
5240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Defect Tolerance: Fundamental
Limits and Examples

Jennifer Tang , Da Wang, Yury Polyanskiy, Senior Member, IEEE,
and Gregory W. Wornell, Fellow, IEEE

Abstract— This paper addresses the problem of adding redun-
dancy to a collection of physical objects so that the overall
system is more robust to failures. In contrast to its informa-
tion counterpart, which can exploit parity to protect multiple
information symbols from a single erasure, physical redundancy
can only be realized through duplication and substitution of
objects. We propose a bipartite graph model for designing defect-
tolerant systems, in which the defective objects are replaced by
the judiciously connected redundant objects. The fundamental
limits of this model are characterized under various asymptotic
settings and both asymptotic and finite-size systems that approach
these limits are constructed. Among other results, we show that
the simple modular redundancy is in general suboptimal. As we
develop, this combinatorial problem of defect tolerant system
design has a natural interpretation as one of graph coloring, and
the analysis is significantly different from that traditionally used
in information redundancy for error-control codes.

Index Terms— Defect-tolerant circuits, bipartite graphs,
coloring, combinatorics, worst-case errors.

I. INTRODUCTION

CLASSICAL Shannon theory established principles of
adding redundancy to data for combating noise and,

dually, of removing redundancy from data for more effi-
cient storage. The central object of the classical theory is
information, which unlike physical objects, can be freely
copied and combined. In fact, the marvel of error-correcting
codes is principally based on the counter-intuitive property
that multiple unrelated information bits X1, . . . , Xk can be
simultaneously protected by adding “parity-checks” such as

Y = X1 + · · · + Xk mod 2. (1)

In this example, the added parity-check Y allows the recovery
of the original message even if the vector

(X1, X2, . . . , Xk , Y)

undergoes an erasure of an arbitrary element.

Manuscript received October 9, 2016; accepted August 1, 2017. Date of
publication November 8, 2017; date of current version June 20, 2018. This
work was supported by the Center for Science of Information, and NSF
Science and Technology Center, under Grant CCF-09-39370, in part by the
NSF CAREER Award under Grant CCF-12-53205, and in part by Systems
on Nanoscale Information fabriCs, an SRC STARnet Center sponsored by
MARCO and DARPA. This paper was presented at 2016 ISIT.

J. Tang, Y. Polyanskiy, and G. W. Wornell are with the Department of Elec-
trical Engineering and Computer Science, MIT, Cambridge, MA 02139 USA
(e-mail: jstang@mit.edu; yp@mit.edu; gww@mit.edu).

D. Wang was with the Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA 02139 USA. He is now with Projection
Analytics LLC, Hoboken, NJ 07030 USA (e-mail: dawang@alum.mit.edu).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2771417

Physical objects (e.g., transistors in a chip) may also be
subject to erasures (failures) and thus it is natural to ask
about ways of insuring the system against failure events. Note,
however, that for physical objects operations such as (1) are
meaningless. If the failure renders an object completely use-
less, then protecting against these failures would entail adding
spare (redundant) elements. The required operation is to copy
and then substitute.1 It may, therefore, seem that nothing better
than simple replication can guard against failures. This paper
shows otherwise. Indeed, there exist non-trivial ways to add
redundancy as long as the objects’ diversity does not exceed
their number. That is, if the number of types of objects is
smaller than the total number of them.

The objective of this paper is to develop a study of adding
redundancy to a physical system where certain objects in the
system fail and can only be replaced by substitutes. This paper
will explore what are good design choices in this scenario and
find fundamental limits for specific settings.

A. Reconfigurable Defect-Tolerant Circuits

To facilitate defining the problem we intend to study, we will
first present the application which informed the main model
we developed for studying redundancy of physical objects, and
that is the application of reconfigurable circuits.

Consider a chip design process, in which the chip is
composed of many similar cells (e.g., standard-cell designs
of ASICs). Layout of elements in each cell is dictated by the
chip manufacturer. Each cell has k input/output buses and k
placeholders (nodes) that can be filled in with logic realizing
one of q functions. Now because of manufacturing defects,
not all k elements in the cell will operate correctly (call these
primary elements). For this reason, each cell also contains
provisions for redundant elements. In particular, there are m
placeholders designated as redundant elements. The designer
then selects what type of logic to instantiate into these
redundant elements. Once the chip is manufactured and placed
on the testbed, the testing equipment probes each cell and
determines which primary elements are defective. Program-
mable switches are then used to reconnect input/output buses
from the defective primary elements to one of the redundant
elements containing the same logic. So the summary of the
events happening to each cell during this process is:

1We assume for physical objects, the “error-correction” should provide an
exact copy of the object, not merely something functionally equivalent to
the object. An example of what is not considered as “correction” would be
replacing a cell storing two bits (b1, b2) with a cell storing (b1, b1 ⊕ b2).

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8369-7901
https://orcid.org/0000-0002-2109-0979

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5241

1) Choose the layout of the placeholders and intercon-
nect (these are provisional wires)

2) Choose components (from available collection of possible
types) to fill in the primary elements for the reconfig-
urable circuit

3) Based on primary elements chosen, choose redundant
components (from the same collection) to place in redun-
dant placeholders

4) Build the circuit with these components
5) Based on where the defects occurred, reconfigure the

interconnect (i.e., enable provisional wires with program-
mable switches) of the circuit to correct the defects.

In the above summary, step 5 of reconfiguring the defects
is a simple operation which requires minimal programming
(or switching) of the provisional wiring. This is precisely the
advantage of choosing a good layout for the placeholders and
provisional wires in step 1. Notice that this layout is universal
in the sense that any choice of components in step 2 (which
may be arbitrarily dictated by the manufacturer later) should
still lead to guarantees on the number of correctable defects.
The focus of this work is to study optimal choices of layouts
in step 1 so that the rest of the steps in the procedure are
possible.

With respect to this application, our goal is to understand
what wiring topologies for the layout the chip manufacturer
should try to implement in order to attain the optimal trade-off
between the number of redundant elements, provisional wires
and defect-tolerance. Notice that the two metrics, redundancy
and wiring, both correspond to necessary additional resources.
Adding redundancy require more silicon area and the pro-
visional wires requires additional metal and programmable
switches.2

Certainly, there are other procedures and layout constraints
we could have chosen to study defects in hardware. For
instance, there could be a 2-hop system between the primary
elements and redundant elements, decreasing the amount of
wiring needed. However, multi-hop interconnects could intro-
duce more latency and make signal propagation delays unpre-
dictable, which is why we do not discuss this in this work,
but this is a scenario left for future work (see Section VI-E).

B. Relation to Prior Work

Prior work on the subject of designing digital electronics
robust to noise has been traditionally approached with the
goal of combating dynamic noise. This is epitomized in the
line of work started by von Neumann [1] and contemporary
variations [2]. Although significant progress has been made in
understanding fundamental limits in von Neumann’s model,
see e.g., [3]–[11], the practical applications are limited due to
a prohibitively high level of redundancy required [12].

Here, instead, we are interested in circuits robust to static
manufacturing failures. As illustrated previously, this scenario
has the advantage of being able to test which parts of the
circuit failed and attempt to configure out (or “wire around”)

2There are certainly other metrics (such as geometric constraints or
resources to adjust the wiring between primary elements) which are relevant
for circuit applications, but we leave consideration of them to future work.

the defective parts. This side information enables significant
savings in redundancy [13]. In fact, this method of testing
the performance of a device followed by some configuration
is rather popular in practice, used in multi-core CPUs [14],
analog-to-digital converters [15], sense-amplifiers [16], self-
replicating automatons [17], parallel computing [18], [19], etc.

This paper can be seen as an attempt to provide theoretical
foundations for the static defect scenario. (In fact, this was our
original motivation.)

C. Problem Formulation

We study the following problem formulation: Given k
objects (“primary nodes”), connect each one of them to some
of the available m spares (“redundant nodes”) in such a way
that in the event that t ≥ 1 of the objects fail (originals
or spares) the overall system can be made to function after
a repair step. Such a repair step consists of replacing each
failed primary node with one of the working spares that it is
connected to. Each spare can only replace one failed primary
node. The key assumptions are 1) the primary nodes are one
of q different types (called labels) 2) the spares have to be
programmed to one of the q labels before the failure events
are known and 3) the same connections need to repair all
possible choices of labels for the k primary nodes. We are
interested in minimizing the number of spare nodes and the
number of connections to spare nodes.

Key to our problem formulation is the idea that we want to
design the interconnect (wires) before any of the node labels
are determined. One might argue that in some applications
the interconnect could be allowed to depend on the labeling
of primary nodes. Indeed, the latter will be known before the
final topology for the chip is made. However, our procedure
insists that the interconnect does not depend on this labeling.
The advantage of this is that in the reconfigurable circuits
framework, the provisional wire-layout is usable regardless
of where any element is placed, providing the same defect
tolerance guarantee for every possible placement. We seek a
universal design, which is independent of element types and
thus could serve as the new standard cell for all defect-tolerant
circuits. We further discuss alternative design methodologies
in Section VI.

We intentionally abstracted our problem to a simple model
which is more fundamental and relates to other applica-
tions needing redundancy for objects and a universal design.
For example, instead of parts of a reconfigurable circuit,
objects can represent elements in a programmable logic device
(e.g., look-up tables (LUTs) in an FPGA). As part of periodical
firmware update, a manufacturer assigns values of LUTs (both
primary and redundant) without knowledge of locations of
device-specific failures. Then, a built-in algorithm for each
failed LUT T reconnects it to an adjacent spare LUT R, with
the requirement that R and T be equivalent. This built-in
local algorithm is a computationally non-demanding way to
reconfigure around defective LUTs. Note that the interconnect
of the LUTs need to be universal so that any update chosen
by the manufacturer (these updates change the configuration
of the primary LUTs) has the same guarantee against defects.

5242 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

For q = 2 our problem is equivalent to finding sparsity vs.
edge-size trade-off for (t, t)-colorable hypergraphs, cf. [20].
See Section VI-C. Other applications potentially arise in
warehouse planning, operations research, public safety etc.
Such applications can be conceived after realizing that our
interconnect may be thought of as a transportation network
between a collection of “sinks” and “sources” so that each
sink can be serviced by at least t sources, where each sink
has a type and can be serviced only by sources of the same
type.

Expressed mathematically, we are looking for a k × m
bipartite graph with the property that for any q-coloring of
the left-side nodes there is a q-coloring of the right-side nodes
such that each of the k left-side nodes is connected to at least t
nodes of its color. The goal is to find bipartite designs which
have efficient trade-off in redundancy m/kt vs. number of
edges.

The high-level summary of our main findings is that when
q ≥ k, no strategy is better than straightforward t-fold repli-
cation. When q < k, there exist designs that provide savings
compared to repetition. We fully or partially characterize
the fundamental trade-off between redundancy m/kt and the
average number of edges per primary node in the following
cases:

1) q , t fixed and k, m → ∞;
2) q fixed and k, m, t → ∞;
3) q , k fixed and m, t → ∞.

Perhaps surprisingly, in this (combinatorial) problem it is pos-
sible to obtain exact analysis for asymptotics. The organization
of the paper is as follows. Section II introduces the problem
formally and overviews main results. Section III demonstrates
small-size examples that show non-triviality of the problem.
Sections IV and V address the trade-off in the regime of
fixed t and t → ∞ respectively. Finally, Section VI discusses
implications and extensions of our results.

The notation [n] denotes positive integers 1, 2, . . . , n. The
notation {·} denotes the indicator function. An underlined
letter (e.g, x) stands for a vector quantity.

II. PROBLEM SETUP AND MAIN RESULTS

A. Defect-Tolerance Model

This paper focuses on bipartite graph designs.3 The left-
side nodes of the bipartite graph are called the primary nodes.
These are denoted by circles and there are k of these in the
bipartite graph. The right-side nodes are the redundant nodes.
These are denoted by squares and there are m of these in the
bipartite graph.

Let X be a finite alphabet where q = |X |.
Definition 1: Fix an alphabet of labels X with size q.

A k × m bipartite graph is called a t-defect correcting design
if for any labeling of k primary nodes with elements of X
there exists a labeling of m redundant nodes with elements of
X such that every primary node labeled x ∈ X has at least t

3The word choice of “design” is not intended to relate to the notion
of combinatorial (Steiner) designs or any other established mathematical
definitions.

Fig. 1. Example of a 2-defect correcting design for an alphabet X = {A, B}
of size q = 2. The design is bipartite with the circles representing the left-
side nodes and the squares representing the right-side nodes. Fig. 1(b) shows a
labeling of the primary (circle) nodes. To each such labeling, we strategically
choose a labeling of the redundant (square) nodes, so that each primary node
has t = 2 neighbors with matching labels (see Fig. 1(c)). Since such a choice
is possible for each of the 23 = 8 possible labelings of primary nodes, we
conclude that this design is t = 2 defect correcting in the sense of Definition 1
and is a (3, 4, 2, 9)2-design.

neighbors labeled x. We will call such a graph a (k, m, t, E)q-
design, with E denoting the number of edges. (See Fig. 1 for
an illustration.)

