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Abstract—We investigate the fundamental limits of communi-
cation over optical on-off-keying channels with crosstalk, where
a light pulse may span over multiple time slots or spatial pixels,
and the receiver is equipped with single-photon detectors. First, we
analyze achievable rates of communication over such channels,
and observe that increasing transmission power (expected number
of photons emitted per slot or pixel) does not necessarily lead
to higher rates. Under simple but reasonable models, the highest
rates are often achieved in a low-photon regime, with an average
of 3 to 7 photons received in each slot or pixel. We further charac-
terize the tradeoff between information rate and photon efficiency
(in terms of the expected number of bits transmitted per photon)
in the presence of crosstalk. Finally, we develop guidelines for slot
length and pixel size selection for different application scenarios.
Our analysis reveals that optimum optical-communication systems
do not minimize the level of crosstalk.

Index Terms—Optical communication, on-off-keying modula-
tion, crosstalk, capacity, photon efficiency.

I. INTRODUCTION

O PTICAL communication has long played a critical role
in enabling high-speed, long-distance, point-to-point in-

formation delivery. While there has been much emphasis on
optical fiber, there is a growing demand for efficient optical
wireless technology for ground, space-based, and underwater
systems in a host of emerging applications. Such systems
generally seek to exploit all available degrees of freedom,
including time, wavelength, polarization, and space, through
efficient multiplexing. In practice, crosstalk between degrees of
freedom is a key source of interference limiting performance.
For example, in systems employing time-division multiplexing,
photons in an emitted light pulse can arrive in multiple slots
(depending on the slot length), causing temporal crosstalk. Such
temporal crosstalk arises from a variety of sources, including,
e.g., electronics jitter [15], [22] and dispersion in the medium
[4]. Similarly, due to, e.g., backscatter [17], in systems using
wavelength-division multiplexing, photons from a channel can
leak into another unless the channels are widely spaced in wave-
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length. Additionally, in multi-spatial-mode communication sys-
tems, crosstalk between adjacent spatial modes at the photon
detector array can arise due to, e.g., lack of orthogonality of the
modes, or the presence of turbulence [6], [18], [36].

In this paper, we analyze optical communication over chan-
nels in which there are both photon losses and crosstalk, the
latter of which can be one-dimensional or two-dimensional
depending on the deployed multiplexing technique. Keeping in
mind implementation considerations, we restrict our attention
to an architecture based on on-off keying (OOK) and single-
photon detection (SPD). With OOK, coherent light is pulsed
on or off in each slot (or pixel), where the number of emitted
photons in the slot is Poisson distributed with mean λ, the pho-
ton transmission density, which is controlled through choosing
the corresponding transmission power. With SPD, receivers can
detect the presence or absence of incoming photons in a slot (or
pixel), and can be realized via photomultiplier tubes, avalanche
photodiodes, or superconducting nanowires. The simplicity of
this architecture makes it particularly suitable for many optical
communication systems, such as multi-mode communication
systems where many transmitters and detectors need to be
implemented, and image array detection in the weak light
scenario. Furthermore, in the regime where the transmitted
energy is not too high this architecture is known to be nearly
optimal (without crosstalk).

Poisson-type channels with inter-symbol interference were
recently studied in [1] and [12] for the applications of non-
line of sight optical wireless communication and molecular
communication. Different from the OOK/SPD channel model
considered in the present paper, they assume that the number
of photons or molecules arriving at time instance t can be ac-
curately detected, hence resulting in very different channel be-
haviors. The capacities of OOK/SPD systems without crosstalk
have been well studied [5], [19], [26]. However, results on
performance in the presence of crosstalk are quite limited. For
example, [15] quantifies the rates achievable by pulse-position
modulation (PPM) with soft-decision decoding in the case of
1-D crosstalk. But such rates are generally far from the capacity
of such channels. Even fewer studies have investigated the
impact of crosstalk in the 2-D case. While crosstalk does not
necessarily arise in optical communication systems operating in
a regime relatively far from fundamental limits, crosstalk does
emerge as a critical issue if one uses single-photon detectors
and seeks to approach the communication limit.

Beginning with a simple but useful model whereby crosstalk
occurs only between neighboring slots or pixels, we quantify
the capacity of such channels, the impact of practical code
constraints, and how to choose power levels that yield certain
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photon densities. This crosstalk model is broadly applicable not
only to system-inherent crosstalk (such as jitter crosstalk), but
also to important turbulence-induced crosstalk and other dis-
persive weather-related phenomena. Many practical channels
can be well approximated and analyzed based on this crosstalk
model, even when some photons appear in non-neighboring
slots or pixels. We also analyze the photon efficiency of such
systems, which is important when energy is a critical resource.
Among other results, we quantify the tradeoff between the in-
formation rate and photon efficiency in the presence of crosstalk
in the energy-efficient regime.

Finally, we consider the selection of slot/pixel size in such
systems. Given the physical crosstalk mechanisms, decreasing
the slot/pixel size increases the number of degrees of free-
dom for communication, but also increases the interference
between these degrees of freedom due to the greater inter-slot/
pixel crosstalk. As an illustration of the associated analysis,
we discuss how to select a good slot/pixel size for Gaussian
pulses in both 1-D and 2-D systems whose performance we can
characterize.

In this paper, we use the following notations:

λ transmission density, the expected number of emit-
ted photons in each signal slot;

pc crosstalk probability, for a photon appearing in
neighboring slots;

C(λ, pc) channel capacity given by the maximum number of
bits sent per slot;

R(λ, pc) information rate given by the number of bits trans-
mitted per slot;

ε the expected number of emitted photons per slot,
with ε = pxλ;

C̃(ε) photon efficiency defined by the maximum number
of bits sent per photon.

An outline of the paper is as follows. Section II defines
the models and analysis framework of the paper. Sections III
and IV develop bounds on rates achievable over optical OOK
channels with 1-D or 2-D crosstalk, respectively, as a function
of the transmission density. Section V analyzes the photon
efficiency in the presence of crosstalk in the low-photon regime,
and Section VI discusses the issue of slot length (and pixel
size) selection in some practical scenarios of interest. Finally,
Section VII contains some concluding remarks.

II. CHANNEL AND SYSTEM MODELS, AND

PERFORMANCE MEASURES

In this section, we define the basic channel and system
models of interest, and the associated performance measures
to be used in our analysis.

A. Channel Model

In (1-D) OOK, the encoder prepares a sequence of binary
inputs x = xm

1 = (x1, x2, . . . , xm) ∈ {0, 1}m, where xi = 1 rep-
resents that a coherent pulse of (average) λ photons is sent in
slot i. Given a pulse sent in slot k, the probability that a photon
from this pulse arrives in slot k + i is given by the crosstalk

coefficient pi. The number of photons arriving in slot j is a
Poisson random variable kj with mean

k̄j = λη

m∑

i=1

xipj−i,

where η ≤ 1 denotes the transmissivity of the channel, i.e., the
probability of a photon arriving at the receiver. Since η affects
a simple scaling of λ, we can, without loss of generality, set
η = 1 in our analysis. With SPD, the channel outputs y = ym

1 =
(y1, y2, . . . , ym), where yj is the output in the jth slot, are also
binary. Specifically, yj = 1 if kj > 0; otherwise, yj = 0.

The crosstalk coefficients are strongly influenced by the slot
size. In particular, we have

pi =
∫ (i+1/2)$

(i−1/2)$
f (z)dz. (1)

where $ denotes the slot length, and f (z) denotes the probability
density function of the position of a photon in a received pulse
centered at z = 0.

