
12

Efficient Redundancy Techniques for Latency Reduction
in Cloud Systems

GAURI JOSHI, Carnegie Mellon University
EMINA SOLJANIN, Rutgers University
GREGORY WORNELL, Massachusetts Institute of Technology

In cloud computing systems, assigning a task to multiple servers and waiting for the earliest copy to finish is
an effective method to combat the variability in response time of individual servers and reduce latency. But
adding redundancy may result in higher cost of computing resources, as well as an increase in queueing delay
due to higher traffic load. This work helps in understanding when and how redundancy gives a cost-efficient
reduction in latency. For a general task service time distribution, we compare different redundancy strategies
in terms of the number of redundant tasks and the time when they are issued and canceled. We get the
insight that the log-concavity of the task service time creates a dichotomy of when adding redundancy helps.
If the service time distribution is log-convex (i.e., log of the tail probability is convex), then adding maximum
redundancy reduces both latency and cost. And if it is log-concave (i.e., log of the tail probability is concave),
then less redundancy, and early cancellation of redundant tasks is more effective. Using these insights, we
design a general redundancy strategy that achieves a good latency-cost trade-off for an arbitrary service
time distribution. This work also generalizes and extends some results in the analysis of fork-join queues.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling Techniques, Reliability,
Availability, and Serviceability; G.3 [Probability and Statistics]: Queueing Theory

General Terms: Task Replication, Fork-Join Queues

Additional Key Words and Phrases: Performance modeling, latency-cost analysis

ACM Reference Format:
Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2017. Efficient redundancy techniques for latency reduc-
tion in cloud systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 2, 2, Article 12 (April 2017), 30 pages.
DOI: http://dx.doi.org/10.1145/3055281

1. INTRODUCTION
1.1. Motivation
An increasing number of applications are now hosted on the cloud. Some examples are
streaming (Netflix, YouTube), storage (Dropbox, Google Drive), and computing (Ama-
zon EC2, Microsoft Azure) services. A major advantage of cloud computing and storage
is that the large-scale sharing of resources provides scalability and flexibility. However,

This work was supported in part by NSF under grant CCF-1319828, AFOSR under grant FA9550-11-1-0183,
and a Schlumberger Faculty for the Future Fellowship.
Our work was presented in part at the 2015 Allerton Conference on Communication, Control, and Computing
and the 2015 ACM Sigmetrics Mathematical Modeling and Analysis Workshop. G. Joshi was at MIT at the
time of this work.
Authors’ addresses: G. Joshi, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213; email:
gaurij@andrew.cmu.edu; E. Soljanin, Rutgers University, 94 Brett Road, Piscataway NJ 08854; email: emina.
soljanin@rutgers.edu; G. Wornell, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge
MA 02139; email: gww@mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2017 ACM 2376-3639/2017/04-ART12 $15.00
DOI: http://dx.doi.org/10.1145/3055281

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

http://dx.doi.org/10.1145/3055281
http://dx.doi.org/10.1145/3055281

12:2 G. Joshi et al.

Table I. Organization of Main Latency-Cost Analysis Results Presented in the Rest of the Article

k= 1 (Replicated) Case General k
Full Forking to All n
Servers

Section 5
Comparison of strategies with and
without early task cancellation

Section 7
Bounds on latency and cost, and
the diversity-parallelism trade-off

Partial Forking to r
Out of n Servers

Section 6
Effect of r and the choice of servers
on latency and cost

Section 8
General redundancy strategy for
cost-efficient latency reduction

Note: We fork each job into tasks at all n servers (full forking) or to some subset r out of n servers (partial
forking). A job is complete when any k of its tasks are served.

an adverse effect of the sharing of resources is the variability in the latency experienced
by the user due to queueing, virtualization, server outages, and so forth. The problem
becomes further aggravated when the computing job has several parallel tasks, be-
cause the slowest task becomes the bottleneck in job completion. Thus, ensuring fast
and seamless service is a challenging problem in cloud systems.

One method to reduce latency that has gained significant attention in recent years
is the use of redundancy. In cloud computing, replicating a task on multiple machines
and waiting for the earliest copy to finish can significantly reduce the latency [Dean
and Barroso 2013]. Similarly, in cloud storage systems, requests to access a content can
be assigned to multiple replicas such that it is only sufficient to download one replica.
However, redundancy can result in increased use of resources, such as computing time,
and network bandwidth. In frameworks such as Amazon EC2 and Microsoft Azure that
offer computing as a service, the computing time spent on a job is proportional to the
cost of renting the machines.

1.2. Organization of This Work
In this work, we aim to understand the trade-off between latency and computing cost,
and propose efficient strategies to add redundancy. We focus on a redundancy model
called the (n, k) fork-join model, where a job is forked into n tasks such that completion
of any k tasks is sufficient to finish the job. In Section 2, we formally define this model
and its variants. Section 3 summarizes related previous work and our contributions.
Section 4 gives the key preliminary concepts used in this work.

The rest of the article studies different variants of the (n, k) fork-join model in in-
creasing order of generality, as shown in Table I. In Sections 5 and 6, we focus on the
k = 1 (replicated) case. Section 5 considers full replication of a job at all n servers and
compares different strategies of canceling redundant tasks. In Section 6, we consider
partial replication at r out of n servers.

In Sections 7 and 8, we move to the general k case, which requires a significantly
different style of analysis than the k = 1 case. In Section 7, we consider full forking
to all n servers and determine bounds on latency and cost, generalizing some of the
fundamental work on fork-join queues. For partial forking, we propose a general re-
dundancy strategy in Section 8. System designers looking for a practical redundancy
strategy rather than theoretical analysis may skip ahead to Section 8 after the problem
setup in Section 2.

Finally, Section 9 summarizes the results and provides future perspectives. Proper-
ties and examples of log-concavity are given in Appendix A. Proofs of the k = 1 and
general k cases are deferred to Appendix B and Appendix C, respectively.

2. SYSTEM MODEL
2.1. Fork-Join Model and Its Variants

Definition 1 ((n, k) Fork-Join System). Consider a distributed system with n statis-
tically identical servers. Jobs arrive to the system at rate λ, according to a Poisson

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:3

Fig. 1. The (3, 2) fork-join system. When any two
out of three tasks of a job are served (as seen for Job
A on the right), the third task abandons its queue
and the job exits the system.

Fig. 2. The (3, 2) fork-early-cancel system. When
and two out of three tasks of a job are in service,
the third task abandons (seen for Job A on the left
and Job B on the right).

process.1 Each job is forked into n tasks that join first-come first-served queues at
each of the n servers. The job is said to be complete when any k tasks are served. At
this instant, all remaining tasks are canceled and abandon their respective queues
immediately.

After a task of the job reaches the head of its queue, the time taken to serve it can
be random due to various factors, such as disk seek time and sharing of computing
resources between multiple processes. We model this service time by a random variable
X > 0, with cumulative distribution function (CDF) FX(x). The tail distribution (inverse
CDF) of X is denoted by F̄X(x) = Pr(X > x). We use Xk:n to denote the kth smallest of n
independent and identically distributed random variables X1, X2, . . . , Xn.

We assume that the service time X is independent and identically distributed across
tasks and servers. Thus, if a task is replicated at two different servers, the service times
of the replicas are independent and identically distributed. Dependence of service time
on the task itself can be modeled by adding a constant " to X. More generally, " may
be a random variable. Although we do not consider this case here, the results in this
article (particularly Section 5) can be extended to consider correlated service times.

Figure 1 illustrates the (3, 2) fork-join system. The job exits the system when any
two out of three tasks are complete. The k = 1 case corresponds to a replicated system
where a job is sent to all n servers and we wait for one of the replicas to be served.
The (n, k) fork-join system with k > 1 can serve as a useful model to study content
access latency from an (n, k) erasure-coded distributed storage system. Approximate
computing applications that require only a fraction of tasks of a job to be complete can
also be modeled using the (n, k) fork-join system.

We consider the following two variants of this system, which could save the amount
of redundant time spent by the servers of each job:

(1) (n, k) fork-early-cancel system: Instead of waiting for k tasks to finish, the redundant
tasks are canceled when any k tasks reach the heads of their queues and start
service. If more than k tasks start service simultaneously, we retain any k chosen
uniformly at random. Figure 2 illustrates the (3, 2) fork-early-cancel system. In
Section 5, we compare the (n, k) systems with and without early cancellation.

(2) (n, r, k) partial fork-join system: Each incoming job is forked into r > k out of
the n servers. When any k tasks finish service, the redundant tasks are canceled
immediately and the job exits the system. The r servers can be chosen according
to different scheduling policies, such as random, round-robin, and least-work-left

1The Poisson assumption is required only for the exact analysis and bounds on latency (Equations (5), (7),
(8), (11), (16), (17), and (24)). All other results on E[C] and comparison of replication strategies in heavy
traffic hold for any arrival process.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:4 G. Joshi et al.

(see Chapter 24 of Harchol-Balter [2013] for definitions). In Section 6, we develop
insights into the best choice of r and the scheduling policy.

Other variants of the fork-join system include a combination of partial forking and
early cancellation, or delaying invocation of some of the redundant tasks. Although not
studied in detail here, our analysis techniques can be extended to these variants. In
Section 8, we propose a general redundancy strategy that is a combination of partial
forking and early cancellation.

2.2. Latency and Cost Metrics
We now define the metrics of the latency and resource cost whose trade-off is analyzed
in the rest of the article.

Definition 2 (Latency). The latency T is defined as the time from the arrival of a job
until it is served. In other words, it is the response time experienced by the job.

In this work, we focus on analyzing the expected latency E[T]. Although E[T] is a
good indicator of the average behavior, system designers are often interested in the tail
Pr(T > t) of the latency. For many queueing problems, determining the distribution
of response time T requires the assumption of exponential service time. To consider
arbitrary, nonexponential service time distribution FX, we settle for analyzing E[T]
here.

Definition 3 (Computing Cost). The computing cost C is the total time spent by the
servers serving a job, not including the time spent in the queue.

