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Abstract

With the ubiquity of intelligent systems capable of sensing, inferring and acting upon their
surroundings, it becomes critical to learn rapidly about unknown systems or environments.
However, obtaining empirical data is often costly and involves setting up time consuming
experiments or deploying specialized sensors. We are interested in deriving scalable algo-
rithms and system architectures that facilitate efficient data collection, maximizing inference
quality under limited resource budget.

In this work, we consider efficient data collection strategies in several applications involv-
ing physical environments. We study the problem of learning dynamical systems with initial
approximated models, where we prescribe methods for choosing near optimal experimental
parameters to collect empirical data. We study the problem of antenna array topology design
where we prescribe configurations allowing efficient scene inference under various measure-
ment schemes and budget constraints. We introduce a novel nonlinear radar modality and
discuss efficient design techniques for this setting. Finally, we introduce a novel methodology
for optical imaging of non line of sight hidden scenes by utilizing occlusions and investigate
how to achieve efficient illumination of the scene for fast hidden target interrogation.
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Chapter 1

Introduction

1.1 Motivation

In a wide variety of applications we are interested in utilizing data in the form of collected

measurements to make inference about an object of interest whose properties we want to

learn. Typically, upon modeling the various components of the environment, such as the sys-

tem under study, the measurement process, and the noise generation mechanism we derive

algorithms and formulas for estimating unknown feature values given empirical measure-

ments. In many such learning setups it is often assumed that data is a-priori available and

emphasis is placed on analyzing different modeling aspects of the problem and designing

efficient computational methods for performing inference. However, obtaining data is often

a major concern in real world applications, where collection of a single data point may in-

volve setting up an experiment or placing a dedicated sensor such that it can be costly in

terms of time and other resources. Deriving efficient and deliberate data collection strate-

gies, supporting desired performance levels while minimizing experimental resources, is thus

important for lowering costs and allowing economical learning. Furthermore, in settings

where rapid learning is crucial, such as when the environment is evolving with time, or when

decisions have to be taken quickly in response to changes in the state of the system, efficient

data collection schemes minimize the acquisition time and allow timely estimation of the

system state, which is crucial for enabling on-time response. Intuitively, the efficacy of such

data collection strategies is tied to the accuracy and certainty of the model describing the

15



system under study. When nothing is a-priori known there is little we can do in the way of

devising efficient a-priori learning strategies, whereas when the model describing the system

at play is highly specified and accurate our hope is to be able to do much better.

The challenging problem of designing efficient data collection strategies for learning has

been studied by different communities under different titles such as experimental design,

sampling and active learning, and it is notoriously difficult and rich with computationally

intractable formulations that are known to be out of reach for efficient solvers. It is only in

the past decade that new formulations have emerged for some of these problems, facilitating

approximately optimal solutions that can be efficiently computed in some situations. How-

ever, these may still be hard to compute and they are not tailored to specific applications

where specialized modeling issues may call for a detailed study and adapted solutions.

In this work, we identify several physical environments and settings where obtaining data

efficiently is of key importance in determining overall system performance. In these settings

an efficient data collection strategy may have far reaching applications in reducing, e.g.

system latency, cost, weight and size. Each setup we consider illuminates a unique challenge

and poses domain specific trade-offs which we take into account. Ultimately, our goal is to

tailor solutions for these application domains and offer novel formulations that enable more

economical design and improved performance.

1.2 Our Research Goals and Focus

In this work we focus on several domains of interest:

∙ We discuss the problem of collecting samples from a Gaussian process where we ex-

tend recently proposed sampling formulations and suggest alternatives that are more

computationally efficient and lead to similar performance.

∙ We formulate the problem of learning misspecified dynamical models, discuss some of

its features and derive an approximately optimal strategy for choosing experimental

parameters for rapid learning.

∙ We explore the problem of antenna array design for single and multiple wavelength sce-

16



narios, introduce several measurement collection schemes and derive efficient approxi-

mately optimal solvers for array topology design under various budget constraints.

∙ We introduce a novel radar modality, where the interaction between the probing field

and the targets is nonlinear and explore efficient signal set and antenna array topology

design in this setting.

∙ We discuss the problem of non-line-of-sight optical imaging where state of the art

systems require collection of ultra fast sub-picosecond measurements. We introduce a

novel imaging modality based on exploiting occluders in the scene and study efficient

scene interrogation strategies for fast image acquisition.

1.3 Thesis Overview and Structure

In Chapter 2 we revisit the problem of sensor placement in a Gaussian Process (GP). A

GP is a mathematical tool that can be used to capture statistical assumptions about a wide

range of physical and mathematical phenomena, such as temperature variations in a room

or sample values of a function, and perform inference over unknown quantities given ob-

served measurements. An efficient sensor placement configuration in a GP is one enabling

high quality inference over unobserved locations with a fixed number of measurements. The

problem of designing near optimal sensor placement configurations in GPs has previously

been addressed, but has proven to be computationally challenging, especially in high dimen-

sional settings. We introduce a novel approach towards efficient sensor placement in such

settings, and show that near optimal solutions may be efficiently obtained.

We then turn to address the problem of learning mis-specified dynamical systems. Dy-

namical models are ubiquitous in describing natural and man made phenomena. It is often

the case where a model describing such system is mis-specified, e.g. it has been derived

using specialized domain knowledge that does not completely capture the exact dynamics,

for example neglecting to account for weak non-idealities that exist in every real world envi-

ronment but are hard to predict theoretically. In situations such as this we can augment the

approximated model and enhance its accuracy by taking advantage of empirical data col-
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lected from the system. We deploy our sensor placement technique to address the question of

designing efficient experiments for empirical data collection in this setup. This setting allows

us to probe the interplay between domain knowledge and empirical data and study how the

former can direct efficient use of the latter, as we show by deriving theoretical bounds and

demonstrate via numerical experiments.

In Chapter 3 we turn our attention to designing antenna arrays for far field sensing. Tra-

ditionally, antenna arrays have been designed to meet desired beam pattern specifications

such as main lobe width and sideband suppression levels which implicitly support fixed re-

construction fidelity thresholds with respect to a set of scenes of interest. We introduce a

Bayesian setting where prior information on scenes, e.g. in the form of smoothness assump-

tions or statistics of expansion coefficients in some countable base, is known, and propose

an array geometry design scheme that facilitates efficient collection of measurements under

these assumptions. We show that our method can computationally efficiently achieve near

optimal designs. Moreover, by adapting relevant results from the growing body of literature

on submodular optimization we demonstrate how to design antenna arrays under combina-

torial placement constraints, and in multiple wavelength settings where we find specialized

designs for measurement fusion and robust operation.

In Chapter 4 we study the problem of optically imaging non line of sight (NLOS) hidden

scenes through diffuse optical reflections. State of the art systems for NLOS imaging utilize

Time of Flight (TOF) measurements that are collected with ultra fast sub-picosecond detec-

tors, implying high cost and complicated setups. In contrast, we introduce a novel approach

for NLOS imaging by opportunistically exploiting occlusions in the scene. We show that in

many interesting settings our method obviates the need for collecting costly time resolved

information. In this setting, to achieve low acquisition times it is crucial to design efficient

scene interrogation strategies. We utilize our experimental design methodology developed

in previous chapters to address this problem. Our resulting imaging system represents an

instance of a rich and promising new imaging modality with important potential implications

for imaging science.

In Chapter 5 we further specialize our treatment for antenna array design. Motivated by

commercial imaging applications where the interaction mechanism between the scene and the
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probing field is nonlinear we consider novel imaging models and study the role this interaction

plays in carrying information about the scene. Focusing on the classic directions of arrival

(DOA) estimation problem we derive theoretical results that demonstrate how power-law

type interactions can lead to enhanced target identifiability with a fixed number of sensors,

and suggest corresponding array topologies and signal sets that support this enhanced level

of performance.
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Chapter 2

Experimental Design for Learning

Misspecified Dynamical Systems

Dynamical models are ubiquitous in describing natural and man-made phenomena, such as

particle motion in a force field, liquid and gas flow, acoustic wave propagation and electrical

signals in electronic circuits. An accurate dynamical model describing a system under study

is useful for making predictions, for example about the future value of state variables given

their initial conditions at some fixed time. Unfortunately, in many situations of interest we

do not have access to an accurate dynamical model describing a system, and instead we

only have available a crude approximated model. We will be interested in estimating an

accurate model for the system by augmenting the misspecified model with a correction term

learned from empirical data measurements, which are to be gathered by experimenting with

the system in question.

Experimenting with real world systems is often time-consuming and costly such that

efficiently designing an informative series of such experiments is important. We study the

problem of designing experiments for rapidly and efficiently learning to correct such misspec-

ified dynamical models using empirical data measurements. In this chapter, we formulate

a scheme for representing such problems by utilizing Gaussian Processes and show, by us-

ing the theory of submodular functions, that while the problem of optimal experimental

design is NP-hard, near optimal (up to a constant) designs are achievable through use of

computationally efficient solvers.
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Physical environments where differential equations are used to model state space evolution
and approximate models can be derived from fundamental physical principles: (Left) Mass
attached to a spring (Middle) Satellite in orbit around a planet (Right) Electrical circuit.

[free use figures obtained online]

Figure 2-1: Illustration of several dynamical systems.

2.1 Introduction

The evolution of a wide variety of dynamical systems can be described by mathematical

models which embody differential equations [34]. Such dynamical models are employed ubiq-

uitously for description, prediction, and decision-making in a wide variety of environments

and applications, e.g. as illustrated in Figure 2-1.

Acknowledging that “essentially all models are wrong” [10], we recognize that an exact

description of a physical system is almost never within reach, and all models are misspec-

ified to some extent, that is, their accuracy is limited. One such scenario is in situations

where domain knowledge, available via an expert familiar with the setup, is employed to

derive a crude low-complexity initial description for the dynamics of a system of interest

[88, 43, 37, 117, 64, 105, 98]. However, real-world phenomena often involve additional, weak

effects, that are not accounted for in typical expert derived models, rendering such mod-

els inadequate representations of reality. For example, in designing electrical circuits, ideal

linear models are often assumed for circuit components such as resistors, capacitors and

inductors, however, available components tend to exhibit weak but complicated non-linear

characteristics not accounted for by the approximate models [18, 73, 24]. Another example is

in deriving models for flow systems, where idealized models may be assumed for the medium

and its boundaries, neglecting weak nonlinear phenomena and deteriorating the fidelity of
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the resulting models [29, 116]. More broadly, diverse physical phenomena such as friction,

nonlinearities, saturation, breakdown and many other non idealities are often not taken into

account when formulating crude models.

Other common sources of model misspecification may be related to simplified representa-

tion of the domain geometry [109], isotropic modeling of anisotropic medium [107, 122, 1] and

conscious or non-conscious choices made regarding the numerical solution of the underlying

system: immature truncation of infinite expansions, round-off errors, approximate solutions

of linear or non-linear terms, etc. [45, 48, 123, 111].

Such prominent modeling errors may result in discrepancies between predicted and ob-

served system behavior and creep into simulation-based insights, ramifications of which could

be inaccurate state descriptions, unstable model inferences, or erroneous control output, de-

signs or decisions.

In lieu of deriving an approximate model which may confer an inadequate representation

of the system’s dynamic, a common alternative is to take a completely agnostic, data-driven

approach and apply either parametric or non-parametric techniques to learn the dynamics

purely based on empirical data collected from the system [40, 74, 88, 74]. However, such

an agnostic approach fails to utilize the existing approximate information about the system

model, often lead to models of limited interpretability, and usually relies on the availability

of a large set of training examples to derive complex models of sufficient fidelity [47, 65].

In this study we explore a third approach of combining these two information sources

effectively: on the one hand a crude misspecified system model as derived based on domain

knowledge, and on the other hand empirical measurements and data to complement the

misspecified model. Our goal is to learn a generalized representation for the system dynamics,

based on the approximate model and the empirical data. We focus on understanding how

this learning process can be performed efficiently, with only a limited budget for experiments

to probe the system and collect empirical data points [38, 46, 106]. Specifically, we explore

the role of the initial approximate model in guiding the design of experiments for collection

of empirical data that best informs the model correction objective.

We are interested in exploring efficient methods for modeling such mis-specified dynamical

systems, and analyzing how empirical measurements can enhance our models. We focus on a
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non-parametric approach for modeling the unknown components of the system dynamics [49]

that requires weak, implicit assumptions regarding the desired correction and its smoothness.

These formulations offer great versatility in defining non-linear functional representations

[4, 76, 7] and are therefore applicable to a broad class of problems. In this study, we take the

approach proposed by Kennedy and O’Hagen [49] and articulate the misspecified correction

term as a Gaussian Processes (GP).

With the GP formulation set we have a natural framework for concisely recording a cor-

rection term for the system dynamics and a matching Bayesian setting for making inference

from empirical measurements from the system output and the correction term. Namely, we

assume that the system can be prepared at one of multiple initial conditions, upon which it is

allowed to evolve freely and we have access to noisy output measurements. The discrepancy

between the actual system output and the output predicted based on the misspecified model

drives the inference process and updates estimates for the correction term.

As setting up experiments with physical systems is often costly in term of both time and

other resources, one of our main goals will be to devise efficient strategies for data collection

in this setup, that facilitate rapid learning. Our end-goal is to accelerate the learning curve,

and infer the dynamic correction term with a minimal number of observations. In this study,

we consider a Bayesian D-optimal experimental design [25, 90] where we maximize the infor-

mation gain through collection of informative data. While this problem is computationally

difficult, following the work of Krause and Golovin [54] we prove that an approximation

to the mutual information in our setting is a monotonic submodular set function. Based

upon this observation, we gain access to the wealth of optimization machinery available for

optimization of submodular set functions [78, 83, 15, 86], and thereby provide solid perfor-

mance guarantees that allows us to probe the trade-off between the availability of domain

knowledge and empirical data, as we show by deriving theoretical bounds and demonstrate

via numerical experiments. Specifically, we demonstrate the use of a computationally effi-

cient solver that guarantees approximately optimal (up to a constant factor) solution to the

optimal experimental design problem.
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2.2 Problem Formulation

The behavior of a broad variety of dynamical models can be described by Ordinary Differ-

ential Equations (ODE) [34]. Consider a misspecified system of such first order ODEs1:

𝑑

𝑑𝑡
y(𝑡) = G(y(𝑡)) + F(y(𝑡)) (2.1)

with 𝑡 time, y(𝑡) = [𝑦1(𝑡), . . . , 𝑦𝑑(𝑡)]
⊤ a state vector of interest, and

F(y(𝑡)) ≡ [𝐹1(y(𝑡)), . . . , 𝐹𝑑(y(𝑡))]⊤,G(y(𝑡)) ≡ [𝐺1(y(𝑡)), . . . , 𝐺𝑑(y(𝑡))]⊤

vector valued functions, F(·),G(·) : R𝑑 → R𝑑 governing the system dynamics.

We are interested in settings where the temporal evolution of y(𝑡) is dominated by the

driving term G(·), whereas the correction term F(·) is assumed to have only a small effect

over short time spans. Concretely, define the auxiliary system

𝑑

𝑑𝑡
y𝐺(𝑡) = G(y𝐺(𝑡)) (2.2)

then our interest is in the regime where, initialized in the same state y(0) = y𝐺(0) the two

systems track each other closely over some prescribed time span 𝑡𝑓 . Specifically, we assume

that for all 𝑡 ∈ [0, 𝑡𝑓 ] we have y(𝑡) is close to y𝐺(𝑡) in a sense that will be quantitatively

defined in Section 2.5. One way of ensuring this is requiring ‖F(·)‖ ≪ ‖G(·)‖ over some

domain 𝒟 ⊆ R𝑑 , and short enough time spans 𝑡𝑓 . The model (2.1) is misspecified in

the sense that G(·) is assumed known, whereas the small additive correction function F(·)

is not available. Situations like this may arise, e.g. when we have at our disposal some

approximation G(·) to a system of interest, perhaps derived via expert domain knowledge,

which does not fully capture the true dynamics driving the system.

Our goal is to utilize system evolution paths y(𝑡) as observed in experiments to learn a

representation for the correction term F(·). The resulting ’corrected’ model allows making

accurate predictions about the system evolution. We specifically focus on designing efficient

1Higher order ODE systems may be converted into first order ODE form by defining new state variables,
e.g. see Section 2.6.
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experiments that facilitate rapid learning of the correction term under a limited experimental

budget.

2.2.1 Initial Conditions

We consider applications where we are at liberty to perform a limited number of at most

𝐾 experiments to facilitate learning the correction term F(·). The kth experiment entails

preparing the system at some fixed initial conditions at time zero y(𝑘)(0) ∈ 𝒴 and observing

its subsequent evolution y(𝑘)(𝑡) for 𝑡 > 0 as determined2 by the (not fully known) model

(2.1). We take the set 𝒴 to be a finite collection of possible experimental conditions that we

may choose to start the system from. It may be a finely discretized grid over a continuous

region of accessible initial conditions, e.g. expressing power constraints 𝒴 ⊂ {y : ‖y‖22 ≤ 𝑃},

or otherwise meeting an application specific set of restrictions.

Let 𝒴0 ⊆ 𝒴 , |𝒴0| ≤ 𝐾 be the set of selected initial conditions that seed the𝐾 experiments.

Informative prescription of 𝒴0 is a primary concern in this study, as in many practical

scenarios experiments are costly and it is important to design them carefully in order to

extract as much information as possible from the limited set of measurements.

2.2.2 An Observation Model

The empirical evolution data y(𝑘)(𝑡), 𝑘 = 1, . . . , 𝐾 allows us to probe the system dynamics

and learn a representation for the correction term. To set the framework we specify a discrete

and noisy observation model.

In this work we assume readings are collected on a discrete time grid. As the kth ex-

periment unfolds the system evolves from the initial state y(𝑘)(0) ∈ 𝒴0 according to y(𝑘)(𝑡)

and we gain access to 𝑇 temporal observations on a discrete time grid 𝑡 ∈ 𝒯 = {𝑡1, . . . , 𝑡𝑇}.

Let 𝒴𝑚 ≡
{︀
y|∃𝑘, 𝑖 s.t. y = y(𝑘)(𝑡𝑖)

}︀
be the set of size 𝐾̃ ≡ |𝒴𝑚| = 𝐾𝑇 of system states

recorded during the 𝐾 experiments seeded by states in 𝒴0.

For a given trajectory y(𝑡), it is apparent from (2.1) that the correction term F(·) can

2Fixing initial conditions at time 𝑡 = 𝑡0 the output of the first order ODE system (2.1) is determined for
all 𝑡 > 𝑡0 [34].
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be evaluated at points along the path via

F(y(𝑡)) =
𝑑

𝑑𝑡
y(𝑡)−G(y(𝑡)) (2.3)

With oracle access to the derivative 𝑑
𝑑𝑡
y(𝑡) we could attain point samples of F(y) for all

y ∈ 𝒴𝑚 through (2.3) as G(y) is assumed known. However, with only discrete samples on

the trajectory we do not have access to 𝑑
𝑑𝑡
y(𝑡). Instead, we assume access to noisy derivative

estimates3 𝑑
𝑑𝑡
ỹ(𝑘)(𝑡𝑖) given according to:

𝑑

𝑑𝑡
ỹ(𝑘)(𝑡𝑖) =

𝑑

𝑑𝑡
y(𝑘)(𝑡𝑖) + 𝜖𝑘,𝑖 𝑘 = 1, . . . , 𝐾, 𝑖 = 1, . . . , 𝑇 (2.4)

with 𝜖𝑘,𝑖 ∼ 𝒩 (0,Σ𝜖) i.i.d. Gaussian noise. We form noisy estimates for the correction term

F̃(y(𝑘)(𝑡𝑖)) by substituting:

F̃(y(𝑘)(𝑡𝑖)) ≡
𝑑

𝑑𝑡
ỹ(𝑘)(𝑡𝑖)−𝐺(y(𝑘)(𝑡𝑖)) =

𝑑

𝑑𝑡
y(𝑘)(𝑡𝑖)−𝐺(y(𝑘)(𝑡𝑖)) + 𝜖𝑘,𝑖

= F(y(𝑘)(𝑡𝑖)) + 𝜖𝑘,𝑖 (2.5)

For the sequel, we sometimes ease notations by writing f𝑗 ≡ F(y𝑗), and f̃
𝑗 ≡ F̃(y𝑗) for

the noisy readings y𝑗 ∈ 𝒴𝑚, 𝑗 = 1, . . . , 𝐾̃. In these symbols the noisy measurement model

(2.5) reads:

f̃
𝑗

= F(y𝑗) + 𝜖𝑗 𝑗 = 1, . . . , 𝐾̃ (2.6)

and 𝜖𝑗 ∼ 𝒩 (0,Σ𝜖) are Gaussian i.i.d..

2.3 Correction Estimation

The experimental framework detailed in the last section resulted in a set of 𝐾̃ noisy point

estimates for the correction term F̃(𝒴𝑚) =
{︁
F̃(y)|y ∈ 𝒴𝑚

}︁
which form our training set.

Our interest lies in estimating F(·) over some domain 𝒟 ⊆ R𝑑, however even in the noiseless

3E.g. by simple numerical differences, or more signal tailored techniques performing smoothing over the
trajectory [20, 111].
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setting and in the limit where the sampling interval approaches zero, we generally cannot

achieve a dense cover over 𝒟 with a finite number of trajectories y(𝑘)(𝑡). Thus, some structure

or prior information must be assumed for the correction term, such as degree of smoothness

or adherence to a specific functional form, to allow for its estimation from the collected data.

In this section we take a Bayesian approach, setting a Gaussian Process (GP) formulation

for the problem [50], allowing to express prior knowledge over the correction term F(·) and

enabling inference from the finite number of collected noisy samples to the underlying values

over the entire domain 𝒟. The estimated correction term may subsequently be used to make

evolution predictions for arbitrary initial conditions. Please find a brief review of the GP

framework in Appendix B.

2.3.1 Gaussian Processes

To correct the ODE model we assume a probabilistic setting in which F(y) is a vector-valued

GP F(y) ∼ 𝒢𝒫(m(y),k(y,y′)) defined over some bounded region 𝒟 ⊆ R𝑑 with m(·) : R𝑑 →

R𝑑 the mean function and k(·, ·) : R𝑑×R𝑑 → R𝑑×𝑑 the covariance function [92]. Every finite

collection of sample points {F(y1),F(y2), . . .} is then distributed as multivariate Gaussian.

The mean vector is retrieved by stacking m(y1),m(y2), . . . and the second order statistics

are given according to E[[F(y𝑖)]𝑚[F(y𝑗)]𝑛] = [k(y𝑖,y𝑗)]𝑚,𝑛 [3]. For the sequel we make the

simplifying assumptions m(y) ≡ 0 and k(y,y′) = 𝑘(y,y′)I𝑑, i.e. the vector components

are zero mean, independent and share a common scalar kernel function, as in the usual

scalar-valued GP setting. Our techniques and methods can be generalized to the biased and

correlated-components setting, but we restrict our model here for brevity.

Let F̃(𝒜) be a set of noisy measurements collected at some set of sampling points 𝒜:

F̃(𝒜) = {F(y) + 𝜖|y ∈ 𝒜} where 𝜖 ∼ 𝒩 (0,Σ𝜖) is i.i.d. additive noise. We are inter-

ested in predicting the value of the process in unobserved locations. The posterior for

F(ℬ) = {F(y)|y ∈ ℬ} where ℬ is some arbitrary set of sampling points is given according
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to F(ℬ)|F̃(𝒜) ∼ 𝒩 (𝜇ℬ|𝒜,Σℬ|𝒜) with [3]:

𝜇ℬ|𝒜=k(ℬ,𝒜)[k(𝒜,𝒜) + Σ]−1F̃(𝒜) (2.7)

Σℬ|𝒜=k(ℬ,ℬ)−k(ℬ,𝒜)[k(𝒜,𝒜)+Σ]−1k(𝒜,ℬ) (2.8)

and k(𝒮1,𝒮2) ∈ R|𝒮1|𝑑×|𝒮2|𝑑 has block structure with elements [k(y𝑖,y𝑗)]𝑚𝑛 for all y𝑖 ∈

𝒮1,y𝑗 ∈ 𝒮2 and 𝑚,𝑛 = 1, . . . , 𝑑 and Σ = Σ𝜖 ⊗ I|𝒜|.

The GP formalism facilitates expression of prior knowledge over unknown functions

F(·), as determined by the choice of kernel, capturing notions of similarity between val-

ues at different positions. Popular choices for the kernel function include the Gaussian

RBF 𝑘(y,y′) = exp(− 1
2𝜎2

𝑘
‖y−y′‖2) with 𝜎2

𝑘 the kernel bandwidth and the polynomial kernel

𝑘(y,y′) = (1 + ⟨y,y′⟩)𝑚 with 𝑚 ∈ N+ the order. The Gaussian RBF kernel is of particu-

lar interest as it is universal in the sense that with a large enough training set, estimation

according to (2.7) can approximate any continuous bounded function on a compact domain

[76]. With the GP model set, the value of F(y) at any y ∈ 𝒟 may be estimated according

to (2.7) based on the noisy measurements F̃(𝒴𝑚).

2.3.2 Feature Space Representation

With the assumptions of the last subsection, the 𝑑-dimensional vector-valued GP F(y) is

comprised of 𝑑 independent GPs 𝐹𝑖(y) ∼ 𝒢𝒫(0, 𝑘(y,y′)), 𝑖 = 1, . . . , 𝑑. We follow [124, 92, 21]

and review the correspondence between these GPs and equivalent linear regression models

in the feature space.

Mercer’s theorem guarantees the existence of a sequence of eigenfunctions {𝜑𝑗(y)} , 𝑗 =

1, 2, . . . such that 𝑘(y,y′) =
∑︀

𝑗 𝜑𝑗(y)𝜑𝑗(y
′) = ⟨𝜑(y),𝜑(y′)⟩ where 𝜑(y) = [𝜑1(y), 𝜑2(y), . . .]⊤

is the feature transformation from the input space to the feature space and ⟨·; ·⟩ is an inner

product.

Let 𝜃𝑖𝑗 ∼ 𝒩 (0, 1), 𝑖 = 1, . . . , 𝑑, 𝑗 = 1, 2, . . . be a sequence of i.i.d. standard Gaussian

variables. For notational convenience we define 𝜃𝑖 ≡ [𝜃𝑖1, 𝜃𝑖2, . . .]
⊤, 𝑖 = 1, . . . , 𝑑 and Θ =
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[𝜃1, . . . ,𝜃𝑑]
⊤. We will see that the following identity holds in distribution:

𝐹𝑖(y) =
∑︁

𝑗
𝜃𝑖𝑗𝜑𝑗(y) ≡ ⟨𝜃𝑖,𝜑(y)⟩ 𝑖 = 1, . . . , 𝑑 (2.9)

i.e. the GP inference of Section 2.3.1 is equivalent to a Bayesian linear regression model in

the feature space.

To see that (2.9) holds notice that both sides of the equality are zeros mean GPs over

y. The covariance function of the left hand term is 𝑘(y,y′) by definition. The covariance

function of the right hand term is

E
[︁∑︁

𝑗
𝜃𝑖𝑗𝜑𝑗(y)

∑︁
𝑗′
𝜃𝑖𝑗′𝜑𝑗′(y

′)
]︁

=
∑︁

𝑗𝑗′
E [𝜃𝑖𝑗𝜃𝑖𝑗′ ]𝜑𝑗(y)𝜑𝑗′(y

′) =
∑︁

𝑗
𝜑𝑗(y)𝜑𝑗(y

′) = 𝑘(y,y′)

(2.10)

Given noisy data F̃(𝒴𝑚) = F(𝒴𝑚) + 𝜖 with 𝜖 ∼ 𝒩 (0,Σ𝜖) i.i.d. noise, inference in the

GP can be equivalently performed by estimating the regression coefficients Θ and making

predictions for F(y) as per (2.9).

2.4 Informative Sampling in a GP

In this section we study the problem of sampling in a GP. Our main interest lies in under-

standing how to choose an efficient sampling strategy under constraints, one that facilitates

high fidelity inference over the GP from the collected measurements. This will become use-

ful in subsequent sections for designing efficient experimental schemes for rapid learning of

misspecified systems.

2.4.1 Sampling Setup

Consider the problem of estimating F(y) for any y ∈ 𝒟 by collecting noisy samples F̃(𝒮) over

some set 𝒮 ⊆ 𝒴 , with 𝒴 ⊂ 𝒟 a set of allowed sampling positions, and applying the inference

methodology of Section 2.3. The quality of inference strongly depends on the sampling set 𝒮,

which we also refer to as a sensor placement configuration. For example, if the set 𝒮 is highly
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localized in some region in 𝒟 it is reasonable to expect that inference of F(·) becomes more

accurate in that region on the expense of farther locals in 𝒟. We are generally interested

in estimating F(·) over the whole of 𝒟 and so we are interested in developing a mechanism

that allows this.

An efficient sampling configuration is one supporting high quality inference under a fixed

budget constraint on the number of sensors used, i.e. imposing 𝒮 : 𝒮 ⊆ 𝒴 , |𝒮| ≤ 𝐾. The

problem of designing sensor placement configurations for GPs has been extensively studied

in the past, but only recently new methodologies guaranteeing near optimal designs have

emerged [58]. While these are computationally tractable in low dimensional settings the com-

putational complexity does not scale favorably with the dimension, showing an exponential

dependence, as we discuss next.

2.4.2 Mutual Information Criterion

Krause et al. [58] have proposed the following strategy for choosing 𝒮. Let 𝒰 ⊂ 𝒟 be a set

of test points where estimation quality will be assessed, and 𝒱 = 𝒴 ∪ 𝒰 . Krause suggests

choosing 𝒮 according to:

𝐺(𝒮) ≡ 𝐼(F̃(𝒮);F(𝒱∖𝒮)) (2.11)

𝒮⋆ = argmax𝒮:𝒮⊆𝒴,|𝒮|≤𝐾 𝐺(𝒮) (2.12)

Intuitively, the idea is to find a set 𝒮 which is informative over positions in 𝒱∖𝒮 = 𝒰 ∪(𝒴∖𝒮)

in the sense of maximally decreasing the entropy of the process value in these positions.

At this point, please review Appendix A for a brief survey of submodular functions and

optimization problems involving their maximization. It is shown in [58] that 𝐺(𝒮) is a

submodular function. They further show that when |𝒰| is large enough compared to 𝐾

then 𝐺(𝒮) is additionally approximately monotone. Using results in Appendix A we then

have that (2.11) is amenable under some restrictions for efficient near optimal solution via

conventional submodular optimization techniques.

This result is important in that it allows for a guaranteed near optimal solution for the

sensor placement problem under the specified criterion, however it heavily relies on the choice
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of the test set 𝒰 , and the computational complexity may be shown to scale as 𝑂(𝐾|𝒱|4).

Specifically, in high dimensions if we were to choose the set 𝒰 to be an 𝜖-net covering of some

set 𝒟 of fixed per-axis length, both |𝒰| and |𝒱| grow exponentially and the computational

complexity becomes prohibitive.

2.4.3 Feature Space Information Criterion

We introduce a feature space based sensor placement criterion, and show that near optimal

solutions may be efficiently obtained, in some cases even in high dimensional spaces. Our

key insight is that in some situations invoking the feature space representation for the GP

may result in a succinct representation that is amenable to efficient manipulation. The

computational complexity of our approach can be orders of magnitude lower than that of [58].

Specifically, we show that it scales nicely with the dimension, in lieu of the aforementioned

exponential trend. We demonstrate the efficacy of our approach via numerical experiments

in Section 2.6.

Invoking the feature space representation of Section 2.3.2 we see that performing infer-

ence in the GP based on a ground set of noisy measurements F̃(𝒮) may be viewed as first

estimating Θ and then applying (2.9) to retrieve estimates for the rest of 𝒟. From this

viewpoint, the estimation error in F(y) originates from the error in Θ and so our goal is to

decrease these as much as possible by maximizing the quality of inference from F̃(𝒮) to Θ.

Various statistical criteria have been developed for quantifying the quality of inference be-

tween observations and underlying random variables [17, 11, 25, 90]. Here we follow D-Bayes

optimality [8].

In this framework, the uncertainty associated with Θ is quantified through the Shannon

entropy 𝐻(·). Before the experiment we have initial uncertainty 𝐻(Θ) which is revised to

𝐻(Θ|F̃(𝒮)) following data collection. A D-Bayes optimal design minimizes the posterior

uncertainty 𝐻(Θ|F̃(𝒮)), or equivalently maximizes the mutual information:

𝐺(𝒮) ≡ 𝐼(Θ; F̃(𝒮)) = 𝐻(Θ)−𝐻(Θ|F̃(𝒮)) (2.13)
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and an optimal experimental design under the budget constraint 𝒮 ⊆ 𝒴 , |𝒮| ≤ 𝐾 is

𝒮⋆ = argmax
𝒮:|𝒮|≤𝐾,𝒮⊆𝒴

𝐺(𝒮) (2.14)

We show that 𝐺(·) as defined above holds favorable set function properties (as defined

in appendix A):

Theorem 2.1. The utility function 𝐺(𝒮) is submodular and monotone.

Proof. First we prove submodularity. Let 𝒮 ⊂ 𝒴 and y ∈ 𝒴∖𝒮. Expanding the mutual

information according to 𝐼(Θ; F̃(𝒮)) = 𝐻(F̃(𝒮))−𝐻(F̃(𝒮)|Θ) we have:

𝐺(𝑆 ∪ {y})−𝐺(𝒮) = 𝐻(F̃(𝒮) ∪ F̃(y))−𝐻(F̃(𝒮))− [𝐻(F̃(𝒮) ∪ F̃(y)|Θ)−𝐻(F̃(𝒮)|Θ)]

= 𝐻(F̃(y)|F̃(𝒮))−𝐻(F̃(y)|Θ) (2.15)

where we used the conditional independence of the elements of F̃(𝒮) ∪ F̃(y) given Θ, so

𝐻(F̃(𝒮) ∪ F̃(y)|Θ) = 𝐻(F̃(𝒮)|Θ) +𝐻(F̃(y)|Θ).

Now apply the results of (2.15) for two specific choices for 𝒮, namely 𝒮 ← 𝒮1 and 𝒮 ← 𝒮2

such that 𝒮1 ⊆ 𝒮2:

[𝐺(𝒮1∪{y})−𝐺(𝒮1)]− [𝐺(𝒮2∪{y})−𝐺(𝒮2)] = 𝐻(F̃(y)|F̃(𝒮1)))−𝐻(F̃(y)|F̃(𝒮2)))

(2.16)

Conditioning on a larger set cannot increase entropy and we have𝐻(F̃(y)|F̃(𝒮1))) ≥ 𝐻(F̃(y)|F̃(𝒮2)))

such that 𝐺(𝒮1∪{y})−𝐺(𝒮1) ≥ 𝐺(𝒮2∪{y})−𝐺(𝒮2) and 𝐺 is submodular.

