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ABSTRACT

Multiple-input multiple-output (MIMO) radar systems have been
shown to offer superior performance in direction of arrival (DOA)
estimation applications compared to their phased array counterparts.
The performance of these systems has been studied under various
probing field-target interaction mechanisms. However, to the best of
our knowledge, these have been restricted to linearized models.
Motivated by various nonlinear imaging modalities we study DOA
estimation in far field MIMO radar systems in conjunction with
a power-law nonlinear probing field-target interaction mechanism
and show that the nonlinearity increases the number of identifiable
targets with a given number of antenna array elements.

Index Terms— MIMO radar, Nonlinear reflectance, Array de-
sign.

1. INTRODUCTION

Conventional phased array radar systems limit the number of de-
grees of freedom associated with the signal set by only allowing
correlated transmission from different antenna elements. MIMO
systems, which have been the focus of research over the last decade,
allow transmission of uncorrelated signals. Stoica et al. [1] explored
MIMO radar with co-located antennas. They considered configura-
tions with Nt transmitting and Nr receiving antennas in conjunction
with suitable signal sets and array configurations and have shown
that in several respects performance gains may be attained compared
to their conventional phased array counterparts. Specifically in terms
of the number of identifiable targets the performance of a MIMO
system with Nt transmit and Nr receive elements is comparable
to that of a conventional system employing order O(NtNr) ele-
ments. Other studies [2] have explored MIMO radar systems with
distant antennas in conjunction with targets exhibiting reflection
fluctuations and have shown that spatial diversity may be utilized to
overcome deep fading conditions.
While various deterministic and stochastic probing field-target in-
teraction models have been considered in the past, to the best of
our knowledge all such studies have assumed a linearized response
where the reflected field scales with the probing field.
In practice the interaction mechanism between the probing field and
a distant scene may exhibit more complicated characteristics. As
a motivating example, in recent years the use of micro-bubbles as
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Fig. 1. Tx and Rx antenna arrays

a nonlinear contrast agent in medical ultrasound applications has
become wide-spread [3]. The highly nonlinear interaction manifests
itself in the reflected signal as harmonics of the incoming signal.
Similar nonlinear phenomena have been utilized in conjunction with
electromagnetic reflections in microscopy applications [4].
In this work we consider the consequences of a hypothetical mem-
oryless, kth order power-law nonlinear target reflectance model on
the design and performance of MIMO radar systems used in DOA
estimation applications. We show that in conjunction with a special-
ized probing signal set and array design a MIMO radar system with
Nt transmit and Nr receive elements can attain target identification
performance comparable to that of an O(Nk

t Nr) elements phased
array setup, offering substantial performance gains with respect to
the MIMO setup with linear reflectors.
Reflection models such as the one we consider here may be in-
troduced into reflectors by means of various methods, depending
on the specific application, e.g. by exploiting naturally occurring
phenomena, or by introduction of active elements exhibiting desired
nonlinear characteristics.

2. PROPAGATION MODEL

Consider a far field scene distributed along the azimuthal and radial
axes θ and r respectively. For convenience define ψ ≡ 1

2 sin θ,ψ ∈
[− 1

2 ,
1
2 ) and τ ≡ r

c
where c is the propagation velocity, and

parametrize the scene with (ψ, τ ). A Tx antenna array illumi-
nates the scene while an Rx array records the returns, as depicted
in Fig. 1. The Tx and Rx arrays consist of Nt and Nr antennas,
respectively, positioned at

{

xt
0, · · · , xt

Nt−1

}

,
{

xr
0, · · · , xr

Nr−1

}

.
The Tx transmits a narrow-band signal at frequency ω and wave-
length λ = 2πc

ω
. The complex envelope at the nth Tx antenna is

an(t) such that the resulting far field Ei(ψ, τ, t) is given by:

Ei(ψ, τ, t) = Re
[

Ẽi(ψ, τ, t)e
jωt

]