In computing-as-a-service frameworks, the computing cost is proportional to money
spent on renting machines to run a job on the cloud.2

3. PREVIOUS WORK AND MAIN CONTRIBUTIONS
3.1. Related Previous Work
Systems work. The use of redundancy to reduce latency is not new. One of the earliest
instances is the use of multiple routing paths [Maxemchuk 1975] to send packets in
networks (see Chapter 7 of Kabatiansky et al. [2005] for a detailed survey of other
related work). A similar idea has been studied [Vulimiri et al. 2013] in the context
of DNS queries. In large-scale cloud computing frameworks, several recent works in
systems [Dean and Ghemawat 2008; Ananthanarayanan et al. 2013; Ousterhout et al.
2013] explore straggler mitigation techniques where redundant replicas of straggling
tasks are launched to reduce latency. Although the use of redundancy has been explored
in systems literature, there is little work on the rigorous analysis of how it affects
latency, particularly the cost of resources. Next we review some of that work.

Exponential service time. The (n, k) fork-join system was first proposed in Joshi et al.
[2012, 2014] to analyze content download latency from erasure-coded distributed stor-
age. These works consider that a content file coded into n chunks can be recovered by
accessing any k out of the n chunks, where the service time X of each chunk is expo-
nential. Even with the exponential assumption, analyzing the (n, k) fork-join system is
a hard problem. It is a generalization of the (n, n) fork-join system, which was actively

2Although we focus on this cost metric, we note that redundancy also results in a network cost of making
remote-procedure calls (RPCs) made to assign tasks of a job and cancel redundant tasks. It is proportional to
the number of servers to which each job is forked, which is n for the (n, k) fork-join model described earlier.
In the context of distributed storage, redundancy also results in increased use of storage space, proportional
to n/k. The trade-off between delay and storage is studied in Joshi et al. [2012, 2014].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:5

Table II. Latency-Optimal and Cost-Optimal Redundancy Strategies for the k = 1 (Replicated) Case

Log-Concave Service Time Log-Convex Service Time
Latency Optimal Cost Optimal Latency Optimal Cost Optimal

Cancel Redundancy
Early or Keep It?

Low load: Keep
redundancy, High
load: Cancel early

Cancel early Keep redundancy Keep redundancy

Partial Forking to r
Out of n Servers

Low load: r = n (fork
to all), High load:
r = 1 (fork to one)

r = 1 r = n (fork to all) r = n (fork to all)

Note: Canceling redundancy early means that instead of waiting for any one task to finish, we cancel
redundant tasks as soon as any one task begins service.

studied in queueing literature [Flatto and Hahn 1984; Nelson and Tantawi 1988; Varki
et al. 2008] about two decades ago.

An analysis of latency with heterogeneous job classes for the replicated (k = 1) case
with distributed queues was presented in Gardner et al. [2015]. Other related works
include Shah et al. [2014], Kumar et al. [2014], Xiang et al. [2014], and Kadhe et al.
[2015]. A common thread in all of these works is that they also assume exponential
service time.

General service time. Few practical systems have exponentially distributed service
time. For example, studies of download time traces from Amazon S3 [Liang and Kozat
2014; Chen et al. 2014] indicate that the service time is not exponential in practice but
instead is a shifted exponential. For service time distributions that are “new-worse-
than-used” (NWU) [Cao and Wang 1991], it is shown in Koole and Righter [2008] that
it is optimal to replicate a job at all servers in the system. The choice of scheduling
policy for NWU and “new-better-than-used” (NBU) distributions is studied in Kim et al.
[2009], Shah et al. [2013], and Sun et al. [2015]. The NBU and NWU notions are closely
related to the log-concavity of service time studied in this work.

The cost of redundancy. If we assume exponential service time, then redundancy does
not cause any increase in cost of server time. But since this is not true in practice, it is
important to determine the cost of using redundancy. Simulation results with nonzero
fixed cost of removal of redundant requests are presented in Shah et al. [2013]. The
expected computing cost E[C] spent per job was previously considered in Wang et al.
[2014, 2015] for a distributed system without considering queueing of requests. In Joshi
et al. [2015], we presented an analysis of the latency and cost of the (n, k) fork-join with
and without early cancellation of redundant tasks.

3.2. Main Contributions
The main differences between this and previous works are the following: (1) we consider
a general service time distribution instead of exponential service time, and (2) we
analyze the impact of redundancy on the latency, as well as the computing cost (total
server time spent per job). Incidentally, our computing cost metric E[C] also serves as
a powerful tool to compare different redundancy strategies under high load.

The latency-cost analysis of the fork-join system and its variants gives us the insight
that the log-concavity (and respectively the log-convexity) of F̄X, the tail distribution
of service time, is a key factor in choosing the redundancy strategy. Here are some
examples, which are also summarized in Table II:

—By comparing the (n, 1) systems (fork to n, wait for any 1) with and without early
cancellation, we can show that early cancellation of redundancy can reduce both
latency and cost for log-concave F̄X, but it is not effective for log-convex F̄X.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:6 G. Joshi et al.

—For the (n, r, 1) partial-fork-join system (fork to r out of n, wait for any 1), we can show
that forking to more servers (larger r) is both latency and cost optimal for log-convex
F̄X. But for log-concave F̄X, larger r reduces latency only in the low traffic regime and
always increases the computing cost.

Using these insights, we also develop a general redundancy strategy to decide how
many servers to fork to, and when to cancel the redundant tasks, for an arbitrary
service time that may be neither log-concave nor log-convex.

4. PRELIMINARY CONCEPTS
We now present some preliminary concepts that are vital to understanding the results
presented in the rest of the article.

4.1. Using E[C] to Compare Systems
Since the cost metric E[C] is the expected time spent by servers on each job, higher E[C]
implies a higher expected waiting time for subsequent jobs. Thus, E[C] can be used to
compare the latency to different redundancy policies in the heavy traffic regime. In
particular, we compare policies that are symmetric across the servers, defined formally
as follows.

Definition 4 (Symmetric Policy). With a symmetric scheduling policy, the tasks of
each job are forked to one or more servers such that the expected task arrival rate is
equal across all servers.

Most commonly used policies, such as random, round-robin, and join the shortest
queue (JSQ), are symmetric across the n servers. In Lemma 1, we express the stability
region of the system in terms of E[C].

LEMMA 1 (STABILITY REGION IN TERMS OF E[C]). A system of n servers with a symmetric
redundancy policy is stable—that is, the mean response time E[T] < ∞, only if the
arrival rate λ (with any arrival process) satisfies

λ <
n

E[C]
. (1)

Thus, the maximum arrival rate that can be supported is λmax = n/E[C], where E[C]
depends on the redundancy scheduling policy.

PROOF OF LEMMA 1. For a symmetric policy, the mean time spent by each server per
job is E[C]/n. Thus, the server utilization is ρ = λE[C]/n. By the server utilization
version of Little’s law, ρ must be less than 1 for the system to be stable. The result
follows from this.

Definition 5 (Service Capacity λ∗
max). The service capacity of the system λ∗

max is the
maximum achievable λmax over all symmetric policies.

From Lemma 1 and Definition 5, we can infer Corollary 1.

COROLLARY 1. The redundancy strategy that minimizes E[C] results in the lowest E[T]
in the heavy traffic regime (λ → λ∗

max).

Note that as λ approaches λ∗
max, the expected latency E[T] → ∞ for all strategies

whose λmax < λ∗
max.

4.2. Log-Concavity of F̄X

If we fork a job to all r idle servers and wait for any one copy to finish, the expected
computing cost E[C] = rE[X1:r], where X1:r = min(X1, X2, . . . , Xr), the minimum of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:7

r independent and identically distributed realizations of random variable X. The
behavior of this cost function depends on whether the tail distribution F̄X of service
time is log-concave or log-convex. Log-concavity of F̄X is defined formally as follows.

Definition 6 (Log-Concavity and Log-Convexity of F̄X). The tail distribution F̄X is said
to be log-concave (log-convex) if log Pr(X > x) is concave (convex) in x for all x ∈ [0,∞).

For brevity, when we say that X is log-concave (log-convex) in this article, we mean
that F̄X is log-concave (log-convex). Lemma 2 states how rE[X1:r] varies with r for
log-concave (log-convex) F̄X.

LEMMA 2 (EXPECTED MINIMUM). If X is log-concave (log-convex), then rE[X1:r] is non-
decreasing (nonincreasing) in r.

The proof of Lemma 2 can be found in Appendix A. Note that the exponential dis-
tribution is both log-concave and log-convex, and thus rE[X1:r] remains constant as r
varies. This can also be seen from the fact that when X ∼ Exp(µ), an exponential with
rate µ, X1:r is an exponential with rate rµ. Then rE[X1:r] = 1/µ, a constant independent
of r.

Log-concave and log-convex distributions have been studied in economics and reli-
ability theory and have many interesting properties. Properties relevant to this work
are given in Appendix A. We refer readers to Bagnoli and Bergstrom [2005]. In Remark
1, we highlight one key property that provides intuitive understanding of log-concavity.

Remark 1. It is well known that the exponential distribution is memoryless. Log-
concave distributions have “optimistic memory”—that is, the expected remaining ser-
vice time of a task decreases with the time elapsed. On the other hand, log-convex
distributions have “pessimistic memory.”

Distributions with optimistic memory are referred to as NBU [Koole and Righter
2008], light-everywhere [Shah et al. 2013], or new-longer-than-used [Sun et al. 2015].
Log-concavity of X implies that X is NBU (see Property 3 in Appendix A for the proof).

A natural question is this: what are examples of log-concave and log-convex distri-
butions that arise in practice? A canonical example of a log-concave distribution is the
shifted exponential distribution ShiftedExp(", µ), which is exponential with rate µ,
plus a constant shift " ≥ 0, is log-concave. Recent work [Liang and Kozat 2014; Chen
et al. 2014] on analysis of content download from Amazon S3 observed that X is shifted
exponential, where " is proportional to the size of the content and the exponential
part is the random delay in starting the data transfer. Another example of log-concave
service time is the uniform distribution over any convex set.

Log-convex service times occur when there is high variability in service time. CPU
service times are often approximated by the hyperexponential distribution, which is
a mixture of two or more exponentials. In this article, we focus on mixtures of two
exponentials with decay rates µ1 and µ2, respectively, where the exponential with rate
µ1 occurs with probability p. We denote this distribution by HyperExp(µ1, µ2, p). If a
server is generally fast (rate µ1) but it can slow down (rate µ2 < µ1) with probability
1 − p, then the overall service time distribution would be X ∼ HyperExp(µ1, µ2, p).

Many practical systems also have service times that are neither log-concave nor log-
convex. In this work, we use the Pareto distribution Pareto(xm,α) as an example of such
distributions. Its tail distribution is given by

Pr(X > x) =
{(xm

x

)α x ≥ xm,

1 otherwise.
(2)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:8 G. Joshi et al.