In systems with suitably long slots, there is effectively only
crosstalk between adjacent slots, in which case we have (assum-
ing symmetry) p1 = p−1 = pc/2 and p0 = 1 − pc, where pc is
the (single) crosstalk parameter. Thus the output photon count
is conditionally Poisson with mean

k̄i =
[pc

2
(xi−1 + xi+1) + (1 − pc)xi

]
λ, (2)

where we let x0 = 0 and xm+1 = 0.
Extensions to the 2-D case of an m × m pixel array are

straightforward. We use X = {xi,j} ∈ {0, 1}m×m to denote the
input array, where xi,j is the bit at the ith row and jth column,
and Y = {yi,j} ∈ {0, 1}m×m to denote the output array. A corre-
spondingly simple but useful adjacent crosstalk model in this
case is one with four-neighbor interference. Specifically, the
number of photons received at pixel (i, j) is a Poisson random
variable ki,j with mean

k̄i,j =
[

pc

4
(xi−1,j + xi+1,j + xi,j−1 + xi,j+1) + (1 − pc)xi,j

]
λ,

(3)

where x0,j = 0, xm+1,j = 0, xi,0 = 0, xi,m+1 = 0 for all 1 ≤
i, j ≤ m.

B. Channel Capacity and Information Rates

For a given photon transmission density λ, the maximum
number of bits that can be transmitted per slot in the 1-D case
is given by the OOK/SPD capacity

C(λ) = lim
m→∞ max

Px

1
m

I(x; y), (4)

where x, y ∈ {0, 1}m are the input sequence and output se-
quence, Px is a distribution over x, and I(x; y) denotes the
mutual information. Analogously, in the 2-D case we have

C(λ) = lim
m→∞ max

PX

1
m2 I(X; Y).
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Furthermore, the maximum capacity of a channel is Cmax =
maxλ≥0 C(λ). We will often make the dependence of capacity
on the crosstalk explicit in our notation, using, e.g., C(λ, pc) for
the capacity in the case of our nearest-neighbor crosstalk model.

In practice, when the optimizing input distribution in (4)
is biased and/or correlated, it can be difficult to construct
capacity-approaching error-correcting codes for these chan-
nels. In such cases, we are also interested in the performance
of existing codes optimized for simpler input distributions—
specifically, independent, identically distributed (i.i.d.) distri-
butions, uniform i.i.d. distributions, and those corresponding
to the use of PPM. Accordingly, in addition to capacity we
analyze the associated i.i.d. information rate Riid(λ, pc), sym-
metric information rate Rsym(λ, pc), and PPM information rate
RPPM(λ, pc), respectively.

C. Photon Efficiency

While capacity measures the limits of bandwidth efficiency,
the limits of energy efficiency are given by the photon efficiency
of the channel, which in the 1-D case is the maximum number
of bits per photon that can be sent (or received, since without
loss of generality we have taken η = 1), i.e.,

C̃(ε) ! max
Px : pxλ≤ε

I(x; y)

mε
,

with px !
1
m

m∑

i=1

Pr{xi = 1},

and corresponds to normalizing the rate per slot by the num-
ber of photons per slot. The photon efficiency varies with
ε, the maximum number of photons available, on average,
for transmission in a slot. The extension to the 2-D case is
straightforward.

III. CHANNELS WITH 1-D CROSSTALK

In this section, we derive bounds on the capacities and
information rates of 1-D channels described by (2), for which

Py|x(ym
1 |xm

1 ) =
m∏

i=1

P
(

yi|xi+1
i−1

)
(5)

with x0 = xm+1 = 0. Eq. (5) describes a class of inter-symbol
interference (ISI) channels, or more generally, channels with
memory. The computation of capacities of channels with mem-
ory has attracted much attention in the information theory
literature. However, for most such channels with memory,
computing the exact capacity is difficult, and thus much of the
emphasis has been put on developing bounds. It is this bounding
approach we apply to the channel (5).

A general approach to obtaining a lower bound on capacity
is to calculate the information rate of the channel when its input
is an kth-order Markov chain. By optimizing the distribution of
the input Markov chain and increasing k, one can get an increas-
ingly tight lower bound on the channel capacity [8], [16], [34].
For a given Markov chain input, an efficient simulation-based
method for computing the information rates of channels with
memory is developed in [2], [3], [27]. This method requires the

Fig. 1. Bits for computing the bounds on the capacity of channels with
1-D crosstalk. (a) The lower bound is computed by optimizing over kth-
order Markov input distributions on xi+d

i−k with k = 6 and parameter d = 4.
(b) The upper bound is computed by optimizing over stationary and reflection-
symmetric input distributions on xi+1

i−t−1 with t = 5.

generation of very long output realizations from the channel
model. Approaches for upper bounding the capacity of channels
with memory are developed in [33], [37].

A. Lower Bound on Capacity

Following [8], [16], [34], we compute the lower bound of the
capacity (5) by optimizing a kth order stationary Markov chain
input. Specifically, the information rate R(%) of the channel as
a function of the transition probability % ∈ Rk of the Markov
chain input is a lower bound.

Proceeding, via the chain rule of mutual information we
have, for any input distribution,

I(x; y) =
m∑

i=1

[
H

(
xi|xi−1

1

)
− H

(
xi|ym

1 , xi−1
1

)]
, (6)

and for the subset of the inputs as in Fig. 1(a), we have, due to
the Markov structure of the input,

H(xi|xi−1
1 ) = H

(
xi|xi−1

i−k

)
,

H
(

xi|ym
1 , xi−1

1

)
≤ H

(
xi|xi−1

1 , ym
i−1

)
≤ H

(
xi|xi−1

i−k, yi−1+d
i−1

)
,

(7)

where k is the order of the input Markov chain, and d is a suit-
ably small integer. Moreover, when m is sufficiently large, we
can further ignore the edge effects. Thus, we obtain the bound

C(λ, pc) ≥ C−(λ, pc)

! max
0≤%≤1

[
H

(
xi|xi−1

i−k) − H(xi|xi−1
i−k, yi−1+d

i−1

)]
(8)

for k ≤ i ≤ m − d + 1, where we note that the bound does not
depend on the chosen value of i in this range.

To evaluate the quantity in brackets in (8), we require the
probability distribution on xi+d

i−k , i.e., P(xi+d
i−k ), which is obtained

as follows. Given the transition probability %, we compute
the stationary distribution of the input as follows. We treat k
consecutive input bits as a super-symbol and express the input
sequence as a first-order Markov process over an alphabet of
size 2k with transition matrix A(%). The stationary distribution
u(%) is the solution to u(%)A(%) = u(%), from which P(xi+d

i−k )

is computed. Although the bracketed expression is in general
not concave, convex-programming techniques can nevertheless
be applied to obtain a local maximum as the lower bound. Our
numerical experiments suggest that the local maximum may
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Fig. 2. (a) Capacities of optical channels with 1-D crosstalk. (b) Maximum capacities and their approximations based on (11) for different pc.

be the global maximum when using the initialization %0 =
[1/2, 1/2, . . . , 1/2].

B. Upper Bound on Capacity

To compute an upper bound on the capacity of an optical
channel with 1-D crosstalk, we first show the following.

Lemma 1: For the OOK/SPD channel model (5), there exists
a stationary and reflection-symmetric input distribution that
achieves the capacity of the channel, i.e., a distribution Px such
that

Px

(
xm−1

1

)
= Px

(
xm

2
)
,

Px(x1, x2, . . . , xm) = Px(xm, xm−1, . . . , x1).

Proof: Since [8] establishes that a stationary input dis-
tribution Px achieves the capacity for a stationary channel
with memory, we need only focus on the reflection-symmetry
property. Accordingly, let P′

x be the reflection of the opti-
mal stationary input distribution Px, i.e., P′

x(x1, x2, . . . , xm) =
Px(xm, xm−1, . . . , x1). Clearly P′

x is a stationary input distri-
bution that also achieves the capacity, and u ! (Px + P′

x)/2 is
both stationary and reflection-symmetric.