(1)
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where we have defined:

Ẽi(ψ, τ, t) ≡
Nt−1
∑

n′=0

an′(t− τ ) exp
[

j
4π
λ

xt
n′ψ

]

e−jωτ (2)

The scene is comprised of M point targets at a common distance τ0
and azimuths ψ1, · · · ,ψM . We consider a deterministic, kth power-
law nonlinear reflection model such that the reflection generated at
the lth target is:

El
r(ψl, τ0, t) = βl (Ei(ψl, τ0, t))

k (3)

where βl is the coupling strength of the lth target. In the sequel our
estimation goal is the azimuths ψ1, · · · ,ψM .
Next, develop expressions for the signal recorded at the Rx array.
Using (1) and (3) we have for the complex envelope of the reflected
signal component centred around kω:

Ẽl
r(ψl, τ0, t) = βl

(

Nt−1
∑

n′=0

an′(t− τ0) exp
[

j
4π
λ

xt
n′ψl

]

)k

e−jωkτ0

= βle
−jωkτ0

N′

t
−1

∑

n′′=0

ân′′(t− τ0) exp
[

j
4π
λ

x̂t
n′′ψl

]

(4)

Where the second equation is retrieved from the first by applica-
tion of the multinomial expansion, such that the sum over n′′ is
over N ′

t =
((

Nt

k

))

≡
(

Nt+k−1
k

)

unique (multinomial) solutions

γ(n) = [γ(n)
0 , γ

(n)
1 , · · · , γ(n)

Nt−1] of the equation
Nt−1
∑

i=0
γi = k, and

the corresponding virtual Tx locations x̂t
n and transmission functions

ân(t) are given according to:

ân(t) =
√
cn

Nt−1
∏

i=0

a
γ
(n)
i

i (t)

x̂t
n =

Nt−1
∑

i=0

γ
(n)
i xt

i

√
cn ≡

(

k

γ
(n)
0 , γ

(n)
1 , . . . , γ

(n)
Nt−1

)

(5)

Notice that the nonlinear reflected signal as given in (4) is analogous
to the reflected signal in a conventional setup with linear reflectors,
virtual element positions x̂t

n and signal set ân(t).
The reflected signal propagates towards the Rx array with wave-
length λk = λ

k
corresponding to the higher frequency. The received

signal at the mth antenna element after down-converting to baseband
is given according to:

s̃m(t) =

M
∑

l=1

N′

t
−1

∑

n′′=0

β̂lân′′(t− 2τ0) exp

[

j
4π
λ

(

x̂t
n′′ + x̂r

m

)

ψl

]

e−j2ωkτ0

(6)

where x̂r
m ≡ kxr

m are the virtual Rx locations.

3. MAIN RESULT: DIRECTION OF ARRIVAL
ESTIMATION

In this section we consider the DOA estimation problem in the pres-
ence of nonlinear reflectors and analyze the fundamental limits of

target identifiability. We adapt the analysis of [1] for discrete-time
MIMO radar configurations with linear reflectors to a continuous
time formulation in conjunction with nonlinear reflectors and show
that under ideal conditions it is possible to identify O(Nk

t Nr) targets
when utilizing the kth order nonlinearity, improving results derived
for the linear case.
Define modified received signals as s̆m(t) ≡ s̃m(t + 2τ0)e

j2ωkτ0 .
we have, using (6):

s̆m(t) =

N′

t
−1

∑

n′′=0

cm,n′′ (β,ψ)ân′′(t) (7)

where cm,n′′ (β,ψ) ≡
M
∑

l=1
βl exp

[

j 4π
λ

(

x̂t
n′′ + x̂r

m

)

ψl

]

.

For the sequel define C(β,ψ) to be a vector stacking the elements
of {cm,n′′ (β,ψ)} in some arbitrary order.