This paper is devoted to characterizing the fundamental
trade-off between the two basic parameters of t-defect correct-
ing designs: redundancy and wiring complexity. The redun-
dancy of a (k, m, t, E)q -design is ρ = m/(kt). The wiring
complexity (or average degree per defect) of a (k, m, t, E)q -
design is ε = E/(kt). This trade-off can be encoded in a
two-dimensional region:

Definition 2: For a fixed q and t ≥ 1 we define the region
Rt as the closure of the set of all achievable pairs of (ε,ρ):

Rt
△= closure

{(
E
kt

,
m
kt

)
: ∃(k, m, t, E)q -design

}
. (2)

To interpret between Definition 1 and reconfigurable cir-
cuits (and other applications), we present the following
association.

Proposition 3: An interconnect for a reconfigurable circuit
can tolerate any t manufacturing defects for any choice of
primary nodes if and only if the interconnect is a t-defect
correcting design.

Proof: If the interconnect corrects fewer than t defects,
there is some primary node labeling where any labeling of the
redundant nodes would result in some primary node with label
x having fewer than t neighbors with the same label x . If this
primary node and all its matching neighbors have defects, then
the defect in the primary node cannot be corrected.

If the interconnects is a t-defect correcting design, with
the correct redundant node labeling scheme, any primary
node labeled x has t redundant neighbors with the same
label x . If there are only t defects, either this primary node is

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5243

working, or this primary node has a defect and at most t − 1
of its neighbors have a defect or are used to correct another
primary node. In the latter case, there is at least one redundant
node with label x available which can be used to replace this
primary node. !

As noted earlier, our performance metrics, ρ and ε,
correspond to the extra silicon area and wiring (and fan-out)
required respectively for defect-tolerance.

Before proceeding further, we summarize some of the basic
properties of regions Rt .

Proposition 4 (Properties of Rt): Regions Rt satisfy the
following:

1) (ε,ρ) ∈ Rt iff there exists a sequence of (k, m, t, E)q -
designs with E

kt → ε, m
kt → ρ as k, m → ∞;

2) If (ε,ρ) ∈ Rt and ε′ ≥ ε,ρ′ ≥ ρ then (ε′,ρ′) ∈ Rt ;
3) Rt are closed convex subsets of R2

+;
4) We have

lim sup
t→∞

Rt = closure

⎧
⎨

⎩
⋃

t≥1

Rt

⎫
⎬

⎭
△= R∞. (3)

5) The limiting region R∞ is also a closed convex subset of
R2

+ characterized as

R∞
△= closure

{(
E
kt

,
m
kt

)
: ∃(k, m, t, E)q − design

}
. (4)

See Section IV-B for proofs.

B. Preview of Main Results for Binary Alphabet

Notice the wiring complexity and redundancy metrics repre-
sent the linear scaling between the quantities E and m respec-
tively with the product kt . Designs which satisfy Definition 1
must have the number of redundant nodes and number of edges
grow linearly with the product kt . The goal of our results is
to find a tight understanding of the coefficient in this linear
scaling.4

In this section, for the purpose of illustration, we give a
summary of our results for the case of binary alphabet X
(i.e., q = 2). The rest of the paper will present various bounds
and constructions which apply to general alphabet sizes,
(i.e., arbitrarily values of q).

There are three separate results which are the main con-
tributions of this paper. One is characterizing the region Rt
in the regime where t is small, specifically for values where
t = 1 and t = 2. The second main result is characterizing
the region R∞, which corresponds to the limit of regions Rt
when t tends to infinity. The third is characterizing the result
when the number of primary nodes k is finite (the first two
results have infinite k) and t tends to infinity.

The theorem for the small t case is the following:
Theorem 5: For binary alphabet X , if t = 1 or t = 2,

we have

Rt = {(ε,ρ) : ε ≥ 1,ρ ≥ 0 and ε ≥ 2 − ρ}. (5)

4For all our results, q is always fixed. How wiring complexity and
redundancy scales with q is left for future work.

Fig. 2. Achievable regions for redundancy and wiring complexity trade-off
when q = 2. Regions R1 and R2 are shown in darker gray. Region R∞
includes lighter and darker gray areas. All other regions Rt lie between R1
and R∞. The boundary of the region R∞ is calculated using the methods
in Appendix E.

This will be proved in Section IV-D. The immediate con-
clusion from this result is that the designs for t = 1 and t = 2
achieve the same number of redundant nodes and edges needed
per primary node per defect asymptotically over k. The region
in Theorem 5 has two corner points. We will also discuss the
designs which attain these corner points.

The theorem for the asymptotic t case is the following:
Theorem 6: Let X be a binary alphabet. The region R∞

defined in (3) is the closure of the set of points (ε,ρ) defined
as follows. For every distribution PS on Z+ with finite support,
we define

ε = E [S]
F(PS)

, ρ = 1
F(PS)

, (6a)

where

F(PS)
△= min

0≤λ≤1
max

0≤ f (·,·)≤1
min

{
E

[
L0

λ
f (L0, L1)

]
,

E
[

L1

1 − λ
(1 − f (L0, L1))

]}
(6b)

where the expectations are over S ∼ PS and given S the
distribution of L1 ∼ Bino(S,λ) and L0 = S − L1.

This theorem parametrically characterizes R∞ in terms of
the function F(PS), which is evaluated on every PS with finite
support. Note that evaluation of the bound (6a) is non-trivial
as we will discuss in Section V-E.

The generalization of Theorem 6 to larger alphabet sizes
is given by Theorem 19 and is developed in Section V. Here
the designs achieving the best trade-off are more complicated
than those associated with Theorem 5. We call them subset
designs and develop them in Section III-B.

The resulting achievable regions for Theorem 5 and
Theorem 6 are depicted in Fig. 2. Via these results we can
determine at any fixed redundancy level, how many connec-
tions are necessary. For example, at redundancy level 10%,
the figure indicates that there exists designs which:

• correct 1 defect if each primary node is connected on
average to about 1.9 redundant nodes

5244 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Fig. 3. Two elementary designs. (a) Example of complete design. (Design
written as K (3, 4)). This design is 2-defect correcting for q = 2 and 4-defect
correcting for q = 1. (b) Example of repetition design. (Design written as
2K (1, 3)). This design corrects 3 defects for any q.

• correct 2 defects if each primary node is connected on
average to about 1.9 × 2 redundant nodes

• correct 103 defects if each primary node is connected on
average to about 1.7 × 103 redundant nodes.

Immediate from Fig. 2 is that the region R∞ contains the
regions R1 and R2 implying that increasing the number of
defects t allows for lower redundancy and wiring complex-
ity (recall both these quantities are divided by t). In this sense,
it is more efficient to correct more defects.

According to (4) all regions Rt will lie between
R1 and R∞, approaching the latter as t → ∞. It is perhaps
surprising that unlike most known asymptotic combinatorial
problems, this one (for t → ∞) admits a relatively simple
solution.

The third and the more practically useful result is the
characterization of the achievable regions for asymptotic t but
with finite k. This is developed in Section V-F.

III. EXAMPLES OF GOOD DESIGNS

Before developing the main results, we will first introduce
a few basic designs and analyze their performances. Some of
these examples play major roles in subsequent developments.

We denote by K (k, m) a complete bipartite graph with k
primary nodes (circles) and m redundant nodes (squares). The
two most basic designs are the following:

1) Complete designs: K (k, qt) (recall that q = |X |) is
t-defect correcting. (Just label redundant nodes to hold
t copies of each value X . No matter how the primary
nodes are labeled, each primary node will be connected
to t redundant nodes with the same label as itself.)
See Fig. 3(a) for illustration.

2) Repetition designs: K (1, t) is capable of correcting t
defects over an arbitrary alphabet. (Just label all t redun-
dant nodes the same label as the neighboring primary
node.) Taking k disjoint copies of K (1, t), denoted by
kK (1, t), we get a repetition design achieving ρ = ε = 1.
See Fig. 3(b) for illustration.

If we take k → ∞, the complete design achieves ε = q
and ρ = qt

kt → 0 for any fixed t and q , which is the best
possible trade-off given the value of ε. For finite k, however,
the complete design is not the design with the minimal number
of edges: it is possible to remove some of the edges and still
maintain a t defect correcting property, as we will show in the
next subsection.

The repetition design uses the minimal number of
edges (since any primary node needs at least t edges in
order to be a t-defect correcting design). If all primary nodes
have exactly t edges, then it is necessary for each primary
node to have a distinct neighborhood, illustrating that the
repetition design achieves the best trade-off at minimal wiring
complexity.

A. Smallest Non-Trivial Designs

We now present designs which have the fewest number of
edges given some fixed number of primary nodes k, redundant
nodes m, and defect tolerance t .

If k ≤ q then all primary nodes can have different values
and thus one is forced to use the repetition design kK (1, t) to
correct t defects. For k = q + 1 the question becomes more
interesting. First, notice that the minimal possible m equals qt
(this is achieved by the complete design and cannot be reduced
since t nodes with the same label can have defects and this
can occur for each of the q different labels). However, some
of the edges can be removed from the complete design while
still preserving the number of defects corrected.

The optimal designs with k = q + 1, m = q and t = 1 are
as follows:

• Binary alphabet (q = 2): k = 3, m = 2 with 5 edges.
See Fig. 4(a).

• Ternary alphabet (q = 3): k = 4, m = 3 with 8 edges.
See Fig. 4(b). (There exist two non-isomorphic optimal
designs. Fig. 4(b) shows the symmetric one.)

• Quaternary alphabet (q = 4): k = 5, m = 4 with
12 edges. See Fig. 4(c). (There exist multiple non-
isomorphic optimal designs. Only one is shown.)

The optimal designs with k = q + 1, m = 2q and t = 2 are
as follows:

• Binary alphabet (q = 2): k = 3, m = 4 with 9 edges,
see Fig. 5(a). This design is what we call the Hamming
block. Fig. 1 shows how it can correct 2 defects. We will
discuss its optimality in Corollary 27.

• Ternary alphabet (q = 3): k = 4, m = 6 with 15 edges,
see Fig. 5(b). (There exist two non-isomorphic optimal
designs. Fig. 5(b) shows the symmetric one.)

• Quaternary alphabet (q = 4): k = 5, m = 8 with 21
edges, see Fig. 5(c).

Some of these designs were found analytically and others
by exhaustive search. None of these designs are at the per-
formance boundary of any Rt regions. To obtain designs that
near the optimal trade-off boundary, we need to use a larger
number of primary and redundant nodes (see Proposition 15).
However, a few of these designs, like the Hamming block
in Fig. 5(a), achieve the best trade-off when restricted to the
finite k setting (as we will develop in Section V-F).

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5245

Fig. 4. Smallest non-trivial 1-defect correcting designs. (a) q = 2. (b) q = 3.
(c) q = 4.

Fig. 5. Smallest non-trivial 2-defect correcting designs. (a) q = 2. (b) q = 3.
(c) q = 4.

B. Subset Designs

Designs that form a key ingredient of our asymptotic
(i.e., large t) constructions are subset designs. A subset design
S(k, s) is a bipartite graph with k primary nodes and m =

(k
s

)

redundant nodes, each connected to a distinct s-subset of
{1, . . . , k}. Note that the degree of each primary node is

(k−1
s−1

)
.

Fig. 6. Example of merging two designs.

Fig. 7. Example of a subset design. This design is S(4, 3) ∨ S(4, 2). The
redundant nodes corresponding to S(4, 3) are shown on the left side and those
corresponding to S(4, 2) are shown on the right side.

In general, we allow subset designs to have multiple and
possibly different subset sizes. For two values s1 and s2, where
s1, s2 ∈ [k], a bipartite graph S(k, s1) ∨ S(k, s2) is defined to
be the result of identifying the k primary nodes in two disjoint
copies of S(k, s1) and S(k, s2). The resulting graph has k
primary nodes and m = (k

s1

)+(k
s2

)
redundant nodes. We call the

operation (∨) graph merging, which we state more precisely
below. We will develop the properties of merging later.

Definition 7 (Merging): For any collection of designs G j
on the same number of primary nodes k, the merging of G j ,
denoted G = ∨

j G j is a graph formed by taking disjoint
copies of G j and identifying primary nodes.

See Fig. 6 for an illustration of merging.
Definition 8 (Subset Design): Given k and (not necessarily

distinct) positive integers s1, s2, . . . , sr ∈ [k],
S(k, s1) ∨ S(k, s2) ∨ · · · ∨ S(k, sr) (7)

is a subset design with k primary nodes and m = ∑r
j=1

(k
s j

)

redundant nodes.
For example, the Hamming block, Fig. 5(a), is S(3, 2) ∨

S(3, 3), the repetition design is S(k, 1)∨ · · ·∨S(k, 1) (t times)
and the complete design is S(k, k) ∨ · · · ∨ S(k, k) (qt times).
Fig. 7 shows the subset design S(4, 3) ∨ S(4, 2).

Subset designs are characterized by the following property:
Definition 9 (Permutation Invariance): A design is called

permutation invariant if there exists a group of bipartite-graph
automorphisms (thus preserving the left/right partition) that
acts as the full symmetric group Sk on primary nodes.5

Proposition 10: A design is permutation invariant if and
only if it is a subset design.

