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Compression in the Space of Permutations
Da Wang, Arya Mazumdar, Member, IEEE, and Gregory W. Wornell, Fellow, IEEE

Abstract— We investigate lossy compression (source coding)
of data in the form of permutations. This problem has direct
applications in the storage of ordinal data or rankings, and in
the analysis of sorting algorithms. We analyze the rate-distortion
characteristic for the permutation space under the uniform
distribution, and the minimum achievable rate of compression
that allows a bounded distortion after recovery. Our analysis is
with respect to different practical and useful distortion measures,
including Kendall tau distance, Spearman’s footrule, Chebyshev
distance, and inversion-!1 distance. We establish equivalence of
source code designs under certain distortions and show simple
explicit code designs that incur low encoding/decoding complex-
ities and are asymptotically optimal. Finally, we show that for
the Mallows model, a popular nonuniform ranking model on the
permutation space, both the entropy and the maximum distortion
at zero rate are much lower than the uniform counterparts, which
motivates the future design of efficient compression schemes for
this model.

Index Terms— Lossy compressions, mallows model, partial
sorting, permutation space.

I. INTRODUCTION

PERMUTATIONS are fundamental mathematical objects
and the topic of codes in permutations is a well-studied

subject in coding theory. A variety of applications that
correspond to different metric functions on the symmetric
group on n elements Sn have been investigated. For example,
some works focus on error-correcting codes in Sn with
Hamming distance [1], [2], and some others investigate the
error correction problem under metrics such as Chebyshev
distance [3] and Kendall tau distance [4].

While error correction problems in permutation spaces have
been investigated before, the lossy compression problem is
largely left unattended. In [5] and [6], the authors investigate
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the lossless compression of a group of permutations with
certain properties, such as efficient rank querying (given an
element, get its rank in the permutation) and selection (given
a rank, retrieve the corresponding element). By contrast,
in this paper we consider the lossy compression (source
coding) of permutations, which is motivated by the problems
of storing ranking data, and lower bounding the complexity of
approximate sorting, which we now describe.

A. Storing Ranking Data

In applications such as recommendation systems, users
rank products and these rankings are analyzed to provide new
recommendations. To have personalized recommendations,
it may be necessary to store the ranking data for each user in
the system, and hence the storage efficiency of ranking data is
of interest. Because a ranking of n items can be represented
as a permutation of 1 to n, storing a ranking is equivalent to
storing a permutation. Furthermore, in many cases a rough
knowledge of the ranking (e.g., finding one of the top five ele-
ments instead of the top element) is sufficient. This poses the
question of the number of bits needed for permutation storage
when a certain amount of error can be tolerated. In many
current applications the cost of lossless storage is usually
tolerable and hence lossy compression may not be necessary.
However lossy compression is a fundamental topic and it is
of theoretical interest to understand the trade-off involved.

B. Lower Bounding the Complexity of Approximate Sorting

Given a group of elements of distinct values, comparison-
based sorting can be viewed as the process of searching for a
true ranking by pairwise comparisons. Since each comparison
in sorting provides at most 1 bit of information, the log-size
of the permutation set Sn , log2(n!), provides a lower bound
to the required number of comparisons. Similarly, the lossy
source coding of permutations provides a lower bound on
the number of comparisons to the problem of comparison-
based approximate sorting, which can be seen as finding
a true permutation up to a certain distortion. Again, the
log-size of the code indicates the amount of information
(in bits) needed to specify the true permutation, which in
turn provides a lower bound on the number of pairwise
comparisons needed.

In one line of work, authors of [7] derived both lower
and upper bounds for approximate sorting in some range of
allowed distortion with respect to the Spearman’s footrule
metric [8] (see Definition 1 below). Another line of work con-
cerns an important class of approximate sorting, the problem
of partial sorting, first proposed in [9] (cf. [10, Ch. 8] for
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an exposition on the relationships between various sorting
problems). Given a set of n elements V and a set of indices
I ⊂ {1, 2, . . . , n}, a partial sorting algorithm aims to arrange
the elements into a list [v1, v2, . . . , vn] such that for any i ∈ I,
all elements with indices j < i are no greater than vi , and
all elements with indices j ′ > i are no smaller than vi .
A partial sorting algorithm essentially selects all elements with
ranks in the set I, and hence is also called multiple selection.
The information-theoretic lower bound for partial sorting
algorithms have been proposed in [11], and the authors of [12]
propose a multiple selection algorithms with expected number
of comparisons within the information-theoretic lower-bound
and an asymptotically negligible additional term.

Comparing with existing work (such as [11]), our analysis
framework via rate-distortion theory is more general as we
provide an information-theoretic lower bound on the query
complexity for all approximate sorting algorithms that achieve
a certain distortion, and the multiple selection algorithm
proposed in [12] turns out to be optimal for the general approx-
imate sorting problem as well. Therefore, our information-
theoretic lower bound is tight.

Remark 1 (Comparison-Based Sorting Implies Compres-
sion): It is worth noting that every comparison-based sort-
ing algorithm corresponds to a compression scheme of the
permutation space. In particular, the string of bits that repre-
sent comparison outcomes in any deterministic (approximate)
sorting algorithm corresponds to a (lossy) representation of
the permutation.

For a more in-depth discussion on the relationship between
sorting and compression, see [13] and references therein.

Beyond the above applications, the rate-distortion theory in
permutation spaces is of technical interest on its own because
the permutation space does not possess the product structure
that a discrete memoryless source induces.

With the above motivations, we consider the problem
of lossy compression in permutation spaces in this paper.
Following the classical rate-distortion formulation, we aim to
determine, given a distortion measure d(·, ·), the minimum
number of bits needed to describe a permutation with distor-
tion at most D.

The analysis of the lossy compression problem depends on
the source distribution and the distortion measure. We are
mainly concerned with the permutation spaces with a uniform
distribution, and consider different distortion measures based
on four distances in the permutation spaces: the Kendall
tau distance, Spearman’s footrule, Chebyshev distance and
inversion-!1 distance. As we shall see in Section II, each of
these distortion measures (except inversion-!1 distance1) has
its own operational meaning that may be useful in different
applications.

In addition to characterizing the trade-off between rate
and distortion, we also show that under the uniform distri-
bution over the permutation space, there are close relation-
ships between some of the distortion measures of interest

1We are interested in inversion-!1 distance due to its extremal property
shown in Equation (7), which is useful when we derive results for other
permutation spaces. Further use of this metric in the context of smooth
representation of permutations can be found in [14].

in this paper. We use these relations to establish the
corresponding equivalence of source codes in permutation
spaces with different distortion measures. For each distortion
measure, we provide simple and constructive achievability
schemes, leading to explicit code designs with low complexity.

Finally, we turn our attention to non-uniform distributions
over the permutation space. In some applications, we may
have prior knowledge about the permutation data, which can
be captured in a model of non-uniform distribution. There
are a variety of distributional models in different contexts,
such as the Bradley-Terry model [15], the Luce-Plackett
model [16], [17], and the Mallows model [18]. Among these,
we choose the Mallows model due to its richness and applica-
bility in various ranking applications [19]–[21]. We analyze
the lossless and lossy compression of the permutation space
under the Mallows model and with the Kendall tau distance
as the distortion measure, and characterize its entropy and end
points of its rate-distortion function.

The rest of the paper is organized as follows. We first
present the problem formulation in Section II. We then analyze
the geometry of the permutation spaces and show that there
exist close relationships between some distortion measures of
interest in this paper in Section III. In Section IV, we derive
the rate-distortion functions for different permutation spaces.
In Section V, we provide achievability schemes for different
permutation spaces under different regimes. After that, we turn
our attention to non-uniform distributional model over the per-
mutation space and analyze the lossless and lossy compression
for Mallows model in Section VI. We conclude with a few
remarks in Section VII.

II. PROBLEM FORMULATION

In this section we discuss aspects of the formulation of
the rate-distortion problem for permutation spaces. We first
introduce the distortion measures of interest in Section II-B,
and then provide a mathematical formulation of the rate-
distortion problem in Section II-C.

A. Notation and Facts

Let Sn denote the symmetric group of n elements.
We write an element of Sn as an array of natural numbers
with values ranging from 1, . . . , n and every value occurring
only once in the array. For example, σ = [3, 4, 1, 2, 5] ∈ S5.
This is also known as the vector notation for permutations.
The identity of the symmetric group Sn (identity permutation)
is denoted by Id = [1, 2, . . . , n]. For a permutation σ , we
denote its permutation inverse by σ−1, where σ−1(x) = i
when σ (i) = x, and σ (i) is the i -th element in array σ .
For example, the permutation inverse of σ = [2, 5, 4, 3, 1] is
σ−1 = [5, 1, 4, 3, 2]. Given a metric d : Sn ×Sn → R+ ∪ {0},
we define a permutation space X (Sn, d).

Throughout the paper, we let [a : b] ! {a, a + 1, . . . ,
b − 1, b} for any two integers a and b, and use σ [a : b]
as a shorthand for the vector [σ (a), σ (a + 1), . . . , σ (b)].