But IPx(x; y), the mutual information for input distribution is
Px, is a concave function of Px, i.e.,

Iu(x; y) ≥ 1
2

IPx(x; y) + 1
2

IP′
x
(x; y),

so the stationary and reflection-symmetric distribution u must
also achieve capacity. "

According to Lemma 1,

C(λ, pc) = lim
m→∞ max

Px

1
m

I(x; y)

s.t. Px is a stationary and reference-symmetric distribution. To
obtain our upper bound, we use

I(x; y) =
m∑

i=1

[
H

(
yi|yi−1

1

)
− H

(
yi|yi−1

1 , xm
1

)]
, (9)

and restrict our attention to a subset of inputs parameterized
by t as depicted in Fig. 1(b). In particular, for t < i ≤ m − 1

we have

H
(

yi|yi−1
1

)
≤ H

(
yi|yi−1

i−t

)
,

H
(

yi|yi−1
1 , xm

1

)
= H

(
yi|xi+1

i−1

)
,

and since we can ignore edge effects for m sufficiently large,
we obtain

C(λ, pc) ≤ C+(λ, pc) ! max
ϕ

[
H

(
yi|yi−1

i−t

)
− H

(
yi|xi+1

i−1

)]

(10)

for t < i ≤ m − 1, where ϕ is a stationary and reflection-
symmetric distribution on xi+1

i−t−1. Note that ϕ is the marginal
distribution of Px, and this constraint on ϕ is a relaxation of
the constraint that Px is a stationary and reference-symmetric
distribution.

The optimization in (10) is straightforward to carry out
using convex-programming techniques. Indeed, we have the
following result, whose proof is in Appendix A.

Lemma 2: For some t and t < i ≤ m − 1, let ϕ be a dis-
tribution on xi+1

i−t−1, then R+(ϕ) = H(yi|yi−1
i−t ) − H(yi|xi+1

i−1) is
concave in ϕ.

Furthermore, the constraints on ϕ are linear. Specifically, the
stationarity constraint is ϕ(xi

i−t−1) = ϕ(xi+1
i−t ), where both the

left and the right terms are marginal distributions (and thus
linear transformations) of ϕ. The linear constraint that ϕ is
reflection-symmetric is

ϕ(xi−t−1, xi−t, . . . , xi+1) = ϕ(xi+1, xi, . . . , xi−t−1).

And the remaining constraints
∑

i ϕi = 1 and 0 ≤ ϕi ≤ 1 are
also linear.

C. Capacities

As depicted in Fig. 2, (8) and (10) provide very tight bounds
on the capacity of the channel (5) when we choose, e.g., k = 6,
d = 4, and t = 5. Fig. 2(a) shows the resulting capacities for
a wide range of λ and values of pc chosen according to the
geometric sequence 0.01, 0.02, 0.04, . . . , 0.64.
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Fig. 3. (a) Information rates of optical channels with 1-D crosstalk. (b) Maximum capacity and maximum information rates of optical channels with 1-D crosstalk.

Note that as λ changes, the channel capacities for different
values of pc exhibit qualitatively different behaviors. In partic-
ular, there is a threshold p∗ ∼= 0.22 such that when pc ≥ p∗, the
capacity is a nondecreasing function of λ, while for pc < p∗,
the capacity has two local maxima, one at a finite transmission
density λ∗ that can be well-approximated by

λ∗ + −2 log10(pc) + 2, (11)

and the other at infinite transmission density. The local maxi-
mum at finite transmission density is larger than the second one
when pc ≤ p∗∗ ∼= 0.068.

The figure also reflects the following behavior, whose proof
is provided in Appendix B.

Proposition 3: The capacity of the channel (5) satisfies
C(λ, pc) → C∞ = log γ ∼= 0.6942 as λ → ∞, where γ is the
largest real root of the polynomial x4 − 2x3 + x2 − 1.

We observe that the rate of convergence of capacity to C∞ de-
pends on pc, with larger pc resulting in faster convergence rates.
Note, too, that for given a transmission density λ, larger values
of pc do not necessarily result in lower channel capacities.

Fig. 2(b) demonstrates the excellent quality of the approx-
imation of the first local maximum capacity based on (11).
Fig. 2(b) also demonstrates that even small amounts of crosstalk
lead to substantial performance degradation. For example, pc ∼=
0.01 leads to a loss in maximum capacity of roughly 10%.

D. Information Rates

Fig. 3(a) compares the channel capacity C(λ, pc), the i.i.d.
information rate Riid(λ, pc), and the symmetric (uniform i.i.d.)
information rate Rsym(λ, pc) when pc = 0.04 and 0.32. As
λ increases, Riid(λ, pc) → R∗

iid
∼= 0.65, Rsym(λ, pc) → R∗

sym
∼=

0.43, independent of pc. Moreover, Riid(λ, pc) is much closer
than Rsym(λ, pc) to C(λ, pc), implying that in practice we can
use an i.i.d. input distribution to achieve near-capacity perfor-
mance. As λ decreases, the gaps between both the information
rates and C(λ, pc) decrease. In particular, when pc is small,
the maxima of both Riid(λ, pc) and Rsym(λ, pc) (where λ is not
large) are very close to the maximum of C(λ, pc).

Fig. 3(b) further plots the maximum i.i.d. information rate
Rmax

iid (pc) = maxλ≥0 Riid(λ, pc) and the maximum symmetric

information rate Rmax
sym(pc) = maxλ≥0 Rsym(λ, pc), comparing

them to Cmax(pc). Evidently, Rmax
iid (pc) ∼= Cmax(pc) when pc ≤

p∗∗. Note that there is a small gap between Rmax
sym(pc) and

Cmax(pc) but this gap vanishes quickly with decreasing pc. And
for Rmax

iid (pc) and Rmax
sym(pc), there are turning point thresholds

p∗
iid

∼= 0.090 and p∗
sym

∼= 0.24, respectively, analogous to p∗

for Cmax(pc). Hence, for systems with sufficiently small pc,
near optimum performance can be achieved with low trans-
mission density even when restricting attention to uniform i.i.d.
codebooks.

The effect of crosstalk on the Cmax(pc) can be analyzed
when pc is sufficiently small, since Cmax(pc) ∼= Rmax

sym(pc) in this
regime. In particular, we obtain the following theorem, whose
proof is provided in Appendix C.

Theorem 4: For the channel of (5),

Rmax
sym(pc) = 1 − log2 e

4
pc(log pc)

2 + o
(

pc(log pc)
2
)

. (12)

IV. CHANNELS WITH 2-D CROSSTALK

In this section, we extend our results to the case of 2-D
crosstalk for our simple four-neighbor model

PY|X(y|x) =
m∏

i=1

m∏

j=1

P(yi,j|xN (i,j)),

N (i, j) = {(i, j), (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)} .

(13)

The calculation of capacity is more involved in the 2-D
case. Finite-state ISI channels in 2-D have been studied mostly
in the context of magnetic and optical recording devices. For
example, [7], [25], [24] introduce methods to compute upper
bounds on the symmetric information rate. Another approach
that applies simulation-based methodologies, the “generalized
belief propagation” algorithm is developed in [29]. Due to
the high computational complexity, tight capacity bounds are
only obtained for some special constraints. Specifically, lower
bounds based for bit-stuffing encoders or tilling encoders are
presented and analyzed in, e.g., [11], [13], [28], [31], and upper
bounds are provided, e.g., in [10], [32].
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Fig. 4. Regions for calculating the lower bound R−(λ, pc), where the black
square is for xi,j, the light gray squares of the input are for xT , and the dark
gray squares of the output are for yW . (a) Input. (b) Output.

