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Abstract—We develop an information theoretic framework for
addressing feature selection in applications where the inference
task is not specified in advance and the data is from a large
alphabet. We introduce a natural notion of universality for such
problems, and show that locally optimal solutions are straight-
forward to obtain, admit natural interpretations via information
geometry, have computationally efficient implementations, and
represent a practically useful learning methodology. Our devel-
opment also reveals the key role of Hirschfeld-Gebelein-Rényi
maximal correlation and the alternating conditional expectations
(ACE) algorithm in such problems.

I. INTRODUCTION

In many applications of machine learning, there is a need
to extract low-dimensional features from the available high-
dimensional data, from which inference is performed. When
the inference task is known in advance—and the system model
is fully specified—classical statistics establishes that the ap-
propriate features are (minimal) sufficient statistics. However,
in a rapidly growing number of application scenarios, the
features must be selected before the inference task is chosen.
Moreover, the amount of training data available relative to
its dimension is small, so that estimates of the underlying
distributions are typically quite poor. In such scenarios, there
is a need for methods of constructing good “universal” features
of the data from the available training data. This is the problem
of interest in this work.

As a motivating example, consider the following problem
involving a (large) collection of consumers X and (large)
collection of movies Y. The distribution PX,Y (x, y) over X×Y
(more specifically, PY |X(y|x)) captures the probability that
a consumer x selects movie y. Given training data in the
form of a few samples from this large joint distribution, we
seek to understand what we can infer about the dominant
factors governing consumer movie preferences. For example,
among many other possibilities, one feature f of a consumer
x’s description we can extract is his/her age u = f(x), and
one feature g of a movie y’s description we can extract is
its genre v = g(y). A key question we ask is: if we don’t
know in advance which of a number of possible features
of a consumer (e.g., age, income, etc) that we might want
make inferences about, what low-dimensional features of the
selected movie should we select to preserve as much of the
needed information as possible? In turn, we can further ask:

among all possible features of consumers and movies, which
are those whose relationship is expressed most strongly by
the available training data, so that we can confidently predict
which movies will be a good match to which consumers.
As we develop, such questions are naturally addressed by
formulating them as ones of universal feature selection.

A mathematical model for the problem is as follows. We
begin with a Markov chain U ↔ X ↔ Y , associated with
which is the joint distribution PU,X,Y = PY |X PU,X with
respect to alphabets U, X, and Y. In the simplest model,
we assume PX,Y is known, so that PY |X and PX are also
known. In practice, our solution will effectively learn the
aspects of PX,Y we require from a comparatively small set
of independent, identically distributed (i.i.d.) training samples
(x̃1, ỹ1), . . . , (x̃k, ỹk). By contrast, during the feature design
process we consider PU,X to be unknown; we know only that
it must satisfy the marginal constraint

∑

u

PU,X(u, x) = PX(x). (1)

In particular, samples of the variable U are not observed in
this process. With this model, our goal is, given further i.i.d.
samples y1, . . . , yn from PY |U=u for some fixed but unknown
u, determine a (real-valued) g such that v =

∑
i g(yi) is

universally good for estimating u.
To quantify the notion of universality, we define a family

F of (bivariate) distributions PU,X—each satisfying the con-
straint (1)—whose elements are defined over the given (finite)
alphabets X × U. This family represents the uncertainty in
the possible variables U about which we may wish to make
inferences. We further define a probability measure µF over
this family F that expresses what we know about the relative
likelihoods of each possible PU,X . In turn, with respect to the
family F and its measure µF, we define the universal feature
of the data we seek to be

g∗ = argmax
g : Y "→R

EµF
[I(U ; g(Y ) | PU,X ∈ F)] . (2)

As an aside, note that the measure µF can be chosen to also
compensate for the fact that if there are some distributions
PU,X in F for which PU |X is large, then we can avoid giving
them undue influence in the expectation in (2) by choosing
proportionally smaller weights for them, if appropriate.
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More generally, the choice of F and µF strongly impact the
feature g∗ obtained from the optimization (2). In this work,
we focus on particular choices that are meaningful for appli-
cations, convenient for analysis, admit a natural information-
geometric interpretation, lead directly to an efficient algorithm
for its solution, and which have key connections to Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation [3], [4], [8].