To prove monotonicity it is enough to show 𝐺(𝒮 ∪ {y})− 𝐺(𝒮) ≥ 0. This time expand

the mutual information according to 𝐼(Θ; F̃(𝒮)) = 𝐻(Θ)−𝐻(Θ|F̃(𝒮)):

𝐺(𝒮 ∪ {y})−𝐺(𝒮) = 𝐻(Θ|F̃(𝒮))−𝐻(Θ|F̃(𝒮) ∪ F̃(y)) . (2.17)

Conditioning can never increase entropy so 𝐻(Θ|F̃(𝒮)) ≥ 𝐻(Θ|F̃(𝒮)∪ F̃(y)) and the result

follows.
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With the last theorem, and applying results from the theory of submodular optimization,

we can show that it is possible to efficiently compute near optimal solutions for (2.14) using,

e.g. variations on greedy selection algorithms, as we further detail in Section 2.5.3.

Computational complexity To evaluate the computational complexity of our approach

when applying a greedy selection algorithm, notice that we have 𝐾 steps, each culminating

with the inclusion of an additional element 𝑥 ∈ 𝒴 to the budding 𝒮 ′. For each candidate

element 𝑥 and the resulting 𝒮 ′ we compute𝐺(𝒮 ′) = 𝐼(Θ; F̃(𝒮 ′)) = 𝐻(F̃(𝒮 ′))−𝐻(F̃(𝒮 ′)|Θ) =

𝐻(F̃(𝒮 ′))−𝐻(𝜖).

Evaluating 𝐻(𝜖) may be done in time 𝑂(1) using the Gaussian distribution of 𝜖 and

the analytic formula for the entropy of a Gaussian random variable4. The computational

complexity of evaluating 𝐺(𝒮 ′) is thus equivalent to the complexity of evaluating the term

𝐻(F̃(𝒮 ′)) which entails calculating a determinant for the corresponding |𝒮 ′| × |𝒮 ′| covari-

ance matrix. The computational complexity thus scales as 𝑂(𝐾|𝒴||𝒮 ′|3) = 𝑂(𝐾|𝒴|𝐾3) =

𝑂(𝐾4|𝒴|). Typically we have |𝒴| ≪ |𝒱| and 𝐾 ≪ |𝒱| such that the computational complex-

ity can be orders of magnitude smaller than the one associated with the approach of [58]. In

particular notice that the complexity does not scale with the ambient dimension.

2.5 Experimental Design for Dynamical Systems

In Section 2.3 we reviewed inference in a GP setting, and suggested applying this formulation

for estimating the correction term F(·) based on the set of noisy measurements F̃(𝒴𝑚). The

observation set 𝒴𝑚, as determined by the initial conditions set 𝒴0 was assumed given and

fixed.

In this section, following the introduction of Section 2.4 we study efficient experimental

design in the misspecified dynamical system context. That is, our goal would be to select

an informative set of experiments, parametrized through the initial conditions 𝒴0, such as

to facilitate rapid learning of the correction term F(·) under a limited experimental budget

constraint. We quantify the expected utility associated with choosing sets of initial conditions

4The entropy of a Gaussian multivariate random variable is given according to: x ∈ R𝑘,x ∼ 𝒩 (𝜇,Σ)⇒
𝐻(x) = log((𝜋𝑒)𝑘detΣ).
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and suggest an efficient near-optimal (up to a constant factor) algorithm for choosing the

best such experimental setup.

2.5.1 Utility Function for Misspecified Dynamical Models

In our setting we select a set of initial conditions 𝒴0 and observe the corresponding outputs.

This chain of dependencies is made explicit as 𝒴0 → 𝒴𝑚(𝒴0) → F̃(𝒴𝑚(𝒴0)). The quality of

inference, viewed as a function of the initial conditions 𝒴0 is given by

𝐺(𝒴0) ≡ 𝐼(Θ; F̃(𝒴𝑚(𝒴0))) (2.18)

and an optimal experimental design under the budget constraint |𝒴0| ≤ 𝐾, 𝒴0 ⊆ 𝒴 is

𝒴⋆0 = argmax
𝒴0:|𝒴0|≤𝐾,𝒴0⊆𝒴

𝐺(𝒴0) (2.19)

2.5.2 Output Trajectory Proxy

The design problem (2.19) entails choosing a set 𝒴0 of 𝐾 initial conditions, and observing

𝐾̃ noisy measurements F̃(𝒴𝑚(𝒴0)), which are utilized for estimating F(·) over 𝒟.

As we are concerned with misspecified systems such that the complete system model

(2.1) is unknown, we are unable to predict system trajectories based on initial conditions

at time zero. In particular, we do not have a-priori access to the mapping between the sets

𝒴0 and 𝒴𝑚, such that evaluation of the cost function (2.18) and thus solution of the design

problem (2.19) are not possible. However, at this point our assumption that the system is

only slightly misspecified in short time spans, i.e. that the correction term F(·) introduces

a small effect on the trajectory, turns out to be useful in retrieving approximate solutions.

For any given set of initial conditions 𝒴0 we invoke the approximate system model (2.2)

to obtain a proxy 𝒴𝑔 for the true set of future states 𝒴𝑚. Let y(𝑘)(0) ∈ 𝒴0 be the initial

conditions seeding the kth experiment, and designate the approximate ensuing trajectory

y
(𝑘)
𝐺 (𝑡). Collect the approximate trajectories in 𝒴𝑔 ≡

{︁
y|∃𝑘, 𝑖 s.t. y = y

(𝑘)
𝐺 (𝑡𝑖)

}︁
, and note

that the set 𝒴𝑔 may be evaluated in advance given 𝒴0. For example, for a linear misspecified

system 𝑑
𝑑𝑡
y𝐺(𝑡) = Ay𝐺(𝑡) for some fixed A ∈ R𝑑×𝑑, the trajectories comprising 𝒴𝑔 may be
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determined according to y(𝑘)
𝐺 (𝑡𝑖) = 𝑒A𝑡𝑖y

(𝑘)
𝐺 (0) where 𝑒(·) is the matrix exponential according

to the usual definition.

In what follows we propose a proxy for the cost function (2.18) where 𝒴𝑔 is used in lieu of

the unknown 𝒴𝑚, and derive approximation bounds for the discrepancy between the two. We

show that that these bounds scale with the deviation between the actual and approximate

system outputs y(·) and y𝐺(·). Specifically, we have:

Theorem 2.2. Let 𝐺̃(𝒴0) ≡ 𝐼(Θ; F̃(𝒴𝑔(𝒴0))), with 𝜖 ∼ 𝒩 (0,Σ𝜖), and let 𝛿 be a positive

constant such that the maximum covariance discrepancy between the true and approximate

models is bounded according to

∀𝑘1, 𝑘2, 𝑖1, 𝑖2 :
⃒⃒⃒
𝑘(y(𝑘1)(𝑡𝑖1), y

(𝑘2)(𝑡𝑖2))− 𝑘(y
(𝑘1)
𝐺 (𝑡𝑖1), y

(𝑘2)
𝐺 (𝑡𝑖2))

⃒⃒⃒
≤ 𝛿 .

We have

⃒⃒⃒
𝐺̃(𝒴0)−𝐺(𝒴0)

⃒⃒⃒
≤ −𝑑𝐾̃ log

⎛⎝1− 𝛿(𝑑𝐾̃)
3
2

𝜎min(Σ𝜖)

⎞⎠ (2.20)

with 𝜎min(·) the minimal singular value, and 𝐾̃ = 𝐾𝑇 the number of measurements.

Proof. See proof in Section C.1.

Notice that the bound of Theorem 2.2 becomes looser as the noise decreases. However,

notice that the value of 𝐺(𝒴0) increases in this case in about the same proportion so the

relative error remains similar. As an illustration, consider the case Σ𝜖 = 𝜎2
𝜖 I. Using notation

used in the proof of Theorem 2.2 and Σ ≡ Σ𝜖 ⊗ I𝐾̃ we have:

𝐺(𝒴0) = 𝐻(F̃(𝒴𝑚(𝒴0)))−𝐻(F̃(𝒴𝑚(𝒴0))|Θ) = log(det(k(𝒴𝑚,𝒴𝑚)+Σ))− log(det(Σ))

= log(det(I+Σ−1k(𝒴𝑚,𝒴𝑚)))

Now observe

𝜆𝑖(I+Σ−1k(𝒴𝑚,𝒴𝑚)) = 1+𝜆𝑖(Σ
−1k(𝒴𝑚,𝒴𝑚))≥1+

𝜎min(k(𝒴𝑚,𝒴𝑚))

𝜎2
𝜖

36



so

log(det(I+Σ−1k(𝒴𝑚,𝒴𝑚))) ≥ 𝐾̃ log

(︂
1+

𝜎min(k(𝒴𝑚,𝒴𝑚))

𝜎2
𝜖

)︂
and we have

𝐺(𝒴0) ≥ 𝑑𝐾̃ log

(︂
1+

𝜎min(k(𝒴𝑚(𝒴0),𝒴𝑚(𝒴0)))

𝜎2
𝜖

)︂
.

Corollary 2.1. Let 𝑘(y, y′) = 𝑘(‖y−y′‖) be a shift-invariant kernel with 𝑘(·) Lipschitz

continuous with constant 𝐿 over 𝒟′ ≡ {y1−y2|y1, y2 ∈ 𝒟}, and assume ∀𝑘, 𝑖 : ‖y(𝑘)(𝑡𝑖) −

y
(𝑘)
𝐺 (𝑡𝑖))‖≤∆. We have

⃒⃒⃒
𝐺̃(𝒴0)−𝐺(𝒴0)

⃒⃒⃒
≤ −𝑑𝐾̃ log

⎛⎝1−2𝐿∆(𝑑𝐾̃)
3
2

𝜎min(Σ𝜖)

⎞⎠ (2.21)

Proof. For any 𝑘1, 𝑘2, 𝑖1, 𝑖2 we have

⃒⃒⃒
𝑘(y(𝑘1)(𝑡𝑖1),y

(𝑘2)(𝑡𝑖2))−𝑘(y
(𝑘1)
𝐺 (𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2))

⃒⃒⃒
=
⃒⃒⃒
𝑘(‖y(𝑘1)(𝑡𝑖1)−y(𝑘2)(𝑡𝑖2)‖)−𝑘(‖y(𝑘1)

𝐺 (𝑡𝑖1)−y
(𝑘2)
𝐺 (𝑡𝑖2)‖)

⃒⃒⃒
≤ 𝐿

⃒⃒⃒
‖y(𝑘1)(𝑡𝑖1)−y(𝑘2)(𝑡𝑖2)‖−‖y

(𝑘1)
𝐺 (𝑡𝑖1)−y

(𝑘2)
𝐺 (𝑡𝑖2)‖

⃒⃒⃒
≤ 𝐿‖(y(𝑘1)(𝑡𝑖1)−y

(𝑘1)
𝐺 (𝑡𝑖1))−(y(𝑘2)(𝑡𝑖2)−y

(𝑘2)
𝐺 (𝑡𝑖2))‖

≤ 𝐿
(︁
‖y(𝑘1)(𝑡𝑖1)−y

(𝑘1)
𝐺 (𝑡𝑖1)‖+‖y(𝑘2)(𝑡𝑖2)−y

(𝑘2)
𝐺 (𝑡𝑖2)‖

)︁
≤ 2𝐿∆

and the result follows by substitution in (2.20).

Corollary 2.2. Let 𝑘(y, y′) = (1 + ⟨y, y′⟩)𝑚 be the polynomial kernel, 𝐵 ≡ sup
y∈𝒟 ‖y‖ and

assume ∀𝑘, 𝑖 : ‖y(𝑘)(𝑡𝑖)− y
(𝑘)
𝐺 (𝑡𝑖))‖≤∆, then

⃒⃒⃒
𝐺̃(𝒴0)−𝐺(𝒴0)

⃒⃒⃒
≤ −𝑑𝐾̃ log

⎛⎝1−𝑚∆(2𝐵 + ∆)(1 +𝐵2)𝑚−1(𝑑𝐾̃)
3
2

𝜎min(Σ𝜖)

⎞⎠ (2.22)
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Proof. Consider the following chain of inequalities

⃒⃒⃒
𝑘(y(𝑘1)(𝑡𝑖1),y

(𝑘2)(𝑡𝑖2))− 𝑘(y
(𝑘1)
𝐺 (𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2))

⃒⃒⃒
=
⃒⃒⃒(︀

1 +
⟨︀
y(𝑘1)(𝑡𝑖1),y

(𝑘2)(𝑡𝑖2)
⟩︀)︀𝑚 − (︁1 +

⟨
y
(𝑘1)
𝐺 (𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2)

⟩)︁𝑚 ⃒⃒⃒
(𝑎)

≤ 𝑚(1 +𝐵2)𝑚−1
⃒⃒⃒⟨︀
y(𝑘1)(𝑡𝑖1),y

(𝑘2)(𝑡𝑖2)
⟩︀
−
⟨
y
(𝑘1)
𝐺 (𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2)

⟩⃒⃒⃒
= 𝑚(1+𝐵2)𝑚−1|

⟨
y
(𝑘1)
𝐺 (𝑡𝑖1)−y(𝑘1)(𝑡𝑖1),y

(𝑘2)(𝑡𝑖2)
⟩

+
⟨
y(𝑘1)(𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2)−y(𝑘2)(𝑡𝑖2)

⟩
+
⟨
y
(𝑘1)
𝐺 (𝑡𝑖1)−y(𝑘1)(𝑡𝑖1),y

(𝑘2)
𝐺 (𝑡𝑖2)−y(𝑘2)(𝑡𝑖2))

⟩
|

≤ 𝑚(1+𝐵2)𝑚−1(∆𝐵+𝐵∆+∆2) = 𝑚∆(2𝐵+∆)(1+𝐵2)𝑚−1

where (a) is due to the Lipschitz constant of the function 𝑓(𝑥) = (1 + 𝑥)𝑚 being smaller

than 𝑚(1 + sup𝑥∈𝒟 |𝑥|)𝑚−1. The result follows by substitution in (2.20).

Theorem 2.2 and Corollaries 2.1 and 2.2 bound the discrepancy between 𝐺(𝒴0) and its

proxy 𝐺̃(𝒴0). As the trajectory uncertainty becomes smaller the two become more tightly

aligned as quantified by our results in this subsection.

2.5.3 Near Optimal Solution

Based on the results of Theorem 2.2 and the ensuing corollaries, in lieu of problem (2.19) we

pose a relaxed proxy that circumvents around the uncertainty associated with the system

output. Namely, we are interested in the solution of

𝒴⋆0 = argmax
𝒴0:|𝒴0|≤𝐾,𝒴0⊆𝒴

𝐺̃(𝒴0) (2.23)

Generic combinatorial optimization problems such as (2.23) exhibit prohibitive compu-

tational complexity, as the solution generally involves enumeration over all possible subset

combinations satisfying the constraints, which is exponential in the size of the set |𝒴0|.

We prove that 𝐺̃(𝒴0) holds favorable properties, rendering the optimization problem (2.23)

amenable to approximate solution by means of computationally efficient algorithms with

provable guarantees. Reviewing Appendix A our next step is to show that the set function
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𝐺̃(𝒴0) is submodular and monotonic (similar to [56]), a fact that allows us to make use of

the rich literature on submodular optimization.

Theorem 2.3. Let 𝐺̃ : 2𝒴 → R be the set function defined in Theorem 2.2. Then 𝐺̃ is

monotonic (increasing) and submodular.

Proof. First we prove submodularity. Let 𝒴0 ⊂ 𝒴 and y ∈ 𝒴∖𝒴0, such that the system

output proxy for y is given as F̃(𝒴𝑔(y)). Expanding the mutual information according to

𝐼(Θ; F̃(𝒴𝑔(𝒴0))) = 𝐻(F̃(𝒴𝑔(𝒴0)))−𝐻(F̃(𝒴𝑔(𝒴0))|Θ) we have:

𝐺̃(𝒴0∪{y})−𝐺̃(𝒴0) = 𝐻(F̃(𝒴𝑔(𝒴0))∪F̃(𝒴𝑔(y)))−𝐻(F̃(𝒴𝑔(𝒴0))−

[𝐻(F̃(𝒴𝑔(𝒴0))∪F̃(𝒴𝑔(y)|Θ)−𝐻(F̃(𝒴𝑔(𝒴0)|Θ)] (2.24)

= 𝐻(F̃(𝒴𝑔(y))|F̃(𝒴𝑔(𝒴0)))−𝐻(F̃(𝒴𝑔(y))|Θ)

where we used the conditional independence of the elements of F̃(𝒴𝑔(𝒴0)) ∪ F̃(𝒴𝑔(y)) given

Θ, so 𝐻(F̃(𝒴𝑔(𝒴0))∪F̃(𝒴𝑔(y))|Θ) = 𝐻(F̃(𝒴𝑔(𝒴0))|Θ) +𝐻(F̃(𝒴𝑔(y))|Θ).

Now apply the results of (2.24) twice, for two specific choices for 𝒴0, namely 𝒴0 ← 𝒴1
0

and 𝒴0 ← 𝒴2
0 such that 𝒴1

0 ⊆ 𝒴2
0 :

[𝐺̃(𝒴1
0∪{y})−𝐺̃(𝒴1

0 )]−[𝐺̃(𝒴2
0∪{y})−𝐺̃(𝒴2

0 )]

= 𝐻(F̃(𝒴𝑔(y))|F̃(𝒴𝑔(𝒴1
0 )))−𝐻(F̃(𝒴𝑔(y))|F̃(𝒴𝑔(𝒴2

0 )))

Conditioning on a larger set cannot increase entropy and we have 𝐻(F̃(𝒴𝑔(y))|F̃(𝒴𝑔(𝒴1
0 ))) ≥

𝐻(F̃(𝒴𝑔(y))|F̃(𝒴𝑔(𝒴2
0 ))) such that 𝐺̃(𝒴1

0∪{y})−𝐺̃(𝒴1
0 ) ≥ 𝐺̃(𝒴2

0 ∪ {y})−𝐺̃(𝒴2
0 ) and 𝐺̃ is

submodular.

To prove monotonicity it is enough to show 𝐺̃(𝒴0∪{y})−𝐺̃(𝒴0) ≥ 0. This time expand

the mutual information according to 𝐼(Θ; F̃(𝒴𝑔(𝒴0))) = 𝐻(Θ)−𝐻(Θ|F̃(𝒴𝑔(𝒴0))):

𝐺̃(𝒴0∪{y})−𝐺̃(𝒴0) = 𝐻(Θ|F̃(𝒴𝑔(𝒴0)))−𝐻(Θ|F̃(𝒴𝑔(𝒴0))∪F̃(𝒴𝑔(y))) . (2.25)
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Conditioning can never increase entropy so

𝐻(Θ|F̃(𝒴𝑔(𝒴0))) ≥ 𝐻(Θ|F̃(𝒴𝑔(𝒴0))∪F̃(𝒴𝑔(y)))

and the result follows.

The class of submoudlar combinatorial optimization problems has been extensively stud-

ied in the past, as we survey in Appendix A. The computationally efficient greedy solver

delineated in algorithm 3 is guaranteed to achieve a good approximation (up to a constant

factor) to the optimal solution [78, 83], as stated in lemma A.1.

Proposed Method Applied to our setting, the Algorithm 3 performs successive evalua-

tions of the proxy function 𝐺̃(·) for candidate sets 𝒴𝐶0 ≡ 𝒴0 ∪{y} where y ∈ 𝒴 ∖𝒴0. During

the kth iteration the candidate sets 𝒴𝐶0 are of size 𝑘. We utilize the following identity to

facilitate the flow of the algorithm:

𝐺̃(𝒴𝐶0 ) =𝐻(F̃(𝒴𝑔(𝒴𝐶0 )))−𝐻(F̃(𝒴𝑔(𝒴𝐶0 ))|Θ)

= log((𝜋𝑒)𝑘𝑇detΣ𝑔)− log((𝜋𝑒)𝑘𝑇detΣ𝑔|Θ) = log(detΣ𝑔)− log(detΣ𝑔|Θ) (2.26)

In the equation above, Σ𝑔 and Σ𝑔|Θ are the covariance matrices for the ensemble of 𝑘𝑇

samples F̃(𝒴𝑔(𝒴𝐶0 )), taken without and with conditioning on the feature space coefficients

Θ, respectively. Notice that conditioned on Θ the measurements covariance matrix Σ𝑔|Θ

is block-diagonal with block submatrices being the noise covariance matrix, and the no-

conditioning covariance matrix Σ𝑔 can be retrieved by adding the aforementioned noise

matrix to the corresponding kernel covariance matrix 𝑘(F̃(𝒴𝑔(𝒴𝐶0 )), F̃(𝒴𝑔(𝒴𝐶0 ))).

Denoting the result of running the greedy maximization algorithm 3 on the proxy function

𝐺̃(𝒴0) with 𝒴gr0 we have our final result:

Theorem 2.4. Let the maximum covariance discrepancy between the true and approximate

models be bounded according to

∀𝑘1, 𝑘2, 𝑖1, 𝑖2 :
⃒⃒⃒
𝑘(y(𝑘1)(𝑡𝑖1), y

(𝑘2)(𝑡𝑖2))− 𝑘(y
(𝑘1)
𝐺 (𝑡𝑖1), y

(𝑘2)
𝐺 (𝑡𝑖2))

⃒⃒⃒
≤ 𝛿
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then we have

𝐺(𝒴gr

0 ) ≥ (1− 𝑒−1)(𝐺(𝒴⋆0 ) +𝑂(log(1− const · 𝛿)))

Proof. Immediate from Lemma A.1 and Theorem 2.2.

The last theorem demonstrates that applying the greedy maximization algorithm on the

proxy function 𝐺̃(·) retrieves a solution 𝒴gr0 which is near optimal for the original function

𝐺(·), which is what we want.

2.5.4 Leveraging Submodular Optimization Techniques

In this section we briefly survey additional results of interest from the literature on sub-

modular maximization. We identified our approximated experimental design problem (2.23)

as one of maximizing a submodular function under a cardinality constraint on a subset of

𝒴 . With the argument identified as submodular we can define variants of the cardinality

constrained problem that may be of interest in applications and retain the efficient approx-

imation property of (2.23).

We briefly mention submodular maximization with matroid constraints [54],[15], where

in lieu of (2.23) we solve:

𝑌 ⋆
0 = argmax

𝒴0:𝒴0∈ℐ
𝐺̃(𝒴0) (2.27)

and ℐ is a matroid combinatorial structure [86]. Matroids can concisely capture complicated

constraints on 𝒴0, for example let {𝒴 𝑖} be a partition of 𝒴 , i.e.
⋃︀
𝑖 𝒴 𝑖 = 𝒴 , ∀𝑖 ̸= 𝑗 :

𝒴 𝑖
⋂︀
𝒴𝑗 = ∅. With the partition in place, a constraint on 𝒴0 of the form 𝒴0

⋂︀
𝒴 𝑖 ≤ 𝐾𝑖 can

be shown to be a matroid constraint of the form 𝒴0 ∈ ℐ. A constraint like this is useful

for designing experiments to learn misspecified models where we cannot choose more than

a limited number 𝐾𝑖 of initial conditions to lie in any specific region 𝒴 𝑖, e.g. due to some

physical impediment for repeating experiments with similar conditions. It may be shown

that an efficient greedy algorithm can approximate the optimal solution of problems such as

those mentioned despite the exact problem being generally NP-hard.
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(Left) Random configuration. (Middle) Near-optimal configuration for the feature space
design. (Right) Near-optimal configuration for the Krause et al. utility function.

The noise levels was set to 𝜎2
𝑛 = 10−3 in all figures.

Figure 2-2: Sensor placement configurations.

2.6 Numerical Experiments

In this section we discuss results of numerical experiments validating and demonstrating our

techniques.

2.6.1 Comparing Sensor Placement Algorithms

We illustrate the efficacy of our sensor placement approach presented in Section 2.4 by

considering a numerical experiment. The setup is a two dimensional GP with a Gaussian

RBF kernel 𝑘(𝑥, 𝑥′) = exp(−1
2
‖𝑥 − 𝑥′‖2) and measurement noise 𝜎2

𝑛 = 10−3. In Figure 2-2

we compare a random sensor placement (left) to the configurations designed by the Krause

approach (right) and our feature space approach (middle). Using the notation of Section

2.4.1, 𝒟 is outlined with dotted lines, the test set 𝒰 is marked with blue dots, the candidate

set 𝒴 with green circles and 𝒮 with red cross marks. Notice that for this experiment the

candidate set 𝒴 was randomly drawn (uniformly over 𝒟) to represent a scenario where there

is some arbitrary fixed set of possible sampling positions. Evidently, our configuration closely

matches the one suggested by the Krause criterion.
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Figure 2-3 compares empirical prediction Mean Square Error (MSE) as measured over

500 random draws for GP realizations. For each random draw we collect empirical samples as

prescribed by the different methods, and infer process values over a dense set of test points,

comparing to the true underlying values. The performance of our approach is virtually

identical to that of the Krause method, with reduced computational complexity.

Figure 2-3: Prediction error versus noise level for several sensor configurations.

2.6.2 Correction Term Fitting via GP Regression

For the first experiment we consider a misspecified system in 𝑑 = 2 dimensions where the

known component is a fixed linear (matrix) operator, G(y(𝑡)) = Ay(𝑡) with

A =

⎡⎣+0.02 +0.10

−0.10 −0.06

⎤⎦ ,
and the misspecified component is set according to F([𝑦1, 𝑦2]

⊤) = [0.01𝑦21, 0.01𝑦22]⊤. We

observe the system evolution over the time span 𝑡 ∈ [0, 6], collecting 𝑇 = 11 equally-spaced

time samples per experiment. The sampled time evolution sequences y(𝑘)(𝑡) were computed

exactly, and we have measured noisy samples F̃(·) along the evolution path as per the

observation model (2.6), where the measurement noise was taken asΣ𝜖 = 𝜎2
𝜖 I with 𝜎

2
𝜖 = 10−4.
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(Left) Training set, with actual evolution in solid lines and misspecified predictions in dashed
lines. (Right) Test set, with corrected predictions overlaid.

Figure 2-4: Evolution trajectories for dynamical systems.

Figure 2-4 (left) depicts𝐾 = 40 trajectories y(𝑡) (solid lines) induced by a set 𝒴0 of initial

conditions (black dots). Elements y ∈ 𝒴0 were drawn from a uniform distribution over the

square 𝒟 = [−1,+1]×[−1,+1]. For comparison, we overlay the corresponding trajectories of

the misspecified model y𝐺(𝑡) taking into account solely the linear driving term G(·) (dashed

lines).

For the GP regression we use a Gaussian kernel with 𝜎2
𝑤 = 1.0 scaled for local variance

1
|𝒟|

∫︀∫︀
𝒟 |𝐹1(y)|2𝑑y = 1

|𝒟|

∫︀∫︀
𝒟 |𝐹2(y)|2𝑑y = 4 · 10−5. Figure 2-5 depicts the estimation error

‖F̂(y) − F(y)‖2 for y ∈ 𝒟, overlaid with the training sequences. As is evident from these

plots the estimation fidelity is high in the regions where training data is readily available.

Finally, in Figure 2-4 (right) the estimated correction term F̂(·) was used to test prediction

performance over some arbitrary set of initial conditions, and compare to the misspecified

predicted evolution. The corrected curves (striped lines) are evidently closer to the true

paths (solid lines) compared to the misspecified predictions (dashed lines).
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White traces depict the training set time evolution trajectories.

Figure 2-5: Misspecified driving term estimation error map.

2.6.3 Experimental Design for a Dynamical System

In this subsection we experiment with and implement the experimental design procedures

detailed in Section 2.5. We are interested in designing a succession of 𝐾 = 9 experiments.

The experimental design entails selecting an optimal set 𝒴0 ⊆ 𝒴 of initial conditions from

which to start the system off. With the misspecified system as defined in the previous

subsection, we take the possible selection set 𝒴 to be a uniformly spaced two dimensional

13×13 grid in 𝒟 = [−1,+1]×[−1,+1] as depicted in Figure 2-6 (left). We implement the

lazy greedy algorithm and design an approximately optimal selection set 𝒴0, marked with

black squares in Figure 2-6 (left). Performance is compared to a seed of equal size chosen

randomly over 𝒴 marked in black circles. Prediction performance over some arbitrary test

set of initial conditions is presented in Figure 2-6 (right) and a heat map for the estimation

error in F̂(·) is plotted in Figure 2-7.

Our next experiment involved changing the training set size, keeping track of estima-

tion performance as measured according to
∫︀∫︀

𝒟 ‖F̂(y)−F(y)‖2𝑑y (estimated via numerical
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(Left) Training data collected in two setups, first random and second based on designing
experiments to match the misspecified dynamics. (Right) Example of prediction test on

some arbitrary initial conditions.

Figure 2-6: Experimental design simulations for learning a dynamical system.

(Left) Random initial conditions (Right) Experimental design.

Figure 2-7: Misspecified driving term estimation error map for an experimental design sim-
ulation.
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Figure 2-8: Misspecified driving term estimation error versus training set size.

integration). Our dynamical system is as previously described, and we compare several

correction strategies as summarized in Figure 2-5.

The first comparison is against a fully data driven estimator, which has no knowledge

(not even approximate) of the system dynamics. We use training sequences as determined by

our misspecified experimental design procedure but learn the full dynamics by applying GP

regression with a Gaussian RBF kernel of scaled power 10−2 (due to the higher energy of the

unknown function when the entire driving term is to be learned) and estimate the full system

dynamics. The two other estimators are the ones previously described, namely estimating

just the correction component using the knowledge about the approximate (misspecified)

system dynamics, done once with a random seed training set and again with a training set

seeded by a choice of initial conditions determined according to our misspecified experimental

design procedure.

The results are averaged over 10 realizations of this setup. Also for comparison we show

the energy of the correction term
∫︀∫︀

𝒟 F(y)𝑑y and the energy of the entire dynamics term∫︀∫︀
𝒟 [F(y) +G(y)] 𝑑y which quantify the effective error associated with the misspecified and

the completely unknowable models.
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Evidently the fully data driven approach is always the worst as it ignores the data em-

bedded in the approximated model. However, with increasing number of experiments the

difference between this approach and the ones taking into account the approximate dynam-

ics tends to diminish, as the data becomes abundant and no prior assumptions about the

model are needed. The approach taking into account the known component in designing the

experimental setup is superior as it utilizes all available knowledge. The random training

ignoring the known dynamics component incurs a cost in terms of estimation performance

compared to the experimental design approach.

2.6.4 A Misspecified Gravitational Field

Experimental design is crucial when the cost of experiments is high. One plausible such

scenario is when a misspecified gravitational field is estimated by running controlled ex-

periments of placing an object and observing its free fall (such experiments are likely to be

costly). Accurate models of gravitational fields can be useful in planning satellite trajectories

around a planet. We use an artificial simplified simulation of the above in which we explore a

problem of motion in a two-dimensional gravitational field. If the gravitational field around

the planet is fully characterized then this motion can be easily simulated through the laws

of mechanics. However, in our setting we assume that the gravitational field is not fully

known, in reality this could happen due to e.g. nonuniform mass distribution for the planet

or gravitational influence from other nearby heavy masses [80, 93, 94].

Concretely, the two dimensional space is populated with a set of fixed objects, e.g. stars,

with the ith object having mass 𝑚𝑖 and position 𝑥𝑖 and we are interested in solving for the

motion of some free-moving unit mass, i.e. a satellite, in the corresponding gravitational

field. Let 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]
𝑇 be the coordinate vector of the free-moving unit mass. The

equations of motion governing the time evolution of 𝑥(𝑡) are prescribed by classical mechanics

and given according to [36]:

𝑑2

𝑑𝑡2
𝑥(𝑡) = −

∑︁
𝑖

𝑚𝑖
𝑥(𝑡)− 𝑥𝑖

‖𝑥(𝑡)− 𝑥𝑖‖3
(2.28)

This is a second order ODE expressing Newton’s second law of motion and the gravitational
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field force. Namely, the acceleration experienced by the satellite is equal to the sum of

forces acting on it. The force exerted on the satellite by the ith mass is aligned with the

vector connecting the two and is directly proportional to 𝑚𝑖 and inversely proportional to

the squared distance between them.

The second order ODE may be converted into first order form by introducing new vari-

ables and defining the transformation

[𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡), 𝑦4(𝑡)]
⊤ ≡ [𝑥1(𝑡), 𝑥2(𝑡),

𝑑

𝑑𝑡
𝑥1(𝑡),

𝑑

𝑑𝑡
𝑥2(𝑡)] (2.29)

In the new variables the equations of motion read:

𝑑

𝑑𝑡
𝑦1(𝑡) = 𝑦3(𝑡) (2.30)

𝑑

𝑑𝑡
𝑦2(𝑡) = 𝑦4(𝑡) (2.31)

𝑑

𝑑𝑡
𝑦3(𝑡) = −

∑︁
𝑖

𝑚𝑖
𝑦1(𝑡)− 𝑥𝑖1

‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤ − 𝑥𝑖‖3
(2.32)

𝑑

𝑑𝑡
𝑦4(𝑡) = −

∑︁
𝑖

𝑚𝑖
𝑦2(𝑡)− 𝑥𝑖2

‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤ − 𝑥𝑖‖3
(2.33)

which is a first order system of ODEs as in (2.1).

We consider a known but misspecified model that takes into account a single fixed mass in

the origin with 𝑚1 = 0.2 and 𝑥1 = [0, 0]⊤. The true model however includes two additional

masses 𝑚2 = 0.1,𝑚3 = 0.4 and 𝑥2 = [0, 4]⊤,𝑥3 = [0.5, 3.8]⊤. With these symbols, we have

G(y(𝑡))=

[︂
𝑦3(𝑡), 𝑦4(𝑡),

−𝑚1(𝑦1(𝑡)−𝑥11)
‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤−𝑥1‖3

,
−𝑚1(𝑦2(𝑡)−𝑥12)

‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤−𝑥1‖3

]︂⊤
(2.34)

F(y(𝑡))=

[︃
0, 0,

∑︁
𝑖=2,3

−𝑚𝑖(𝑦1(𝑡)−𝑥𝑖1)
‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤−𝑥𝑖‖3

,
∑︁
𝑖=2,3

−𝑚𝑖(𝑦2(𝑡)−𝑥𝑖2)
‖[𝑦1(𝑡), 𝑦2(𝑡)]⊤−𝑥𝑖‖3

]︃⊤
(2.35)

For this experiment the signal y(𝑡) is 4 dimensional such that at any moment it captures

the location as well as vector velocity of the satellite. Similarly, initial conditions are specified

in this four dimensional space.

