ in
the modulo ADC, as well as the coefficients of the prediction
filter in Figure 3, depend only on the bandwidth B of the in-
put process X(t) and on its variance σ2 , and not on the other
details of its PSD. Similarly, the MSE distortion between the
input process and its reconstruction, depends only on B and
σ2 . Thus, the developed architecture is as agnostic as Σ∆ con-
verters to the statistics of the input process. Furthermore, for
a flat-spectrum process, the distortion is within a small gap,
due to one-dimensionality of the encoder, from the information
theoretic limit.

2) A Phase-Domain Implementation of Modulo ADC via
Ring Oscillators: We develop a modulo ADC implementation
that performs the modulo reduction inherently as part of the
analog signal acquisition process. As the phase of a periodic
waveform is always measured modulo 2π, a natural class of
candidates are ADCs that first convert the input voltage into
phase, and then quantize that phase. A notable representative
within this class, which has been extensively studied in the lit-
erature [6], [7], is the ring oscillator ADC.

Consider a closed-loop cascade of N inverters, where N is
an odd number, all controlled with the same voltage Vdd = Vin,
see Figure 4. This circuit, which will be described in detail in
Section IV, oscillates between 2N states, corresponding to the
values (‘low’ or ‘high’, represented by ‘0’ or ‘1’) of each of the
N inverters. See Figure 5. The oscillation frequency is controlled
by Vdd . Due to the oscillating nature of the circuit, if we sample
its state every TS seconds, we cannot tell how many “state
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Fig. 5. An example of the evolution of the states of the inverters in a ring
oscillator.

changes” occurred between two consecutive samples, but we
are able to determine this number modulo 2N . Thus, by setting
Vdd to Vdd(t) = g(X(t)), where X(t) is the analog signal to be
converted to a digital one and g(·) is a function to be specified,
we obtain a modulo ADC. The input-output relation of this
modulo ADC is characterized in Section IV, and depends on
the response time of the inverters to change in their input, as a
function of Vdd .

In practice, the modulo operation realized in this way de-
viates from the ideal characteristic of Figure 1 in a variety of
ways. Accordingly, we perform several numerical experiments
to evaluate and optimize the performance of an oversampled
ring oscillator modulo ADC, and compare it to the performance
of an ideal modulo ADC as well as to a Σ∆ converter. The
results demonstrate that despite the non-idealities in the ring os-
cillator implementation, in some regimes, this architecture holds
substantial potential for improvement over existing ADCs.

3) Modulo ADCs for Jointly Stationary Processes: There is
great interest in designing efficient ADCs for applications where
the number of sensors/antennas observing a particular process
is greater than the number of degrees-of-freedom (per time unit)
governing its behavior. Thus, there is a redundancy at the re-
ceiver that can be exploited. However, as this redundancy can be
spread across time and space, traditional ADC architectures, as
well as the modulo ADC architectures described in Section II-A
and II-B, are insufficient. In this part of the paper, we show how
to address this problem via a natural extension of the modulo
ADC framework.

As an example we will consider the problem of wireless
communication. It is by now well established that using
receivers, as well as transmitters, with multiple antennas,
dramatically increases the achievable communication rates
over wireless channels [8], [9]. However, adding antennas
comes with the price of requiring multiple expensive and power
hungry RF chains. For traditional ADC architectures, power
and cost scale linearly with the number of receive antennas,
which motivates an alternative solution.

It is often the case, that the signals observed by the different
receive antennas are highly correlated, in time and in space. As
an illustrative example, consider the case where the transmitter
has one antenna, whereas the receiver has K > 1 antennas. We
can model the signal observed at each of the antennas, after
sampling, as

Y k
n = hk

n ∗ Xn + Zk
n , k = 1, . . . ,K, n = 1, . . . , N, (1)

where {Xn} is the process emitted by the transmitter, {hk
n} is

the kth channel impulse response, and {Zk
n} are independent

additive white Gaussian noise (AWGN) processes.
Since all K output processes {Y 1

n }, . . . , {Y K
n } in (1) are

noisy and filtered versions of of the same input process, they
will typically be highly correlated. However, this correlation
may be spread in time (the n-axis) and in space (the k-axis).
As an extreme example, assume {Xn} is an iid process, and
the filters simply incur different delays, i.e., hk

n = δn−k for k =
1, . . . ,K. While each individual process {Y n

k } is white, and
each vector (Y 1

n , . . . , Y K
n ), n = 1, . . . , N has a scaled identity

covariance matrix, the vector process {{Y 1
n }, . . . , {Y K

n }} is
highly correlated. One must therefore jointly process the time
and the spatial dimensions in order to exploit this correlation.

This phenomenon, where the signals observed by the differ-
ent ADCs are highly correlated, is not unique to the wireless
communication setup, and appears in many other applications,
e.g., multi-array radar. It is, however, taken to the extreme in
massive MIMO [10], where the number of antennas at the base
station is of the order of tens or even hundreds, while the number
of users it supports may be substantially fewer.

In Section VI we develop an architecture that uses modulo
ADCs, one for each receive antenna, in order to exploit
the space-time correlation of the processes. We develop a
low-complexity decoding algorithm for unwrapping the modulo
operations. This algorithm combines the idea of performing
prediction in time, of the quantized vector process from its
past, with that of integer-forcing source decoding [11], which
is used for exploiting spatial correlations in the prediction error
vector. See Figure 6. In the limit of small D, the excess-rate of
the developed analog-to-digital conversion scheme with respect
to the information theoretic lower bound, is shown to reduce to
that of the integer-forcing source decoder.

B. Related Work

The idea of using modulo ADCs/quantizers for exploiting
temporal correlations within the input process X(t) towards
reducing the quantization rate R, dates back, at least, to [12],
where a quantization scheme, called modulo-PCM, was
introduced. A decoding scheme for unwrapping the modulo op-
eration, based on maximum-likelihood sequence detection [13],
was further proposed in [12], and a heuristic analysis was
performed, based on prediction of X(t) from its past, which
shows that modulo-PCM can approach the Shannon lower
bound under the high-resolution assumptions. In Section II-A,
we develop a more complete analysis of modulo quantization,
the details of which are required for the application we discuss
in Section III.

The architecture from Figure 3 is based on using a prediction
filter at the decoder, as a part of the modulo unwrapping process,
as was hinted at in [12] (see also [14]). In agreement with the
literature on differential pulse-code modulation (DPCM) at the
late 1970s (see e.g. [15]), the authors in [12] proposed to design
the prediction filter as the optimal one-step predictor of the
unquantized process {Xn} from its past. As shown in [16],
this design criterion is sub-optimal, and the “correct” design
criterion is to take this filter as the one-step predictor of the
quantized process from its past. The difference between the
two design criteria is significant for oversampled processes,
which are the focus of Section III, whose PSD is zero at high
frequencies, as in those frequencies the signal-to-distortion ratio
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Fig. 6. Schematic architecture for Modulo ADCs for jointly stationary processes.

is zero, no matter how small the quantization noise is. Our
analysis in Section III reveals that designing the modulo size ∆
and the prediction filter with respect to a quantized flat-spectrum
input process, results in a universal system. This means, that this
system attains the same distortion D for all input processes that
share the same support for the PSD and the same variance.

The use of modulo ADCs/quantizers was also studied by
Boufounos in the context of quantization of oversampled
signals [17] (see also [18]). In particular, it is shown in [17]
that by randomly embedding a measurement vector in RK

onto an M ≫ K dimensional subspace, and using a modulo
ADC for quantizing each of the coordinates of the result, one
can attain a distortion that decreases exponentially with the
oversampling ratio, with high probability. In Section III we
consider a similar setup, where an oversampled analog signal,
with oversampling ratio L > 1, i.e. Fs is L times greater than
the Nyquist frequency, is digitized by a modulo ADC. In the
language of [17], this corresponds to embedding X ∈ RK to
an M = LK dimensional space by zero-padding followed by
interpolation, which is indeed a linear operation. We show
that for this particular “embedding” not only is the decay of
MSE distortion exponential in the oversampling ratio, but the
attained distortion is information-theoretically optimal, up to a
constant loss, which is explicitly characterized, due to the scalar
nature of the quantizer. Moreover, under this “embedding”, a
simple low-complexity decoding algorithm exists, whereas for
the random projection case studied in [17], no computationally
efficient decoding algorithm was given. One advantage, on the
other hand, of the approach from [17], is that it is applicable
to 1-bit modulo ADCs, whereas the performance of the scheme
from Section III typically becomes attractive starting from
R ! 2 bits per sample, due to reasons that will become clearer
in the sequel (see discussion around eq. (12)).

Very recently, Bhandari et al. have addressed the question of
what is the minimal sampling rate that allows for exact recovery
of a bandlimited finite-energy signal, from its modulo-reduced
sampled version [19] (see also [20]). They have found that a
sufficient condition for correct reconstruction is sampling above
the Nyquist rate by a factor of 2πe, regardless of the size of the
modulo interval. The analysis in [19] did not take quantization
noise into account, which corresponds to R = ∞ and D = 0 in
our setup.