5For those not familiar with bipartite-graph automorphisms: Consider iden-
tifying each primary node and redundant node in the design with a distinct
number. Primary node number i is connected to some set of numbered
redundant nodes Mi . We can equivalently say a design is permutation invariant
if for all possible permutations of the numbers of the primary nodes, there is
a way to permute the numbers of the redundant nodes, so that the new design
still has primary node i connected to the set of redundant nodes Mi .

5246 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Proof: Invariance of subset designs is clear. Conversely,
given a permutation invariant design and an integer s ≥ 1,
consider the subgraph induced by all degree-s redundant
nodes and their neighborhoods. By permutation invariance
this subgraph must contain all k primary nodes and itself be
permutation invariant (since automorphisms preserve degrees
of nodes). Therefore, every s-subset of the primary nodes must
appear as a neighborhood of n redundant nodes for some
integer n. This degree-s subgraph corresponds to merging of
n copies of S(k, s) and the original graph is a merging of
degree-s subgraphs. !

The number of redundant nodes used in subset designs
is large and therefore it should be able to correct many
defects. We will find sharp estimates for the defect-correcting
properties of subset designs later (Proposition 22 below), but
for now we can give a simple order-of-magnitude result:

Proposition 11: Fix alphabet X and size s ≥ 1. As k → ∞
the design S(k, s) corrects t = $(ks−1) defects.

Proof: We know that t = O(ks−1), since each primary
node has at most

(k−1
s−1

)
= O(ks−1) neighbors. To show that

t = %(ks−1), fix a labeling of the primary nodes with the
elements of X . Consider the following procedure for labeling
redundant nodes. First we declare an element of x ∈ X to
be rare if the number of primary nodes labeled x is less than
k
q . Now each redundant node is labeled the value x ∈ X if
either all of its neighbors have label x or if x is the only
rare label in its neighborhood. (Some redundant nodes may
not be labeled, but the contribution from these nodes can
be disregarded for this particular order of magnitude result.)
To see that this is an labeling that corrects %(ks−1) defects,
simply notice that a non-rare primary node labeled x has at
least

(k/q−1
s−1

)
= %(ks−1) neighboring redundant nodes with

all neighbors labeled x . Similarly, for any choice of non-
rare label x , each rare-labeled primary node has at least(k/q−1

s−1

) = %(ks−1) neighboring redundant nodes connected
to it such that all other neighbors of this redundant node is
labeled x . Since x is non-rare, these %(ks−1) are labeled the
value of the rare primary node. !

As we will see, subset designs turn out to be optimal for
achieving the boundary of R∞. In other words, they can be
tuned to get the optimal speed of growth for redundancy and
wiring complexity as t → ∞.

IV. BOUNDS FOR FINITE t

In this section we prove a number of basic results, which
will lead to the proof of Theorem 5. We will first show
how two basic operations, copying and merging, can be used
to combine existing designs into a new design with certain
properties. Using these operations, we then proceed to prove
the claims in Proposition 4.

Using the convexity results from Proposition 4, we show
achievability for Theorem 5. Following the achievability,
we show the converse for Theorem 5 which uses a technique
we call covering.

A similar result for the achievable region for ternary alpha-
bet is stated at the end of the section.

Fig. 8. Example of the copying operation on two designs.

A. Two Basic Operations on Designs

Definition 12 (Copying): A disjoint union, which we call
copying, of two designs G1 and G2 is denoted by G1 + G2.
A disjoint union of a collection of designs G j is denoted by∑

j G j . A disjoint union of n identical designs G is denoted
as nG.

Copying is simply the idea of creating a new design from
two designs where each design is a disjoint component of the
new design. Defining this operation formally is useful for our
analysis. See Fig. 8 for an illustration of copying.

Proposition 13 (Copying): Consider (k j , m j , t , E j)q-
designs G j . Then

∑
j G j , forms a (

∑
k j ,

∑
m j , t,

∑
E j)q-

design.
The proof is clear after realizing that the number of defects

corrected does not change while all other parameters must
add. We note here that the values of ε and ρ for G1 + G2 is
a convex combination of those of G j . That is

ρ = k1

k1 + k2
ρ1 + k2

k1 + k2
ρ2 (8)

ε = k1

k1 + k2
ε1 + k2

k1 + k2
ε2 (9)

where ρ j and ε j refer to m j
k j t and E j

k j t of G j respectively.
Proposition 14 (Merging): Consider (k, m j , t j , E j)q-

designs G j and G = ∨
j G j (see Definition 7). Then G is a

(k,
∑

j m j ,
∑

j t j ,
∑

j E j)q-design.
(Note that it is possible that the merged design G = ∨

j G j
can correct more than

∑
j t j defects.) The proof is clear after

realizing that the same labeling G j used for redundant nodes to
be t j correcting for a specific labeling of the k primary nodes
can be used in the merged design. As an example, we note
that merging a design with itself, i.e., G ∨ G, doubles all
the parameters except k. However, the wiring complexity and
redundancy stays constant. This will be the basis for showing
convexity of R∞, cf. (4).

B. Proof of Proposition 4

With the help of the two basic operations, we can prove
the convexity of Rt and R∞, as well as the other properties
claimed in Proposition 4.

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5247

Proof of Proposition 4: Claim 1: From the definition
of closure, (ε,ρ) ∈ Rt if and only if there is a sequence
of points {(εi ,ρi)}i ∈ Rt approaching (ε,ρ). Each (εi ,ρi)
must be associated with a (ki , mi , t, Ei)q -design Gi , where
mi = ρi ki t and Ei = εi ki t . To show that k, m, E → ∞,
we can copy Gi with itself ni times, where ni is chosen so
that ni ki , ni mi , ni Ei → ∞.

Claim 2: For any (ε,ρ) ∈ Rt , if there is a (k,ρkt, t, εkt)-
design G, then we can copy G with itself multiple times to
get a (k ′,ρk ′t, t, εk ′t)-design G′ where k ′ is arbitrarily large.
We can always add more redundant nodes or more edges to
G′ (this is possible since ρk ′t can be arbitrarily large and
adding a finite number of redundant nodes does not change
the redundancy) to G′ to get a design with parameters (ε′,ρ′).
If (ε,ρ) is a limit point achieved by a sequence of designs,
we can always similarly add more redundant nodes and edges
to each design in the sequence that attains the limit.

Claim 3: This holds using copying from Proposition 13.
If a pair of values (ε1,ρ1) and (ε2,ρ2) are in Rt , there are

sequences (ε1,i ,ρ1,i) → (ε1,ρ1) and (ε2,i ,ρ2,i) → (ε2,ρ2),
where for each i there exists a (k1,i ,ρ1,i k1,i t, t, ε1,i k1,i t)q -
design G1,i and a (k2,i,ρ2,i k2,i t, t, ε2,i k2,i t)q -design G2,i . For
any 0 ≤ α ≤ 1, we can find a sequence of rational
numbers αi = pi

qi
where pi , qi ∈ Z+ and αi → α.

The copy k2,i pi G1,i + k1,i(qi − pi)G2,i achieves the point
(εi ,ρi) = (αiε1,i + (1 − αi)ε2,i ,αiρ1,i + (1 − αi)ρ2,i) in Rt
and (εi ,ρi) → (αε1 + (1 − α)ε2,αρ1 + (1 − α)ρ2).

Claim 4: Any point (ε,ρ) in R∞ and any point in
closure‚

{⋃∞
t=1 Rt ‚

}
must both be the limit of some sequence

of (ki , mi , ti , Ei)q -designs. To see that R∞ = lim supRt ,
by merging in Proposition 14, for any t , we have Rt ⊂ R2t ⊂
R4t ⊂ R8t

Claim 5: This holds using merging from Proposition 14.
Given two designs G1 and G2, where G1 is a (k1, ρ1k1 t1, t1,
ε1k1 t1)q -design and G2 is a (k2, ρ2k2 t2, t2, ε2k2 t2)q -design,
if we want to create a design G with the parameter (αε1 +
(1 −α)ε2,αρ1 + (1 −α)ρ2) for α = p

q where p, q ∈ Z+, then
we can let

G = pk2

(t2∨

i=1

G1

)

+ (q − p)k1

(t1∨

i=1

G2

)

. (10)

From here on, the proof proceeds similarly to the proof
of Claim 3. !

C. Elementary Achievability

From the previous propositions, we can immediately make
statements on what each region Rt must contain. Recall that
for any t , the point (1, 1) in Rt is achievable using the
repetition design. The point (q, 0) is asymptotically achievable
using the complete design. Thus, the line of points between
(1, 1) and (q, 0) is achievable by interpolating between the
repetition design K (1, t) and the complete design K (k, qt).
We summarize this below:

Proposition 15: The following region is achievable for any
t ≥ 1 and q ≥ 2:

R(K)
t

△= {(ε,ρ) : ε ≥ q + (1 − q)ρ, ε ≥ 1,ρ ≥ 0}. (11)

Furthermore, every point such that (ε − 1) is a multiple of
(q − 1) can be achieved via a design with constant degree ε
primary nodes.

Proof: The corner points (1, 1) and (q, 0) are achieved
by the repetition design and the complete design, respectively.
By Proposition 4 the region Rt is convex and hence must
contain R(K)

t . All rational points near the boundary of Rt
are achieved by r1 K (1, t) + r2 K (k, qt) for some choice of
integers r1, r2 and k.

In order to get a design where the primary nodes have
regular degree, we can combine the repetition design and
complete design by merging. Find two integers t1, t2 where
t1 + t2 = t . The combination kK (1, t1) ∨ K (k, qt2) also
achieves the boundary point at ε = (t1 + qt2)/t as k → ∞.
This proves the last sentence of the Proposition 15. !

The region R(K)
t is an inner bound on all achievable regions,

but for q = 2 and t = 1, 2 the region R(K)
t happens to be tight

and is the region plotted in Figure 2.6

D. Covering Converse

This section presents a general converse bound which holds
for all Rt and all q , but in particular this converse shows that
R(K)

2 is tight for q = 2.
Theorem 16: Fix q = |X |, t and suppose (ε,ρ) ∈ Rt . Then

there exists πt ,πt+1, . . . ,πqt ≥ 0 satisfying

1
t

qt∑

j=t

jπ j ≤ ε (12)

qt∑

j=t

π j = 1 (13)

qt∑

j=t+1

π j logq⌊ j/t⌋ ≥ 1 + (t − 1)πt − ρt . (14)

In other words the smallest achievable ε for a given ρ is lower
bounded as

ε∗(ρ, t) ≥ min

⎧
⎨

⎩
1
t

qt∑

j=t

jπ j : π j ≥ 0 satisfy (13)-(14)

⎫
⎬

⎭ (15)

Proof: The key idea of this proof is to look at how
the degree of primary nodes relates to whether a design can
correct defects for all sequences of labelings. Let us define π j ,
j = t , t + 1, . . . , qt − 1 to be the fraction of primary
nodes with degree j . (Notice that every primary node clearly
should have degree at least t .) Define πqt to be the fraction
of primary nodes of degree qt or larger. The fact that this
satisfies (12)-(13) is obvious. We only need to show (14).

To that end, for each labeling rm ∈ Xm of redundant nodes
let Gt (rm) be the set of primary node labelings for which
conditions of Definition 1 are satisfied (we say that rm covers

6Note that in the worst case, the rate of convergence to get ϵ close to a
point on the boundary of R(K)

t requires k to be on the order of 1
ϵ . This

occurs when trying to achieve the boundary point (qt, 0). On the other hand,
achieving point the boundary point (1, 1) can be done with k = 1. For other
points on the boundary away from (qt, 0), it is not clear what the best rate
of convergence is.

5248 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

the labelings in Gt (rm)). The design is t-defect correcting if
and only if every possible labeling is covered by some rm .
We can count the number of primary node labelings covered
by some rm and make sure this is equivalent to all possible
primary node labelings. Thus, a design is t-defect correcting
if and only if ∣∣∣∣∣

⋃

rm∈Xm

Gt (rm)

∣∣∣∣∣ = |X |k = qk . (16)

We are aiming to apply the union bound to the right-hand side
to get inequality (14). Before doing so we make the following
observation.

Two primary nodes of degree t should have disjoint neigh-
borhoods (otherwise labeling them different values clearly
violates Definition 1). Thus Gt (rm) is empty unless each such
neighborhood has a constant label. This shows that for the tkπt
redundant nodes connected to the primary nodes of degree t ,
we are restricted to only qkπt choices, while the rest contribute
qm−tkπt more choices.

Given any of the qm−(t−1)kπt choices of rm we can estimate
|Gt (rm)| from above by assuming that each primary node of
degree d can take any of the ⌊d/t⌋ label in X while still
satisfying the t-wise coverage condition of Definition 1. This
yields

|Gt (rm)| ≤
qt∏

j=t

⌊ j/t⌋kπ j , (17)

and thus applying the union bound to (16), we get (14). !
For t = 1, 2 and q = 2, it is only necessary to evaluate (15)

at three separate points (two of which are ε = 1 and 2, the third
is anywhere inbetween) in order to show that the boundary of
R1 or R2 from ε = 1 to 2 is linear. In particular, for t = 2,
we can first choose ε = 3/2. No matter how we choose the
values of π2,π3 and π4, to satisfy (14) we must have ρ ≥ 1/2.