A. Lower Bound on Capacity

Our lower bound is obtained based on computing an achiev-
able i.i.d. information rate. Specifically, we can bound the i.i.d.
information rate according to

R(λ, pc) = lim
m→∞

I(X; Y)

m2 (14)

= H(xi,j) − lim
m→∞

1
m2

m∑

i,j=1

H
(

xi,j|xi,j−1, Y
)

(15)

≥ H(xi,j) − H(xi.j|xT , yW ). (16)

To obtain (15), we use (6) and the i.i.d. input distribution, where
xi,j−1 consists of all indices (i′, j′) such that either i′ < i, or i′ =
i and j′ < j. To obtain (16), we increase the entropy by reducing
the conditions. The subsets T and W are finite neighborhoods
of (i, j), where T is a subset of that used for xi,j−1; we ignore
edge effects in the limit m → ∞. Hence we have

C(λ, pc) ≥ R−(λ, pc) ! max
0≤px≤1

[
H(xi,j) − H(xi,j|xT , yW )

]

(17)

where px is the parameter of i.i.d. input distribution. Suitable
regions that render (17) tractable are depicted in Fig. 4.

B. Upper Bound on Capacity

The capacity-achieving input distributions for (13) have
special properties we will exploit to obtain an upper bound.
Towards this goal, we begin with definitions that are natural
extensions of their 1-D counterparts.

Definition 1: A 2-D distribution ϕ is stationary if and
only if ϕ(xU ) = ϕ(xU ′) for any two sets of indices such that
U ′ is a shift of U , i.e., U ′ = {(i + α, j + β) : (i, j) ∈ U} for
two integers α,β. Furthermore, a stationary distribution ϕ is
reflection-symmetric if and only if ϕ(xU ) = ϕ(xU ′) for any sets
of indices U and U ′ that satisfy one of the following conditions:

1) U ′ is a horizontal reflection of U , i.e., U ′ = {(α − i,β +
j) : (i, j) ∈ U} for some α,β;

2) U ′ is a vertical reflection of U , i.e., U ′ = {(α + i,β − j) :
(i, j) ∈ U} for some α,β;

3) U ′ is a diagonal reflection of U , i.e., U ′ = {(α + j,β +
i) : (i, j) ∈ U} for some α,β.

In [32], it is shown there exists a stationary and reflection-
symmetric input distribution that achieves the capacity under
some special 2-D constraints. In the following theorem, whose
proof we provide in Appendix D, we show that this is also true
for the channel (13).

Fig. 5. Regions for calculating the upper bound C+(λ, pc), where the black
square of the output is for yi,j, the light gray squares of the output are for yT ,
and the dark gray squares of the input are for xW . (a) Input. (b) Output.

Theorem 5: There exists a stationary reflection-symmetric
input distribution that achieves the capacity of the channel (13).

Analogous to the 1-D case, we obtain an explicit upper bound
on capacity by optimizing over finite-memory distributions,
yielding

C(λ, pc) ≤ C+(λ, pc) ! max
ϕ

[
H(yi,j|yT ) − H(yi,j|yT , xW )

]

(18)

where the optimization of ϕ is over stationary and reflection-
symmetric distributions on a suitable region S that includes
T ,W and (i, j), and T is also a subset of indices used for yi,j−1.
Using an argument similar to that used to obtain Lemma 2, it
can be proved that the quantity in brackets in (18) is concave
in ϕ. Furthermore, the stationary and reflection-symmetric con-
straints on ϕ are linear. Hence, (18) can be computed via convex
programming. As the number of variables in this problem is
exponential in |S|, we use the small regions depicted in Fig. 5.
In the figure, we label all the input bits as 1, 2, . . . , 10 from left
to right and then from top to bottom, then due to the stationary
requirement, it has linear constraints

ϕ
(

x4
1x8

7

)
= ϕ

(
x2x7

5x10
9

)
, ϕ

(
x3

2x7
5x9

)
= ϕ

(
x4

3x8
6x10

)
;

and due to the reflection-symmetric requirement, it has linear
constraints

ϕ
(

x4
1x8

6x10

)
= ϕ

(
x10x8

6x4
2x1

)
,

ϕ
(

x3
2x10

5

)
= ϕ(x3x2x8x7x6x5x10x9),

ϕ(x3x6x4x7x9x8x10) = ϕ(x8x10x4x7x9x3x6).

To obtain upper bounds on Riid(λ, pc) and Rsym(λ, pc), we
specialize ϕ in (18) to the case of an i.i.d. and uniform i.i.d.
distribution, respectively. In these cases, sharper bounds are
possible since the comparatively larger regions S , T and W
depicted in Fig. 6 can be used. Indeed, due to the independence
of all the input bits, the joint distribution of yi,j, yT , xW can be
computed efficiently by iteration.

C. Capacities

Fig. 7 depicts the upper and lower bounds on the capacity of
optical channels with 2-D crosstalk as a function of λ. We see
that when pc and λ are small, the upper and lower bounds are
tight. But the gap increases with pc and λ.

The capacity of (13) evidently exhibits behavior similar to the
1-D case. When pc is small, Cmax(pc) is achieved at a low trans-
mission density λ∗, which can be well-approximated by (11).
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Fig. 6. Regions for computing an upper bound on information rates for 2-D
crosstalk, where the black square of the output is for yi,j, the light gray squares
of the output are for yT , and the dark gray squares of the input are for xW .
(a) Input. (b) Output.

Fig. 7. Upper and lower bounds of the capacities with 2-D crosstalk for
different pc.

Proposition 6: The capacity of an optical OOK channel
with 2-D crosstalk converges to C∞, which is independent of
pc when pc > 0, as the transmission density λ goes to infinity.

For an optical channel with 2-D crosstalk, when the transmis-
sion density λ → ∞, if xi,j = 1, then yi,j = yi−1,j = yi+1,j =
yi,j−1 = yi,j+1 = 1. So each one in the input array produces a
‘+’ shape in the output array. The output array Y ∈ {0, 1}m×m

can be treated as a 2-D constrained code, as a union of a
collection of ‘+’ shapes. Obviously, the resulting channel is in-
dependent of pc when pc > 0, so is its capacity. With numerical
techniques of computing the bounds on the capacity of some
2-D constraints, we obtain that 0.5639 ≤ C∞ ≤ 0.6126. Details
of the computation are provided in Appendix E.

D. Information Rates

Fig. 8(a) shows the lower and upper bounds on the i.i.d.
information rate and the symmetric information rate when pc =
0.04 or 0.3. From this figure, we observe that the bounds on the
i.i.d. information rate are tight when λ is not large. In general,
given λ and pc, the optimal i.i.d. input distribution is more
efficient than the uniform input distribution for achieving high
information rate, especially when pc or λ is large. When the
transmission density goes to infinity, the i.i.d. information rate
converges to a constant between 0.5639 and 0.6126; at the same
time, the symmetric information rate converges to a constant
between 0.1804 and 0.1855.

According to Fig. 7, when both pc and λ are not large, the
lower bound on the i.i.d. information rate (which is also used
as the lower bound on the capacity) is very close to the upper

bound on the capacity. When λ → ∞ (no matter what the value
pc is), Theorem 6 showed that the upper bound on the capacity
is 0.6126, which is close to the lower bound 0.5639 for the i.i.d.
information rate with λ → ∞. It implies that when λ → ∞, the
i.i.d. information rate is near the capacity. Both the evidences
support our intuition that the optimal i.i.d. input distribution can
achieve information rate very close to the capacity for optical
channels with 2-D crosstalk. Fig. 8(b) further compares the max-
imum i.i.d. information rate and the maximum symmetric infor-
mation rate with the optimal transmission density λ when λ≤10.
We see that when pc is small, the maximum symmetric infor-
mation rate is very close to the maximum i.i.d. information rate,
implying that one can use regular linear codes such as LDPC
codes for the error-correcting purpose when crosstalk is small.