In particular, for PU,X = PX|U PU in F we let U = {0, 1}
with PU uniform and I(U ;X) ≤ δ for small δ > 0.1
Moreover, we let the measure µF be uniform over the family.
In this case, the (asymptotic) solution to (2) takes the form
g∗(y) = log(P ∗

Y |U=1(y)/P
∗
Y |U=0(y)), where P ∗

Y |U=u(y) =∑
x PY |X(y|x)P ∗

X|U=u(x) for u ∈ U, with

P ∗
X|U = lim

δ→0
argmax
PX|U :

D(PX|U=1∥PX|U=0)≤δ

D(PY |U=1)∥PY |U=0), (3)

as we will now develop, interpret, and apply.

II. THE GEOMETRY OF MAXIMAL CORRELATION

Our analysis will require optimizing the tradeoff between
multiple (KL) divergences. We will exploit that when the
distributions involved in these divergences are close to each
other, local approximations can significantly simplify such op-
timizations. In fact, local approximations allow us to linearize
the space of probability distributions, and treat it as a linear
vector space. In this section, we introduce some notation for—
and properties of—this vector space to facilitate our analysis.

A. The Local Geometry

Let PX denote the space of distributions on X, where |X|
is finite, and relint(PX) be the relative interior of PX, which
is the collection of distributions with strictly positive entries.

Definition 1 (ϵ-Neighborhood). The ϵ-neighborhood of a
reference distribution P0,X ∈ relint(PX) is defined as:

N(ϵ)(P0,X) !
{
PX ∈ PX :

∑

x∈X

(PX(x)− P0,X(x))2

P0,X(x)
< ϵ2

}

which is the set of distributions in a χ2-divergence ball of
radius ϵ2 around P0,X .

Furthermore, we introduce the following notation. For each
PX ∈ N(ϵ)(P0,X), we write, for all x ∈ X,

PX(x) = P0,X(x) · (1 + ϵ · L(x)) (4)

= P0,X(x) + ϵ ·
√
P0,X(x) · φ(x) . (5)

This defines a pair of functions

L(x) =
1

ϵ

PX(x)− P0,X(x)

P0,X(x)
, φ(x) =

√
P0,X(x)L(x).

1For the family of interest, these choices for U and PU are without loss
of generality. Also, our family is equivalently described by the (KL) diver-
gence constraint D(PX|U=1∥PX|U=0) ≤ δ, and corresponds to restricting
attention to possible variables U that are all effectively equally detectable.

This notation will soon become convenient in our develop-
ment. At this point, we only emphasize that there is a three-
way one-to-one correspondence PX ↔ φ ↔ L. For example,
we can rewrite the definition of the ϵ-neighborhood as

N(ϵ)(P0,X) =
{
PX ↔ φ : ∥φ∥2 < 1

}

where ∥φ∥ is simply the Euclidean norm of φ, viewed as an
|X|-dimensional vector.

We assume that for an inference problem, all the distri-
butions of interest, including all the empirical distributions
that one can possibly observe, lie in an ϵ-neighborhood of a
certain P0,X . Note that we do not assume that ϵ is small in this
definition. In our mathematical analysis however, we will let
ϵ → 0 and find the optimal choices of feature functions in this
limiting case. It turns out that the solutions do not depend on
the value of ϵ. Thus, in practice, we will apply these solutions
as an approximation to the optimal choices even though ϵ is
not necessarily very small.

When ϵ is small so that we look at a small neighborhood of
distributions, it is well-known that the space of distributions
behaves “nicely” and exhibits simple properties. Firstly, L(·)
can be viewed as the log-likelihood ratio function

log
PX(x)

P0,X(x)
= log(1 + ϵL(x)) = ϵ · L(x) + o(ϵ) ∀x ∈ X.

More generally, for P1 ↔ L1 and P2 ↔ L2, we have

log
P1(x)

P2(x)
= ϵ · (L1(x)− L2(x)) + o(ϵ), ∀x ∈ X. (6)

Moreover, via Taylor’s theorem, for any two distributions
P1 ↔ φ1 and P2 ↔ φ2

D(P1∥P2) =
ϵ2

2
·
∑

x∈X

(φ1(x)− φ2(x))
2

︸ ︷︷ ︸
∥φ1−φ2∥2

+o
(
ϵ2
)
.