Proof of Theorem 5: Achievability follows from
Proposition 15. The converse is determined by evaluating 15.

!
Remark 17: While the bound (15) is tight for t = 1 and

t = 2 when q = 2, it is not tight in general. It however
allows us to make a general conclusion: since the bound is
piecewise linear, it follows that the slope of Rt at the point
(qt, 0) of minimal redundancy is non-zero. It is also the best
bound known to us for values of ε near qt.

In the next section, we will discuss a bound that is better for
ε away from q and when t is large. This converse outperforms
the covering converse (Theorem 16) at certain ρ even for
q = 2 and t = 3.

E. Ternary Alphabet and t = 1

Further progress on computing regions Rt for values of
q > 2 seems to require finer arguments on graph structure.
We can show the following result for q = 3 but the proof
requires significant casework.

Theorem 18: For q = 3 and t = 1 we have

R1 = {(ε,ρ) : ε ≥ 3 − 2ρ, ε ≥ 1,ρ ≥ 0} (18)

and is achievable by the interpolation (11).
We give the proof in Appendix A.

V. FUNDAMENTAL LIMIT FOR t → ∞

Recall that as t → ∞ the fundamental limit R∞
△=

lim supRt can be characterized as the set of wiring
complexity-redundancy pairs, namely

ε = E
kt

, ρ = m
kt

(19)

over all values of t (see Proposition 4). The goal of this section
is to prove the following result, that generalizes the binary
version stated earlier in Theorem 6.

Theorem 19: Fix alphabet |X | = q. The region R∞ defined
in (3) is the closure of the set of points (ε,ρ), parame-
terized by the distribution PS on a finite support of Z+,
and

ε = E [S]
F(PS)

, ρ = 1
F(PS)

, (20)

F(PS)
△= min

PX
max
PY |L

min
j∈[q]

1
PX (j)

E [L j {Y = j}] (21)

where E [·] is computed over random variables S ∈ Z+, X ∈
[q], L = (L1, . . . , Lq) ∈ {0 ∪ Z+}q , Y ∈ [q] with joint
distribution

PS,L,Y (s, ℓ, y)
△= PS(s)PL|S(ℓ|s)PY |L(y|ℓ). (22)

where7

PL|S(ℓ|s) △=
(

s
ℓ1, · · · , ℓq

) q∏

j=1

PX (j)ℓ j . (23)

Theorem 19 gives Theorem 6 by substituting
PY |L(0|(L0, L1)) with f (L0, L1), PX (0) with λ, and
PX (1) with 1 − λ. Also, the multinomial distribution is
replaced by the binomial distribution.

We start the section by proving relevant properties of
F(PS). We then use these properties to prove the achievability
(i.e., upper bound) of Theorem 19. (This achievability proof
explains why the quantities used in Theorem 19 are important.)
Next, we present a symmetrization property which is the key
idea of the converse argument of Theorem 19. Putting these
elements together gives the complete proof.

Following the proof, we present a number of observations
about Theorem 19. These include a section about how we
compute Theorem 19 numerically and a section on the achiev-
able region for designs where k is finite, but t and m are
allowed to go to infinity. This result follows from the proof
of Theorem 19. We also discuss how the Hamming block is
optimal in this context.

A. Auxiliary Results About F(PS)

Before proceeding further, we need to describe some tech-
nical properties of F(PS) and related quantities.8

7 PL|S is the multinomial distribution, Mult(s, [PX (1), · · · , PX (q)])
8The notation 1

k Z refers to the set of fractions with denominator k.

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5249

Definition 20 (Finitary F): We define Fk,n(PS) and Fk(PS)
as follows:

Fk,n(PS)
△= min

PX ∈ 1
k Z

max
PY |L(k) ∈ 1

n Z
min
j∈[q]

1
PX (j)

E [L(k)
j {Y = j}], (24)

Fk(PS)
△= min

PX ∈ 1
k Z

max
PY |L(k)

min
j∈[q]

1
PX (j)

E [L(k)
j {Y = j}], (25)

where E [·] is computed over random variables S ∈ [k],
X ∈ [q], L(k) = (L1, . . . , Lq) ∈ {0 ∪ Z+}q , Y ∈ [q] with
joint distribution

PS,L(k),Y (s, ℓ, y)
△= PS(s)PL(k)|S(ℓ|s)PY |L(k) (y|ℓ). (26)

where9

PL(k)|S(ℓ|s) △=
(k PX (1)

ℓ1

)
· · ·

(k PX (j)
ℓ j

)
· · ·

(k PX (q)
ℓq

)

(k
s

) . (27)

Note that the definition of Fk,n is similar to that of F(PS),
see (21), but with two changes: 1) values of PX and PY |L(k)

(instead of PY |L) are required to be integer multiples of 1
k and

1
n , respectively; and b) PL(k)|S is (multivariate) hypergeometric,
instead of multinomial. The function F(PS) which we are
ultimately interested in for this section is the limit of Fk(PS)
for k → ∞, which itself is a limit of Fk,n(PS). The function
Fk(PS) is an important quantity which bounds the rate region
for designs with finite k, which we will discuss later in V-F.

Proposition 21: For any PS with finite expectation we have

Fk(PS) − E[S]
n

≤ Fk,n(PS) ≤ Fk(PS). (28)

Also, there exists a sequence ϵk → 0 such that for any PS
on Z+ with finite third moment we have

|Fk(PS) − F(PS)| ≤ E [S3]
2k

+ ϵk . (29)

See Appendix B for proofs.

B. Subset Design Achievability and Upper Bound

The next proposition gives bounds on the performance of
subset designs in terms of Fk,n(PS) and Fk(PS).10

Proposition 22: Let q = |X | and fix k ∈ Z. Let G =∨n
i=1 G′, where G′ is a subset design with PS(s) as the

proportion of redundant nodes with degree s for s ∈ [k]. If
G is a (k, m, t, E)q-design, where E = mE[S] and t is the
maximum number of defects G can correct, then

m
k

Fk,n(PS) ≤ t ≤ m
k

Fk(PS). (30)

Proof: First we show the upper bound that t ≤ m
k Fk(PS).

9 PL(k)|S is the multivariate hypergeometric distribution,
HyperGeom(s, k, [PX (1), · · · , PX (q)])

10This proposition initially used random coding as an argument. Random
coding has since been replaced.

Consider any labeling wk ∈ X k of the k primary nodes of G.
Let the frequency which each label occurs in the labeling have
empirical distribution PX (that is, if ki of the k primary nodes
have label i , then PX (i) = ki

k). Given this labeling, we define
the type of each redundant node v to be ℓ = (ℓ1, · · · , ℓq),
where ℓ j is the number of primary nodes with label j which is
a neighbor of redundant node v. (If the degree of the redundant
node is s, then

∑q
i=1 ℓi = s.) Because G is a subset design,

the proportion of degree s redundant nodes in G with type ℓ is

PL(k)|S(ℓ|s) =
(k PX (1)

ℓ1

)
· · ·

(k PX (q)
ℓq

)

(k
s

) . (31)

Now, for any choice of labeling rm ∈ Xm of the m redun-
dant nodes, let PY |L(k) (j |ℓ) represent the proportion (empirical
distribution) of redundant nodes of type ℓ which are labeled j .
For each label j , we can count the average number of
matching redundant node neighbors a primary node u with
label j has by summing up all the edges between primary
and redundant nodes both with label j , and then dividing
this by the total number of primary nodes with label j . This
average is

t̃(j)
△= 1

k PX (j)

∑

s

m PS(s)
∑

ℓ

PL(k)|S(ℓ|s)ℓ j PY |L(k) (j |ℓ) (32)

= m
k

1
PX (j)

E [L j {Y = j}]. (33)

The label j where this average is lowest determines the
upper bound on the number of defects G with labeling wk

and rm can correct. This upper bound is given by min j t̃(j).
We have the freedom to pick the redundant node labeling rm

with the empirical distribution PY |L(k) which maximizes the
average. The defect correcting number needs to hold for all
possible wk , so the empirical distribution PX which gives the
lowest value of maxPY |L(k) min j t̃(j) determines t . This gives
the upper bound on t .

We now show the lower bound m
k Fk,n(PS) ≤ t .

Given any labeling wk ∈ X k of the primary nodes with
empirical distribution PX , let

PYn |L(k) = argmax
PY |L(k) ∈ 1

n Z
min
j∈[q]

1
PX (j)

E [L j {Y = j}]. (34)

For each ℓ, PYn |L(k) (j |ℓ) = c j
n for some c j ∈ Z+ ∪ 0,

and
∑

j c j = n. Because G is a merging of n copies of
G′, we can partition the copies of G′ in G into sets of size
c1, . . . , cq . The j th set is a set of c j copies of G′. Label all
redundant nodes of type ℓ in the j th set the value j . We can
determine that each primary node u with label j has a total
of PS(s)m ℓ j

PX (j)k PL(k)|S(ℓ|s) redundant nodes of type ℓ in its
neighborhood. This redundant node labeling scheme assigns
exactly PYn |L(k) (j |ℓ) of these neighbors the label j .

Repeat this labeling process for each redundant node type ℓ.
Summing over all ℓ and all s will get that the total number of
redundant nodes with label j in the neighborhood of primary
node u is

∑
s,ℓ PS(s)m ℓ j

PX (j)k PL(k) |S(ℓ|s)PYn |L(k) (j |ℓ).

5250 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Fig. 9. Example merging permutations of the same design. The resulting
design is a subset design. In this example, for clarity, we did not show all
6 possible permutations of the 3 primary nodes in the original design. The
3 distinct permutations shown was enough to create a subset design.

Using this scheme, G can correct at least

t ≥ min
PX ∈ 1

k Z
min
j∈[q]

∑

s,ℓ

PS(s)m
ℓ j

PX (j)k
PL(k)|S(ℓ|s)PYn |L(k) (j |ℓ)

(35)

= m
k

min
PX ∈ 1

k Z
max

PY |L(k) ∈ 1
n Z

min
j∈[q]

1
PX (j)

E [L j {Y = j}] (36)

= m
k

Fk,n(PS) (37)

defects. !

C. Converse and Proof of Theorem 19
The converse needed to show Theorem 19 is surprisingly

simple. The main idea is the following:
Proposition 23 (Symmetrization): If there exists a (k, m,

t, E)q-design then there exists a permutation-invariant
(k, m · k!, t · k!, E · k!)q-design.

Proof: Let G be a (k, m, t, E)q -design. We will merge
G exactly k! number of times. The key is that each copy will
be merged by identifying with a permutation of the original
primary nodes.

Start with an ordering of the primary nodes in the design G.
For each σ ∈ Sk (the full symmetric group of k elements),
let Gσ be isomorphic to the design G, with the order of
its primary nodes transformed by σ . Then merge Gσ for all
σ ∈ Sk identifying primary nodes in the same order.

Let the result be

GPERM =
∨

σ∈Sk

Gσ . (38)

GPERM is constructed to be permutation invariant. (For any
redundant node v in G, if v has degree s, every set of s nodes
in GPERM needs to be connected together by a copy of v.)
By Proposition 14 GPERM is a (k, m · k!, t · k!,
E · k!)q -design. !

See Fig. 9 for an example of merging permutations to obtain
a subset design.

In view of Propositions 10 and 23, we see that in terms
of the values E

kt ,
m
kt every design on k primary nodes is at

most as good as a subset design on k primary nodes (meaning
the pair of values an arbitrary design will achieve has the
same or a worse trade-off than what a subset design can
achieve). Performance of the latter is completely characterized
by Proposition 22. Now we can combine the results to prove
Theorem 19.

Proof: Proof of Theorem 19

Achievability: Fix PS ∈ Q with finite support. For each k
and n, it is always possible to construct a subset design G′

on k primary nodes where the proportion of redundant nodes
of degree s are given by PS(s). Let G = ∨n

i=1 G′ so that
by Proposition 22, subset design G is a (k, m, t, E)q -design
so that tk

m ≥ Fk,n(PS) and E = mE[S]. Since Fk,n(PS) →
F(PS), there must exist a sequence of subset designs Gi which
are (ki , mi , ti , Ei)q -designs where

ε = Ei

ki ti
→ E[S]

F(PS)
,ρ = mi

ki ti
→ 1

F(PS)
. (39)

Thus
(E[S]

F(PS)
,

1
F(PS)

)
∈ R∞. (40)

Since F(PS) is continuous in PS , (40) holds for any PS with
finite support.

Converse: For any design G which is a (k, m, t, E)q -design,
there exists a subset design G′ which is a (k, m·k!, t ·k!, E ·k!)q -
design by Proposition 23. Let PS be so that PS(s) represents
the proportion of redundant nodes in G′ with degree s. Then
E = mE[S]. Let t ′ be the number of defects G′ can correct.
Using Proposition 22 and Fk(PS) ≤ F(PS) (cf. Lemma 32
in Appendix C),

t · k! ≤ t ′ ≤ m · k!
k

Fk(PS) ≤ m · k!
k

F(PS). (41)

Then for design G, ε = E
tk ≥ E[S]

F(PS) and ρ =
m
tk ≥ 1

F(PS) . Thus, the limit of (Ei
ki ti

, mi
ki ti

) for any
sequence of (ki , mi , ti , Ei)q -designs must be in the closure
of (E[S]

F(PS) ,
1

F(PS)
) for all PS with a finite support. !