The tail distribution in (2) is log-convex for x ≥ xm, but not for all x ≥ 0 due the initial
delay of xm. Thus, overall, the Pareto distribution is neither log-concave nor log-convex.

Remark 2. Log-concave (log-convex) distributions are reminiscent of another well-
known class of distributions: light (heavy) tailed distributions. Many random variables
with log-concave (log-convex) F̄X are light (heavy) tailed, respectively, but neither prop-
erty implies the other. For example, the Pareto distribution defined earlier is heavy
tailed but is neither log-concave nor log-convex. Whereas the tail of a distribution char-
acterizes how the maximum E[Xn:n] behaves for large n, log-concavity (log-convexity) of
F̄X characterizes the behavior of the minimum E[X1:n], which is of primary interest in
this work.

4.3. Relative Task Start Times
Since the tasks of the job experience different waiting times in their respective queues,
they start being served at different times. The relative start times of the n tasks of a
job is an important factor affecting the latency and cost. We denote the relative start
times by t1 ≤ t2 ≤ · · · ≤ tn, where t1 = 0 without loss of generality. For instance, if n = 3
tasks start at absolute times 3, 4, and 7, then their relative start times are t1 = 0,
t2 = 4 − 3 = 1, and t3 = 7 − 3 = 4. In the case of partial forking when only r tasks are
invoked, we can consider tr+1, · · · tn to be ∞.

For the replicated case (k = 1), let S be the time from when the earliest replica of
a task starts service until any one replica finishes. It is the minimum of X1 + t1, X2 +
t2, . . . , Xn + tn, where Xi are independent and identically distributed with distribution
FX. The tail distribution Pr(S > s) is given by

Pr(S > s) =
n∏

i=1

Pr(X > s − tn). (3)

The computing cost C can be expressed in terms of S and ti as follows:

C = S + (S − t2)+ + · · · + (S − tn)+ . (4)

Using (4), we get several crucial insights in the rest of the article. For instance, in
Section 6, we show that when F̄X is log-convex, having t1 = t2 = · · · = tn = 0 gives the
lowest E[C]. Then using Lemma 1, we can infer that it is optimal to fork a job to all n
servers when F̄X is log-convex.

5. k = 1 CASE WITHOUT AND WITH EARLY CANCELLATION
In this section, we analyze the latency and cost of the (n, 1) fork-join system, and the
(n, 1) fork-early-cancel system defined in Section 2. We get the insight that it is better to
cancel redundant tasks early if F̄X is log-concave. However, if F̄X is log-convex, retaining
the redundant tasks is better.

5.1. Latency-Cost Analysis

THEOREM 1. The expected latency and computing cost of an (n, 1) fork-join system are
given by

E[T] = E[T M/G/1] = E[X1:n] +
λE[X2

1:n]
2(1 − λE[X1:n])

, (5)

E[C] = n · E[X1:n], (6)

where X1:n = min(X1, X2, . . . , Xn) for independent and identically distributed Xi ∼ FX.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:9

Fig. 3. Equivalence of the (n, 1) fork-join system with an M/G/1 queue with service time X1:n, the minimum
of n independent and identically distributed random variables X1, X2, . . . , Xn.

Fig. 4. The service time X ∼ " + Exp(µ) (log-
concave), with µ = 0.5, λ = 0.25. As n increases along
each curve, E[T] decreases and E[C] increases. Only
when " = 0 does latency reduce at no additional cost.

Fig. 5. The service time X ∼ HyperExp(0.4, µ1, µ2)
(log-convex), with µ1 = 0.5, different values of µ2,
and λ = 0.5. Expected latency and cost both reduce
as n increases along each curve.

PROOF. Consider the first job that arrives to a (n, 1) fork-join system when all servers
are idle. The n tasks of this job start service simultaneously at their respective servers.
The earliest task finishes after time X1:n, and all other tasks are canceled immediately.
Thus, the tasks of all subsequent jobs arriving to the system also start simultaneously
at the n servers as illustrated in Figure 3. Hence, arrival and departure events, and the
latency of an (n, 1) fork-join system, are equivalent in distribution to an M/G/1 queue
with service time X1:n.

The expected latency of an M/G/1 queue is given by the Pollaczek-Khinchine formula
(5). The expected cost E[C] = nE[X1:n] because each of the n servers spends X1:n time
on the job. This can also be seen by noting that S = X1:n when ti = 0 for all i, and thus
by (4), C = nX1:n.

From (5), it is easy to see that for any service time distribution FX, the expected
latency E[T] is nonincreasing with n. The behavior of E[C] follows from Lemma 2 as
given by Corollary 2.

COROLLARY 2. If F̄X is log-concave (log-convex), then E[C] is nondecreasing (nonin-
creasing) in n.

Figures 4 and 5 show analytical plots of the expected latency versus cost for log-
concave and log-convex F̄X, respectively. In Figure 4, the arrival rate λ = 0.25, and
X is shifted exponential ShiftedExp(", 0.5), with different values of ". For " > 0,
there is a trade-off between expected latency and cost. Only when " = 0—that is, X
is a pure exponential (which is generally not true in practice)—can we reduce latency
without any additional cost. In Figure 5, arrival rate λ = 0.5, and X is hyperexponential

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:10 G. Joshi et al.

Fig. 6. Equivalence of the (n, 1) fork-early-cancel system to an M/G/n queue with each server taking time
X ∼ FX to serve the task independent and identically distributed across servers and tasks.

HyperExp(0.4, 0.5, µ2), with different values of µ2. We get a simultaneous reduction in
E[T] and E[C] as n increases. The cost reduction is steeper as µ2 increases.

Instead of holding the arrival rate λ constant, if we consider that it scales linearly
with n, then the latency E[T] may not always decrease with n. In Corollary 3, we study
the behavior as n varies.

COROLLARY 3. If the arrival rate λ = λ0n, scaling linearly with n, then the latency
E[T] decreases with n if F̄X is log-convex. If F̄X is log-concave, then E[T] increase with
n in heavy traffic.

PROOF. If λ = λ0n, then latency E[T] in (5) can be rewritten as

E[T] = E[X1:n] +
λ0nE

[
X2

1:n

]

2(1 − λ0nE[X1:n])
. (7)

If F̄X is log-convex, then by Lemma 2 we know that nE[X1:n] decreases with n. Similarly,
nE[X2

1:n] also decreases with n (the proof follows similarly as Lemma 2. Hence, we can
conclude that the latency in (7) decreases with n for log-convex F̄X. However, if F̄X
is log-concave, then nE[X1:n] and nE[X2

1:n] increase with n. Thus, in the heavy traffic
regime (λ → λ∗

max), when the second term in (7) dominates, E[T] increases with n.

5.2. Early Task Cancellation
We now analyze the (n, 1) fork-early-cancel system, where we cancel redundant tasks
as soon as any task reaches the head of its queue. Intuitively, early cancellation
can save computing cost, but the latency could increase due to the loss of diversity
advantage provided by retaining redundant tasks. Comparing it to the (n, 1) fork-join
system, we gain the insight that early cancellation is better when F̄X is log-concave
but ineffective for log-convex F̄X.

THEOREM 2. The expected latency and cost of the (n, 1) fork-early-cancel system are
given by

E[T] = E[T M/G/n], (8)
E[C] = E[X], (9)

where T M/G/n is the response time of an M/G/n queueing system with service time
X ∼ FX.

PROOF. In the (n, 1) fork-early-cancel system, when any one task reaches the head of
its queue, all others are canceled immediately. The redundant tasks help find the queue
with the least work left, and exactly one task of each job is served by the first server that
becomes idle. Thus, as illustrated in Figure 6, the latency of the (n, 1) fork-early-cancel

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:11

Fig. 7. For the (4, 1) system with service time X ∼
ShiftedExp(2, 0.5), which is log-concave, early can-
cellation is better in the high λ regime, as given by
Corollary 5.

Fig. 8. For the (4, 1) system with X ∼ HyperExp
(0.1, 1.5, 0.5), which is log-convex, early cancellation
is worse in both low and high λ regimes, as given by
Corollary 5.

system is equivalent in distribution to an M/G/n queue. Hence, E[T] = E[T M/G/n] and
E[C] = E[X].

The exact analysis of mean response time E[T M/G/n] has long been an open problem
in queueing theory. A well-known approximation given by Lee and Longton [1959] is

E[T M/G/n] ≈ E[X] + E[X2]
2E[X]2 E[W M/M/n], (10)

where E[W M/M/n] is the expected waiting time in an M/M/n queueing system with load
ρ = λE[X]/n. This expected waiting time can be evaluated using the Erlang-C model
(see Chapter 14 of Harchol-Balter [2013]). A related work that studies the centralized
queue model that the (n, 1) fork-early-cancel system is equivalent to is Visschers et al.
[2012], which considers the case of heterogeneous job classes with exponential service
times.

Next we compare the latency and cost with and without early cancellation given by
Theorems 1 and 2. Corollary 4 follows from Lemma 2.

COROLLARY 4. If F̄X is log-concave (log-convex), then E[C] of the (n, 1) fork-early-cancel
system is greater than or equal to (less than or equal to) that of the (n, 1) fork-join system.

In the low λ regime, the (n, 1) fork-join system gives lower E[T] than (n, 1) fork-early-
cancel because of higher diversity due to redundant tasks. By Corollary 1, in the high
λ regime, the system with lower E[C] has lower expected latency.

COROLLARY 5. If F̄X is log-concave, then early cancellation gives higher E[T] than
(n, 1) fork-join when λ is small and lower in the high λ regime. If F̄X is log-convex, then
early cancellation gives higher E[T] for both low and high λ.

Figures 7 and 8 illustrate Corollary 5. Figure 7 shows a comparison of E[T] with
and without early cancellation of redundant tasks for the (4, 1) system with service
time X ∼ ShiftedExp(2, 0.5). We observe that early cancellation gives lower E[T] in the
high λ regime. In Figure 8, we observe that when X is HyperExp(0.1, 1.5, 0.5), which is
log-convex, early cancellation is worse for both small and large λ.

In general, early cancellation is better when X is less variable (lower coefficient of
variation). For example, in a comparison of E[T] with (n, 1) fork-join and (n, 1) fork-
early-cancel systems as ", the constant shift of service time ShiftedExp(", µ) varies,
indicating that early cancellation is better for larger ". When " is small, there is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:12 G. Joshi et al.