We limit our attention to correction functions of the functional form F([𝑦1, 𝑦2, 𝑦3, 𝑦4]) =
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[0, 0,F3,4([𝑦1, 𝑦2])]
⊤, i.e. the gravitational field correction is strictly a function of the spatial

coordinates (𝑦1, 𝑦2), and has only two unknown components. We thus consider the problem

of estimating F3,4 : R2 → R2, and our results and techniques naturally carry over to this

scenario.

For the kernel we use a Gaussian RBF with 𝜎2
𝑘 = 1.0 scaled for local variance 10−3 and

the measurement noise is Σ𝜖 = 10−4I. Experiments run in the time frame 𝑡 ∈ [0, 3.0] and

𝑇 = 20 data samples are collected per experiment. The selection set 𝒴 is a set of size

|𝒴| = 300 of initial conditions, whose spatial coordinates (𝑦1, 𝑦2) are depicted in Figure 2-9

(left) in addition to the mass configuration in space. Also shown are training sets of size

𝐾 = 7 as selected via an agnostic experimental design procedure and a misspecified aided

one. In Figure 2-9 (right) we showcase prediction performance on a random test set. Both

the agnostic and the misspecified designs perform well here compared to the misspecified

predictions.

Figure 2-10 plots the estimation error of F̂3,4(·) for the setup above for the agnostic

design (left) and the misspecified guided design (right) which performs slightly better when

compared according to the mean squared error over the domain of interest 𝒟 delineated

inside the dashed line.

Finally in Figure 2-11 we compare the mean square error for the two methods as a

function of 𝐾, as determined empirically by averaging the results of 400 noise realizations.

For reference, the dashed red line depicts the mean energy in the unknown term F3,4(·).

2.7 Discussion

We have introduced a flexible Gaussian Process based formalism for expressing misspecified

models for dynamical systems, and a corresponding technique for making inference and

learning the misspecified dynamics based on empirical data collected from system evolution

sequences. We formulated a corresponding optimal experimental design problem as one

of choosing informative initial conditions that facilitate rapid learning of the system, and

suggested an efficient algorithm with guarantees to find approximate such designs under an

experimental budget constraint.
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(Left) Training sets as determined via an agnostic approach and a misspecified aided
approach. (Right) Predictions over a random test set.

Figure 2-9: Experimental design simulations in a misspecified gravitational field.
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(Left) Agnostic choice of training set (Right) Misspecified aided design.

Figure 2-10: Misspecified driving term estimation error map for an experimental design
simulation.

Figure 2-11: Misspecified driving term estimation error versus training set size.
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Several aspects of our work may be extended. We leave the following ideas and direc-

tions for future research. In this study, we have assumed that empirical data is collected

only after experimental design has been performed. However, in various configurations, it

is possible to consider an online adaptive experimental design formulation, where sequential

predictions are made based on past observations. While one can consider a setting in which

the aforementioned design process is being re-executed following each observation (with up-

dated knowledge), such approach may be sub-optimal. Recent studies have been considering

approaches such as dynamic programming in the context of Bayesian optimization, to devise

experimental design in a less myopic fashion [89, 66]. On another matter, in the current

study, the design space involved a discrete lattice of prospective seed coordinates (initial

conditions starting points). Alternative, spatially continuous parametrization of the seeding

points, may be more appropriate in other circumstances, and may enable harnessing scal-

able, continuous optimization strategies for determination of the initial states. While we

attempted to generalize the functional form of the correction model by the utilization of a

Gaussian Process as a generic form of model correction, the overall relationship of the cor-

rection term to the misspecified model is still in the form of an additive term. This popular

choice may be appropriate for a broad range of applications, but obviously, for others, more

sophisticated forms could be considered.
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Chapter 3

Antenna Array Design

In this chapter we consider the problem of far-field sensing by means of an antenna array.

Traditional array geometry design techniques are agnostic to prior information about the

far-field scene. However, in many applications such priors are available and may be utilized

to design more efficient array topologies.

We formulate the problem of array geometry design with scene prior as one of finding

a sampling configuration that enables efficient inference in the D-Bayes optimality sense,

which can be cast in the form of a combinatorial optimization problem. While generic

combinatorial optimization problems are NP-hard and resist efficient solvers, we show how

for array design problems the theory of submodular optimization may be utilized to obtain

efficient algorithms that are guaranteed to achieve solutions within a constant approximation

factor from the optimum.

We leverage the connection between array design problems and submodular optimization

and apply several results of interest. We demonstrate efficient methods for designing arrays

with constraints on the sensing aperture, as well as arrays respecting combinatorial placement

constraints. We further show that the problem of designing far field arrays operating at

multiple wavelengths can naturally be expressed using our formulations, and we consider

two relevant design paradigms. The first design paradigm is optimized for collection of

measurements at multiple wavelengths, fusing these together for joint inference over an

underlying scene. The second design paradigm is robust, in a sense that it is guaranteed to

allow good inference over the scene at any one single wavelength at a time. We showcase
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designs of arrays under both paradigms utilizing simple greedy selection algorithms, and

state-of-the-art robust submodular maximization algorithms.

The novel connection between array design and submodularity opens the door for uti-

lizing other insights and techniques from the growing body of literature on submodular

optimization in the field of array design.

3.1 Introduction

Sensor arrays for spatial sensing are deployed in a wide range of applications including radar,

sonar, medical imaging and radio astronomy and there is a vast literature on the topics of

array design and array processing from the last century [113, 61].

A major goal in designing arrays is efficiently meeting required specifications with a

limited budget of sensing elements, which are often a main determinant of system cost,

size, weight and complexity. However, even in the single wavelength case, the design of

array geometries is a notoriously hard task, and many applications simply utilize a uniform

truncated half-wavelength design, or restrictions thereof. Indeed, the problem of designing

non-uniform arrays hints at combinatorial optimization and is computationally hard as we

discuss later.

Various studies tackle the problem of non-unifom array design directly. In beamforming

arrays attaining a desired resolution level is often a primary concern, achieved by means of

manipulating beam pattern parameters such as lobe widths and positions, and the problem

of designing efficient array geometries that facilitate desired beam patterns has been widely

studied in the past. Techniques involving array thinning start with a dense uniform geom-

etry, removing elements while maintaining performance within specified bounds [41]. Other

approaches consider methods such as swarm optimization [51], dynamic programming [104],

genetic algorithms [42], inversion [63] and Bayesian compressive sampling [84].

In applications of estimating direction of arrival, other specialized techniques have emerged

for finding efficient array designs such as optimizing the corresponding Cramer-Rao error

bounds [33], or designing according to the nested array methodology for increasing the avail-

able number of degrees of freedom [112].
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In virtually all the design methodologies some assumptions on the scene of interest are

made. These represent beliefs, constraints or knowledge that hold over the unobserved scene.

A favorable design is one meeting requirements taking into account these assumptions. For

example, in direction of arrival applications we may assume some limit on the number of

point targets present [33]. In beamforming we assume some separation level between objects

of interest [113] that necessitates a certain resolution level, or some scene sparsity structure

[59, 60].

In this chapter we study the problem of inference on a scene of interest through mea-

surements collected at a sensor array. The approach we take for designing array geometries

is novel in that we consider settings where some Bayesian prior on the scene is available

at the time of design. Frequently, the same device is used to sense multiple similar scenes,

where past examples are indicative of future ones. A medical imaging device, for instance,

is typically used to image the same organ across different patients. In other cases, we may

have prior knowledge in the form of scene properties such as smoothness or adherence to

spatial constraints. We incorporate such knowledge as a prior in a Bayesian model and pro-

pose exploiting this knowledge and adapting the geometry accordingly to achieve efficient

inference with a limited budget for sensors. In this Bayesian setting, sensing the scene is just

performing inference in the model, and the problem of array geometry design asks to select

a geometry that optimizes the quality of inference.

We show how quantifying inference quality through the D-Bayes optimality criterion

[17, 8] results in a cost function for the array geometry design problem that holds the property

of submodularity [83]. A submodular set function is one that exhibits diminishing marginal

gains, i.e. adding additional elements results in diminishing benefit. Recently, there has

been significant progress on the theory of optimizing submodular functions [31, 13, 118, 79].

In particular, these results state that, while NP-hard, submodular maximization admits

variants of greedy algorithms that are guaranteed to achieve near-optimal solutions, i.e.

within a constant factor. Submodularity has been used in connection with sensor placement

problems, for example in [58, 99, 55], however these works are not tailored to the far field

scenes and models that we focus on here.

Importantly, we address the topic of designing sensor arrays for multiple wavelength
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sensing applications. Arrays operating at multiple wavelengths have been studied in various

contexts such as wideband direction of arrival estimation problems [119, 120], multi-frequency

synthesis in Astronomy [96], and designing wideband array patterns [97]. We consider two

design paradigms for the multiple wavelength setting. The first design paradigm is opti-

mized for collection of measurements at multiple wavelengths, fusing these together for joint

inference over an underlying scene. The second design paradigm is robust, in a sense that it

is guaranteed to allow good inference over the scene at any one single wavelength at a time.

Our connections and formulations open avenues for leveraging those results for efficient

array design with strong guarantees. We demonstrate this by showcasing the design of array

geometries under both paradigms in settings with arbitrary apertures. Together with our

new formulations, the exploitation of prior knowledge leads to higher quality inference at

lower cost in terms of the number of sensing elements.

3.2 Classic Antenna Array Design

In this section we briefly review classic antenna array design theory and introduce the main

concepts and notation that will be useful for the rest of our discussion.

3.2.1 Antenna Array Setup

Antenna arrays are used for forming images and estimating properties of distant radiation-

emitting scenes. For simplicity we consider throughout a simplified one dimensional setting

although our techniques and results transfer to higher dimensional settings in a straightfor-

ward way. We assume coherent narrowband emission around a central wavelength 𝜆 and

frequency 𝑓 = 2𝜋𝜔1 impinging on an observation axis 𝑥, where antenna sensing elements are

purposefully placed as illustrated in Figure 3-1. The radiation-emitting scene is distributed

along the 𝜃 axis. We will focus on the far-field setting where the scene is so distant from

the observation plane 𝑥 such that by the time the impinging spherical waves arrive at the

observation plane they appear as planar waves as illustrated in the Figure. Let 𝐷 be the

spatial extent of the array (i.e. the distance between the two extreme antennas), then the

1We always have 𝑓 = 𝑐
𝜆 with 𝑐 the wave velocity, which is the speed of light for electromagnetic radiation.
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Radiation frequency Far-field cutoff distance

1Mhz 0.003m
1Ghz 3.33m
10Ghz 33.3m

Table 3.1: Far field threshold distance versus radiation frequency.

Antenna sensing elements are depicted in red.

Figure 3-1: Far-field sensing.

far-field cut-off distance is 𝐷2

𝜆
, beyond which we can safely assume far field conditions [113].

We tabulate a few example far-field cutoff distances for a 𝐷 = 1m array vs. the EM radiation

frequency in Table 3.1.

3.2.2 Radiation Propagation Model

The far field scene can be characterized by a single illumination function 𝛽(𝜃) tracking the

radiation amplitude impinging as a function of 𝜃. Figure 3-2 depicts a plane wave arriving

from azimuth 𝜃 with respect to the array axis. The plane wave assumption implies that the

waveform everywhere on the 𝑥 axis is identical in amplitude but may be differing in phase

depending on the varying paths the plane wave propagates through before impinging on

each position. As illustrated in the figure, the additional path corresponding to location 𝑥 is

𝑥 sin(𝜃). When a coherent wave propagates a distance equal to its wavelength 𝜆 it accrues a

2𝜋 phase. Over the additional distance 𝑥 sin 𝜃 the phase accrual is thus 2𝜋 · 𝑥 sin 𝜃
𝜆

.

integrating over −𝜋
2
≤ 𝜃 ≤ 𝜋

2
and accounting for the different amplitude impinging from
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Figure 3-2: Phase accrual by a plane wave impinging on the observation axes.

each azimuth we retrieve the total measurement recorded at location 𝑥:

𝑟(𝑥) =

+𝜋
2∫︁

−𝜋
2

𝛽(𝜃)𝑒𝑗
2𝜋
𝜆
𝑥 sin 𝜃 cos 𝜃𝑑𝜃 =

+ 1
2∫︁

− 1
2

𝛽(𝜓)𝑒𝑗
4𝜋
𝜆
𝑥𝜓𝑑𝜓 (3.1)

where we have defined the normalized azimuth parameter 𝜓 ≡ 1
2

sin 𝜃 such that −1
2
≤ 𝜓 ≤ 1

2

and 𝛽(𝜓) ≡ 𝛽(sin−1(2𝜓)).

3.2.3 Array Topologies and Performance

Our ultimate goal is to retrieve the illumination function 𝛽(𝜓) from measurements 𝑟(𝑥).

However, we usually do not have access to the function 𝑟(𝑥) for all 𝑥 but rather just at those

𝑥 values where an antenna is placed and is able to collect measurements which we take as

{𝑥𝑛}, i.e. we have access to the corresponding set of samples {𝑟(𝑥𝑛)}.

Equation (3.1) bears close resemblance to the definition of the Fourier transform. Namely,

defining 𝑓(𝑡) to be the Fourier transform of 𝛽(𝜓)

𝑓(𝑡) ≡
∫︁
𝛽(𝜓)𝑒𝑗2𝜋𝑡𝜓𝑑𝜓 (3.2)

we immediately identify, comparing (3.1) and (3.2):

𝑟(𝑥) = 𝑓(
2

𝜆
𝑥) (3.3)

Using (3.3) we see that the set of samples {𝑟(𝑥𝑛)} is equivalent to the set of samples{︀
𝑓( 2

𝜆
𝑥𝑛)
}︀
. Notice that since the support of 𝛽(𝜓) is restricted to 𝜓 ∈ [−1

2
,+1

2
] we im-
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mediately have through the Fourier transform definition (3.2) that 𝑓(𝑡) is band-limited with

bandwidth 1. Thus, as a consequence of the Whittaker-Kotelnikov-Shannon sampling theo-

rem we have that perfect reconstruction of 𝑓(𝑡), and subsequently the scene 𝛽(𝜓), is possible

from an infinite set of samples taken at 𝑡 ∈ {. . . ,−1, 0,+1, . . .}, which corresponds to plac-

ing infinite antenna elements at 𝑥𝑛 = 𝑛𝜆
2
which is the celebrated 𝜆

2
array facilitating perfect

scene reconstruction [113], see illustration in Figure 3-3.

Figure 3-3: The uniform 𝜆
2
array, enabling perfect scene reconstruction.

For other array configurations, perfect scene reconstruction is not always possible2. Tra-

ditionally, arrays are characterized through their beam pattern which for our setting may be

interpreted as how reconstruction of a delta function (i.e. point target) scene would appear.

Reconstruction of arbitrary scenes then results as a superposition of such shifted beam pat-

terns. For an array with antennas positioned at {𝑥𝑛} and each antenna output is scaled with

gain 𝑤𝑛 the resulting beampattern is given according to

𝐵(𝜓) =
∑︁
𝑖

𝑤𝑖𝑒
𝑗 4𝜋

𝜆
𝑥𝑛𝜓 (3.4)

For a uniform gain finite 𝜆
2
array with 𝑁 elements this reads:

𝐵(𝜓) =
1

𝑁

sin(𝑁𝜋𝜓)

sin(𝜋𝜓)
(3.5)

This pattern is illustrated for finite arrays of 𝑁 = 10, 100 elements in Figure 3-4. As 𝑁

grows this approaches a delta function, but for finite 𝑁 this curve is usually characterized

through such parameters as the main lobe width, its distance to the secondary lobe and the

attenuation of these secondary lobes with respect to the main lobe.

2It may be shown that any array configuration with an infinite number of antennas of average spacing
𝜆
2 allows perfect reconstruction, although this may be very unstable. Alternatively, with less dense arrays
perfect reconstruction is not possible [127].
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Figure 3-4: Finite 𝜆
2
arrays beam patterns.

3.3 Problem Formulation

In this section we formulate the array design problem. We focus on far-field sensing appli-

cations, although, as will become apparent, the same techniques could also be generalized

to other settings where the measurement process is linear. For simplicity we consider a one

dimensional setting (the extension to multiple dimensions is straightforward). We begin

with a review of the far-field sensing model to establish notation, and then pose the sensing

problem as one of Bayesian inference.

3.3.1 Far-field Sensing

The far field sensing setup is depicted in Fig. 3-1 and Eq. (3.1). A scene of interest is located

far from an observation axis 𝑥 and is characterized through 𝛽(𝜓).

We are to place 𝑄 sensors along the observation axis at positions 𝒮 ≡ {𝑥0, . . . , 𝑥𝑄−1},

and collect measurements at wavelengths Λ ≡ {𝜆0, . . . , 𝜆𝐿−1}. We aim to choose an optimal

set 𝑆 satisfying some constraints. We take 𝐴 to be a finite selection set of possible positions

(e.g. a finite grid on some section of the real line), and pose the constraint 𝑆 ⊆ 𝐴.

The noiseless reading 𝑟(𝑥𝑞;𝜆𝑙) taken at position 𝑥 = 𝑥𝑞 and wavelength 𝜆 = 𝜆𝑙 is given

according to (3.1):

𝑟(𝑥𝑞;𝜆𝑙) =

∫︁ + 1
2

− 1
2

𝛽(𝜓)𝑒
𝑗 4𝜋
𝜆𝑙
𝑥𝑞𝜓𝑑𝜓 (3.6)
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where we assumed that the illumination function is wavelength-invariant such that the scene

appears identical when probed at different wavelengths 𝜆 ∈ Λ.

We take into account the effect of noise by introducing 𝑓 = [𝑓0, . . . , 𝑓𝑁−1]
⊤, a vector of

𝑁 ≡ 𝑄𝐿 noisy measurements modeled according to:

𝑓𝑞+𝑄𝑙 ≡ 𝑟(𝑥𝑞;𝜆𝑙) + 𝑤𝑞+𝑄𝑙
𝑞 = 0, . . . , 𝑄− 1

𝑙 = 0, . . . , 𝐿− 1
(3.7)

where 𝑤𝑛 is additive noise. Stacked in 𝑤 = [𝑤0, . . . , 𝑤𝑁−1]
𝑇 , we assume throughout that

the noise is complex, circular, Gaussian 𝑤 ∼ 𝒞𝒩 (0,Σ𝑤𝑤) [81], i.i.d. across measurements,

i.e., Σ𝑤𝑤 = 𝜎2
𝑤𝐼𝑁 , where 𝐼𝑁 is an 𝑁 ×𝑁 identity matrix such that the noise is i.i.d. across

different sensors.

3.3.2 Setting a Prior

The sensing problem we consider here entails the estimation of the illumination function

𝛽(𝜓) from the set of noisy measurements 𝑓 . Even in the noiseless setting this problem

is gravely ill-posed as infinitely many wildly varying scenes map to any given finite set of

observations3.

To cope with this ill-posedness, some prior belief or knowledge pertaining to 𝛽(𝜓) (or

equivalently its scaled Fourier transform 𝑓(𝑡)) must hence be incorporated into the model,

and this could be achieved in several ways. Wingham [125] proposed selecting one spe-

cific 𝑓(𝑡) of the multiple such functions consistent with the samples, namely the minimum

norm solution. Alternatively, some constraints or other preferences may be imposed on the

solution by penalizing the inversion. For example one may require the solution to satisfy

some constraints (e.g. lie in some pre-specified sub-space of the function space), or impose

regularization (e.g. on smoothness, or total variation) [23].

In what follows, we take a Bayesian approach and impose a prior on the scene 𝛽(𝜓).

Subsequently, sensing is equivalent to performing inference in this model. The prior may

be assigned based on past observations over the distribution of scenes or based on a-priori

3The mapping between 𝛽(𝜓) and a finite set of its Fourier transform samples 𝑟(𝑥𝑞;𝜆𝑙) is not bijective
[127].
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knowledge of scene properties as we discuss next. We consider two approaches for assigning

a prior on the continuous function 𝛽(𝜓). The first involves frequency space representation

and the second utilizes the Gaussian Process (GP) formulation. The choice for which to use

(or to use a different prior) depends on the application and specific knowledge we have of

the function in the case at hand.

Frequency Space Representation

Assigning a prior on 𝛽(𝜓) can be simplified if 𝛽(𝜓) may be expanded in a countable basis

of functions such that the prior is imposed in the discrete domain of expansion coefficients.

With 𝛽(𝜓) having constrained support in |𝜓|≤1
2
, we can expand it by means of Fourier basis

functions
{︀
𝑒𝑗2𝜋𝑚𝜓|𝑚 ∈ Z

}︀
in that domain [85]:

𝛽(𝜓) =
∑︁
𝑚

𝛽𝑚𝑒
𝑗2𝜋𝑚𝜓, 𝛽𝑚 ≡

∫︁ + 1
2

− 1
2

𝛽(𝜓)𝑒−𝑗2𝜋𝑚𝜓𝑑𝜓 (3.8)

where {𝛽𝑚} are the Fourier expansion coefficients, and the usual Parseval relation holds:

∫︁
|𝛽(𝜓)|2𝑑𝜓 =

∑︁
𝑚

|𝛽𝑚|2 (3.9)

In lieu of the prior on 𝛽(𝜓) we impose a prior over {𝛽𝑚}. This description is espe-

cially suited for applications involving smooth functions 𝛽(𝜓) as suggested by the following

property of the Fourier series expansion [30]:

Lemma 3.1. Let 𝛽(𝜓) ∈ 𝐶𝑟 where 𝐶𝑟 is the space of 𝑟-times continuously differentiable

functions over some domain. Then |𝛽𝑚| ≤ 𝛼
|𝑚|𝑟 with 𝛼 = sup𝜓 | 𝜕

𝑟

𝜕𝜓𝑟𝛽(𝜓)|. More generally,

from the Riemann-Lebesgue lemma, Let 𝛽(𝜓) be any integrable function, then |𝛽𝑚|
|𝑚|→∞−→ 0.

Thus, for any nicely behaved 𝛽(𝜓) the high frequency Fourier expansion coefficients

diminish polynomially to zero, with an asymptotically polynomial rate determined by the

level of smoothness, allowing good approximate representation through a finite subset of low

frequency coefficients, which in the sequel we designate via the finite vector 𝛽.
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In the sequel we use Gaussian priors on the coefficients {𝛽𝑚}:

𝛽𝑚 ∼ 𝒞𝒩 (0, 𝜎2
𝑚) (3.10)

where 𝛽𝑚 are independent, complex, circular and Gaussian, and 𝜎2
𝑚 are the corresponding

variances. Using (3.9) we define the expected scene power:

𝑃 ≡ E
∫︁
|𝛽(𝜓)|2𝑑𝜓 =

∑︁
𝑚

𝜎2
𝑚 (3.11)

The {𝜎2
𝑚} can be set following some initial measurements of sample functions 𝛽(𝜓) or taking

into account prior knowledge. For example if we have a-priori knowledge that 𝛽(𝜓) ∈ 𝐶𝑟 we

may use

𝜎2
𝑚 =

⎧⎨⎩ 1 𝑚 = 0

1
𝑚2𝑟 𝑚 ̸= 0

(3.12)

which is a very simple distribution respecting the polynomial variance decay. For the rest of

the chapter we adopt the prior in (3.12) and take 𝑟 = 1 to promote continuously differentiable

functions.

Observation Model With the prior stated in the discrete 𝛽 domain as described above,

our next goal is to circumvent 𝛽(𝜓), directly stating the problem in terms of the measure-

ments 𝑓𝑛 and the coefficients 𝛽𝑚, replacing the continuous representation with a discrete

counterpart. Substituting (3.8) into (3.6) we have (where 𝑛 = 𝑞 +𝑄𝑙):

𝑟(𝑥𝑞;𝜆𝑙) =

∫︁ + 1
2

− 1
2

∑︁
𝑚

𝛽𝑚𝑒
𝑗2𝜋𝑚𝜓𝑒

𝑗 4𝜋
𝜆𝑙
𝑥𝑞𝜓𝑑𝜓=

∑︁
𝑚

𝐾𝑛𝑚𝛽𝑚 (3.13)

where

𝐾𝑛𝑚 ≡
∫︁ + 1

2

− 1
2

𝑒
𝑗2𝜋( 2

𝜆𝑙
𝑥𝑞+𝑚)𝜓

𝑑𝜓 = sinc(𝑚+
2

𝜆𝑙
𝑥𝑞) (3.14)
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and sinc(𝑥) ≡ sin(𝜋𝑥)
𝜋𝑥

. Plugging this into (3.7) we retrieve the observation model

𝑓𝑛 =
∑︁

𝑚
𝐾𝑛𝑚𝛽𝑚 + 𝑤𝑛 𝑛 = 0, . . . , 𝑁 − 1 (3.15)

and the sensing problem amounts to estimating the coefficients 𝛽 given the observation

vector 𝑓 . As we have assumed Gaussian distributions throughout, the posterior P(𝛽|𝑓) is

Gaussian with a convenient analytic form. We detail this in Section 3.4.3.

Gaussian Process Prior4

An alternative description for the prior of the scene utilizes Gaussian Process (GP) statistics,

according to 𝜓 ∈ [−1
2
,+1

2
] : 𝛽(𝜓) ∼ 𝒢𝒫(𝑚(𝜓), 𝑘(𝜓, 𝜓′)) with 𝑚(·) : R → R the mean

function, which we will take without loss of generality to be identically zero, and 𝑘(·, ·) :

R × R → R the kernel function (Appendix B). A natural choice for the Kernel function

in this setting, capturing the smoothness of the scene, is the Gaussian RBF 𝑘(𝜓, 𝜓′) =

exp(− 1
2𝜎2

𝑓
‖𝜓−𝜓′‖2) with 𝜎2

𝑓 controlling the level of smoothness. The associated observation

model is expressed in terms of the statistics as we detail next.

Observation Model In the GP setting, the joint statistics of any finite collection of scene

points {𝛽(𝜓1), . . . , 𝛽(𝜓𝑀−1)} and samples
{︁
𝑓0, . . . , 𝑓𝑁−1

}︁
is Gaussian, by virtue of the GP

Gaussian statistics, and (3.6), (3.7) expressing the measurements 𝑓𝑖 as linear projections of

𝛽(𝜓) and the noise statistics as Gaussian. Thus, given a finite set of observations we can

estimate any finite set of scene values by performing linear Gaussian inference (Appendix

B). Concretely, to specify the Gaussian statistics of joint collections of scene point values

and samples, notice that by virtue of our GP definition the mean of all entries is always zero.

4In the sequel we assume a frequency space prior representation, although our treatment can be adapted
in a straightforward way to a GP prior.
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As for the covariance, we have the following three categories:

E𝛽(𝜓𝑖)𝛽(𝜓𝑗) = 𝑘(𝜓𝑖, 𝜓𝑗) (3.16)

E𝛽(𝜓𝑖)𝑓𝑗 =

∫︁ + 1
2

− 1
2

𝑘(𝜓𝑖, 𝜓)𝑒
𝑗 4𝜋
𝜆𝑙
𝑥𝑞𝜓𝑑𝜓 (3.17)

E𝑓𝑖𝑓𝑗 =

∫︁ + 1
2

− 1
2

∫︁ + 1
2

− 1
2

𝑘(𝜓, 𝜓′)𝑒
4𝜋𝑗

(︂
𝑥𝑞
𝜆𝑙
𝜓−

𝑥𝑞′
𝜆𝑙′

𝜓′
)︂
𝑑𝜓 + 𝜎2

𝑤𝛿𝑖,𝑗 (3.18)

where the first equation follows from the definition of the GP and the next two equations

follow from (3.6), (3.7).

3.4 Single Wavelength Array Design

In the previous section we formulated the problem of far-field sensing in a Bayesian setting

with a prior on the distribution of the underlying scene. In this section we design correspond-

ing array geometries to facilitate efficient sensing, exploiting the model and prior. We initially

consider a single wavelength setting and a limited budget for the number of sensors. Specifi-

cally, we take 𝐿 = 1 such that up to 𝑁 = 𝑄 sensors are free to be placed over some aperture

𝒜 on the real line, e.g. for simplicity we can consider 𝒜 ≡ {𝑥| − 𝑎 ≤ 𝑥 ≤ 𝑎} , 𝑎 ∈ R+. In

Sections 3.5, 3.6 we consider more sophisticated combinatorial placement constraints and

show that the same formulations we develop here may be adapted to those more challenging

use cases.

3.4.1 Setting a Cost Function

In order to make the problem of optimal array design well-posed in our Bayesian setting

we need to specify a cost function to compare different designs and choose the best one.

Revisiting the observation model (3.15) we notice that the design of the array determines

the coefficients 𝐾𝑚𝑛 through the set of sensor positions 𝒮. With 𝒮 fixed, the sensing problem

amounts to performing inference leading to the posterior P({𝛽𝑚} |𝑓).

A natural cost function in this setting quantifies the quality of inference, i.e., the infor-

mation gained by performing the sensing experiments which results in updating our beliefs
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about the coefficients {𝛽𝑚} from the prior P({𝛽𝑚}) to the posterior P({𝛽𝑚} |𝑓). This prob-

lem has been extensively studied in the context of statistical inference and experimental

design [17],[8]. Here we adopt the Bayes D-optimality criterion whereby the quality of infer-

ence between measurements and hidden random variables is given by the mutual information

between the two. In our setting this amounts to:

𝐺(𝒮) ≡ 𝐼(𝑓𝒮 ; {𝛽𝑚}) = 𝐻({𝛽𝑚})−𝐻({𝛽𝑚} |𝑓𝒮) (3.19)

Where 𝐼(·; ·) is the mutual information and 𝐻(·) the Shannon entropy. The subscript 𝒮

explicitly emphasizes the dependence of the measurements on the set of sensor positions 𝒮.

Notice that maximizing 𝐺(𝒮) as a function of 𝒮 can be equivalently viewed as minimizing

the uncertainty (entropy) in {𝛽𝑚} given 𝑓𝑆, i.e. the larger 𝐺(𝒮) the more we trust the values

of the coefficients {𝛽𝑚} |𝑓𝒮 .

With the cost function in place the array design problem becomes

𝒮⋆ = argmax
𝒮⊆𝒜,|𝒮|≤𝑁

𝐼(𝑓𝒮 ; {𝛽𝑚}). (3.20)

which is in general an NP-hard combinatorial optimization problem. However, we will show

later that as opposed to other problems, we can obtain a constant-factor approximation for

(3.20) using efficient computational techniques.

3.4.2 Approximate Problem

The optimization problem (3.20) assumes a continuous set 𝒜 as well as an infinite dimen-

sional representation for the expansion coefficients {𝛽𝑚}. Here we approximate these with

finite proxies that can be input to generic discrete solvers and measure the corresponding

approximation errors.

Finite Dimensional Representation

Solving (3.20) under our model (3.15) involves manipulations of the infinite sequence {𝛽𝑚}

which may not be amenable to computer representation. To make our formulation tractable
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we approximate the infinite sequence {𝛽𝑚} with a finite truncated set of coefficients {𝛽𝑚|𝑚 ∈ℳ},

where ℳ is some finite set. Stacked in vector form 𝛽, we consider the simplified finite di-

mensional approximation of (3.15):

𝑓𝒮 = 𝐾𝒮𝛽 +𝑤 (3.21)

where 𝐾𝒮 is an 𝑁×|ℳ| matrix formed by restricting 𝐾𝑛𝑚 on 𝑚 ∈ℳ and the dependency

on the sampling set 𝒮 again made explicit. Notice that hat notation is replacing the previous

tilde.

We show that the approximate finite-dimensional model (3.21) is a good proxy for the

original infinite-dimensional model (3.15) for a suitably selectedℳ. Indeed, ifℳ is chosen

to only exclude those 𝛽𝑚 coefficients that in expectation contribute a marginally small part

of the energy of the full infinite sequence {𝛽𝑚} then the mutual information derived from the

approximate model (3.21) will closely track that of the infinite dimensional model in (3.15).

More precisely we have the following result:

Lemma 3.2. Let the prior on {𝛽𝑚} be i.i.d. according to 𝛽𝑚 ∼ 𝒞𝒩 (0, 𝜎2
𝑚) fixed, and

𝜖 ≡
∑︀
𝑚/∈ℳ

𝜎2
𝑚 satisfies 𝜖 < 𝜎2

𝑤𝑁
− 3

2 . We have:

−𝑁 log(1+
𝜖𝑁

3
2

𝜎2
𝑤

)≤𝐼(𝑓𝒮 ; {𝛽𝑚})−𝐼(𝑓𝒮 ;𝛽)≤−𝑁 log(1−𝜖𝑁
3
2

𝜎2
𝑤

)

Proof. See Appendix C.2.

By virtue of the last lemma and 𝑁 log(1 ± 𝜖𝑁
3
2

𝜎2
𝑤

)
𝜖→0−→ 0 we have that 𝐼(𝑓𝒮 ;𝛽) is an

arbitrarily accurate proxy for 𝐼(𝑓𝒮 ; {𝛽𝑚}) for 𝜖 small enough, such that in lieu of problem

(3.20) we now continue with the simplified finite dimensional approximation:

𝒮⋆ = argmax
𝒮⊆𝒜,|𝒮|≤𝑁

𝐼(𝑓𝒮 ;𝛽) (3.22)

and the results will be accurate to within the approximation bounds from Lemma 3.2.
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Grid Discretization

Next we turn to discretizing the aperture 𝒜 to cast the array design problem in form of

a generic finite selection problem. We thus restrict the choice of sampling positions to the

finite set

𝒱 ≡
{︀
𝑥1, . . . , 𝑥|𝒱|

}︀
⊂ 𝒜 (3.23)

For the sequel we take 𝒱 to be a uniform 𝛿-spaced grid of positions in 𝒜 (𝛿-net). We adapt

the array design problem (3.22) accordingly as:

𝒮⋆𝑑 = argmax
𝒮⊆𝒱,|𝒮|≤𝑁

𝐼(𝑓𝒮 ;𝛽) (3.24)

with the subscript 𝑑 implying discretization. The next result can be used to quantify the

level of discretization 𝛿 necessary to guarantee performance close to optimum within some

specified error bound:

Lemma 3.3. With 𝒱 a uniform grid of sampling positions with distance 𝛿 between adjacent

positions we have:

𝐼(𝑓𝒮⋆
𝑑
;𝛽) ≤ 𝐼(𝑓𝒮⋆ ;𝛽) ≤ 𝐼(𝑓𝒮⋆

𝑑
;𝛽) +𝑁 log(1+

4𝛿𝑃 (1 + 𝛿)𝑁
3
2

𝜆𝜎2
𝑤

)

Proof. See Appendix C.3.

