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Abstract: The ability to see around corners, i.e., recover details of a hidden scene from

its reflections in the surrounding environment, is of considerable interest in a wide range of

applications. However, the di�use nature of light reflected from typical surfaces leads to mixing of

spatial information in the collected light, precluding useful scene reconstruction. Here, we employ

a computational imaging technique that opportunistically exploits the presence of occluding

objects, which obstruct probe-light propagation in the hidden scene, to undo the mixing and

greatly improve scene recovery. Importantly, our technique obviates the need for the ultrafast

time-of-flight measurements employed by most previous approaches to hidden-scene imaging.

Moreover, it does so in a photon-e�cient manner (i.e., it only requires a small number of

photon detections) based on an accurate forward model and a computational algorithm that,

together, respect the physics of three-bounce light propagation and single-photon detection.

Using our methodology, we demonstrate reconstruction of hidden-surface reflectivity patterns

in a meter-scale environment from non-time-resolved measurements. Ultimately, our technique

represents an instance of a rich and promising new imaging modality with important potential

implications for imaging science.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

In recent years, remarkable advances have been achieved in computational imaging, image

processing and computer vision [1–4]. Whereas conventional imaging involves direct line-of-

sight transport from a light source to a scene, and from the scene back to a camera sensor, the

problem of imaging scenes that are hidden from the camera’s direct line of sight, referred to

as seeing around corners or non-line-of-sight (NLoS) imaging, has attracted growing interest.

Indeed, the ability to reconstruct hidden scenes has the potential to be transformative in important

and diverse applications, including, e.g., medicine, transportation, manufacturing, scientific

imaging, public safety, and security.

Techniques for NLoS imaging that have been recently demonstrated include time-gated viewing

from specular reflections [5–8], wavefront shaping [9, 10], and transient imaging, in which time-

of-flight (ToF) measurements are collected [11–18]. ToF active imaging using short-duration laser

pulses (the most commonly used approach) provide only indirect access to scene information,

through detection of photons that have been di�usely reflected by intervening surfaces, which

mixes the spatial information they carry. Such systems have used picosecond-resolution ToF

measurements—as obtained from a streak camera [12,13] or a single-photon avalanche diode
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(SPAD) detector [16–18]—to recover hidden scenes. However, collecting such measurements

involves complicated and costly apparatus [18]. Klein et al. has reported tracking NLoS objects

using intensity images [19]; however, its tracking problem is parametric in nature, allowing it to

retrieve object translation and rotation only in the case of known objects. In contrast, our focus is

on a non-parametric setting, with the goal of retrieving the unknown reflectivity pattern on a

hidden surface.

Recently, in [20], we proposed a new NLoS imaging framework that opportunistically exploits

the presence of opaque occluders in the light propagation path within the hidden space to

distinguish light emanating from di�erent parts of the hidden scene (see Visualization 1 ). This

framework was shown to recover spatial information otherwise destroyed by di�use reflection,

without reliance on ultrafast ToF measurements. The approach is reminiscent of pin-speck (or anti-

pinhole) imaging [21,22], in which an occluder in the scene serves as a defacto lens that facilitates

imaging. The focus of [20] was a theoretical study of the framework. The model developed there

assumes additive signal-independent Gaussian noise, hence the reconstruction algorithm and

the preliminary experiment reported in [20] are tailored to a Gaussian-likelihood method. This

Gaussian-noise assumption, however, does not adequately represent shot-noise-limited operation,

which prevails in the low-photon-count regime.

In this paper, we extend the applicability of occlusion-based NLoS imaging to operation in that

low-photon-count regime. We experimentally demonstrate an imaging system with substantially

higher photon e�ciency than that reported in [20], performance that is crucial for fast and

low-power NLoS imaging. To do so, we develop an accurate forward model and a photon-e�cient

computational algorithm based on a binomial-likelihood method that, together, respect the physics

of three-bounce light propagation and SPAD-based photodetection. As a result, we achieve a 16⇥
speedup in the data acquisition process, because information from 16⇥ fewer photon detections

than employed in [20] su�ce to produce images of equal quality. Moreover, unlike [20], we report

full details of our experiments that, in addition to the photon-e�ciency demonstration, include

investigations of issues—such as the e�ects of occluder size and the algorithm’s regularization

parameter on scene reconstruction—that were only studied theoretically in [20].