We make use of the following version of Stirling’s
approximation:

(m
e

)m
e

1
12m+1 <

m!√
2πm

<
(m

e

)m
e

1
12m , m ≥ 1. (1)
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B. Distortion Measures

There exists many natural distortion measures on the
permutation group Sn [22]. In this paper we choose a few
distortion measures of interest in a variety of application
settings, including Spearman’s footrule (!1 distance between
two permutation vectors), Chebyshev distance (!∞ distance
between two permutation vectors), Kendall tau distance and
the inversion-!1 distance (see Definition 5).

Before introducing definitions for these distortion measures,
we define the concept of ranking. Given a list of items with
values v1, v2, . . . , vn such that vσ−1(1) + vσ−1(2) + . . . +
vσ−1(n), where a + b indicates a is preferred to b, we say
the permutation σ is the ranking of this list of items, where
σ (i) provides the rank of item i , and σ−1(r) provides the index
of the item with rank r . Note that sorting via pairwise com-
parisons is simply the procedure of rearranging v1, v2, . . . , vn
to vσ−1(1), vσ−1(2), . . . , vσ−1(n) based on preferences obtained
from pairwise comparisons.

Given two rankings σ1 and σ2, we measure the total
deviation of ranking and maximum deviation of ranking by the
Spearman’s footrule and the Chebyshev distance respectively.

Definition 1 (Spearman’s Footrule [8]): Given two permu-
tations σ1, σ2 ∈ Sn, the Spearman’s footrule between
σ1 and σ2 is

d!1 (σ1, σ2) ! ‖σ1 − σ2‖1 =
n∑

i=1

|σ1(i) − σ2(i)| .

Definition 2 (Chebyshev Distance): Given two permuta-
tions σ1, σ2 ∈ Sn, the Chebyshev distance between
σ1 and σ2 is

d!∞ (σ1, σ2) ! ‖σ1 − σ2‖∞ = max
1≤i≤n

|σ1(i) − σ2(i)| .
The Spearman’s footrule in Sn is upper bounded by

⌊
n2/2

⌋

(cf. Table I) and the Chebyshev distance in Sn is upper
bounded by n − 1.

Given two lists of items with ranking σ1 and σ2, let
π1 ! σ−1

1 and π2 ! σ−1
2 , then we define the number of

pairwise adjacent swaps on π1 that changes the ranking of π1
to the ranking of π2 as the Kendall tau distance.

Definition 3 (Kendall Tau Distance [23]): The Kendall tau
distance dτ (σ1, σ2) from one permutation σ1 to another permu-
tation σ2 is defined as the minimum number of transpositions
of pairwise adjacent elements required to change σ1 into σ2.

The Kendall tau distance is upper bounded by
(n

2

)
.

Example 1 (Kendall Tau Distance): The Kendall tau dis-
tance for σ1 = [1, 5, 4, 2, 3] and σ2 = [3, 4, 5, 1, 2] is
dτ (σ1, σ2) = 7, as one needs at least 7 transpositions of
pairwise adjacent elements to change σ1 to σ2. For example,

σ1 = [1, 5, 4, 2, 3]
→ [1, 5, 4, 3, 2] → [1, 5, 3, 4, 2] → [1, 3, 5, 4, 2]
→ [3, 1, 5, 4, 2] → [3, 5, 1, 4, 2] → [3, 5, 4, 1, 2]
→ [3, 4, 5, 1, 2] = σ2.

Being a popular global measure of disarray in statistics,
Kendall tau distance also has a natural connection to sorting
algorithms. In particular, given a list of items with values

v1, v2, . . . , vn such that vσ−1(1) + vσ−1(2) + . . . + vσ−1(n),
dτ

(
σ−1, Id

)
is the number of swaps needed to sort this list of

items in a bubble-sort algorithm [24].
Finally, we introduce a distortion measure based on the

concept of inversion vector, another measure of the order-ness
of a permutation.

Definition 4 (Inversion, Inversion Vector [25]): An inver-
sion in a permutation σ ∈ Sn is a pair (σ (i), σ ( j)) such
that i < j and σ (i) > σ ( j).

We use In(σ ) to denote the total number of inversions in
σ ∈ Sn, and

Kn(k) ! |{σ ∈ Sn : In(σ ) = k}| (2)

to denote the number of permutations with k inversions.
Denote i ′ = σ (i) and j ′ = σ ( j), then i = σ−1(i ′) and

j = σ−1( j ′), and thus i < j and σ (i) > σ ( j) is equivalent
to σ−1(i ′) < σ−1( j ′) and i ′ > j ′.

A permutation σ ∈ Sn is associated with an inversion vector
xσ ∈ Gn ! [0 : 1] × [0 : 2] × · · · × [0 : n − 1], where
xσ (i ′), 1 ≤ i ′ ≤ n − 1 is the number of inversions in σ in
which i ′ + 1 is the first element. Formally, for i ′ = 2, . . . , n,

xσ (i ′ − 1) =
∣∣∣
{

j ′ ∈ [1 : n] : j ′ < i ′, σ−1( j ′) > σ−1(i ′)
}∣∣∣.

Let π ! σ−1, then the inversion vector of π , xπ , measures
the deviation of ranking σ from Id. In particular, note that

xπ (k) =
∣∣∣
{

j ′ ∈ [1 : n] : j ′ < k,π−1( j ′) > π−1(k)
}∣∣∣

=
∣∣{ j ′ ∈ [1 : n] : j ′ < k, σ ( j ′) > σ (k)

}∣∣

indicates the number of elements that have larger ranks
and smaller item indices than that of the element with
index k. In particular, the rank of the element with index n is
n − xπ (n − 1).

Example 2: Given 5 items such that v4 + v1 + v2 +
v5 + v3, then the inverse of the ranking permutation is
π = [4, 1, 2, 5, 3], with inversion vector xπ = [0, 0, 3, 1].
Therefore, the rank of the v5 is n − xπ (n − 1) = 5 − 1 = 4.

The mapping from Sn to Gn is one-to-one as the inversion
vectors exactly describes the execution of the algorithm inser-
tion sort [24].

With these, we define the inversion-!1 distance.
Definition 5 (Inversion-!1 Distance): Given two permuta-

tions σ1, σ2 ∈ Sn, we define the inversion-!1 distance, !1
distance of two inversion vectors, as

dx,!1 (σ1, σ2) !
n−1∑

i=1

|xσ1(i) − xσ2(i)|. (3)

Example 3 (Inversion-!1 Distance): The inversion vector
for permutation σ1 = [1, 5, 4, 2, 3] is xσ1 = [0, 0, 2, 3], as the
inversions are (4, 2), (4, 3), (5, 4), (5, 2), (5, 3). The inversion
vector for permutation σ2 = [3, 4, 5, 1, 2] is xσ2 = [0, 2, 2, 2],
as the inversions are (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2).
Therefore,

dx,!1 (σ1, σ2) = d!1 ([0, 0, 2, 3], [0, 2, 2, 2]) = 3.

As we shall see in Section III, all these distortion mea-
sures are related. While the operational significance of the
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inversion-!1 distance may not be as clear as other distortion
measures, some of its properties provide useful insights in the
analysis of other distortion measures.

Remark 2: While Spearman’s footrule and Chebyshev dis-
tance operate on the ranking domain, inversion vector and
Kendall tau distance can be viewed as operating on the inverse
of the ranking domain.

C. Rate-Distortion Problems

With the distortions defined in Section II-B, in this section
we define rate-distortion problems under both average-case
and worst-case distortions.

Definition 6 (Codebook for Average-Case Distortion): An
(n, Dn) source code C̄n ⊆ Sn for X (Sn, d) under the average-
case distortion is a set of permutations such that for a σ that
is drawn from Sn according to a distribution P on Sn, there
exists an encoding mapping fn : Sn → C̄n that

EP [d( fn(σ ), σ )] ≤ Dn . (4)

The mapping fn : Sn → C̄n can be assumed to satisfy

fn(σ ) = arg min
σ ′∈C̄n

d(σ ′, σ )

for any σ ∈ Sn.
In most parts of this paper we focus on the case P is

uniformly distributed over the symmetric group Sn , except
in Section VI, where a distribution arising from the Mallows
model is used. In both cases the source distribution has support
Sn , and we define the worst-case distortion as follows.

Definition 7 (Codebook for Worst-Case Distortion): An
(n; Dn) source code Ĉn ⊆ Sn for X (Sn, d) under the worst-
case distortion is a set of permutations such that for any
σ ∈ Sn, there exists an encoding mapping fn : Sn → C̄n
that

max
σ∈Sn

d( fn(σ ), σ ) ≤ Dn . (5)

The mapping fn : Sn → Ĉn can be assumed to satisfy

fn(σ ) = arg min
σ ′∈Ĉn

d(σ ′, σ )

for any σ ∈ Sn.
Definition 8 (Rate Function): For a class of source

codes {Cn} that achieve a distortion Dn, let A(n, Dn) be the
minimum size of such codes, and we define the minimal rate
for distortions Dn as

R(Dn) ! log A(n, Dn)

log n! .