With this last lemma in place the array design problem (3.22) may be further approxi-

mated in the more convenient finite combinatorial problem form of (3.24) with guarantees

on the accuracy of the resulting designs. In the sequel we assume that 𝛿 is chosen such as

to meet desired accuracy levels, as prescribed in Lemma 3.3, and work with the simplified

formulation (3.24).

Further notice that evaluation of the target function in (3.24) for the model (3.15) is

straightforward, as all relevant distributions are Gaussian such that evaluation of the mutual

informations may be accomplished using the formula for the entropy of Gaussian random

vectors as referenced in the previous chapter, for 𝑋 ∈ R𝑘, 𝑋 ∼ 𝒩 (0,Σ) we have 𝐻(𝑋) =
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log((𝜋𝑒)𝑘detΣ).

3.4.3 Scene Inference

With the observation model of (3.21), coupled with a Gaussian distribution for the noise

vector 𝑤 and a Gaussian prior for the coefficients vector 𝛽, calculation of the posterior

distribution 𝛽|𝑓𝒮 is particularly simple and can be performed analytically. Concretely, we

have as a result of all random variables being Gaussian 𝛽|𝑓𝒮 ∼ 𝒞𝒩 (𝜇̂, Σ̂) and the parameters

are given according to the conventional Gaussian conditional parameters:

𝜇̂ = Σ𝛽𝑓Σ
−1

𝑓𝑓
𝑓𝒮

Σ̂ = Σ𝛽𝛽 −Σ𝛽𝑓Σ
−1

𝑓𝑓
Σ†
𝛽𝑓

(3.25)

where Σ𝛽𝑓 = Σ𝛽𝛽𝐾
†
𝑆, Σ𝑓𝑓 = 𝐾𝒮Σ𝛽𝛽𝐾

†
𝒮 + Σ𝑤𝑤 and Σ𝛽𝛽 = diag[𝜎2

1, . . . , 𝜎
2
ℳ].

3.4.4 Optimization

The next step is to prescribe an efficient algorithm for the solution of (3.24). As we will show

shortly (3.24) is an instance of a known NP-hard problem such that it is widely believed

that no efficient algorithm for its solution exists. However, due to the structure of the

cost function an efficient approximation algorithm is known to exist with strong theoretical

guarantees. In this subsection we survey the relevant results and adapt them to our needs.

Submodularity

We begin by invoking the submodularity property of set functions (Appendix A). As it turns

out, our cost function is monotonic and submodular as the next result shows (this is similar

to corollary 4 in [56]. We reproduce it here with adaptations to our setting):

Lemma 3.4. Let 𝒱 be defined as before, and define the set function 𝐺 : 2𝒱 → R according

to 𝐺(𝒮) = 𝐼(𝑓𝒮 ;𝛽). Then 𝐺 is submodular and monotonic (increasing).
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Proof. Expanding the mutual information according to 𝐼(𝑥; 𝑦) = 𝐻(𝑥)−𝐻(𝑥|𝑦) we have:

𝐺(𝒮 ∪ {𝑥})−𝐺(𝒮) = 𝐻(𝑓𝒮∪{𝑥})−𝐻(𝑓𝒮)

− [𝐻(𝑓𝒮∪{𝑥}|𝛽)−𝐻(𝑓𝒮 |𝛽)] = 𝐻(𝑓 {𝑥}|𝑓𝒮)−𝐻(𝑓 {𝑥}|𝛽) (3.26)

where in the last equality we used the conditional independence of the components of 𝑓𝒮∪{𝑥}

given 𝛽. Substituting 𝒯 for 𝒮 we immediately get:

[𝐺(𝒮 ∪ {𝑥})−𝐺(𝒮)]− [𝐺(𝒯 ∪ {𝑥})−𝐺(𝒯 )]

= 𝐻(𝑓 {𝑥}|𝑓𝒮)−𝐻(𝑓 {𝑥}|𝑓𝒯 ) (3.27)

Using 𝒮 ⊆ 𝒯 we have 𝐻(𝑓 {𝑥}|𝑓𝒮) ≥ 𝐻(𝑓 {𝑥}|𝑓𝒯 ) such that 𝐺(𝒮 ∪ {𝑥}) − 𝐺(𝒮) ≥ 𝐺(𝑇 ∪

{𝑥})−𝐺(𝒯 ) and 𝐺 is submodular.

To prove monotonicity it is enough to show 𝐺(𝒮 ∪ {𝑥}) − 𝐺(𝒮) ≥ 0. This time expand

the mutual information according to 𝐼(𝑥; 𝑦) = 𝐻(𝑦)−𝐻(𝑦|𝑥):

𝐺(𝒮 ∪ {𝑥})−𝐺(𝒮) = 𝐻(𝛽|𝑓𝒮)−𝐻(𝛽|𝑓𝒮∪{𝑥}) (3.28)

Conditioning can never increase entropy so 𝐻(𝛽|𝑓𝒮) ≥ 𝐻(𝛽|𝑓𝒮∪{𝑥}) and the result follows.

Efficient Solvers

With Lemma 3.4 we have that our optimization problem (3.24) is the maximization of a

monotonic submodular function. The greedy Algorithm 3 solves this problem to within the

best possible approximation factor, as stated in Lemma A.1.

Combining the guarantees of Lemma A.1, Lemma 3.2 and 3.3 we derive an approximation

bound on the original problem (3.20):

Corollary 3.1.

(1− 1

𝑒
)

[︃
𝐼(𝑓𝒮⋆ ; {𝛽𝑚})−𝑁 log

𝜆𝜎2
𝑤 + 4𝛿𝑃 (1 + 𝛿)𝑁

3
2

𝜆𝜎2
𝑤 − 𝜖𝜆𝑁

3
2

]︃
≤ 𝐼(𝑓𝒮𝑔𝑟 ;𝛽) (3.29)
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We hence apply Algorithm 3 to solve our optimization problem (3.24). The algorithm

runs in time 𝑂(|𝒱|𝑁), linear in the size of the set 𝒱 and the number of selected elements 𝑁

[78] such that it is easily implementable for problems of large size. More efficient variants of

the algorithm have been introduced and studied, in particular the ’lazy greedy’ Algorithm

4 was studied in [78] and was shown to offer substantial running-time improvements in

practice (with an unlikely worst-case theoretical performance upper bounded by that of

the conventional greedy algorithm). Our numerical experiments described in Section 3.7

implement this more efficient variant to reduce running time.

While Lemma A.1 guarantees an approximation bound of (1− 1
𝑒
) ≈ 63% for the efficient

greedy algorithm this guarantee is not tight. The data dependent bound of Lemma A.2 takes

𝑂(|𝒱| log |𝒱|) evaluations of 𝐺(𝒮) to compute and sort and is often tighter in practice. We

use Equation (A.2) to improve the distance from optimality bound in some of our numerical

solutions in Section 3.7.

3.4.5 Design Example: A Simple Ideal Setting

In the previous subsections we formulated the array design problem in a setting with con-

straints on the aperture 𝒜 and the number of sensors 𝑁 and showed how a greedy algorithm

(Algorithm 3) is guaranteed to efficiently find an approximate solution.

Here, we study a particular instance of this problem, where the Signal to Noise Ratio

(SNR) is high, and the aperture is effectively unconstrained (the 𝑁 sensors may be placed

anywhere on the real line). Under these conditions a truncated 𝜆
2
-spaced array is tradi-

tionally considered the design of choice in the conventional non-Bayesian setting (this is a

truncated version of the infinite 𝜆
2
-spaced design mentioned in Section 3.2). We show next

that the truncated 𝜆
2
-spaced design naturally emerges as the approximately optimal solution

as retrieved by our schemes in Bayesian settings where the a-priori 𝛽 distribution satisfies

some conditions. Specifically, we have the following result:

Theorem 3.1. Consider the high SNR regime 𝑃
𝜎2
𝑤
→ ∞ and assume the prior from (3.10)

takes a symmetric, monotonically decreasing form, i.e. 𝜎2
𝑚 = 𝜎2

−𝑚 and 𝜎2
𝑚1
≥ 𝜎2

𝑚2
whenever

0 ≤ 𝑚1 < 𝑚2. In addition, take 𝒱 as an arbitrarily dense set of sampling points on R, and
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ℳ = −𝑀, . . . ,𝑀 with 𝑀 →∞.

We then have that a greedy solver on (3.24) will return a length 𝑁 , 𝜆
2
-spaced truncated

uniform array centered around 𝑥 = 0.

Proof. See Appendix C.4.

The last theorem studies one class of simple idealized problems where the greedy solution

is reminiscent of generic non-Bayesian array designs. However, notice that our formalism

is also useful in more challenging design problems such as when the aperture 𝒜 takes on

arbitrary forms, and the effects of noise and application-tailored priors are considered.

3.5 Array Design with Combinatorial Constraints

In Section 3.4 we formalized the array design problem in a setting where we imposed

constraints on the aperture and the number of sensors. Specifically, the constraints were

𝒮 ⊆ 𝒱 , |𝒮| ≤ 𝑁 . In many practical scenarios these may be too simplistic to accurately

represent real world design constraints. For example in applications where sensors are heavy

and mounted on support beams we may want to restrict the number of sensors in specific

sections of the aperture.

In this section we briefly review key elements from matroid theory which is a branch in

combinatorics [86] and survey results from submodular optimization with matroid constraints

guaranteeing the existence of efficient approximate solvers for this class of problems. We

continue to show that these mathematical structures may be utilized to impose constraints

of interest in array design enriching the set of problems our Bayesian formulation can describe

and solve.

3.5.1 Optimization with Matroid Constraints

We begin by defining matroids and their corresponding independent sets [83]:

Definition 3.1. A finite matroid 𝑀 is a pair (𝒱 , ℐ) where 𝒱 is a ground set and ℐ is a

collection of subsets of 𝒱 (the independent sets) that satisfies the following properties:
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1. The empty set is independent: ∅ ∈ ℐ

2. A subset of an independent set is independent: 𝒳 ⊂ 𝒴 , 𝒴 ∈ ℐ ⇒ 𝒳 ∈ ℐ

3. If 𝒳 is an independent set and 𝒴 is a larger indepedent set, 𝒳 can be augmented to a

larger independent set by adding an element from 𝒴 ∖ 𝒳 :

𝒳 ,𝒴 ∈ ℐ, |𝒳 | < |𝒴| ⇒ ∃𝑒 ∈ 𝒴 ∖ 𝒳 s.t. 𝒳 ∪ {𝑒} ∈ ℐ

A matroid structure is useful for classifying subsets of a ground set 𝒱 into permissible

subsets which belong to ℐ and non permissible subsets which do no belong to ℐ. In the

next subsection we show that using this formalism we can express interesting array design

constraints.

From the theory of submodular optimization we have the following results for submodular

optimization with matroid constraints [54],[16]. Let 𝑀 = (𝒱 , ℐ) be a matroid and 𝐺(𝒮) a

monotonic, submodular set function. There exists an efficient approximate solver for the

problem argmax𝒮∈ℐ 𝐺(𝒮). Specifically, a greedy solver (maximizing the immediate marginal

benefit at each step) taking the form

𝒮gr ← 𝒮gr ∪

{︃
argmax

𝑒:𝑒/∈𝒮gr,𝒮gr∪{𝑒}∈ℐ
[𝐺(𝒮gr ∪ {𝑒})−𝐺(𝒮gr)]

}︃
(3.30)

and stopping when no more elements 𝑒 can be added is guaranteed to achieve a one-half

approximation bound:

𝐺(𝒮gr) ≥ 1

2
max
𝒮∈ℐ

𝐺(𝒮). (3.31)

The constant factor may be tightened to
(︀
1− 1

𝑒

)︀
by utilizing specialized randomized algo-

rithms [16].

3.5.2 Matroid Constraints in Array Design

Here we invoke a well known matroid structure and demonstrate its application in expressing

useful array design constraints. Let 𝒱 be a ground set of grid points where sensors are allowed
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to be placed as before. Let 𝒱1, . . . ,𝒱𝐾 be a partition of the set 𝒱 , i.e.
⋃︀
𝑘

𝒱𝑘 = 𝒱 , 𝒱𝑖
⋂︀
𝒱𝑗 =

∅, ∀𝑖 ̸= 𝑗, and let 𝑁, 𝑛1, . . . , 𝑛𝐾 be a set of integers.

We define the (cardinality constrained) partition matroid [16] 𝑀 = (𝒱 , ℐ) with the

following definition for the collection of independent sets ℐ: a subset 𝒮 ⊆ 𝒱 is an independent

subset 𝒮 ∈ ℐ if it holds |𝒮 ∩ 𝒱| ≤ 𝑁, |𝒮 ∩ 𝒱𝑗| ≤ 𝑛𝑗, ∀𝑗.

In the context of array design the partition matroid may be useful in expressing practical

constraints over sensor placement configurations. For example if the subsets 𝒱𝑖 represent

closed line sections, e.g. a physical partitioning of the aperture into zones, and ℐ represents

the collection of all permissible designs then the structure of the matroid limits the number

of sensors that may be placed in the 𝑖th zone to 𝑛𝑖 which may be an important engineering

constraint coupled with some specific application. We solve:

𝒮⋆ = argmax𝒮∈ℐ 𝐼(𝑓𝒮 ;𝛽) (3.32)

Applying the results from the previous subsection we immediately have an efficient approx-

imate solver for the array design problem coupled with a partition matroid constraint. In

Section 3.7 we detail such a design for a numerical example.

3.6 Multiple Wavelength Array Design Paradigms

Here we define two multiple wavelength array design paradigms, concisely formulated as

combinatorial optimization problems: The fusion problem entails designing an array 𝒮 for

collection of measurements at a set of fixed wavelengths Λ. The full set of measurements

(taken at each location in all wavelengths in Λ) is jointly used to infer 𝛽. The set 𝒮 is

constrained to be in 𝒜 as before, and to be of size no more than 𝑄 (remember that as in

Section 3.3, we have |Λ| ≡ 𝐿, 𝑁 ≡ 𝑄𝐿):

𝑆⋆ = argmax𝒮:𝒮⊆𝒜,|𝒮|≤𝑄 𝐼(𝑓𝒮 ;𝛽). (3.33)

The robust problem entails designing an array 𝒮 for collection of measurements at a single

wavelength 𝜆 ∈ Λ, which is fixed but unknown. Thus we are interested in guaranteeing good
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quality inference for any 𝜆 ∈ Λ and solve the robust optimization problem of maximizing

the worst-case performance achieved when operating the array at any single wavelength.

Concretely, let 𝑓
𝜆

𝒮 be the set of samples collected at a single wavelength 𝜆 at the set of

positions 𝒮, which satisfies the same constraints as before. The design criterion is:

𝒮⋆ = argmax𝒮:𝒮⊆𝒜,|𝒮|≤𝑄min𝜆∈Λ 𝐼(𝑓
𝜆

𝒮 ;𝛽) (3.34)

3.6.1 Optimization

In this section we prescribe efficient algorithms for the solution of (3.33) and (3.34). As

before, we have that due to the structure of the cost functions, efficient approximation algo-

rithms are known to exist with strong theoretical guarantees. Define𝐺(𝒮) ≡ 𝐼(𝑓𝒮 ;𝛽), 𝐺𝜆(𝒮) ≡

𝐼(𝑓
𝜆

𝒮 ;𝛽), than we have similar to Lemma 3.4 that both 𝐺(𝒮) and 𝐺𝜆(𝒮) are submodular

and (increasing) monotonic for every 𝜆.

Problem (3.33) is immediately recognized as an instance of a submodular optimization

problem under a cardinality constraint, and retrieving an approximately optimal solution

follows as before.

As for the robust problem (3.34), we briefly review some theory pertaining to robust

submodular maximization. Let {𝐺𝑖(𝒮)} be a set of monotone, submodular set functions and

consider the robust optimization problem

𝒮⋆ = argmax𝒮⊆𝒜,|𝒮|≤𝑄min𝑖𝐺𝑖(𝒮) (3.35)

which we immediately recognize as a generalization of (3.35). It is known that no polyno-

mial time algorithm approximating the solution of (3.35) exists [57]. However, the following

lemma suggests that for integer-valued 𝐺𝑖(𝒮), Algorithm 2 is guaranteed to achieve approx-

imately optimal solution:

Lemma 3.5. (Krause [57]). For any integer 𝑄, SAT (delineated in Algorithm 2) finds a
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solution 𝒮sat such that

min𝑖𝐺𝑖(𝒮sat) ≥ min𝑖𝐺𝑖(𝒮⋆) and |𝒮sat| ≤ 𝛼𝑄 (3.36)

where 𝛼 ≡ 1 + log
(︁

max𝑠∈𝒜
∑︁

𝑖
𝐺𝑖(𝑠)

)︁
(3.37)

Algorithm 1 Greedy submodular partial cover

1: function S=GPC(𝐺̄𝑐(𝒮), 𝑐)
2: 𝒮 ← ∅
3: while 𝐺̄𝑐(𝒮) < 𝑐 do
4: 𝒮 ← 𝒮 ∪ argmax𝑠∈𝒜

{︀
𝐺̄𝑐(𝒮 ∪ {𝑠})− 𝐺̄𝑐(𝒮)

}︀
5: end while

6: end function

Algorithm 2 Submodular saturation algorithm

1: function 𝒮best=SAT(𝐺1, . . . , 𝐺𝑚, 𝐴, 𝑘, 𝛼)
2: 𝑐min ← 0 ; 𝑐max ← min𝑖𝐺𝑖(𝒜) ; 𝑆best ← ∅
3: while (𝑐max − 𝑐min) ≥ 1

𝑚
do

4: 𝑐← (𝑐min + 𝑐max)/2
5: 𝒮 ← GPC( 1

𝑚

∑︀
𝑖 min {𝐺𝑖(𝒮), 𝑐} , 𝑐)

6: if |𝒮| > 𝛼𝑘 then 𝑐max ← 𝑐
7: else 𝑐min ← 𝑐 ; 𝒮best ← 𝒮
8: end if

9: end while

10: end function

Lemma 3.5 guarantees that SAT will find an approximate optimal set 𝒮sat achieving

performance at least as good as the true optimal set 𝒮⋆, at a cost of using as many as 𝛼𝑄

elements of the set 𝒜 in lieu of the 𝑄 elements included in 𝒮⋆.

The extension of Lemma 3.5 to non integer-valued functions is discussed in [57] (Section

7). One approach is porting these problems into integer-valued ones by scaling and rounding

𝐺𝑖(𝒮). However, this requires careful manipulations of the guarantees in Lemma 3.5. Instead,

[57] follows an empirical approach making the ad-hoc choice 𝛼 = 1 for the implementation

of Algorithm 2, and keeping the non integer-valued 𝐺𝑖(𝒮) unchanged. Based on extensive

numerical experiments it is empirically shown that under these conditions SAT performs

favorably. We follow this approach in our numerical experiments described in Section 3.7,
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and empirically verify the usefulness of the above choice when applied to our non integer-

valued problem.

3.7 Numerical Experiments

In this section we perform numerical experiments validating our theoretical results and ex-

emplifying them. We showcase an array design with cardinality and aperture constraints

as prescribed in Section 3.4, design arrays adhering to matroid constraints as prescribed in

Section 3.5, and multiple wavelength arrays according to the paradigms in Section 3.6

3.7.1 Single Wavelength Array Design

Our initial setting is as follow. We fix 𝜆 = 1 throughout as in this setting the wavelength

only serves to scale the 𝑥 axis. The aperture is set as 𝒜 = {𝑥| − 3.5 ≤ 𝑥 ≤ 3.5} and the

selection set 𝒱 is chosen as a uniform grid of 113 positions from 𝒜 spaced 𝛿 = 0.0625 apart.

We set out to design an array consisting of 𝑁 = 11 sensor locations. The prior for {𝛽𝑚} is set

as per (3.12) with 𝑟 = 1 and normalized to sum to 𝑃 = 1. For the simulations we consider

the truncated vector 𝛽 formed when restricting the set of 𝑚 coefficients to 901 consecutive

elements centered around the origin, i.e., we setℳ = {−450, . . . ,+450}. For the preliminary

design we implement the lazy greedy algorithm and plot the results in the left column of

Fig. 3-5 as a function of the SNR which we define here as 𝑃
𝑁𝜎2

𝑤
. Blue markers denote the full

selection set 𝒱 and red markers delineate the active 𝒮 selected by the algorithm.

In the high SNR regime (SNR=10dB or higher values) the resulting design is a truncated

𝜆
2
uniform array as predicted according to Theorem 3.1. As the SNR decreases the reliability

of the measurements deteriorates and the algorithm prefers locating antennas right next to

each other on expense of widening the array as this serves to average out the noise. The

corresponding antenna array beam patterns (according to Equation (3.4) with unit gain

coefficients) are shown in Figure 3-6.

The performance in terms of mutual information 𝐼(𝑓𝒮 ;𝛽) for the selected locations 𝒮

appears in the title of the plots (in natural units). Notice for example that for the 5dB SNR

design the achieved mutual information is 12.54. Using Lemma A.1 we have that the optimal
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(Left) Array designs with an aperture constraint for various SNR levels. (Right) Array
designs with combinatorial placement constraints for various SNR levels.

Figure 3-5: Near-optimal single wavelength antenna array designs.

Figure 3-6: Beam patterns corresponding to near-optimal array designs.
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design cannot achieve mutual information better than 1
1− 1

𝑒

12.54 = 19.83. This bound can

be improved using the improved online bounding method briefly described in Appendix A

to show that the optimal performance is not greater than 17.45.

The truncation level dictated by our choice of ℳ translates to 𝜖 ∼= 1𝑒−4 and the

truncation bounds from Lemma 3.2 read (for the lower, extreme SNR case): −0.45 ≤

𝐼(𝑓𝒮 ; {𝛽𝑚}) − 𝐼(𝑓𝒮 ;𝛽) ≤ 0.47. We empirically find that these bounds are extremely loose

andℳ can be shrunk considerably without substantially compromising accuracy. To achieve

a similar upper bound on 𝐼(𝑓𝒮⋆ ;𝛽) − 𝐼(𝑓𝒮⋆
𝑑
;𝛽) as per Lemma 3.3 a discretization level of

𝛿 ∼= 2𝑒−4 is needed. However, we empirically find that our choice of 𝛿 = 0.0625 is accurate

enough as refining the grid further does not significantly change the design. Our lemmas

prove to be pessimistic as is expected given that the proofs take into account worst-case

scenarios.

The array geometries above, derived according to the formulations of Section 3.4, are de-

signed to optimize the quality of inference between the measurements and the scene expansion

coefficients 𝛽. Many sensing applications of interest specifically involve imaging the scene,

that is reconstructing 𝛽(𝜓) from the measurements. Our next experiment was designed to

empirically evaluate the Mean Square Error (MSE) performance in scene reconstruction from

measurements collected using the prescribed designs. First, we designed five array geometries

as described above, optimized for several target SNR levels {30dB, 12dB, 10dB, 5dB, 0dB}.

We set up a Monte-Carlo experiment where 1000 scenes were randomly drawn from the dis-

tribution of Section 3.3.2. For each scene, noisy measurements were collected by each of the

five optimized arrays. The measurements were repeated with five different synthetic noise

levels corresponding to the five target SNR levels.

We repeatedly performed maximum likelihood estimation [2] of the expansion coefficients

𝛽, and synthesized an estimated scene 𝛽(𝜓) according to (3.8). The MSE discrepancy

between 𝛽(𝜓) and the true scene is depicted in Fig. 3-7. It is evident that the quality of

inference criterion is indicative of MSE performance, as each of the five geometries yielded

the best MSE performance at its specified target SNR level.
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Arrays are designed for specific target SNR levels, while actual tested SNR is swept.

Figure 3-7: Scene reconstruction performance for near-optimal arrays.

3.7.2 Array Design with Matroid Constraints

Next we solve a corresponding set of design problems with matroid constraints installed to

limit the number of sensors in given aperture segments. Specifically, we use the (cardinality

constrained) partition matroid from Section 3.5.2 with 𝑁 = 11, 𝑛𝑖 = 1,∀𝑖 and 𝒱𝑖 spanning

consecutive line segments of length 0.5: 𝒱𝑖 = [−0.25 + 0.5·𝑖,+0.25 + 0.5·𝑖). The matroid

constraints limit the proximity between sensor elements, which may be a useful requirement

in practical applications. We plot the results for the matroid constrained designs in the right

column of Fig. 3-5. Notice that while the theoretical guarantees pertaining to the greedy

matroid optimization scheme of Section 3.5 is 1
2
compared to 1− 1

𝑒
with the cardinality con-

straints of Section 3.4, the actual performance achieved in the constrained design instances

is not far from those achieved with the simple cardinality constraints.
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3.7.3 Multiple Wavelength Array Design

Fusion Problem

First, we design arrays for the fusion setting as per (3.33) using the lazy greedy submodular

optimization algorithm. We take Λ = {1, 1.1, 1.2}, the sensor position selection set 𝒜 is a

uniformly spaced grid of 161 positions in |𝑥| ≤ 10, and we design an array consisting of 𝑄 = 7

elements. 𝛽 is formed by approximating {𝛽𝑚} via the 101 lowest frequency coefficients5, and

the prior for 𝛽𝑚 is set as per (3.12) with 𝑟 = 1. We normalize {𝜎2
𝑚} for unit average scene

power 𝑃 using Parseval:

𝑃 ≡ E
∫︁
|𝛽(𝜓)|2𝑑𝜓 = E

∑︁
𝑚
|𝛽𝑚|2 =

∑︁
𝑚
𝜎2
𝑚 = 1 (3.38)

The results are summarized in Fig. 3-8, where blue markers denote the selection set 𝒜 and

red markers delineate the chosen set 𝒮. The upper subplot depicts a design for high Signal

to Noise Ratio (SNR) (defined as 𝑃
𝑄𝜎2

𝑤
) of 30dB. Notice how the design differs from a uniform

sampler due to the multiple wavelengths involved. Adjacent pairs of antennas display varying

distances to effectively tune into the several wavelengths at play, utilizing as much of the

information impinging on the array from the scene as possible.

The lower subplot repeats the experiment at a lower SNR of 10dB. In comparison, this

design tends to limit the spread of the sampling positions as samples become less reliable

and there is value in limiting sampling diversity for the sake of concentrating more samples

in valuable regions.

The performance in terms of mutual information 𝐼(𝑓𝑆;𝛽) for the selected locations 𝒮

appears in the plot title. Notice for example that for the 10dB SNR design, the achieved

mutual information is 20.76. Using Lemma A.1 we have that the optimal design cannot

achieve mutual information better than (1−1
𝑒
)−120.76 = 32.84.

5We empirically find that refining the sampling grid, or including more Fourier coefficients does not
significantly change the design.
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The grid of possible placement locations appears in blue and red markers delineate selected
locations.

Figure 3-8: Near-Optimal multiple wavelength antenna array designs.

Robust Problem

Next, we design arrays for the robust setting as per (3.34) using the SAT algorithm of Sec-

tion 3.6. We take 𝒜 as before, Λ = {1, 2, 3, 4}, the number of elements is 𝑄 = 9 and we

assume a SNR of 10dB. In Fig. 3-9 (left) we plot several designs. The top configuration is

the robust design generated via Algorithm 2, fixing 𝛼 = 1. The bottom four configurations

depict arrays each optimized for a single wavelength. These were generated by applying the

greedy design scheme of Appendix A with a single measurement wavelength from the set Λ.

The figure shows that for a single observation wavelength, we obtain configurations that are

generic truncated uniform 𝜆
2
arrays [113]. However, when considering observations across

multiple possible wavelengths, as is done for the robust design, the resulting configuration

is no longer uniform, but consists of a mixture of large and small inter-element spacings, to

cater to all possibilities.

Fig. 3-9 (middle) plots the performance of these arrays in terms of the corresponding mutual

information 𝐼(𝑓𝑆;𝛽) when the actual wavelength at which measurements are collected is

swept in 0.9 ≤ 𝜆 ≤ 4.4. Each of the four single-wavelength arrays (dashed lines) maxi-

mizes the mutual information when operated at the wavelength for which it was designed,

as expected. However, at mismatched wavelengths performance deteriorates. In contrast,

the robust array (solid line) does not perform as well as the specialized single wavelength

arrays at their target wavelengths. But, while those specialized designs are very sensitive to
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misspecified wavelengths, the robust design flexibly performs well across the entire range of

wavelengths.

Fig. 3-9 (right) summarizes a Monte-Carlo experiment set up to empirically evaluate Mean

Square Error (MSE) performance in scene reconstruction using our robust design. We have

drawn 2000 scenes distributed as prescribed in Section 3.3.2, and collected corresponding

noisy measurements at various wavelengths using the robust and the four single wavelength

optimized arrays. We repeatedly performed maximum likelihood estimation of the expansion

coefficients 𝛽, and synthesized an estimated scene 𝛽(𝜓) according to (3.8). The MSE dis-

crepancy between 𝛽(𝜓) and the true scene was recorded. Evidently, the mutual information

performance of Fig. 3-9 (middle) is indicative of MSE performance, with the robust design

exhibiting best worst-case results.

3.8 Discussion

Our work in this chapter revolved around the design of sensing topologies for estimating

scenes in a Bayesian setting, adapting priors and performing efficient inference. Designing

efficient configurations for such environments is a computationally hard task, and finding

tractable solutions, even if just approximate, is a desirable goal.

We introduced a novel framework for designing sensor arrays and formulated various sens-

ing paradigms as optimization problems, focusing on antenna arrays for single or multiple

wavelength sensing with robust single-wavelength estimation or joint inference over the full

spectrum. We showed that optimal solutions to these problems can be efficiently approx-

imated by porting results and efficient solvers from the theory of submodular set function

optimization.

In future work, we will be interested in tackling other related problems, such as devising

adaptive designs that evolve as the scene is learned, and taking into account other measure-

ment models (e.g. near field imaging), and physical phenomena associated with antenna

arrays. We are also interested in extending our treatment to additional signal processing

paradigms, for example where the unknown signal of interest has an efficient representation

in some countable signal base, and the signal is drawn from some structured distribution,
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(Top) Several antenna array configurations. The top most configuration is a robust design,
while the next four configurations are tuned for specific wavelengths. (Bottom Left)

Mutual Information vs. observation wavelength. (Bottom Right) Reconstruction MSE for
Monte-Carlo experiments vs. observation wavelength.

Figure 3-9: Near-optimal multiple wavelength antenna array designs and performance.
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e.g. wavelet with tree coefficients. Finally, we are interested in exploring various constraint

structures that still allow for such efficient approximate solutions to be found.
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Chapter 4

NLOS Optical Imaging†

Non-line-of-sight (NLOS) optical imaging, where we pursue techniques to recover scenes

hidden around obstacles by processing optical reflections from intervening surfaces, could

offer great benefits in a wide variety of applications. However, the diffuse nature of the

reflections from many typical surfaces lead to the mixing of spatial information carried by

reflected light, preventing scene recovery, and rendering the problem of inverting optical

measurements to reconstruct hidden scenes challenging.

The NLOS optical imaging setup we study in this chapter is a fertile ground for thinking

about and applying efficient data collection strategies to learn physical environments. Our

main focus in this work will be to explore and understand what makes optical measurements

informative about hidden scenes, allowing efficient learning, and understand how such mea-

surements should be collected and processed to efficiently infer representations for hidden

scenes under investigation.

Recently proposed NLOS imaging modalities rely on exploitation of time-resolved (TR)

optical measurements, i.e. measuring the time it takes a narrow light pulse to traverse

across a scene, to undue the spatial mixing introduced by reflections. However, this often

requires costly, and highly specialized, carefully calibrated laboratory equipment that is

capable of collecting optical measurements with extremely high temporal resolution, limiting

the potential for widespread use of such systems.

As an alternative to the TR measurements inversion approach, we develop a computa-

†Based on joint work with Christos Thrampoulidis and Feihu Xu [126, 108].
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tional imaging technique that, perhaps counter intuitively, opportunistically exploits struc-

ture in optical measurements that is introduced by occluding objects obstructing light prop-

agation in the hidden scene to undo the spatial information mixing and allow robust, high

fidelity hidden scene recovery. We demonstrate both analytically and experimentally that

in some cases the presence of such occluders in the hidden scene can completely obviate the

need for collecting TR measurements.

More generally, we identify opportunities in designing more accurate, robust and cost-

effective NLOS imaging systems that trade-off between the use of high temporal resolution

TR optical measurements and available side information about occluders present in the

scene. We develop a study framework that involves a mathematical formulation for light

propagation in such environments, as well as comprehensive numerical illustrations, and

additionally demonstrate our results in a meter-scale experimental setup.

Our experimental demonstrations justify and motivate our utilization of Gaussian Process

(GP) models to describe scenes in other chapters of this thesis, and provide a testing ground

for some of the fast acquisition methods discussed in previous chapters.

4.1 Introduction

The problem of imaging non-line-of-sight (NLOS) scenes that are hidden behind obstacles has

gained much attention in recent years. What makes the ability to glimpse into spaces that

are not directly visible to the observer so appealing, is its numerous promising applications

in a wide variety of application domains such as medical and industrial inspection, vehicle

safety, scientific imagery, security and basic science, to name a few.

The problem of NLOS imaging introduces new and exciting challenges to the field of

computational imaging. In contrast to classical photography where the scene of interest is

in the direct line of sight of an observer, optical NLOS imaging systems only have indirect

access to the scene through reflections from intervening surfaces. In many practical settings

these surfaces, e.g. walls, dividers, floors, exhibit matte properties, i.e. they diffusely reflect

light across the entire optical spectrum, essentially mixing the spatial information carried by

the light by erasing beam orientation, thus rendering the problem of image reconstruction

90



challenging.

In order to undo the effect of diffuse reflections, initial demonstrations of NLOS imaging

behind obstacles used ultrafast transient imaging modalities [52, 115]. In particular, they

used a fast laser source to transmit optical pulses of sub-picosecond duration, and a streak

camera exhibiting temporal resolution in the picosecond range. A computational imaging

algorithm used the fine time-resolved light intensity measurements obtained by the streak

camera to form a three dimensional reconstruction of the hidden scene. The requirements

posed by this system for transmission of very narrow, high power optical pulses on the laser

side, and for very high temporal resolution on the detector side, inevitably implies high cost.

Thus, much of the follow-up work has focused on developing reduced cost implementations.