D. Observations About Theorem 19

1) Threshold Solution: The optimal value for PY |L tells
us what the optimal labeling of redundant nodes should be.
It turns out that for most values of ℓ, PY |L(j |ℓ) is either 0 or 1.

For an illustration of this, consider the binary alphabet
(or q = 2) case and the design S(k, s). The types are
ℓ = (ℓ0, ℓ1). Given any empirical distribution PX of the
primary node labels, the optimal labeling of the redundant
nodes must be so that redundant nodes with larger values
of ℓ1 are assigned the label 1 instead of redundant nodes
with smaller values of ℓ1. Otherwise, we can always swap the
labelings and increase the number of defects corrected. In fact,
even when there are multiple subset sizes, it is possible to find
an optimal solution where the value of PY |L depends only on
the ratio of ℓ0 to ℓ1.

Proposition 24: For X = {0, 1}, the solutions PY |L which
attain the maximum in (21) must have the following form

PY |L(0|ℓ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ℓ0
ℓ0+ℓ1

> γ

0 if ℓ0
ℓ0+ℓ1

< γ

µ(ℓ0 + ℓ1) if ℓ0
ℓ0+ℓ1

= γ

(42)

where γ ∈ [0, 1] and µ(s) ∈ [0, 1] for each s ∈ Z+.11

11There is not necessarily a unique solution for µ(s). One such solution
has µ(sa) = µ(sb) for all sa , sb.

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5251

Fig. 10. Approximate converse bound compared with achievable points
for q = 2.

(See Appendix D for proof.) Generalizing to larger alphabet
sizes, the space of all possible ℓ will be partitioned into q
pieces depending on the relative ratios of values in ℓ. The
interior of each piece will have all types assigned to the same
label, that is PY |L(j |ℓ) = 1 for some j . The values of ℓ on
the boundary may be split between 2 or more values.

Notice that in light of Theorem 19 and Proposition 24,
computing the optimal redundant node labeling for subset
designs given a fixed primary node labeling is easy. For general
designs, this is NP-Hard.

2) Worst-Case PX : The worst-case distribution of primary
node labels which gives the result in Theorem 19 is not
obvious, even in the binary alphabet case. When X = {0, 1},
we can easily determine that for subset designs S(k, s) with
even s, the worst-case PX is when PX (0) = PX (1) = 1

2 .
However, when s is odd, this is not true. When s = 3,
the worst-case PX is determined by a solution to a cubic
polynomial. When a merging of different subset designs are
used or a larger alphabet is used, it is unclear how to find the
worst-case PX analytically. This makes finding the worst-case
PX the main difficulty in evaluating the optimization equation
in Theorem 19 for given values of PS . (The equation is
non-convex in PX .)

E. Numerical Upper and Lower Bounds

Since the optimization presented in Theorem 6 is difficult
to evaluate exactly, instead, we give an approximation for the
boundary by establishing computable almost tight upper and
lower bounds for when q = 2. The details can be found in
Appendix E and a comparison is presented on Fig. 10. As can
be seen, the gap between the bounds is on the order of 10−3

and virtually indistinguishable on the plot. The best known
achievable point in R∞ for selected fixed values of E [S]
are given in Table I. These points are found by searching
and using weights from the converse bound method presented
in Appendix E.

We observed the following effects about designs near the
boundary of R∞ while experimenting with Theorem 6:

TABLE I

ACHIEVABLE POINTS

• The design has 4 or 5 distinct subset sizes
• Odd number subset sizes are more common
• The subset sizes which make up most of the design are

consecutive, possibly skipping even subset sizes

F. Results for Finite k

To develop the proof for Theorem 19, we showed interme-
diate results on designs with k primary nodes and observed
what occurs when k → ∞. We can use these intermediate
results to determine the achievable regions for designs on k
primary nodes.

Definition 25: For fixed q and k ∈ Z+, we define the region
Rk

∞ as the closure of the set of all achievable pairs (E
kt ,

m
kt) :

Rk
∞

△= closure
{(

E
kt

,
m
kt

)
: ∃(k, m, t, E)q-design

}
. (43)

Similar to regions Rt and R∞, the region Rk
∞ is convex.

We can apply the proof for Claim 5 in Proposition 4 replacing
the expression (10) with

G =
(pt2∨

i=1

G1

)

∨
⎛

⎝
(q−p)t1∨

i=1

G2

⎞

⎠ (44)

to show this.
Claims 1 and Claim 2 of Proposition 4 also hold for Rk

∞.
Theorem 26: Fix alphabet |X | = q. The region Rk

∞ defined
in (43) is the closure of the set of points (ε,ρ), parameterized
by the distribution PS on [k], where

ε = E [S]
Fk(PS)

, ρ = 1
Fk(PS)

, (45)

and Fk(·) is defined in (25).
Proof: The achievability and converse of this theorem

follows from Proposition 22 (with Fk(PS) is continuous in PS)
and Proposition 23 respectively. !

Using (45), we can plot the achievable region R3
∞ when

q = 2 (see Fig. 11). The most salient aspect of R3
∞ is that

the point achieved by the Hamming block (see Fig. 5(a)) is a
corner point of this region. It is the only corner other than the
usual corner point (1, 1) achieved by the repetition design.

Corollary 27 (Hamming Block Corner Point): The value
given by the Hamming block is a corner point of R3

∞ for
X = {0, 1}.

The proof for Corollary 27 and the methods used to cal-
culate R3

∞ are in Appendix F. The implication of this result
is that for any design on k = 3 primary nodes, no design

5252 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Fig. 11. Region R3∞ (see (43)) compared with R∞ for q = 2.

has a better trade-off between redundancy m
kt and wiring

complexity E
kt than the Hamming block, even if we allow the

design to have arbitrarily many edges and redundant nodes.

VI. DISCUSSION

We conclude with a discussion of some implications of our
results, some extensions and future work.

A. Implications on Practical Designs

The result for R1 and R2 (for q = 2) demonstrates that
for correcting small defects, the best solution in the limit
of a large number of primary nodes is a linear combination
of two basic designs, the repetition design and the complete
design. (Though this design is not optimal for finite k. Slight
improvements can be made by removing a few edges.)

Theorem 19 gives a result for asymptotic t , and while
practically no application is going to need to correct asymp-
totically many defects, the region defined by the result gives a
converse bound for Rt for all finite t by virtue of Claim 4 from
Proposition 4. All regions Rt must lie between R1 and R∞,
approaching the latter as t → ∞. Hence Theorem 19 describes
the fundamental limit for the trade-off between redundancy
and wiring complexity.

The numerical results for asymptotic t and q = 2 imply that
the designs which are close to optimal for large t use redundant
nodes with a limited set of degrees. The best achievable points
found for R∞ for fixed values of E [S] each use redundant
nodes with degrees within 2 or 3 values of E [S].

Results for Rk
∞ define what is optimal for finite k in terms

of the number of defects correctable per use of redundancy
and edges. We know exactly what this region looks like for
k = 3 and can determine that the Hamming block is in fact
the optimal design. Evaluating Rk

∞ for larger values of k gives
exactly what trade-offs are realizable.

Also note that in the asymptotic t results, the optimal trade-
off is obtainable by designs which has regular primary node
degree (since subset designs are always regular). Not only
that, but finding the best labeling of redundant nodes for

subset desgins corresponds to finding PY |L in the statement
of Theorem 19, which is easy to compute.

B. Comparison to Other Models for Defect Tolerance

This paper studies the defect-tolerance model where steps
proceed as follows:

a. bipartite graph (interconnect) is designed;
b. primary nodes get q-ary labeling;
c. redundant nodes are assigned q-ary labels (so that each

primary node has t neighbors with matching label).
There are two natural variations where the sequence of steps
are interchanged:

• adaptive graph: b.→a.→c.
• non-adaptive redundancy: a.→c.→b.

In the first case, the design of the edges of the graph is a
function of the q-ary labels, while in the second case the
redundant nodes are not allowed to depend on the labeling
of primary nodes.

It is clear that the setting considered in this
paper (a.→b.→c.) is an intermediate case. That is, any
t-defect correcting design in the sense of Definition 1 is
also t-defect correcting in the sense of the adaptive graph.
Similarly every design with non-adaptive redundancy should
work in the sense of Definition 1.

The fundamental redundancy-wiring complexity trade-off is
defined similarly to (2). However, for both cases it is rather
easy to determine this trade-off for any t ≥ 1:

• adaptive graph: Clearly the number of edges E ≥ kt .
This can be attained with (asymptotically) zero-
redundancy by adding t redundant nodes of each
label (for a total of m = qt) and connecting every primary
node only to relevant t redundant nodes. Consequently,
here

Rt = {(ε,ρ) : ε ≥ 1,ρ ≥ 0}. (46)

• non-adaptive redundancy: Again, clearly the number
of edges is E ≥ qkt . This can be attained with
(asymptotically) zero-redundancy by adding t redundant
nodes of each label (for a total of m = qt) and con-
necting every primary nodes to all of qt redundant ones
(i.e., using K (k, qt) design). Consequently

Rt = {(ε,ρ) : ε ≥ q,ρ ≥ 0}. (47)

These observations are summarized in Fig. 12 for q = 2.

C. Relation to (t, t)-Colorable Hypergraphs

There is a purely graph-theoretic way to look at our prob-
lem. For this we bring up the concept of a (t, t)-graph coloring
introduced in [20]. A hypergraph is called (t, t)-colorable if
for every {0, 1}-coloring of hyperedges there exists a {0, 1}-
coloring of vertices so that each edge contains t vertices of its
color. Define

dt (k, m) = min(average edge-size:

all (t, t) colorable hypergraphs on

m vertices and k hyperedges). (48)

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5253

Fig. 12. Comparison of redundancy-wiring complexity trade-offs for different
levels of adaptivity for q = 2.

It is not hard to see that our problem with binary X and
(t, t)-coloring are one-to-one related: the vertices correspond
to primary nodes and the hyperedges correspond to redundant
nodes. More precisely we have

Proposition 28: Fix binary X . The boundary of Rt is
given by

lim inf
k→∞

1
t

dt (k, ⌈ρkt⌉). (49)

The boundary of R∞ is given by

lim inf
t→∞ lim inf

k→∞
1
t

dt (k, ⌈ρkt⌉). (50)

Proof: Note that for a fixed t , if for some pair (ε,ρ)
we have 1

t dt (k, ⌈ρkt⌉) = ε for some k, then by copying
(Proposition 13), there exists infinitely many values of k ′ > k,
where 1

t dt (k ′, ⌈ρk ′t⌉) ≤ ε. It follows from Proposition 4 that
lim infk→∞ 1

t dt (k, ⌈ρkt⌉) must correspond to the boundary
of Rt .

Similarly, by merging (Proposition 14), any pair (ε,ρ)
where there is some t such that

lim inf
k→∞

1
t

dt(k, ⌈ρkt⌉) = ε

for some t , must also have infinitely many values of t ′ > t
where lim infk→∞ 1

t ′ dt ′(k, ⌈ρkt ′⌉) ≤ ε. !
Hypergraphs were used [20] to show a specific achievability

scheme for storing data with bitprobes. This achievability
scheme thresholds of the number of neighbors with value 0
to determine values of data points. Using the connection our
defect correcting designs have with hypergraphs, we can use
Theorem 6 to show a converse bound on the size of the
encoded vector for bitprobes that use thresholding. However,
the constants we get from applying our work to bitprobes
does not do better than those cited in [20]. For instance, for
3 bitprobes and vectors where at most 1/3 of the entries are 1,
our result gives that the ratio of the length of the encoded
vector to the length of the original vector must be greater
than .21 whereas the method cited in [20] gives that the ratio
must be greater than .48.

D. Stochastic Defects

This work considered correcting arbitrary (worst-case)
defect patterns. Suppose that instead we are interested in
correcting fraction α of defects (i.e., t = α (k + m)) on k
primary and m redundant nodes. In this scenario, the number
of redundant nodes m would need to grow as a function of k
in order to keep up with the number of defects needed to be
corrected. If α is too large, it is not possible to find designs
which corrects α(k + m) defects for arbitrarily large k.

To see this, note that correcting worst case t defects with
alphabet size q requires at least qt redundant nodes.

m ≥ qt (51)

m ≥ qα(k + m) (52)

m(1 − qα) ≥ qαk. (53)

The quantity on the right-hand side of (53) needs to be
positive, so it must be that α < 1

q .
Additionally, the only designs which can correct fraction

α < 1
q of defects for growing k are designs with the

same redundancy and wiring complexity as complete designs.
From our results in Theorem 19, we know that there exists
(k, m, t, E)q -designs so that

m
kt

→ c (54)

for some constant c. When t = α(k + m),
m

kα(k + m)
> c (55)

m(1 − ckα) > ck2α. (56)

In order for (56) to hold, the right-hand side must be
positive, so it must be that c → 0 as k becomes arbitrarily
large. The point in R∞ where m

kt → 0 corresponds to the
complete design.