Note that when we ignore the o(ϵ2) term, the divergence
becomes symmetric in P1 and P2. Furthermore, this approx-
imation does not depend on the specific choice of reference
point P0,X as long as it is in the neighborhood; changing the
choice of P0,X only causes a difference in the o(ϵ2) term.

While PX , φ, and L can all be treated as vectors of
dimension |X| for finite |X|, to avoid confusion, we will
reserve vector notation for φ, referring to it as an information
vector. The squared norm of an information vector, as we have
seen, corresponds to Fisher information and divergence. We
will soon argue that in the context of inference problems, this
squared norm corresponds to the “total amount” of information
we observe. Our development then focuses on the operational
meaning of the directions of these information vectors.

In this development, we locally approximate the central
optimization problem in (3), i.e.,

max
PX ,QX : D(PX∥QX)≤ϵ

D(PY ∥QY ), (7)

with PX ! PX|U=0 and QX ! PX|U=1, and PY = PY |U=1

and QY = PY |U=0 denoting the marginal distributions on Y
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Fig. 1: Evaluating a function on a sequence of data samples
is equivalent to a vector projection in the distribution space.

induced by PX and QX , respectively, via PY |X . We find the U
that maximizes the divergence between PY and QY , then set
g(y) = (QY (y)/PY (y))− 1 as the feature function. Later, we
approximate this choice by g(y) ≈ log(QY (y)/PY (y)), which
has the interpretation of as the log-likelihood ratio suitable for
detecting the most detectable target, and interpret it as finding
the appropriate decomposition of the information vectors. Via
(4) and (5), we then translate the optimal choices into the
corresponding feature functions L.

It is useful to express the solution to a familiar binary
inference problem in this vector space language to develop
the relevant geometric perspective. In particular, consider a
binary hypothesis testing problem in which we observe m
samples, x1, . . . , xm, drawn i.i.d. from either distribution P1

or distribution P2. Suppose further that both P1 and P2 live
in a neighborhood N(ϵ)(P0,X), and recall the correspondence
Pi ↔ φi ↔ Li for i = 1, 2. Then a sufficient statistic S
for this problem can be expressed in terms of the empirical
distribution of the data P̂xm

1
! P̂ ↔ ψ according to

S =
1

m

m∑

i=1

log
P1(xi)

P2(xi)
=
∑

x∈X

ϵ · P̂ (x)(L1(x)− L2(x)) + o(ϵ)

= ϵ2 ·
∑

x∈X

ψ(x) · (φ1(x)− φ2(x)) + o
(
ϵ2
)
,

where in the last equality, we use the fact that both L1(X) and
L2(X) have zero mean with respect to P0,X . Thus, evaluating
a function is equivalent to computing an inner product ⟨ψ,φ1−
φ2⟩, i.e., a particular projection of ψ, the vector corresponding
to the entire observed information (see Fig. 1).

The inner product ⟨ψ,φ⟩ between information vectors has
an important interpretation for our purposes. Using the equiv-
alence between distributions, information vectors, and func-
tions, P ↔ φ ↔ L, this can be understood as the inner prod-
uct between the corresponding variations of distributions or
functions. Related quantities such as the norm and projections
can be similarly defined, and are repeatedly used in the sequel,
and facilitate interpreting our analysis.

B. Optimal Feature Selection

We now apply this geometry to solve for g∗ as defined in
Section I via (3), which can be interpreted as solving for the
direction in which to project our information vector. In the
process, we develop how the opportunistic choice associated
with (7) solves the universal problem (2) when specialized to

the family and measure of interest. To do so, we exploit the
connection between PX and PY, the two spaces of marginal
distributions on X and Y.

Starting from PX,Y , for convenience let us first use the
two marginal distributions as reference: P0,X = PX and
P0,Y = PY for PX and PY, respectively. We also assume that
all the distributions we encounter in the following discussion,
both over X and over Y, belong to the corresponding ϵ-
neighborhood around these two reference distributions.