In particular, we denote the minimum rate of the codebook
under average-case distortion with uniform source distribution
and worst-case distortions by R̄ (Dn) and R̂ (Dn) respectively.

Similar to the classical rate-distortion setup, we are inter-
ested in deriving the trade-off between distortion level Dn
and the rate R(Dn) as n → ∞. In this work we show
that for the distortions d(·, ·) and the sequences of distortions{

Dn, n ∈ Z+}
of interest, limn→∞ R(Dn) exists.

For Kendall tau distance and inversion-!1 distance, a close
observation shows that in regimes such as Dn = O(n) and
Dn = %

(
n2), limn→∞ R(Dn) = 1 and limn→∞ R(Dn) = 0

respectively. In these two regimes, the trade-off between rate
and distortion is really shown in the higher order terms in
log A(n, Dn), i.e.,

r(Dn) ! log A(n, Dn) − log n! lim
n→∞ R(Dn). (6)

For convenience, we categorize the distortion Dn under
Kendall tau distance or inversion-!1 distance into three
regimes. We say D is small when D = O (n), moderate when
D = %

(
n1+δ

)
, 0 < δ < 1, and large when D = %

(
n2).2

We choose to omit the higher order term analysis for
X

(
Sn, d!1

)
because its analysis is essentially the same as

X (Sn, dτ ), and the analysis for X
(
Sn, d!∞

)
is still open.

Note that the higher order terms r(Dn) may behave
differently under average and worst-case distortions, and in
this paper we restrict our attention to the worst-case distortion.

III. RELATIONSHIPS BETWEEN DISTORTION MEASURES

In this section we show how the four distortion measures
defined in Section II-B are related to each other, which is
summarized in (7) and (8). These relationships imply equiva-
lence in some lossy compression schemes, which we exploit
to derive the rate-distortion functions in Section IV.

For any σ1 ∈ Sn and σ2 randomly uniformly chosen
from Sn , the following relations hold:

nd!∞ (σ1, σ2) ≥ d!1 (σ1, σ2)

≥ dτ

(
σ−1

1 , σ−1
2

)

≥ dx,!1

(
σ−1

1 , σ−1
2

)
, (7)

nd!∞ (σ1, σ2)
w.h.p.

<∝ d!1 (σ1, σ2)

<∝ dτ

(
σ−1

1 , σ−1
2

)

w.h.p.
<∝ dx,!1

(
σ−1

1 , σ−1
2

)
, (8)

where x <∝ y indicates x < c · y for some constant c > 0,

and
w.h.p.
<∝ indicates <∝ with high probability.

Next, we provide detailed arguments for (7) and (8) by
analyzing the relationship between different pairs of distortion
measures.

1) Spearman’s Footrule and Chebyshev Distance: Let σ1
and σ2 be any permutations in Sn , then by definition,

d!1 (σ1, σ2) ≤ n · d!∞ (σ1, σ2) , (9)

and additionally, a scaled Chebyshev distance lower bounds
the Spearman’s footrule with high probability. More specifi-
cally, for any π ∈ Sn , let σ be a permutation chosen uniformly
from Sn , then

P
[
c1 · n · d!∞ (π, σ ) ≤ d!1 (π, σ )

]
≥ 1 − O (1/n) (10)

for any positive constant c1 < 1/3 (See Appendix A-A
for proof).

2In the small distortion region with R(Dn) = 1, r(Dn ) is negative while in
the large distortion region where R(Dn) = 0, r(Dn ) is positive.
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TABLE I

CHARACTERIZATION OF MAXIMUM, MEAN AND

VARIANCE OF VARIOUS DISTANCES

2) Spearman’s Footrule and Kendall Tau Distance: The
following theorem is a well-known result on the relationship
between the Kendall tau distance and the !1 distance of
permutation vectors.

Theorem 1 [8]: Let σ1 and σ2 be any permutations in Sn,
then

d!1(σ1, σ2)/2 ≤ dτ (σ
−1
1 , σ−1

2 ) ≤ d!1(σ1, σ2). (11)

3) Inversion-!1 Distance and Kendall Tau Distance: We
show that the inversion-!1 distance and the Kendall tau dis-
tance are related via Theorem 2.

Theorem 2: Let σ1 and σ2 be any permutations in Sn, then
for n ≥ 2,

1
n − 1

dτ (σ1, σ2) ≤ dx,!1

(
xσ1, xσ2

)
≤ dτ (σ1, σ2). (12)

Proof: See Appendix A-B.
Remark 3: The lower and upper bounds in Theorem 2 are

tight in the sense that there exist permutations σ1 and σ2
that satisfy the equality in either lower or upper bound.
For equality in lower bound, when n = 2m, let σ1 =
[1, 3, 5, . . . , 2m − 3, 2m − 1, 2m, 2m − 2, . . . , 6, 4, 2], σ2 =
[2, 4, 6, . . . , 2m − 2, 2m, 2m − 1, 2m − 3, . . . , 5, 3, 1], then
dτ (σ1, σ2) = n(n − 1)/2 and dx,!1 (σ1, σ2) = n/2,
as xσ1 = [0, 0, 1, 1, 2, 2, . . . , m − 2, m − 2, m − 1, m − 1],
xσ2 = [0, 1, 1, 2, 2, 3, . . . , m−2, m−1, m−1, m]. For equality
in upper bound, note that dτ (Id, σ ) = dx,!1 (Id, σ ).

Theorem 2 shows that in general dτ (σ1, σ2) is not a good
approximation to dx,!1 (σ1, σ2) due to the 1/(n − 1) factor.
However, (13) shows that Kendall tau distance scaled by a
constant actually provides a lower bound to the inversion-!1
distance with high probability. In particular, for any π ∈ Sn ,
let σ be a permutation chosen uniformly from Sn , then

P
[
c2 · dτ (π, σ ) ≤ dx,!1 (π, σ )

]
≥ 1 − O (1/n) (13)

for any positive constant c2 < 1/2 (See Appendix A-C
for proof).

Results in both (10) and (13) are concentration results in the
sense that the mean for distances are %

(
n2) and the standard

deviation for the distances are %
(
n3/2). Related quantities

are summarized in Table I, where results on !1 distance
and Kendall tau distance are from [8, Table 1], and results
on !∞ distance and inversion-!1 distance are derived in
Appendix A-A and Appendix A-C. Therefore, these distance
are concentrated around mean and separated probabilistically.

Remark 4: The constants in (10) and (13) may be improved
if both of the permutations in question are chosen randomly,
instead of one being fixed. However as the techniques are
exactly same, we refrain from providing those expressions.

Fig. 1. Relationship between source codes. An arrow indicates a source code
in one space implies a source in another space.

IV. TRADE-OFFS BETWEEN RATE AND DISTORTION

In this section we present some of the main results of
this paper—the trade-offs between rate and distortion in
permutation spaces. Throughout this section we assume the
permutations are uniformly distributed over Sn .

We first present Theorem 3, which shows how a lossy source
code under one distortion measure implies a lossy source
code under another distortion measure. Building on these
relationships, Theorem 4 shows that all distortion measures in
this paper essentially share the same rate-distortion function.
Last, in Section IV-B, we present results on the trade-off
between rate and distortion for X (Sn, dτ ) and X

(
Sn, dx,!1

)

when the distortion leads to degenerate rates R(Dn) = 0
and R(Dn) = 1.

A. Rate-Distortion Functions

Theorem 3 (Relationships of Lossy Source Codes): For both
worst-case distortion and average-case distortion with uniform
distribution, a following source code on the left hand side
implies a source code on the right hand side:

1) (n, Dn/n) source code for X
(
Sn, d!∞

) ⇒ (n, Dn)
source code for X

(
Sn, d!1

)
,

2) (n, Dn) source code for X
(
Sn, d!1

)
⇒ (n, Dn) source

code for X (Sn, dτ ),
3) (n, Dn) source code for X (Sn, dτ ) ⇒ (n, 2Dn) source

code for X
(
Sn, d!1

)
,

4) (n, Dn) source code for X (Sn, dτ ) ⇒ (n, Dn) source
code for X

(
Sn, dx,!1

)
.

The relationship between source codes is summarized
in Fig. 1.

Remark 5 (Non-Equivalence of Lossy Source Codes for
X (Sn, d!1) and X (Sn, d!∞)): It is worth noting that in
general, an (n, Dn) source code for X

(
Sn, d!1

)
does not imply

an (n, Dn/(nc1)+ O (1)) source code for X
(
Sn, d!∞

)
in spite

of the relationship shown in (8), even under the average-case
distortion. This is exemplified in Example 4 below.