In light of these results, it is natural to ask what
happens if instead we relaxed the requirement to correct-
ing i.i.d. Bernoulli(α) defects in the sense of high prob-
ability (computed over distribution of defects and primary
assignments). It turns out that in such probabilistic model,
correcting fraction-α of defects is possible with designs pos-
sessing O(k log k) edges and O(k) redundant nodes. See
[21, Sec. 4.4, Ths. 4.10 and 4.15] for more (pp. 63-66).

E. Future Work

One direction for future work involves extensions beyond
the bipartite graph. We chose to study the one-level bipartite
graph model for simplicity, but experiments like Teramac [19]
have demonstrated the effectiveness of multi-level hierarchical
designs. This leads to the question of what are the optimal
trade-offs when hierarchical models of redundancy are used.
The hierarchical model would include intermediate nodes
which can facilitate connections of edges. The presence of the
intermediate nodes can greatly reduce the number of edges.
To correct t defects, we can connect each primary node to
t intermediate nodes. Regardless of the number of primary
nodes, the intermediate nodes can connect to finitely many
redundant nodes. This way, we are able to achieve a wiring

5254 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

complexity of t and redundancy of 0 (asymptotically). In such
a case, we would be interested in finding the fundamen-
tal trade-offs with the number of intermediate nodes as a
parameter.

F. Open Problems

Regions which are still to be determined include:
• Rt for t > 2 and q = 2
• Rt for t > 1 and q ≥ 3
For q = 2, it is also unknown what the smallest value of t

is for which Rt does not equal the region defined in (5).

APPENDIX

A. Proof of Theorem 18

Proof: Define R1 as in (18). We will show that all
(k, m, 1, E)3-designs must lie in R1. Let the primary nodes
have labels in X = {0, 1, 2}.

Instead of saying that a given bipartite graph is 1-defect
correcting for alphabet of size q = 3, we will say (for brevity)
that a graph satisfies property (*).

(*) is the property that for any labeling of the primary nodes
in X k , where k is the number of primary nodes, there exists a
labeling of the redundant nodes so that each primary node has
at least one redundant node neighbor with the same labeling.

The steps for this proof are:
1) Show that designs with primary nodes of degree 3 and

greater can be disregarded.
2) Show that in order to satisfy (*), designs with any primary

nodes of degree 1 must be in R1 .
3) Show that in order to satisfy (*), designs with primary

nodes all of degree 2 must be in R1 .
a) Show designs containing two disjoint cycles connected

by a path (see Fig. 13(a)) violate (*)
b) Show designs containing two cycles which intersect at

one point (see Fig. 13(b)) violate (*)
c) Show designs containing two cycles which intersect at

multiple points (see Fig. 13(c)) violate (*)
Step (1): The key to this step is to make a graph

with (almost) equivalent parameters where nodes of degree 3
or more are in a separate component. For any (k, m, 1, E)3-
design G, define a new design G′ with the same number
of primary nodes k and the number of redundant nodes as
m′ = m + qt = m + 3. The added redundant nodes are
connected to each of the primary nodes that have degree
(in G) larger or equal to 3. The remaining primary nodes
are connected in G′ exactly as in G. It is clear that G′

still satisfies (*), has the same (or smaller) number of edges
and (asymptotically in m) the same redundancy ρ. This shows,
that without loss of generality we can assume that there are
no primary nodes of degree greater than 3 and all nodes of
degree 3 form a complete bipartite graph disjoint from the rest
of the design. We can ignore this separate component.

Step (2): The main argument of this step is to show that if
the design has any primary node of degree 1, the design must
be a tree.

Fig. 13. Example designs for the different cases considered in the proof
of Theorem 18. (a) Case (3a). (b) Case (3b). (c) Case (3c).

We will say a primary node is adjacent to another primary
node if the two primary nodes share a redundant node as a
common neighbor.

Suppose the design has a primary node u0 of degree 1 and
no primary nodes of degree 3 or more. For all primary and
redundant nodes, we will consider the node’s shortest distance
to u0. If a node is distance i from u0, we say that the node
is at level i . Since the design is bipartite, even levels have
primary nodes, and odd levels have redundant nodes. Let tier
n mean the levels 2n and 2n + 1.

Consider the labeling of the primary nodes where all pri-
mary nodes in even tiers are labeled 0’s and all primary nodes
in odd tiers are labeled 1’s. Since u0 only has one neighbor,
in order to satisfy (*), we must label the one redundant node
in tier 0 the value 0. The primary nodes in tier 1 each have the
redundant node in tier 0 and some redundant node in tier 1 as
neighbors. The redundant node in tier 0 is already labeled a 0,
so all redundant nodes in tier 1 must be labeled 1’s in order to
satisfy (*). Since primary nodes in tier 2 are labeled with 0’s,
then all redundant nodes in tier 2 must also be labeled 0’s.
Continuing this argument by induction, all redundant nodes in
a tier must be labeled the same value as the primary nodes
in that tier. If the design is a tree, then this labeling scheme
satisfies (*).

Now suppose the design has cycles. Find the lowest tiered
primary node which completes a cycle, that is the lowest tiered
primary node uc in tier c which has one redundant node in
tier c − 1 and the other redundant node it has is shared by
a primary node in tier b, where b ≤ c. (It could be that two
nodes in tier c share the same redundant node in tier c. Pick
either as uc). Now switch the label of uc to 2 and keep all the
other labels the same. Both redundant neighbors of uc must
be labeled a 0 or 1, so we do not satisfy (*).

Condition (*) is not satisfied unless the design has no cycles
and is a tree. If the design is a tree, it must have at least the

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5255

same number of redundant nodes as primary nodes, so the
design lies in R1. We can now assume that all primary nodes
are of degree 2.

Notice having q ≥ 3 is important to avoid existence of even
cycles.

Step (3): Our goal is to prove that if all primary nodes
have degree 2, then m

k ≥ 1
2 . We will instead prove something

stronger: For k > 4 we must have m ≥ k. For k = 4 we must
have m ≥ 3.

Because of copying (see (8)-(9)), it is sufficient to prove
the above for designs on a single component. If there is a
redundant node with degree 1, we can remove this redundant
node with its neighboring primary node from the design and
make it a separate component. We can assume all redundant
nodes must also have degree 2 or more.

We will call a labeling of primary nodes alternating if
adjacent primary nodes have different labels.

Lemma 29: If a design with k primary nodes, all of degree
2, and k−1 or fewer redundant nodes, all of degree 2 or 3, can
be labeled alternatingly, then the design cannot satisfy (*).

Proof: If there is an alternating labeling, at most each
redundant node can only match the labeling of one of its
neighboring primary nodes. There can only be at most k − 1
matches, so there exists one primary node which does not have
a neighboring redundant node with the same label as itself. !

Suppose a design with all primary nodes of degree 2 is
such that m < k. Then, some redundant node in the design
must have degree 3 or more. Pick the separate component
with this redundant node, and let A be a cycle in this separate
component (if this component does not have cycles, then
m ≥ k as in Step 2). In order for cycle A to be in this
component, a redundant node with degree more than 2 must
also be in A. Call this redundant node v0. Call the neighbor
of v0 which is not in A u0.

Build a path B in the design starting at primary node u0
as follows: The second node in path B will be the neighbor
of u0 which is not v0. We can pick the next node in the path
arbitrarily. The path ends when we reach a node in A or a node
already in B . To show that (*) does not hold on the design,
it is sufficient to show that (*) is not satisfied on the subgraph
A ∪ B .

Depending on the endpoint of path B , we have several cases:
Case (3a): Endpoint of B coincides with an intermediate

point of B (see Fig. 13(a))
Let v1 be the redundant node in path B where the path

B ends. Rename the cycle created by path B to cycle C . The
subgraph A∪B∪C satisfies the conditions of Lemma 29 so we
need only show that we can find an alternating label. The nodes
v0 and v1 are the only redundant nodes with degree 3. It is
clear that by starting with a alternating label of the neighbors
of v0, we can find an alternating label for the path between
v0 and v1, and then an alternating label of the neighbors of v2.
After this, it is easy to find an alternating label for the rest
of A and C .

Case (3b): Endpoint of B is node v0 (see Fig. 13(b))
Let cycle C be the cycle formed using path B and v0.

As long as one of cycle A and cycle C have more than 2
primary nodes, the design violates (*).

Fig. 14. Design which satisfies (*). Exception to case (3b).

Fig. 15. Design which satisfies (*). Exception to case (3c).

Consider when the labeling is so that the two primary nodes
in the larger cycle (assume this to be cycle A) neighboring
v0 are labeled the same value, say 0. The rest of the primary
nodes of A are labeled alternatingly, which is possible because
cycle A has at least three primary nodes. Let the two primary
nodes neighboring v0 in cycle C be labeled 1 and 2. Then v0
must be labeled 0 in order for each node in cycle A to have
a neighbor with the same label. Then if cycle C is labeled
alternatingly, we will violate (*).

If both cycles have only 2 primary nodes, it is possible
for this design to have k = 4 and m = 3 and satisfy (*).
See Fig. 14.

Case (3c): Endpoint of B is some node of A different
from v0 (see Fig. 13(c))

Two redundant nodes in the design have degree at least 3.
Call them v0 and v1. Cycle A and path B make up three
distinct paths which go from v0 to v1, which we will refer to
as E, F and G. As long as no two paths have only 1 primary
node, then we can find an alternating label and use Lemma 29.

Label ui,X to be the primary node neighboring vi and in
path X . If all paths E, F, and G have two or more primary
nodes, assign labels 0, 1, 2 to u0,E , u0,F , u0,G and 1, 2, 0 to
u1,E , u1,F , u1,G . Each path can be labeled alternatingly.

If there is one path with only one primary node, say path E ,
assign labels 0, 1, 2 to u0,E , u0,F , u0,G and 2, 1 to u1,F , u1,G .
Each path can be labeled alternatingly.

If two paths both have one primary node, say E and F ,
as long as the third path G has at least 3 primary nodes,
the design can be labeled alternatingly. We can label the
two primary nodes cycle created by paths E and F the
values 0 and 1. Then since G has at least 3 primary nodes,
we can label u0,G and u1,G the value 2 and label the rest of
G alternatingly.

If G only has 2 primary nodes, then this is a design on
k = 4 and m = 3 which satisfies (*). See Fig. 15.

Note that the two exceptions with k = 4 are precisely the
minimal non-trivial 1 defect correcting designs. One of these
designs was discussed in Section III-A. !

B. Proof of Proposition 21

Before we present the proof of Proposition 21, we will first
show the following lemma:

5256 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

Lemma 30: Fix PX ∈ 1
k Z and s ∈ Z+. Let L ∼

Mult(s, PX), cf. (23), and L(k) ∼ HyperGeom(k, s, PX),
cf. (27). Then we have the following total variation estimate12:

TV(PL(k) , PL) ≤ s2

2k
. (57)

Similarly, if M ∼ Mult(s−1, PX) and M (k−1) has distribution

P[M(k−1) = m] =
(kπ1

m1

) · · · (kπ j −1
m j

) · · · (kπq
mq

)

(k−1
s−1

) (58)

for an arbitrary j , we also have

TV(PM , PM (k−1)) ≤ s2

2k
. (59)

Proof: Standard estimate for total variation via coupling
states that for any joint distribution PL,L(k) :

TV(PL(k) , PL) ≤ P[L(k) ̸= L]. (60)

Notice that L(k) encodes the color distribution after sam-
pling s balls from a collection of k colored balls (with
composition given by PX) without replacement, while L is
the color distribution for sampling s balls with replacement.
Let us couple these two samples as follows. Number all balls
from 1 to k and define an infinite string of i.i.d. uniform
Xi ∈ [k]. Let our sample with replacement be the balls with
indices X1, . . . , Xs , while the sample without replacement be
the balls X1, Xi2 , . . . , Xis where it denotes the first element
of the sequence where the t-th unique index appeared (e.g.,
for X = (1, 2, 2, 3, . . .) we have i2 = 2, i3 = 4, etc). Now the
two samples are going to be different only if X1, . . . , Xs are
not distinct and this happens with probability at most

s−1∑

i=1

i
k

= s2 − s
2k

<
s2

2k
. (61)

This proves (57). For (59) modify distribution of X sequence
by setting X1 = j and the rest are still i.i.d. uniform on [k].
Then M is the color composition of X2, . . . , Xs while M(k−1)

is the color composition of Xi2 , . . . , Xis . Again, X2, . . . , Xs
are not all distinct with probability at most (61). !

Proof of (28): Simply by definition we have Fk,n(PS) ≤
Fk(PS), so we focus on the opposite direction. First, we show
that if L(k) ∼ HyperGeom(s, k, [π1, · · · ,πq]), for any func-
tion f : L(k) → R and any fixed j ∈ [q] we have

1
π j

E[L(k)
j f (L(k))] = E[S · f (M (k−1) + e j)], (62)

where e j is a vector with one in j -th position and the rest
zeros, and M (k−1) has hypergeometric distribution

P[M(k−1) = m] =
(kπ1

m1

)
· · ·

(kπ j −1
m j

)
· · ·

(kπq
mq

)

(k−1
s−1

) . (63)

12Total variation distance TV for probability measures P and Q on sigma
algebra F defined as TV(P, Q) = supA∈F |P(A) − Q(A)|.