2. Imaging scenario

Our system configuration is illustrated in Fig. 1(a) and a top view of the experimental setup is

illustrated in Fig. 2. The objective is to reconstruct the unknown reflectivity pattern on the hidden

wall. The visible wall is illuminated by a repetitively-pulsed laser that raster scans an m ⇥ m
grid. The photons detected from illumination of a particular scan point have undergone three

bounces: first, reflection o� the visible wall in the direction of the hidden wall; second, reflection

o� the hidden wall in the direction of the visible wall, where the reflection is multiplicatively

scaled by the reflectivity pattern of the hidden wall we seek to recover; and third, reflection o�

the visible wall in the direction of a SPAD. As shown in Fig. 2(a), the SPAD’s field of view

is configured for the left side of the visible wall, to avoid the direct first bounce and to detect

as many third-bounce photons as possible. We use a single-pixel SPAD instead of a normal

charge-coupled device (CCD) camera, because of its single-photon sensitivity. This is necessary

because the returned pulse energy after the three bounces is heavily attenuated (⇠130-140 dB

in our room-scale experiment), severely limiting the number of detected photons. Thus, the

SPAD enables e�cient NLoS imaging. We remark that although a SPAD is capable of providing

time-stamped measurements, we discard the SPAD’s time-resolved information by integrating

detections over a time-gating window to collect just an m ⇥ m matrix of the raw photon counts

obtained from illumination of each laser grid point. To further clarify, we emphasize that a

SPAD is not strictly necessary for our imaging method, as we show next that reconstruction is

possible when we throw away the detected third-bounce photons’ time signatures. Although not

demonstrated here, alternative high-sensitivity sensors with no or poor timing resolution—such
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Fig. 1. (a) Experimental configuration. The goal is to reconstruct the reflectivity pattern on

the hidden wall. A repetitively-pulsed laser source raster scans a di�use (nearly Lambertian)

visible wall. Photons striking the visible wall reflect toward the hidden wall, reflect at the

hidden wall back toward the visible wall, and finally reflect at the visible wall toward the

single-photon avalanche diode (SPAD), whose optics are configured to detect backscattered

photons from a large patch on the visible wall. The counts are recorded by a single-photon

counting module and further computer processed. When present, an occluder (circular

black patch) obstructs some light-propagation paths from the visible wall to the hidden wall

(casting a subtle shadow), and from the hidden wall to the visible wall. (b) Raw photon

counts in the absence of an occluder. (c) Raw photon counts in the presence of the occluder.

(d) Reconstructed reflectivity from the counts in (b). (e) Reconstructed reflectivity from the

counts in (c).

as an intensified CCD or electron-multiplying CCD—can also be used in our experiment. We

will investigate such modifications in future work.

We performed this experiment twice, first with no obstruction between the visible and the hidden

walls, and then with a black circular occluder inserted between those walls to block some of the

light propagating from the visible wall toward the hidden wall, and some of the light propagating

from the hidden wall back toward the visible wall, as illustrated in Fig. 1(a). The corresponding

matrices of raw photon counts are shown in Figs. 1(b) and 1(c). We derive an accurate forward

model and solve the resulting inverse problem using a photon-e�cient reconstruction algorithm

that is tailored to the low-photon-count regime associated with three-bounce propagation (see

below). Figs. 1(d) and 1(e) show that reconstruction of the hidden-wall reflectivity pattern failed

when photon counts were collected without an occluder being present, but succeeded when

they were collected in the presence of the occluder. In Figs. 3(a)–3(c), we present experimental

results in which di�erent patterns are placed on the hidden wall. These results demonstrate

that obstructions in the light propagation path enable imaging from non-time-resolved photon

counts. Indeed, as will be explained, occluders do so by increasing the informativeness of

measurements made in their presence. Note that we have assumed knowledge of the occluder’s

location. This information is easily obtained if the occluder is visible from the detector’s vantage

point. Moreover, we have initial indication that location information for the occluder can be

gleaned from raw-count data (see below).

3. Forward model

In this section, we present a ray-optics light propagation model (see details in Appendix A)

that relates the unknown reflectivity on a Lambertian hidden wall to the raw photon counts for

specified experimental parameters. The model accounts for: (i) third-bounce reflections involving

the hidden wall; (ii) occlusions in the scene; (iii) a low photon-count operating regime; and (iv)
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Fig. 2. Top view of experimental setup and a three-bounce light trajectory of the form

⇤! `i j ! x ! c ! ⌦. The laser (⇤) illuminates the visible wall (`i j ) and is di�usively

reflected (first bounce) toward the hidden wall (x), where it reflects (second bounce) back

toward the visible wall. The third-bounce reflection at the visible wall (c) returns light in the

direction of the detector (⌦). A circular occluder is placed between the visible and hidden

walls, and partially obstructs light propagating between the visible and hidden walls.

wide field-of-view detection. For the derivation we assume that: the geometries of the hidden

wall and occluder are known; the occluders are opaque (nonreflecting and nontransmitting); the

visible wall is Lambertian with known reflectivity; and the background illumination reaching the

detector is known.

The m ⇥ m illumination grid on the visible wall is indexed with (i, j). The hidden wall is

discretized to n ⇥ n pixels indexed with (k, l). Let F be the hidden-wall’s reflectivity matrix, with

entry 0  Fkl  1 being the reflectivity value of the (k, l)th hidden-wall pixel. We use Yi j to denote

the average number of photons arriving at the detector from single-pulse illumination at grid point

(i, j), and Y to denote the m ⇥ m matrix whose i jth entry is Yi j . In the absence of background

light in three-bounce NLoS imaging, Yi j is linearly related to F as follows (Appendix A):

Yi j = Kp
’
k,l

A(i j)
kl Fkl, (1)

where Kp is the average number of photons per transmitted laser pulse, and A(i j)
kl , for fixed i, j, is

the klth entry of an n ⇥ n matrix A(i j)
that is determined by the physics of light propagation and

the geometry of the surfaces involved. For 1  i, j  m, Eq. (1) defines a linear system of m2

equations in the n2
unknowns F that we wish to retrieve.