Fig. 9. A (4, 2, 1) partial-fork-join system, where each job is forked to r = 2 servers, chosen according to the
group-based random or uniform random policies.

more randomness in the service time of a task, and hence keeping the redundant tasks
running gives more diversity and lower E[T]. But as " increases, task service times
are more deterministic, due to which it is better to cancel the redundant tasks early.

6. PARTIAL FORKING (k = 1 CASE)
For applications with a large number of servers n, full forking of jobs to all servers can
be expensive in terms of the network cost of issuing and canceling the tasks. In this
section, we analyze the k = 1 case of the (n, r, k) fork-join system, where an incoming
job is forked to some r out n servers and we wait for any one task to finish. The r servers
are chosen using a symmetric policy (Definition 4). The following are some examples
of symmetric policies:

(1) Group-based random: This policy holds when r divides n. The n servers are divided
into n/r groups of r servers each. A job is forked to one of these groups, chosen
uniformly at random.

(2) Uniform random: A job is forked to any r out of n servers, chosen uniformly at
random.

Figure 9 illustrates the (4, 2, 1) partial-fork-join system with the group-based random
and the uniform random policies. In the sequel, we develop insights into the best r and
the choice of servers for a given service time distribution FX.

Remark 3 (Relation to Power-of-r Scheduling). Power-of-r scheduling [Mitzenmacher
1996] is a well-known policy in multiserver systems. It chooses r out of the n servers
at random and assigns an incoming task to the shortest queue among them. A major
advantage of the power-of-r policy is that even with r << n, the latency achieved by it
is close to the JSQ policy (equivalent to power-of-r with r = n).

The (n, r, 1) partial-fork-join system with uniform random policy also chooses r queues
at random. However, instead of choosing the shortest queue, it creates replicas of the
task at all queues. The replicas help find the queue with the least work left, which gives
better load balancing than joining the shortest queue. But unlike power-of-r, servers
might spend redundant time on replicas that will eventually be canceled.

6.1. Latency-Cost Analysis
In the group-based random policy, the job arrivals are split equally across the groups,
and each group behaves like an independent (r, 1) fork-join system. Thus, the expected
latency and cost follow from Theorem 1 as given in Lemma 3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:13

Fig. 10. Analytical plot of latency versus cost for n = 12 servers. Each job is replicated at r servers chosen
by the group-based random policy, with r increasing as 1, 2, 3, 4, 6, and 12 along each curve. The task
service time X ∼ Pareto(1, 2.2). As λ increases, the replicas increase queueing delay. Thus, the optimal r∗

that minimizes E[T] shifts downward as λ increases.

LEMMA 3 (GROUP-BASED RANDOM). The expected latency and cost when each job is
forked to one of n/r groups of r servers each are given by

E[T] = E[X1:r] +
λrE[X2

1:r]
2(n − λrE[X1:r])

, (11)

E[C] = rE[X1:r]. (12)

PROOF. The job arrivals are split equally across the n/r groups such that the arrival
rate to each group is a Poisson process with rate λr/n. The r tasks of each job start
service at their respective servers simultaneously, and thus each group behaves like
an independent (r, 1) fork-join system with Poisson arrivals at rate λr/n. Hence, the
expected latency and cost follow from Theorem 1.

Using (12) and Lemma 1, we can infer that the service capacity (maximum supported
λ) for an (n, r, 1) system with group-based random policy is

λmax = n
rE

[
X1:r

] . (13)

From (13), we can infer that the r that minimizes rE[X1:r] results in the highest service
capacity, and hence the lowest E[T] in the heavy traffic regime. By Lemma 2, the
optimal r is r = 1 (r = n) for log-concave (log-convex) F̄X. For distributions that are
neither log-concave nor log-convex, an intermediate r may be optimal and we can
determine it using Lemma 3. For example, Figure 10 shows a plot of latency versus
cost as given by Lemma 3 for n = 12 servers. The task service time X ∼ Pareto(1, 2.2).
Each job is replicated at r servers according to the group-based random policy, with r
varying along each curve. Initially increasing r reduces the latency, but beyond r∗, the
replicas cause an increase in the queueing delay. This increase in queueing delay is
more dominant for higher λ. Thus, the optimal r∗ decreases as λ increases.

For other symmetric policies, it is difficult to get an exact analysis of E[T] and E[C]
because the tasks of a job can start at different times. However, we can get bounds on
E[C] depending on the log-concavity of X, given in Theorem 3.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:14 G. Joshi et al.

Fig. 11. Expected cost E[C] versus r for X ∼ ShiftedExp(1, 0.25), n = 6 servers, arrival rate λ = 0.5, and
different scheduling policies. The upper bound rE[X1:r] is exact for the group-based random policy and fairly
tight for other policies.

THEOREM 3. Consider an (n, r, 1) partial-fork join system, where a job is forked into
tasks at r out of n servers chosen according to a symmetric policy. For any relative task
start times ti, E[C] can be bounded as follows:

rE[X1:r] ≥ E[C] ≥ E[X] if F̄X is log-concave, (14)

E[X] ≥ E[C] ≥ rE[X1:r] if F̄X is log-convex. (15)

In the extreme case when r = 1, E[C] = E[X], and when r = n, E[C] = nE[X1:n].

To prove Theorem 3, we take expectation in (4) and show that for log-concave and
log-convex F̄X, we get the bounds in (14) and (15), which are independent of the relative
task start times ti. The detailed proof is given in Appendix B.

In Figure 11, we show the bounds given by (14) for log-concave distributions
alongside simulation values for different scheduling policies. The service time X ∼
ShiftedExp(1, 0.25), and arrival rate λ = 0.5. Since all replicas start simultaneously
with the group-based random policy, the upper bound E[C] ≥ rE[X1:r] is tight for any
r. For other scheduling policies, the bound is more loose for the policy that staggers
relative start times of replicas to a greater extent.

6.2. Optimal Value of r
We can use the bounds in Theorem 3 to gain insights into choosing the best r when F̄X
is log-concave or log-convex. In particular, we study two extreme traffic regimes: low
traffic (λ → 0) and heavy traffic (λ → λ∗

max), where λ∗
max is the service capacity of the

system introduced in Definition 5.

COROLLARY 6 (EXPECTED COST VS. r). For a system of n servers with symmetric forking
of each job to r servers, r = 1 (r = n) minimizes the expected cost E[C] when F̄X is
log-concave (log-convex).

The proof follows from Lemma 2 in that rE[X1:r] is nondecreasing (nonincreasing)
with r for log-concave (log-convex) F̄X.

LEMMA 4 (EXPECTED LATENCY VS. r). In the low traffic regime, forking to all servers
(r = n) gives the lowest E[T] for any service time distribution FX. In the heavy traffic
regime, r = 1 (r = n) gives the lowest E[T] if F̄X is log-concave (log-convex).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:15

Fig. 12. For X ∼ ShiftedExp(1, 0.5), which is log-
concave, forking to less (more) servers reduces
expected latency in the low (high) λ regime.
Each job is replicated at r out of n = 6 servers,
chosen by the group-based random policy.

Fig. 13. For X ∼ HyperExp(p, µ1, µ2) with p = 0.1, µ1 =
1.5, and µ2 = 0.5, which is log-convex, larger r gives lower
expected latency for all λ. Each job is replicated at r out
of n = 6 servers, chosen according to the group-based
random policy.

PROOF. In the low traffic regime with λ → 0, the waiting time in the queue tends
to zero. Thus, all replicas of a task start service at the same time, irrespective of the
scheduling policy. Then the expected latency is E[T] = E[X1:r], which decreases with r.
Thus, r = n gives the lower E[T] for any service time distribution FX.

By Corollary 1, the optimal replication strategy in heavy traffic is the one that
minimizes E[C]. For log-convex F̄X, r = n achieves the lower bound E[C] = nE[X1:n] in
(15) with equality. Thus, r = n is the optimal strategy in the heavy traffic regime. For
log-concave F̄X, r = 1 achieves the lower bound E[C] = E[X] in (14) with equality. Thus,
in heavy traffic, r = 1 gives lowest E[T] for log-concave F̄X.

Lemma 4 is illustrated by Figures 12 and 13, where E[T] calculated analytically
using (11) is plotted versus λ for different values of r. Each job is assigned to r servers
chosen uniformly at random from n = 6 servers. In Figure 12, the service time distri-
bution is ShiftedExp(", µ) (which is log-concave) with " = 1 and µ = 0.5. When λ is
small, more redundancy (higher r) gives lower E[T], but in the high λ regime, r = 1
gives lowest E[T] and highest service capacity. However, in Figure 13, for a log-convex
distribution HyperExp(p, µ1, µ2), in the high load regime E[T] decreases as r increases.

Lemma 4 was previously proven for NBU (NWU) instead of log-concave (log-convex)
F̄X in Shah et al. [2013] and Koole and Righter [2008] using a combinatorial argument.
Using Theorem 3, we get an alternative and arguably simpler way to prove this result.
Note that our version is weaker because log-concavity implies NBU, but the converse
is not true in general (see Property 3 in Appendix A).

Due to the network cost of issuing and canceling the replicas, there may be an upper
limit r ≤ rmax on the number of replicas. The optimal strategy under this constraint is
given by Lemma 5.

LEMMA 5 (OPTIMAL r UNDER r ≤ rmax). For log-convex F̄X, r = rmax is optimal. For
log-concave F̄X, r = 1 is optimal in heavy traffic.

The proof is similar to Lemma 4 with n replaced by rmax.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:16 G. Joshi et al.

Fig. 14. For service time distribution ShiftedExp
(1, 0.5), which is log-concave, uniform random
scheduling (which staggers relative task start times)
gives lower E[T] than group-based random for all λ.
The system parameters are n = 6, r = 3.

Fig. 15. For service time distribution HyperExp
(0.1, 2.0, 0.2), which is log-convex, group-based
scheduling gives lower E[T] than uniform random
in the high λ regime. The system parameters are
n = 6, r = 3.

6.3. Choice of the r Servers
For a given r, we now compare different policies of choosing the r servers for each
job. The choice of the r servers determines the relative starting times of the tasks. By
using the bounds in Theorem 3 that hold for any relative task start times, we get the
following result.