Definition 3.1. M targets are uniquely identifiable from {s̆m(t)}
if ∃ {an(t)} such that for every combination of not more than M
targets we have that ∀m : s̆1m(t) = s̆2m(t) implies (β1,ψ1) =
(β2,ψ2)

The problem of parameter identifiability is about determin-
ing the maximal number M of uniquely identifiable targets from
{s̆m(t)}. Our main result for this section is the following one:

Theorem 3.1. There exists a signaling set {an(t)} and a selec-
tion of Nt Tx and Nr Rx antenna locations such that any M <
1
2

(

⌊

Nt+k−1
k

⌋k
Nr + 1

)

= O(Nk
t Nr) targets are identifiable from

{s̆m(t)}.

We will prove a series of useful lemmas and end this section
with the proof of theorem 3.1. First, start with a definition:

Definition 3.2. We say that M targets are uniquely identifiable from
C(β,ψ) if for every combination of not more than M targets we
have that C(β1,ψ1) = C(β2,ψ2) implies (β1,ψ1) = (β2,ψ2).

The next lemma regarding the signal set design is used in prov-
ing subsequent claims:

Lemma 3.1. There exists a set of Nt functions {an(t)} such that the
corresponding functions {ân(t)}, generated according to (5) hold:
∫

t
ân′(t)â∗

n(t)dt = δnn′ ĝn, with ĝn a constant.

Proof. See section 5.

The next lemma is a restatement of results in [5] with appropriate
adaptations to continuous time:

Lemma 3.2. A necessary condition for parameter identifiability
from the received signals {s̆m(t)} is parameter identifiability from
C(β,ψ). It is also sufficient if the signaling set satisfies lemma 3.1.

Proof. Given {an(t)} the {s̆m(t)} are determined from the ele-
ments of C(β,ψ) as per (7). We trivially have that if M parameters
are not identifiable from C(β,ψ) they are also not identifiable from
{s̆m(t)}.
Conversely, assume that M targets are uniquely identifiable from
C(β,ψ) and that the signaling set satisfies lemma 3.1. We show
that the target parameters are uniquely identifiable from {s̆m(t)}.
Indeed, using (7) we have that the following holds at the receiver:
∫

t
s̆m(t)â∗

n′′(t)dt = ĝn′′cm,n′′ (β,ψ). Repeating this for every m
and n′′ we can extract C(β,ψ), and since it allows unique identifi-
cation of the parameters so does {s̆m(t)}.
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Using lemma 3.2 we have that the number of identifiable targets
from {s̆m(t)} is equal to the number of identifiable targets from
C(β,ψ). The next lemma is useful for the proof of the main theo-
rem.

Lemma 3.3. There exists a set of Nt Tx and Nr Rx antenna loca-
tions

{

xt
n

}

, {xr
n} such that the set

{

x̂t
n′′ + x̂r

m

}

contains Ns =
⌊

Nt+k−1
k

⌋k
Nr = O(Nk

t Nr) contiguous points on a uniform λ
2 -

spaced grid (starting at 0 without loss of generality).

Proof. See section 4.

Finally, we can prove the main theorem:

Proof. (Theorem 3.1) For the sensor locations choose a setup that

satisfies lemma 3.3 with Ns =
⌊

Nt+k−1
k

⌋k
Nr the number of con-

tiguous samples
{

x̂t
n′′ + x̂r

m

}

. Define the vector C̃(β,ψ) as a sub-
vector of C(β,ψ) according to:

C̃(β,ψ) ≡

[

M
∑

l=1

βle
j2π0ψl , · · · ,

M
∑

l=1

βle
j2π(Ns−1)ψl

]T

(8)

the number of identifiable targets from C̃(β,ψ) is not greater than
the number of identifiable targets from C(β,ψ) as the former con-
tains a subset of the elements of the latter. Given L targets define:

B(ψ) ≡
[

B′(ψ1), · · · , B′(ψL)
]