In practice, Y is not directly available. Even were it available, the robustness of estimating

F from Y would depend on the matrices A(i j)
. Indeed, high-fidelity inversion of Eq. (1) with

a finite-precision calculation requires that the A(i j)
vary substantially with (i, j), i.e., that each

laser illumination point retrieves a new informative projection of the unknowns. When the space

between the visible and hidden walls is free of obstructions, however, the A(i j)
matrices vary

                                                                                    Vol. 26, No. 8 | 16 Apr 2018 | OPTICS EXPRESS 9949 



c b a 

Gr
ou

nd
 tr

ut
h 

Re
co

ns
tr

uc
tio

n 
Ra

w
 co

un
ts

 

0 

0.2 

0.4 

0.6 

0.8 

1 

200 

250 

300 

350 

400 

0 

0.2 

0.4 

0.6 

0.8 

1 

Fig. 3. Role of the occluder’s shadow in NLoS imaging. The red-dashed square in the

ground-truth image indicates the hidden-wall area that is scanned by the occluder’s shadow

as the laser raster scans the visible wall. The blue-dashed circle in the ground-truth image

indicates the approximate occluder-shadow area for one `i j (see Visualization 2 ). (a) The

man-shaped pattern, placed in the upper-left quadrant of the hidden wall, is completely

scanned by the occluder’s shadow pattern as the laser scans the visible wall; with the aid

of the occluder, the hidden pattern is successfully reconstructed from the raw counts. (b)

The T-shaped pattern, placed in the upper-right quadrant of the hidden wall that is outside

of the shadow area, yields raw photon counts that fail to reconstruct the pattern owing to

the occluder’s shadow not scanning that quadrant. (c) Both the man-shaped pattern and the

T-shaped pattern are placed on the hidden wall, with only the man-shaped pattern being

scanned by the occluder’s shadow, so the man-shaped pattern is reconstructed successfully

while the T-shaped pattern is not.

only slightly and smoothly across di�erent grid points (i, j) [Fig. 1(b)]. Hence inverting Eq. (1)

results in poor reconstruction of the unknown reflectivity because the inversion is ill conditioned

[Fig. 1(d)].

In contrast, when an occluder is present in the space between the visible and hidden walls, the

matrices A(i j)
in Eq. (1) become much more diverse [Fig. 1(c)], enabling much better imaging of

the hidden wall [Fig. 1(e)]. Intuitively, the occluder partially obstructs light propagation in the

hidden space, precluding Y contributions from some hidden-scene patches, thus making some

A(i j)
entries vanish. Moreover, di�erent laser positions (i, j) and (i0, j 0) may be blocked from

illuminating di�erent portions of the hidden wall (see 1). Consequently, some A(i j)
entries that

are zeros correspond to A(i0 j0)
entries that are nonzero, and vice-versa, yielding the measurement

diversity needed for a much better conditioned inversion of Eq. (1).

A photon-number-resolving SPAD [23] will produce a Poisson-distributed number of photon

counts in response to an illumination pulse [24]. Currently available SPADs, however, are not

photon-number resolving: after detecting one photon they su�er a dead time [23, 24] whose
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duration is longer, in our experiment, than the duration of light returned in a single illumination

period. Furthermore, after three bounces, the probability of detecting a photon from a single

pulse is very low. So, in this low-flux regime, the probability that the SPAD does not detect a

photon from single-pulse illumination of the i jth grid point is:

P(i j)
0 (F) = exp[�⌘(Yi j + Bi j)], (2)

where ⌘ is the SPAD’s quantum e�ciency, and Bi j is the background contribution to the light

illuminating the SPAD. Defining Ri j to be the number of photons detected from illuminating that

grid point with a sequence of N laser pulses, it follows that Ri j has a binomial distribution with

success probability 1 � P(i j)
0 (F), i.e., [25]

Pr(Ri j ; F) =
✓

N
Ri j

◆
[1 � P(i j)

0 (F)]Ri j [P(i j)
0 (F)]N�Ri j . (3)

4. Reconstruction algorithm

To reconstruct the hidden wall’s reflectivity matrix F from the m⇥m matrix, R, of photon counts,

we make use of the forward model from Eqs. (1)–(3). In particular, we seek a matrix F̂ that

maximizes the likelihood L(R; F) ⌘ Œ
i, j Pr(Ri j ; F) of F being the true reflectivity matrix, given

that R is the observed photon-count matrix. Significantly, the negative log-likelihood function

can be shown to be convex in F, and is thus easy to minimize. The optimization program is still

convex—and still easily solved—after we impose reflectivity’s nonnegativity constraint Fkl � 0,

and an additive penalty pen(F) chosen to ensure spatial correlation between the reflectivity

values of neighboring pixels while allowing abrupt reflectivity changes at the boundaries between

multipixel regions. In summary, we reconstruct the reflectivity matrix as the solution F̂ to the

convex optimization program

F̂ = arg minF : Fkl �0 {� log[L(R; F)] + � pen(F)} , (4)

for an appropriate choice of the regularization parameter �. We used the total-variation (TV)

semi-norm penalty function [26] and a specialized solver [27] to obtain F̂ from Eq. (4).