LEMMA 6 (COST OF DIFFERENT POLICIES). Given r, if F̄X is log-concave (log-convex),
the symmetric policy that results in the tasks starting at the same time (ti = 0 for all
1 ≤ i ≤ r) results in higher (lower) E[C] than one that results in 0 < ti < ∞ for one or
more i.

PROOF. The symmetric policy that results in ti = 0 for all 1 ≤ i ≤ r (e.g., the
group-based random policy) results in E[C] = rE[X1:r]. By Theorem 3, if F̄X is log-
concave, E[C] ≤ rE[X1:r] for any symmetric policy. Thus, for log-concave distributions,
the symmetric policy that results in 0 < ti < ∞ for one or more i gives lower E[C] than
the group-based random policy. However, for log-convex distributions, E[C] ≥ rE[X1:r]
with any symmetric policy. Thus, the policies that result in relative task start times
ti = 0 for all 1 ≤ i ≤ r give lower E[C] than other symmetric policies.

LEMMA 7 (LATENCY IN THE HIGH λ REGIME). Given r, if F̄X is log-concave (log-convex),
the symmetric policy that results in the tasks starting at the same time (ti = 0 for all
1 ≤ i ≤ r) results in higher (lower) E[T] in the heavy traffic regime than one that results
in 0 < ti < ∞ for some i.

PROOF. By Corollary 1, the optimal replication strategy in heavy traffic is the one
that minimizes E[C]. Then the proof follows from Lemma 6.

Lemma 7 is illustrated by Figures 14 and 15 for n = 6 and r = 3. The simulations
are run for 100 workloads with 1,000 jobs each. The r tasks may start at different
times with the uniform random policy, whereas they always start simultaneously with
group-based random policy. Thus, in the high λ regime, the uniform random policy
results in lower latency for log-concave F̄X, as observed in Figure 14. But for log-convex
F̄X, group-based forking is better in the high λ regime, as seen in Figure 15. For low
λ, uniform random policy is better for any F̄X because it gives lower expected waiting
time in the queue.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:17

7. THE GENERAL K CASE
We now move to the general k case, where a job requires any k out of n tasks to complete.
In practice, the general k case arises in large-scale parallel computing frameworks such
as MapReduce and in content downloads from coded distributed storage systems. In
this section, we present bounds on the latency and cost of the (n, k) fork-join and (n, k)
fork-early-cancel systems. In Section 7.2, we demonstrate an interesting diversity-
parallelism trade-off in choosing k.

7.1. Latency and Cost of the (n, k) Fork-Join System
Unlike the k = 1 case, for general k the exact analysis is hard because multiple jobs can
be in service simultaneously (e.g., Job A and Job B in Figure 1). Even for the k = n case
studied in Nelson and Tantawi [1988] and Varki et al. [208], only bounds on latency are
known. We generalize those latency bounds to any k and also provide bounds on cost
E[C]. The analysis of E[C] can be used to estimate the service capacity using Lemma 1.

THEOREM 4 (BOUNDS ON LATENCY). The latency E[T] is bounded as follows:

E[T] ≤ E[Xk:n] +
λE

[
X2

k:n
]

2(1 − λE[Xk:n])
, (16)

E[T] ≥ E[Xk:n] +
λE

[
X2

1:n

]

2(1 − λE[X1:n])
. (17)

The proof is given in Appendix C. In Figure 16, we plot the bounds on latency
alongside the simulation values for Pareto service time. The upper bound (16) becomes
more loose as k increases, because the split-merge system considered to get the upper
bound (see the proof of Theorem 4) becomes worse as compared to the fork-join system.
For the special case k = n, we can improve the upper bound in Lemma 8 by generalizing
the approach used in Nelson and Tantawi [1988].

LEMMA 8 (TIGHTER UPPER BOUND WHEN k = n). For the case k = n, another upper
bound on latency is given by

E[T] ≤ E[max (R1, R2, · · · Rn)], (18)

where Ri are independent and identically distributed realizations of the response time
R of an M/G/1 queue with arrival rate λ and service time distribution FX.

The proof is given in Appendix C. Transform analysis (see Chapter 25 of Harchol-
Balter [2013]) can be used to determine the distribution of R, the response time of an
M/G/1 queue in terms of FX(x). The Laplace-Stieltjes transform R(s) of the probability
density function of fR(r) of R is given by

R(s) =
sX(s)

(
1 − λ

E[X]

)

s − λ(1 − X(s))
, (19)

where X(s) is the Laplace-Stieltjes transform of the service time distribution fX(x).
The lower bound on latency (17) can be improved for shifted exponential FX, gen-

eralizing the approach in Varki et al. [2008] based on the memoryless property of the
exponential tail.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:18 G. Joshi et al.

Fig. 16. Bounds on latency E[T] versus k (Theo-
rem 4) alongside simulation values. The service time
X ∼ Pareto(0.5, 2.5), n = 10, and λ = 0.5. A tighter
upper bound for k = n is evaluated using Lemma 8.

Fig. 17. Bounds on cost E[C] versus k (Theorem 5)
alongside simulation values. The service time X ∼
Pareto(0.5, 2.5), n = 10, and λ = 0.5. The bounds are
tight for k = 1 and k = n.

THEOREM 5 (BOUNDS ON COST). The expected computing cost E[C] can be bounded as
follows:

E[C] ≤ (k − 1)E[X] + (n − k + 1)E[X1:n−k+1], (20)

E[C] ≥
k∑

i=1

E[Xi:n] + (n − k)E[X1:n−k+1]. (21)

The proof is given in Appendix C. Figure 17 shows the bounds alongside the simula-
tion plot of the computing cost E[C] when FX is Pareto(xm,α) with xm = 0.5 and α = 2.5.
The arrival rate λ = 0.5, and n = 10 with k varying from 1 to 10 on the x-axis. The
simulation is run for 100 iterations of 1,000 jobs. We observe that the bounds on E[C]
are tight for k = 1 and k = n, which can also be inferred from (20) and (21).

7.2. Diversity-Parallelism Trade-Off
In Figure 16, we observed the expected latency increases with k, because we need to
wait for more tasks to complete, and the service time X is independent of k. But in most
computing and storage applications, the service time X decreases as k increases because
each task becomes smaller. We refer to this as the parallelism benefit of splitting
a job into more tasks. But as k increases, we lose the diversity benefit provided by
redundant tasks and have to wait only for a subset of the tasks to finish. Thus, there
is a diversity-parallelism trade-off in choosing the optimal k∗ that minimizes latency
E[T]. We demonstrate the diversity-parallelism trade-off in simulation plot Figure 18
for service time X ∼ ShiftedExp("k, µ), with µ = 1.0, and "k = "/k. As k increases, we
lose diversity but the parallelism benefit is higher because each task is smaller. As "
increases, the optimal k∗ shifted upward because the service time distribution becomes
“less random,” and thus there is less diversity benefit.

We can also observe the diversity-parallelism trade-off mathematically in the low
traffic regime for X ∼ ShiftedExp("/k, µ). If we take λ → 0 in (17) and (16), both
bounds coincide and we get

lim
λ→∞

E[T] = E[Xk:n] = "

k
+ Hn − Hn−k

µ
, (22)

where Hn =
∑n

i=1 1/i, the nth harmonic number. The parallelism benefit comes from
the first term in (22), which reduces with k. The diversity of waiting for k out of n tasks

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:19

Fig. 18. Expected latency versus k for task ser-
vice time X ∼ ShiftedExp("/k, 1.0) and arrival rate
λ = 0.5. As k increases, we lose diversity but the
parallelism benefit is higher because each task is
smaller.

Fig. 19. Expected cost versus k for task service time
X ∼ ShiftedExp("/k, 1.0) and arrival rate λ = 0.5.
As k increases, we lose diversity but the parallelism
benefit is higher because each task is smaller.

causes the second term to increase with k. The optimal k∗ that minimizes (22) strikes
a balance between these two opposing trends.

Figure 19 shows a similar diversity-parallelism trade-off in choosing k to minimize
the computing cost E[C]. In the heavy traffic regime, by Corollary 1 the policy that
minimizes E[C] also minimizes E[T]. Thus, the same k∗ will minimize both E[T] and
E[C].

7.3. Latency and Cost of the (n, k) Fork-Early-Cancel System
We now analyze the latency and cost of the (n, k) fork-early-cancel system where the
redundant tasks are canceled as soon as any k tasks start service.

THEOREM 6 (LATENCY-COST WITH EARLY CANCELLATION). The cost E[C] and an upper
bound on the expected latency E[T] with early cancellation is given by

E[C] = kE[X], (23)
E[T] ≤ E[max (R1, R2, · · · Rk)], (24)

where Ri are independent and identically distributed realizations of R, the response
time of an M/G/1 queue with arrival rate λk/n and service time distribution FX.

The proof is given in Appendix C. The Laplace-Stieltjes transform of the response
time R of an M/G/1 queue with service time distribution FX(x) and arrival rate is the
same as (19), with λ replaced by λk/n.

By comparing the cost E[C] = kE[X] in (23) to the bounds in Theorem 5 without early
cancellation, we can get insights into when early cancellation is effective for a given
service time distribution FX. For example, when F̄X is log-convex, the upper bound in
(20) is smaller than kE[X]. Thus, we can infer that the (n, k) fork-early-cancel system
is always worse than the (n, k) fork-join system when X is log-convex. We also observed
this phenomenon in Figure 8 for the k = 1 case.

8. GENERAL REDUNDANCY STRATEGY
From the analysis in Sections 5 and 6, we get insights into designing the best redun-
dancy strategy for log-concave and log-convex service time. But it is not obvious to infer
the best strategy for arbitrary service time distributions or when only empirical traces
of the service time are given. We now propose such a redundancy strategy to minimize
the latency, subject to computing and network cost constraints. This strategy can also

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:20 G. Joshi et al.

be used on traces of task service time when closed-form expressions of FX and its order
statistics are not known.

8.1. Generalized Fork-Join Model
We first introduce a general fork-join variant that is a combination of the partial fork
introduced in Section 2 and partial early cancellation of redundant tasks.

Definition 7 ((n, r f , r, k) Fork-Join System). For a system of n servers and a job that
requires k tasks to complete, we do the following:

—Fork the job to r f out of the n servers chosen uniformly at random.
—When any r ≤ r f tasks are at the head of queues or in service already, cancel all

other tasks immediately. If more than r tasks start service simultaneously, retain r
randomly chosen ones out of them.

—When any k ≤ r tasks finish, cancel all remaining tasks immediately.