V. THE PHOTON EFFICIENCY

In this section, we investigate the tradeoff between the infor-
mation rate and photon efficiency of optical OOK channels with
crosstalk when the expected number of photons transmitted per
slot/pixel ε is small.

A. Background: Photon Efficiency Without Crosstalk

Without crosstalk, the information rate with an i.i.d. input
distribution is just that of a Z channel with input distribution
Pr{x = 1} = px and transition probability Pr{y = 1|x = 1} =
1 − exp{−λ} ! µ(λ), whence the information rate R(px, λ) =
H(pxµ(λ)) − pxH(µ(λ)), where H(q) is the entropy of a
Bernoulli distribution with probability q. This rate should be
optimized keeping pxλ = ε fixed. In [9], the tradeoff between
PPM information rate and photon efficiency was investigated.
We are interested in the small-ε behavior. As it turns out, in that
limit the optimal choice is given by [18]

p∗
x = ε

2
log

1
ε
, λ∗ = ε

p∗
x
. (19)

Substituting, the photon efficiency can be shown to be1

C̃(ε) =
(

1 − λ∗

2

)
log2

1
ε

− log2
1
λ∗ + o(1)

= log2
1
ε

− log2 ln
1
ε

− log2 e + 1 + o(1).

While the efficiency is unbounded as ε decreases, the rate r =
εC̃(ε) goes to zero.

We note that in the high-efficiency regime the resulting
channel is highly skewed, both in terms of input distribution and
in terms of crossover probability. Thus, the task of coding may
be very difficult. This can be solved by replacing the i.i.d. binary
codebook by pulse-position modulation (PPM), an idea already
exploited in [21], [23]: the input sequence consists of “frames”
of length b = ,1/p∗

x-, where each frame includes exactly one
pulse, whose position is uniformly chosen inside the frame.2

This scheme converts the channel to an b-ary erasure channel.

1See, e.g., [35] and the references therein for a finer-grained analysis that
takes into account dark current.

2If the blocklength m is not divisible by b, then we ignore the remainder.
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Fig. 8. (a) Information rates of optical channels with 2-D crosstalk. (b) Maximum information rates for 2-D crosstalk with different pc.

By computing the capacity of this erasure channel, one finds
that the photon efficiency of the PPM scheme is given by

C̃PPM(ε) = µ(bε) · log2 b
bε

, (20)

which behaves the same as the expression we derived for OOK,
i.e., the loss of efficiency is only o(1). The resulting large-
alphabet erasure channel is much like a packet-erasure channel
encountered in Internet applications, and good off-the-shelf
codes are available.

B. Photon Efficiency With Crosstalk

We have the following result for a crosstalk distribution p
over a finite range [−a, · · · , 0, · · · , a].

Proposition 7: For an i.i.d. input distribution, the OOK
efficiency with crosstalk is given by

C̃(ε) = log2
1
ε

− log2 ln
1
ε

− log2 e + 1 − H + o(1),

H ! −
a∑

i=−a

pi log2 pi.

with H denoting the entropy of the crosstalk.
This result, reflecting an efficiency loss of H + o(1) with

respect to the crosstalk-free case, can be shown in the following
way. Take the input to be i.i.d. with p∗

x (19). As we assumed
that the crosstalk has a finite range, the probability of a specific
slot to be in the range of two input pulses decays strongly, and
does not effect the terms of interest. Thus, the output entropy
remains the same as in the crosstalk-free case; the conditional
entropy, in turn, is reduced per each received photon by H, the
entropy of the location of detection. Since we only consider an
i.i.d. distribution in this limit, the result can be extended in a
straightforward manner to the 2-D case. It is highly plausible
that such a distribution is optimal (to the order of interest),
since the inter-pulse effects are very small; however, we do not
formally prove this.

Now, consider the use of PPM in this setting. There is a single
pulse per frame, and since λ is low, with very high probability
there is at most one detection. Thus, if a frame does not result
in an erasure, it will result in a detection in one slot. The effect

of crosstalk is thus reduced to a slot error, making the task of
coding much easier. The resulting photon efficiency is given by

C̃PPM(ε) = µ(bε) · log2 b − H
bε

+ o(1), (21)

where the correction term is due to the probability for more
than one detection. Analyzing this expression reveals that PPM
attains the optimum expression of Proposition 7.

VI. SELECTION OF SLOT/PIXEL SIZE

So far we have considered a discrete model, where the
relevant space is partitioned into slots or pixels. However, in
many cases the system designer has control over the slot size,
which affects the crosstalk distribution p as shown in (1). In this
section we consider the selection of this parameter.

We note in advance that while performance can only increase
as the slot/pixel size is decreased, in general such a decrease is
accompanied by a corresponding increase in system complex-
ity, in terms of hardware and/or computation. Accordingly, in
our analysis, we restrict our attention to relatively simple ar-
chitectures, and develop good slot/pixel sizes choices for them.
Moreover, we are able to provide performance guarantees for
such optimized schemes. We emphasize in advance, however,
that our analysis does not preclude the possiblity of alternative
achitectures that may be practical and efficient in comparatively
short slot/pixel size regimes.

A. Non-Adjacent Crosstalk

In the continuous 1-D model, when the slot length is very
small, we face a challenge in calculating the channel capacity:
crosstalk may happen between non-adjacent slots, unlike the
model we analyzed. Specifically, let f (z) be the probability
density function of the position of a photon in a received pulse
centered at z = 0, given a slot length $, the probability of having
crosstalk is given by

pc($) = 1 − p0 = 1 −
∫ $/2

−$/2
f (z) dz,

and the probability of having non-adjacent crosstalk is given by

pn($) = 1 − p−1 − p0 − p1 = 1 −
∫ 3$/2

−3$/2
f (z) dz.
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When the crosstalk probability is monotonously decreasing and
the slot length is not too small, the non-adjacent crosstalk is low,
but may not be negligible. We solve the issue by considering
the adjacent crosstalk as the first-order approximation, while
treating the non-adjacent crosstalk as additional random noise,
which introduces a penalty term. Due to the practical concern
of constructing error-correcting codes, we focus on uniform
i.i.d. input distributions. Thus, we define a penalized symmetric
information rate

R−
sym($) ! max

λ

[
Rsym(λ, pc($)) − *(λ, pn($))

]
(22)

where Rsym(λ, pc($)) is the symmetric information rate with
transmission density λ and crosstalk probability pc($) and

*(λ, pn($)) = 1
2

H
(

min
(

1 − e−pn($)λ/2, 1/2
))

is the penalty term. We are interested in how the slot length $

affects the rate R−
sym($), and based on which we further study

the selection of $ with different application requirements in the
following subsections.

Lemma 8: R−
sym($) is a lower bound on the symmetric

information rate with slot length $.
Proof: For the bound, we only need to upper-bound the

penalty term caused by non-adjacent crosstalk. When the input
sequence is stationary and uniformly distributed, the expected
number of photons falling into a specific slot caused by non-
adjacent crosstalk is λn($) = pn($)pxλ = pn($)λ/2. The prob-
ability for a slot having at least one photon from non-adjacent
slots is thus 1 − exp{−λn($)}, yielding the desired bound. "

It is also interesting to consider the case where the photon
budget is limited. Let C̃(ε, $) be the photon efficiency when the
average number of photons per slot is ε and the slot length is
$. Evaluating C̃(ε, $) in the limit of small ε. That is, since for
any positive $, the probability to send a pulse px is small in
the limit of small ε. Consequently, each detector can only have
detections originating from a single beam. As a direct corollary
of Proposition 7 we have C̃(ε, $) = log2(1/ε) − log2 ln(1/ε) −
log2 e + 1 − H($) + o(1), where H($) is the entropy of the
crosstalk probabilities pi.