The regularization parameter � determines the balance between the two optimization targets:

decreasing the negative log-likelihood and promoting locally-smooth scenes with sharp boundaries.

In Fig. 4, we demonstrate the e�ect of varying � on the reconstructed reflectivity. In practice, we

choose the regularization parameter to obtain reasonably smooth images that do not seem overly

regularized.

5. Experiment

Figure 2 depicts the ⇠1-m scale imaging scene in our experiment. For illumination, we used a

repetitively-pulsed 640-nm laser (Picoquant LDH-640B), with sub-ns pulses, 40 MHz repetition

rate, and an average power of ⇠8 mW. A two-axis galvo (Thorlabs GVS012) was utilized to

raster scan the laser’s output over a grid of points (first bounce in Fig. 2) on a nearly-Lambertian

visible wall (white poster board, see its characterization in Appendix B). Light reflected from

the visible wall propagates to the hidden wall, where some is reflected back (second bounce) to

the visible wall. Finally, some of the second-bounce light that is reflected from the visible wall

(third bounce) is collected by a SPAD detector (MPD-PDM with quantum e�ciency ⇠0.35 at

640 nm). We placed an interference filter (Andover) centered at 640 nm with a 2 nm bandwidth in

front of the SPAD to suppress background light. The occluder is a nonreflecting black circular

patch. In the experiment, the two side walls inside the room were covered with black curtains so

that they too are nonreflecting. Note that our forward model can easily take the side walls into
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Fig. 4. Reconstruction results with di�erent values of the regularization parameter �. We

demonstrate reconstruction according to Eq. (4) with varying values for the regularization

parameter�, as indicated on the bottom of the figures. Higher� values promote reconstructions

with larger regions of near-uniform reflectivity values, whereas smaller � values produce

more detailed but noisier images. In our reconstructions, we chose a � value that does not

severely distort the image; here the preferred value is � = 0.75.

consideration were they reflecting. During measurements, we turned o� all ambient room light to

minimize the background level.

The focus of the experiment is to utilize the collected third-bounce light to reconstruct the

hidden-wall’s reflectivity pattern without use of ToF infomation. Therefore it is important to

avoid detecting the first-bounce light that will be much stronger than the third-bounce light. We

took two initial steps to minimize first-bounce photon detections. First, as shown in Fig. 2, we

oriented the SPAD such that its field of view did not overlap the part of the visible wall that was

scanned by the laser. Second, we inserted an opaque screen (not shown in Fig. 2) to block the

direct line of sight between the illuminated part of the visible wall and the SPAD. In testing,

however, we found that there was still a substantial number of photon detections from residual

first-bounce light, which we could determine from their time delays relative to the laser pulses’

emission times. These detections were mostly due to laser light scattered from the two galvo

mirrors that illuminated part of the visible wall within the SPAD’s field of view. So, because

the visible wall is in direct line of sight of the imaging equipment—and hence its location can

be easily and accurately estimated—we further suppressed first-bounce photon detections by

the following post-processing procedure. We used the time-resolved (TR) information that is

automatically captured by the SPAD to set a gated timing window that excludes first-bounce

detections but whose duration is long enough to encompass all possible third-bounce detections,

as indicated in the measurements shown in Fig. 5. As a result, no TR information related to the

third-bounce photons is used in our measurements and scene reconstructions. In the future, with

better galvo mirrors and a single-photon-sensitive CCD detector, we should be able to perform

occlusion-based NLoS imaging with neither the need for nor the possibility of ToF-enabled

suppression of first-bounce photon detections.

6. Experimental results

We report experimental results obtained from a meter-scale environment in which the distance

between the detector and the visible wall is ⇠1.5 m and a circular occluder of diameter ⇠6.8 cm

is positioned roughly midway between the visible and hidden walls, which are separated by ⇠1 m.

A ⇠0.4 m ⇥ 0.4 m reflectivity pattern was mounted on the upper-left quadrant of the ⇠1 m ⇥ 1 m
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Fig. 5. Time-resolved SPAD measurements showing the gated timing window used for post-

selecting third-bounce photon detections while suppressing first-bounce photon detections.

The gate-o� period covers detection times of first-bounce photons and the ⇠6 ns duration

of the gate-on period is long enough to capture all third-bounce photon detections. In our

experiments, only the number of detected photons in gate-on windows were recorded to

form the raw-count images.

hidden wall to ensure that the pattern is properly scanned by the occluder’s shadow as the laser

raster scans the visible wall (see Fig. 3 and Visualization 2 ). We performed an initial calibration

of the background levels {Bi j} that was then used for all subsequent experiments. We note that

the need for background calibration can be avoided with better experimental equipment (see

Appendix B). The occluder’s shape and position are assumed to be known for the purpose of

scene reconstruction. From the known geometry, the matrix A(i j)
can be determined. Finally, we

chose m = 100 and n = 100 for our measurements.