Note that k tasks may finish before some r start service, and thus we may not need
to perform the partial early cancellation in the preceding second step.

Recall that the n servers have service time distribution X that is independent and
identically distributed across the servers and tasks. The r f − r tasks that are canceled
early help find the shortest r out of the r f queues, thus reducing waiting time. From
the r tasks retained, waiting for any k to finish provides diversity and hence reduces
service time.

The special cases (n, n, n, k), (n, n, k, k), and (n, r, r, k) correspond to the (n, k) fork-join,
(n, k) fork-early-cancel, and (n, r, k) partial-fork-join systems, respectively, which are
defined in Section 2.

8.2. Choosing Parameters rf and r
We now propose a strategy to choose r f and r that minimize expected latency E[T]
subject to a computing cost constraint E[C] ≤ γ , and a network cost constraint r f ≤ rmax.
We impose the second constraint because forking to more servers results in higher
network cost of remote-procedure calls (RPCs) to launch and cancel the tasks.

Definition 8 (Proposed Redundancy Strategy). Choose r f and r to minimize E[T]
subject to constraints E[C] ≤ γ and r f ≤ rmax. The solutions are

r∗
f = rmax, (25)

r∗ = arg min
r∈[0,rmax]

T̂ (r), subject to Ĉ(r) ≤ γ , (26)

where T̂ (r) and Ĉ(r) are estimates of the expected latency E[T] and cost E[C], defined
as follows:

T̂ (r) ! E[Xk:r] + λrE[X2
k:r]

2(n − λrE[Xk:r])
, (27)

Ĉ(r) ! rE[Xk:r]. (28)

To justify the preceding strategy, observe that for a given r, increasing r f gives
higher diversity in finding the queues with the least work left and thus reduces la-
tency. Since r f − r tasks are canceled early before starting service, r f affects E[C] only
mildly, through the relative task start times of r tasks that are retained. Thus, we
conjecture that it is optimal to set r f = rmax in (25), the maximum value possible under
network cost constraints. However, changing r does affect both the computing cost and

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:21

latency significantly. Therefore, to determine the optimal r, we minimize T̂ (r) subject
to constraints Ĉ(r) ≤ γ and r ≤ rmax as given in (26).

The estimates T̂ (r) and Ĉ(r) are obtained by generalizing Lemma 3 for group-based
random forking to any k and r that may not divide n. When the order statistics of FX
are hard to compute, or FX itself is not explicitly known, T̂ (r) and Ĉ(r) can be also be
found using empirical traces of X.

The sources of inaccuracy in the estimates T̂ (r) and Ĉ(r) are as follows:

(1) For k > 1, the latency estimate T̂ (r) is a generalization of the split-merge queueing
upper bound in Theorem 4. Since the bound becomes loose as k increases, the error
|T̂ (r) − E[T]| increases with k.

(2) The estimates T̂ (r) and Ĉ(r) are by definition independent of r f , which is not true
in practice. As explained earlier, for r f > r, the actual E[T] is generally less than
T̂ (r), and E[C] can be slightly higher or lower than Ĉ(r).

(3) Since the estimates T̂ (r) and Ĉ(r) are based on group-based forking, they consider
that all r tasks start simultaneously. Variability in relative task start times can
result in actual latency and cost that are different from the estimates. For example,
from Theorem 3, we can infer that when F̄X is log-concave (log-convex), the actual
computing cost E[C] is less than (greater than) Ĉ(r).

The preceding factor (1) is the largest source of inaccuracy, especially for larger
k and λ. Since the estimate T̂r is an upper bound on the actual latency, the r∗ and
r∗

f recommended by the strategy are smaller than or equal to their optimal values.
Factors (2) and (3) only affect the relative task start times and generally result in a
smaller error in estimating E[T] and E[C].

8.3. Simulation Results
We now present simulation results comparing the proposed strategy given in Defini-
tion 8 to the (n, r, k) partial-fork-join system with r varying from k to n. The service time
distributions considered here are neither log-concave nor log-convex, thus making it
hard to directly infer the best redundancy strategy using the analysis presented in the
previous sections. The simulations are run for 100 workloads with 1,000 jobs each.

In Figure 20, the service time X ∼ Pareto(1, 2.2), n = 10, k = 1, and arrival rate λ =
0.7. The computing and network cost constraints are E[C] ≤ 5 and r f ≤ 8, respectively.
We observe that the proposed strategy gives a significant latency reduction as compared
to the no redundancy case (r = k in the (n, r, k) partial-fork-join system). We observe
that the proposed strategy gives a latency-cost trade-off that is better than the (n, r, k)
partial-fork-join system. Using partial early cancellation (r f > r) gives an additional
reduction in latency by providing greater diversity and helping us find the r out of r f
queues with the least work left.

In Figure 21, we show a case where the cost E[C] does not always increase with the
amount of redundancy r. The task service time X is a mixture of an exponential Exp(2)
and a shifted exponential ShiftedExp(1, 1.5), each occurring with equal probability. The
other parameters are n = 10, k = 1, and arrival rate λ = 0.3. The proposed strategy
found using Definition 8 is r∗ = r∗

f = rmax = 5, limited by the r f ≤ rmax constraint
rather than the E[C] ≤ γ constraint. Since r f = r, it coincides exactly with the (n, r, k)
partial-fork-join system.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:22 G. Joshi et al.

Fig. 20. The latency-cost trade-off of the proposed
redundancy strategy is close to that of the best
(n, r, k) partial-fork-join system. Service time X ∼
Pareto(1, 2.2), and the cost constraints are E[C] ≤ 5
and r ≤ r f ≤ 8 The first constraint is active in this
example.

Fig. 21. The latency-cost trade-off of the pro-
posed redundancy strategy is close to that of the
best (n, r, k) partial-fork-join system. The service
time X is an equiprobable mixture of Exp(2) and
ShiftedExp(1, 1.5), and the cost constraints are
E[C] ≤ 2 and r ≤ r f ≤ 5. The second constraint
is active in this example.

9. CONCLUDING REMARKS
In this article, we consider a redundancy model where each incoming job is forked
to queues at multiple servers and wait for any one replica to finish. We analyze how
redundancy affects the latency, and the cost of computing time, and demonstrate how
the log-concavity of service time is a key factor affecting the latency-cost trade-off. The
following are some key insights from this analysis:

—For log-convex service times, forking to more servers (more redundancy) reduces
both latency and cost. However, for log-concave service times, more redundancy can
reduce latency only at the expense of an increase in cost.

—Early cancellation of redundant requests can save both latency and cost for log-
concave service time, but it is not effective for log-convex service time.

Using these insights, we also propose a general redundancy strategy for an arbitrary
service time distribution, which may be neither log-concave nor log-convex. This strat-
egy can also be used on empirical traces of service time, when a closed-form expression
of the distribution is not known.

Ongoing work includes developing online strategies to simultaneously learn the ser-
vice time distribution and the best redundancy strategy. More broadly, the proposed
redundancy techniques can be used to reduce latency in several applications beyond
the realm of cloud storage and computing systems, such as crowdsourcing, algorithmic
trading, and manufacturing.

APPENDIXES
A. LOG-CONCAVITY OF F̄X

In this section, we present some properties and examples of log-concave and log-convex
random variables that are relevant to this work. For more properties, please see Bagnoli
and Bergstrom [2005].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:23

PROPERTY 1 (JENSEN’S INEQUALITY). If F̄X is log-concave, then for 0 < θ < 1 and for all
x, y ∈ [0,∞),

Pr(X > θx + (1 − θ)y) ≥ Pr(X > x)θ Pr(X > y)1−θ . (29)

The inequality is reversed if F̄X is log-convex.

PROOF. Since F̄X is log-concave, log F̄X is concave. Taking log on both sides on (29),
we get the Jensen’s inequality, which holds for concave functions.

In past literature, saying that X is log-concave usually means that f is log-concave.
This implies that F and F̄. However log-convex f does not always imply log-convexity
of F and F̄.

PROPERTY 2 (SCALING). If F̄X is log-concave, for 0 < θ < 1,

Pr(X > x) ≤ Pr(X > θx)1/θ . (30)

The inequality is reversed if F̄X is log-convex.

PROOF. We can derive (30) by setting y = 0 in (29):

Pr(X > θx + (1 − θ)0) ≥ Pr(X > x)θ Pr(X > 0)1−θ , (31)

Pr(X > θx) ≥ Pr(X > x)θ . (32)

To get (32), we observe that if F̄X is log-concave, then Pr(X > 0) has to be 1. Otherwise,
log-concavity is violated at x = 0. Raising both sides of (32) to power 1/θ, we get (30).
The reverse inequality of log-convex F̄X can be proved similarly.

PROPERTY 3 (SUBMULTIPLICATIVITY). If F̄X is log-concave, the conditional tail probability
of X satisfies for all t, x > 0

Pr(X > x + t|X > t) ≤ Pr(X > x), (33)
⇔ Pr(X > x + t) ≤ Pr(X > x) Pr(X > t). (34)

The preceding inequalities are reversed if F̄X is log-convex.

PROOF.

Pr(X > x) Pr(X > t) (35)

= Pr
(

X >
x

x + t
(x + t)

)
Pr

(
X >

t
x + t

(x + t)
)

, (36)

≥ Pr(X > x + t)
x

x+t Pr(X > x + t)
t

x+t , (37)

where we apply Property 2 to (36) to get (37). Equation (33) follows from (37).

Note that for exponential FX, which is memoryless, (33) holds with equality. Thus,
log-concave distributions can be thought to have “optimistic memory” because the
conditional tail probability decreases over time. However, log-convex distributions have
“pessimistic memory” because the conditional tail probability increases over time. The
definition of the notion NBU in Koole and Righter [2008] is same as (33). By Property 3,
log-concavity of F̄X implies that X is NBU. NBU distributions are referred to as light-
everywhere in Shah et al. [2013] and new-longer-than-used in Sun et al. [2015].

PROPERTY 4 (MEAN RESIDUAL LIFE). If F̄X is log-concave (log-convex), E[X − t|X > t],
the mean residual life after time t > 0 has elapsed is nonincreasing (nondecreasing)
in t.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:24 G. Joshi et al.