For example, the authors of [14], used a single-pixel single photon avalanche diode (SPAD)

detector for reduced power consumption and cost. A SPAD camera was also used in [32]

to demonstrate tracking of hidden moving objects. In a different line of work, with the aid

of modulated illumination, the authors of [44] used widespread CMOS time-of-flight sensors

such as photonic mixer devices, substantially reducing the overall system cost although at

the expense of reduced spatial resolution.

Motivated by the unfavorable cost-performance trade-off curve offered by existing NLOS

optical imaging methods we introduce a novel imaging modality, utilizing a previously un-

tapped resource that has traditionally been considered a nuisance and an impediment for

imaging, namely occlusions in the scene. Our work explores the beneficial role played by

occlusions in NLOS imaging, and develops the idea that these can facilitate more robust

image reconstruction. We demonstrate, both analytically and experimentally that in some

circumstances the presence of occluders in the hidden scene can completely obviate the need

for collecting time-resolved (TR) measurements, enabling imaging systems of significantly

reduced cost. This further allows us to use single-pixel detectors (e.g. SPADs) that, unlike

in all previous works, have a wide field of view, enabling more photons to be collected per

measurement, reducing the overall acquisition time.

We introduce these new concepts and ideas in the context of imaging a hidden wall

of unknown reflectivity. For this problem, we develop a study framework that involves a

mathematical formulation, as well as comprehensive numerical and experimental illustra-
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tions. More generally, we identify opportunities in designing more accurate, robust and

cost-effective NLOS imaging systems that relax the stringent temporal resolution require-

ments for optical measurements in the presence of occluders.

Related Work

To the best of our knowledge, our work is the first to introduce the concept of exploiting

occluders for the problem of NLOS imaging, and initiates the study of their beneficial role in

this setting. However, there is a variety of related work in computational imaging exploring

the use and exploiting the presence of physical structure in the space between the scene of

interest and the measurement system.

The most relevant instance of this idea is that of coded-aperture imaging where the role of

occluder in the optical path is played by a carefully designed mask that modulates the light

transferred from the scene of interest to a detector array. This is essentially a generalization

of the pinhole camera [27] or its inverse the anti-pinhole camera [19]. The main motivation

for using these techniques is in applications where lens fabrication is difficult, such as in

x-ray or gamma-ray imaging [12].

The idea of a mask appropriately combined with a lens has been used in computational

photography for motion deblurring [91], depth estimation [68], digital refocusing and recovery

of 4D light-fields [114]. More recently, there has been an increased interest in using masks

with appropriate computational techniques, instead of traditional lens-based cameras, to

build cameras that have fewer pixels, need not be focused [22], or meet physical constraints

[5]. All these methods are passive, and only very recently the authors of [95] proposed the

addition of an active illumination source and time resolved sensing to speed up acquisition

time in lensless imaging systems. Notably, while related, none of these studies targets or

applies to the more challenging problem of NLOS image reconstruction.

In another related work, Torralba and Freeman [110] studied the potential of accidental

pinhole and anti-pinhole camera images for revealing information about a scene that is out-

side the field of view. Their work can be seen as the most direct predecessor of this work, but

there are significant differences. Their setup requires a video sequence, and assumes avail-

ability of a reference frame captured without occluder presence. Not only do we eliminate
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these requirements, but also, using active illumination and more sophisticated computational

techniques, we obtain significantly enhanced image reconstructions.

Very recently, Klein et. al. [53] demonstrated the ability to track moving NLOS objects

from non-time resolved intensity images recorded on a visible wall. In contrast, this study

focuses on imaging a static scene, thus their work is not directly applicable in our setting. In

fact, we will show that without further exploiting the presence of occluders, imaging static

scenes with non-TR measurements is a severely ill-posed problem.

4.2 Problem Formulation

In this section we introduce the occluded NLOS imaging setup and derive a forward model

for light propagation in this environment. In particular, we formulate the problem of imaging

a hidden object as a linear inverse problem, exploiting occlusions in the scene in order to

obtain more accurate and robust solutions.

4.2.1 Imaging Setup

The goal of NLOS imaging systems is to perform joint estimation of both the geometry

and reflectivity properties of a hidden three-dimensional scene by processing reflected light-

intensity measurements, as illustrated in Figure 4-1. An observer is equipped with a laser

source and a camera, and is interested in forming an image of the hidden object which

is not directly visible from its vantage point, due to the wall blocking the direct line of

sight path between the two. A focused laser beam is steered towards a visible illumination

surface and reflects back towards the hidden object. Upon hitting the object light is reflected

back towards the illumination surface and is measured by a focused camera. This forms a

three-bounce problem in which light beams follow paths of the form

Λ(Laser)→ ℓ→ x→ c→ Ω(Camera),

where ℓ, c lie on the illumination surface and x lies on the hidden object surface. We let

𝒮 be a parametrization of the hidden object surface, and 𝑓(x), x ∈ 𝒮 denote its spatially
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varying reflectivity function (or, albedo).

Upon hitting the illumination and hidden surfaces the laser light reflects as dictated by the

surfaces respective Bidirectional Reflectance Distribution Functions (BRDF). In what follows

we will assume a Lambertian1 reflection function for the intervening surfaces, although our

models could easily accommodate other responses. Thus, for fixed ℓ, c the laser light follows

many such three-bounce trajectories on its path to the camera by reflecting from all points x

on the hidden object surface that have a direct unobstructed line of sight to both ℓ and c. By

raster scanning the laser position ℓ and changing the focal point of the camera c, we retrieve

multiple measurements corresponding to a set of 𝐾 parameters 𝒫 = {(ℓ𝑖, c𝑖)|𝑖 = 1, . . . , 𝐾}.

The focus of our work will be an occluded NLOS imaging setup where the space between

the illumination surface and the hidden object is occupied with occluders, whose effect on

the imaging process is to obstruct and block light beams that propagate in their direction,

as illustrated in Figure 4-1. We usually assume that the occluders are known objects, i.e. we

have information about their exact position and optical parameters. This is reasonable in

settings where the occluders, while being away from the observer may be visible to it, with

an unobstructed line of sight, as opposed to the hidden object which is hidden from view.

4.2.2 Forward Model

In this section we introduce a forward propagation model that determines the irradiance

waveform 𝑦ℓ,c(𝑡) measured at point c on the illumination surface in response to a single

optical laser pulse 𝑝(𝑡) fired towards position ℓ.

In order to account for the presence of occluders in the scene (as illustrated in Figure

4-1), we introduce a binary visibility function 𝑉 (x, z) which determines whether point x on

the hidden object surface 𝒮 and point z on the illumination surface are visible to each other:

𝑉 (x, z) =

⎧⎨⎩ 1, clear line of sight between x and z,

0, no line of sight between x and z.
(4.1)

1As we further discuss next, a Lambertian surface reflects light diffusely, i.e an incoming focused narrow
beam of light reflects isotropically in all directions, resulting in a matt surface appearance. This stands in
contrast to specular reflection where an incoming light beam remains focused and narrow following reflection,
resulting in a mirror-like surface appearance. This is illustrated in Figure 4-1 by the red arrow heads.
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laser camera

 

Illumination surface

Hidden object

Observer

Occluder

A side view illustration of the hidden-scene reconstruction setup. Red lines trace beam
paths reflecting from the virtual laser points ℓ, ℓ′, where a laser beam hits the illumination
surface towards point x on the hidden object. The illustrated beam emanating from ℓ′ is
blocked by the occluder. Upon hitting the point x light reflects back towards a virtual

camera position c, where a focused camera is steered.

Figure 4-1: NLOS imaging setup.

With these definitions installed, the forward model is given as follows2:

𝑦ℓ,c(𝑡) =

∫︁
𝒮
𝑓(x)

𝑉 (x, ℓ)𝑉 (x, c)

‖x− ℓ‖2‖x− c‖2
𝐺(x, ℓ, c)𝑝

(︂
𝑡− ‖x− ℓ‖+ ‖x− c‖

𝑐

)︂
dx. (4.2)

Here, 𝐺 is the Lambertian Bidirectional Reflectance Distribution Function (BRDF):

𝐺(x, ℓ, c) ≡ cos(x− ℓ,nℓ) cos(x− ℓ,nx) cos(x− c,nx) cos(x− c,nc) (4.3)

nx,nc,nℓ are the surface normals at x, c, ℓ, respectively and 𝑐 is the speed of light. The

model can easily be generalized to account for non-Lambertian BRDFs for the illumination

surface and the hidden object by appropriately adjusting 𝐺.

We provide a detailed account for the forward model, by tracking light as it propagates

from the laser, positioned at Λ, until it reaches the detector, positioned at Ω, accounting for

the three bounces experienced along its path. In formulating the model (4.2) we ignore fixed

known terms that are not functions of the spatial variable x as they can be pre-compensated

for by the computational algorithm.

2A similar forward model is used in [44], and is based on well-known principles, namely quadratically
decaying power attenuation for optical beams, and Lambert’s cosine law for diffuse reflection. Eqn. (4.2)
further accounts for possible occlusions in the scene through the visibility function.
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Consider the three-bounce trajectory Λ→ ℓ→ x→ c→ Ω illustrated in Figure 4-1. The

light travel time along this path is given by 1
𝑐

(‖ℓ− Λ‖+ ‖x− ℓ‖+ ‖c− x‖+ ‖Ω− c‖) re-

sulting in the detection of a delayed optical pulse 𝑝(𝑡) at the camera. By shifting the time axis

by the fixed known delay 1
𝑐

(‖ℓ− Λ‖+ ‖Ω− c‖) we arrive at the term 𝑝
(︁
𝑡− ‖x−ℓ‖+‖x−c‖

𝑐

)︁
appearing in (4.2).

As light travels from Λ to Ω it experiences quadratic power decay during the free-space

propagation occurring in the sections ℓ → x, x → c, c → Ω, i.e. it is multiplied by

‖x − ℓ‖−2‖c − x‖−2‖Ω − c‖−2. We can compensate for the known power decay occurring

in the final segment between c and Ω by multiplying the received signal by the fixed term

‖Ω− c‖2, resulting in the two remaining quadratic terms appearing in (4.2).

On the path from Λ to Ω the light experiences three reflections, at ℓ,x and c. Each

reflection results in scaling the light intensity by a reflectivity coefficient and the appropriate

Lambertian BRDF response. The reflectivity coefficients at ℓ and c are assumed known

and can be compensated for. The reflectivity coefficient at x, 𝑓(x) is the objective of our

reconstruction and appears as a scaling factor in (4.2). As for the BRDF terms, a reflection

occuring at z with incoming radiation arriving from 𝑖𝑛 and measured at 𝑜𝑢𝑡 directions results

in response cos(𝑖𝑛,nz) · cos(𝑜𝑢𝑡,nz) where nz is the normal at z. Accounting for the three

reflections we have six cosine factors appearing in the forward model, of which, the first

and last, describing light from Λ hitting at ℓ and light from c emerging towards Ω are

fixed, known and can be compensated for, and can thus be excluded from the model. The

remaining four cosine terms appear in (4.2) in the term 𝐺(x, ℓ, c).

The factors 𝑉 (x, ℓ)𝑉 (x, c) appearing in the forward model (4.2) account for the presence

of the occluder. Namely, light traveling the trajectory Λ → ℓ → x → c → Ω can make

it through space unobstructed only if the direct line of sight paths ℓ → x and x → c are

unobstructed by the occluder, i.e. 𝑉 (x, ℓ) = 1 and 𝑉 (x, c) = 1. If this does not hold, the

path does not contribute to the signal measurement taken at the camera.

Finally, the measured intensity 𝑦ℓ,c(𝑡) results from a superposition of all possible three

bounce paths of the form Λ→ ℓ→ x→ c→ Ω, which entails integration over all x ∈ 𝒮 as

accounted for in (4.2).
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4.2.3 Comments on the Forward Model

Here we comment on several details and modeling aspects related to the the forward model

(4.2) and the occluded NLOS imaging setup:

Occluders

We conceptually think about the occluder (or multiple occluders) as an accidental object

that happens to partially block the field of view between the illumination wall and the hidden

object, and while some applications may call for purposefully designing and placing such an

occluder to aid in NLOS imaging, we mostly consider its characteristics as given.

Throughout most of this work we assume that the occluder is observable from the point

of view of the observer (refer to Figure 4-1) such that its parameters are fully known for

the purpose of image reconstruction. The occluder may have any arbitrary shape, however

its effect on the measurements in (4.2) is summarized solely through the binary visibility

function 𝑉 (x, z), implying that the occluder is either not blocking or fully blocking light

propagating between the illumination surface and the hidden object. However, real occlud-

ers may additionally exhibit reflectance of their own which may superpose on top of the

third-bounce signal from the hidden object in 𝑦ℓ,c(𝑡). When the reflectivity pattern of the

occluder is known this can be incorporated into our forward model without changing the

reconstruction process.

For simplicity, in what follows we assume a fully absorbing occluder. In Section 4.10 we

hint at the blind deconvolution problem where the occluder is not fully known. This can

happen when the occluder itself is distant from the illumination wall and thus hidden from

the observer. We argue that scene reconstruction is possible under some conditions even in

that difficult setting.

While occlusions are traditionally considered a hindrance for imaging problems, we iden-

tify scenarios in which occlusions can be used in favor of better reconstruction. Introducing

the visibility function in (4.2) is important for this purpose as will become apparent in

Section 4.5.
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Third Bounces

Our model (4.2) only accounts for the contributions in the measurements resulting from three

bounces (Λ → ℓ → x → c → Ω) which are informative about the hidden object. In most

experimental setups (e.g. the one we report in Section 4.9) higher order bounces experience

high attenuation and can be neglected in modeling the measurements.

As we detailed before, the contribution of the reflectance 𝑓(x) at target spatial location

x to the measurements is determined by the attenuation and temporal delays accrued by

light propagating from ℓ to c through x, whereas the attenuation, delays and reflections

associated with the paths from the laser to ℓ and from c to the detector are known, can

be compensated for, and thus are not incorporated in our model. In general, it is useful to

think of ℓ and c as ’virtual’ unfocused illumination and detection points, ignoring the paths

leading to and from these points, respectively.

Far-field Approximation

In the sequel we occasionally resort to using approximations to (4.2) when convenient for

analysis and intuition, or useful for a clearer presentation. In particular, we will sometimes

consider the far-field scenario in which the scene is far from the illumination surface such

that ‖x− ℓ‖2‖x− c‖2 ≈ const and 𝐺(x, ℓ, c) ≈ const.

Low Power Regime

We presented (4.2) as a light propagation model for pulsed laser illumination. Third bounce

reflections are very weak in practical applications and a single pulse may result in such low

reflected light intensity that just a few photons will be recorded at the detector at seemingly

random times. However, in these settings repeating the pulsed illumination numerous times

and averaging the recordings over many such cycles yields the temporal waveform predicted

in (4.2). Thus, taking a single measurement with fixed ℓ, c can be a lengthy process and we

are usually limited by a budget for the total number of such measurements we can take. We

explore this further in Section 4.6.
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Temporal Resolution of the Camera

The camera averages the incident irradiance at c with a finite temporal resolution ∆𝑡 result-

ing in measurements yℓ,c,𝜏 , 𝜏 = 1, 2, . . . , 𝑇 ,

yℓ,c,𝜏 =

∫︁ 𝜏Δ𝑡

(𝜏−1)Δ𝑡

yℓ,c(𝑡)d𝑡. (4.4)

Since only third-bounce reflections involving the hidden object are of interest to us, with

some abuse of notation we shift the time axis such that time 𝑡 = 0 is the first instant

when third bounce reflections reach the camera and 𝑇∆𝑡 is chosen such that all relevant

third-bounce reflections from the hidden object are included in the interval [0, 𝑇∆𝑡].

Notice that as the temporal resolution degrades, i.e. ∆𝑡 grows larger, the number of

samples retrieved from a single measurement configuration decreases, until finally, for ∆𝑡

large enough we collect just a single sample for each measurement configuration. We refer

to this limit as the non-TR limit. While it might appear that non-TR measurements are

not informative about the hidden object, we will show in Section 4.5 that exploiting the

presence of occluders in the scene makes NLOS imaging possible even with poor or non

time-resolved measurements. A major advantage of utilizing non-TR measurements is that

such measurements can be collected using simple experimental setups. Most significantly, a

conventional cheap CCD detector may be used in lieu of the sensitive time-resolved detector.

A CCD camera is cheaper, easier to setup and operate, and has better pixel resolution

compared to a time-resolved camera. While the sensitivity of a CCD camera is worse than

that of a SPAD detector, suggesting that a longer integration time might be necessary, notice

that in the CCD setup the laser can be operated in a non-pulsed ’always on’ mode, such

that it can transmit a higher average power, resulting in faster imaging. Eq. (4.2) applies

in this the non-pulsed, eq. non time-resolved, setting by taking 𝑝(𝑡) ≡ 1.

4.3 Study Framework

In the previous section we introduced a general NLOS occluded imaging setup that is capable

of capturing a wide variety of interesting scenarios, but is difficult for analytical study. In
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Illumination wall

Hidden wall

D
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H'

A reference imaging setup in which the objective is to reconstruct the reflectivity 𝑓(x) of a
flat hidden wall that is parallel to the illumination wall at known distance 𝐷. The position

and size of the fully absorbing flat occluders are known.

Figure 4-2: A simplified reference NLOS imaging setup.

this section, we specialize the general configuration and introduce a simplified reference setup

that will allow a detailed study in subsequent sections.

4.3.1 Reference Imaging Setup

Our reference setup is illustrated in Figure 4-2. It is a specialized version of the general

setup from Figure 4-1 and includes a planar hidden object and a parallel planar illumination

surface, which we refer to as the hidden wall and the illumination wall, respectively. These

two surfaces of known geometry are placed distance 𝐷 apart.

In between the illumination and the hidden walls lie flat occluders, whose effect on the

imaging process is captured through the visibility function defined in (4.1). As the geometry

and location of the occluders is known, the visibility function can be trivially determined.

The NLOS imaging objective under this setting is then to reconstruct the unknown reflec-

tivity function 𝑓(x) of the hidden wall from the measurements.

From (4.4) and (4.2) we immediately have that the measurements yℓ,c,𝜏 are linear in

the unknown reflectivity function 𝑓(x). Let x1, . . . ,x𝑁 be a discretization of the hidden
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wall, then, according to (4.2), each measurement yℓ,c,𝜏 corresponds to a measurement vector

𝑎ℓ,c,𝜏 ∈ R𝑁 such that yℓ,c,𝜏 = 𝑎⊤
ℓ,c,𝜏 f , where f ≡ [𝑓(x1), . . . , 𝑓(x𝑁)]⊤.

We collect measurements by raster scanning the laser and camera positions over a to-

tal of 𝐾 configurations (ℓ, c), obtaining 𝑇 time samples per each pair. Collecting theses

measurements in a vector y of dimension 𝑀 = 𝐾 · 𝑇 , this gives rise to the linear system

of equations y = Af where A is an 𝑀 × 𝑁 measurement matrix whose rows are vectors

𝑎⊤
ℓ,c,𝜏 that correspond to the chosen (ℓ, c) pairs and temporal resolution ∆𝑡. In this study

we consider measurements that are contaminated by additive noise 𝜖:

y = Af + 𝜖. (4.5)

The noise term can be thought of as a simple means to capture system modeling errors,

camera quantization errors, background noise, etc..

4.3.2 Bayesian Priors

The idea of imposing Bayesian priors is well-established in image processing [9, 35]. Past

studies have considered various forms of Gaussian prior distributions on the unknown target

scene, including variations promoting sparse derivatives [68], and natural image statistics

[77]. Such priors offer enough flexibility and at the same time are amenable to analysis

and intuitive interpretation. In this work, we impose the following Gaussian prior on the

reflectivity vector f3:

f ∼ 𝒩 (0,Σf ), (4.6)

For the covariance, in line with the modeling choices we applied in previous chapters (and

also Appendix B), we impose a smoothness-promoting kernel function such that the entries of

the covariance matrix are [Σf ]𝑖𝑗 = exp(− 1
2𝜋𝜎2

f
‖x𝑖−x𝑗‖2) and the spatial variance 𝜎2

f controls

the extent of smoothness. Additionally, we consider an i.i.d. Gaussian distribution for the

3The zero mean assumption is somewhat simplified, but not particularly restrictive. In order to respect
the nonnegative nature of the reflectivity function, a positive additive mean should be added in all models
considered here, but this addition has no effect on the qualitative conclusions drawn from our results.
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measurement noise 𝜖𝑖 ∼ 𝒩 (0, 𝜎2) such that the Signal to Noise Ratio (SNR) in our problem is

given by SNR = Tr
(︀
AΣfA

⊤)︀/(𝑀𝜎2), where 𝑀 denotes the total number of measurements.

For the reconstruction, we consider the minimum mean-squared error (MMSE) estimator,

which under the Gaussian framework is explicitly computable as

f̂ = ΣfA
⊤(AΣfA

⊤ + 𝜎2I)−1y. (4.7)

We measure and compare reconstruction performance in different settings using the normal-

ized mean squared error NMSE = E‖f̂ − f‖22/E‖f‖22, which equals the (normalized) trace of

the posterior covariance matrix

NMSE =
1

𝑀
Tr(Σf −ΣfA

⊤(AΣfA
⊤ + 𝜎2I)−1AΣf ). (4.8)

Note that the NMSE can be evaluated before collecting measurements y. Also, the recon-

struction in (4.7) remains the optimal linear estimator under given first and second order

statistics for f , even beyond Gaussian priors.

4.4 Unoccluded Time-Resolved NLOS Imaging

In this section we study the limits of traditional NLOS imaging that is based on collecting TR

optical measurements, and set up a reference against which we compare the newly proposed

imaging modality that uses occlusions and no TR measurements, which we formally introduce

in Section 4.5.

4.4.1 Collecting Time-Resolved Measurements

Here, focusing on the setup described in Section 4.3 (Figure 4-2) we review the main principles

of TR NLOS imaging4.

The hidden wall is indirectly illuminated with a short laser pulse and the reflected light

is measured using a camera with temporal resolution ∆𝑡, as defined in (4.4). For each (ℓ, c)

4In this work we consider the task of imaging a hidden object of known geometry 𝒮. TR measurements
can additionally be used to estimate the geometry of the hidden object if it is unknown, e.g. [115].
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configuration pair we collect a set of 𝑇 measurements yℓ,c,𝜏 for 𝜏 = 1, . . . , 𝑇 as discussed in

Section 4.3.1. Assuming an ideal pulse 𝑝(𝑡) = 𝛿(𝑡), and considering the propagation of optical

pulses at the speed of light 𝑐, the measurement yℓ,c,𝜏 taken at time step 𝜏 forms a linear

combination of the reflectivity values of only those scene patches x𝑖 whose sum distance to ℓ

and c corresponds to a propagation time around 𝜏∆𝑡. These patches fall within the elliptical

annulus with focal points ℓ and c described by the following equation:

(𝜏 − 1) · 𝑐∆𝑡 ≤ ‖x𝑖 − ℓ‖+ ‖x𝑖 − c‖ ≤ 𝜏 · 𝑐∆𝑡 (4.9)

The thinner the annulus (eqv. the lower ∆𝑡), the more informative the measurements are

about the reflectivity values of these patches. Furthermore, scanning the laser and camera

positions (ℓ, c), different sets of light paths are probed, each generating a different set of

elliptical annuli. For a total of 𝐾 (ℓ, c)-pairs, this forms the linear system of equations (4.5),

with a total of 𝑀 = 𝐾 · 𝑇 measurements.

Most reported experimental work utilizing TR measurements have used filtered back-

projection as a heuristic for reconstructing the hidden object from the measurements (see

[115]), i.e., for each potential hidden patch, sum the measurements that could result due to

reflections originating from the patch (according to (4.9)). The resulting reconstruction is

often blurry, but it can be computationally sharpened by applying post-processing heuris-

tics [115]. Alternatively, others have suggested solving the linear system via some form of

regularized least-squares accounting for prior scene knowledge, e.g. [44]. Here, operating in

the Bayesian setting of Section 4.3, we obtain the optimal MMSE estimate for f .

We performed a numerical simulation to demonstrate scene reconstruction performance in

a TR setup. For the purposes of illustration the simulations presented here and in the sequel

consider two dimensional layouts. This allows for easy visualization of important concepts

such as the visibility function and the forward measurement operator, and it enables useful

insights, but is otherwise non-restrictive. The room size was set such that the width of the

walls is 1m, the distance between the walls is 𝐷 = 2m and the temporal resolution was set

at ∆𝑡 = 100ps. 𝐾 = 8 (ℓ, c) pairs were randomly chosen, f was drawn according to the

Gaussian prior with 𝜎2
𝑓 = 0.1, and we set SNR = 13.7dB. The results are summarized in
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(Left) Measurement matrix, where each row corresponds to a specific choice for the (ℓ, c)
pair and time index 𝜏 . The columns correspond to a discretization of the hidden wall to

𝑁 = 100 patches. (Right) True reflectivity function versus the MMSE estimate f̂ .

Figure 4-3: Scene reflectivity reconstruction from TR measurements.

Figure 4-3, where we plot the measurement matrixA, the true reflectance f and the estimated

f̂ with the corresponding reconstruction uncertainty depicted in shaded color around the

MMSE estimator. The reconstruction uncertainty for our purposes is the square-root of the

diagonal entries in the posterior covariance matrix corresponding to the standard deviation

of f̂𝑖 − f𝑖 for the individual patches 𝑖 on the wall. For this setup and resolution we collect

𝑇 = 16 temporal samples per (ℓ, c) pair such that the total number of measurements is

𝑀 = 8 · 16 = 128. These are the rows of A depicted in the figure, where each block of 8

consecutive rows corresponds to the measurements collected at a single time instant and for

all (ℓ, c) pairs. Notice that the last few blocks are zero as at those times no patch on the

hidden wall contributes to the measurements.
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4.4.2 Reconstruction Performance vs. Temporal-Resolution

Here we explore the dependence of scene reconstruction performance on the temporal res-

olution of the available optical measurements. While reconstruction fidelity deteriorates

when the temporal resolution becomes coarser, low-resolution equipment is less expensive

and easier to set up, naturally defining a cost-performance tradeoff curve. For example, The

simulation results reported in Figure 4-3 demonstrate high-fidelity reflectivity reconstruction

when the available temporal resolution is fine (∆𝑡 = 100ps). However, practical technological

and budget considerations limit the availability of such high resolution measurements result-

ing in significant deterioration of the reconstruction fidelity with less sensitive detectors, as

we show next.

Let us first consider an extreme situation where the temporal resolution is so low such

that the distance that light travels during a single resolution window of the detector is larger

than the entire spatial extent of the hidden object5. As an example, for the setup in Figure

4-3 this happens when ∆𝑡 & 1.5 ns. In this extreme, which is essentially equivalent to

collecting non-time-resolved measurements, each (ℓ, c)-pair effectively generates just a single

scalar measurement which we denote yℓ,c and which is a linear combination of all the entries

of f . The combination coefficients are determined by the decay and cosine factors in (4.2).

Focusing on the distance factors ‖x − ℓ‖−2‖x − c‖−2 for intuition, the range of values that

these can take is clearly determined by the geometry of the problem, and can be very limited,

e.g. when the two walls are far apart. This weak variation can result in poor conditioning

of the measurement matrix A and subsequently poor reconstruction fidelity.

This is illustrated in Figure 4-4a where we plot the NMSE for the same setup as in Figure

4-3, with 𝐾 = 30 measurements vs. the temporal resolution parametrized against the SNR

(for each data point (∆𝑡, SNR) we average over 10 random drawings for (ℓ, c)). We see that

as temporal resolution deteriorates, reconstruction fidelity decreases. Introducing finite SNR

for the purpose of this evaluation is key as reconstruction in an ideal noise-free experiment

could result in high fidelity reconstruction even if A is ill conditioned. However, this is far

from being true accounting for realistic noise levels6 (e.g. SNR < 30dB).

5This happens when all hidden wall patches lie within the same elliptical annulus of (4.9)
6Each of the plots in Figure 4-4a correspond to a different SNR level. In practice, when comparing setups
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(a) Normalized mean-squared reconstruction error versus temporal resolution (Δ𝑡), parameterized

by the SNR level.
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(b) Normalized mean-squared reconstruction error versus temporal resolution (Δ𝑡), parametrized
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Figure 4-4: Scene reconstruction error versus the available detector temporal resolution in
TR NLOS imaging.

106



When imaging more distant walls, the poor conditioning of A further deteriorates as

the distance decay factors become less varied and approach ‖x − ℓ‖ ≈ ‖x − c‖ ≈ 𝐷, as

illustrated in Figure 4-4b where reconstruction performance is parametrized against 𝐷 for a

fixed SNR in a setup with otherwise identical parameters as those of the first subfigure. In

particular notice in this plot the limit of non-time-resolved measurements ∆𝑡 > 1.5ns where

the reconstruction squared error is always poor but is especially bad for larger 𝐷. This limit

is separately summarized in the inset, which captures the fact that unless the room size is

particularly small (i.e. just a few cm) it is hopeless to attempt high fidelity reconstruction.

Summarizing, we see that unless very high resolution measurement are available, NLOS

scene reconstruction becomes ill-posed and reconstruction is not robust. In the next section

we discuss the role of occluders in facilitating high fidelity reconstruction in this non-time-

resolved and practical room size setting.

4.5 Imaging with Occluders

Existing NLOS imaging systems for static scenes rely on obtaining TR measurements. In

this setting, occlusions are traditionally perceived as interfering with the imaging process

by obstructing the optical paths propagating from the laser to the scene and back to the

camera. In this section we study the role of occluders in NLOS imaging and demonstrate

that in some situations not only is their presence not impeding the imaging process, but

in fact it can enable high fidelity hidden scene reconstruction without the need for time

resolved measurements, which would not otherwise be possible as was shown in Section

4.4.2. In subsequent sections we will mostly be interested in this regime of collecting non-

TR measurements in the occluded NLOS setting.

of different temporal resolving capabilities the equipment involved will be technologically different such that
a fair comparison does not necessarily entail assuming a fixed SNR common to all setups. Notice however the
general trend of worsening reconstruction performance with diminishing temporal resolutions which holds
for all SNR levels.
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Informative Measurements Through Occlusions

We showed in Section 4.4 that image reconstruction performance drops significantly as the

resolution of the temporally resolved optical measurement deteriorates. The inversion prob-

lem in the poor temporal resolution limit is inherently difficult as rows of A, the linear

forward operator, are smooth functions over the spatial target coordinate x, resulting in

bad-conditioning of the operator.

The situation changes drastically when the line of sight between ℓ (and c) and the hidden

wall is partially obstructed by an occluder. For each measurement pair, certain segments of

the hidden wall (that are different for different measurement pairs) are occluded from ℓ and

from c. This is encoded in the linear forward operatorA via zero entries on the corresponding

spatial target coordinates x, such that its rows are choppy and varied. Consequently, the

inverse problem (4.5) becomes significantly better conditioned. We make this idea concrete

immediately next.

Recall from Section 4.2 that in the absence of temporal resolution, when ∆𝑡 effectively

goes to infinity, measurements 𝑦ℓ,c correspond to integrating (4.2) over all 𝑡 according to

(4.4), i.e.,

𝑦ℓ,c =

∫︁
𝒮
𝑓(x)

𝑉 (x, ℓ)𝑉 (x, c)

‖x− ℓ‖2‖x− c‖2
𝐺(x, ℓ, c)dx. (4.10)

let 𝐿 be the number of distinct occluders 𝒪𝑖, 𝑖 = 1, . . . , 𝐿 that are present in the scene. We

associate a distinct (binary) visibility function 𝑉𝑖(x, z) to each one of them. Observe then

that the overall visibility function 𝑉 (x, z) is given as the product of the individual visibility

functions, i.e. 𝑉 (x, z) =
∏︀

𝑖 𝑉𝑖(x, z). In terms of the forward operator A, it holds that

A = A0 ∘ (V1 ∘ · · · ∘V𝐿), (4.11)

where A0 is the operator corresponding to a scene with no occluders, V𝑖 is the (binary)

visibility matrix with entries

(V𝑖)(ℓ,c),x = 𝑉𝑖(x, ℓ)𝑉𝑖(x, c), (4.12)
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and ∘ denotes the Hadamard entrywise product of matrices.

As discussed in Section 4.4.2, the operator A0 is generally ill-conditioned as successive

entries of any of its rows exhibit small and smooth variations due only to the quadratic

distance attenuation and the BRDF factors 𝐺 in (4.10). On the other hand, the Hadamard

multiplication with nontrivial binary visibility matrices results in a well-conditioned operator.

This is demonstrated through an example in Figure 4-5, which compares reconstruction

performance in the presence and absence of occluders.

The setup, illustrated in Figure 4-5a, is as reported in previous simulations, with the

addition of occluders as depicted. We collect 𝐾 = 30 measurements with randomly drawn

ℓ, c parameters and noise variance SNR = 25dB. The occluded measurement matrix A

and the “un-occluded" matrix A0 are depicted in Figure 4-5b alongside their corresponding

singular values. Observe that the singular values of A0 decay substantially faster than

those of A, which exhibits a much flatter spectrum. As expected, this better conditioning

translates to better image reconstruction, as illustrated in the rightmost top plot: in solid

red is the poor reconstruction without the occluder (NMSE = 54%), and in solid green is

the successful reconstruction with the occluder (NMSE = 2.4%). The dashed lines indicate

the standard deviation of the error f̂𝑖 − f𝑖 for each spatial coordinate x𝑖, which corresponds

to the square-root of the diagonal entries of the posterior covariance matrix.

4.6 Data Collection Strategies

In previous sections we have considered a setting in which a focused laser source and a

focused detector generate measurements corresponding to (ℓ, c) pairs on the illumination

wall. In this section we discuss several extensions to this generic setup. First, we consider

the problem of choosing an optimal set of (ℓ, c) combinations under a budget constraint. We

then extend our generic measurement setup with one where a wide field-of-view detector is

employed in lieu of the focused detector. Finally, we briefly discuss a restricted setup where

the focused laser and detector are constrained to align with one another.
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(a) (Left) Room setup. (Middle) Binary visibility matrix, with 0 (1) depicted in black (white).

(Right) Scene reflectivity reconstruction.
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(b) (Left) Measurement matrix for the occluded setup and for the (Middle) unoccluded setup, in

jet colormaps. (Right) The corresponding singular values.

Figure 4-5: Numerical study of NLOS imaging in the presence and absence of occluders.
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4.6.1 Optimal Experimental Design

Our generic imaging setup assumed measurements were obtained for a set of (ℓ, c), laser-

camera configurations. For each (ℓ, c) configuration the laser and detector need to me-

chanically be steered towards their respective orientations7. Once locked in position, the

detector starts recording signal, however, due to the high attenuation experienced by light

as it bounces three times, the signal measured at the detector may be weak and a long dwell

time may be required to attain sufficient SNR levels8. Thus, it is evident that the size of the

set 𝒫 of (ℓ, c) pairs is a main determinant of the image acquisition time.