A deviation in the distribution for X from PX to PX|U
induces a change in the distribution for Y from PY to PY |U . In
the language of local geometry, we write the correspondences
PX|U (·|u) ↔ φX and PY |U (·|u) ↔ φY using the chosen
reference points, and observe a simple linear relationship
between these information vectors due to the Markov structure
U ↔ X ↔ Y . In particular, since

PY (y) =
∑

x∈X

PY |X(y|x) · PX(x)

PY |U (y|u) =
∑

x∈X

PY |X(y|x) · PX|U (x|u)

for all y ∈ Y, we have

φY (y) =
1√

PY (y)

∑

x∈X

PY |X(y|x)
√

PX(x) · φX(x). (8)

Writing both φX and φY as column vectors, we can equiva-
lently express (8) in the matrix form φY = B · φX , where

B !
[√

PY

]−1
· PY |X ·

[√
PX

]
, (9)

with
[√

PX

]
and

[√
PY

]
denoting diagonal matrices with en-

tries {
√
PX(x) : x ∈ X} and {

√
PX(y) : y ∈ Y} respectively,

and PY |X denoting the |Y|× |X| column-stochastic transition
probability matrix. We refer to B as the divergence transition
matrix (DTM) [6].

The feature selection problem with the knowledge of the
target is now simple. We find φX corresponding to the target,
compute its image φY through the DTM, and choose the
feature to be along φY . This corresponds to using the log-
likelihood function log(PY |U (·|u)/PY (·)) as the feature. Note
that we can always normalize the feature function g as g ↔
φY /∥φY ∥, so that E

[
g(Y )2

]
= 1. The resulting performance

of this optimal detector in terms of the error exponent for
binary detection is the divergence D(PY |U (·|u)∥PY ), which
corresponds to the squared norm ∥φY ∥2.

If we instead choose g ↔ ψ ̸∝ φY , then we have a
mismatched detector. Without loss of generality, we assume
ψ is normalized: ∥ψ∥2 = 1. This mismatched detector yields
a worse detection performance in that the error exponent
is reduced from ∥φY ∥2 to |⟨φY ,ψ⟩|2. We can now define
the performance loss factor, for a given observation model
with DTM given in (9) and a choice of feature function
g ↔ ψ, as νB(φX ,ψ) ! |⟨φY ,ψ⟩|2/∥φX∥2. This has the
clear operational meaning that for the binary hypothesis testing
problem between PX|U (·|u) and PX , when we use g as the
feature function, the resulting error exponent is νB(φX ,ψ) ·
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PY |X

PX
PYYY

φX

P
φφX

ψ

√
E[νB ]

Fig. 2: The linear map from PX to PY. The unknown target φX

is uniformly distributed on the surface of the unit divergence
ball in PX, and induces ψ on the divergence ellipse in PY.
The optimal feature choice given by ψ maximizes the mean-
squared inner product E [νB ] = E

[
⟨BφX ,ψ⟩2

]
.

D(PX|U (·|u)∥PX) + o(ϵ2). The term D(PX|U (·|u)∥PX) ↔
∥φX∥2 is the exponent we would have if we had observed
the hidden data samples Xm

1 . Without loss of generality, we
restrict ∥φX∥2 = 1 in the following development. The design
problem is now simply to maximize the loss factor νB to be
as close to 1 as possible. The only remaining difficulty is that
we do not know φX when we choose ψ.

It is worth noting that while a maximin formulation of
universality maxψ : ∥ψ∥2=1 minφX : ∥φX∥2=1 νB(φX ,ψ)
might be tempting, for all non-degenerate cases, this
formulation leads to the degenerate result νB = 0, meaning
the worst-case behavior is inherently poor. Indeed, when we
choose a specific ψ, nature can always adversarially choose
φX such that φY = B · φX is orthogonal to ψ. Intuitively,
the feature selection process strictly losses information. If the
lost part of the information happens to include what we want
to detect, inference becomes impossible and we cannot hope
to detect all targets after reducing the data.

Less conservatively, we optimize average-case instead of
worst-case performance, seeking features that are good “on
average.” Specifically, we consider all φX satisfying ∥φX∥2 =
1, which corresponds to all possible target features U such that
D(PX|U (·|u)∥PX) = 1

2ϵ
2+o(ϵ2). Given a probability measure

over this set of targets, we then treat φX as a random vector
with this law, and seek to maximize E [νB(φX ,ψ)].