To that end, simply notice that

1
π j

E[L(k)
j f (L(k))]

=
∑

s

PS(s)
∑

ℓ

ℓ j

π j

(kπ1
ℓ1

)
· · ·

(kπq
ℓq

)

(k
s

) f (ℓ) (64)

=
∑

s

PS(s)
∑

m

s

(kπ1
m1

)
· · ·

(kπ j −1
m j

)
· · ·

(kπq
mq

)

(k−1
s−1

) f (m + e j). (65)

Now fix PX ∈ 1
k Z and PY ∗|L(k) to be the optimal distribu-

tions achieving Fk(PS) in (25). By rounding there must exist
PYn |L(k) ∈ 1

n Z so that |PYn |L(k) (j |ℓ) − PY ∗|L(k) (j |ℓ)| ≤ 1
n for

every ℓ. Then for any fixed j ∈ [q] we have in view of (62)
∣∣∣∣

1
PX (j)

E[L(k)
j {Y ∗ = j}] − 1

PX (j)
E[L(k)

j {Yn = j}]
∣∣∣∣≤

E[S]
n

.

(66)

Taking min j of (66) recovers the lower bound in (28).
We proceed to proving (29). Fix PS and let

h(PX , PY |L , j)
△= 1

PX (j)
E [L j {Y = j}], (67)

where given S = s we have L ∼ Mult(s, PX), cf. (22). Similar
to (62) we have

h(PX , PY |L , j) = E [S · PY |L(j |M + e j)], (68)

where this time given S = s we have M ∼ Mult(s − 1, PX).
Now, for PX ∈ 1

k Z define also

hk(PX , PY |L , j)
△= 1

PX (j)
E [L(k)

j {Y = j}], (69)

where given S = s we have L(k) ∼ HyperGeom(s, k, PX).
From (62), (68) and Lemma 30 (namely (59)) we have then

|h(PX , PY |L , j) − hk(PX , PY |L , j)| ≤ E [S3]
2k

. (70)

Finally, since

(PX , PY |L) 6→ min
j

h(PX , PY |L , j) (71)

is uniformly continuous on a compact set, we also have

(PX , PY |L) 6→ max
PY |L

min
j

h(PX , PY |L , j) (72)

is uniformly continuous by Proposition 31. Hence for some
ϵk → 0 we have
∣∣∣∣∣ min

PX ∈ 1
k Z

max
PY |L

min
j

h(PX , PY |L , j)

− min
PX

max
PY |L

min
j

h(PX , PY |L , j)
∣∣∣∣ ≤ ϵk . (73)

Using (70) to replace h with hk in the first term of the latter
we get (29). !

Proposition 31: Let f : X × Y → R where X and Y are
compact and f is uniformly continuous. Then maxy f (x, y)
is uniformly continuous on X.

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5257

Proof: Let h(x) = maxy f (x, y). Because f is uniformly
continuous, for every ϵ > 0 there exists a δ so that if the
distance between (x1, y1) and (x2, y2) is less than δ, then
| f (x1, y1) − f (x2, y2)| < ϵ for all x1, x2 ∈ X and y1, y2 ∈ Y .
We want to show that for h, the same δ can be used for each ϵ.
Suppose there exists values x, x ′ ∈ X where |h(x ′)−h(x)| > ϵ
and |x − x ′| < δ. Assume that h(x ′) > h(x). There exists
a value of y so that f (x ′, y) = h(x ′). Since | f (x ′, y) −
f (x, y)| ≤ ϵ then h(x ′) = f (x ′, y) ≤ f (x, y)+ ϵ ≤ h(x)+ ϵ,
which is a contradiction. !

C. Upper Bound on Fk(PS)

Lemma 32: For any PS ∈ Q with finite support,

Fk(PS) ≤ F(PS). (74)

Proof: Fix PS ∈ Q with finite support. First, we will
show that Fk (PS) ≤ F2k(PS). Using Proposition 22 and (28)
from Proposition 21, for each k there exists a sequence of
subset designs Gi which are (k, mi , ti , Ei)q -designs with Ei =
miE[S], and ti k

mi
→ Fk(PS).

For each Gi , we will construct subset design G′
i on 2k

primary nodes by copying (see Proposition 13) two copies
of Gi . Then G′

i is a (2k, 2mi , ti , 2Ei)q -design. By Proposi-
tion 23, for each G′

i , there exists a subset design G′′
i which is

a (2k, 2mi · (2k)!, ti · (2k)!, 2Ei · (2k)!)q -design.

F2k(PS) ≥ lim
i→∞

ti · (2k)!2k
2mi · (2k)! = lim

i→∞
ti k
mi

= Fk(PS). (75)

Then, Fk (PS) ≤ F2k(PS) ≤ F4k(PS) ≤ F8k(PS) ≤
F16k(PS) · · · . Since F2i k(PS) → F(PS) monotonically with
convergence given by (29) from Proposition 21, this gives the
desired result. !

D. Proof of Proposition 24
Proof: Fixed PS with finite support and let c = E[S].

Let P̂S(s) = PS(s)s∑
s PS(s)s = 1

c PS(s)s. We can substitute in P̂(s)

and take the expectation with respect to P̂S instead of PS by
adjusting (21) to

F(P̂S) = min
PX

max
PY |L

min
{

c
PX (0)

L0

S
{Y = 0},
c

PX (1)

L1

S
{Y = 1}

}
. (76)

Let the redundant node ratio of a redundant node with type
(ℓ0, ℓ1) be ν = ℓ0

ℓ0+ℓ1
. Suppose that PY |L is a labeling so that

1) PY |L(1|ℓa) > 0 where ℓa so that ℓ0 + ℓ1 = sa and has
ratio νa

2) PY |L(0|ℓb) > 0 where ℓb so that ℓ0 + ℓ1 = sb and has
ratio νb

3) νa > νb
Let PY ′|L be equivalent to PY |L except that

PY ′|L(1|ℓa) = PY |L(1|ℓa) − α P̂S(sb)PL|S(ℓb|sb) (77a)
PY ′|L(0|ℓa) = PY |L(0|ℓa) + α P̂S(sb)PL|S(ℓb|sb) (77b)
PY ′|L(1|ℓb) = PY |L(1|ℓb) + α P̂S(sa)PL|S(ℓa |sa) (77c)
PY ′|L(0|ℓb) = PY |L(0|ℓb) − α P̂S(sa)PL|S(ℓa|sa) (77d)

for an appropriate α > 0 which is small enough so that PY ′|L
is still a valid distribution. Compared to PY |L , PY ′|L increases

both quantities in the brackets in (76). So PY |L cannot be
optimal and any optimal PY |L must have the form of (42).

For two redundant node type ratios where νa = νb , we can
also see from (77a)-(77d) that there is a value of α (possibly
negative unlike above) so that PY ′|L(0|ℓa) = PY ′|L(0|ℓb) and
the value of (76) is not affected by the change. !

E. Numerical Results Derivation

Here we develop upper and lower bounds for the expression
found in Theorem 6 (the particular case when X = {0, 1}).

1) Almost Tight Lower Bound: Our lower bound for the
boundary of R∞ will be parametrized by c. To get this lower
bound, we want to find an upper bound for

Z∗(c) = max
PS :E[S]=c

F(PS). (78)

For notation, let λ = PX (0) and 1 − λ = PX (1). Let ℓ =
(ℓ0, ℓ1) and f (ℓ0, ℓ1) = f (ℓ) = PY |L(0|ℓ) where f can take
any value between [0, 1]. For a fixed λ and s, define random
variable M(s,λ) = (V , s − 1 − V) where V ∼ Bino(s − 1,λ)
and e0 = (1, 0) and e1 = (0, 1) according to Lemma 30 and
the proof of Proposition 21. (Just for clarity in this section,
we added arguments in paranthesis for M .) Fix PS to have
finite support.

First, we have that

F(PS) = min
0≤λ≤1

max
0≤ f ≤1

min
{

1
λ

E[L0 f (L)],
1

1 − λ
E[L1(1 − f (L))]

}
(79)

= min
0≤λ≤1

max
0≤ f ≤1

min
0≤α≤1

αE[S · f (M(S,λ) + e0)]
+(1 − α)E[S · (1 − f (M(S,λ) + e1))] (80)

≤ min
0≤λ≤1

1
2

E
[

S · max
0≤ f ≤1

(1 + f (M(S,λ) + e0)

− f (M(S,λ) + e1))

]
(81)

= min
0≤λ≤1

1
2

E
[

S · (1+ max
0≤ℓ0≤S−1

P[M(S,λ)

= (ℓ0, S − 1 − ℓ0)])
]

(82)

△= min
0≤λ≤1

E[φ(S,λ)] (83)

where in (80) we use (68) and convexify the minimum using α,
and then (81) follows by setting α = 1

2 . To get (82), notice
that for a fixed s

E[1 + f (M(s,λ) + e0) − f (M(s,λ) + e1)] (84)

= 1+
s−1∑

ℓ0=0

P[M(s,λ) = (ℓ0, s−1−ℓ0)] f (ℓ0+1, s − 1−ℓ0)

−
s−1∑

ℓ0=0

P[M(s,λ) = (ℓ0, s − 1 − ℓ0)] f (ℓ0, s − ℓ0) (85)

= 1 + P[M(s,λ) = (x, s − 1 − x)] f (x + 1, s − 1 − x)

+P[M(s,λ) = (x + 1, s − x)](1 − f (x + 1, s − 1 − x)).

(86)

5258 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

By Proposition 24, the optimal f must have a threshold
solution. We can express this threshold solution by letting x
be be smallest value of ℓ0 where f (ℓ0, s − ℓ0) is non-zero.
Applying the cancellations to (85), we get that only two terms
remains. The value of f which obtains the maximum must be
where only the maximum value of P[M(s,λ) = (x, s −1−x)]
over all x appears in (86), and this gives (82).

We will bound

Z∗(c) ≤ max
PS:E [S]=c

min
0≤λ≤1

E[φ(S,λ)] (87)

≤ max
PS:E [S]=c

min
λ∈Ln

E[φ(S,λ)] (88)

△= Z ′
n(c) (89)

where we defined13

Ln =
{⌊s/2⌋

s
: where 1 < s ≤ 2n

}
.

Note that increasing n makes the approximation tighter.
Index the elements of Ln as λi where λ1 = 1

2 ,λ2 =
1
3 ,λ3 = 2

5 , . . . ,λn = n−1
2n−1 , so that minλ∈Ln E[φ(S,λ)] =

mini E[φ(S,λi)].
The quantity Z ′

n(c) is equivalent to maximizing the value of
t under the constraints that E[φ(S,λi)] ≥ t for all 1 ≤ i ≤ n
and E[S] = c. We can substitute

φ(s,λi) = s
2

(
1 + max

1≤ℓ0≤s
P[M(s,λi) = (ℓ0, s − 1 − ℓ0)]

)

(90)
△= s

2
(1 + ψ(s,λi)) . (91)

Then E[φ(S,λi)] = 1
2 E[S] + 1

2 E[S · ψ(S,λi)] = c
2 + 1

2 E[S ·
ψ(S,λi)]. Note that ψ(S,λi) → 0 as s → ∞ for all i .

For any value of πi ≥ 0, where 1 ≤ i ≤ n, η ≥ 0 and
µ ≥ 0, we can define

Z ′′
n (c,π1, . . . ,πn, η, µ)]

△= max
Ps (s)≥0,∀s

t +
∑

i

πi

(
c
2

+
∞∑

s=1

PS(s)
s
2
ψ(s,λi) − t

)

−η
(∞∑

s=1

PS(s)s − c

)

− µ

(∞∑

s=1

PS(s) − 1

)

. (92)

Consider the set of πi , η, µ which is the solution to the dual
problem

minimize
c
2

+ ηc + µ (93a)

subject to
n∑

i

1
2
πiψ(s,λi) − η − µ

1
s

≤ 0, s ∈ Z+ (93b)

n∑

i=1

πi − 1 = 0 (93c)

η ≥ 0, µ ≥ 0,πi ≥ 0, 1 ≤ i ≤ n. (93d)

13 Ln is defined so that Ln = {λ ∈ (0, 1
2] : φ(s, λ) ≤ φ(s, λ′) for some 1 <

s ≤ 2n and ∀λ′ ∈ [0, 1]} which is the set of all λ which minimizes φ(s, λ)
for some 1 < s ≤ 2n.

Such an optimization has a solution which is easy to find
despite having infinitely many constraints. The constraints
(93b) will hold for all s greater than some s0 because
ψ(s,λi) → 0. By choosing a large enough s0, we can solve
the optimization by replacing it with an optimization where
only the first s0 constraints in (93b) are present.14 Set the
values of πi , η, µ in (92) to be the values which obtain
the minimum for (93a)-(93d). Select a value of s1 ∈ Z+.
Then

Z ′
n(c) ≤ Z ′′

n (c,π1, . . . ,πn, η, µ) (94)

= max
Ps(s)≥0,∀s

t

+
∑

i

πi

(
c
2

+
∞∑

s=1

PS(s)
s
2
ψ(s,λi) − t

)

− η
(∞∑

s=1

PS(s)s − c

)

− µ

(∞∑

s=1

PS(s) − 1

)

(95)

= max
Ps(s)≥0,∀s

∑

i

πi

(∞∑

s=s1

PS(s)
s
2
ψ(s,λi)

)

− η
(∞∑

s=s1

PS(s)s

)

− µ

(∞∑

s=s1

PS(s)

)

+ c
2

+ ηc + µ (96)

≤ max
s>s1

max
i

c
2
ψ(s,λi) + c

2
+ ηc + µ. (97)

Since ψ(s,λi) → 0, the optimal c
2 + ηc + µ given by

(93a)-(93d) is an upper bound to Z ′
n(c) and hence also

to Z∗(c). This computes a lower bound on R∞. In Fig. 10,
we found the lower bound using n = 10.