PROOF OF LEMMA 2. Lemma 2 is true for log-concave F̄X if rE[X1:r] ≤ (r + 1)E[X1:r+1]
for all integers r ≥ 1. This inequality can be simplified as follows:

rE[X1:r] ≤ (r + 1)E[X1:r+1] (38)

⇔ r
∫ ∞

0
Pr(X1:r > x)dx ≤

∫ ∞

0
(r + 1) Pr(X1:r+1 > x)dx, (39)

⇔ r
∫ ∞

0
Pr(X > x)rdx ≤

∫ ∞

0
(r + 1) Pr(X > x)r+1dx, (40)

⇔
∫ ∞

0
Pr

(
X >

x′

r

)r

dx′ ≤
∫ ∞

0
Pr

(
X >

x′

r + 1

)r+1

dx′. (41)

We get (39) using the fact that the expected value of a nonnegative random variable
is equal to the integral of its tail distribution. To get (40), observe that since X1:r =
min(X1, X2, · · · , Xr) for independent and identically distributed Xi, we have Pr(X1:r >
x) = Pr(X > x)r for all x > 0. Similarly, Pr(X1:r+1 > x) = Pr(X > x)r+1. Next we perform
a change of variables on both sides of (40) to get (41).

Now we use Property 2 to compare the two integrands in (41). Setting θ = r/r + 1
and x = x′/r in Property 2, we get

Pr
(

X >
x′

r

)r

≤ Pr
(

X >
x′

r + 1

)r+1

for all x′ ≥ 0. (42)

Hence, by (42) and the equivalences in (38) through (41), it follows that for log-
concave F̄X, rE[X1:r] is nondecreasing in r. For log-convex F̄X, we can show that rE[X1:r]
is nonincreasing in r by reversing all preceding inequalities.

PROPERTY 5 (HAZARD RATES). If F̄X is log-concave (log-convex), then the hazard rate
h(x), which is defined by −F̄ ′

X(x)/F̄X(x), is nondecreasing (nonincreasing) in x.

PROPERTY 6 (COEFFICIENT OF VARIATION). The coefficient of variation Cv = σ/µ is the
ratio of the standard deviation σ and mean µ of random variable X. For log-concave
(log-convex) X, Cv ≤ 1 (Cv ≥ 1), and Cv = 1 when X is pure exponential.

PROPERTY 7 (EXAMPLES OF LOG-CONCAVE F̄X). The following distributions have log-
concave F̄X:

—Shifted exponential (exponential plus constant " > 0)
—Uniform over any convex set
—Weibull with shape parameter c ≥ 1
—Gamma with shape parameter c ≥ 1
—Chi-squared with degrees of freedom c ≥ 2.

PROPERTY 8 (EXAMPLES OF LOG-CONVEX F̄X). The following distributions have log-convex
F̄X:

—Exponential
—Hyperexponential (mixture of exponentials)
—Weibull with shape parameter 0 < c < 1
—Gamma with shape parameter 0 < c < 1.

B. PROOFS FOR THE K = 1 Case

PROOF OF THEOREM 3. Using (4), we can express the cost C in terms of the relative
task start times ti and S as follows. Since only r tasks are invoked, the relative start

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:25

times tr+1, . . . , tn are equal to ∞:

C = S + (S − t2)+ + · · · + (S − tr)+ , (43)

where S is the time between the start of service of the earliest task and when any one
of the r tasks finishes. The tail distribution of S is given by

Pr(S > s) =
r∏

i=1

Pr(X > s − ti). (44)

By taking expectation on both sides of (43) and simplifying, we get

E[C] =
r∑

u=1

∫ ∞

tu
Pr(S > s)ds, (45)

=
r∑

u=1

u
∫ tu+1

tu
Pr(S > s)ds, (46)

=
r∑

u=1

u
∫ tu+1−tu

0
Pr(S > tu + x)dx, (47)

=
r∑

u=1

u
∫ tu+1−tu

0

u∏

i=1

Pr(X > x + tu − ti)dx. (48)

We now prove that for log-concave F̄X, E[C] ≥ E[X]. The proof that E[C] ≤ E[X] when
F̄X is log-convex follows similarly with all following inequalities reversed. We express
the integral in (48) as

E[C] =
r∑

u=1

u

(∫ ∞

0

u∏

i=1

Pr(X > x + tu − ti)dx −
∫ ∞

0

u∏

i=1

Pr(X > x + tu+1 − ti)dx

)

, (49)

=
r∑

u=1

(∫ ∞

0

u∏

i=1

Pr
(

X >
x′

u
+ tu − ti

)
dx′ −

∫ ∞

0

u∏

i=1

Pr
(

X >
x′

u
+ tu+1 − ti

)
dx′

)

,

(50)

= E[X] +
r∑

u=2

∫ ∞

0

(u∏

i=1

Pr
(

X >
x′

u
+ tu − ti

)
−

u−1∏

i=1

Pr
(

X >
x′

u − 1
+ tu − ti

))

dx′,

(51)
≥ E[X], (52)

where in (49) we express each integral in (48) as a difference of two integrals from 0
to ∞. In (50), we perform a change of variables x = x′/u. In (51), we rearrange the
grouping of the terms in the sum; the uth negative integral is put in the u + 1 term of
the summation. Then the first term of the summation is simply

∫ ∞
0 Pr(X > x)dx, which

is equal to E[X]. In (51), we use the fact that each term in the summation in (50) is
positive when F̄X is log-concave. This is shown in Lemma 9.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:26 G. Joshi et al.

Next we prove that for log-concave F̄X, E[C] ≤ rE[X1:r]. Again, the proof of E[C] ≥
rE[X1:r] when F̄X is log-convex follows with all of the following inequalities reversed:

E[C] ≤
r∑

u=1

u
∫ tu+1−tu

0

u∏

i=1

Pr
(

X >
u(x + tu − ti)

r

)r/u

dx, (53)

=
r∑

u=1

(∫ ∞

0

u∏

i=1

Pr
(

X >
x′ + u(tu − ti)

r

)r/u

dx′ −
∫ ∞

0

u∏

i=1

Pr
(

X >
x′ + u(tu+1 − ti)

r

)r/u

dx′

)

,

(54)

=
∫ ∞

0
Pr

(
X >

x′

r

)r

dx′ +
r∑

u=2

(∫ ∞

0

u∏

i=1

Pr
(

X >
x′ + u(tu − ti)

r

)r/u

dx′

−
∫ ∞

0

u−1∏

i=1

Pr
(

X >
x′ + (u − 1)(tu − ti)

r

) r
u−1

dx′

)

, (55)

≤ rE[X1:r], (56)

where we get (53) by applying Property 2 to (48). In (54), we express the integral as a difference
of two integrals from 0 to ∞ and perform a change of variables x = x′/u. In (55), we rearrange
the grouping of the terms in the sum; the uth negative integral is put in the u + 1 term of the
summation. The first term is equal to rE[X1:r]. We use Lemma 10 to show that each term in
the summation in (55) is negative when F̄X is log-concave.

LEMMA 9. If F̄X is log-concave,

u∏

i=1

Pr
(

X >
x′

u
+ tu − ti

)
≥

u−1∏

i=1

Pr
(

X >
x′

u − 1
+ tu − ti

)
. (57)

The inequality is reversed for log-convex F̄X.

PROOF OF LEMMA 9. We bound the left-hand side expression as follows:

u∏

i=1

Pr
(

X >
x
u

+ tu − ti
)

= Pr(S > tu)
u∏

i=1

Pr
(

X >
x
u

+ tu − ti|X > tu − ti
)
, (58)

= Pr(S > tu) Pr
(

X >
x
u

) u−1
u−1 ×

u−1∏

i=1

Pr
(

X >
x
u

+ tu − ti|X> tu − ti
)
,

(59)

≥ Pr(S > tu)
u−1∏

i=1

Pr
(

X >
x
u

+ tu − ti|X > tu − ti
) u

u−1
, (60)

≥ Pr(S > tu)
u−1∏

i=1

Pr
(

X >
x

u − 1
+ tu − ti|X > tu − ti

)
, (61)

=
u−1∏

i=1

Pr
(

X >
x

u − 1
+ tu − ti

)
, (62)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:27

where we use Property 3 to get (60). The inequality in (61) follows from applying
Property 2 to the conditional distribution Pr(Y > x′/u) = Pr(X > x′/u + tu − ti|X >
tu − ti), which is also log-concave.

For log-convex F̄X, all nequalities can be reversed.

LEMMA 10. If F̄X is log-concave,

u∏

i=1

Pr
(

X >
x + u(tu − ti)

r

)r/u

≤
u−1∏

i=1

Pr
(

X >
x + (u − 1)(tu − ti)

r

) r
u−1

. (63)

The inequality is reversed for log-convex F̄X.

PROOF OF LEMMA 10. We start by simplifying the left-hand side expression, raised to
the power (u − 1)/r:

u∏

i=1

Pr
(

X >
x + u(tu − ti)

r

)(u−1)/u

= Pr
(

X >
x
r

) u−1
u

u−1∏

i=1

Pr
(

X >
x + u(tu − ti)

r

) u−1
u

, (64)

=
u−1∏

i=1

Pr
(

X >
x
r

) 1
u Pr

(
X >

x + u(tu − ti)
r

) u−1
u

, (65)

≤
u−1∏

i=1

Pr
(

X >
x + (u − 1)(tu − ti)

r

)
, (66)

where (66) follows from the log-concavity of Pr(X > x) and the Jensen’s equality. The
inequality is reversed for log-convex F̄X.

C. PROOFS FOR GENERAL K

PROOF OF THEOREM 4. To find the upper bound on latency, we consider a related
queueing system called the split-merge queueing system. In the split-merge system,
all queues are blocked and cannot serve subsequent jobs until k out of n tasks of the
current job are complete. Thus, the latency of the split-merge system serves as an
upper bound on that of the fork-join system. In the split-merge system, we observe
that jobs are served one by one, and no two jobs are served simultaneously. Thus, it is
equivalent to an M/G/1 queue with Poisson arrival rate λ and service time Xk:n. The
expected latency of an M/G/1 queue is given by the Pollaczek-Khinchine formula (see
Chapter 5 of Gallager [2013]), and it reduces to the upper bound in (16).

To find the lower bound, we consider a system where the job requires k out of n tasks
to complete, but all jobs arriving before it require only one task to finish. Then the
expected waiting time in the queue is equal to the second term in (16) with k set to 1.
Adding the expected service time E[Xk:n] to this lower bound on expected waiting time,
we get the lower bound (17) on the expected latency.