Reducing the system acquisition time required to attain a minimum performance level is

of key significance in designing imaging systems. In particular, in situations where the scene

might be evolving over time, e.g. due to motion of objects or the imaging equipment, it is

important to be able to image the hidden scene in time periods much shorter than those

characterizing typical scene evolution. A key step towards achieving this goal is devising

efficient schemes for choosing the set 𝒫 under a budget constraint, as we pursue in this

section.

To make things concrete, let 𝒟 be a (uniform) discretization of the illumination wall,

such that (ℓ, c) pairs are restricted to be chosen on the product set 𝒟 × 𝒟, and suppose

we are allowed to collect at most 𝐾 measurements. We are then interested in choosing

optimal subsets 𝒫 ⊂ 𝒟 × 𝒟 of (ℓ, c) pairs such that |𝒫| ≤ 𝐾. Furthermore, we want to

understand, under this optimal choice, how imaging performance improves as 𝐾 increases

and more measurements are allowed. We explore here an efficient strategy that provides

answers to these questions, consistent with the formulations we have discussed in previous

chapters.

As before, our goal is to choose the set 𝒫 such that the corresponding measurement

vector y𝒫 := {yℓ,c | (ℓ, c) ∈ 𝒫} is the most informative about the unknown reflectance f .

Denoting 𝐼(·; ·) the mutual information between two (vector) random variables, this amounts

7In the experiment reported in Section 4.9 laser steering is done with a small mirror mounted on a motor
controlled pivot.

8In the experiment reported in Section 4.9 the laser illuminates the scene with a sequence of thousands
of pulses to attain sufficient signal levels.
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to solving

𝒫⋆ = argmax
𝒫:𝒫⊆𝒟×𝒟,|𝒫|≤𝐾

𝐺(𝒫) (4.13)

𝐺(𝒫) ≡ 𝐼(y𝒫 ; f). (4.14)

The optimization problem in (4.13) is NP-hard in general. However, under the framework of

Section 4.3 the objective function 𝐺(𝒫) is monotonic and submodular, which can be easily

derived as we did in previous chapters. With this result, the theory of submodular optimiza-

tion suggests an efficient greedy solver that obtains near optimal solutions 𝒫gr satisfying:

𝐺(𝒫gr) ≥ (1− 1
𝑒
)𝐺(𝒫⋆) (Appendix A).

During each of its iterations, the greedy algorithm augments the set 𝒫 with an additional

configuration pair (ℓ, c), for a total sequence of 𝐾 iterations. The solution has the property

𝒫gr
𝐾 ⊂ 𝒫

gr
𝐾+1, where we have used subscript notation for the budget constraint on the size of

𝒫 . The algorithm picks the next element myopically given the solution set built so far, i.e

as the element that maximizes the marginal information gain.

We illustrate the efficacy of this approach via numerical simulations. For the purpose

of clearly illustrating the solution in a simple setting our setup is similar to that used to

generate Figure 4-5, except we only consider one of the two occluders, the one centered

around 𝑥 = 0.5m. The noise variance is kept constant at 𝜎2 = 0.1, and we seek an optimal

set 𝒫 of measurement configurations under a budget constraint |𝒫| ≤ 𝐾. Figure 4-6a shows

the output of the greedy algorithm for the most informative (ℓ, c) pairs for values of 𝐾

up to 30. The selected parameters, marked with red crosses are accompanied by a number

indicating the iteration cycle at which they were retrieved. Notice how the first two selections

are positioned to the left and right of the occluder.

Figure 4-6b validates the optimality features of the output 𝒫gr of the greedy algorithm by

comparing it to an equal size subset of measurements chosen uniformly at random. For a fixed

desired NMSE the number of measurements required when randomly picking configurations

can be as large as double the number required with approximately optimal selection. On the

other hand, observe that under both schemes the NMSE drops significantly for the first few

added measurements and the marginal benefit degrades as more measurements are added.
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It is important to note that the numerical experiment presented here serves as a very basic

demonstration of our optimal measurement scheme. In extremely occluded environments

where access to the hidden scene through reflections is limited our approach could hopefully

result in an even more dramatic improvement over randomly aiming the laser and detector.

4.6.2 Single-Pixel Camera with a Wide Field of View

In contrast to prior art, our occluder assisted imaging method does not require collection of

TR measurements, offering a potential reduction in equipment complexity. We additionally

show here that our method can operate with a wide field-of-view single-pixel camera, offering

several advantages such as reduced equipment cost (no lens required) and a dramatically

increased signal to noise ratio as more photons can be collected per measurement. To the

best of our knowledge, this is the first demonstration of NLOS imaging with a wide field-of-

view detector.

With the setup as before, consider a camera that is configured for a wide field of view,

detecting light reflected from multiple positions c on the illumination wall, capturing more

of the backscattered photons from the hidden scene. This modifies the forward measurement

model as explained next. Let 𝒞 represent the surface of the illumination wall that is in the

camera field of view, so that the camera integrates photon measurements from all points

c ∈ 𝒞, while the laser source raster scans the illumination wall as before. This procedure

yields measurements that are now parametrized only by ℓ, as follows (cf. (4.10)):

𝑦ℓ =

∫︁
𝒞

𝑦ℓ,c
‖c−Ω‖2

cos(Ω− c,nc)dc

=

∫︁
𝒮
𝑓(x)

𝑉 (x, ℓ)

‖x− ℓ‖2

[︂∫︁
𝒞

𝑉 (x, c)𝐺(x, ℓ, c) cos(Ω− c,nc)

‖x− c‖2‖c−Ω‖2
dc

]︂
dx. (4.15)

In deriving (4.15) we use (4.10) and further explicitly account for the quadratic power decay

from the illumination wall to the camera positioned at Ω, and the BRDF term that accounts

for the reflection from c to Ω. As before, the measurements are linear in the unknown re-

flectance, suggesting that the same reconstruction techniques can be utilized in this setup. In

the presence of occluders, the nontrivial visibility function 𝑉 (x, z) results in improved con-
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Figure 4-6: Experimental design for choosing informative measurements in occluded NLOS
imaging.
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ditioning for the measurement operator and successful image reconstruction. In particular,

our experimental demonstration in Section 4.9 is based on the forward model in (4.15). We

mention in passing that the dual setting, where a wide field-of-view light projector is utilized

instead of a focused laser illumination, with measurements collected at multiple positions c

on the illumination wall, might also be of interest.

4.6.3 Aligned Illumination and Detection

Finally, we mention a specific configuration that reduces the dimensionality of the parameter

space by imposing the restriction ℓ = c on the measurement configurations9. This results in

a strict subset of the entire measurement set 𝒟×𝒟 that is convenient for analytic purposes

and for drawing insights about the features of the imaging system, and will be useful for our

analysis in Section 4.7.

4.7 Model Misspecification

In this section, we study in more detail the structural properties of the visibility function,

which we use in turn to study the robustness of reconstruction with respect to a misspecified

description of the location of the occluder.

4.7.1 Parameterizing the Visibility Function

In what follows we consider flat horizontal occluders, i.e. occluders aligned horizontally at

some fixed distance from the illumination wall (Figure 4-2). This family of occluders is useful

as any occluder that is small compared to the size of the room may be well approximated

as being flat and horizontal. We show that the visibility function 𝑉 associated with a flat

horizontal occluder has a simple structure. Specifically, suppose that occluder 𝒪 lies on a

horizontal plane at distance 𝐻 = 𝛼𝐷 with 𝛼 ≡ 𝐻/𝐷 from the visible wall, and define the

occupancy function 𝑠(x) such that for all points x on that plane set 𝑠(x) = 0 if 𝒪 occupies x

9When ℓ = c, the camera focused at c measures a first-bounce response in addition to the informative
third-bounce. We assume here that the dimensions of the hidden scene are such that it is possible to use
time-gating to reject this first-bounce signal.
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and 𝑠(x) = 1 otherwise10. A point x on the hidden wall is not visible from a point z on the

illumination wall if and only if the line that connects them intersects with the occluder, or

equivalently, if at the point of intersection it holds that 𝑠(𝛼x+(1−𝛼)z) = 0. This translates

to:

𝑉 (x, z) = 𝑠(𝛼x + (1− 𝛼)z), (4.16)

In particular, when ℓ = c, it follows from (4.12) and (4.16)

(V)(ℓ,c),x = 𝑠(𝛼x + (1− 𝛼)ℓ) (4.17)

and the visibility matrix V has a band-like structure. Ignoring edge-effects, this corresponds

to a convolution matrix, which is favorable since the convolution structure makes possible

deriving analytic conclusions regarding the effect of the parameters of the occluder on the

image reconstruction as shown next.

4.7.2 Misspecified Reconstruction

Thus far we have assumed perfect knowledge of occluder parameters for image reconstruction.

However, in practice these parameters may be inaccurate, leading to reconstruction errors. In

this subsection we study scene reconstruction under a misspecified model for the position of

the occluders. Figure 4-7a illustrates our setup where the true position of the flat horizontal

occluder appears in black, and our mismatched model assumes the occluder is positioned as

appears in red, with 𝛿𝑥 and 𝛿𝐻 vertical and horizontal shifts, respectively.

We study the resulting image reconstruction under the following simplifications: (i) mea-

surements are noiseless, (ii) measurements are taken with parameters satisfying ℓ = c, (iii)

continuous measurements are collected, i.e. 𝑦ℓ is available for all points ℓ on the visible

wall, and (iv) we assume that the hidden wall is far from the illumination wall such that

‖x− ℓ‖2‖x− c‖2 and 𝐺(x, ℓ, c) are approximately constant, i.e. this is the far-field approx-

imate model of Section 4.2.3.

10Here, occluder 𝒪 is allowed to be composed of several patches as long as they all lie on the same plane.
Equivalently, the support of the function 𝑠(x) on the plane can be disjoint.
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With these simplifications, the measurements yℓ are expressed (up to a constant) as

𝑦ℓ =

∫︁
𝑓(x)𝑠(𝛼x + (1− 𝛼)ℓ)dx, (4.18)

where we have used (4.16), and 𝑓(x) is the true reflectance of the hidden wall.

In the presence of errors 𝛿𝑥, 𝛿𝐻 , the misspecified visibility function can be expressed as

𝑉 (x, z) = 𝑠(𝛼′(x − 𝛿𝑥) + (1 − 𝛼′)(ℓ − 𝛿𝑥)), where 𝛼′ ≡ 𝐻+𝛿𝐻
𝐷

= 𝛼 + 𝛿𝐻
𝐷
. This results in a

misspecified model:

𝑦ℓ =

∫︁
𝑓(x)𝑠(𝛼′(x− 𝛿𝑥) + (1− 𝛼′)(ℓ− 𝛿𝑥))dx. (4.19)

In order to study how 𝑓(x) relates to 𝑓(x) it is convenient to work in the Fourier domain11.

Taking Fourier transforms of the right-hand-side expressions of both (4.18) and (4.19), and

equating with each other, it can be shown that12,

𝐹 (𝜔) =
1− 𝛼′

1− 𝛼
𝑆(−1−𝛼′

1−𝛼
𝜔
𝛼′ )

𝑆(− 𝜔
𝛼′ )

𝑒𝑗𝜔
𝛿𝑥
𝛼′ 𝐹

(︂
𝛼

𝛼′
1− 𝛼′

1− 𝛼
𝜔

)︂
, (4.20)

where 𝐺(𝜔) denotes the Fourier transform of a function 𝑔(x). Of course, this holds for

frequencies at which 𝑆(𝜔) is non-vanishing.

The following conclusions regarding reconstruction distortion under misspecified position

of the occluder are drawn from (4.20):

∙ Under no errors (𝛿𝑥 = 0, 𝛿𝐻 = 0), the reflectivity function is perfectly reconstructed

for those frequencies for which the shape-function of the occluder is non-zero.

∙ Horizontal occluder translation errors (𝛿𝑥 ̸= 0, 𝛿𝐻 = 0) result in simple shifts of the

true reflectance.

∙ Vertical occluder translation errors (𝛿𝑥 = 0, 𝛿𝐻 ̸= 0) result in two kinds of distortions.

The first is a scaling effect, while the other is a distortion that depends on the shape

11The variable of integration x in (4.18) and (4.19) ranges over the finite surface of the hidden wall.
Correspondingly, 𝑓(x) and 𝑠(x) are only defined over this region. Formally, when it comes to taking Fourier
transforms, we extend the functions on the rest of the space by zero-padding.

12Recall ℱ [𝑓(𝑡)] = 𝐹 (𝜔)→ ℱ [𝑓(𝑎𝑡+ 𝑏)] = 1
|𝑎|𝑒

−𝑗𝜔 𝑏
𝑎𝐹 (𝜔𝑎 ).

117



of the occluder through the term 𝑆(−1−𝛼′

1−𝛼
𝜔
𝛼′ )/𝑆(− 𝜔

𝛼′ ). For this latter term, observe

that its effect becomes diminishing for a spectrum 𝑆(𝜔) that is mostly flat over a large

range of frequencies. A very narrow occluder has (approximately) this property. (The

approximation here is because of the finite support of 𝑠(x), see Footnote 11)

Recall that the conclusions above hold analytically in the limit of a far-field scene and

a continuum of noiseless measurements. However, the conclusions are also suggestive and

insightful for practical scenarios as illustrated by the numerical study shown in Figure 4-7,

where we illustrate high SNR (35dB) reconstruction with a mispositioned occluder. The room

setup is as usual with 𝐷 = 5m, and a single (far-field) occluder of width 0.25m positioned

at [.5, 2]m. Measurements are collected with random ℓ and random c ̸= ℓ. Black solid lines

show the true reflectance 𝑓(x) whereas dashed green lines depict reconstruction with perfect

occluder knowledge. The red curves show reconstructions with horizontally and vertically

misspecified occluders. The misspecification is larger in the right subplot. It is evident from

the images that horizontal misspecification mostly results in a shifted reconstruction, whereas

vertical misspecification results in axis-scaling of the reconstructed scene. Our analytical

analysis seems to mostly be valid for the middle section of the reflectivity function whereas

edge effect appearing close to the boundaries 𝑥 = 0, 1 are not captured by the analysis.

The robustness of our imaging method with respect to occluder positioning errors is

further supported by the experimental demonstration in Section 4.9, where occluder model

inaccuracies are unavoidable, yet the reconstruction results we demonstrate are satisfactory.

4.8 TR-Measurements in Occluded Settings

Thus far we have studied imaging systems that use either TR measurements in an unoc-

cluded setting, or non-TR measurements in occluded settings. In this section we consider

imaging systems that exploit TR measurements in occluded settings, and study their poten-

tial benefits. We present initial numerical simulations and leave a full study of this topic to

future work.

To be concrete, consider the familiar setting of Figure 4-5a, but now assume the detector

supports a non-trivial temporal resolution ∆𝑡. We sweep ∆𝑡 over a range of values, and plot
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(a) A shifted occluder setup. The occluder appears in its actual position in black. We perform

reconstruction under imperfect knowledge of its position, taken to be as appears in red.
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(b) Reconstruction with a misspecified occluder position: (Left) Small, and (Right) Large vertical

and horizontal occluder shifts in a far field setup.

Figure 4-7: Occluded NLOS imaging with model inaccuracies.
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Figure 4-8: NLOS scene reconstruction performance versus temporal resolution in the pres-
ence and absence of occluders.

the resulting reconstruction NMSE in Figure 4-8 (solid curve). For comparison, we also plot

in dashed line the NMSE performance in the absence of an occluder (this corresponds exactly

to the plot in Figure 4-4a). For a large range of temporal resolutions (here, ∆𝑡 & 150ps) the

presence of occlusions leads to a substantial increase in reconstruction performance, allowing

the same level of performance to be maintained at inferior temporal resolution levels. When

very high temporal resolution is available reconstruction performance with occlusions is

slightly degraded with respect to the non occluded setting, due to the occluder blocking of

some of the reflected signal.

Note here that TR measurements can be further utilized to improve on other aspects

of the system. For instance, one might imagine using coarse TR measurements to find

the position of the occluder, which has been up to now assumed known. A study of such

possibilities might be an interesting direction for future research.

4.9 Experimental Demonstration

In this section we report experimental results demonstrating our methods and formulations.

These results validate our forward model for light propagation in NLOS imaging and further

inform future theoretical developments.
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4.9.1 Experimental Setup†

A schematic illustration of our experimental setup is shown in Figure 4-9. A pulsed 640-nm

laser source illuminates a nearly Lambertian visible wall (1st bounce). The light propagates

to the hidden wall where it is scattered back towards the illumination wall (2nd bounce).

Finally, the backscattered light is collected by a SPAD detector13 (3rd bounce). In front of

the SPAD, an interference filter centered at 640 nm is used to remove most of the background

light. In the experiment, the SPAD is operated without a lens to achieve a wide field of view

and it is configured for the left side of the visible wall to minimize the direct first bounce.

The occluder is a black circular patch without any back reflections. During the experi-

ment, we turned off all ambient room light to minimize background noise.

4.9.2 Computational Processing

We assume that the geometry of the setup is known, including the locations of raster-scanned

laser illumination, SPAD, visible wall and occluder, but the reflectance of the hidden wall

is unknown. We use the forward model in Equation (4.15) and obtain an estimate f̂ of the

true reflectance by solving the following non-smooth convex optimization problem:

f̂ = arg min
f

1

2
‖y −Af‖22 + 𝜆‖f‖TV, (4.21)

where ‖ · ‖TV is the Total-Variation (TV)-norm and 𝜆 > 0 is a regularization parameter. To

solve (4.21) we use an efficient dedicated iterative first-order solver [39], which is based on

the popular FISTA algorithm [6].

TV-norm penalization is a standard technique that has been successfully applied in other

image reconstruction tasks (e.g., image restoration [68, 6, 62]). Its use is motivated by

†The experimental setup was built and operated by Feihu Xu, who also collected the raw measurements.
13A SPAD is capable of providing time-resolved measurements. However, for the purpose of this experiment

we operate the SPAD as a regular camera, essentially integrating the response over time. To be precise,
we only use the time resolved measurements of the SPAD to gate-out the first-bounce response from the
illumination wall. Beyond that, no TR measurements are recorded. Notice that the illumination wall is in
the direct line of sight of the imaging equipment, thus its location can be well-estimated based on standard
imaging techniques. With this information, the time window that corresponds to the first-bounce response
is a-priori known. Hence, the same operation achieved here with a SPAD camera can be performed using a
time-gated CCD camera.
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[Illustration by Feihu Xu] The distances in the experimental setup are as follows: visible
wall to hidden wall: ∼106 cm; visible wall to SPAD: ∼156 cm; visible wall to occluder: 37

cm; The diameter of the circular occluder is 3.4 cm.

Figure 4-9: Experimental setup for demonstrating occluded NLOS imaging.
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the observation that the derivatives of natural images obey heavy-tailed prior distributions

[68, 62]. In Figure 4-11 we compare the nonlinear TV-based reconstruction to the linear

reconstruction in (4.7) that assumes a Gaussian prior on 𝑓(x) (see Section 4.3) with 𝜎2
𝑓 = 0.02

and 𝜎2 tuned to achieve good results. As can be seen from this figure, TV regularization

is more accurate and emphasizes edges as expected. The linear reconstruction is blurry but

satisfactory and yields a reconstruction that is easily interpretable by the human eye. One

should also note that the linear reconstruction is much more efficient in terms of computation.

Both methods require tuning of one parameter (𝜆 for TV and 𝜎2
𝑓 for GP, in addition to 𝜎2

which can be analytically determined based on the SNR).

For this experiment we operate in a high-photon regime, under which the noise is well-

modeled by an additive Gaussian vector 𝜖. This motivates the least-squares term in Equa-

tion (4.21). In low photon count regimes the measurement model becomes Poisson noise

rather than additive Gaussian noise, and the noise is signal-dependent rather than signal-

independent [126].

4.9.3 Experimental Results

Reconstruction results using the optimization method in (4.21) are shown in Figure 4-10.

The regularization parameter 𝜆 was tuned independently for each algorithm to yield a recon-

struction that is empirically closest to the ground truth. In Figure 4-10 two different scene

patterns on the hidden wall were tested. The laser light was raster scanned on a 100× 100

grid and at each point the SPAD detector was turned on for a fixed dwell time such that a

total number of ∼9 million laser pulses ware emitted and ∼3500 back-reflected 3rd bounce

photons were recorded on average. The raw measurement counts for each of the hidden

patterns are shown in Figures 4-10(c,d): each of the 100×100 entries corresponds to a single

measurement yℓ for the corresponding virtual laser position ℓ. The raw counts are processed

by the optimization algorithm (4.21) to obtain an estimate of the hidden patterns as shown

in Figures 4-10(e,f). These results validate the forward model and the performance of the

reconstruction algorithm.
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(a,b) Ground truth of the tested scene patterns on the hidden wall. The patterns are
placed in the upper-left corner of the hidden wall. (c,d) The raw measurement counts for a

100× 100 raster-scanning laser points. At each laser point, we turn on the SPAD for a
fixed dwell time such that ∼3500 photon counts are recorded on average. (e,f)

Reconstruction results from Eq. (4.21).

Figure 4-10: Experimental NLOS imaging results.
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(Left) Reconstruction with TV regularization, and (Right) reconstruction obtained via the
Gaussian prior model, both shown in absolute value.

Figure 4-11: NLOS reconstruction results in the experimental setup.

4.10 Discussion

Our goal in this chapter was to study the challenging problem of optical NLOS imaging.

State of the art techniques employed to tackle this problem involve very sensitive and costly

time-resolved optical detectors that are able to record the temporal variation of reflected

light and image the hidden scene. Our study shows that high temporal resolution is crucial

for obtaining measurements that are informative and allow scene reconstruction, driving up

system cost and complexity.

Our motivation to develop a more efficient method for collecting informative measure-

ments in the NLOS setting led us to introduced and study the occluded NLOS imaging setup.

We claimed and demonstrated that non-TR measurement of optical reflections collected in

this setup are informative about the hidden scene, suggesting an entirely new imaging modal-

ity in such environments. We studied various aspects of this newly proposed imaging system,

and in particular we developed an efficient technique to choose experimental parameters for

collecting informative empirical data, shortening the scene acquisition time and driving down

the overall system cost.
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Future Research

This work introduced a novel occluded NLOS imaging modality. The initial studies reported

here focus on a restricted setting where the geometry of a hidden flat scene and a collection

of occluders is assumed known and the imaging goal is to retrieve the reflectivity on the

hidden surface from diffuse optical reflections. While serving as a useful testing ground for

demonstrating basic principles in occluder assisted NLOS imaging, our study framework

and setup were simplified and suggest multiple directions for more in-depth future research,

which we illuminate in this section.

Extending our imaging modality to problems involving hidden scene geometry recovery in

addition to reflectivity estimation is of major interest in many practical applications. A first

step in this direction is to consider restricted settings where geometry recovery can be treated

as a parametric problem, for example in a setting similar to ours but with the room size,

or the exact occluder location unknown, with its shape otherwise assumed given. Problems

such as this can be tackled using generic maximum likelihood parameter estimation methods

and it is interesting to fully characterize the circumstances in which accurate estimation is

possible.

One simple variant of such problems is to consider a setting where the reflectivity func-

tion on the back wall is known and the goal is to retrieve the location of occluders in the

room, which may represent, e.g. people or other objects of interest. Inspecting (4.2) this

is immediately seen to lead to a quadratic problem in the visibility function, which may be

solved in some circumstances by applying lifting techniques. We leave a detailed study of

this to future work.

A more challenging extension would be to consider full non-parametric 3D scene re-

construction problems where not much is known about the hidden environment. While this

seems like a much more challenging problem it is interesting to consider in this setting hybrid

systems that employ limited resolution TR optical measurements in occluded environments,

utilizing the structure the occluder endows on the measurements to facilitate high quality

reconstruction.

We also mention in passing that our setting manifests a form of opportunistic imaging,
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where we utilize some knowledge on the environment to enable image reconstruction that

would have otherwise been impossible. Other setups may offer similar advantages, for ex-

ample utilizing coincidental bumps or edges on the visible surface itself and the occlusions

they introduce [110] to enhance imaging. Finally, it is natural to attempt extensions of

the discussed methods to non-static environments. For instance a setting with a moving

occluder following a known trajectory that facilitates collection of diverse measurements as

it traverses the scene.
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Chapter 5

Nonlinear MIMO Radar System Design

In this chapter we study Multiple-input multiple-output (MIMO) radars. Such systems are

used for interrogating distant scenes by transmitting a probing field from a Tx array of

antennas and measuring the returns at an Rx array of sensors. We focus our attention on

the Direction of Arrival (DOA) estimation problem where the distant scene consists of a

finite number of point targets and the goal is to estimate their azimuths. This setup is

illustrated in Figure 5-1.

Multiple-input multiple-output (MIMO) radar systems have been shown to offer superior

performance in direction of arrival (DOA) estimation applications compared to their phased

array counterparts. The performance of these systems has been studied under various probing

field-target interaction mechanisms. However, to the best of our knowledge, these have been

restricted to linearized models.

Motivated by various nonlinear imaging modalities that have emerged in recent years

Figure 5-1: MIMO Radar DOA estimation setup.
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we study DOA estimation in far field MIMO radar systems in conjunction with a nonlinear

probing field-target interaction mechanism. Specifically, we consider simplified toy models

of nonlinear targets exhibiting power-law reflection properties and study the role this in-

teraction plays in carrying information about the scene and how to design signal sets and

transmitter and sensor placement configurations that capture this information efficiently.

We derive theoretical results that demonstrate how power law type interaction can lead to

enhanced target identifiability with a fixed number of sensors, and suggest corresponding

array topologies and signal sets that support this enhanced level of performance.

5.1 Introduction

Conventional phased array radar systems limit the number of degrees of freedom associated

with the signal set by only allowing correlated transmission from different antenna elements

[113]. MIMO systems, which have been the focus of research over the last decade, allow

transmission of uncorrelated signals. Stoica et al. [69] explored MIMO radar with co-located

antennas. They considered configurations with 𝑁𝑡 transmitting and 𝑁𝑟 receiving antennas in

conjunction with suitable signal sets and array configurations and have shown that in several

respects performance gains may be attained compared to their conventional phased array

counterparts. Specifically in terms of the number of identifiable targets, the performance of

a MIMO system with 𝑁𝑡 transmit and 𝑁𝑟 receive elements is comparable to that of a phased

array system employing 𝑂(𝑁𝑡𝑁𝑟) elements. Other studies [28] have explored MIMO radar

systems with distant antennas in conjunction with targets exhibiting reflection fluctuations

and have shown that spatial diversity may be utilized to overcome deep fading conditions.

While various deterministic and stochastic probing field-target interaction models have

been considered in the past, to the best of our knowledge all such studies have assumed a

linearized response where the reflected field scales in proportion to the probing field.

In practice, the interaction mechanism between the transmitted probing field and a dis-

tant scene may exhibit complicated characteristics. As a motivating example, in recent years

the use of micro-bubbles as a nonlinear contrast agent in medical ultrasound applications has

become wide-spread [72]. The highly nonlinear interaction manifests itself in the reflected
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signal as harmonics of the incoming signal. Similar nonlinear phenomena have been observed

in electromagnetic reflections and have been utilized in microscopy applications [75].

In this work we consider the consequences of a hypothetical memoryless, kth order power-

law nonlinear target reflectance model on the design and performance of MIMO radar systems

used in DOA estimation applications. We show that in conjunction with a specialized probing

signal set and array design a MIMO radar system with 𝑁𝑡 transmit and 𝑁𝑟 receive elements

can attain target identification performance comparable to that of an 𝑂(𝑁𝑘
𝑡 𝑁𝑟) elements

phased array setup, offering substantial performance gains with respect to the MIMO setup

with linear reflectors.

Reflection models such as the one we consider here may be naturally occurring in some

specialized settings or deliberately introduced into reflectors, e.g. by exploiting naturally

occurring phenomena, or by introduction of active elements exhibiting desired nonlinear

characteristics.

5.2 Propagation Model

In this section we present the radiation propagation model which lies at the foundation of

MIMO radar. The signal transmitted from the Tx antennas propagates towards the targets.

Upon hitting the targets the signal reflects back towards the receiver antennas where it is

recorded and further processed. The model we describe here captures the generic linear

reflections model as well as our nonlinear power-law reflection model as we detail next.

5.2.1 Setup

Consider a far field scene distributed along the azimuthal and radial axes 𝜃 and 𝑟 respectively.

For convenience define the normalized azimuth 𝜓 ≡ 1
2

sin 𝜃, 𝜓 ∈ [−1
2
, 1
2
) and propagation time

𝜏 ≡ 𝑟
𝑐
where 𝑐 is the propagation velocity, such that we can parametrize the scene on the

coordinate system (𝜓, 𝜏). A Tx antenna array illuminates the scene while an Rx array

records the returns. The Tx and Rx arrays consist of 𝑁𝑡 and 𝑁𝑟 antennas, positioned at{︀
𝑥𝑡0, · · · , 𝑥𝑡𝑁𝑡−1

}︀
,
{︀
𝑥𝑟0, · · · , 𝑥𝑟𝑁𝑟−1

}︀
, respectively, as depicted in Fig. 5-1.
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5.2.2 From Tx to Target

The Tx transmits a narrow-band signal at frequency 𝜔 and wavelength 𝜆 = 2𝜋𝑐
𝜔
. The complex

envelope of the signal modulating the nth Tx antenna is 𝑎𝑛(𝑡) such that the resulting far

field 𝐸𝑖(𝜓, 𝜏, 𝑡) at spatial location (𝜓, 𝜏) and time 𝑡 is given by1 [113]:

𝐸𝑖(𝜓, 𝜏, 𝑡) = Re
[︁
𝐸̃𝑖(𝜓, 𝜏, 𝑡)𝑒

𝑗𝜔𝑡
]︁

(5.1)

where we have defined:

𝐸̃𝑖(𝜓, 𝜏, 𝑡) ≡
𝑁𝑡−1∑︁
𝑛′=0

𝑎𝑛′(𝑡− 𝜏) exp

[︂
𝑗

4𝜋

𝜆
𝑥𝑡𝑛′𝜓

]︂
𝑒−𝑗𝜔𝜏 (5.2)

The last equations reflect the temporal delay and phase shifts accrued by the transmitted

signal as it propagates in space away from the transmitting antennas.

5.2.3 Target Interaction

The scene is comprised of 𝑀 point targets at a common temporal delay 𝜏0 away from the

transmitters and azimuths 𝜓1, · · · , 𝜓𝑀 . In the sequel, focusing on the DOA problem, our

estimation goal is to retrieve these parameters from the return signal recorded at the receiving

antennas.

The signal emanating from the transmitting antennas propagates in space until it reaches

the targets and reflects back towards the receiving antennas. The reflection process is the

focus of our study in this work. Whereas, to the best of our knowledge, traditional studies

have strictly considered simplified linear reflections occurring as a result of the incoming

radiation impounding on the targets, here, inspired by practical application, we consider

a power-law reflection model with a nonlinear interaction mechanism. In what follows we

present the power-low reflection model, which captures both the nonlinear setting, as well

as the conventional linear setting as a special case.

We consider a deterministic, kth order power-law nonlinear reflection model such that

1We ignore constant scaling factors such as those arising from the power decay experienced by the prop-
agating radiation, as these do not affect target identifiability.
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the reflection generated at the lth target is:

𝐸𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) = 𝛽𝑙 (𝐸𝑖(𝜓𝑙, 𝜏0, 𝑡))

𝑘 (5.3)

where 𝐸𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) is the reflected signal that emanates from the lth target and propagates

back towards the receiving antennas, and 𝛽𝑙 is the coupling coefficient of the lth target.

Notice that the nonlinear reflection model (5.3) captures the conventional linear reflection

model by taking 𝑘 = 1, when the returned signal is just a scaled copy of the incoming signal

impounding on the target. Also, substituting (5.1) in (5.3), notice that the highest frequency

of the reflected signal 𝐸𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) is 𝑘𝜔, which means that a reflection resulting from a kth

order power-law interaction is strictly frequency separated from a reflection resulting from

lower, order power-law interactions, including linear reflections, rendering signal separation

at the receiver easy.

The motivation behind the model (5.3) is its simplicity and the fact that any memoryless

nonlinearity respecting the generic functional form 𝐸𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) = 𝑓 (𝐸𝑖(𝜓𝑙, 𝜏0, 𝑡)) where 𝑓(·)

is a scalar function centered around 0 may be expanded using a Taylor series: 𝐸𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) =

∞∑︀
𝑘=1

𝑓𝑘 (𝐸𝑖(𝜓𝑙, 𝜏0, 𝑡))
𝑘, which suggests that studying the power-low reflection model may be

useful in deriving insights for the generic memoryless nonlinearity case.

5.2.4 From Target to Rx

Next, we develop expressions for the signal recorded at the Rx array. Using (5.1) and (5.3)

we have for the complex envelope of the reflected signal component centred around 𝑘𝜔:

𝐸̃𝑙
𝑟(𝜓𝑙, 𝜏0, 𝑡) = 𝛽𝑙

(︃
𝑁𝑡−1∑︁
𝑛′=0

𝑎𝑛′(𝑡− 𝜏0) exp

[︂
𝑗

4𝜋

𝜆
𝑥𝑡𝑛′𝜓𝑙

]︂)︃𝑘

𝑒−𝑗𝜔𝑘𝜏0

= 𝛽𝑙𝑒
−𝑗𝜔𝑘𝜏0

𝑁 ′
𝑡−1∑︁

𝑛′′=0

𝑎̂𝑛′′(𝑡− 𝜏0) exp

[︂
𝑗

4𝜋

𝜆
𝑥̂𝑡𝑛′′𝜓𝑙

]︂
(5.4)
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Where the second equation is retrieved from the first by application of the multinomial ex-

pansion2, such that the sum over 𝑛′′ runs over 𝑁 ′
𝑡 =

(︀(︀
𝑁𝑡

𝑘

)︀)︀
≡
(︀
𝑁𝑡+𝑘−1

𝑘

)︀
unique (multinomial)

solutions 𝛾(𝑛) = [𝛾
(𝑛)
0 , 𝛾

(𝑛)
1 , · · · , 𝛾(𝑛)𝑁𝑡−1] of the equation

𝑁𝑡−1∑︀
𝑖=0

𝛾𝑖 = 𝑘, and the corresponding

virtual Tx locations 𝑥̂𝑡𝑛 and transmission functions 𝑎̂𝑛(𝑡) are given according to:

𝑎̂𝑛(𝑡) =
√
𝑐𝑛

𝑁𝑡−1∏︁
𝑖=0

𝑎
𝛾
(𝑛)
𝑖
𝑖 (𝑡)

𝑥̂𝑡𝑛 =
𝑁𝑡−1∑︁
𝑖=0

𝛾
(𝑛)
𝑖 𝑥𝑡𝑖

√
𝑐𝑛 ≡

(︂
𝑘

𝛾
(𝑛)
0 , 𝛾

(𝑛)
1 , . . . , 𝛾

(𝑛)
𝑁𝑡−1

)︂
(5.5)

Importantly, notice that the nonlinear reflected signal as given in (5.4) for any integral

𝑘 is analogous to the reflected signal in a conventional setup with linear reflections 𝑘 = 1,

virtual element positions 𝑥̂𝑡𝑛 and signal set 𝑎̂𝑛(𝑡).