In [26], it was shown incorrectly that lossy source codes
for X

(
Sn, d!1

)
and X

(
Sn, d!∞

)
are equivalent, leading to an

over-generalized version of Theorem 3.
Example 4: When n = km and m = nδ , we define the

following k sets with size m

I1 = {2, 3, . . . , m, m + 1} ,

I2 = {m + 2, m + 3, . . . , 2m, 2m + 1} ,

. . .

I j = {( j − 1)m + 2, ( j − 1)m + 3, . . . , jm, jm + 1} ,

. . .

Ik = {(k − 1)m + 2, (k − 1)m + 3, . . . , n, 1}
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and construct the following k subsequences for any
permutation σ ∈ Sn:

s j (σ ) = [σ ( j1), σ ( j2), . . . , σ ( jm)], 1 ≤ j ≤ k

where for each j , jp ∈ I j for any 1 ≤ p ≤ m and
j1 < j2 · · · < jm.

Given any permutation σ , we can encode it as as σ̂ by
sorting each of its subsequences s j (σ ), 1 ≤ j ≤ k. Then the
overall distortion X

(
Sn, d!1

)
satisfies

D!1 ≤ (k − 1)m2/2 +
[
(m − 1)2 + 2n

]
= O

(
km2/2

)

= O
(

n1+δ
)
.

Therefore, this source code is an (n, Dn) source code for
X

(
Sn, d!1

)
. However, for any σ in Sn, if σ (1) 1= 1,

d!∞
(
σ, σ̂

)
≥ (k − 1)m + 2 − 1 ≥ (k − 1)m = % (n) .

Hence this encoding achieves average distortion % (n) in
X

(
Sn, d!∞

)
. Therefore, while this code is Dn for X

(
Sn, d!1

)
,

it is not Dn/n for X
(
Sn, d!∞

)
.

Similarly, one can find a code that achieves distortion
O

(
n1+δ

)
for X

(
Sn, dx,!1

)
but not X (Sn, dτ ).

The proof of Theorem 3 is based on the relationships
between various distortion measures investigated in Section III
and we defer the proof details in Appendix B-A.

Below shows that, for the uniform distribution on Sn ,
the rate-distortion function is the same for both average-
and worst-case, apart from the terms that are asymptotically
negligible.

Theorem 4 (Rate-Distortion Functions): For permutation
spaces X

(
Sn, dx,!1

)
, X (Sn, dτ ), and X

(
Sn, d!1

)
,

R̄(Dn) = R̂(Dn)

=
{

1 if Dn = O (n) ,

1 − δ if Dn = %
(
n1+δ

)
, 0 < δ ≤ 1.

For the permutation space X
(
Sn, d!∞

)
,

R̄(Dn) = R̂(Dn)

=
{

1 if Dn = O (1) ,

1 − δ if Dn = %
(
nδ

)
, 0 < δ ≤ 1.

(14)

The rate-distortion functions for all these spaces are
summarized in Fig. 2.

Proof Sketch: The achievability comes from the compres-
sion schemes3 proposed in Section V. The average-case con-
verse for X

(
Sn, dx,!1

)
can be shown via the geometry of

permutation spaces in Appendix A. Then because a D-ball
in X

(
Sn, dx,!1

)
has the largest volume (cf. (7)), a converse

for other permutation spaces can be inferred.
The rest of the proof follows from the simple fact that an

achievability scheme for the worst-case distortion is also an
achievability scheme for the average-case distortion, and a
converse for the average-case distortion is also a converse for
the worst-case distortion.

3Achievability results can also follow from simple random choice construc-
tion of covering codes, which are quite standard [27]. Instead we provide
explicit constructions.

Fig. 2. Rate-distortion function for permutation spaces X
(
Sn , dx,!1

)
,

X (Sn, dτ ), X
(
Sn , d!1

)
, and X

(
Sn , d!∞

)
.

We present the detailed proof in Appendix B-B. "
Because the rate-distortion functions under average-case and

worst-case distortion coincide, if we require

lim
n→∞ P [d( fn(σ ), σ ) > Dn] = 0 (15)

instead of E [d( fn(σ ), σ )] ≤ Dn in Definition 6, then the
asymptotic rate-distortion trade-off remains the same.

Given the number of elements n and a distortion level D,
we can compute the number of bits needed by first computing
δ via the asymptotic relationship log D/ log n − 1 (for permu-
tation spaces X

(
Sn, dx,!1

)
, X (Sn, dτ ), and X

(
Sn, d!1

)
) or

log D/ log n (for permutation space X
(
Sn, d!∞

)
), then obtain

the number of bits needed via (1 − δ)n log2 n.

B. Higher Order Term Analysis

As mentioned in Section II, for small- and large-distortion
regimes it is of interest to understand the trade-off between
rate and distortion via the higher order term defined in (6).
In this section we present the analysis for both regimes in
permutation spaces X (Sn, dτ ) and X

(
Sn, dx,!1

)
.

Theorem 5: In the permutation space X (Sn, dτ ), when
Dn = anδ, 0 < δ ≤ 1, for the worst-case distortion, r s

τ (Dn) ≤
r(Dn) ≤ r s

τ (Dn), where

r s
τ (Dn) =






−a(1 − δ)nδ log n + O
(
nδ

)
, 0 < δ < 1

−n
[

log
(1 + a)1+a

aa

]
+ o (n) , δ = 1,

(16)

r s
τ (Dn) =






−nδ a log 2
2

+ O (1) , 0 < a < 1

−nδ log 22a3!
22a3 + O (1) , a ≥ 1.

(17)

When Dn = bn2, 0 < b ≤ 1/2, r l
τ (Dn) ≤ r(Dn) ≤ r l

τ (Dn),
where

r l
τ (Dn) = max

{
0, n log 1/

(
2be2

)}
, (18)

r l
τ (Dn) = n log 41/(2b)5 + O (log n) . (19)

Remark 6: Some of the results above for X (Sn, dτ ),
since their first appearances in the conference version [28],
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Fig. 3. Higher-order trade-off between rate and distortion in the small
distortion regime with D = an. The slope discontinuities of the dτ upper
bound in the range of a ≥ 1 is due to the flooring in (17).

have been improved subsequently by [29]. More specifically,
for the small distortion regime, [29, Lemmas 7 and 10]
provides an improved upper bound and show that
r s
τ (Dn) = r s

τ (Dn) in (16). For the large distortion regime,
[29, Lemma 11] shows a lower bound that is tighter than (18).

Theorem 6: In the permutation space X
(
Sn, dx,!1

)
, when

Dn = anδ, 0 < δ ≤ 1,

r s
x,!1

(Dn) ≤ r(Dn) ≤ r s
x,!1

(Dn),

where r s
x,!1

(Dn) = r s
τ (Dn) − nδ log 2 (cf. (16)) and

rx,!1(Dn) =
{

−
⌊

nδ
⌋

log(2a − 1) a > 1

−
⌈

anδ
⌉

log 3 0 < a ≤ 1.

When Dn = bn2, 0 < b ≤ 1/2,

r l
x,!1

(Dn) ≤ r(Dn) ≤ r l
x,!1

(Dn),

where r l
x,!1

(Dn) = r l
τ (Dn) (cf. (18)) and r l

x,!1
(Dn) =

n log 41/(4b)5 + O (1) .
Proof for Theorem 5 and Theorem 6: The achievability is

presented in Section V-D and Section V-E. For converse, note
that for a distortion measure d ,

|Cn| Nd (Dn) ≥ n!,

where Nd (Dn) is the maximum size of balls with
radius Dn in the corresponding permutation space X (Sn, d)
(cf. Appendix A for definitions), then a lower bound
on |Cn| follows from the upper bound on Nd (Dn) in
Lemma 15 and Lemma 17. We omit the details as it is
analogous to the proof of Theorem 4. "

The bounds to r(Dn) of both Kendall tau distance and
inversion-!1 distance in both small and large distortion regimes
are shown in Fig. 3 and Fig. 4.

Fig. 4. Higher-order trade-off between rate and distortion in the large
distortion regime with D = bn2. The lower bounds for dτ and dx,!1 are
identical.

V. COMPRESSION SCHEMES

Though the permutation space has a complicated structure,
in this section we show two rather straightforward compression
schemes, sorting subsequences and component-wise scalar
quantization, which are optimal as they achieve the rate-
distortion functions in Theorem 4. We first describe these
two key compression schemes in Section V-A and Section V-B
respectively. Then in Sections V-C to V-E, we show that
by simply applying these schemes with proper parameters,
we can achieve the corresponding trade-offs between rate and
distortion shown in Section IV.

The equivalence relationships in Theorem 3 suggest these
two compression schemes achieve the same asymptotic
performance. In addition, it is not hard to see that in
general sorting subsequences has higher time complex-
ity (e.g., O (n log n) for moderate distortion regime) than
the time complexity of component-wise scalar quantization
(e.g., O (n) for moderate distortion regime). However, these
two compression schemes operate on the permutation domain
and the inversion vector of permutation domain respectively,
and the time complexity to convert a permutation from its
vector representation to its inversion vector representation is
% (n log n) [24, Sec. 5.1.1, Exercise 6]. Therefore, the cost of
transforming a permutation between different representations
should be taken into account when selecting the compression
scheme.