The merits of a modulo ADC for distributed analog-to-digital
conversion of signals correlated in space, but not in time, were
demonstrated in [11]. A low-complexity decoding algorithm,
for unwrapping the modulo operation, was proposed and its
performance was analyzed. It was demonstrated via numer-
ical experiments that the performance is usually quite close
to the information theoretic lower bounds (See also [21]). In
Section II-B, we summarize the decoding scheme from [11]
and the corresponding performance analysis, as those will
be needed in Section VI, where we develop a modulo ADC

architecture for analog-to-digital conversion of jointly station-
ary processes. The decoding algorithm for this setup, as well as
its performance analysis, is inspired by the ideas and techniques
from Sections II-A and II-B.

As modulo reduction can be viewed as a one dimensional
deterministic instance of binning, in a broader sense, modulo
quantization is closely related to Wyner-Ziv’s source coding
with side information setup and to its channel coding dual,
which is the Gel’fand-Pinsker setup [22]. In the latter context,
we further note that modulo quantization is widely used for com-
munication over intersymbol interference channels [23], [24].
Recently, Hong and Caire [25] considered modulo ADCs as po-
tential candidates for the front end of receivers in a cloud radio
access network (CRAN), employing compute-and-forward [26]
based protocols.

Note that the although the concept of modulo ADC is rem-
iniscent of folding ADCs [27], an important difference is that
unlike the latter, the former does not keep track of the number
of folds that occurred and, moreover, its functionality does not
depend on this number, i.e., it does not saturate for large inputs.
In unwrapping the modulo operation at the decoder, the missing
information about number of folds is recovered, and we are able
to attain the same D with smaller rate.

Finally, another related line of work, is that of compressed
sampling, see, e.g., [28]–[30], where the goal is to design uni-
versal and efficient ADCs with a small sampling frequency FS ,
under the assumption that the input signal occupies only a small
portion of its total bandwidth, but the exact support is unknown.

C. Organization

The rest of the paper is organized as follows. In Section II we
formally define the modulo ADC and study its performance for
stationary scalar input processes, and for random vectors (spa-
tial correlation). Section III develops the use of oversampled
modulo ADCs as a substitute for Σ∆ converters, and analyzes
the tradeoffs this architecture achieves. In Section IV we in-
troduce an implementation of modulo ADCs via ring oscilla-
tors and establish the corresponding input-output mathematical
model. Numerical experiments for evaluating the performance
of ring oscillators based oversampled modulo ADCs are per-
formed in Section V. Section VI proposes to use parallel mod-
ulo ADCs for digitizing jointly stationary processes. The paper
concludes in Section VII.

II. PRELIMINARIES ON IDEAL MODULO ADC

Let ∆ ∈ R+ be a positive number, and define the mod∆
operation as

[x] mod ∆ " x − ∆
⌊ x

∆

⌋
∈ [0,∆),
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where the floor operation ⌊x⌋ returns the largest integer smaller
than or equal to x. By definition, we have that for any x, y ∈ R
and ∆ > 0

[[x] mod ∆ + y] mod ∆ = [x + y] mod ∆. (2)

An R-bit modulo ADC with resolution parameter α, or (R,α)
mod-ADC, maps a real input x ∈ R to R bits, by computing

[x]R,α " [⌊αx⌋] mod 2R ∈ {0, 1, . . . , 2R − 1},

and producing a binary representation of it. Note that ⌊αx⌋ is
the output of an infinite support scalar quantizer with step size
1/α, and [x]R,α is a wrapped version of it. In the sequel we will
demonstrate that in various scenarios an appropriately designed
decoder can recover ⌊αx⌋ from its wrapped version [x]R,α , with
high probability, based on temporal/spatial correlations of the
ADCs input signal.

We can write [x]R,α as

[x]R,α = [αx + (⌊αx⌋ − αx)] mod 2R = [αx + z] mod 2R .
(3)

The term z = ⌊αx⌋ − αx ∈ (−1, 0] in (3), is the quantization
error of a uniform scalar quantizer ⌊αx⌋, and is clearly a de-
terministic function of x. Nevertheless, throughout this paper
we will model z as additive uniform noise Z ∼ Unif((−1, 0])
statistically independent of x, such that the (R,α) mod-ADC
will be modeled as a stochastic channel with input x and output
Y , related as

Y = [αx + Z] mod 2R . (4)

The modulo additive noise channel model (4) for an
(R,α) mod-ADC can be rigorously justified via the use of
subtractive dithers. Specifically, we can use a random variable
U ∼ Unif([0, 1)), statistically independent of x, which we refer
to as a dither, and feed x̃ = x + U/α to the (R,α) mod-ADC
instead of feeding x. The output of the modulo ADC in this case
will be

[x̃]R,α = [αx̃ + (⌊αx̃⌋ − αx̃)] mod 2R

= [αx + U + (⌊αx + U⌋ − (αx + U))] mod 2R .

Subtracting U from [x̃]R,α and reducing the result modulo 2R ,
we obtain

[[x̃]R,α − U ] mod 2R

=
[
[αx+U+(⌊αx+U⌋−(αx+U))] mod 2R−U

]
mod 2R

= [αx + (⌊αx + U⌋ − (αx + U))] mod 2R ,

where the last equality follows from the distributive law of
modulo (2). Note that for every x ∈ R, the random variable Z =
⌊αx + U⌋ − (αx + U) is uniformly distributed over (−1, 0],
and is therefore independent of x [31, Lemma 1]. Thus, with
subtractive dithers, the additive noise model (4) is exact. We note
that even when dithering is not used, under suitable conditions
this model predicts performance quite accurately [32].

Although the modulo operation entails loss of information
in general, in many situations it is possible to unwrap it, i.e.,
reconstruct αx + Z from Y = [αx + Z] mod 2R with high

probability.1 In particular, let

Ỹ =
[
Y +

1
2
2R

]
mod 2R − 1

2
2R , (5)

and note that conditioned on the no-overload event

EOL "
{

αx + Z ∈
[
−1

2
2R ,

1
2
2R

)}
,

we have that Ỹ = αx + Z. Thus, if Pr(EOL) is close to 1, the
modulo operation has no effect with high probability. Note that
Pr(EOL) = Pr

(
|αx + Z| > 1

2 2R
)

is identical to the probability
that a standard uniform quantizer with dynamic range (support)
2R/α is in overload. Thus, when thinking of x as a single
observation, it is unclear what the advantages of a modulo ADC
are with respect to a traditional uniform ADC. However, as
we illustrate below, the modulo ADC allows exploitation of
the statistical structure of the acquired signal in a much more
efficient manner than the standard ADC.

The following lemma is proved using Chernoff’s bound, and
will be useful in the sequel for bounding Pr(EOL) in various
scenarios.

Lemma 1 ([33, Lemma 4], [34, Theorem 7]): Consider the
random variable Zeff =

∑L
ℓ=1 αℓZℓ +

∑K
k=1 βkUk where

{Zℓ}L
ℓ=1 are iid Gaussian random variables with zero mean and

some variance σ2
z , {Uk}K

k=1 are iid random variables, statis-
tically independent of {Zℓ}L

ℓ=1 , uniformly distributed over the
interval [−ρ/2, ρ/2) for some ρ > 0, and {αℓ}L

ℓ=1 and {βk}K
k=1

are arbitrary real (deterministic) numbers. Let σ2
eff " E(Z2

eff) =
σ2

z

∑L
ℓ=1 α2

ℓ + ρ2

12
∑K

k=1 β2
k . Then for any τ > 0

Pr(Zeff > τ) = Pr(Zeff < −τ) ≤ exp
{
− τ 2

2σ2
eff

}
.

A. Modulo ADCs for Scalar Stationary Processes

In this subsection we consider the case where an (R,α)-
mod ADC, as described above, is applied on a scalar stationary
process. We develop a corresponding decoder and analyze its
performance, including the effects of the choices of α and R.

Let {Xn} be a zero-mean discrete-time stationary Gaussian
stochastic process, obtained by sampling a stationary Gaussian
process X(t) every TS seconds. Let

Yn = [αXn + Zn ] mod 2R , n = 1, 2, . . .

be the process obtained by applying an (R,α) mod-ADC on the
process {Xn}, where {Zn} is a Unif((−1, 0]) iid noise, and let

Vn = αXn + Zn, n = 1, 2, . . .

be its non-folded version. Our goal is to design a decoder that
recovers Vn from the outputs of the modulo ADC, {Yn}, with
high probability. To that end, we assume the decoder has access
to {Vn−1 , . . . , Vn−p}, an assumption that will be justified in the
sequel, and that it knows the auto-covariance function CX [r] =
E [XnXn−r ] of {Xn}. We apply the following algorithm (See
also Figure 3 for a schematic illustration):

Inputs: Yn , {Vn−1 , . . . , Vn−p}, {CX [r]}, R, α.