First, we validate our occluder-assisted NLoS imaging method by reconstructing di�erent

reflectivity patterns on the hidden wall. These results are summarized in Figs. 6(a)–6(d). Four

reflectivity patterns were placed on the hidden wall, as shown in the first row of Figs. 6(a)–6(d).

The laser’s dwell time at each raster-scanned point was set so that N = 7.12 ⇥ 105
pulses were

sent, resulting in ⇠276 detected photons per pixel (PPP) on average. For each reflectivity pattern,

a matrix of 100⇥100 raw counts was collected, as given in the middle row of Figs. 6(a)–6(d). The

reflectivity patterns on the hidden wall were then reconstructed using our algorithm for solving

Eq. (4), successfully revealing their fine details, as seen in the bottom row of Figs. 6(a)–6(d).

To quantify the photon e�ciency and fidelity of our method, we varied the dwell time per laser

illumination point (which determines the overall acquisition time) and tracked reconstruction

performance as a function of the empirical average PPP, as shown in Figs. 7 and 8. We measure

the reconstruction fidelity by the root-mean-square error (RMSE) in the reconstructed reflectivity

F̂,

RMSE(F̂,F) =

vt
1
n2

n’
k=1

n’
l=1

�
Fkl � F̂kl

�2
, (5)

where F is the true reflectivity pattern as determined from measurements in the high photon-count
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limit. It is evident from Fig. 7 that reconstruction fidelity for our binomial-distribution-based

likelihood method does not degrade much (remains below 0.05) as the average PPP decreases

from ⇠1100 to ⇠100. Figure 7 also shows RMSE for the Gaussian-distribution-based likelihood

method employed in [20]. We see that the binomial-likelihood method’s photon e�ciency is

substantially better than that of the Gaussian-likelihood method: the latter requires at least ⇠1100

detected PPP to achieve a fidelity similar to what the former realized with only ⇠69 detected PPP.

This behavior is mainly due to the mismatched noise model in the standard Gaussian-likelihood

method, which presumes the noise to be additive, signal independent, and Gaussian distributed,

whereas in the low photon-count regime without photon-number resolution it is really signal

dependent and binomial distributed.
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Fig. 6. Experimental results on the recovery of di�erent hidden-wall reflectivity patterns,

(a)–(d). First row: ground truth patterns on the hidden wall; second row: raw photon counts

for 100 ⇥ 100 raster-scanned laser positions; third row: reconstructions in the presence of

the occluder, based on solving Eq. (4), showing that detailed scene features are successfully

recovered.

Finally, we quantify the e�ect of occluder size [Figs. 9(a)–9(c)] and the limits of achievable

spatial resolution [Figs. 9(d)–9(f)]. In Figs. 9(a)–(c), we used our system to image the reflectivity

pattern of Fig. 6(a) using circular occluders, whose diameters ranged from 15.8 cm to 4.4 cm,

while keeping other experimental parameters unchanged. The results show that a small (large)

occluder sharpens (blurs) the image, similar to conventional pinhole imaging. In Figs. 9(d)–9(f),

we fixed the diameter of the circular occluder at 6.8 cm and reconstructed a hidden-wall reflectivity

pattern consisting of two bars with varying separation. With this occluder we see that our system

provides ⇠4 cm spatial resolution. Furthermore, the distance between the occluder and hidden

wall will also a�ect the performance of the reconstruction. As shown in Figs. 3(a)– 3(c), when

the distance between the occluder and the hidden wall decreases (increases) its shadow’s size

and field of view will decrease (increase), hence the resulting reconstruction will have better

(worse) spatial resolution but smaller (larger) field of view. The distance between the visible and

hidden walls also a�ects the reconstruction. Decreasing (increasing) the distance between the two

walls improves (degrades) the conditioning of the forward model’s A matrix, which improves
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Fig. 7. Root-mean-square error (RMSE) and reconstruction results (insets) with di�erent

numbers of detected photons per pixel (PPP). The RMSE of our binomial-likelihood method

remains below 0.05 with >69 detected PPP, whereas the Gaussian-likelihood method

employed in [20] requires at least ⇠1100 detected PPP to achieve similar performance.

(degrades) scene reconstruction. See Sec. IV.B in ref. [20] for more about this point.

7. Discussion

We have assumed throughout that the occluder’s location was known and that it was nonreflecting.

These assumptions may be relaxed. In particular, the location of a nonreflecting occluder may be

obtained using a blind deconvolution method [20], in which the occluder and the scene hidden

behind it are reconstructed jointly. The viability of this approach is suggested by the fact that the

occluder can be localized from the raw counts, as shown in Fig. 10. Moreover, if the occluder has

nonzero reflectivity, its contribution to the raw photon counts can be modeled using the principles

employed in our forward model and incorporated into the blind deconvoloution procedure.