B. Application: Slot-Length for Maximizing Throughput

In optical communications with time-division multiplexing
or wavelength-division multiplexing techniques, it is desired to
maximize the channel throughput, i.e., the number of available
bits transmitted per second (or per Hz). For our models, the
channel throughput can be written as the ratio between the in-
formation rate (i.e., the number of bits transmitted per slot) and
the slot length (either in seconds or Hz). Intuitively, as slot size
shrinks, one can get more slots for transmitting information, but
meanwhile, the crosstalk probability increases and hence the
capacity of each slot may decrease, and also, it is much more
difficult to design efficient error-correcting codes. In order to
optimize the performance of optical communications systems,
it is important to understand the relation between the channel
throughput and the selected slot length, as well as the respective
crosstalk probability.

Fig. 9. The relation between the channel throughput and the slot length for
Gaussian pulses with variance σ 2.

We first consider a simple model in which the positions z of
the received photons in a pulse are independent and Gaussian
distributed with mean at the middle of the target slot (position
z = 0) and variance σ 2, for instance, σ = 200 ps. With this
model, the crosstalk probability is given by pc($) = Pr(|z| ≥
$/2), and the probability of having non-adjacent crosstalk is
pn($) = Pr(|z| ≥ 3$/2).

Fig. 9 shows achievable channel throughput r($) based on
the lower bound r−($) = R−

sym($)/$, which penalizes all non-
adjacent-slot crosstalk. As a comparison, an upper bound on the
channel throughput of a system with the uniform i.i.d. input dis-
tribution is derived by simplify ignoring all non-adjacent-slot
crosstalk, see the dashed curve in the figure. Since it is difficult
to handle non-adjacent crosstalk in practical applications, we
are in particular interested in the local maximum in the figure
as a feasible operating point. We see that a local optimal slot
length that maximizes r−($) is about $ = 4σ , which is 800 ps
when σ is 200 ps. In this case, the crosstalk probability is
about pc = 0.06, the optimal transmission density is λ =
4.4photonsperslot, and thethroughputof asinglechannel is about
220 Mb/s. We also observe that the channel throughput is
not very sensitive to the slot length around the maximum, so
in practical systems, we can choose the slot length slightly
larger than 4σ , e.g., 5σ , for improving the coding efficiency
(the crosstalk probability is further reduced) and reducing the
computational cost. Typically, for Gaussian-like pulses, an op-
timum optical-communication system works with a low trans-
mission density and a little crosstalk.

But for some rare occasions where light pulses have sharp
boundaries, a system may work better with a high transmission
density and a big crosstalk probability. Let’s consider an ex-
treme ideal model: the photons in each light pulse are uniformly
distributed in an interval of width w = 1000 ps when they
arrive at the receiver. In this case, the maximum throughput is
achieved with slot length $ = w/3 = 333.3 ps and a very high
transmission density λ. According to Lemma 3, this maximum
throughput is equal to 0.6942/$ = 2.08/w = 2.08 Gb/s. As a
comparison, if we choose $ = w, then it leads to a channel
without crosstalk, but the respective throughput is reduced to
1/w = 1 Gb/s.

In the energy-constrained case where photon efficiency is of
primary interest, stronger results are possible. In this case, the
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Fig. 10. (a) Minimum Fresnel-number product redundancy α as a function of the detector number redundancy β. (b) Minimum Fresnel-number product
redundancy α as a function of the detector number redundancy β when the photon budget is tight. Dashed line depicts the asymptotic value α0.

lower bounds are tight for all slot lengths, and thus the full
spectrum of tradeoffs can be evaluated. However, to avoid un-
necessary duplication of exposition, we omit this development
here and instead provide in the next section as part of a 2-D
application.

C. Application: Pixel Size in Free-Space Communications
With Multiple Spatial Modes

We now consider a free-space communication scenario,
where the required rate cannot be supported by a single op-
tical mode, thus multiple modes are required. We extend the
analysis applied so far, by explicitly taking into account the
cost of using many detectors. Thus, we considerate the balance
between performance in terms of bits/area and bits/mode. We
note that in principle, one could work with orthogonal modes,
avoiding crosstalk altogether, however these are undesired from
a practical point of view. Thus, we quantify the loss (in terms
of are and of number of modes) of a simple system, compared
to orthogonal modes.

Assume that one needs to transmit N bits per channel use (de-
fined in the time domain, that we keep discrete). In principle, this
can be done using N OOK/SPD transmitter-detector pairs, each
one communicating 1 bit per channel use, avoiding crosstalk
altogether, as long as spatially orthogonal modes are utilized.
The optimal “packing” of modes is given by prolate spheroidal
function analysis [30]. The maximal number of orthogonal
modes that a link can carry is given by the Fresnel-number
product , ! AtAr/(νL)2, where At and Ar are the transmit and
receive apertures, respectively, ν is the carrier wavelength and L
is the distance between transmitter and receiver (see, e.g., [38]).

Unfortunately, both the generation of orthogonal modes and
their detection are very hard tasks. Furthermore, they are
severely distorted by atmospheric phenomena such as disper-
sion. A practical design would thus use non-orthogonal modes.
We analyze a simple scheme where N sources of Gaussian
beams are multiplexed and transmitted through a common aper-
ture, towards an array of square detectors of edge $ each. Each
beam is directed towards the center of a unique detector. In the
beam, the displacements of photons from the beam center are
independent and distributed according to circularly-symmetric

zero-mean Gaussian with variance σ 2 (see, e.g., [20]). The
beam width is related to the geometry of the system via:

σ 2 = π

16
· (λL)2

At
= π

16
· Ar

,
.

Given the problem geometry and the choice of pixel edge
$ we have exactly the discrete model analyzed in the previous
sections, thus we can find the per-pixel capacity C. We can use
this number to quantify the system parameters as follows.

1) Number of pixels. In order to convey N bits per channel
use, we will need N/C ! β2N pixels. The parameter
β > 1 reflects the increase in the required hardware
(transmitter-detector pairs).

2) Aperture. Since each pixel require an area of $2, the
Fresnel number needed is

, = πAr

16σ 2 = πβ2
(

$

4σ

)2

N ! α2N. (23)

The parameter α > 1 reflects the increase in Fresnel
number, which can be achieved, e.g., by increasing the
transmit and apertures each by factor α.

An achievable tradeoff between the penalty factors α and
β can now be easily evaluated, substituting a 2-D Gaussian
distribution in R−

sym($) defined in (22). Fig. 10(a) shows that the
relation between the factors α and β, where the minimal value
of α is achieved at $ = 4σ . A working point that seems to be
good for practical purposes is (α,β) = (2.37, 1.19), which is
achieved at $ ∼= 4.5σ . Note that σ is proportional to the distance
L between transmitter and receiver, assume that σ = 10 mm
and $ = 45 mm, then the crosstalk probability is 4.83%. At
this point, the radii of the transmit and receive apertures need
to be multiplied by a factor 1.54 each, comparing to the ideal
orthogonal system, and the number of detectors needs to be
42% more comparing to the same.