1Here, the term “high probability” is used to state that this probability can
be made as high as desired by increasing R. We explicitly quantify the relation
between R and the desired “no-overload” probability.
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Output: Estimates V̂n , X̂n , for Vn and Xn , respectively.
Algorithm:
1) Compute the optimal linear MMSE predictor for Vn from

its last p samples

V̂ p
n =

p∑

i=1

hi ·
(

Vn−i +
1
2

)
− 1

2
, (6)

where {hn} is a p-tap prediction filter, computed based
on {CX [r]} and α, and the shift by 1/2 compensates for
E(Zn ).

2) Compute

Wn = [Yn − V̂ p
n ] mod 2R

W̃n =
[
Wn +

1
2
2R

]
mod 2R − 1

2
2R .

3) Output V̂n = V̂ p
n + W̃n , and X̂n =

V̂n + 1
2

α .
Remark 1: Note that {hn} is the p-tap prediction filter for the

quantized process {Vn} from its past, rather than for {Xn} from
its past. While the loss for using the latter, instead of the former,
becomes insignificant when high-resolution assumptions apply,
it can be arbitrarily large for oversampled processes, for which
high-resolution assumptions never hold [16], [35]. The filter
coefficients {hn} need only be computed once, and can then be
used for all times.

The following proposition characterizes the performance of
the algorithm above. All logarithms in this paper are taken to
base 2, unless stated otherwise.

Proposition 1: Let V̂ p
n , V̂n and X̂n be as defined in the algo-

rithm above, and let σ2
p = E(Vn − V̂ p

n )2 . We have that

Pr(EOLn ) " Pr(V̂n ̸= Vn ) ≤ 2 exp
{
−3

2
22(R− 1

2 log(12σ 2
p ))
}

,

(7)

and

D = E[(Xn − X̂n )2 |EOLn
] ≤ 1

12α2(1 − Pr(EOLn ))
, (8)

where the event EOLn
= {V̂n = Vn} is the complement of the

event EOLn = {V̂n ̸= Vn}.
Proof: Let Ep

n " Vn − V̂ p
n be the pth order prediction error

of the process {Vn}, and note that its variance σ2
p = E(Ep

n )2 is
invariant to n due to stationarity. We have that

Wn = [Yn − V̂ p
n ] mod 2R

=
[
[Vn ] mod 2R − V̂ p

n

]
mod 2R

=
[
Vn − V̂ p

n

]
mod 2R

= [Ep
n ] mod 2R , (9)

where equation (9) follows from the modulo distributive law (2),
and constitutes the key advantage of the modulo operation for
exploiting temporal correlations. Note that W̃n ∈ [− 1

2 2R , 1
2 2R )

is a cyclically shifted version of Wn ∈ [0, 2R ), as in (5).

Therefore, conditioned on the event

EOLn
=
{
|Ep

n | <
1
2
2R

}

we have that W̃n = Ep
n .

Note that Ep
n is a zero-mean linear combination of statistically

independent Gaussian and uniform random variables, such that
Lemma 1 applies, and we have that

Pr (EOLn ) = Pr(W̃n ̸= Ep
n )

= Pr
(
|EP

n | >
1
2
2R

)

≤ 2 exp
{
−22R

8σ2
p

}

= 2 exp
{
−3

2
22(R− 1

2 log(12σ 2
p ))
}

, (10)

Whenever EOLn
occurs, we have that V̂n = Vn , and conse-

quently

X̂n = Xn +
Zn + 1

2
α

and

E[(Xn − X̂n )2 |EOLn
] = E

[(
Zn + 1

2
α

)2 ∣∣∣∣EOLn

]

=
1
α2

E(Zn + 1/2)2 − Pr(EOLn )E[(Zn + 1/2)2 |EOLn ]
Pr(EOLn

)

≤ 1
12α2(1 − Pr(EOLn ))

. (11)

#
Proposition 1 shows that we can make Pr(EOLn ) as small as

2e−
3
2 22 δ

by choosing

R =
1
2

log(12σ2
p ) + δ. (12)

For example, taking δ = 2 bits, results in an overload proba-
bility smaller than 10−10 . In particular, unless we take a very
small δ, we have that 1 − Pr(EOLn ) ≈ 1, and consequently, by
Proposition 1, we will have D ≈ 1/12α2 . Thus, to simplify ex-
pressions in the analysis that follows, we assume D = 1/12α2 .
We note the tradeoff in choosing α: on the one hand, increasing
α decreases the MSE distortion D, but on the other hand the
prediction error variance σ2

p of the process Vn = αXn + Zn

increases with α such that the required rate R for avoiding
overload errors increases. Thus, the tradeoff between D and the
required quantization rate is controlled through the parameter α.
We now turn to characterize the tradeoff the developed scheme
achieves.

Let h(A) denote the differential entropy of the random vari-
able A, and h(A|B) the conditional differential entropy of A
given the random variable B [5]. Recall that for a stationary
Gaussian process {Xn} with PSD SX (ejω ) we have that [36]

h(Xn |Xn−1 , . . .) =
1
2π

∫ π

π

1
2

log
(
2πeSX (ejω )

)
dω, (13)
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and in particular h(Xn |Xn−1 , . . .) = −∞ if and only if
SX (ejω ) = 0 over a measurable subset of [−π,π). Shannon’s
lower bound [3], states that the number of bits per sample R
produced by any quantizer that attains an MSE distortion D
must satisfy

R(D) ≥ RSLB(D) " h(Xn |Xn−1 , . . .) −
1
2

log(2πeD).

It is well-known [3] that for Gaussian processes with finite
h(Xn |Xn−1 , . . .), Shannon’s lower bound is asymptotically
tight, i.e., limD→0 R(D) − RSLB(D) = 0.

Proposition 2: If h(Xn |Xn−1 , . . .) > −∞, then

lim
D→0

lim
p→∞

1
2

log(12σ2
p ) = RSLB(D).

Proof: We can write

1
2

log(12σ2
p ) =

1
2

log

(
σ 2

p

α2

1
12α2

)
=

1
2

log
(

E(E ′p
n )2

D

)
. (14)

where E′p
n is the pth order prediction error of the process Xn +

Zn/α = Xn +
√

DZ̃n , where Z̃n ∼ Unif([−
√

12, 0)) iid.
For a Gaussian process {Xn}, the condition

h(Xn |Xn−1 , . . .) > −∞ is equivalent to

1
2π

∫ π

−π

1
2

log
(
SX (ejω )

)
dω > −∞. (15)

As a consequence of (15), we have that

lim
D→0

1
2π

∫ π

−π

1
2

log
(
2πe

(
SX (ejω ) + D

))
dω

= h(Xn |Xn−1 , . . .). (16)

By Paley-Wiener’s theorem [37], we have that

lim
p→∞

E(E ′p
n )2 = 2

1
2 π

∫ π
−π log(SX (ej ω )+D)dω . (17)

Combining (16) and (17), we obtain that

lim
D→0

lim
p→∞

E(E ′p
n )2 = 22h(Xn |Xn −1 ,...)−2πe ,

for processes with finite entropy rate h(Xn |Xn−1 , . . .). The
result now follows by rearranging terms. #

For the practically important case where {Xn} is obtained
by oversampling the process {X(t)}, which is studied in
Section III, the assumption h(Xn |Xn−1 , . . .) > −∞ of Propo-
sition 2 does not hold. Nevertheless, we will show that the mod-
ulo ADC achieves performance that is close to the information
theoretic limits.

Above, we have assumed that the decoder has access to the
non-folded samples {Vn−1 , . . . , Vn−p}. To justify this assump-
tion, an initialization step is needed, where the decoder acquires
the first p consecutive samples {V1 , . . . , Vp}, or estimates of
these samples. Once those are obtained, we can apply the al-
gorithm described above, sample-by-sample, and assume the
estimate V̂n produced by the algorithm at time n is correct, and
can be used as an input for the algorithm in the next p steps. All
samples Vp+1 , . . . , VN will be recovered correctly, as long as no
overload error occurred within the N − p decoding steps. Thus,

by the union bound, we see that the first N − p samples are
recovered correctly with probability at least 1 − 2Ne−

3
2 22 δ

.2
One conceptually simple way of performing the initialization,

i.e., obtaining {V1 , . . . , Vp} is by using a standard scalar quan-
tizer with high-rate for the first p samples. Although the high
power consumption of such a quantizer will have a negligible
effect on the total power consumption, due to the fact it is used
only for a small fraction of the time, this approach has the dis-
advantage of having to include two ADCs, a high-rate standard
ADC and a modulo ADC withing the system. Alternatively, one
can perform the initialization using only an R bit modulo ADC
in one of the two following ways:

1) Increase α gradually until it reaches its final value. For the
first sample, α1 will be chosen such that V1 = α1X1 + Z1
is w.h.p. within the modulo interval, such that no predic-
tion is needed. Next, we can use V1 in order to predict
V2 = α2X2 + Z2 , which allows to use α2 > α1 such that
the prediction error is still within the modulo interval.
Continuing this way, we can keep increasing α until con-
vergence.