While in general it can be difficult or artificial to define
a measure over all the different ways that the target U can
be encoded in the data X , in the case of a local geometry,
the dependence on this measure is rather weak. As such, we
simply take φX to be uniformly distributed over the surface
of unit divergence ball (see the dotted circle on PX in Fig. 2)
defining the collection {φX : ∥φX∥2 = 1}. With this choice,
the solution is simple. Indeed, the unit divergence ball on PX

is mapped by the linear map B to an ellipsoid in PY, as also
shown in Fig. 2. It is then clear that choosing ψ to be along the
principal axis of this ellipsoid maximizes the average power
captured. An additional convenience of optimizing this average
loss factor is that the solution of choosing ψ along the principal
axis is identical to the solution to the opportunistic formulation

max
φX : ∥φX∥2=1

max
ψ : ∥ψ∥2=1

νB(φX ,ψ) . (10)

It is convenient to re-interpret (10) in the language of diver-
gence. Specifically, for any choice of φX , we consider for each
ϵ > 0 a distribution Q(ϵ)

X (x) = PX(x)+ ϵ
√
PX(x)φX(x), i.e.

Q(ϵ)
X ↔ φX , and let Q(ϵ)

Y be the induced marginal distribution
on Y. Then (10) can be expressed in the form

max
φX : ∥φX∥2=1

lim
ϵ→0

D(Q(ϵ)
Y ∥PY )

D(Q(ϵ)
X ∥PX)

, (11)

which is also a limiting version of (7) and thus corresponds
to (3). Note that in (11), D(Q(ϵ)

X ∥PX) = 1
2ϵ

2 + o(ϵ2).
We can interpret (11) as finding the target U that is the

most “distinguishable” from the observations of Y samples.
Compared to worst-case optimization, this formulation avoids
attempting to capture every possible target, and in so doing,
via the linear mapping defined by the DTM, avoids locking
on to some isolated individual cases, instead offering solutions
that are good on average. We summarize these statements in
the following proposition, which emphasizes the central role
of the singular value decomposition (SVD) in computing the
optimal feature; we omit the proof [6] due to space constraints.

Proposition 1 (Universal Feature Characterization). Let the
optimal solutions of (10) be φ∗

X ↔ L1 and ψ∗ ↔ L2.
Then, φ∗

X and ψ∗ are the right and left singular vectors of
B respectively, corresponding to its second largest singular
value, and L1 and L2 are the maximal correlation functions
of X and Y , respectively. Moreover, we have

1√
PY (y)

ψ∗(y) ∝ lim
ϵ→0

1

ϵ
log

Q(ϵ)
Y (y)

PY (y)
, y ∈ Y,

where Q(ϵ)
Y is the optimal choice for (11). Finally, ψ∗ maxi-

mizes E [νB(φX ,ψ)], where the expectation is with respect to a
uniform distribution over the unit-sphere {φX : ∥φX∥2 = 1}.

III. EFFICIENT COMPUTATION OF UNIVERSAL FEATURES

As we have developed, the optimum feature is obtained
via singular vectors of B. Since the alphabets X and Y
are large, directly computing the SVD of B is impractical.
However, such computation can be circumvented by exploiting
the special geometric structure inherent in our problem.

To see this, first note that the computation of g∗ is equivalent
to finding the HGR maximal correlation. Specifically, g∗ is the
solution g to the maximization

max
f,g

E [f(X) g(Y )] . (12)

This connection is important, because a well-known solution
to (12) is given by the so-called Alternating Conditional Ex-
pectations (ACE) algorithm [1]. A description of this algorithm
in our SVD notation is as follows. For a K ×K real matrix
A (taken to be square without loss of generality) with ordered
singular values σ0 ≥ σ1 ≥ . . . ≥ σK−1 and corresponding
normalized right singular vectors u0, u1, . . . , uK−1 ∈ RK , we
can find u0 using the power method from numerical linear
algebra [2]. We start with an arbitrary vector φ ∈ RK , and
repeatedly multiply ATA to it. Since ATA =

∑K−1
i=0 σ2

i uiuT
i



by the spectral theorem, and φ =
∑K−1

i=0 αiui for some
αi ∈ R as {u0, . . . , uK−1} is an orthonormal basis, we can
write:

(
ATA

)m · φ =
∑K−1

i=0 σ2m
i αiui. Assuming α0 ̸= 0,

as m becomes large, the component corresponding to σ0

dominate the sum, and the resulting vector is aligned with
u0. In practice, we scale the intermediate vectors to have
unit norm once every few iterations for numerical stability.
The power method converges geometrically (exponentially)
with ratio σ2

1/σ
2
0 . In the case σ0 = σ1 the power method

outputs some linear combination of u0 and u1. Moreover, after
computing u0, we can compute u1 by selecting an initial vector
φ that is orthogonal to u0.