A. Quantization by Sorting Subsequences

In this section we describe the basic building block for lossy
source coding in permutation space X

(
Sn, d!1

)
, X

(
Sn, d!∞

)

and X (Sn, dτ ): sorting subsequences, either of the given
permutation σ or of its inverse σ−1. This operation reduces
the number of possible permutations and thus the code rate,
but introduces distortion. By choosing the proper number
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Fig. 5. Quantization by sorting subsequences.

of subsequences with proper lengths, we can achieve the
corresponding rate-distortion function.

More specifically, we consider a code obtained by the
sorting the first k subsequences with length m, 2 ≤ m ≤ n,
km ≤ n:

C(k, m, n) !
{

fk,m (σ ) : σ ∈ Sn
}

where σ ′ = fk,m (σ ) satisfies

σ ′[im + 1 : (i + 1)m] = sort (σ [im + 1 : (i + 1)m]) ,

0 ≤ i ≤ k,

σ ′( j) = σ ( j), j > km.

This procedure is illustrated in Fig. 5.
Then |C(k, m, n)| = n!/

(
m!k

)
, and we define the (log) size

reduction as

'(k, m) ! log
n!

|C(k, m, n)| = k log m!

(a)= k
[

m log(m/e) + 1
2

log m +
(

1
m

)]
,

where (a) follows from Stirling’s approximation in (1).
Therefore,

'(k, m) =
{

km log m + o (km log m) m = ( (1)

k log m! m = % (1) .

We first calculate the worst-case and average-case distor-
tions for permutation space X (Sn, dτ ):

D̂dτ (k, m) = k
m(m − 1)

2
≤ km2/2 (20)

D̄dτ (k, m) = k
m(m − 1)

4
≤ km2/4 (21)

where (20) is from (38).
Remark 7: Due to the close relationship between the

Kendall tau distance and the Spearman’s footrule shown
in (11), the following codebook via the inverse permutations{
σ−1} is an equivalent construction to the codebook for

Kendall tau distance above.
1) Construct a vector a(σ ) such that for 1 ≤ i ≤ k,

a(i) = j if σ−1(i) ∈ [( j − 1)m + 1, jm], 1 ≤ j ≤ k.

Then a contains exactly m values of integers j .
2) Form a permutation π ′ by replacing the length-m sub-

sequence of a that corresponds to value j by vector
[( j − 1)m + 1, ( j − 1)m + 2, . . . , jm].

It is not hard to see that the set of
{
π ′−1} forms a codebook

with the same size with distortion in Kendall tau distance
upper bounded by km2/2.

Similarly, for permutation space X
(
Sn, d!1

)
and

X
(
Sn, d!∞

)
, we consider sorting subsequences in the

inverse permutation domain, where

C ′(k, m, n) !
{
π−1 : π = fk,m (σ−1), σ ∈ Sn

}
.

It is straightforward that C ′(k, m, n) has the same cardinality
as C(k, m, n) and hence code rate reduction '(k, m). And the
worst-case and average-case distortions satisfy

D̂!∞ (k, m) = m − 1 (22)

D̄!∞ (k, m) ≤ m − 1 (23)

D̂!1 (k, m) = k
⌊

m2
⌋

/2 ≤ km2/2 (24)

D̄!1 (k, m) = k(m2 − 1)/3, (25)

where (24) comes from Table I and (25) comes from (37).

B. Component-Wise Scalar Quantization

To compress in the space of X
(
Sn, dx,!1

)
, component-wise

scalar quantization suffices, due to the product structure of the
inversion vector space Gn .

More specifically, to quantize the k points in [0 : k − 1],
where k = 2, · · · , n, with m uniformly spaced points, the
maximal distortion is

D̂x,!1 (k, m) = 4(k/m − 1) /25 , (26)

Conversely, to achieve distortion D̂x,!1 on [0 : k −1], we need

m =
⌈

k/
(

2D̂x,!1 + 1
)⌉

(27)

points.

C. Compression in the Moderate Distortion Regime

In this section we provide compression schemes in the
moderate distortion regime, where for any 0 < δ < 1,
Dn = %

(
nδ

)
for X

(
Sn, d!∞

)
and Dn = %

(
n1+δ

)
for

X
(
Sn, d!1

)
, X (Sn, dτ ) and X

(
Sn, dx,!1

)
. While Theorem 3

indicates a source code for X
(
Sn, d!∞

)
can be transformed

into source codes for other spaces under both average-case
and worst-case distortions, we develop explicit compression
schemes for each permutation spaces as the transformation
of permutation representations incur additional computational
complexity and hence may not be desirable.

1) Permutation Space X (Sn, d!∞): Given distortion
Dn = %

(
nδ

)
, we apply the sorting subsequences scheme

in Section V-A and choose m = Dn + 1, which ensures the
maximal distortion is no more than Dn , and k = 2n/m3,
which indicates

km = 2n/m3 m = n + O
(
nδ

)

log m = δ log n + o (1)

'(k, m) = km log m + o (km log m)

= δn log n + O (n) .

2) Permutation Spaces X (Sn, d!1) and X (Sn, dτ ): Given
distortion Dn = %

(
n1+δ

)
, we apply the sorting subsequences

scheme in Section V-A and choose

m = (1/α) 2Dn/n3 ≤ Dn/(nα)

k = 2n/m3 ,
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TABLE II

VALUES OF α FOR DIFFERENT COMPRESSION SCENARIOS

then

km = n −
∣∣O

(
nδ)∣∣

D ≤ αkm2 ≤ Dn

'(k, m) = δn log n − n log(αe) + o (n) ,

where the constant α depends on the distortion measure
and whether we are considering worst-case or average-case
distortion, as shown in (20), (21), (24) and (25), and is
summarized in Table II.

3) Permutation Space X (Sn, dx,!1): Given distortion
Dn = %

(
n1+δ

)
, we apply the component-wise scalar quan-

tization scheme in Section V-B and choose the quantization
error of the coordinate with range [0 : k − 1] D(k) to be

D(k) = k D
(n + 1)2 ,

then

mk =
⌈

k/
(

2 + D(k) + 1
)⌉

=
⌈

k(n + 1)2

2k Dn + (n + 1)2

⌉

≤
⌈

(n + 1)2

2Dn

⌉
,

and the overall distortion and the codebook size satisfy

D =
n∑

k=2

= (n − 1)(n + 2)

(n + 1)2 Dn ≤ Dn,

log |Cn | =
n∑

k=2

log mk ≤ n log
⌈

(n + 2)2

2Dn

⌉

= (1 − δ)n log n + O (n) .

D. Compression in the Small Distortion Regime

In this section we provide compression schemes in the small
distortion regime for X (Sn, dτ ) and X

(
Sn, dx,!1

)
, where for

any a > 0, 0 < δ < 1, Dn = anδ.
1) Permutation Space X (Sn, dτ ): When a ≥ 1, let

m = 22a3 and k =
⌊

nδ/m
⌋

, then

'(k, m) = k log m!
≥ (nδ/m − 1) log m! = log 22a3!

22a3 nδ + O(1).

And the worst-case distortion is upper bounded by

km2/2 ≤ nδm
2

≤ anδ = Dn .

When 0 < a < 1, let m = 2 and k = 2Dn/23, then

'(k, m) = k log m! =
⌊

Dn

2

⌋
log 2 = a log 2

2
nδ + O(1).

And the worst-case distortion is no more than km2/2 ≤ Dn .

2) Permutation Space X (Sn, dx,!1): When a > 1, let

mk =
{

k k ≤ n − ⌊
nδ

⌋

4k/(2a − 1)5 k > n −
⌊

nδ
⌋ , k = 2, . . . , n

then the distortion D(k) for each coordinate k satisfies

D(k) ≤
{

a k ≤
⌈

nδ
⌉

0 k >
⌈
nδ

⌉ , k = 2, 3, . . . , n,

and hence overall distortion is
∑n

k=2 D(k) = (
⌊

nδ
⌋
)a ≤ Dn .

In addition, the codebook size

∣∣∣Ĉn

∣∣∣ =
n∏

k=2

mk ≤ (1/(2a − 1))
⌊

nδ
⌋ n∏

k=2

k.

Therefore, log
∣∣∣Ĉn

∣∣∣ ≤ log n! −
⌊
nδ

⌋
log(2a − 1) + O (log n) .

When a ≤ 1, let

mk =
{

4k/35 k < 4Dn5
k k ≥ 4Dn5 , k = 2, . . . , n

and apply uniform quantization on the coordinate k of the
inversion vector with mk points, Then the distortion D(k) for
each coordinate k satisfies

D(k) ≤
{

1 k < 4Dn5
0 k ≥ 4Dn5 , k = 2, 3, . . . , n,

and hence overall distortion is
∑n

k=2 D(k) = 4Dn5 − 1 ≤ Dn .
In addition, the codebook size

∣∣∣Ĉn

∣∣∣ =
n∏

k=2

mk ≤
4Dn5−1∏

k=2

(k + 3)/3
n∏

k=4Dn5
k

= 1
34Dn5−1 4Dn5 (4Dn5 + 1)(4Dn5 + 2)

n−1∏

k=5

k.