2) We can collect a long vector of outputs from the modulo
ADC, say {Y1 , . . . , YK }, K > p, and unwrap the modulo
operation via the integer-forcing source coding scheme
described in the next subsection. The amount of compu-
tations per sample required in this method is greater than
that of the “steady state”, i.e., after initialization is com-
plete, but since initialization is rarely performed, the effect
on the total complexity is negligible.

B. Modulo ADCs for Random Vectors

In this subsection we consider the case where K identical
(R,α)-mod ADCs, as described above, are applied on a random
vector, one on each component of the vector. We develop a
corresponding decoder and analyze its performance, including
the effects of the choices of α and R.

Let X ∼ N (0,Σ) be a K-dimensional Gaussian random vec-
tor with zero mean and covariance matrix Σ. Let

Yk = [αXk + Zk ] mod 2R , k = 1, . . . K,

be obtained by applying K identical (R,α) mod-ADCs, each
applied to a different coordinate of the vector X, where the
quantization noises Zk ∼ Unif((−1, 0]), k = 1, . . . , K, are iid,
and let

Vk = αXk + Zk , k = 1, . . . K,

be its non-folded version. Our goal is to recover V "
[V1 , . . . , VK ]T from the outputsY " [Y1 , . . . , YK ]T of the mod-
ulo ADCs with high probability.

To that end, we now review a sub-optimal low-complexity de-
coder, proposed in [11], dubbed the integer-forcing (IF) source
decoder, see Figure 7. Let 1

2 be a K-dimensional vector with all
entries equal to 1

2 , and I be the identity matrix. The decoding
algorithm works as follows.

Inputs: Y, Σ, R, α.
Output: Estimates V̂IF, and X̂IF, for V and X, respectively.
Algorithm:

2Note that conditioning on the event that no overload error occurred until
time n, changes the statistics of Ep

n . Thus, applying the union bound correctly
here requires some more care. See [35] for more details.
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Fig. 7. Schematic architecture for modulo ADC for random vectors.

1) Solve

A = [a1 | · · · |aK ]T

= argmin
Ā∈ZK ×K

|Ā |̸=0

max
k=1,...,K

1
2

log
(
āT

k

(
I + 12α2Σ

)
āk

)
,

(18)

where |A| denotes the absolute value of det(A).
2) For k = 1, . . . ,K, compute

ḡk "
[
aT

k

(
Y +

1
2

)]
mod 2R ,

g̃k "
[
ḡk +

1
2
2R

]
mod 2R − 1

2
2R , (19)

and set g̃ = [g̃1 , . . . , g̃K ]T .
3) Output V̂IF = A−1 g̃, and X̂IF = V̂ IF

α .
Remark 2: The optimization problem (18) requires a compu-

tational complexity exponential in K, in general (unless P=NP).
However, the problem of finding the optimal integer matrix A,
need only be solved once for each covariance matrix Σ and α.
Thus, even if the solution to this problem is computationally
expensive, its cost is normalized by the number of times this so-
lution is used. In practice, one can apply the LLL algorithm [38]
in order to obtain a sub-optimal A with polynomial complexity
in K.

The next proposition, adapted from [11, Theorem 2] char-
acterizes the performance of modulo ADCs with the decoder
above.

Proposition 3: Let A = [a1 | · · · |aK ]T be the matrix found
in step 1 of the algorithm above, and define

RIFSC(A) = max
k=1,...,K

1
2

log
(
aT

k

(
I + 12α2Σ

)
aT

K

)
. (20)

We have that

Pr(EOL) = Pr(V̂IF ̸= V) ≤ 2K exp
{
−3

2
· 22(R−R IFSC(A))

}
,

and

Dk = E

[(
Xk − X̂k,IF

)2
∣∣∣∣EOL

]
≤ 1

12α2(1 − Pr(EOL))
,

for all k = 1, . . . ,K, where the event EOL = {V̂IF = V} is the
complement of the event EOL = {V̂IF ̸= V}.

The main idea behind the decoder above is the simple ob-
servation that for any vector a = [a1 , . . . , ak ]T ∈ ZK and any

vector h = [h1 , . . . , hK ]T ∈ RK we have that
[

K∑

k=1

ak [hk ] mod 2R

]
mod 2R =

[
K∑

k=1

akhk

]
mod 2R .

(21)

Proof: By the identity (21), we have that the quantities ḡk ,
computed in step 2 of the algorithm, satisfy

ḡk =
[
aT

k

(
Y +

1
2

)]
mod 2R = [gk ] mod 2R ,

where

gk " aT
k

(
V +

1
2

)
.

Furthermore, g̃k ∈ [− 1
2 2R , 1

2 2R ) is merely a cyclically shifted
version of ḡk ∈ [0, 2R ). Thus, g̃k = gk if and only if gk ∈
[− 1

2 2R , 1
2 2R ). Consequently, V̂IF ̸= V if and only if the event

EOL =
K⋃

k=1

{
|gk | ≥

1
2
2R

}
,

occurs. Thus, by the union bound,

Pr(EOL) = Pr(V̂IF ̸= V) ≤
K∑

k=1

Pr
(
|gk | ≥

1
2
2R

)
. (22)

The random variable gk has zero mean, variance σ2
k =

aT
k

(
α2Σ + 1

12 I
)
ak , and satisfies the conditions of Lemma 1.

We therefore have that

Pr
(
|gk | ≥

1
2
2R

)
≤ 2 exp

{
−22R

8σ2
k

}

= 2 exp
{
−3

2
· 22(R− 1

2 log(12σ 2
k ))
}

= 2 exp
{
−3

2
· 22(R− 1

2 log(aT
k (I+12α2 Σ)ak ))

}
.

Substituting this into (22) and recalling the definition of
RIFSC(A), gives

Pe ≤ 2K exp
{
−3

2
· 22(R−R IFSC(A))

}
. (23)

Conditioned on the event EOL , i.e., the event that EOL did not
occur, we have that for all k = 1, . . . , K

Dk = E

[(
Xk − X̂k,IF

)2
∣∣∣∣EOL

]

= E

[(
Zk + 1

2
α

)2 ∣∣∣∣EOL

]
≤ 1

12α2(1 − Pr(EOL))
,

where the last inequality follows similarly to (11). #
As in the previous subsection, we set

R = RIFSC(A) + δ, (24)

such that

Pr(EOL) ≤ 2K exp
{
−3

2
· 22δ

}
, (25)
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and set D = 1/12α2 , which is a good approximation for the
upper bound we derived on Dk , provided that δ is not too small.
Consequently, we can write

RIFSC(A,D) " max
k=1,...,K

1
2

log
(
aT

k

(
I +

1
D

Σ
)

ak

)
. (26)

The tradeoff between rate, distortion and error probabil-
ity achieved by the (R,α) mod-ADC with an integer-forcing
decoder is therefore characterized by equations (24), (25),
and (26). To put this result in context, we recall the information
theoretic benchmark [11]

RBT
bench(D) " 1

2K
log
∣∣∣∣I +

1
D

Σ
∣∣∣∣ ,

that approximates the minimal quantization rate, per quantizer,
required by any computationally and delay unlimited system in
order to achieve MSE of at most D in the reconstructions of
each Xk , k = 1, . . . ,K. Thus,

RIFSC(A,D) − RBT
bench(D)

=
1
2

log

⎛

⎝maxk=1,...,K aT
k

(
I + 1

D Σ
)
ak

∣∣I + 1
D Σ

∣∣ 1
K

⎞

⎠ . (27)

It is easy to show that the right hand side of (27) is non-
negative [11]. However, typically it is possible to find an integer
matrix A for which the gap is quite small, and under certain
distributions of practical interest on Σ, the cumulative distri-
bution function (CDF) of this gap can be characterized [21]. A
comprehensive comparison between RIFSC(D) and RBT

bench(D)
was performed in [11], and it was demonstrated that they are
usually quite close.

III. OVERSAMPLED MODULO-ADC

In Section II-A we have demonstrated the effectiveness of the
modulo ADC architecture for acquiring stochastic processes
that are correlated in time. In particular, we have shown that the
performance of a modulo ADC depends on the variance of the
prediction error of the process {Vn = αXn + Zn}, rather than
the variance of Vn itself. However, when designing an ADC, it is
desirable to impose as few constraints as possible on the signals
that will be fed to the ADC. Therefore, assuming that {Xn} is
such that {Vn} is highly predictable may be too restrictive.

Nevertheless, recalling that the process {Xn} is obtained by
sampling a continuous-time process X(t), we observe that if
the sampling rate is higher than Nyquist’s rate, {Xn} will be
bandlimited,3 and consequently, {Vn}will be highly predictable
no matter what the precise PSD of {Xn} happens to be. In fact,
this observation can be viewed as the rationale underlying Σ∆-
conversion. In particular, a Σ∆-converter is information theoret-
ically equivalent to a differential pulse-code modulator (DPCM)
whose input is a bandlimited signal with flat spectrum [35].