Our work can be improved in the following directions. First, the raster-scanning system can

be replaced by a non-scanning laser together with a SPAD camera [28] or an intensified CCD

for measurement. Such a system should be capable of tracking the position of a moving target

in the hidden space [16]. Second, the experiment can be operated at an appropriate wavelength

outside of the visible range, such as 1550 nm, in order to perform NLoS imaging in the presence

of ambient light. Finally, one can combine ToF measurements [18] with our approach to obviate

the need for the prior information about the occluder, thus providing a full reconstruction of the

hidden space.

In conclusion, we have demonstrated a framework for photon-e�cient, occluder-facilitated

NLoS imaging. Our results may ultimately lead to new imaging methodologies capable of

opportunistically exploiting diverse features of the environment—including, but not limited to,

simple occluders—and thus pave the way to NLoS imaging in a wide variety of applications.

Appendices

A. Theoretical details

Light propagation model Here we provide details for the forward model in Eq. (1). The

ray-optics propagation model we use for third-bounce light is that from [20], which we present in

detail for ease of reference. Unlike [20], which assumes additive, signal-independent, Gaussian
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Fig. 8. Reflectivity reconstructions with di�erent numbers of detected photons per pixel

(PPP). We compare the binomial-likelihood algorithm (Eq. (4)) and the Gaussian-likelihood

algorithm [20] for di�erent numbers of average detected PPP, ranging from 17 to 3438 as

indicated on the bottom of each figure. The photon e�ciency of the binomial-likelihood

method is far superior to that of the Gaussian-likelihood method, with the latter requiring at

least ⇠1100 PPP to achieve reconstructions comparable to those of the former with ⇠69 PPP.

In the low-photon detection regime, PPP< 276, the Gaussian-likelihood method fails to

reconstruct the details of the reflectivity image. Here the regularization parameter is fixed at

0.75, which causes the slight di�erence between Binomial-likelihood and Gaussian-likelihood

at high PPP values.

noise, our forward model accurately captures the noise statistics for SPAD detection in the

low-photon-count regime.

Light propagates from the laser, located at position ⇤, until it reaches the detector, located

at position ⌦, while accounting for a three-bounce propagation path. Our goal is to reconstruct

the reflectivity function f (x), for x 2 S, where S is a two-dimensional parameterization of the

hidden wall.

Figure 2 illustrates a three-bounce trajectory of the form ⇤! `i j ! x ! c ! ⌦, where `i j
is the i jth position in the laser’s illumination grid, x is a point on the hidden wall, and c is a point

on the visible wall that is in the SPAD’s field of view. For single-pulse illumination of `i j , the

average number of photons following this trajectory that arrive at the SPAD is

Kp f (x)
G⇤,`i j,x,c,⌦ dx dc d⌦

k`i j � xk2kx � ck2kc �⌦k2 , (6)

where Kp is the average number of photons per pulse emitted by the laser, and dx, dc, d⌦ are

di�erential areas. This expression accounts for the inverse-square-law losses experienced in
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Fig. 9. (a)–(c), Reconstructions of the Fig. 6(a) reflectivity pattern obtained using circular

occluders with diameters of 15.8 cm, 6.8 cm and 4.4 cm. A small (large) occluder sharpens

(blurs) the image. (d)–(f), Reconstructions of two-bar reflectivity patterns with bar separations

of 2 cm, 4 cm and 8 cm that were obtained using a 6.8-cm-diameter circular occluder. Our

system achieves 4 cm spatial resolution.

free-space light propagation from `i j to x, from x to c, and from c to ⌦, as well as the linear

scaling by f (x) that results from reflection at x. The geometric factor G⇤,`i j,x,c,⌦ combines the

Lambertian bidirectional reflectance distribution functions (BRDFs) associated with the di�use

reflections at the visible wall and the hidden wall, and is given by

G⇤,`i j,x,c,⌦ ⌘ cos(⇤ � `i j, n`i j ) cos(x � `i j, n`i j )
⇥ cos(x � `i j, nx) cos(x � c, nx) cos(x � c, nc) cos(c �⌦, nc) , (7)

where n`i j , nx, nc are the surface normals at `i j, x, c, respectively, and cos(a, b) is the cosine of

the angle between the vectors a and b.