Therefore, log
∣∣∣Ĉn

∣∣∣ ≤ log n! −
⌈
anδ

⌉
log 3 + O (log n) .

E. Compression in the Large Distortion Regime

In this section we provide compression schemes in the large
distortion regime for X (Sn, dτ ) and X

(
Sn, dx,!1

)
, where for

any 0 < b < 1/2, Dn = bn2.
1) Permutation Space X (Sn, dτ ): Let k = 41/(2b)5 and

m = 2n/k3, then

'(k, m) = k log m! ≥ k log(n/k − 1)!
≥ k[n/k log(n/k) − n/k log e + O (log n)]
= n log(n/e) − n log 41/(2b)5 + O (log n) .

Hence r̂(Dn) = log n! − '(k, m) ≤ log 41/(2b)5 + O (log n) .
And the worst-case distortion is upper bounded by

km2/2 ≤ n2/(2k) ≤ n2/(1/b) = bn2.
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2) Permutation Space X (Sn, dx,!1): Let mk =
4k/(4b(k − 1) + 1)5 , k = 2, . . . , n. The distortion D(k) for
each coordinate k satisfies

D(k) =
⌈

1
2

(
k
m

− 1
)⌉

≤ 42b(k − 1)5 , k = 2, 3, . . . , n,

and hence overall distortion
∑n

k=2 D(k) ≤ ∑n
k=2 2b(k − 1) +

1 ≤ (b + 1/n)n(n − 1). In addition, the codebook size

∣∣∣Ĉn

∣∣∣ =
n∏

k=2

mk ≤
n∏

k=2

⌈
k − 1

4b(k − 1)

⌉
≤

⌈
1

4b

⌉n−1

.

Therefore, log
∣∣∣Ĉn

∣∣∣ ≤ n log 41/(4b)5 + O (1) .

VI. COMPRESSION OF PERMUTATION SPACE

WITH MALLOWS MODEL

In this section we depart from the uniform distribution
assumption and investigate the compression of a permuta-
tion space with a non-uniform model—Mallows model [18],
a model with a wide range of applications such as ranking,
partial ranking, and even algorithm analysis (see [30, Sec. 2e]
and the references therein). In the context of storing user
ranking data, the Mallows model (or more generally, the
mixture of Mallows model) captures the phenomenon that user
rankings are often similar to each other. In the application of
approximate sorting, the Mallows model may be used to model
our prior knowledge that permutations that are similar to the
reference permutation are more likely.

Definition 9 (Mallows Model): We denote a Mallows
model with reference permutation (mode) π and parameter q
as M (π, q), where for each permutation σ ∈ Sn,

P [σ ;M (π, q)] = qdτ (σ,π)

Zq,π
,

where normalization Zq,π = ∑
σ∈Sn

pdτ (σ,π). In particular,
when the mode π = Id, Zq ! Zq,Id = [n]q ! [30, (2.9)], where
[n]q ! is the q-factorial [n]q ! = [n]q [n−1]q . . . [1]q and [n]q is
the q-number

[n]q !
{

1−qn

1−q q 1= 1

n q = 1
.

As we shall see, the entropy of the permutation space with
a Mallows model is in general % (n), implying lower storage
space requirement and potentially lower query complexity
for sorting. Since the Mallows model is specified via the
Kendall tau distance, we use Kendall tau distance as the
distortion measure, and focus our attention on the average-case
distortion.

Noting the Kendall tau distance is right-invariant [22], for
the purpose of compression, we can assume the mode π = Id
without loss of generality, and denote the Mallows model by
M (q) ! M (Id, q).

A. Repeated Insertion Model

The Mallows model can be generated through a process
named repeated insertion model (RIM), which is introduced
in [31] and later applied in [21].

Definition 10 (Repeated Insertion Model): Given a refer-
ence permutation π ∈ Sn and a set of insertion probabilities{

pi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ i
}
, RIM generates a new output σ

by repeated inserting π(i) before the j -th element in σ with
probability pi, j (when j = i , we append π(i) at the end of σ ).

Remark 8: Note that the insertion probabilities at step i is
independent of the realizations of earlier insertions.

The i -th step in the RIM process involves sampling from
a multinomial distribution with parameter pi, j , 1 ≤ j ≤ i .
If we denote the sampling outcome at the i -th step of the
RIM process by ai , 1 ≤ i ≤ n, then ai indicates the location
of insertion. By Definition 10, a vector a = [a1, a2, . . . , an]
has an one-one correspondence to a permutation, and we called
this vector a an insertion vector.

Lemma 7: Given a RIM with reference permutation π = Id
and insertion vector aσ , then the corresponding permutation σ
satisfies

aσ (i) = i − x̃σ (i) ,

where x̃σ is an extended inversion vector, which simply is an
inversion vector xσ with 0 prepended.

x̃σ (i) =
{

0 i = 1
xσ (i − 1) 2 ≤ i ≤ n

Therefore,

dτ (σ, Id) = dx,!1 (σ, Id)

=
n∑

i=1

(i − aσ (i)) =
(

n + 1
2

)
−

n∑

i=1

aσ (i) .

Example 5: For n = 4 and reference permutation
Id = [1, 2, 3, 4], if a = [1, 1, 1, 1], then σ = [4, 3, 2, 1],
which corresponds to x̃σ = [0, 1, 2, 3].

Theorem 8 (Mallows Model via RIM [21], [31]): Given
reference permutation π and

pi, j = qi− j

1 + q + . . . + qi−1 , 1 ≤ j ≤ i ≤ n,

RIM induces the same distribution as the Mallows model
M (π, q).

This observation allows us to convert compressing the
Mallows model to a standard problem in source coding.

Theorem 9: Compressing a Mallows model is equivalent to
compressing a vector source X = [X1, X2, . . . , Xn], where
Xi is a geometric random variable truncated at i − 1,
1 ≤ i ≤ n, i.e.,

P [Xi = j] = q j

∑i−1
j ′=0 q j ′

= q j (1 − q)

1 − qi , 0 ≤ j ≤ i − 1

Proof: This follows directly from Lemma 7 and
Theorem 8.
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Fig. 6. Entropy of the Mallows model for q = 0.7 and q = 0.9, where the
dashed lines are the coefficients of the linear terms, Hb (q) /(1 − q).

B. Lossless Compression

We consider the lossless compression of Mallows model.
Corollary 10:

H (M(q)) = H (M(1/q))

Proof: This follows directly from Theorem 8.
Lemma 11 (Entropy of Mallows Model):

H (M(q)) =
n∑

k=1

H (Xk)

=






Hb (q)

1 − q
n + g(n, q) q 1= 1

log n! q = 1,

where {Xk} are truncated geometric random variables defined
in Theorem 9, Hb (·) is the binary entropy function, g(n, q) =
% (1), and limq→0 g(n, q) = 0.

The proof is presented in Appendix C-A. Fig. 6 shows plots
of H (M(q)) for different values of n and q .

Remark 9: Performing entropy-coding for each Xi ,
1 ≤ i ≤ n is sub-optimal in general as the overhead is O(1)
for each i and hence O(n) for X, which is on the same order
of the entropy H (M(q)) when q 1= 1.

C. Lossy Compression
By Theorem 9, the lossy compression of Mallows model is

equivalent to the lossy compression of the independent non-
identical source X. However, it is unclear whether an analytical
solution of the rate-distortion function for this source can be
derived, and below we try to gain some insights via character-
izing the typical set of the Mallows model in Lemma 12, which
implies that at rate 0, the average-case distortion is % (n),
while under the uniform distribution, Theorem 4 indicates
that it takes n log n + o (n log n) bits to achieve average-case
distortion of % (n).

Lemma 12 (Typical Set of Mallows Model): There exists
c0(q), a constant that depends on q only, such that for any
r0 ≥ c0(q)n,

lim
n→∞ P [dτ (Id, σ ) ≤ r0;M (Id, q)] = 1.

The proof is presented in Appendix C-B.
Remark 10: As pointed out in [31], Mallows model is only

one specific distributional model that is induced by RIM. It is
possible to generalize our analysis above to other distribu-
tional models that are also induced by RIM.

VII. CONCLUDING REMARKS

In this paper, we first investigate the lossy compression of
permutations under both worst-case distortion and average-
case distortions with uniform source distribution. We consider
Kendall tau distance, Spearman’s footrule, Chebyshev distance
and inversion-!1 distance as distortion measures. Regarding
the lossy storage of ranking, our results provide the fun-
damental trade-off between storage and accuracy. Regarding
approximate sorting, our results indicate that, given a moderate
distortion Dn (see Section II for definition), an approximate
sorting algorithm must perform at least % (n log n) pairwise
comparisons, where constant implicitly in the % term is
exactly the rate-distortion function R(Dn). As mentioned,
this performance is indeed achieved by the multiple selection
algorithm in [12]. This shows our information-theoretic lower
bound for approximate sorting is tight.