While having many advantages, the implementation of Σ∆
converters is more involved than that of traditional scalar uni-

3We say that a discrete-time process {Xn } is bandlimited, if there exists
some γ < π such that SX (ejω ) = 0 for all ω ∈ (−π,−γ) ∪ (γ , π). Since our
analysis takes quantization noise into account, it is quite robust to slight devia-
tions from the assumption that SX (ejω ) is strictly band limited. In particular, as
long as SX (ejω ) ≪ D, for all ω ∈ (−π,−γ) ∪ (γ , π), where D is the target
MSE distortion, our analysis remains valid.

form quantizers. The main challenge in the design of Σ∆ con-
verters is the need to produce the quantization error, and then
apply a filter to this analog signal. A major obstacle is that
the generation of the quantization error requires to first quan-
tize the current sample, then apply a digital-to-analog converter
(DAC) to produce the analog representation of the quantizer’s
output, and finally to subtract this representation from the origi-
nal sample. See Figure 2. The quantizer and the DAC need to be
matched as otherwise the produced quantization error is inac-
curate. This, however, turns out to be quite difficult to achieve,
unless the quantizer is a simple sign detector (1-bit quantizer).

To circumvent the challenges listed above, we develop an
oversampled modulo ADC architecture, as an alternative to
Σ∆-conversion. The only assumptions made on the input pro-
cess {X(t)} is that it is bandlimited with maximal frequency
at most B, and that its variance is at most σ2 . The developed
universal architecture is as follows. See Figure 3.

Analog-to-digital conversion: The process X(t) is uniformly
sampled every TS = 1/2LB seconds, L > 1, such that the sam-
pling rate is L times above Nyquist’s rate. Each sample of the
obtained discrete-time process {Xn} is then discretized us-
ing an (R,α) mod-ADC, resulting in the quantized process
{Yn = [αXn + Zn ] mod 2R}.

As above, we define the unfolded process {Vn = αXn +
Zn}. The decoding procedure assumes {Vn−1 , . . . , Vn−p} are
given, and computes an estimate for Vn , based on Yn .

Inputs: Yn , {Vn−1 , . . . , Vn−p}, σ2 , L, R, α.
Outputs: Estimates V̂n and X̂n for Vn and Xn , respectively.
Algorithm: The algorithm is exactly the same as that in

Section II-A, with only one difference. Here {CX [r]} is un-
known. Thus, for the computation of the p-tap prediction filter
{hn}, we assume the PSD of {Xn} is

SX (ejω ) =

⎧
⎪⎨

⎪⎩

Lσ2 ω ∈
[
−π

L
,
π

L

)

0 ω /∈
[
−π

L
,
π

L

) , (28)

even though this assumption may, and is most likely to, be
wrong.

Final post-processing: After collecting a long sequence of
estimates {X̂1 , . . . , X̂N } we apply a non-causal low pass filter

G(ejω ) =

⎧
⎪⎨

⎪⎩

12α2Lσ2

1 + 12α2Lσ2 if ω ∈
[
−π

L
,
π

L

]

0 if ω /∈
[
−π

L
,
π

L

]

on them, to obtain the sequence {X̂LPF
1 , . . . , X̂LPF

N }.
The advantages over Σ∆ conversion are clear: the only pro-

cessing done in the analog domain is sampling and applying a
modulo ADC, whereas all filtering operations are done digitally
at the decoder.

Proposition 1 provides an upper bound on the error proba-
bility Pr(EOLn ) = Pr(V̂n ̸= Vn ) in terms of R − 1

2 log(12σ2
p ).

However, Proposition 2, which characterizes the scaling of
1
2 log(12σ2

p ) with D, does not apply here for two reasons. The
first is that we use a mismatched prediction filter here, due to
the unknown PSD of {Xn}, and the second is that whatever the
exact PSD truns out to be, it is assumed to be supported on the
frequency interval [− π

L , π
L ], such that h(Xn |Xn−1 , . . .) = −∞,

and the high-resolution assumption never holds. Instead, we
prove the following.
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Proposition 4: Let {Xn} be a zero-mean stationary pro-
cess with variance E(X2

n ) ≤ σ2 and PSD supported in fre-
quency interval [− π

L , π
L ]. Let Vn = αXn + Zn where Zn ∼

Unif([−1, 0)), and V̂ p
n be as in (6), where {hn} is the opti-

mal linear MMSE p-tap prediction filter for Vn , from its past
samples {Vn−1 , . . . , Vn−p}, designed under the assumption that
SX (ejω ) is as in (28). Then

lim
p→∞

12σ2
p ≤

(
1 + 12α2Lσ2) 1

L .

Proof: Let

SṼ (ejω ) =

⎧
⎪⎨

⎪⎩

α2Lσ2 + 1/12 ω ∈
[
−π

L
,
π

L

]

1/12 ω /∈
[
−π

L
,
π

L

] , (29)

and let Hp(ejω ) be the frequency response of the prediction
filter {hn}, which is designed with respect to (29). Further, let
H(ejω ) = limp→∞ Hp(ejω ). By the basic principles of optimal
linear MMSE prediction, we have that

SṼ (ejω )|1 − H(ejω )|2 = 2
1

2 π

∫ π
−π log(SṼ (ej ω ))dω . (30)

Therefore, combining (29) and (30), we see that

|1 − H(ejω )|2 =

⎧
⎪⎨

⎪⎩

(
1 + 12α2Lσ2) 1

L −1
ω ∈

[
−π

L
,
π

L

]

(
1 + 12α2Lσ2) 1

L ω /∈
[
−π

L
,
π

L

] .

(31)

Applying this filter on the “actual” process Vn = αXn + Zn ,
whose PSD is

SV (ejω ) =

⎧
⎪⎨

⎪⎩

α2SX (ejω ) + 1/12 ω ∈
[
−π

L
,
π

L

]

1/12 ω /∈
[
−π

L
,
π

L

] ,

we get

lim
p→∞

12σ2
p = lim

p→∞
12E(Vn − V̂ p

n )2

=
1
2π

∫ π

−π
SV (ejω )|1 − H(ejω )|2dω

=
(
1 + 12α2Lσ2) 1

L

2π

[∫

ω /∈[−π/L,π/L ]
1dω

+
∫ π/L

−π/L

(
1+12α2Lσ2)−1 (1+12α2SX (ejω )

)
dω

]

≤
(
1 + 12α2Lσ2) 1

L , (32)

where the last inequality follows from our assumption that
1

2π

∫ π/L
−π/L SX (ejω )dω = E(X2

n ) ≤ σ2 . #
It follows from Proposition 1 combined with Proposition 4,

that for large p and a quantization rate of roughly

R = δ +
1
L

1
2

log
(
1 + 12α2Lσ2) , (33)

the proposed system achieves Pr(EOLn ) ≤ 2 exp{− 3
2 22δ}, for

all input processes with bandwidth ≤ B and variance ≤ σ2 .

After low-pass filtering with G(ejω ), we get by a similar anal-
ysis to that done in Section II-A and in [35], that for long enough
N such that the discrete Fourier transform (DFT) of N consec-
utive samples of {Xn} have negligible energy in frequencies
above π/L, we have that

D = E

[
(Xn − X̂LPF

n )2
∣∣∣∣

N⋂

n=1

{V̂n = Vn}
]

≤ σ2

1 + 12α2Lσ2
1

1 − Pr
(⋂N

n=1{V̂n = Vn}
)

≤ σ2

1 + 12α2Lσ2
1

1 − N Pr(EOLn )

≤ σ2

1 + 12α2Lσ2
1

1 − 2N exp{− 3
2 22δ}

. (34)

Thus, for large enough δ such that the total overload probability
is small, i.e.,

2N exp
{
−3

2
22δ

}
≪ 1, (35)

we have that our system achieves distortion ≈D with

R =
1
L

1
2

log
(

σ2

D

)
+ δ. (36)

The term 1
L

1
2 log(σ 2

D ) is the rate-distortion function of a source
with PSD as in (28). Thus, up to the loss of δ bits per sample,
due to the one dimensional quantizer we are using, whose size is
dictated by (35), our system is optimal in the following minimax
sense: no system can attain a better tradeoff between R and D
simultaneously for all processes with bandwidth at most B and
variance at most σ2 .

The multiplicative increase in quantization rate of the de-
veloped system, with respect to the fundamental rate-distortion
limit, is ( 1

2 log(σ 2

D ) + Lδ)/( 1
2 log(σ 2

D )). If X(t) were sampled
at its Nyquist rate, rather than L times above it, standard uniform
scalar quantization would have achieved similar overload prob-
ability and distortion with only a ( 1

2 log(σ 2

D ) + δ)/( 1
2 log(σ 2

D ))
multiplicative increase in rate with respect to the fundamental
limit. Thus, oversampling combined with the architecture de-
veloped here produces a total number of bits-per-second which
is greater than that required by an ADC operating at the Nyquist
rate. The disadvantage of the latter approach is that it requires
to use a high-resolution quantizer for each sample, whereas the
scheme developed here, allows to reduce the number of quanti-
zation bits per sample, at the expanse of an increased sampling
rate. Thus, just like Σ∆ conversion, the scheme developed here
allows to replace slow but high-resolution ADCs, with fast low-
resolution ones.