We now return to the setting where the photon budget is
tight. As we saw, in this limit it is nearly optimal to use a
PPM scheme. In terms of the multiple spatial-mode system
considered in this section, this serves to save hardware: rather
than having a transmitter per spatial mode, we can have one
transmitter per b modes, where b is the size of PPM symbol,
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and a suitable mechanism to dynamically direct the beam to
the center of the required detector. Taking the high-efficiency
limit also simplifies the derivation of the α-β tradeoff and
qualitatively changes the results, as follows.

Suppose that we are to send B bits per use of the aperture, at R̃
bits per photon. To that purpose we use Ñ detectors, operating at
ε̃ photons per detector. The parameters can be found by solving:

ε̃R̃Ñ = B, R̃ = C̃(ε, $).

Now, let N and ε be the same parameters without crosstalk. Then,

β2 = Ñ
N

= ε

ε̃
.

In the 2-D case the axes decompose, the rate-loss due to
crosstalk is 2H($) instead of H($), where H($) is the entropy
of 1-D quantized Gaussian noise with variance σ 2. Since the
photon efficiency is held fixed, we have by Proposition 7:

log2
1
ε

− log2 ln
1
ε

= log2
1
ε̃

− log2 ln
1
ε̃

− 2H($)

which, in the limit of high efficiency, gives β = 2H($). Given
this value of β, α can be found using (23). Scanning over all
$ > 0, one finds the optimal tradeoff, depicted in Fig. 10(b).
The rather strange curve is due to the shape of the Gaussian
distribution. We can analytically consider the tradeoff in the two
extremes. If α . β, Z is a high-resolution version of Gaussian
noise, thus

H(Z$) ∼= 1
2

log2(2πeσ 2) − log2 $ = log2

(
π

2

√
e
2

· β

α

)

thus (23) yields α = π
2

√ e
2 ! α0 ∼= 1.83. This is a minimum

value for α at any β, meaning that there must be a loss in
the Fresnel-number product with respect to orthogonal modes,
even if we use many small detectors. If, to the contrary, α / β,
then Z may have very low entropy. Thus in the limit of a very
large aperture (almost orthogonal beams) we can have β close
to one, representing no increase in the number of detectors,
as expected. Fig. 10(b) depicts a numerical evaluation of the
tradeoff. A working point that seems to be good for practical
purposes is (α,β) = (2.15, 1.4), since any improvement in one
of the parameters beyond this point will incur a large penalty
in the other. At this point, the radii of the transmit and receive
apertures need to be multiplied by a factor 1.5 each, comparing
to the ideal orthogonal system, and the number of detectors
need to be doubled comparing to the same. This is achieved
with pixel edge $ ∼= 4.5σ . Again, if σ = 10 mm, then we can
set $ = 45 mm that leads to a crosstalk probability 4.83%.

VII. CONCLUDING REMARKS

In this paper, we studied communication over optical OOK
channels with 1-D or 2-D crosstalk, and developed mathemat-
ical analysis tools that can be used to help system engineers
to choose key parameters (such as transmission power, input
distribution, slot length) for optimizing overall performance
of optical communication systems. We concentrated on sim-
ple, practical schemes, thus assumed transmission of coherent

pulses with on-off keying, and single-photon detectors. With
these choices, we demonstrated non-trivial tradeoffs: the op-
timal transmission density may be finite, and a good choice
for the slot size will allow some amount of crosstalk. We also
considered the same tradeoffs in the case of a low photon
budget, and showed that in this limit the analysis simplifies and
we can have yet sharper results.

Our derivations correspond to a simple system design, which
admits practical error-correcting codes. Still, the efficient de-
sign of such codes for optical OOK channels with crosstalk,
the interplay between code design and the system parameters,
and the experimental validation of the modeling assumptions in
various applications, are left for further research.

APPENDIX

A. Proof of Lemma 2

The conditional probability P(yi|xi+1
i−1) only depends on the

channel. Hence, for any a ∈ {0, 1}3, H(yi|xi+1
i−1 = a) is a con-

stant. In this case, H(yi|xi+1
i−1) = ∑

a P(xi+1
i−1 = a)H(yi|xi+1

i−1 =
a) is a linear function of P(xi+1

i−1). Also, because P(xi+1
i−1) is a

marginal distribution of ϕ, it can written as a linear transforma-
tion of ϕ. Hence, H(yi|xi+1

i−1) is a linear function of ϕ, and we
only need to prove that H(yi|yi−1

i−t ) is a concave function of ϕ.
Note that

H
(

yi|yi−1
i−t

)
= −

∑

yi
i−t

P
(
yi

i−t
)

log2
P

(
yi

i−t

)

P
(

yi−1
i−t

) .

in which P(yi
i−t) is a linear transformation of ϕ. It is sufficient

to show that P(yi
i−t) log2

P(yi
i−t)

P(yi−1
i−t )

is a convex function of P(yi
i−t).

Let P1(yi
i−t) and P2(yi

i−t) be two arbitrary distributions on
yi

i−t. Assume that P(yi
i−t) = εP1(yi

i−t) + (1 − ε)P2(yi
i−t) for an

arbitrary ε with 0 ≤ ε ≤ 1. Then P(yi−1
i−t ) = εP1(y

i−1
i−t ) + (1 −

ε)P2(yi−2
i−t ).

According to the log-sum inequality,

P
(
yi

i−t
)

log2
P

(
yi

i−t

)

P
(

yi−1
i−t

) ≤ εP1
(
yi

i−t
)

log2
P1

(
yi

i−t

)

P1

(
yi−1

i−t

)

+ (1 − ε)P2
(
yi

i−t
)

log2
P2

(
yi

i−t

)

P2

(
yi−1

i−t

) .

It shows that P(yi
i−t) log2

P(yi
i−t)

P(yi−1
i−t )

is a convex function of P(yi
i−t).

Finally, we can claim that R+(ϕ) is a concave function of ϕ. "

B. Proof of Proposition 3

When pc > 0 and λ → ∞, the optical channel with 1-D
crosstalk can be simplified: if xi = 1 then yi−1 = yi = yi+1 = 1.
In this case, the capacity of the channel can be written as

C∞ = lim
m→∞

log2 Nm

m
,
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where Nm is the total number of feasible patterns for y ∈
{0, 1}m. It is easy to see that the capacity is independent of the
crosstalk probability pc when pc > 0. Actually, we can consider
y as a constrained code where the number of consecutive 1’s is
at least three.

We let Hm be the number of feasible patterns for y′ = y111
with y ∈ {0, 1}m (y followed by three ones) that satisfies the
above constraint. We find the following iterative relation be-
tween Nm and Hm,

Nm = Hm−3 + Nm−1, (24)

in which, Hm−3 is the number of feasible patterns for y if y ends
with 1, and Nm−1 is the number of feasible patterns for y if y
ends with 0. Similarly, we also get

Hm−3 = Hm−4 + Nm−4. (25)

Substituting (25) into (24) leads to Nm − 2Nm−1 + Nm−2 −
Nm−4 = 0.

Because γ is the biggest real root of the equation x4 − 2x3 +
x2 − 1 = 0,

lim
m→∞

log2 Nm

m
= log2 γ .

Hence, the asymptotic capacity of an optical channel with
1-D crosstalk is C∞ = log2 γ ∼= 0.6942. "

C. Proof of Theorem 4

According to (7), a lower bound on the symmetric informa-
tion rate is

R−(λ, pc) = H(xi) − H(xi|yi) = H(yi) − H(yi|xi). (26)

According to the properties of the optical channels, we have

P(yi = 0|xi = 1) = 1
4

e−λ + 1
2

e−λ(1− pc
2 ) + 1

4
e−λ(1−pc),

P(yi = 0|xi = 0) = 1
4

+ 1
2

e−λ
pc
2 + 1

4
e−λpc .