The reflected signal propagates towards the Rx array with wavelength 𝜆𝑘 = 𝜆
𝑘
corre-

sponding to the higher frequency. The received signal at the mth antenna element after

down-converting to baseband is given according to:

𝑠𝑚(𝑡) =
𝑀∑︁
𝑙=1

𝑁 ′
𝑡−1∑︁

𝑛′′=0

𝛽𝑙𝑎̂𝑛′′(𝑡− 2𝜏0) exp

[︂
𝑗

4𝜋

𝜆

(︀
𝑥̂𝑡𝑛′′ + 𝑥̂𝑟𝑚

)︀
𝜓𝑙

]︂
𝑒−𝑗2𝜔𝑘𝜏0 (5.6)

where 𝑥̂𝑟𝑚 ≡ 𝑘𝑥𝑟𝑚 are the virtual Rx locations.

5.3 Direction of Arrival Estimation

In this section we consider the DOA estimation problem in the presence of nonlinear reflectors

and analyze the fundamental limits of target identifiability. Our final goal is to process the

received signals {𝑠𝑚(𝑡)} to retrieve the target parameters (𝛽,𝜓) ≡ (𝛽1, . . . , 𝛽𝑀 , 𝜓1, . . . , 𝜓𝑀),

and derive theoretical results for how many such targets 𝑀 are uniquely identifiable from

2

(︂
𝑁𝑡−1∑︀
𝑖=0

𝑥𝑖

)︂𝑘

=
∑︀

𝛾0+𝛾1+···+𝛾𝑁𝑡−1=𝑘

(︀
𝑘

𝛾0,𝛾1,...,𝛾𝑁𝑡−1

)︀𝑁𝑡−1∏︀
𝑡=0

𝑥𝛾𝑡

𝑡 , where the sum is over all possible solutions of

𝛾0 + 𝛾1 + · · ·+ 𝛾𝑁𝑡−1 = 𝑘
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the set of received signals, with the transmission set {𝑎𝑛(𝑡)} under our control.

We adapt the analysis of [69] for discrete-time MIMO radar configurations with linear

reflectors to a continuous time formulation in conjunction with nonlinear reflectors and show

that under ideal conditions it is possible to identify 𝑂(𝑁𝑘
𝑡 𝑁𝑟) targets when utilizing the kth

order nonlinearity, an order of magnitude improvement over results derived for the linear

reflection case 𝑘 = 1.

Define modified received signals as 𝑠𝑚(𝑡) ≡ 𝑠𝑚(𝑡+ 2𝜏0)𝑒
𝑗2𝜔𝑘𝜏0 . We have, using (5.6):

𝑠𝑚(𝑡) =

𝑁 ′
𝑡−1∑︁

𝑛′′=0

𝑐𝑚,𝑛′′(𝛽,𝜓)𝑎̂𝑛′′(𝑡) (5.7)

where 𝑐𝑚,𝑛′′(𝛽,𝜓) ≡
𝑀∑︀
𝑙=1

𝛽𝑙 exp
[︀
𝑗 4𝜋
𝜆

(𝑥̂𝑡𝑛′′ + 𝑥̂𝑟𝑚)𝜓𝑙
]︀
.

For the sequel define 𝐶(𝛽,𝜓) to be a vector stacking the elements of {𝑐𝑚,𝑛′′(𝛽,𝜓)} in

some fixed order.

Definition 5.1. 𝑀 targets are uniquely identifiable from the receive signals {𝑠𝑚(𝑡)} if there

exists a transmission set {𝑎𝑛(𝑡)} such that for every combination of 𝑀 targets or less we

have that ∀𝑚 : 𝑠1𝑚(𝑡) = 𝑠2𝑚(𝑡) implies (𝛽1,𝜓1) = (𝛽2,𝜓2).

The problem of parameter identifiability is about determining the maximal number𝑀 of

uniquely identifiable targets from {𝑠𝑚(𝑡)}. Our main result for this section is the following

one:

Theorem 5.1. There exists a signaling set {𝑎𝑛(𝑡)} and a selection of 𝑁𝑡 Tx and 𝑁𝑟 Rx an-

tenna locations such that any 𝑀 < 1
2

(︁⌊︀
𝑁𝑡+𝑘−1

𝑘

⌋︀𝑘
𝑁𝑟 + 1

)︁
= 𝑂(𝑁𝑘

𝑡 𝑁𝑟) targets are identifiable

from {𝑠𝑚(𝑡)}.

We will prove a series of useful lemmas and end this section with the proof of Theorem

5.1. Notice, comparing to [69] that the maximal possible number of uniquely identifiable

targets for a linear 𝑘 = 1 MIMO radar system is given according to 2
3
𝑁𝑡𝑁𝑟 = 𝑂(𝑁𝑡𝑁𝑟)

such that the results of Theorem 5.1 suggest orders of magnitude improvement in target

identifiability for non-trivial nonlinear settings with 𝑘 strictly larger than 1.

To prove Theorem 5.1 we start with a definition:
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Definition 5.2. We say that 𝑀 targets are uniquely identifiable from 𝐶(𝛽,𝜓) if for every

combination of 𝑀 targets or less we have that 𝐶(𝛽1,𝜓1) = 𝐶(𝛽2,𝜓2) implies (𝛽1,𝜓1) =

(𝛽2,𝜓2).

The next lemma regarding the signal set design is useful for proving subsequent claims:

Lemma 5.1. There exists a set of 𝑁𝑡 Tx functions {𝑎𝑛(𝑡)} such that the corresponding ef-

fective signal set {𝑎̂𝑛(𝑡)} generated according to (5.5) is orthogonal:
∫︀
𝑡
𝑎̂𝑛′(𝑡)𝑎̂*𝑛(𝑡)𝑑𝑡 = 𝛿𝑛𝑛′𝑔𝑛,

with 𝑔𝑛 non-zero constants.

Proof. See Section 5.5.

The next lemma is a restatement of results in [70] with appropriate adaptations to con-

tinuous time:

Lemma 5.2. A necessary condition for parameter identifiability from the received signals

{𝑠𝑚(𝑡)} is parameter identifiability from 𝐶(𝛽,𝜓). It is also sufficient if the signaling set

satisfies lemma 5.1.

Proof. Given {𝑎𝑛(𝑡)} the {𝑠𝑚(𝑡)} are determined from the elements of 𝐶(𝛽,𝜓) as per (5.7).

We trivially have that if 𝑀 parameters are not identifiable from 𝐶(𝛽,𝜓) they are also not

identifiable from {𝑠𝑚(𝑡)}.

Conversely, assume that 𝑀 targets are uniquely identifiable from 𝐶(𝛽,𝜓) and that the

signaling set satisfies Lemma 5.1. We show that the target parameters are uniquely iden-

tifiable from {𝑠𝑚(𝑡)}. Indeed, using (5.7) we have that the following holds at the receiver:∫︀
𝑡
𝑠𝑚(𝑡)𝑎̂*𝑛′′(𝑡)𝑑𝑡 = 𝑔𝑛′′𝑐𝑚,𝑛′′(𝛽,𝜓). Repeating this for every𝑚 and 𝑛′′ we can extract 𝐶(𝛽,𝜓),

and since it allows unique identification of the parameters so does {𝑠𝑚(𝑡)}.

Using Lemma 5.2 we have that the number of identifiable targets from {𝑠𝑚(𝑡)} is equal

to the number of identifiable targets from 𝐶(𝛽,𝜓). The next lemma is useful for the proof

of the main theorem.

Lemma 5.3. There exists a configuration of 𝑁𝑡 Tx and 𝑁𝑟 Rx antenna locations {𝑥𝑡𝑛} , {𝑥𝑟𝑛}

such that the set {𝑥̂𝑡𝑛′′ + 𝑥̂𝑟𝑚} contains 𝑁𝑠 =
⌊︀
𝑁𝑡+𝑘−1

𝑘

⌋︀𝑘
𝑁𝑟 = 𝑂(𝑁𝑘

𝑡 𝑁𝑟) contiguous points on

a uniform 𝜆
2
-spaced grid (starting at 0 without loss of generality).
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Proof. See Section 5.4.

Finally, we can prove Theorem 5.1:

Proof. For the sensor locations choose a setup that satisfies Lemma 5.3 with𝑁𝑠 =
⌊︀
𝑁𝑡+𝑘−1

𝑘

⌋︀𝑘
𝑁𝑟

the number of contiguous samples {𝑥̂𝑡𝑛′′ + 𝑥̂𝑟𝑚}. Define the vector 𝐶(𝛽,𝜓) as a sub-vector of

𝐶(𝛽,𝜓) according to:

𝐶(𝛽,𝜓) ≡

[︃
𝑀∑︁
𝑙=1

𝛽𝑙𝑒
𝑗2𝜋0𝜓𝑙 , · · · ,

𝑀∑︁
𝑙=1

𝛽𝑙𝑒
𝑗2𝜋(𝑁𝑠−1)𝜓𝑙

]︃𝑇
(5.8)

the number of identifiable targets from 𝐶(𝛽,𝜓) is not greater than the number of identifiable

targets from 𝐶(𝛽,𝜓) as the former contains a subset of the elements of the latter. Given 𝐿

targets define:

𝐵(𝜓) ≡ [𝐵′(𝜓1), · · · , 𝐵′(𝜓𝐿)]

𝐵′(𝜓) ≡ [exp(𝑗2𝜋0𝜓), · · · , exp(𝑗2𝜋(𝑁𝑠 − 1)𝜓)]𝑇

𝛽 ≡ [𝛽1, · · · , 𝛽𝐿]𝑇 (5.9)

and notice that with these definitions we have 𝐶(𝛽,𝜓) = 𝐵(𝜓)𝛽.

As any 𝑁𝑠 distinct vectors {𝐵′(𝜓1), · · · , 𝐵′(𝜓𝑁𝑠)} are linearly independent (stacked side by

side they form a Vandermonde matrix), we use the result from [82], [121] (Theorem 1) to

claim that a sufficient condition for parameter identifiability from 𝐶(𝛽,𝜓) is 𝐿 < 𝑁𝑠+1
2

,

such that plugging the expression for 𝑁𝑠 we have that we can uniquely identify any 𝑀 <

1
2

(︁⌊︀
𝑁𝑡+𝑘−1

𝑘

⌋︀𝑘
𝑁𝑟 + 1

)︁
= 𝑂(𝑁𝑘

𝑡 𝑁𝑟) point targets, which is our key result.

5.4 Antenna Array Design

In this section we design antenna arrays in conjunction with Lemma 5.3. The goal is to choose

positions {𝑥𝑡𝑛, 𝑥𝑟𝑛} such that the resulting virtual positions {𝑥̂𝑡𝑛, 𝑥̂𝑟𝑛} satisfy the conditions of

the lemma, with {𝑥̂𝑡𝑛 + 𝑥̂𝑟𝑚} covering a contiguous uniform 𝜆
2
-spaced grid of

⌊︀
𝑁𝑡+𝑘−1

𝑘

⌋︀𝑘
𝑁𝑟 =

𝑂(𝑁𝑘
𝑡 𝑁𝑟) elements.
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The virtual Tx antenna locations are determined from the physical antenna locations

according to (5.5). Our construction will result in virtual arrays such that the virtual Tx

array will span a uniform grid of spacing 𝑁𝑟
𝜆
2
while the virtual Rx array will span a grid

with spacing 𝜆
2
.

For the Rx array choose {𝑥𝑟𝑛} on a uniform grid with spacing 𝜆
2𝑘
:

𝑥𝑟𝑛 = 𝑛
𝜆

2𝑘
𝑛 = 0, · · · , 𝑁𝑟 − 1 (5.10)

which, coupled with the definition 𝑥̂𝑟𝑚 ≡ 𝑘𝑥𝑟𝑚 results in the desired virtual Rx array.

As for the Tx array, our design problem hints at the one studied in [87] where the authors

considered the diversity of the co-array formed according to position differences between pairs

of physical elements. They showed that a nested geometry maximizes the number of degrees

of freedom available for DOA estimation with a given number of elements.

For nonlinear imaging, virtual locations 𝑥̂𝑡𝑛 are formed as 𝑘-sums of the set {𝑥𝑡𝑛} according

to (5.5). We use nested arrays similar to those proposed in [87] and obtain Tx diversity of

𝑂(𝑁𝑘
𝑡 ) virtual elements covering a uniform 𝑁𝑟

𝜆
2
-spaced grid as required.

With kth order nonlinearity we design a nested Tx array partitioned into 𝑘 hierarchies.

The ith hierarchy is a uniformly spaced array with 𝑁 𝑖
𝑡 elements and spacing 𝑑𝑖𝑡, such that

all hierarchies share a common element at location 0. An example for 𝑘 = 3 is depicted in

Figure 5-2 with the three hierarchies in color and the resulting array in black.

The first 𝑖 = 1 Tx hierarchy is designed with spacing 𝑑1𝑡 = 𝑁𝑟
𝜆
2
and yet unspecified

number of elements 𝑁1
𝑡 . Subsequent hierarchies are designed according to the following

iterative rule: For the (i+1)th Tx hierarchy choose spacing 𝑑𝑖+1
𝑡 = 𝑁 𝑖

𝑡𝑑
𝑖
𝑡 and again, a yet

unspecified number of elements 𝑁 𝑖
𝑡 . For simplicity, taking into account the 𝑘 multiplicity of

the common 0 element, populate all hierarchies with an equal number of 𝑁 𝑖
𝑡 =

⌊︁
𝑁𝑡+(𝑘−1)

𝑘

⌋︁
elements discarding the remaining antennas.

With this design, we show that the virtual Tx array covers an
⌊︁
𝑁𝑡+(𝑘−1)

𝑘

⌋︁𝑘
elements uni-

form contiguous grid with spacing 𝑁𝑟
𝜆
2
. Indeed, the virtual Tx array contains every 𝑘-sum of

element positions. Specifically, it contains any such sum with exactly one element from each

of the 𝑘 hierarchies, and these result in unique virtual elements due to the geometric spacing
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A Tx array (black) and its three constituent hierarchies with three elements each. The first
element is shared between hierarchies such that the overall number of elements is 𝑁𝑡 = 7.

Figure 5-2: Transmitter array design for nonlinear MIMO radar.

of the sub-arrays. The overall number of such combinations equals (𝑁 𝑖
𝑡 )
𝑘 =

⌊︁
𝑁𝑡+(𝑘−1)

𝑘

⌋︁𝑘
.

Combining with the 𝑁𝑟 Rx elements we end up with {𝑥̂𝑡𝑛 + 𝑥̂𝑟𝑚} covering a contiguous

uniform 𝜆
2
-spaced grid of

⌊︁
𝑁𝑡+(𝑘−1)

𝑘

⌋︁𝑘
𝑁𝑟 elements.

5.5 Signal Set Synthesis

In this section we provide a proof for Lemma 5.1. Namely, we design a signal set {𝑎𝑛(𝑡)} such

as to satisfy the correlation property
∫︀
𝑡
𝑎̂𝑛′(𝑡)𝑎̂*𝑛(𝑡)𝑑𝑡 = 𝛿𝑛𝑛′𝑔𝑛. In what follows we present

a construction technique that results in constant modulus signals, which is desirable for

practical applications.

For kth order nonlinearity and 𝑁𝑡 transmitters the Tx signals {𝑎𝑛(𝑡)} , 𝑛 = 0, · · · , 𝑁𝑡− 1

are defined to be windowed pure discrete tones amplitude modulating a rectangular shaping

function:

𝑎𝑛(𝑡) =

Ω𝑁𝑡−1∑︁
𝑚=0

exp(𝑗2𝜋
Ω𝑛𝑚

Ω𝑁𝑡

)ℎ(𝑡−𝑚𝑇𝑐) (5.11)

where ℎ(𝑡) = 10≤𝑡≤𝑇𝑐(𝑡) is a rectangular shaping function and 𝑇𝑐 the chip length. The nth

discrete tone frequency Ω𝑛 is defined recursively according to:⎧⎨⎩ Ω0 = 1

Ω𝑛 = 𝑘Ω𝑛−1 + 1, 𝑛 ≥ 1
(5.12)

The discrete tones are windowed to a finite time record of length Ω𝑁𝑡 . This is schematically
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Signal set frequency occupation for 𝑘 = 3 nonlinearity and 𝑁𝑡 = 3 transmitters: Ω0 = 1,
Ω1 = 4, Ω2 = 13.

Figure 5-3: Signal set design for nonlinear MIMO radar.

depicted in Figure 5-3 for 𝑘 = 3 and 𝑁𝑡 = 3.

With the definition above and using (5.5), the virtual signal set becomes:

𝑎̂𝑛′(𝑡) =
√
𝑐𝑛′

Ω𝑁𝑡−1∑︁
𝑚=0

exp(𝑗2𝜋
𝑚

Ω𝑁𝑡

𝑁𝑡−1∑︁
𝑗=0

𝛾
(𝑛′)
𝑗 Ω𝑗)ℎ(𝑡−𝑚𝑇𝑐) (5.13)

We now show that the signal set as defined satisfies Lemma 5.1. The next lemma is useful

for proving the orthogonality relations:

Lemma 5.4. for every {𝛾𝑖 ≥ 0}, such that
∑︀𝑁𝑡−1

𝑖=0 𝛾𝑖 = 𝑘:

1.
∑︀𝑅−1

𝑖=0 𝛾𝑖Ω𝑖 < Ω𝑅 for every 𝑅 ≤ 𝑁𝑡

2. {𝛾𝑖} are uniquely determined from 𝑢 =
∑︀𝑁𝑡−1

𝑖=0 𝛾𝑖Ω𝑛

Proof. The first claim follows immediately from the construction. To prove the second claim,

use the first claim with 𝑅 = 𝑁𝑡−1 to show 𝛾𝑁𝑡−1 =
⌊︁

𝑢
Ω𝑁𝑡−1

⌋︁
. Then, apply the same procedure

on 𝑢− 𝛾𝑁𝑡−1Ω𝑁𝑡−1 get 𝛾𝑁𝑡−2 and continue similarly for all following coefficients.

Finally, using
∫︀
𝑡
ℎ(𝑡−𝑚𝑇𝑐)ℎ*(𝑡−𝑚𝑇𝑐) = 𝑇𝑐 we have:

∫︁
𝑡

𝑎̂𝑛′(𝑡)𝑎̂*𝑛(𝑡)𝑑𝑡 = 𝑇𝑐
√
𝑐𝑛′𝑐𝑛

Ω𝑁𝑡−1∑︁
𝑚=0

exp(𝑗2𝜋
𝑚

Ω𝑘
𝑁𝑡

[︃
𝑁𝑡−1∑︁
𝑗=0

𝛾
(𝑛′)
𝑗 Ω𝑘

𝑗 −
𝑁𝑡−1∑︁
𝑗=0

𝛾
(𝑛)
𝑗 Ω𝑘

𝑗

]︃
) = 𝛿𝑛𝑛′𝑔𝑛 (5.14)

with 𝑔𝑛 = 𝑇𝑐𝑐𝑛Ω𝑘
𝑁𝑡
, where in the last equality we have used Lemma 5.4 to claim that the

term in brackets is zero if and only if 𝑛 = 𝑛′. Thus, our signal set adheres to Lemma 5.1 as

required.
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5.6 Numerical Experiments

We complement our analysis with the results of a numerical experiment. The setup is

comprised of 13 far-field reflecting targets with angles as depicted in red in Figure 5-5 and in

Figure 5-4. The targets exhibit nonlinear reflectance with 𝑘 = 3 and unit coupling coefficients

𝛽 = 1. We design a Tx array with 𝑁𝑡 = 7 elements according to the scheme of Section 5.4

and the example given there as the union of three constituent equi-populated sub-arrays. In

units of 𝜆
2
the constituent sub-arrays are positioned at {0, 1, 2} , {0, 3, 6} , {0, 9, 18} such that

the Tx locations are {0, 1, 2, 3, 6, 9, 18} as in Figure 5-2. The receiver array is degenerate

with a single element at 𝑥𝑟0 = 0. For the signaling set we implemented the design scheme

of Section 5.5 with tones Ω ∈ {1, 4, 13, 40, 121, 364, 1093} and a sequence length equal to

Ω7 = 3280 chips. To probe the stability of the estimation problem we have included the

effect of a complex AWGN impairing the received signal. For the simulation described here

we have assumed SNR = 10dB. With the setup as defined above the virtual array strictly

covers the contiguous section {0, · · · , 26} which was used in the estimation procedure.

For DOA estimation we implemented a single-shot MUSIC algorithm [71]. In Figure

5-5 we plot the score function vs. 𝜓 where it is evident that the algorithm gives excellent

estimates for the location of all 13 targets, in accord with Theorem 5.1 which guarantees

identifiability of up to 13 targets under these conditions. Also notice that with seven trans-

mitting elements and one receiving element conventional MIMO radar techniques cannot

support DOA estimation for more than 6 targets under any circumstances, such that the

above experiment exemplifies the additional degrees of freedom supported by the nonlinear

interaction between the probing field and the reflecting targets.

5.7 Discussion

Most published studies analyzing imaging or DOA estimation problems in radar like settings

consider a simplified linear probing field-target interaction model. We have identified a

seemingly important theoretical gap in that while many real world scenes exhibit far more

complicated non-linear interaction mechanisms the theory for modeling these interactions
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Figure 5-4: Numerical experiment setup for nonlinear MIMO radar.

Single-shot MUSIC score for 13 𝑘 = 3 nonlinear reflecting targets and a setup as described
in the text.

Figure 5-5: DOA estimation via MUSIC algorithm for nonlinear MIMO radar.
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and analyzing its implications is lacking. We are thus interested in understanding how

non-conventional, i.e. nonlinear, interaction mechanisms come into play in determining

fundamental bounds concerning the performance of such systems.

Specifically, we wish to understand whether or not unconventional interaction models can

help improve the trade-off curve between imaging or estimation quality and available system

resources as quantified by various parameters such as the number of antenna elements.

We have introduced the notion of target probing through nonlinearities as a means to

enhance the number of identifiable targets in applications utilizing antenna arrays in MIMO

configurations. We have shown that a virtual Tx array emerges in conjunction with the

nonlinearities such that the effective number of degrees of freedom available for DOA esti-

mation is asymptotically orders of magnitude larger than available in conjunction with linear

reflectors.

Our result reveals an inherent asymmetry between the Tx and Rx arrays under such

nonlinearities as is evident from our expression for the number of identifiable targets which

scales as 𝑂(𝑁𝑘
𝑡 𝑁𝑟). An effective way to reap the most benefit from the proposed scheme

would be to introduce a single element for the Rx while transmitting with multiple antennas

at the Tx, which would lead to the biggest impact under a constraint on the total number

of antennas.

With respect to DOA estimation performance in noisy environments our nonlinear scheme

inherits performance bounds from conventional results pertaining to DOA estimation with

linear targets with corresponding virtual arrays and signal sets replacing physical ones.

A topic we have only briefly alluded to is the applicability of the nonlinear reflectors

model to practical applications. Sophisticated probing-field-target interaction models have

yet to be fully exploited by conventional radar systems. Further research is required to

evaluate if such models can be implemented in practice.

More generally, in future research we will be interested in considering a wide class of

general nonlinear interaction models, potentially additionally introducing memory effects

and analyzing the corresponding performance. A general approach for that matter might be

to investigate information-theoretic aspects of the problem, that is to study how the probing

field-scene interaction can be viewed as a channel and considering how information evolves
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as it traverses the channel, specifically asking what channels enable extraction of the most

amount of information at the receiver.

On the more technical side of things we are interested in developing good signal sets for

the transmitter side in such applications. For our power-law nonlinear MIMO radar it is

important to develop such sets with good temporal auto-correlation properties facilitating

estimation of both distance as well as azimuthal features of the scene.

Finally, we suggest connecting the submodular optimization techniques for array design

developed in the previous chapters to efficiently design effective array configurations in non

traditional imaging and estimation settings.
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Chapter 6

Concluding Remarks

The proliferation of cheap computational resources and communication systems in recent

years and decades has led to an explosion in the variety and quantity of readily available

data. In this era of big data many applications consider data to be an unlimited resource

and focus on methods and techniques to utilize large quantities of it to achieve desirable

outcomes, such as enabling high quality inference or facilitating optimal decision making.

In contrast, in many applications, especially those related to physical environments where

collecting additional data points involves deploying specialized sensing equipment or running

sensitive experiments, taking measurements or collecting data is very much still a complicated

and costly endeavour which takes time and requires careful planning.

The focus of this thesis is on efficient data collection strategies for learning in physical

environments. We consider various systems and environments where data collection is chal-

lenging, and suggest models that capture the essence of the data collection mechanism in

these setups. We then analyze and try to understand how informative data and measure-

ments can be collected efficiently, enabling a reduction in the amount of resources required

to achieve a prescribed level of system performance.

As the various systems we consider embody very different physical phenomena, from

laser reflections recorded on a detector to measurements of the position of a satellite orbiting

a planet, specialized models need to be tailored to capture important features that define

the performance envelope relevant in each scenario. At the same time, the motivation to

reduce the amount of resources needed to achieve some specified performance level is shared
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between these system instances such that in many cases we can apply similar mathematical

principles to tackle these challenging problems.

We briefly survey the various systems we studied and analyzed in this thesis.

In Chapter 2 we considered a large class of dynamical systems. We were interested in

situations where the system model was misspecified and our goal was to devise a strategy

to conduct experiments in order to collect informative data points that can be used to fine

tune the system model, increasing its accuracy and enabling high fidelity predictions. The

algorithmic approach we developed enables a reduction in the number of experiments needed

to achieve a specified level of system model accuracy.

In Chapter 3 our focus was in far field imaging in one or multiple wavelengths. Collecting

spatial measurements in this setting requires deploying antenna elements, whose complexity,

weight and size are main determinants of system cost. In this setting, we developed algo-

rithms to design antenna array configurations under various constraints on the position and

number of antenna elements, as well as novel designs that allow robust imaging in multiple

wavelengths. Our designs enable reductions in the number of deployed antenna elements

while adhering to specified constraints.

In Chapter 4 we put our focus on NLOS imaging where existing systems rely on costly

detectors that enable hidden scene reconstruction by recording high resolution temporal

optical measurements. In lieu of these sensitive time resolved measurements, our goal was

to identify situations where it is possible to collect informative measurements by exploiting

structure in non-time-resolved measurements. We have identified the role of occluders in

NLOS imaging as endowing structure on the measurements, enabling high fidelity hidden

scene recovery with fundamentally lower quality measurements, and developed an algorithmic

approach to determine how to perform efficient scene interrogation. Our methods and designs

are an instance of a novel NLOS imaging modality that may be of importance in future

applications.

In Chapter 5 we considered the problem of DOA estimation in MIMO radar. While cur-

rent systems assume a linear reflectance model, several practical applications suggest that

this may not be an accurate representation of all reflectors. We suggested a theoretical non-

linear reflection model and studied its implications on the number of point targets that could
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be identified by a MIMO radar system. We showed that our novel signal set and array de-

sign, tailored for such environments, enable an order of magnitude increase in the number of

identifiable targets compared to systems assuming a linear reflectance model suggesting that,

perhaps counter intuitively, complicated nonlinear interaction mechanisms could increase the

informativeness of measurements and correspondingly, system performance.

6.1 Future Research

While the ideas we explore in this thesis illuminate certain facets of efficient data collection

strategies in physical environments, the broader topic is very general and offers many more

questions that warrant further research and study. We list here a few topics that seem

particularly interesting and promising:

Online Learning Throughout this work our data collection strategies were designed of-

fline, i.e. the decision on which data to collect happened before any actual data from the

system became available. In specific circumstances, e.g. when the Gaussian representation

is exact, this off-line strategy may in fact be shown to be optimal. However, for non-ideal

models there is value in adapting the data collection process in accordance with previously

collected measurements, especially in settings where data collection naturally occurs sequen-

tially in time, such as when experimenting with dynamical systems. Studying adaptive online

strategies for data collection is a very interesting research topic that can offer substantial

benefits in terms of acquisition time and cost.

Data Collection for Decision Making Most of the learning we discussed in this thesis

was designed with an ultimate goal of inferring a model or a representation (e.g. an image)

for a system under study. The systems we considered were passive in the sense that the

state of the system was not of importance to us. It is interesting to consider the problem

of efficiently learning systems that are active in the sense that they respond to our actions

or queries with outcomes that may be of differing value to us. For example, imagine a

physical system governed by some unknown rules where our goal is to induce some sort of

deliberate desirable change, such as to determine the value of some observable parameter.
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The problem of learning in this setup is referred to as reinforcement learning and it has

gained some renewed attention in recent years in the context of artificial intelligence. It

would be very interesting to study the problem of efficiently interacting with these systems

to learn their interaction model and achieve desirable results quickly.

NLOS Imaging Systems The NLOS imaging modality we have suggested and studied

in this work demonstrated that occluders can increase the informativeness of optical mea-

surements by endowing them with a structure that can be exploited for high fidelity hidden

scene reconstruction. It would be interesting to extend this idea to other forms of structure

that may be present in optical measurements. For example, in settings where we have prior

knowledge about some features of the hidden space, or what occupies it, we can hope to

utilize it to extract more information from the measurements and improve the performance

of the imaging system.

Nonlinear Radar Our investigation of nonlinear MIMO radars represents an initial effort

in the sense that we explored a very basic nonlinear reflectance model. Our results suggest

that such nonlinear interactions can offer advantages for DOA estimation performance in

such environments. A broader question that naturally arises is then what are the limits of

such advantages that can be offered by nonlinear interaction models. Would we be able to

extract much more spatial information in environments with rich interactions, and if so, how

could we efficiently introduce such phenomena to existing environments in order to increase

the information that can be inferred by radar systems with fixed resources.

Array Design The array design paradigms we introduced and analyzed focused on de-

signing efficient sensor configurations for scene estimation in multiple wavelengths under

structural array constraints. Namely, when the sensors are constrained to be placed in spe-

cific locations, or in specific densities over prescribed areas. While these represented useful

scenarios, there are additional resources whose efficient utilization may be of interest when

designing such arrays. In particular we mention here computational resources. In the limit

when the number of antennas is large and computations are to be performed in real time

using simple computational units the amount of required computational effort or data com-
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munication between antennas for scene reconstruction may be a limiting factor in designing

the array. As such, it would be interesting to explore array design paradigms where the

available computational resources or communication throughput between sensing elements

are constrained and the goal is to find designs that allow computationally efficient high

quality inference.

Misspecified Dynamical Systems Our study of experimental design for learning mis-

specified dynamical systems demonstrated the merits of formulating the problem of efficient

data collection in this context. The formulations and results we discussed form an exposition

to this topic, which can be further explored taking various approaches. One such direction

is extending the basic model describing the misspecified setup. In particular, the additive

misspecified driving term with known prior statistics model we have assumed was limiting.

In some applications the misspecified component of the system model may be better rep-

resented using a different functional form, e.g. multiplicative or other, and it is interesting

to classify what model fits different systems and what are the tradeoffs of using one model

over another in face of uncertainty. Another interesting question that arises in this con-

text is understanding the information value of having an accurate prior for the misspecified

system term, that is, quantifying ,or at least bounding, the gain in designing near-optimal

experiments according to our criteria and its dependence on the certainty we have about the

prior. It will also be interesting to explore the problem of online learning the statistics of the

misspecified term with the progression of experiments. Another interesting related topic is

studying misspecified driven dynamical systems where the driving term is under our control

and allows an additional degree of freedom in manipulating the system.
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Appendix A

Submodular Maximization

A set function 𝐺 : 2𝒱 → R defined over the power set of a given set 𝒱 assigns a real number

to each subset of 𝒱 (see illustration in Figure A-1). Following [83] we define two useful

properties of set functions:

Definition A.1. Let 𝐺 : 2𝒱 → R be a set function.

(a) G is submodular if it satisfies the property of decreasing marginals: ∀𝒮, 𝒯 ⊆ 𝒱 such

that 𝒮 ⊆ 𝑇 and 𝑥 ∈ 𝒱∖𝑇 it holds that 𝐺(𝒮 ∪ {𝑥})−𝐺(𝒮) ≥ 𝐺(𝒯 ∪ {𝑥})−𝐺(𝒯 ).

(b) 𝐺 is monotonic (increasing) if ∀𝒮, 𝒯 ⊆ 𝒱 s.t. 𝒮 ⊆ 𝒯 we have 𝐺(𝒮) ≤ 𝐺(𝒯 ).

Submodular and monotonic functions are prevalent as these two properties naturally hold

in many practical applications.

Example A.1. Let 𝒱 = {𝐴,𝐵,𝐶,𝐷,𝐸} such that each 𝑥 ∈ 𝒱 corresponds to some disc in

the 2D space illustrated in Figure A-1. Define the function ∀𝒮 ⊆ 𝒱 : 𝐺(𝑆) = |
⋃︀
𝑥∈𝒮

area(𝑥)|,

(Left) A set function 𝐺(·) operating on the power set of 𝒱 = {𝐴,𝐵,𝐶,𝐷,𝐸}, where only
some of the assignments are shown. (Right) The set cover function.

Figure A-1: Submodular function maximization.
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i.e. for each 𝒮, 𝐺(𝒮) measures the area covered by the discs in 𝒮. The function 𝐺(·) is an

example of a set cover function. A set cover function is always monotonic and submodular.

In this work we are often interested in solving the following constrained maximization

problem:

𝑆⋆ = argmax
𝒮:|𝒮|≤𝐾,𝒮⊆𝒜

𝐺(𝒮) (A.1)

where the function 𝐺(·) is submodular and monotonic. The following lemma implies that

(A.1) is an NP-hard optimization problem such that no computationally tractable solver can

retrieve 𝑆⋆. In lieu of an optimal solver, it is reasonable to consider the greedy solver, as

delineated in Algorithm 3.