IV. IMPLEMENTATION VIA RING OSCILLATORS

In this Section we develop an architecture for a circuit im-
plementing a modulo ADC, and provide a mathematical model
for its input-output characteristic. Our implementation is essen-
tially based on converting the input voltage into phase, which
can naturally only be observed modulo 2π, and then quantizing
the phase. To that end, we use ring oscillator ADCs, as described
next.



ORDENTLICH et al.: MODULO-BASED ARCHITECTURE FOR ANALOG-TO-DIGITAL CONVERSION 835

Consider a closed-loop cascade of N inverters, where N is
an odd number, all controlled with the same voltage Vdd , see
Figure 4. This circuit, which is referred to as a ring oscillator
can act as an ADC with sampling period Ts , when Vdd is set
to Vin (t) = g(X(t)), where X(t) is the analog signal to be
converted to a digital one and g(·) is a function to be specified,
and the state (‘0’ or ‘1’, corresponding to ‘low’ or ‘high’) of
each inverter is measured every Ts seconds.

It is well known that the time it takes for a non-ideal inverter’s
output to respond to a change in its input is a function of Vdd [39],
which we denote by ∆(Vdd) > 0. Taking this delay into account,
a moment of reflection reveals that at each time instance, exactly
one pair of adjacent inverters are at the same state whereas all
other pairs of adjacent inverters are at distinct states. Denote by
I ∈ {1, . . . , N} the index of the first inverter within the pair that
shares the same state, and denote its state by B ∈ {0, 1}, i.e.,
the adjacent pair of inverters with the same state are inverter
I and inverter [I + 1] mod N , and their state is B. With this
notation, we can uniquely identify the states of all N inverters at
time t with the number Qt = (It − 1) + N · [It + Bt ] mod 2 ∈
{0, . . . , 2N − 1}. See Figure 5. By sampling the states of all N
inverters every Ts seconds, we gain access to the discrete-time
process {QnTs }.

A crucial observation is that the process Qt cyclically os-
cillates in increments of +1 modulo 2N . More formally
stated, if t′ > t is the earliest time where Qt ′ ̸= Qt , then
Qt ′ = [Qt + 1] mod 2N . We designate by Vn the number of
increments that occurred in the process {Qt} within the time
interval [nTS , (n + 1)Ts), and define the output of the induced
modulo ADC as

Yn " [Vn ] mod 2N = [Q(n+1)Ts
− QnTs ] mod 2N.

Next, we relate Vn to the process Vin (t). To this end, we
make the simplifying assumption that X(t) is constant within
each time interval [nTs, (n + 1)Ts), and consequently, so is
Vin (t). This assumption can be made exact by adding a sample-
and-hold circuit to the system. Assuming the function ∆(Vdd)
is identical for all N inverters, we have that

QnTs =

[⌊
n−1∑

k=−∞

Ts

∆(Vin (kTs))

⌋]
mod 2N,

and consequently,

Yn =

[[⌊
n∑

k=−∞

Ts

∆(Vin (kTs))

⌋]
mod 2N

−
[⌊

n−1∑

k=−∞

Ts

∆(Vin (kTs))

⌋]
mod 2N

]
mod 2N

=

[⌊
n∑

k=−∞

Ts

∆(Vin (kTs))

⌋
−
⌊

n−1∑

k=−∞

Ts

∆(Vin (kTs))

⌋]

mod 2N,

where the last equality follows from the modulo distributive
law (2). Defining the “quantization error”

Zn =

⌊
n∑

k=−∞

Ts

∆(Vin (kTs))

⌋
−

n∑

k=−∞

Ts

∆(Vin (kTs))

∈ (−1, 0],

we can write

Yn =

[
n∑

k=−∞

Ts

∆(Vin (kTs))
+ Zn

−
n−1∑

k=−∞

Ts

∆(Vin (kTs))
− Zn−1

]
mod 2N

=
[

Ts

∆(Vin (nTs))
+ Zn − Zn−1

]
mod 2N.

Let us now define the function

f(x) =
1

∆(x)
,

which corresponds to the oscillation frequency of our circuit,
and is dictated by the characteristics of the inverters at hand,
and let us also take the function g(·) to be affine, such that
Vin (t) = a + bX(t). We further define the discrete time process
Xn = X(nTs), for all n ∈ N. We have therefore obtained the
model

Yn = [Ts · f(a + bXn ) + Zn − Zn−1 ] mod 2N. (37)

In general, the quantization noise process {Zn} is a determinis-
tic function of the process {Xn}. Nevertheless, as in the analysis
of the ideal modulo ADC, in the sequel we make the simplifying
assumption that it is an iid process with Zn ∼ Unif((−1, 0]).

If f(·) were an affine function itself, with an appropriate
choice of the parameters a, b we could have induced the model

Yn = [αXn + Zn − Zn−1 ] mod 2R ,

where R = log(2N), which is identical to the ideal (R,α) mod-
ADC, up to the fact that the quantization noise Zn − Zn−1 is
now a first order moving-average (MA) process rather than a
white process. In practice, however, it is difficult to construct
inverters for which f(·) is approximately affine within a large
range. The effect of nonlinearities of f(·) on the performance
of the modulo ADC is numerically studied in the next section.

V. NUMERICAL EXPERIMENTS

We have conducted numerical simulations for the perfor-
mance of a ring oscillator based modulo ADC, where the input is
an oversampled process, as in Section III. In our simulations, we
have assumed that the inverters were produced using a CMOS
technology. The corresponding function f(Vin) relating the in-
put voltage to the output frequency of the oscillator, which was
introduced in Section IV, is shown in Figure 8, as obtained using
a PSpice simulation.

A. Design of System Parameters

In all our simulations, we have designed the modulo ADC
and the corresponding decoder as described in Section III, i.e.,
under the assumption that the input signal X(t) is a Gaussian
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Fig. 8. The voltage to output frequency function f (Vin).

stationary process with zero mean and variance σ2 , whose PSD
is flat within the frequency interval [−B,B] and zero outside this
interval. The sampling rate is a factor of L > 1 above the Nyquist
rate, such that the sampling period is Ts = 1

2LB seconds.
Given the oversampling ratio L, the number of inverters N ,

and the above assumptions on the statistics of X(t), the design
of the modulo ADC and its corresponding decoder consists of:

1) Choosing the shift and scaling parameters a and b for the
modulo ADC such that Vin(t) = a + bX(t);

2) Designing the p-tap prediction filter {hn} for Vn =
Tsf(a + bXn ) + Zn − Zn−1 given the past samples
{Vn−1 , . . . , Vn−p};

3) Designing a 2k + 1-tap noncausal smoothing filter {gn}
for estimating Xn from {Vn−k , . . . , Vn+k}.

The decoding procedure consists of recovering an esti-
mate {V̂n} for {Vn} from the modulo ADC’s outputs {Yn =
[Tsf(a + bXn ) + Zn − Zn−1 ] mod 2N}, by applying the de-
coding procedure described in Section III with the prediction
filter {hn}. Then, the estimate {X̂n} is produced by applying
the smoothing filter {gn} to the process {V̂n}, which is referred
to as final post-processing in Section III . The filters {hn} and
{gn} are chosen as the MMSE-optimal linear prediction and
smoothing filters, respectively. Calculating the coefficients of
{hn} requires knowledge of the second-order statistics of the
process {Vn}. This in turn, can be (numerically) calculated
from the pairwise distribution of {Xn,Xn−m}, m = 0, . . . , p,
which is fully characterized by our assumption that {Xn} is
a Gaussian process with PSD SX (ejω ) as in (28). Calculating
the coefficients of {gn} requires, in addition, the joint second-
order statistics of the processes {Xn, Vn}, which can either be
calculated numerically, or via Bussgang’s Theorem [40].

We apply the developed modulo ADC architecture to pro-
cesses of length T discrete samples. The parameters a and b
are chosen as follows: Let Pe = Pr(∪T

t=1 V̂t ̸= Vt) be the block
error probability of our decoder, and let ϵ be our target block
error probability. For every a and b, we find the filters {hn}
and {gn} as described above, and compute the corresponding
Pe = Pe(a, b) via Monte Carlo simulation for a Gaussian in-
put process with PSD as in (28). Among all (a, b) for which
Pe(a, b) < ϵ, we choose the pair that results in the smallest

MSE distortion 1
T

∑T
t=1 E(Xt − X̂t)2 . The target block error

probability for all of the setups we consider is ϵ = 10−3 , and the
block length we consider is T = 211 . Roughly, these parameters
correspond to allowing a per-sample overload error probability
of 10−3 · 2−11 ≈ 4.89 · 10−7 .