In practical ranking systems where prior knowledge on
the ranking is available, non-uniform model may be more
appropriate. Our results on the Mallows model show that
the entropy could be much lower (% (n)) than the uniform
model (% (n log n)). This greater compression ratio suggests
that it would be worthwhile to solve the challenge of designing
entropy-achieving compression schemes with low computa-
tional complexity for Mallows model. A deeper understanding
on the rate-distortion trade-off of non-uniform models would
be beneficial to the many areas that involves permutation
model with a non-uniform distribution, such as the problem
of learning to rank [21] and algorithm analysis [30].

APPENDIX A
GEOMETRY OF PERMUTATION SPACES

In this section we provide results on the geometry of the
permutation space that are useful in deriving rate-distortion
bounds.

We first define D-balls centered at σ ∈ Sn with radius D
under distance d(·, ·) and their maximum sizes:

Bd(σ, D) ! {π : d(π, σ ) ≤ D} , (28)

Nd (D) ! max
σ∈Sn

|Bd(σ, D)| . (29)

Let Bτ (σ, D), B!1 (σ, D) and Bx,!1 (σ, D) be the balls
that correspond to the Kendall tau distance, !1 distance of
the permutations, and !1 distance of the inversion vectors,
and Nτ (D), N!1 (D), and Nx,!1 (D) be their maximum sizes
respectively.

Note that (12) implies Bτ (σ, D) ⊂ Bx,!1 (σ, D) and thus
Nτ (D) ≤ Nx,!1 (D). Below we establish upper bounds
for Nx,!1 (D) and Nτ (D), which are useful for establishing
converse results later.

Lemma 13: For 0 ≤ D ≤ n,

Nτ (D) ≤
(

n + D − 1
D

)
. (30)
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Proof: Let the number of permutations in Sn with at most
k inversions be Tn(d) ! ∑d

k=0 Kn(k), where Kn(k) is defined
in (2). Since X (Sn, dτ ) is a regular metric space,

Nτ (D) = Tn(D),

which is noted in several references such as [24]. An expres-
sion for Kn(D) (and thus Tn(D)) for D ≤ n appears in [24]
(see [4] also). The following bound is weaker but sufficient in
our context.

By induction, or [32], Tn(D) = Kn+1(D) when D ≤ n.
Then noting that for k < n, Kn(k) = Kn(k − 1) + Kn−1(k)
[24, Sec. 5.1.1] and for any n ≥ 2,

Kn(0) = 1, Kn(1) = n − 1, Kn(2) =
(

n
2

)
− 1,

by induction, we can show that when 1 ≤ k < n,

Kn(k) ≤
(

n + k − 2
k

)
. (31)

The product structure of X
(
Sn, dx,!1

)
leads to a simpler

analysis of the upper bound of Nx,!1 (D).
Lemma 14: For 0 ≤ D ≤ n(n − 1)/2,

Nx,!1 (D) ≤ 2min{n,D}
(

n + D
D

)
. (32)

Proof: For any σ ∈ Sn , let x = xσ ∈ Gn , then

∣∣Bx,!1 (D)
∣∣ =

D∑

r=0

∣∣{y ∈ Gn : d!1 (x, y) = r
}∣∣ .

Let d ! |x − y|, and Q(n, r) be the number of integer
solutions of the equation z1 + z2 + . . . + zn = r with
zi ≥ 0, 0 ≤ i ≤ n, then it is well known [33, Sec. 1.2] that

Q(n, r) =
(

n + r − 1
r

)
,

and it is not hard to see that the number of such d =
[d1, d2, . . . , dn−1] that satisfies

∑n−1
i=1 di = r is upper bounded

by Q(n − 1, r). Given x and d, at most m ! min {D, n}
elements in {yi , 0 ≤ i ≤ n} correspond to yi = xi ± di .
Therefore, for any x,

∣∣{y ∈ Gn : d!1 (x, y) = r
}∣∣ ≤ 2m Q(n, r)

and hence

∣∣B!1(x, D)
∣∣ ≤

D∑

r=0

2m Q(n, r) = 2m
(

n + D
D

)
.

Below we upper bound log Nτ (D) and log Nx,!1 (D) for
small, moderate and large D regimes in Lemmas 15 to 17
respectively.

Lemma 15 (Small Distortion Regime): When D = anδ,
0 < δ ≤ 1 and a > 0 is a constant,

log Nτ (D) ≤






a(1 − δ)nδ log n + O
(
nδ

)
, 0 < δ < 1

n
[

log
(1 + a)1+a

aa

]
+ o (n) , δ = 1,

(33)

log Nx,!1 (D) ≤






a(1 − δ)nδ log n + O
(
nδ

)
, 0 < δ < 1

n
[

2 + log
(1 + a)1+a

aa

]
+ o (n) , δ = 1.

(34)

Proof: To upper bound Nτ (D), when 0 < δ < 1,
we apply Stirling’s approximation to (30) to have

log
(

n + D − 1
D

)

= n log
n − 1 + D

n − 1
+ D log

n − 1 + D
D

+ O (log n) .

Substituting D = anδ , we obtain (33). When δ = 1, the result
follows from (9) in [34, Sec. 4]. The upper bound on Nx,!1 (D)
can be obtained similarly via (32).

Lemma 16 (Moderate Distortion Regime): Given D =
%

(
n1+δ

)
, 0 < δ ≤ 1, then

log Nτ (D) ≤ log Nx,!1 (D) ≤ δn log n + O (n) . (35)
Proof: Apply Stirling’s approximation to (32) and substi-

tute D = %
(
n1+δ

)
.

Remark 11: It is possible to obtain tighter lower and upper
bounds for log Nτ (D) and log Nx,!1 (D) based on results
in [4].

Lemma 17 (Large Distortion Regime): Given D = bn
(n − 1) ∈ Z+, then

log Nτ (D) ≤ log Nx,!1 (D) ≤ n log(2ben) + O (log n) .

(36)
Proof: Substitute D = bn(n − 1) into (32).

A. Proof of (10)

Lemma 18: For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and X!1 ! d!1 (π, σ ), then

E
[
X!1

]
= n2 − 1

3
Var

[
X!1

]
= 2n3

45
+ O

(
n2

)
. (37)

Proof:

E
[
X!1

]
= 1

n

n∑

i=1

n∑

j=1

|i − j | = 2
n

n∑

i=1

i∑

j=1

|i − j |

= 2
n

n∑

i=1

i−1∑

j ′=0

j ′ = 1
n

n∑

i=1

(i2 − i)

= 1
n

( n∑

i=1

i2 −
n∑

i=1

i

)

= 1
n

(
2n3 + 3n2 + n

6
− n2 + n

2

)

= n2 − 1
3

.

And Var
[
X!1

]
can be derived similarly [8, Table 1].

Proof for (10): For any c > 0, cn · d!∞ (π, σ ) ≤ cn(n − 1),
and for any c1 < 1/3, Lemma 18 and Chebyshev inequality
indicate P

[
d!1 (π, σ ) < c1n(n − 1)

]
= O(1/n). Therefore,

P
[
d!1 (π, σ ) ≥ c1n · d!∞ (π, σ )

]

≥ P
[
d!1 (π, σ ) ≥ c1n(n − 1)

]

= 1 − P
[
d!1 (π, σ ) < c1n(n − 1)

]

= 1 − O (1/n) .

"
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B. Proof of Theorem 2

Lemma 19: For any two permutations π, σ in Sn such that
dx,!1 (π, σ ) = 1, dτ (π, σ ) ≤ n − 1.

Proof: Let xπ = [a2, a3, . . . , an] and xσ =
[b2, b3, . . . , bn], then without loss of generality, we have for
a certain 2 ≤ k ≤ n,

ai =
{

bi i 1= k
bi + 1 i = k.

Let π ′ and σ ′ be permutations in Sn−1 with element k removed
from π and σ correspondingly, then xπ ′ = xσ ′ , and hence
π ′ = σ ′. Therefore, the Kendall tau distance between σ and π
is determined only by the location of element k in σ and π ,
which is at most n − 1.

Proof of Theorem 2: It is known that (see, e.g.,
[35, Lemma 4])

d!1(xπ1, xπ2) ≤ dτ (π1,π2).

Furthermore, the proof of [35, Lemma 4] indicates that for
any two permutation π1 and π2 with k = dx,!1 (π1,π2), let
σ0 ! π1 and σk ! π2, then there exists a sequence of
permutations σ1, σ2, . . . , σk−1 such that dx,!1 (σi , σi+1) = 1,
0 ≤ i ≤ k − 1. Then

dτ (π1,π2) ≤
k−1∑

i=0

dτ (σi , σi−1)

(a)
≤

k−1∑

i=0

(n − 1) = (n − 1)dx,!1 (π1,π2) ,

where (a) is due to Lemma 19. "

C. Proof of (13)

To prove (13), we analyze the mean and variance of
the Kendall tau distance and inversion-!1 distance between
a permutation in Sn and a randomly selected permutation,
in Lemma 20 and Lemma 21 respectively.