Algorithm 3 Greedy Submodular Maximization

1: function S=GreedyMax(𝐺(·),𝒜, 𝐾)
2: 𝒮 ← ∅
3: for 𝑖 = 1 to 𝐾 do

4: 𝑥⋆ ← argmax𝑥∈𝒜∖𝒮 𝐺(𝒮 ∪ {𝑥})}
5: 𝒮 ← 𝒮 ∪ {𝑥⋆}
6: end for

7: Return 𝒮
8: end function

We have the following classical result [83]:

Lemma A.1. Let 𝐺(·) be a monotonic, submodular set function and 𝒮⋆ defined according

to (A.1). Let 𝒮gr be the set retrieved by the greedy maximization Algorithm 3. We have the

following guarantee for the performance of the greedy algorithm:

𝐺(𝒮gr) ≥ (1− (1− 1

𝐾
)𝐾)𝐺(𝒮⋆) ≥ (1− 1

𝑒
)𝐺(𝒮⋆)

Moreover, no polynomial time algorithm can provide a better approximation guarantee unless

P=NP [26].

The previous lemma guarantees that the efficient greedy solver Algorithm 3 retrieves an

approximately optimal solution to (A.1).
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Algorithm 3 runs in time 𝑂(|𝒜|𝐾), linear in the size of the set 𝒜 and the number

of selected elements 𝐾 [78]. However, more efficient variants of the algorithm have been

suggested and analyzed. The ’lazy greedy’ variant, which was introduced in [78] and appears

here as Algorithm 4 was shown to offer substantial running-time improvements in practice.

Algorithm 4 Lazy Greedy Submodular Maximization

1: function S=LazyGreedyMax(𝐺(·),𝒜, 𝐾)
2: 𝒮 ← ∅
3: ∀𝑥 ∈ 𝒜 : 𝑀 [𝑥]←∞
4: for 𝑖 = 1 to 𝐾 do

5: stop = 0
6: while 𝑠𝑡𝑜𝑝 = 0 do
7: 𝑥⋆ = argmax

𝑥∈𝒜
𝑀 [𝑥]

8: 𝑀 [𝑥⋆] = 𝐺(𝑆 ∪ {𝑥⋆})−𝐺(𝑆)
9: if 𝑀 [𝑥⋆] ≥ argmax

𝑥∈𝒜
𝑀 [𝑥] then

10: 𝑠𝑡𝑜𝑝 = 1
11: end if

12: end while

13: 𝑀 [𝑥⋆]← −∞
14: 𝒮 ← 𝒮 ∪ {𝑥}
15: end for

16: Return 𝒮
17: end function

The lazy variant of the greedy algorithm works by keeping an array 𝑀 of size |𝒜| that keeps

estimates of the current marginal values for each of the elements of 𝒜 with respect to the

current candidate set 𝒮. Instead of updating the full array 𝑀 after each new addition into

𝒮 at cost |𝒜| we just target the highest marginal elements, revising our estimate only for

that element until we see that even after updating the estimate it is the highest marginal

value. With 𝐺(·) being submodular we are guaranteed that at this point we have found the

current best greedy addition into 𝒮 and the iterations progress until 𝐾 elements are added.

The constant (1 − 1/𝑒) ≈ 63% guarantee from Lemma A.1 is non-adaptive in the sense

that it applies to every problem of the form (A.1). It is possible to provide a tighter guarantee

once the optimization has been performed [67]:

Lemma A.2. Let 𝒮⋆ and 𝒮gr be as in Lemma A.1. Let ℬ be the set of top 𝐾 maximal

arguments of the function 𝑓(𝑥) = 𝐺(𝒮gr ∪ {𝑥}) − 𝐺(𝒮gr), i.e. the top marginals of 𝐺(·) on
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top of the set 𝒮gr. Then we have:

𝐺(𝒮⋆) ≤ 𝐺(𝒮gr) +
∑︁
𝑥∈ℬ

[𝐺(𝒮gr ∪ {𝑥})−𝐺(𝒮gr)] (A.2)

Calculating the set ℬ and evaluating (A.2) takes 𝑂(|𝒜| log |𝒜|) time as all we need to do

is evaluate the marginals of 𝐺(·) with respect to all |𝒜| elements of 𝒜, sort them and sum

the top 𝐾 of which. The result is a bound on the gap between 𝐺(𝒮⋆) and 𝐺(𝒮gr) which in

practice tends to be smaller then that prescribed by Lemma A.1.
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Appendix B

Inference in a Gaussian Process

Here we briefly review inference in a Gaussian Processes (GP) and its connection to kernel

regression.

Definition B.1 ([92]). A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

Let 𝑓(𝑥) be a GP defined over some region 𝑥 ∈ 𝒟 ⊆ R𝑑, with 𝑚(·) : R𝑑 → R the mean

function1 and 𝑘(·, ·) : R𝑑×R𝑑 → R the covariance function, denoted 𝑓(𝑥) ∼ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)).

Let 𝒳 = {𝑥1, . . . , 𝑥𝑁} be a finite set of sampling points and 𝑓(𝒳 ) ≡ [𝑓(𝑥1), . . . , 𝑓(𝑥𝑁)] a

corresponding set of Gaussian process random variables stacked in vector form. Then, the

GP assumption implies that 𝑓(𝒳 ) is consistently distributed as a Gaussian random vector

with mean 𝑚(𝒳 ) ≡ [𝑚(𝑥1), . . . ,𝑚(𝑥𝑁)]⊤ and a 𝑁 ×𝑁 covariance matrix defined according

to [𝐾(𝒳 ,𝒳 )]𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗).

Often, we do not have direct access to the GP sample values themselves 𝑓(𝑥) but rather

to noisy measurements 𝑦(𝑥) = 𝑓(𝑥) + 𝜖 with the noise usually taken to be distributed as

a Gaussian 𝜖 ∼ 𝒩 (0, 𝜎2
𝑛). We will be interested in collecting such noisy measurements

at some process locations and estimating the underlying process values at other locations.

Concretely, let 𝒜 be a set of locations where noisy samples are collected, i.e. we have access

to 𝑦(𝒜) ≡ {𝑓(𝑥) + 𝜖|𝑥 ∈ 𝒜} stacked as a vector. We are interested in estimating process

values over a different set ℬ, i.e. making inference over 𝑓(ℬ) = {𝑓(𝑥)|𝑥 ∈ ℬ} stacked as

1Usually we assume, without loss of generality, 𝑚(𝑥) ≡ 0 to streamline our analysis
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Figure B-1: Gaussian RBF kernel sample functions for various 𝜎2
𝑓 .

a vector. With all random variables in the problem distributed as Gaussians the posterior

distribution 𝑓(ℬ)|𝑦(𝒜) may be retrieved using generic rules for Gaussian inference [92]. The

final result, assuming zero mean function for the GP, reads:

𝑓(ℬ)|𝑦(𝒜) ∼ 𝒩 (𝜇ℬ|𝒜,Σℬ|𝒜)

𝜇ℬ|𝒜 = 𝐾(ℬ,𝒜)[𝐾(𝒜,𝒜) + 𝜎2
𝑛𝐼]−1𝑦(𝒜) (B.1)

Σℬ|𝒜 = 𝐾(ℬ,ℬ)−𝐾(ℬ,𝒜)[𝐾(𝒜,𝒜) + 𝜎2
𝑛𝐼]−1𝐾(𝒜,ℬ) (B.2)

where we have additionally defined 𝐾(𝒜,ℬ) to be a |𝒜| × |ℬ| matrix with elements 𝑘(𝑥, 𝑥′)

for all 𝑥 ∈ 𝒜, 𝑥′ ∈ ℬ.

Kernel functions The specific choice for the kernel 𝑘(𝑥, 𝑥′) determines the characteristics

of the GP, in terms of the structure and smoothness of typical sample functions. Here we

mention two popular kernel choices. The Gaussian Radial Basis Function (RBF) 𝑘(𝑥, 𝑥′) =

exp(− 1
2𝜎2

𝑓
‖𝑥−𝑥′‖2) is both stationary, i.e. depends solely on 𝑥 − 𝑥′ and more specifically

isotropic, i.e. depends just on the distance ‖𝑥 − 𝑥′‖. The kernel variance parameter 𝜎2
𝑓

controls the typical correlation distance for sample functions, i.e. the larger it is, the larger

the point wise separation needed to decorrelate process point samples. In Figure B-1 we

illustrate three samples drawn from a zero-mean Gaussian RBF GP with varying levels of

spatial correlation. While these figures illustrate single drawings from the GP they are

indicative of the variation of the typical correlation distance with the kernel variance.
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Figure B-2: Polynomial kernel sample functions for various 𝑚.

Another kernel of interest is the polynomial kernel 𝑘(𝑥, 𝑥′) = (1 + ⟨𝑥, 𝑥′⟩)𝑚 with 𝑚 the

order parameter. In Figure B-2 we plot draws from the polynomial kernel for various orders.

Notice how the structural complexity of the sample functions varies with the order.

The polynomial kernel is closely connected to linear regression with polynomial features

of degree 𝑚 as we detail in the next paragraph (and is visible in the sample plot).

Kernel regression Assume there exists a feature space transformation 𝜑(·) : R𝑑 → R𝐷

with 𝐷 the feature space dimension, such that ∀𝑥, 𝑥′, 𝑘(𝑥, 𝑥′) = 𝜑(𝑥)⊤𝜑(𝑥′). Define 𝑓(𝑥) =

𝑐⊤𝜑(𝑥) with 𝑐 ∈ R𝐷, 𝑐 ∼ 𝒩 (0, 𝐼𝐷×𝐷) and 𝐼𝐷×𝐷 the 𝐷-dimensional unit matrix. Noting that

𝑓(𝑥) as defined is zero-mean Gaussian distributed with E [𝑓(𝑥)𝑓(𝑥′)] = 𝜑(𝑥)⊤E
[︀
𝑐𝑐⊤
]︀
𝜑(𝑥) =

𝑘(𝑥, 𝑥′) we have 𝑓(𝑥) ∼ 𝒢𝒫(0, 𝑘(𝑥, 𝑥′)) and we see that a GP with kernel 𝑘(𝑥, 𝑥′) is closely

tied to a linear regression in the feature space 𝜑(𝑥). The GP sample functions are expected

to look like linear functions in the feature space according to 𝑓(𝑥) = 𝑐⊤𝜑(𝑥).

As an example, for the non-biased polynomial kernel 𝑘(𝑥, 𝑥′) = ⟨𝑥, 𝑥′⟩𝑚 it may be shown

that there exists a feature space transformation 𝜑(𝑥) in dimension 𝐷 = 𝑂(𝑑𝑚), with the

features proportional to multinomial factors 𝑥𝑚1
1 · 𝑥𝑚2

2 · · · 𝑥
𝑚𝑑
𝑑 and

∑︀
𝑖𝑚𝑖 = 𝑚 and the GP

sample functions tend to look like polynomials, as in Figure B-2 [92].
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Appendix C

Proofs

C.1 Proof of Theorem 2.2

Using the definition of mutual information1 we have

𝐺(𝒴0) = 𝐼(Θ; F̃(𝒴𝑚(𝒴0))) = 𝐻(F̃(𝒴𝑚(𝒴0)))−𝐻(F̃(𝒴𝑚(𝒴0))|Θ) (C.1)

𝐺̃(𝒴0) = 𝐼(Θ; F̃(𝒴𝑔(𝒴0))) = 𝐻(F̃(𝒴𝑔(𝒴0)))−𝐻(F̃(𝒴𝑔(𝒴0))|Θ) (C.2)

Conditioned on Θ the remaining uncertainty in the measurements is just the random noise

and we have 𝐻(F̃(𝒴𝑚(𝒴0))|Θ) = 𝐻(F̃(𝒴𝑔(𝒴0))|Θ) = 𝐻(𝜖) such that:

𝐺(𝒴0)− 𝐺̃(𝒴0) = 𝐻(F̃(𝒴𝑚(𝒴0)))−𝐻(F̃(𝒴𝑔(𝒴0))) (C.3)

Notice that both F̃(𝒴𝑚(𝒴0)) and F̃(𝒴𝑔(𝒴0)) are collections of 𝐾̃ Gaussian random variables

as noisy samples from the GP. Now apply the generic formula for the entropy of a Gaussian

random vector2:

𝐻(F̃(𝒴𝑚(𝒴0))) = log((𝜋𝑒)𝐾̃detΣ𝑚)

𝐻(F̃(𝒴𝑔(𝒴0))) = log((𝜋𝑒)𝐾̃detΣ𝑔) (C.4)

1𝐼(𝑥; 𝑦)=𝐻(𝑥)−𝐻(𝑥|𝑦)=𝐻(𝑦)−𝐻(𝑦|𝑥)
2
x ∈ R𝑘,x ∼ 𝒩 (𝜇,Σ)⇒ 𝐻(x) = log((𝜋𝑒)𝑘detΣ)
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where 𝐾̃ ≡ 𝑑𝐾̃ and:

Σ𝑚 = k(𝒴𝑚,𝒴𝑚) + Σ𝜖 ⊗ I𝐾̃

Σ𝑔 = k(𝒴𝑔,𝒴𝑔) + Σ𝜖 ⊗ I𝐾̃ (C.5)

So,

𝐺̃(𝒴0)−𝐺(𝒴0) = log(det(Σ𝑔))− log(det(Σ𝑚)) (C.6)

Now define X ≡ 1
𝛿
(Σ𝑔 −Σ𝑚) ↔ Σ𝑔 = Σ𝑚 + 𝛿X with X ∈ R𝐾̃×𝐾̃ satisfying ∀𝑖, 𝑗 |𝑋𝑖𝑗| ≤ 1

according to our assumption of bounded covariance differences.

Σ𝑔,Σ𝑚 are both positive-definite and invertible such that we can write:

det(Σ𝑔) = det(Σ𝑚 + 𝛿X) = det(Σ𝑚)det(I+ 𝛿Σ−1
𝑚 X) (C.7)

Substituting (C.7) in (C.6) we have:

𝐺̃(𝒴0)−𝐺(𝒴0) = log(det(I+ 𝛿Σ−1
𝑚 X))= log(det(X̃)) (C.8)

with X̃ ≡ I+ 𝛿Σ−1
𝑚 X. We turn next to bounding log(det(X̃)). First notice:

⃒⃒
[𝛿Σ−1

𝑚 X]𝑖𝑗
⃒⃒

= 𝛿

⃒⃒⃒⃒
⃒∑︁
𝑟

Σ−1
𝑚,𝑖𝑟𝑋𝑟𝑗

⃒⃒⃒⃒
⃒ ≤ 𝛿

∑︁
𝑟

⃒⃒
Σ−1
𝑚,𝑖𝑟𝑋𝑟𝑗

⃒⃒
≤ 𝛿

∑︁
𝑟

⃒⃒
Σ−1
𝑚,𝑖𝑟

⃒⃒
≤𝛿‖Σ−1

𝑚 ‖∞

≤ 𝛿
√︀
𝐾̃‖Σ−1

𝑚 ‖2 = 𝛿
√︀
𝐾̃𝜎max(Σ

−1
𝑚 ) =

𝛿
√︀
𝐾̃

𝜎min(Σ𝑚)
≤ 𝛿

√︀
𝐾̃

𝜎min(Σ𝜖)
(C.9)

where we used the matrix norm inequality ‖A‖∞≤
√︀
𝐾̃‖A‖2 for A ∈ R𝐾̃×𝐾̃ and 𝜎max(·).

Thus we have that X̃ has diagonal elements centered around 1, i.e. for all 𝑖

⃒⃒⃒
𝑋̃𝑖𝑖 − 1

⃒⃒⃒
≤ 𝛿

√︀
𝐾̃

𝜎min(Σ𝜖)
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and the row-sums over non-diagonal entries satisfy for all 𝑖

∑︁
𝑟 ̸=𝑖

⃒⃒⃒
𝑋̃𝑖𝑟

⃒⃒⃒
≤ 𝛿

√︀
𝐾̃(𝐾̃ − 1)

𝜎min(Σ𝜖)

. Designating the eigenvalues of X̃ as {𝜆𝑖} and applying the Gershgorin circle theorem, we

have:

1− 𝛿𝐾̃
3
2

𝜎min(Σ𝜖)
≤ |𝜆𝑖| ≤ 1 +

𝛿𝐾̃
3
2

𝜎min(Σ𝜖)
. (C.10)

Using log(det(X̃)) =
∑︀
𝑖

log(|𝜆𝑖|), this implies that

𝐾̃ log

(︃
1− 𝛿𝐾̃

3
2

𝜎min(Σ𝜖)

)︃
≤ log(det(X̃)) ≤ 𝐾̃ log

(︃
1 +

𝛿𝐾̃
3
2

𝜎min(Σ𝜖)

)︃
(C.11)

where the left hand side is to be interpreted as minus infinity when the argument of the log

function is negative. Finally, using 𝐺̃(𝒴0)−𝐺(𝒴0) = log(det(X̃)) and log(1+𝑥)≤− log(1−𝑥)

we have:

|𝐺̃(𝒴0)−𝐺(𝒴0)| ≤ −𝐾̃ log

(︃
1− 𝛿𝐾̃

3
2

𝜎min(Σ𝜖)

)︃
(C.12)

C.2 Proof of Lemma 3.2

For simplicity of notation, we suppress the subscript 𝒮 throughout. Begin by expanding the

mutual information expressions:

𝐼(𝑓 ; {𝛽𝑚}) = 𝐻(𝑓)−𝐻(𝑓 | {𝛽𝑚})

𝐼(𝑓 ;𝛽) = 𝐻(𝑓)−𝐻(𝑓 |𝛽) (C.13)

Examining (3.15) and (3.21) we have 𝐻(𝑓 | {𝛽𝑚}) = 𝐻(𝑓 |𝛽) = 𝐻(𝑤) and so:

𝐼(𝑓 ; {𝛽𝑚})− 𝐼(𝑓 ;𝛽) = 𝐻(𝑓)−𝐻(𝑓) (C.14)
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Next, notice that 𝑓 and 𝑓 are both circular, complex, Gaussian random 𝑁 -length vectors,

such that their entropies are given according to [81]:

𝐻(𝑓) = log((𝜋𝑒)𝑁det(Σ̃)) Σ̃𝑖𝑗 = E[𝑓 𝑖𝑓
*
𝑗 ]

𝐻(𝑓) = log((𝜋𝑒)𝑁det(Σ̂)) Σ̂𝑖𝑗 = E[𝑓 𝑖𝑓
*
𝑗 ] (C.15)

Further expand using the independence between 𝑤 and 𝛽𝑚 and E[𝛽𝑚𝛽
*
𝑚′ ] = 𝛿𝑚𝑚′𝜎2

𝑚:

Σ̃𝑖𝑗 = E[(
∑︁
𝑚

𝐾𝑖𝑚𝛽𝑚 + 𝑤𝑖)(
∑︁
𝑚′

𝐾*
𝑗𝑚′𝛽*

𝑚′ + 𝑤*
𝑗 )] = [Σ𝑤𝑤]𝑖𝑗 +

∑︁
𝑚

𝐾𝑖𝑚𝐾
*
𝑗𝑚𝜎

2
𝑚 (C.16)

Σ̂𝑖𝑗 = E[(
∑︁
𝑚∈ℳ

𝐾𝑖𝑚𝛽𝑚 + 𝑤𝑖)(
∑︁
𝑚′∈ℳ

𝐾*
𝑗𝑚′𝛽*

𝑚′ + 𝑤*
𝑗 )] = [Σ𝑤𝑤]𝑖𝑗 +

∑︁
𝑚∈ℳ

𝐾𝑖𝑚𝐾
*
𝑗𝑚𝜎

2
𝑚 (C.17)

Comparing (C.16) and (C.17) and using:⃒⃒⃒⃒
⃒ ∑︁
𝑚/∈ℳ

𝐾𝑖𝑚𝐾
*
𝑗𝑚𝜎

2
𝑚

⃒⃒⃒⃒
⃒ ≤ ∑︁

𝑚/∈ℳ

⃒⃒
𝐾𝑖𝑚𝐾

*
𝑗𝑚𝜎

2
𝑚

⃒⃒
≤
∑︁
𝑚/∈ℳ

𝜎2
𝑚 = 𝜖 (C.18)

we have |Σ̃𝑖𝑗 − Σ̂𝑖𝑗| ≤ 𝜖 such that we may write:

Σ̂ = Σ̃ + 𝜖𝑋 (C.19)

for some 𝑁 ×𝑁 matrix 𝑋 satisfying |𝑋𝑖𝑗| ≤ 1. We use (C.19) to bound the determinants.

Σ̃ is positive-definite and invertible such that we can write:

det(Σ̂) = det(Σ̃ + 𝜖𝑋) = det(Σ̃)det(𝐼𝑁 + 𝜖Σ̃
−1
𝑋) (C.20)

Substituting (C.20) in (C.15) we have:

𝐻(𝑓)−𝐻(𝑓) = log(det(𝐼𝑁+𝜖Σ̃
−1
𝑋))= log(det(𝑋̃)) (C.21)
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with 𝑋̃ ≡ 𝐼𝑁 + 𝜖Σ̃
−1
𝑋. We turn next to bounding the term log(det(𝑋̃)). First notice:

⃒⃒⃒
[𝜖Σ̃

−1
𝑋]𝑖𝑗

⃒⃒⃒
= 𝜖

⃒⃒⃒⃒
⃒∑︁
𝑚

Σ̃−1
𝑖𝑚𝑋𝑚𝑗

⃒⃒⃒⃒
⃒ ≤ 𝜖

∑︁
𝑚

⃒⃒⃒
Σ̃−1
𝑖𝑚𝑋𝑚𝑗

⃒⃒⃒
≤ 𝜖

∑︁
𝑚

⃒⃒⃒
Σ̃−1
𝑖𝑚

⃒⃒⃒
≤ 𝜖‖Σ̃−1‖∞ ≤ 𝜖

√
𝑁‖Σ̃−1‖2 = 𝜖

√
𝑁𝜎max(Σ̃

−1
) = 𝜖

√
𝑁

1

𝜎min(Σ̃)
≤ 𝜖
√
𝑁

𝜎2
𝑤

(C.22)

Where we have used the matrix norm equivalence ‖𝐴‖∞ ≤
√
𝑁‖𝐴‖2 (for 𝑁×𝑁 matrices)

and 𝜎max(·) (𝜎min(·)) is the maximal (minimal) singular value such that 𝜎min(Σ̃) ≥ 𝜎2
𝑤. Thus

we have that 𝑋̃ has diagonal elements centered around 1:
⃒⃒⃒
𝑋̃𝑖𝑖 − 1

⃒⃒⃒
≤ 𝜖

√
𝑁

𝜎2
𝑤

and the row-sums

over non-diagonal entries satisfy
∑︀
𝑚̸=𝑖

⃒⃒⃒
𝑋̃𝑖𝑚

⃒⃒⃒
≤ 𝜖

√
𝑁(𝑁−1)
𝜎2
𝑤

.

Applying the Gershgorin circle theorem we have for the eigenvalues of 𝑋̃:

1− 𝜖
√
𝑁𝑁

𝜎2
𝑤

≤ |𝜆𝑖| ≤ 1 +
𝜖
√
𝑁𝑁

𝜎2
𝑤

det(𝑋̃) is a positive real number as the quotient of the determinants of two positive definite

matrices det(𝑋̃) = det(Σ̂)

det(Σ̃)
such that we can write det(𝑋̃) =

∏︀
𝑖 𝜆𝑖 =

∏︀
𝑖 |𝜆𝑖| and consequently:

𝑁 log(1− 𝜖𝑁
3
2

𝜎2
𝑤

) ≤ log(det(𝑋̃)) ≤ 𝑁 log(1 +
𝜖𝑁

3
2

𝜎2
𝑤

) (C.23)

which finally leads to:

−𝑁 log(1+
𝜖𝑁

3
2

𝜎2
𝑤

) ≤ 𝐼(𝑓 ; {𝛽𝑚})−𝐼(𝑓 ;𝛽) ≤ −𝑁 log(1−𝜖𝑁
3
2

𝜎2
𝑤

) (C.24)

C.3 Proof of Lemma 3.3

The left inequality is trivial. We have 𝐼(𝑓𝒮⋆
𝑑
;𝛽) ≤ 𝐼(𝑓𝒮⋆ ;𝛽) as the second optimization is

over a larger set.

To prove the right inequality we show that for every 𝒮 ⊆ 𝒜 there is 𝒮𝑑 ⊆ 𝒱 such that

𝐼(𝑓𝒮 ;𝛽) ≤ 𝐼(𝑓𝒮𝑑
;𝛽)+𝑁 log(1+

4𝛿𝑃 (1+𝛿)𝑁
3
2

𝜆𝜎2
𝑤

) (C.25)
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we will show this for |𝒮|=𝑁 but the proof for other cardinalities is identical.

With distance 𝛿 between adjacent elements of 𝒱 , for every 𝒮= {𝑥1, . . . , 𝑥𝑁} ⊂ 𝒜 there is

a set 𝒮𝑑=
{︀
𝑥𝑑1, . . . , 𝑥

𝑑
𝑁

}︀
such that 𝒮𝑑 ⊆ 𝒱 and |𝑥𝑖 − 𝑥𝑑𝑖 | ≤ 𝛿

2
for all 𝑖. We have, similarly to

Appendix C.2:

𝐼(𝑓𝒮 ;𝛽)− 𝐼(𝑓𝒮𝑑
;𝛽) = 𝐻(𝑓𝒮)−𝐻(𝑓𝒮𝑑

) (C.26)

Using the model (3.21):

𝐻(𝑓𝒮) = log((𝜋𝑒)𝑁det(Σ̂
𝒮
))

𝐻(𝑓𝒮𝑑
) = log((𝜋𝑒)𝑁det(Σ̂

𝒮𝑑
)) (C.27)

where:

Σ̂
𝒮
≡ E[𝑓𝒮𝑓

†
𝒮 ] = 𝐾𝒮Σ𝛽𝛽𝐾

†
𝒮 + Σ𝑤𝑤

Σ̂
𝒮𝑑 ≡ E[𝑓𝒮𝑑

𝑓
†
𝒮𝑑

] = 𝐾𝒮𝑑
Σ𝛽𝛽𝐾

†
𝒮𝑑

+ Σ𝑤𝑤

Σ𝛽𝛽 ≡ E[𝛽𝛽†] (C.28)

and 𝐻(𝑓𝒮)−𝐻(𝑓𝒮𝑑
) = log(det(Σ̂

𝒮
))− log(det(Σ̂

𝒮𝑑
)).

Both 𝐾𝒮 and 𝐾𝒮𝑑
are size 𝑁 × |ℳ| matrices defined as per the definition in (3.14), such

that:

|[𝐾𝒮 ]𝑛𝑚−[𝐾𝒮𝑑
]𝑛𝑚| = |sinc(𝑚+

2

𝜆
𝑥𝑛)−sinc(𝑚+

2

𝜆
𝑥𝑑𝑛)| ≤ 2

2

𝜆
|𝑥𝑞−𝑥𝑑𝑞 | ≤

2

𝜆
𝛿 (C.29)

where for the first inequality we have used the fact that sinc(·) is Lipschitz with constant

smaller than 2. We can thus define Δ ≡𝐾𝒮 −𝐾𝒮𝑑
and we have |∆𝑛𝑚| ≤ 2

𝜆
𝛿. Substitution

in (C.28) yields:

Σ̂
𝒮

= Σ̂
𝒮𝑑

+ ΔΣ𝛽𝛽Δ
† + ΔΣ𝛽𝛽𝐾

†
𝒮𝑑

+𝐾𝒮𝑑
Σ𝛽𝛽Δ

† (C.30)
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We bound the perturbation terms by noticing:

⃒⃒
[ΔΣ𝛽𝛽Δ

†]𝑖𝑗
⃒⃒

=

⃒⃒⃒⃒
⃒∑︁
𝑚

∆𝑖𝑚[Σ𝛽𝛽]𝑚𝑚∆𝑗𝑚

⃒⃒⃒⃒
⃒ ≤ (

2

𝜆
𝛿)2
∑︁
𝑚

[Σ𝛽𝛽]𝑚𝑚 ≤
4

𝜆2
𝛿2𝑃

⃒⃒⃒
[ΔΣ𝛽𝛽𝐾

†
𝒮𝑑

]𝑖𝑗

⃒⃒⃒
=

⃒⃒⃒⃒
⃒∑︁
𝑚

∆𝑖𝑚[Σ𝛽𝛽]𝑚𝑚[𝐾𝒮𝑑
]𝑗𝑚

⃒⃒⃒⃒
⃒ ≤ 2

𝜆
𝛿 · 1 ·

∑︁
𝑚

[Σ𝛽𝛽]𝑚𝑚 ≤
2

𝜆
𝛿𝑃 (C.31)

and overall we have:

|Σ̂𝒮
𝑖𝑗 − Σ̂𝒮𝑑

𝑖𝑗 | ≤
4

𝜆
𝛿𝑃 +

4

𝜆2
𝛿2𝑃 =

4

𝜆
𝛿𝑃 (1 + 𝛿) (C.32)

define: 𝜖′ ≡ 4
𝜆
𝛿𝑃 (1 + 𝛿) and we have

Σ̂
𝒮

= Σ̂
𝒮𝑑

+ 𝜖′𝑋 (C.33)

with 𝑁 ×𝑁 matrix 𝑋 satisfying |𝑋𝑖𝑗| ≤ 1 which is akin to (C.19). We thus port the results

from Appendix C.2 here (we only need the lower bound):

−𝑁 log(1 +
𝜖′𝑁

3
2

𝜎2
𝑤

) ≤ 𝐼(𝑓𝒮𝑑
;𝛽)− 𝐼(𝑓𝒮 ;𝛽) (C.34)

which, upon substitution of 𝜖′ is equivalent to (C.25).

C.4 Proof of Theorem 3.1

The greedy algorithm sequentially selects elements according to the rule 𝑥⋆ = argmax𝑥∈𝒱∖𝒮 𝐼(𝑓𝒮∪{𝑥};𝛽)

where 𝒮 is the set of elements selected so far. We recursively show that the added elements

can be selected on a 𝜆
2
-spaced grid centered around 𝑥 = 0. Expanding the mutual information

as in Appendix C.2 we have:

argmax𝑥∈𝒱∖𝒮 𝐼(𝑓𝒮∪{𝑥};𝛽)=argmax𝑥∈𝒱∖𝒮 𝐻(𝑓𝒮∪{𝑥}) (C.35)
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We begin by showing that the first selected element is 𝑥1 = 0. Indeed, using the results from

Appendix C.2:

argmax
𝑥∈𝒱

𝐻(𝑓 {𝑥}) = argmax
𝑥∈𝒱

det(Σ̂11) = argmax
𝑥∈𝒱

Σ̂11 (C.36)

where again using Appendix C.2 and under the assumptions of the theorem (high SNR):

Σ̂11 =
∑︁
𝑚

𝐾1𝑚𝐾
*
1𝑚𝜎

2
𝑚 =

∑︁
𝑚

sinc2(𝑚+
2

𝜆
𝑥)𝜎2

𝑚 ≤ 𝜎2
0

∑︁
𝑚

sinc2(𝑚+
2

𝜆
𝑥) = 𝜎2

0 (C.37)

where we used 𝜎2
𝑚 ≤ 𝜎2

0, ∀𝑚 ̸= 0 and the identity:

∑︁
𝑚

sinc(𝑚+𝑎)sinc(𝑚+𝑏) = sinc(𝑏−𝑎) (C.38)

It easy to see that in (C.37) equality is achieved for the choice 𝑥1 = 0 which is the claim.

Next, assume that the greedy algorithm has already picked a set 𝒮 =
{︀
𝑥1, . . . , 𝑥|𝒮|

}︀
of adjacent elements on a 𝜆

2
-spaced grid centered around 𝑥 = 0 and show that the next

element to be added is an adjacent location on the same 𝜆
2
-spaced grid. We have using

𝐻(𝑥, 𝑦)=𝐻(𝑥)+𝐻(𝑦|𝑥):

argmax
𝑥∈𝒱∖𝒮

𝐻(𝑓𝒮∪{𝑥})=argmax
𝑥∈𝒱∖𝒮

𝐻(𝑓 {𝑥}|𝑓𝒮)=argmax
𝑥∈𝒱∖𝒮

𝜎2
𝑥|𝒮 (C.39)

where 𝜎2
𝑥|𝒮 is the conditional variance of the Gaussian observation collected at 𝑥 given the

Gaussian observations made at the set 𝒮:

𝜎2
𝑥|𝒮 = 𝜎2

𝑥 −Σ𝑥𝒮Σ
−1
𝒮𝒮Σ

†
𝑥𝒮 (C.40)

with the usual definitions for the covariance matrices (as in Appendix C.2):

[Σ𝑥𝒮 ]1𝑖=
∑︁
𝑚

sinc(𝑚+
2

𝜆
𝑥)sinc(𝑚+

2

𝜆
𝑥𝑖)𝜎

2
𝑚=sinc(𝑚(𝑖)+

2

𝜆
𝑥)𝜎2

𝑚(𝑖)

[Σ𝒮𝒮 ]𝑖𝑗=
∑︁
𝑚

sinc(𝑚+
2

𝜆
𝑥𝑖)sinc(𝑚+

2

𝜆
𝑥𝑗)𝜎

2
𝑚=𝛿𝑖𝑖𝜎

2
𝑚(𝑖) (C.41)
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where in the last equations almost all sinc(·) functions nulled out as the 𝑥𝑖’s are situated

on a 𝜆
2
grid, and we have defined 𝑚(𝑖)≡− 2

𝜆
𝑥𝑖, such that 𝐼 ≡ {𝑚(𝑖)} is a set of consecutive

integers. Additionally, we have:

𝜎2
𝑥 =

∑︁
𝑚

sinc2(𝑚+
2

𝜆
𝑥)𝜎2

𝑚 (C.42)

Substituting back into (C.40) we have:

𝜎2
𝑥|𝒮 =

∑︁
𝑚

sinc2(𝑚+
2

𝜆
𝑥)𝜎2

𝑚 −
∑︁
𝑖∈𝐼

sinc2(𝑚(𝑖)+
2

𝜆
𝑥)𝜎2

𝑚(𝑖) =
∑︁
𝑚/∈𝐼

sinc2(𝑚+
2

𝜆
𝑥)𝜎2

𝑚 (C.43)

and this is similar to the optimization over the selection of the first location in (C.37) with

the optimum achieved by selecting 𝑥 such that 2
𝜆
𝑥 = 𝑚 for the first 𝑚 /∈ 𝐼 which is the next

adjacent location on the 𝜆
2
grid which completes the proof.
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