For single-pulse illumination of `i j , we use Yi j to denote the average number of photons

arriving at the detector from three-bounce trajectories. Deriving an expression for Yi j entails

summation over all such paths. In particular, this means summing over: (i) all x 2 S(`i j, c), where

S(`i j, c) is the section of the hidden wall S that has an unoccluded line of sight to both `i j and

c; (ii) all c 2 C, where C is a parameterization of the section of the visible wall that is in the

SPAD’s field of view; and (iii) all points in D, the SPAD detector’s photosensitive region. With

these definitions we then have:

Yi j = Kp

π
S(`i j,c)

dx
π
C

dc
π
D

d⌦ f (x)
G⇤,`i j,x,c,⌦

k`i j � xk2kx � ck2kc �⌦k2 , (8)

where Eq. (8)’s spatial integrations account for all possible three-bounce trajectories from the
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Fig. 10. Raw detected-count measurements with a 15.8-cm-diameter occluder placed at

di�erent positions. The real location (X,Y, Z) (cm) of the occluder is indicated on the top

of each figure. In (a)–(c), we fixed the position of the occluder on the Z axis and shifted it

along the X and Y axes: the center of the rings reveals the (X,Y ) position of the occluder. In

(d)–(f), we fixed the position of the occluder on the X and Y axes and shifted it along the

Z axis: the size of the rings reveals the Z-axis position of the occluder. These preliminary

measurements suggest that occluder position may be localized from raw-count data.

laser to the detector. This result can be simplified as follows:

Yi j = Kp

π
S

dx f (x)
π
C

dc
π
D

d⌦
1S(`i j,c)(x)G⇤,`i j,x,c,⌦

k`i j � xk2kx � ck2kc �⌦k2

= Kp

π
S

dx f (x)A(i j)(x) , (9)

where 1{x0 }(x) is the indicator function (i.e., it equals 1 if and only if x =2 {x0} and is 0 otherwise),

and for fixed i, j we have defined

A(i j)(x) ⌘
π
C

dc
π
D

d⌦
1S(`i j,c)(x)G⇤,`i j,x,c,⌦

k`i j � xk2kx � ck2kc �⌦k2 . (10)

Equation (9) is specified in terms of the continuous variable x. In what follows, it will be

convenient to discretize the coordinate system on the hidden wall S by introducing an n ⇥ n grid

indexed by (k, l). We then have that A(i j)(x) becomes A(i j)
kl and f (x) becomes Fkl . Making these

substitutions in (9) we obtain the discrete version of the forward model that appeared in Eq. (1):

Yi j = Kp
’
k,l

A(i j)
kl Fkl . (11)

Shadow function Equations (10) and (11) show that the presence of an occluder only a�ects

Yi j through its impact on S(`i j, c), i.e., the patch on the hidden wall that has unobstructed lines of
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sight to both `i j and c. To better understand this connection between the occluder and S(`i j, c),
we introduce a binary shadow function ⇥(x, y) that indicates whether point x on the hidden wall

and point y on the visible wall are visible to each other:

⇥(x, y) =
⇢

1, unobstructed line of sight between x and y,

0, obstructed line of sight between x and y.

(12)

With this definition we have S(`i j, c) =
�
x 2 S : ⇥(x, `i j)⇥(x, c) = 1

 
, i.e., it is the subset of

hidden-wall positions S that satisfy both ⇥(x, `i j) = 1 and ⇥(x, c) = 1. Note that S(`i j, c) and

S(`i0 j0, c) di�er on hidden-wall patches for which the occluder blocks light from `i j but not from

`i0 j0 or vice versa.

Informative measurements Our experiment raster scans the grid points {`i j} on the visible wall

and detects third-bounce photons reflected from a large portion of that wall. The informativeness

of these measurements stems from the diversity of the coe�cients A(i j)
kl . In the absence of an

occluder, we haveS(`i j, c) = S for all `i j and c. From (10) we then see that the dependence of A(i j)
kl

on i, j originates from the product of two smoothly-varying functions—the inverse-square-law

term k`i j � xkl k�2
and the geometric function G⇤,`i j,xkl,c,⌦—that yield smooth variations in

A(i j)
kl as (i, j) changes. In the presence of an occluder, however, the impact of nontrivial shadow

functions in determining S(`i j, c) makes A(i j)
kl vary more abruptly with (i, j) changes, greatly

increasing the informativeness of the measurements.

To demonstrate this e�ect, we rearrange

�
Yi j

 
as an m2

-dimensional column vector y, {Fkl} as

an n2
-dimensional column vector f, and {A(i j)} as an m2 ⇥ n2

-dimensional matrix A such that

Eq. (1) for 1  i, j  m gets combined into

y = Af. (13)

With this rearrangement we can evaluate the informativeness of the measurements by analyzing

the spectral properties of A. Toward that end, Fig. 11 shows the singular values of A for two

experimental setups. The first setup corresponds to an unoccluded scene, whereas the second

setup corresponds to an occluded scene, in which a black circular patch has been inserted

between the visible and hidden walls. It is evident from these singular values that the occluded

measurements are substantially more informative, suggesting that the presence of the occluder

will enable higher-fidelity reconstruction of the hidden-wall’s reflectivity pattern.