Now, we write P(yi = 0|xi = 1) as p10, and write P(yi =
0|xi = 0) as p00. Based on (26), we have

R−(λ, pc) = h
(

1
2

p10 + 1
2

p00

)
− 1

2
h(p10) − 1

2
h(p00),

with h(·) denoting, as before, the entropy of a Bernoulli
distribution.

Note that when x is a small value, h(x) = h(1 − x) =
−x log2 x + o(x log x) and h(x + 1/2) = 1 − o(x).

Let λ′ = log(1/pc). As pc becomes small enough, based on
the approximations above, we can get that

R−(λ′, pc) = 1 − log2 e
4

pc

(
log

1
pc

)2

+ o

(

pc

(
log

1
pc

)2
)

,

(27)

which is a lower bound of the maximum symmetric information
rate Rmax

sym(pc).

According to (8), an upper bound on the symmetric informa-
tion rate is R+(λ, pc) = H(yi) − H(yi|xi+1

i−1).
Note that H(yi) = h((p10 + p00)/2). As pc → 0, H(yi) →

h((1 + e−λ)/2). When pc . 1, in order to make H(yi) to
converge to 1, we need λ / 1, and meanwhile, λpc . 1.

For the second term H(yi|xi+1
i−1), we have

H
(

yi|xi+1
i−1

)
= 1

8
h(e−λ) + 2

8
h
(

e−λ(1− pc
2 )

)
+ 1

8
h
(

e−λ(1−pc)
)

+ 2
8

h
(

e−λ
pc
2

)
+ 1

8
h
(
e−λpc

)
,

and we show that when λ / 1 and λpc . 1,

H
(

yi|xi+1
i−1

)
≥ log2 e

4
pc

(
log

1
pc

)2

+ o

(

pc

(
log

1
pc

)2
)

.

(28)

Let λ′ be a value satisfying e−λ′ = λ′pc, from which we can
get that

λ′ = log
1
pc

+ o
(

log
1
pc

)
.

When λ < λ′ and λ / 1,

H
(

yi|xi+1
i−1

)
≥ 1

8
h
(

e−λ′)+ 2
8

h
(

e−λ′(1− pc
2 )

)
+ 1

8
h
(

e−λ′(1−pc)
)

= log2 e
2

λ′2pc + o(λ′2pc) (29)

When λ ≥ λ′ and λpc . 1,

H
(

yi|xi+1
i−1

)
≥ 2

8
h
(

e−λ′ pc
2

)
+ 1

8
h
(

e−λ′pc
)

= log2 e
4

λ′2pc + o
(
λ′2pc

)
(30)

Based on (29) and (30), we can see that (28) holds. As a
result,

R+(λ, pc) = H(yi) − H
(

yi|xi+1
i−1

)

≤ 1 − log2 e
4

pc

(
log

1
pc

)2

+ o

(

pc

(
log

1
pc

)2
)

.

(31)

Comparing (31) with (27), we see that the upper and lower
bounds on the maximum symmetric information rate match. "

D. Proof of Theorem 5

We first prove the following weaker claim.
Lemma 9: There exists a stationary input distribution that

achieves the capacity of the optical OOK channels with 2-D
crosstalk.

Proof: Letϕ be an optimal input distribution that achieves
the capacity of an optical channel with 2-D crosstalk. Assume
that x ∈ {0, 1}m×m is an assignment of the array. We define
another distribution σα,β(ϕ) with 0 ≤ α,β < m as follow:

σα,β(ϕ)(x) = ϕ(σα,β(x)). (32)
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Here, σα,β(x) is a shift of the m × m matrix x by α rows and
β column, i.e., σα,β(x) equals




xα+1,β+1 . . . xα+1,m xα+1,1 . . . xα+1,β

...
. . .

...
...

. . .
...

xm,β+1 . . . xm,m xm,1 . . . xm,β

x1,β+1 . . . x1,m x1,1 . . . x1,β

...
. . .

...
...

. . .
...

xα,β+1 . . . xα,m xα,1 . . . xα,β





.

Since ϕ is optimal,

C(λ, pc) = lim
m→∞

(X(ϕ); Y(ϕ))

m2 .

It can be proved that

I(X(ϕ); Y(ϕ)) ≤ I(X(σα,β(ϕ)); Y(σα,β(ϕ))) + 8m − 16.

As a result, we can get

C(λ, pc) = lim
m→∞

I
[
X(σα,β(ϕ)); Y(σα,β(ϕ))

]

m2 ,

showing that the shifted distribution σα,β(ϕ) is asymptotically
optimal.

Now, define a new input distribution µ, such that

u = 1
m2

m−1∑

α,β=0

σα,β(ϕ).

It can be proved that µ is stationary (the proof is emitted).
Since mutual information is a concave function of the input
distribution, we can also prove that µ can achieve the capacity
of optical channels with 2-D crosstalk asymptotically. "

Now we turn to our proof of Theorem 5. We define a new
distribution σh(ϕ), as a horizontal reflection of ϕ, such that
σh(ϕ(x)) = ϕ(σh(x)), where σh(x) is the horizontal reflection
of x, i.e., σh(x)i,j = xm+1−i,j for all 1 ≤ i, j ≤ m.

Let µ be the average of ϕ and σh(ϕ), i.e., µ = (ϕ +
σh(ϕ))/2. Then µ is a stationary and horizontally reflection-
symmetric input distribution that achieves the capacity of the
optical channel with 2-D crosstalk asymptotically.

Using the same technique, we can further prove that
there exists a stationary and reflection-symmetric (horizon-
tally, vertically and diagonally) input distribution that that
achieves the capacity of the optical channel with 2-D crosstalk
asymptotically. "

E. Bounds of C∞ for 2-D Crosstalk

The lower bound is computed based on i.i.d. input distribu-
tion, as described in Section IV-A. The upper bound is com-
puted as follows, based on the convex-programming technique
described in [32]. It is tighter than that derived based on the
method described in Section IV-B.

The basic idea is based on the conclusion that when the array
(i.e., m) is infinitely large, there exits an optimal distribution ϕ on
the output array Y, which is stationary and reflection-symmetric.

We consider the projection of the optimal distribution on a
3 × 4 sub-array T , denoted by ϕT , and we label all the nodes

by 1, 2, . . . from left to right and then from top to bottom as
follows:

The channel capacity satisfies C∞ ≤ maxϕT H(y11|y10
1 ) [32]

such that ϕT is a stationary, reflection-symmetric and feasible
distribution.

In the optimization problem, the objective function is a
concave function of ϕT . The condition that ϕT is a stationary,
reflection-symmetric and feasible distribution can be written as
a group of linear constraints:

1) ϕT is stationary, which implies that ϕT(y8
1) = ϕT(y12

5 ) and
ϕT(y3

1y7
5y11

9 ) = ϕT(y4
2y8

6y12
10);

2) ϕT is reflection-symmetric, which implies that

ϕT

(
y12

1

)
= ϕT(y4, y3, y2, y1, . . . , y12, y11, y10, y9)

= ϕT

(
y12

9 y8
5y4

1

)
,

ϕT

(
y3

1y7
5y11

9

)
= ϕT(y11y7y3y10y6y2y9y5y1);

3) ϕT is feasible (it satisfies the 2-D constraint), i.e., if y12
1 is

not a feasible assignment then ϕT(y12
1 ) = 0. All feasible

assignments for y12
1 can be enumerated by brute-force

search;
4) ϕT is a distribution, hence 0 ≤ ϕT i and

∑
i ϕT i = 1.

Finally, the upper bound 0.6126 can be obtained based on
convex programming. "
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