B. Evaluation Method

The system was designed for a bandlimited Gaussian process
with a flat PSD. Nevertheless, we would like it to achieve ap-
proximately the same MSE distortion and error probability for
all bandlimited processes with the same variance, regardless of
the PSD within that band. For an ideal modulo ADC and large
p, this is indeed the case, as shown in Section III. To test to
what extent this remains the case also for the ring oscillator
based modulo ADC, we apply our system on two types of pro-
cesses: 1) A Gaussian process with variance σ2 and bandwidth
B, whose PSD is flat within this band, for which the system
was designed; 2) A sinusoidal waveform, whose frequency is
chosen at random, uniformly on [0, B), and whose amplitude is√

2σ2 , such that its power is σ2 .
For each experiment, we also plot the theoretical performance

of an ideal (R,α) mod-ADC, as well as those of a first-order Σ∆
(with the optimal 1-tap noise shaping filter) converter, both de-
signed to achieve the same target block error probability for the
bandlimited Gaussian stochastic process X(t). Although over-
load errors have a different effect on Σ∆ converters and modulo
ADCs, both systems fail to achieve their target distortions unless
those are avoided.

In the ADC literature, it is quite common to measure the
performance of a particular ADC for a sinusoidal input. One
drawback of this approach is that the deterministic nature of
the input signal allows to design the ADC such that overload
errors never occur, without significantly increasing its dynamic
range above the standard deviation of its input. For stochastic
processes, even if Gaussianity is assumed, the dynamic range
must be as large as multiple standard deviations of its input, in
order to ensure a small overload probability. In our derivations,
this is manifested through the rate backoff parameter δ, which
dictates the ratio between the quantizer’s dynamic range 2R and
the standard deviation of its input (which in our case is the
prediction error processes).

In order to allow a unified presentation of the results for both
Gaussian and sinusoidal processes, rather than plotting the rate
Rmod-ADC(D) required by the modulo ADC in order to achieve
an MSE distortion D with target block error probability ϵ, we
plot Rmod-ADC(D) − δ, where

δ =
1
2

log
(
−2

3
ln
( ϵ

2T

))
. (38)

This is consistent with traditional converter analyses that sepa-
rate saturation effects from granularity ones [4], [37]. For our pa-
rameters T = 211 , ϵ = 10−3 , (38) evaluates to δ ≈ 1.6717 bits.
Note that by (12), δ is the rate backoff required in order to attain
block error probability below ϵ by an ideal modulo ADC, when
the input process is Gaussian. A similar analysis reveals that
the same rate backoff is also required for a Σ∆ converter to
attain the same block error probability, under the same assump-
tions on the input process [35]. Thus, in all figures we also plot
RΣ∆ (D) − δ rather than RΣ∆ (D), where RΣ∆ (D) is the rate
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needed by the Σ∆ converter to attain distortion D with block
error probability below ϵ.

C. Results and Discussion

We have performed experiments for the parameters L = 3
and four different values of B: 100 Hz, 44.1 KHz, 100 KHz and
1 MHz. The value of σ2 is immaterial, as it can be absorbed
in the parameter b. The results are depicted in Figures 9(a),
(b), (c) and (d), respectively. The results are based on Monte
Carlo simulation, with 103 independent trials for each point in
each figure. No overload errors were observed for the choices of
a, b, {hn} and {gn} that correspond to each point in the figures,
neither for the Gaussian processes and neither for the sinusoidal
processes.

In general, the results indicate that the ring oscillator imple-
mentation of a modulo ADC is closer to the ideal modulo ADC
for small bandwidths B and quantization rates R. In all fig-
ures we observe the same trend: for small enough R the curve
of the SNR as a function of R for the ring oscillator modulo
ADC is parallel to that of the ideal modulo ADC, and has a
slope of ≈ 6L = 18 dB/bit, in agreement with (36). Then, for
large enough R the system’s non-linearities “kick-in” and the
slope significantly decreases. Eventually, for large enough R, the
first-order Σ∆ converter outperforms the ring oscillator mod-
ulo ADC, as can be observed in Figure 9(d). Nevertheless, for
moderate values of R, even for B = 1 MHz, the improvement
over the Σ∆ converter can be as large as 17 dB.

The trends above are to be expected. Recall that the output of
the corresponding modulo ADC is given by (37). If b · σ is small
enough, the function f(a + bXn ) resides in a small interval
around f(a) with high probability, and is well approximated by
the linear function f(a) + bf ′(a)Xn . Consequently, the output
of the modulo ADC can be well approximated as

Yn ≈ [Tsbf
′(a)Xn + Zn − Zn−1 + Tsf(a)] mod 2N.

Since Tsf(a) is known and can be removed, this is equivalent
to a (Tsbf ′(a), log(2N)) mod-ADC, albeit with quantization
noise Zn − Zn−1 rather than Zn .

Typically, however, in order to get a large gain from using
a modulo ADC rather than a standard uniform quantizer, we
would like to use an (R,α) mod-ADC with α · σ ≫ 1

2 2R . Thus,
in order to get a “useful” modulo ADC that is close to ideal, the
two conditions (i) b · σ ≪ 1; (ii) Tsf ′(a) · b · σ ≫ N ; should
hold. These two conditions can only be satisfied simultaneously
if Tsf ′(a) ≫ 1, i.e., when the sampling rate is low, relative to
f ′(a).

For an ideal (R,α) mod-ADC with a given target overload
error probability, as R increases α can also increase, resulting
in a smaller distortion. Similarly, for the ring oscillator modulo
ADC, the optimal choice of b should, in general, increase with
R. For small rates, the optimal value of b is also small, such that
the linear approximation for the function f(·) is not too bad.
However, as R, and consequently b, increases, the nonlinearities
start becoming significant and the slope of the SNR as a function
of R becomes smaller.

VI. MODULO ADCS FOR JOINTLY STATIONARY PROCESSES

In this section we develop a scheme that uses K parallel
modulo ADCs for digitizing K jointly stationary processes,

provide a corresponding low-complexity decoding algorithm,
and characterize its performance.

Let {X1
n}, . . . , {XK

n } be K discrete-time jointly Gaussian
stationary random processes, obtained by sampling the jointly
Gaussian stationary processes X1(t), . . . , XK (t) every Ts

seconds. Let

Y k
n = [αXk

n + Zk
n ] mod 2R , k = 1, . . . ,K, n = 1, 2, . . .

be the processes obtained by applying K parallel (R,α) mod-
ADCs, on {X1

n}, . . . , {XK
n }, where the input to the kth modulo

ADC is the process {Xk
n }, and {Zk

n} is a Unif((−1, 0]) noise,
iid in space and in time. Let

V k
n = αXk

n + Zk
n , k = 1, . . . ,K, n = 1, 2, . . .

be the non-folded version of Y n
k . Let Xn = [X1

n , . . . ,XK
n ]T ,

and define Yn , Zn and Vn similarly. Our goal is to recover the
process {Vn} from the outputs of the modulo ADCs with high
probability.

To achieve this goal, we employ a two-step procedure, com-
bining the schemes from Section II-A and Section II-B: first
we compute a predictor V̂p

n based on previous p samples
{Vn−1 , . . . ,Vn−p} whose error is the vector Ep

n = Vn − V̂p
n .

By the same derivation as in Section II-A, we can produce
[Ep

n ] mod 2R from Yn and {Vn−1 , . . . ,Vn−p}, where the
modulo operation applied to a vector is to be understood as
reducing each coordinate modulo 2R . Now, our task is to de-
code a modulo-folded correlated random vector, which can be
done via the integer-forcing decoder described in Section II-B.
This relatively simple decoding procedure allows to efficiently
exploit both temporal and spatial correlations. Below we de-
scribe it in more detail. See Figure 6. For all ℓ,m ∈ {1, . . . , K},
let Cℓm [r] = E(Xℓ

nXm
n−r ).

Inputs: Yn , {Vn−1 , . . . ,Vn−p}, {Cℓm [r]} for all ℓ,m ∈
{1, . . . , K}, R, α.

Outputs: Estimates V̂n and X̂n for Vn and Xn , respectively.
Algorithm:
1) Compute the optimal linear MMSE predictor for Vn from

its last p samples

V̂p
n =

p∑

i=1

Hi ·
(
Vn−i +

1
2

)
− 1

2
,

where {Hn} is a p-tap matrix prediction filter, Hi ∈
RK×K , for i = 1, . . . , p, computed based on {Cℓm [r]}
for all ℓ,m ∈ {1, . . . , K} and α, and the shift by 1

2 com-
pensates for E(Zn ).

2) Compute

Wn = [Yn − V̂p
n ] mod 2R ,

where the modulo reduction is to be understood as taken
component-wise.