Lemma 20: For any π ∈ Sn, let σ be a permutation chosen
uniformly from Sn, and Xτ ! dτ (π, σ ), then

E [Xτ ] = n(n − 1)

4
, (38)

Var [Xτ ] = n(2n + 5)(n − 1)

72
. (39)

Proof: Let σ ′ be another permutation chosen indepen-
dently and uniformly from Sn , then we have both πσ−1 and
σ ′σ−1 are uniformly distributed over Sn .

Note that Kendall tau distance is right-invariant [22],
then dτ (π, σ ) = dτ

(
πσ−1, Id

)
and dτ

(
σ ′, σ

) =
dτ

(
σ ′σ−1, Id

)
are identically distributed, and hence the result

follows [8, Table 1] and [24, Sec. 5.1.1].
Lemma 21: For any π ∈ Sn, let σ be a permutation chosen

uniformly from Sn, and Xx,!1 ! dx,!1 (π, σ ), then

E
[
Xx,!1

]
>

n(n − 1)

8
,

Var
[
Xx,!1

]
<

(n + 1)(n + 2)(2n + 3)

6
.

Proof: It is not hard to see that when σ is a permutation
chosen uniformly from Sn , xσ (i) is uniformly distributed in
[0 : i ], 1 ≤ i ≤ n − 1. Therefore, Xx,!1 = ∑n−1

i=1 |ai − Ui | ,
where Ui ∼ Unif ([0 : i ]) and ai ! xπ (i). Let Vi = |ai − Ui |,
m1 = min {i − ai , ai } and m2 = max {i − ai , ai }, then

P [Vi = d] =






1/(i + 1) d = 0

2/(i + 1) 1 ≤ d ≤ m1

1/(i + 1) m1 + 1 ≤ d ≤ m2

0 otherwise.

Hence,

E [Vi ] =
m1∑

d=1

d
2

i + 1
+

m2∑

d=m1+1

d
1

i + 1

= 2(1 + m1)m1 + (m2 + m1 + 1)(m2 − m1)

2(i + 1)

= 1
2(i + 1)

(m2
1 + m2

2 + i)

≥ 1
2(i + 1)

(
(m1 + m2)2

2
+ i

)
= i(i + 2)

4(i + 1)
>

i
4
,

Var [Vi ] ≤ E
[
V 2

i

]
≤ 2

i + 1

i∑

d=0

d2 ≤ (i + 1)2.

Then,

E
[
Xx,!1

]
=

n−1∑

i=1

E [Vi ] >
n(n − 1)

8
,

Var
[
Xx,!1

] =
n−1∑

i=1

Var [Vi ] <
(n + 1)(n + 2)(2n + 3)

6
.

With Lemma 20 and Lemma 21, now we show that the event
that a scaled version of the Kendall tau distance is larger than
the inversion-!1 distance is unlikely.

Proof for (13): Let c2 = 1/3, let t = n2/7, then noting

t = E [c · Xτ ] +
∣∣%

(√
n

)∣∣ Std [Xτ ]

= E
[
Xx,!1

]
−

∣∣%
(√

n
)∣∣ Std

[
Xx,!1

]
,

by Chebyshev inequality,

P
[
c · Xτ > Xx,!1

]
≤ P [c · Xτ > t] + P

[
Xx,!1 < t

]

≤ O (1/n) + O (1/n) = O (1/n) .

The general case of c2 < 1/2 can be proved similarly. "

APPENDIX B
PROOFS ON RATE-DISTORTION FUNCTIONS

D. Proof of Theorem 3

Proof: Statement 1 follows from (9).
Statement 2 and 3 follow from Theorem 1. For statement 2,

let the encoding mapping for the (n, Dn) source code in
X

(
Sn, d!1

)
be fn and the encoding mapping in X (Sn, dτ )

be gn , then

gn(π) =
[

fn(π−1)
]−1

is a (n, Dn) source code in X (Sn, dτ ). The proof for
Statement 3 is similar.

Statement 4 follow directly from (12).
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E. Proof of Theorem 4

We prove Theorem 4 by achievability and converse.
1) Achievability: The achievability for all permutation

spaces of interest under both worst-case distortion and
average-case distortion are established via the explicit code
constructions in Section V.

2) Converse: For the converse, we show by contradiction
that under average-case distortion, if the rate is less than 1−δ,
then the average distortion is larger than Dn . Therefore,
R̄ ≥ 1 − δ, and hence R̂ ≥ R̄ ≥ 1 − δ.

When δ = 1, R̄ = R̂ = 0. When 0 ≤ δ < 1, for any
0 < ε < 1 − δ and any codebook C̄n with size such that

log
∣∣C̄n

∣∣ = (1 − δ − ε)n log n + O (n) , (40)

from (7), when Dn = %
(
n1+δ

)
or Dn = O (n),

N!1 (2Dn)
∣∣C̄n

∣∣ ≤ Nτ (2Dn)
∣∣C̄n

∣∣

≤ Nx,!1 (2Dn)
∣∣C̄n

∣∣ (a)
≤ n!/2;

when Dn = %
(
nδ

)
or Dn = O (1),

N!∞ (2Dn)
∣∣C̄n

∣∣ ≤ N!1 (2Dnn)
∣∣C̄n

∣∣ ≤ n!/2

when n sufficiently large, where (a) follows from (35).
Therefore, given C̄n , there exists at least n!/2 permutations

in Sn that has distortion larger than 2Dn , and hence the
average distortion w.r.t. uniform distribution over Sn is larger
than Dn .

Therefore, for any codebook with size indicated in (40), we
have average distortion larger than Dn . Therefore, any (n, Dn)
code must satisfy R̂ ≥ R̄ ≥ 1 − δ.

APPENDIX C
PROOFS ON MALLOWS MODEL

F. Proof of Lemma 11

Proof: When q = 1 the Mallows model reduces to the
uniform distribution on the permutation space. When q 1= 1,
let Xn = [X1, X2, . . . , Xn] be the inversion vector, and denote
a geometric random variable by G and a geometric random
variable truncated at k by Gk . Define

Ek =
{

0 G ≤ k
1 o.w.,

then P [Ek = 0] = Qk = 1 − qk+1. Note

H (Gk, E) = H (G|Ek) + H (Ek)

= H (Ek|G) + H (G)

= H (G)

and

H (G|Ek) = H (G|Ek = 0) Qk

+H (G|Ek = 1) (1 − Qk)

= H (Gk) Qk + H (G) (1 − Qk),

we have

H (Gk) = Hb (q) /(1 − q) − Hb (Qk) /Qk .

Then

H (M(q)) =
n−1∑

k=0

H (Gk)

= nHb (q)

1 − q
−

n∑

k=1

Hb
(
qk

)

1 − qk .

It can be shown via algebraic manipulations that
n∑

k=1

Hb

(
qk

)
≤ 2q − q2

(1 − q)2 = % (1) ,

therefore

H (M(q)) = nHb (q)

1 − q
− % (1) .

G. Proof of Lemma 12

We first show an upper bound Kn(k) (cf. (2) for
definition), the number of permutations with k inversion
in Sn .

Lemma 22 (Bounds on Kn(k)): For k = cn,

Kn(k) ≤ 1√
2πnc/(1 + c)

2n(1+c)Hb(1/(1+c)).

Proof: By definition, Kn(k) equals to the number of non-
negative integer solutions of the equation z1 + z2 + . . . +
zn−1 = k with 0 ≤ zi ≥ i, 1 ≤ i ≤ n − 1. Then similar
to the derivations in the proof of Lemma 14,

Kn(k) < Q(n − 1, k) =
(

n + k − 2
k

)
.

Finally, applying the bound [27]
(

n
pn

)
≤ 2nHb(p)

√
2πnp(1 − p)

completes the proof.
Proof of Lemma 12: Note

dτ (σ, Id) = dx,!1 (σ, 0) .

Therefore,

∑

σ∈Sn,dτ (σ,Id)≥r0

P [σ ] = 1
Zq

(n
2)∑

r=r0

qr Kn(r).

And Lemma 22 indicates for any r = cn,

qr Kn(r) ≤ 2
n
[
(1+c)Hb

(
1

1+c

)
−c log2

1
q

]

√
2πnc/(1 + c)

.

Define

E(c, q) !
[
(1 + c)Hb

(
1

1 + c

)
− c log2

1
q

]
,

then for any ε > 0, there exits c0 such that for any c ≥ c0(q),
E(c, q) < −ε. Therefore, let r0 ≥ c0n,

∑

σ∈Sn,dτ (σ,Id)≥r0

P [σ ] ≤ 1√
2πnc/(1 + c)

1
Zq

(n
2)∑

r=r0

2−nε

→ 0

as n → ∞. "
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