Applying this method to the DTM B, we let the initial
vector be φ ∈ R|X| with the corresponding score function
∀x ∈ X, f(x) = φ(x)/

√
P0,X(x), and let ψ = B · φ ∈ R|Y|

be the output vector with corresponding score function ∀y ∈
Y, g(y) = ψ(y)/

√
P0,Y (y). Then, by using (9), we have, for

every y ∈ Y,

g(y) =
ψ(y)√
P0,Y (y)

=
1√

P0,Y (y)

∑

x∈X

B(x, y)φ(x)

=
1√

P0,Y (y)

∑

x∈X

PY |X(y|x)
√

P0,X(x)
√
P0,Y (y)

√
P0,X(x)f(x)

= E [f(X)|Y = y] .

Hence, multiplying φ by B is equivalent to taking the con-
ditional expectation of f , i.e., E [f(X)|Y = y]. Similarly,
multiplying ψ by BT is equivalent to taking the conditional
expectation E [g(Y )|X = x] on g. The resulting ACE algo-
rithm for obtaining the singular vectors of B corresponding to
the singular value σ1 is as follows.

Algorithm 1 ACE Algorithm
Require: knowledge of PX,Y

1. Initialize: randomly pick g(y), y ∈ Y
Center: g(y) ← g(y)− E [g(Y )]

repeat
2a. f(x) ← E [g(Y )|X = x] , ∀x ∈ X
2b. g(y) ← E [f(X)|Y = y] , ∀y ∈ Y
2c. Regularize: g(y) ← g(y)/

√
E [g2(Y )], ∀y ∈ Y

until E [f(X)g(Y )] stops to increase.

In Algorithm 1, the initial choice of g(Y ) is constrained
to have zero mean. This is equivalent to setting ψ to be
orthogonal to v0, which corresponds to the constant function
on Y. This centering needs to be implemented only once at the
initialization step, since we have E [f(X)] = E [g(Y )] = 0 in
all of the following steps. Moreover, the regularization step 2c
does not have to be performed in every iteration; it is needed
only once in a while to avoid arithmetic underflow.

Finally, as we discussed, in practice we do not have
available to us PX,Y , but rather i.i.d. training samples
(x̃1, ỹ2), . . . , (x̃k, ỹk) from this distribution. In this case,
we modify Algorithm 1. While the associated convergence
analysis is subtle [7], the primary change is to replace the

conditional expectations in steps 2a and 2b with their empirical
conditional averages defined with respect to this training data.
We omit the details due to space limitations.

It is important to emphasize that the resulting algorithm
will generally be surprisingly effective even when the number
of training samples is small and thus P̂X,Y is poor. This
is because we are not seeking to learn everything about B,
only its dominant singular vectors, as a full analysis of the
associated sample-complexity reveals.

IV. CONCLUDING REMARKS

There are variety of significant additional insights and exten-
sions that space precludes including in this paper. First, there
is a natural interpretation of the optimizing f∗ in (12), which is
also produced by the associated ACE algorithm. In particular,
it has an important interpretation as the corresponding feature
U of X that that is most detectable with this universal g∗.

Second, this framework extends naturally to multiple fea-
tures, leading to rich generalizations of the analysis, geometry,
and algorithms described in this paper. In this case, there is
a collection of orthononal universal features g1, g2, . . . , or-
dered by importance, and an associated orthonomal collection
f1, f2, . . . . Moreover, together with the associated singular
values σ1 < σ2 < . . . , they provide the following efficient
modal decomposition of PX,Y :

PX,Y (x, y)

PX(x)PY (y)
=

∞∑

i=1

σi fi(x) gi(y).

In practice, a relative small number of such features is often
sufficient to capture the dominant behavior of this distribution.

Finally, as a preliminary investigation of potential, we
applied our universal feature functions as a single-layer feature
mapping in the MNIST digital recognition problem, and ob-
tained an error rate of 2.4%. This performance is comparable
to the performance of a standard two-layer convolutional
neural network, and thus demonstrates that our information-
theoretic framework is promising for larger scale applications.
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