2) Upper Bounds: To show a point in R∞ is achievable,
it is sufficient to find a set of masses PS that achieves that
point. Searching all possible masses PS is not computationally
efficient. It turns out we can get decently close to the lower
bound approximation by using the same masses which are
solutions to Z ′

n(c) for each c when restricting PS to only
have finite support. While these results are close to the almost
tight converse bound, they are not necessarily the best known.
A few best known achievable points were found by simple
search. The results are plotted in Fig. 10 and shown in Table I.

F. Proof of Corollary 27

Proof: The Hamming block achieves the point (3
2 , 2

3)
in R3

∞. The proof that this is a corner point amounts to
computing the region R3

∞.
To solve for R3

∞, we will first simplify the expression for
F3(PS). For any PS on s ∈ [3], the labeling of primary
nodes which gives the minimum value of F3(PS) is when
PX (0) = 2

3 and PX (1) = 1
3 (or these flipped). With this

insight, we can simplify F3(PS) to solve for the optimal PS

14We can show that for each c, only considering constraints (93b) for s ≤
16c is more than sufficient. All other infinite constraints can be removed
without affecting the optimal solution.

TANG et al.: DEFECT TOLERANCE: FUNDAMENTAL LIMITS AND EXAMPLES 5259

given any parameter E[S] = c for some 1 ≤ c ≤ 3. Let
PY |L(3)(j |ℓ0, ℓ1) denote the proportion of redundant nodes of
type ℓ = (ℓ0, ℓ1) to label j .

F3(PS) = max
PY |L(3)

min
j∈{0,1}

1
PX (j)

E [L j {Y = j}] (98)

= max
PY |L(3)

min
j∈{0,1}

{
1

PX (j)

3∑

s=1

PS(s)

∑

ℓ

ℓ j PL(3)|S,PX
(ℓ|s, PX)PY |L(3)(j |ℓ)

}
(99)

= max
PY |L(3)

min
{

3
2

(
PS(1)

2
3

PY |L(3)(0|1, 0)

+PS(2)

[
2
3

PY |L(3) (0|1, 1) + 2
1
3

PY |L(3)(0|2, 0)

]

+PS(3)2PY |L(3)(0|2, 1)

)
,

3
1

(
PS(1)

1
3

PY |L(3) (1|0, 1)

+PS(2)
2
3

PY |L(3) (1|1, 1)

+PS(3)PY |L(3)(1|2, 1)

)}
(100)

To get (100), we expanded the summation into each term
replacing ℓ j and PL(3)|S,PX

(ℓ|s, PX) with their numerical val-
ues. Since PX (0) = 2

3 and PX (1) = 1
3 and k = 3, we only

need the PY |L(3) terms for which ℓ is a subset on 2 zeros
and 1 one.

We will first solve for the portion of R3
∞ where ε > 3

2 .
Set E[S] = 3. There is a unique point of the form (3

η ,
1
η)

for some η > 0 which is a boundary point of the convex
region R3

∞. The only distribution PS which can achieve
E[S] = 3 is when PS(3) = 1 and PS(s) = 0 for all other
s ̸= 3. With this PS , we get that F3(PS) = 3

2 . Since no other
PS is possible, the point

(
E[S]

F3(PS)
,

1
F3(PS)

)
=

(
2,

2
3

)
(101)

must be the boundary point of the form (3
η ,

1
η) in R3

∞. The
line of points between this value and the value given by the
Hamming block is achievable by convexity and by Claim 2 of
Proposition 4 they must be optimal.

For the remaining portion of the region, we want to fixed a
1 < c < 9

4 (the Hamming block has E[S] = 9
4), and solve for

P∗
S = argmaxPS :E[S]=c F3(PS) and determine F3(P∗

S).
Note that it is optimal to set PY |L(3) (0|ℓ0, 0) = 1 and

PY |L(3)(1|0, ℓ1) = 1. Then we can simplify notation by letting
PY |L(3)(0|1, 1) = x1,1 and PY |L(3) (0|2, 1) = x2,1. We can
simplify (100) by applying the constraints that

∑3
s=1 PS(s) =

1 and
∑3

s=1 P(s)s = c. At the maximum point, the two
quantities after the minimum must be equal. Simplifying the

equation with these constraints, we have

F3(P∗
S) = max

x1,1,x2,1∈[0,1]
c − 1 − (3c − 3)x1,1

6x2,1 − 6x1,1 − 1
(3x2,1−2x1,1−1)

+ (c − 1)x1,1 + 1 (102)

under the constraints that the variables are in [0, 1].
The optimal labeling must have that either x1,1 = 0

and x2,1 ∈ [0, 1] or that x1,1 ∈ [0, 1] and x2,1 = 1 by
Proposition 24. We try the cases x1,1 = 0 and x2,1 = 1 and
take derivatives to solve for the best value of x2,1 or x1,1. For
any value of c we pick,15 the point (c

F3(P∗
S) ,

1
F3(P∗

S)) lies on the
line between the point achievable by the repetition design and
the Hamming block. By convexity, it must be that all points
on the line between the values achievable by the repetition
design and the Hamming block are optimal. !

ACKNOWLEDGEMENT

YP would like to thank Prof. Jaikumar Radhakrishnan for
interesting discussions at the Simons Institute for the Theory
of Computing (UC Berkeley), in particular for bringing [20]
to our attention.

REFERENCES

[1] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34.
1956, pp. 43–98.

[2] E. F. Moore and C. E. Shannon, “Reliable circuits using less reliable
relays,” J. Franklin Inst., vol. 262, no. 3, pp. 191–208, 1956.

[3] R. L. Dobrushin and S. I. Ortyukov, “Lower bound for the redun-
dancy of self-correcting arrangements of unreliable functional elements,”
Problems Peredachi Inform., vol. 13, no. 1, pp. 82–89, 1977.

[4] R. L. Dobrushin and S. I. Ortyukov, “Upper bound on the redun-
dancy of self-correcting arrangements of unreliable functional elements,”
Problems Peredachi Inform., vol. 13, no. 3, pp. 56–76, 1977.

[5] N. Pippenger, “On networks of noisy gates,” in Proc. 26th Annu. Symp.
Found. Comput. Sci. (FOCS), Oct. 1985, pp. 30–38.

[6] N. Pippenger, “Reliable computation by formulas in the presence of
noise,” IEEE Trans. Inf. Theory, vol. IT-34, no. 2, pp. 194–197,
Mar. 1988.

[7] N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis, “On a lower bound
for the redundancy of reliable networks with noisy gates,” IEEE Trans.
Inf. Theory, vol. 37, no. 3, pp. 639–643, May 1991.

[8] B. Hajek and T. Weller, “On the maximum tolerable noise for reliable
computation by formulas,” IEEE Trans. Inf. Theory, vol. 37, no. 2,
pp. 388–391, Mar. 1991.

[9] W. S. Evans and L. J. Schulman, “Signal propagation and noisy circuits,”
IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2367–2373, Nov. 1999.

[10] W. S. Evans and L. J. Schulman, “On the maximum tolerable noise of
k-input gates for reliable computation by formulas,” IEEE Trans. Inf.
Theory, vol. 49, no. 11, pp. 3094–3098, Nov. 2003.

[11] F. Unger, “Better gates can make fault-tolerant computation impossible,”
in Proc. Electron. Colloq. Comput. Complexity (ECCC), vol. 17. 2010,
p. 164.

[12] G. Norman, D. Parker, M. Kwiatkowska, and S. K. Shukla, “Evaluating
the reliability of defect-tolerant architectures for nanotechnology with
probabilistic model checking,” in Proc. 17th Int. Conf. VLSI Design,
Jan. 2004, pp. 907–912.

[13] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-tolerant techniques for
nanocomputers,” Nanotechnology, vol. 13, no. 3, p. 357, 2002.

15For example, we can pick c = 12
7 . We get that the maximum value

occurs when x1,1 = 0 and x2,1 = 1. With this setting of variables, P∗
S (1) =

3
7 , P∗

S (2) = 3
7 , P∗

S (3) = 1
7 which corresponds to the subset design S(3, 3) ∨

S(3, 2) ∨ S(3, 1) and achieves
(

12/7
F3(P∗

S)
, 1

F3(P∗
S)

)
= (12

9 , 7
9).

5260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 7, JULY 2018

[14] D. Gizopoulos et al., “Architectures for online error detection and
recovery in multicore processors,” in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2011, pp. 1–6.

[15] M. P. Flynn, C. Donovan, and L. Sattler, “Digital calibration incorporat-
ing redundancy of flash ADCs,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 50, no. 5, pp. 205–213, May 2003.

[16] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold
SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State
Circuits, vol. 43, no. 1, pp. 141–149, Jan. 2008.

[17] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Toward robust
integrated circuits: The embryonics approach,” Proc. IEEE, vol. 88,
no. 4, pp. 516–543, Apr. 2000.

[18] T. Leighton and C. E. Leiserson, “Wafer-scale integration of systolic
arrays,” IEEE Trans. Comput., vol. C-34, no. 5, pp. 448–461, May 1985.

[19] J. R. Heath, P. J. Kuekes, G. S. Kuekes, and R. S. Williams, “A defect-
tolerant computer architecture: Opportunities for nanotechnology,”
Science, vol. 280, no. 5370, pp. 1716–1721, 1998.

[20] N. Alon and U. Feige, “On the power of two, three and four probes,” in
Proc. 20th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2009,
pp. 346–354.

[21] D. Wang, “Computing with unreliable resources: Design, analysis
and algorithms,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, Jun. 2014.

Jennifer Tang received the B.S.E. degree in electrical engineering from
Princeton University, Princeton, NJ, USA, in 2013 and the S.M. degree in
electrical engineering and computer science from the Massachusetts Institute
of Technology in 2015. She is currently working towards the Ph.D. degree in
the Department of Electrical Engineering and Computer Science at MIT. She
received 1st Place at the Shannon Centennial Student Competition organized
by Nokia Bell Labs in 2016. Her research interests include information theory,
defect-tolerant circuits, and learning theory.

Da Wang received the B.A.Sc. degree with honors in electrical engineering
from the University of Toronto, Toronto, ON, Canada, and the S.M. and
Ph.D. degrees in electrical engineering and computer science (EECS) from
the Massachusetts Institute of Technology (MIT), Cambridge, in 2008, 2010
and 2014, respectively. He was a recipient of for several awards or fellow-
ships, including Jacobs Fellowship in 2008, Claude E. Shannon Research
Assistantship in 2011-2012, and Wellington and Irene Loh Fund Fellowship
in 2014. His research interests include information theory, distributed com-
puting and statistical inference.

Yury Polyanskiy (S’08–M’10–SM’14) received the M.S. degree in applied
mathematics and physics from the Moscow Institute of Physics and Technol-
ogy, Moscow, Russia, in 2005 and the Ph.D. degree in electrical engineering
from Princeton University, Princeton, NJ, USA, in 2010. He is an Associate
Professor of Electrical Engineering and Computer Science and a member of
LIDS at MIT. Currently, his research focuses on basic questions in information
theory, error-correcting codes, wireless communication and fault-tolerant and
defect-tolerant circuits.

Dr. Polyanskiy won the 2013 NSF CAREER award and 2011 IEEE
Information Theory Society Paper Award.

Gregory W. Wornell (S’83–M’91–SM’00–F’04) received the B.A.Sc. degree
from the University of British Columbia, Canada, and the S.M. and Ph.D.
degrees from the Massachusetts Institute of Technology, all in electrical
engineering and computer science, in 1985, 1987 and 1991, respectively.
Since 1991 he has been on the faculty at MIT, where he is the Sumitomo
Professor of Engineering in the Department of Electrical Engineering and
Computer Science. At MIT, he leads the Signals, Information, and Algorithms
Laboratory within the Research Laboratory of Electronics. He is also Chair
of Graduate Area I (information and system science, electronic and photonic
systems, physical science and nanotechnology, and bioelectrical science and
engineering) within the EECS Department’s doctoral program. He has held
visiting appointments at the former AT&T Bell Laboratories, Murray Hill, NJ,
USA, the University of California, Berkeley, CA, USA and Hewlett-Packard
Laboratories, Palo Alto, CA, USA.

His research interests and publications span the areas of signal processing,
information theory, digital communication, statistical inference, and infor-
mation security, and include architectures for sensing, learning, computing,
communication, and storage, systems for computational imaging and vision,
aspects of computational biology and neuroscience, and the design of wireless
networks. He has been involved in the Signal Processing and Information
Theory societies of the IEEE in a variety of capacities, and maintains a number
of close industrial relationships and activities. He has won a number of awards
for both his research and teaching.