Measurement statistics The laser illuminates position `i j with N pulses before it addresses

the next grid point on the visible wall. Each pulse that illuminates `i j results in an average

of Yi j third-bounce photons arriving at the detector’s location ⌦. In this low-flux regime the

number of detections registered by a photon-number resolving detector from illumination of

`i j by a single pulse is Poisson distributed, with mean ⌘(Yi j + Bi j), where ⌘ is the detector’s

quantum e�ciency, and Bi j is the average number of background-light photons arriving during a

single-pulse measurement interval (see details below). A SPAD detector, however, is not number

resolving; it su�ers a dead time after making a single detection that, for our experiment, precludes

more than one detection in a single-pulse measurement interval. In this case, each optical pulse

can yield either a 0 count or 1 count, and these events occur with probabilities P(i j)
0 (F) and

1 � P(i j)
0 (F), respectively, where

P(i j)
0 (F) = exp[�⌘(Yi j + Bi j)] ⇡ 1 � ⌘(Yi j + Bi j) , (14)

The equality in Eq. (14) comes from the Poisson distribution. The approximation for that Poisson

probability is due to the enormous attenuation incurred in three di�use reflections, which makes
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Fig. 11. Comparing the informativeness of occluded and unoccluded measurements. We nu-

merically simulated the setup of Fig. 2 and evaluated the informativeness of the measurements

with and without an occluder from the A matrix’s singular values {�}. In our simulations,

the laser illuminates a 50 ⇥ 50 grid on the visible wall, and the hidden wall is discretized

to a 50 ⇥ 50 grid. The singular values of the corresponding 2500 ⇥ 2500 A matrix were

calculated for an occluded setup (blue dashed curve) and an unoccluded setup (red solid

curve). The singular values of the occluded A matrix are substantially higher than those of

the unoccluded matrix, suggesting that measurements in the occluded setup will be much

more informative.

⌘Yi j ⌧ 1, and the pre-detection optical filtering used to ensure that ⌘Bi j ⌧ 1, which prevents

SPAD counts from occurring in every single-pulse measurement interval. The F dependence of

P(i j)
0 (F) arises from the Yi j term, see Eq. (1).

The statistical independence of the photon counts from di�erent laser pulses now makes Ri j ,

the total photon count from the N pulses that illuminate `i j , a binomial random variable with

success probability 1 � P(i j)
0 (F), i.e., [25]

Pr(Ri j ; F) =
✓

N
Ri j

◆
[1 � P(i j)

0 (F)]Ri j [P(i j)
0 (F)]N�Ri j . (15)

Using this binomial distribution for the count statistics, and dropping terms that are independent

of F, we get the following negative log-likelihood function for the raw count matrix R given the

reflectivity matrix F:

� log[L(R; F)] = � log
✓Œ
i, j

Pr(Ri j ; F)
◆
= �Õ

i

Õ
j

log
⇥
Pr(Ri j ; F)

⇤

=
Õ
i

Õ
j

⇢
(N � Ri j)


⌘Kp

Õ
k,l

A(i j)
kl Fkl

�
� Ri j log


⌘Kp

Õ
k,l

A(i j)
kl Fkl + ⌘Bi j

��
, (16)

where the first equality in (16) follows from the statistical independence of the shot noises

generated by di�erent laser pulses.

B. Experimental details
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Visible wall characterization We used a white poster board as a near-Lambertian reflecting

surface to serve as the visible wall in our NLoS imaging experiment of Fig. 2. We used a 635-nm

laser to illuminate the white board at two di�erent incident angles and measured its reflected

power at various viewing angles. The results are displayed in Fig. 12, showing that the white

poster board is indeed nearly Lambertian.

Background light In Fig. 13, we show results of background-light detection over a long

data-acquisition time that we used to calibrate Bi j , the average number of background photons

arriving at the detector in a single-pulse measurement interval. For this measurement, the

reflectivity pattern on the hidden wall was replaced with a black surface, a total of N = 3.56⇥ 107

laser pulses were transmitted at each laser point `i j , and the third-bounce photons were detected

by the SPAD. Note that once performed this calibration applies to all subsequent measurements:

in post-processing, we scale these background noise counts according to the dwell time used.

The nonuniformity of the background counts is mainly due to scattering from the raster-scan

galvo mirrors and to SPAD afterpulsing originating from detections of those first-bounce photons.

Galvo-related background counts could be avoided with better scanning mirrors.

20º 

ϕ ϕ 

Fig. 12. Near-Lambertian reflectance behavior of white poster-board visible wall. The blue

(red) data points correspond to measurements made with the setup in the blue (red) inset: a

laser illuminated the visible wall at normal incidence (20

�
o�set from normal incidence),

and a detector recorded the power reflected at di�erent viewing angles. The green line is the

theoretical cosine curve for a perfect Lambertian surface. We find that the visible wall has

⇠80% reflectivity and is nearly Lambertian except for a small specular component when the

viewing angle is perpendicular to the surface. We also performed this characterization for

the patterns on the hidden wall, and found that the Lambertian property of those patterns

was similar to that of the visible wall.
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Fig. 13. Results of long acquisition time background-light measurement used to calibrate Bi j .

The reflectivity pattern on the hidden wall was replaced with a black surface. A total of 35.6

million laser pulses were transmitted at each laser point `i j on the 100 ⇥ 100 illumination

grid, and the third-bounce counts were recorded by the SPAD. The nonuniformity is mainly

due to scattering from the raster-scan galvo mirrors and SPAD afterpulsing that arises from

detections of those first-bounce photons.
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