3) Define the pth order prediction error Ep
n " Vn − V̂p

n , and
compute its covariance matrix Σp = E

[
Ep

n (Ep
n )T
]

based
on {Cℓm [r]} for all ℓ,m ∈ {1, . . . , K} and α. Note that
Σp is indeed invariant with respect to n due to stationarity.
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Fig. 9. Performance of ring oscillators based modulo ADC (RO-ADC). We plot SNR vs. quantization rate for a Gaussian process and for a sinusoidal waveform
processes with a random frequency, uniformly distributed over [0, B). For comparison we also plot the performance of an ideal (R, α) mod-ADC, as well as those
of an ideal first-order Σ∆ converter. For all curves, SNR is defined as σ2 /D. The prediction filter has p = 25 taps, whereas the smoothing filter has 2k + 1 taps
for k = 22. (a) B = 100 Hz, L = 3. (b) B = 44.1 KHz, L = 3. (c) B = 100 KHz, L = 3. (d) B = 1 MHz, L = 3.

4) Solve

A = [a1 | · · · |aK ]T

= argmin
Ā∈ZK ×K

|Ā |̸=0

max
k=1,...,K

1
2

log
(
12āT

k Σp āk

)
. (39)

5) For k = 1, . . . ,K, compute

ḡk
n "

[
aT

k Wn

]
mod 2R

g̃k
n "

[
ḡk

n +
1
2
2R

]
mod 2R − 1

2
2R ,

and set g̃n = [g̃1
n , . . . , g̃k

n ]T .
6) Compute

Êp
n = A−1 g̃n , V̂n = V̂p

n + Êp
n , X̂n =

V̂n + 1
2

α
.

Proposition 5: Let A = [a1 | · · · |aK ]T be the matrix found
in step 4 of the algorithm above, and define

RST
IFSC(A) = max

k=1,...,K

1
2

log
(
12aT

k ΣpaT
K

)
. (40)

We have that

Pr(EOLn )=Pr(V̂n ̸=Vn )≤2K exp
{
−3

2
· 22(R−RST

IFSC(A))
}

,

and

Dk
n = E

[(
Xk

n − X̂k
n

)2
∣∣∣∣EOLn

]
≤ 1

12α2(1 − Pr(EOLn ))
,

for all k = 1, . . . ,K, where the event EOLn
= {V̂n = Vn} is

the complement of the event EOLn = {V̂n ̸= Vn}.
Proof: We first note that

Wn = [Yn − V̂p
n ] mod 2R

=
[
[Vn ] mod 2R − V̂p

n

]
mod 2R

=
[
Vn − V̂p

n

]
mod 2R

= [Ep
n ] mod 2R ,
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where the second equality follows from the modulo distributive
law (2). By (21), we have that

ḡk
n "

[
aT

k Wn

]
mod 2R =

[
aT

k Ep
n

]
mod 2R = [gk

n ] mod 2R ,

where

gk
n = aT

k Ep
n . (41)

Furthermore, g̃k
n ∈ [− 1

2 2R , 1
2 2R ) is merely a cyclically shifted

version of ḡk
n ∈ [0, 2R ). Thus, g̃k

n = gk
n if and only if gk

n ∈
[− 1

2 2R , 1
2 2R ). Consequently, Êp

n ̸= En , and therefore V̂n ̸=
Vn , if and only if the event

EOLn =
K⋃

k=1

{
|gk

n | ≥
1
2
2R

}
,

occurs. Now, repeating the same steps from the proof of Propo-
sition 3, we arrive at the claimed bounds. #

Using Shannon’s lower bound, and applying similar argu-
ments as in [41], one can show that any quantization scheme for
the source {Xn} that produces R bits/sample/coordinate and
attains E(Xk

n − X̂k
n )2 ≤ D, k = 1, . . . ,K, n = 1, . . ., must

have R ≥ 1
K h(Xn |Xn−1 , . . .) − 1

2 log(2πeD). Let Ep∗
n =

Xn − X̂p
n , where Xp

n is the optimal pth order MMSE (lin-
ear) predictor of Xn from {Xn−1 , . . . ,Xn−p}, and let Σ∗

p =
E
[
Ep∗

n (Ep∗
n )T

]
. We have that

h(Xn |Xn−1 , . . . ,Xn−p) = h(Ep∗
n |Xn−1 , . . . ,Xn−p)

(a)
= h(Ep∗

n )
(b)
=

1
2

log
(
(2πe)K |Σ∗

p |
)
,

where (a) follows from the orthogonality principle of MMSE
estimation [37], and (b) from the fact that Ep∗

n is a Gaussian
random vector [5]. Thus, for any quantization scheme we must
have

R(D) ≥ RSLB(D) " 1
2

log

⎛

⎝ limp→∞
∣∣Σ∗

p

∣∣ 1
K

D

⎞

⎠ .

Similarly to previous subsections, we set D = 1/12α2 , which
is a good approximation for Dn

k , k = 1, . . . , K, provided that
δ = R − RST

IFSC(A) is not too small. The rate required by
our scheme, as given in Proposition 5, depends on 12Σp ,
which corresponds to the prediction error covariance of the
process X̃n =

√
12α2Xn + Z̃n = 1√

D
(Xn +

√
DZ̃n ), where

Z̃n =
√

12Zn is a random vector with unit variance iid entries.
Let Σ̃p be the pth order prediction error covariance of the pro-
cess Xn +

√
DZ̃n . We can rewrite the rate required by our

scheme as

RST
IFSC(A,D) " 1

2
log

(
maxk=1,...,K aT

k Σ̃pak

D

)
.

Now, noting that if h(Xn |Xn−1 , . . .) > −∞, we have that
Σ̃p → Σ∗

p as D → 0, we obtain the following proposition.

Fig. 10. Comparison between the average quantization rates RST
IFSC(D),

RSLB(D), and Rnaive(D). The setup is that of quantizing vector of station-
ary processes {X 1

n }, {X 2
n } described in the end of Section VI, with L = 5 and

p = 24.

Proposition 6: Assume h(Xn |Xn−1 , . . .) ≥ −∞, and let
Σ∗ " limp→∞ Σ∗

p . We have that

lim
D→0

lim
p→∞

RST
IFSC(A,D) − RSLB(D)

=
1
2

log

(
maxk=1,...,K aT

k Σ∗ak

|Σ∗|
1
K

)
. (42)

Thus, in the high-resolution regime, when taking large enough
p, the gap between RST

IFSC(A,D) and the information theoretic
lower bound is dictated by the loss of integer-forcing source
decoder for a source whose covariance vector is Σ∗. The right
hand side of (42) is non-negative [11], but is typically quite
small. To illustrate this, we generate two correlated processes
{X1

n} and {X2
n} as follows: let {W 1

n }, {W 2
n }, {W 3

n } be three
iidN (0, 1) random processes. Let X1

n =
∑L−1

i=0 hiW 3
n−i + W 1

n ,
and X2

n =
∑L−1

i=0 giW 3
n−i + W 2

n , where {hn} and {gn} are two
filters, each with L taps. Clearly, when the filters have suffi-
ciently strong taps the process {Xn} = [{X1

n}, {X2
n}]T will be

highly correlated in time and in space. In Figure 10 we plot
the average rate required by the developed scheme, as well as
RSLB(D), and the rate required by a standard ADC that ignores
spatial and temporal correlations entirely, denoted Rnaive(D),
with respect to to an iid N (0, 100) distribution on the 2L taps
of {hn} and {gn}. In the simulations performed, we took L = 5
and p = 24.

VII. CONCLUSIONS AND OUTLOOK

We have studied the modulo ADC architecture as an alter-
native approach for analog-to-digital conversion. The modulo
ADC allows exploitation of the statistical structure of the input
process digitally at the decoder without requiring the ADC to
adapt itself to the input statistics. We have demonstrated the ef-
fectiveness of oversampled modulo ADCs as a simple substitute
to Σ∆ converters, allowing an increase in the filter’s order far
beyond that which is possible in current Σ∆ converters, since
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for modulo ADC filtering is done digitally. Moreover, we have
shown that, when used for digitizing jointly stationary processes,
parallel modulo ADCs can efficiently exploit both temporal and
spatial correlations.

An implementation of modulo ADCs via ring oscillators was
developed, and the corresponding input-output function for the
obtained modulo ADC was characterized in terms of the delay–
Vdd profile of the inverters that construct the ring oscillator. We
have then numerically studied the performance this implemen-
tation can attain for oversampled input processes, and compared
it to those of Σ∆ converters.

There are several important challenges for future research.
Perhaps most important is building a modulo ADC chip proto-
type. Although our simulations are based on the function f(·)
measured from an actual (PSpice model of a) ring oscillator
device, a hardware implementation is needed to fully assess the
benefits of modulo ADCs. Furthermore, we would like to see
whether it is possible to construct inverters with more favorable
properties for ring oscillator-based modulo ADCs. In particu-
lar, we would like them to have a larger range where they are
well approximated by an affine function. Another interesting
avenue for future research is finding functions g(·) that can be
implemented in the analog domain, such that the composition
of function f ◦ g = f(g(·)) is more linear.
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