PROOF OF LEMMA 8. This upper bound is a generalization of the bound on the mean
response time of the (n, n) fork-join system with exponential service time presented in
Nelson and Tantawi [1988]. To find the bound, we first observe that the response times
experienced by the tasks in the n queues form a set of associated random variables
[Esary et al. 1967]. Then we use the property of associated random variables that their
expected maximum is less than that for independent variables with the same marginal
distributions. Unfortunately, this approach cannot be extended to the k < n case, as this
property of associated variables does not hold for the kth-order statistic for k < n.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:28 G. Joshi et al.

PROOF OF THEOREM 5. A key observation used in proving the cost bounds is that
at least n − k + 1 out of the n tasks of a job i start service at the same time. This is
because when the kth task of Job (i − 1) finishes, the remaining n− k tasks are canceled
immediately. These n − k + 1 queues start working on the tasks of Job i at the same
time.

To prove the upper bound, we divide the n tasks into two groups: the k− 1 tasks that
can start early and the n − k + 1 that start at the same time after the last tasks of the
previous job are terminated. We consider a constraint that all k − 1 tasks in the first
group and one of the remaining n− k+ 1 tasks needs to be served for completion of the
job. This gives an upper bound on the computing cost because we are not taking into
account the case where more than one task from the second group can finish service
before the k− 1 tasks in the first group. For the n− k+ 1 tasks in the second group, the
computing cost is equal to n − k + 1 times the time taken for one of them to complete.
The computing time spent on the first k− 1 tasks is at most (k− 1)E[X]. Adding this to
the second group’s cost, we get the upper bound (20).

We observe that the expected computing cost for the k tasks that finish is at least∑k
i=1 E[Xi:n], which takes into account full diversity of the redundant tasks. Since

we need k tasks to complete in total, at least one of the n − k + 1 tasks that start
simultaneously needs to be served. Thus, the computing cost of the (n − k) redundant
tasks is at least (n − k)E[X1:n−k+1]. Adding this to the lower bound on the first group’s
cost, we get (21).

PROOF OF THEOREM 6. Since exactly k tasks are served and others are canceled before
they start service, it follows that the expected computing cost E[C] = kE[X]. In the
sequel, we find an upper bound on the latency of the (n, k) fork-early-cancel system.

First observe that in the (n, k) fork-early-cancel system, the n − k redundant tasks
that are canceled early help find the k shortest queues. The expected task arrival rate
at each server is λk/n, which excludes the redundant tasks that are canceled before
they start service.

Consider an (n, k, k) partial fork system without redundancy, where the k tasks of
each job are assigned to k out of n queues chosen uniformly at random. The job exits the
system when all k tasks are complete. The expected task arrival rate at each server is
λk/n, same as the (n, k) fork-early-cancel system. However, the (n, k) fork-early-cancel
system gives lower latency because having the n−k redundant tasks provides diversity
and helps find the k shortest queues. Thus, the latency of the (n, k, k) partial-fork-join
system is bounded below by that of the (n, k) fork-early-cancel system.

Now let us upper bound the latency E[T (pf)] of the partial fork system. Each queue
has arrival rate λk/n and service time distribution FX. Using the approach in Nelson
and Tantawi [1988], we can show that the response times (waiting plus service time)
Ri, 1 ≤ i ≤ k of the k queues serving each job form a set of associated random variables.
Then by the property that the expected maximum of k associated random variables is
less than the expected maximum of k independent variables with the same marginal
distributions, we can show that

E[T] ≤ E[T (pf)], (67)
≤ E[max (R1, R2, . . . Rk)]. (68)

The expected maximum can be numerically evaluated from distribution of R. From the
transform analysis given in Chapter 25 of Harchol-Balter [2013], we know that the
Laplace-Stieltjes transform R(s) of the probability density of R is the same as (19) but
with λ replaced by λk/n.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

Efficient Redundancy Techniques for Latency Reduction in Cloud Systems 12:29

ACKNOWLEDGMENTS

We thank Da Wang, Devavrat Shah, Sem Borst, and Rhonda Righter for helpful suggestions to improve this
work.

REFERENCES
Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013. Effective straggler mitigation:

Attack of the clones. In Proceedings of the 2013 USENIX Conference on Networked Systems Design and
Implementation. 185–198.

Mark Bagnoli and Ted Bergstrom. 2005. Log-concave probability and its applications. Economic Theory 26,
2, 445–469.

Jinhua Cao and Yuedong Wang. 1991. The NBUC and NWUC classes of life distributions. Journal of Applied
Probability 28, 2, 473–479.

Shengbo Chen, Ulas C. Kozat, Longbo Huang, Prasun Sinha, Guanfeng Liang, Xin Liu, Yin Sun, and Ness B.
Shroff. 2014. When queueing meets coding: Optimal-latency data retrieving scheme in storage clouds.
In Proceedings of the 2014 IEEE International Conference on Communications.

Jeffrey Dean and Luis Barroso. 2013. The tail at scale. Communications of the ACM 56, 2, 74–80.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Com-

munications of the ACM 51, 1, 107–113.
J. Esary, F. Proschan, and D. Walkup. 1967. Association of random variables, with applications. Annals of

Mathematics and Statistics 38, 5, 1466–1474.
L. Flatto and S. Hahn. 1984. Two parallel queues created by arrivals with two demands I. SIAM Journal on

Applied Mathematics 44, 5, 1041–1053.
R. Gallager. 2013. Stochastic Processes: Theory for Applications. Cambridge University Press, Cambridge,

UK.
K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-Wolf. 2015. Reducing

latency via redundant requests: Exact analysis. In Proceedings of the 2015 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems. 347–360.

Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press, Cambridge, UK.

G. Joshi, Y. Liu, and E. Soljanin. 2012. Coding for fast content download. In Proceedings of the 2012 Allerton
Conference on Communication, Control, and Computing. 326–333.

G. Joshi, Y. Liu, and E. Soljanin. 2014. On the delay-storage trade-off in content download from coded
distributed storage. IEEE Journal on Selected Areas on Communications 32, 5, 989–997.

Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2015. Queues with redundancy: Latency-cost analysis.
In Proceedings of the 2015 ACM SIGMETRICS Workshop on Mathematical Modeling and Analysis.

G. Kabatiansky, E. Krouk, and S. Semenov (Eds.). 2005. Coding of messages at the transport layer of the
data network. In Error Correcting Coding and Security for Data Networks: Analysis of the Superchannel
Concept. Wiley, 191–211.

Swanand Kadhe, Emina Soljanin, and Alex Sprintson. 2015. Analyzing the download time of availability
codes. In Proceedings of the 2015 International Symposium on Information Theory (ISIT’15).

Yusik Kim, Rhonda Righter, and Ronald Wolff. 2009. Job replication on multiserver systems. Advances in
Applied Probability 41, 2, 546–575.

Ger Koole and Rhonda Righter. 2008. Resource allocation in grid computing. Journal of Scheduling 11, 3,
163–173.

A. Kumar, R. Tandon, and T. C. Clancy. 2014. On the latency of heterogeneous MDS queue. In Proceedings
of the 2014 IEEE Global Communications Conference (GLOBECOM’14). 2375–2380.

A. M. Lee and P. A. Longton. 1959. Queueing process associated with airline passenger check-in. Journal of
the Operational Research Society 10, 1, 56–71.

Guangfeng Liang and Ulas Kozat. 2014. TOFEC: Achieving optimal throughput-delay trade-off of cloud stor-
age using erasure codes. In Proceedings of the 2014 IEEE International Conference on Communications.

N. F. Maxemchuk. 1975. Dispersity routing. In Proceedings of the 1975 International Conference on Commu-
nications (ICC’75). 41.10–41.13.

M. Mitzenmacher. 1996. The Power of Two Choices in Randomized Load Balancing. Ph.D. Dissertation.
University of California at Berkeley.

R. Nelson and A. Tantawi. 1988. Approximate analysis of fork/join synchronization in parallel queues. IEEE
Transactions on Computers 37, 6, 739–743.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

12:30 G. Joshi et al.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. 2013. Sparrow: Distributed, low latency scheduling. In
Proceedings of the 2013 ACM Symposium on Operating Systems Principles (SOSP’13). 69–84.

Nihar Shah, Kangwook Lee, and Kannan Ramchandran. 2013. When do redundant requests reduce latency?
In Proceedings of the 2013 Allerton Conference on Communication, Control, and Computing.

Nihar Shah, Kangwook Lee, and Kannan Ramachandran. 2014. The MDS queue: Analyzing the latency
performance of erasure codes. In Proceedings of the 2014 IEEE International Symposium on Information
Theory.

Yin Sun, Zizhan Zheng, Can Emre Koksal, Kyu-Han Kim, and Ness B. Shroff. 2015. Provably delay efficient
data retrieving in storage clouds. In Proceedings of the 2015 IEEE Conference on Computer Communi-
cations (INFOCOM’15).

Elizabeth Varki, Arif Merchant, and Hui Chen. 2008. The M/M/1 Fork-Join Queue with Variable Sub-Tasks.
Retrieved March 30, 2017, from http://www.cs.unh.edu/∼varki/publication/2002-nov-open.pdf.

Jeremy Visschers, Ivo Adan, and Gideon Weiss. 2012. A product form solution to a system with multi-type
jobs and multi-type servers. Queueing Systems 70, 3, 269–298.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. 2013. Low latency via redun-
dancy. In Proceedings of the 2013 ACM Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT’13). ACM, New York, NY, 283–294.

D. Wang, G. Joshi, and G. Wornell. 2014. Efficient Task Replication for Fast Response Times in Parallel
Computation. Retrieved March 30, 2017, from http://allegro.mit.edu/pubs/posted/conference/2014-wang-
joshi-wornell-sigmetrics.pdf.

D. Wang, G. Joshi, and G. Wornell. 2015. Using straggler replication to reduce latency in large-scale parallel
computing (extended version). arXiv:1503.03128 [cs.dc].

Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih Farn R. Chen. 2014. Joint latency and cost optimization for
erasure-coded data center storage. SIGMETRICS Performance Evaluation Review 42, 2, 3–14.

Received October 2015; revised November 2016; accepted February 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 12, Publication date: April 2017.

http://allegro.mit.edu/pubs/posted/conference/2014-wang-joshi-wornell-sigmetrics.pdf
http://allegro.mit.edu/pubs/posted/conference/2014-wang-joshi-wornell-sigmetrics.pdf