B′(ψ) ≡ [exp(j2π0ψ), · · · , exp(j2π(Ns − 1)ψ)]T

β ≡ [β1, · · · ,βL]T (9)

and notice that with these definitions we have C̃(β,ψ) = B(ψ)β.
As any Ns distinct vectors {B′(ψ1), · · · , B′(ψNs

)} are linearly in-
dependent (stacked side by side they form a Vandermonde matrix),
we use the result from [6], [7] (Thm. 1) to claim that a sufficient con-
dition for parameter identifiability from C̃(β,ψ) isL < Ns+1

2 , such
that plugging the expression for Ns we have that we can uniquely

identify any M < 1
2

(

⌊

Nt+k−1
k

⌋k
Nr + 1

)

= O(Nk
t Nr) point

targets, which is our key result.

4. ANTENNA ARRAY DESIGN

In this section we design antenna arrays in conjunction with lemma
3.3. The goal is to choose positions

{

xt
n, x

r
n

}

such that the result-

ing virtual positions
{

x̂t
n, x̂

r
n

}

satisfy the conditions of the lemma,

with
{

x̂t
n + x̂r

m

}

covering a contiguous uniform λ
2 -spaced grid of

⌊

Nt+k−1
k

⌋k
Nr = O(Nk

t Nr) elements.
The virtual Tx antenna locations are determined from the physical
antenna locations according to (5). Our construction will result in
virtual arrays such that the virtual Tx array will span a uniform grid
of spacing Nr

λ
2 while the virtual Rx array will span a grid with spac-

ing λ
2 .

For the Rx array choose {xr
n} on a uniform grid with spacing λ

2k :

xr
n = n

λ

2k
n = 0, · · · , Nr − 1 (10)

which, coupled with the definition x̂r
m ≡ kxr

m results in the desired
virtual Rx array.
As for the Tx array, our design problem hints at the one studied in
[8] where the authors considered the diversity of the co-array formed

Fig. 2. A Tx array (black) and its three constituent hierarchies with
three elements each. The first element is shared between hierarchies
such that the overall number of elements is Nt = 7.

according to position differences between pairs of physical elements.
They showed that a nested geometry maximizes the number of de-
grees of freedom available for DOA estimation with a given number
of elements.
For nonlinear imaging, virtual locations x̂t

n are formed as k-sums of
positions xt

n. We use nested arrays similar to those proposed in [8]
and obtain Tx diversity of O(Nk

t ) virtual elements covering a uni-
form Nr

λ
2 -spaced grid as required.

With kth order nonlinearity we design a nested Tx array partitioned
into k hierarchies. The ith hierarchy is a uniformly spaced array with
N i

t elements and spacing dit, such that all hierarchies share a com-
mon element at location 0. An example for k = 3 is depicted in Fig.
2 with the three hierarchies in color and the resulting array in black.
The first i = 1 Tx hierarchy is designed with spacing d1t = Nr

λ
2 and

yet unspecified number of elements N1
t . Subsequent hierarchies are

designed according to the following iterative rule: For the (i+1)th Tx
hierarchy choose spacing di+1

t = N i
td

i
t and again, a yet unspecified

number of elements N i
t . For simplicity, taking into account the k

multiplicity of the common 0 element, populate all hierarchies with

an equal number of N i
t =

⌊

Nt+(k−1)
k

⌋

elements discarding the re-

maining antennas.
With this design, we show that the virtual Tx array covers an

⌊

Nt+(k−1)
k

⌋k

elements uniform contiguous grid with spacing Nr
λ
2 .

Indeed, the virtual Tx array contains every k-sum of element po-
sitions. Specifically, it contains any such sum with exactly one ele-
ment from each of the k hierarchies, and these result in unique virtual
elements due to the geometric spacing of the sub-arrays. The overall

number of such combinations equals (N i
t )

k =
⌊

Nt+(k−1)
k

⌋k

.

Combining with the Nr Rx elements we end up with
{

x̂t
n + x̂r

m

}

covering a contiguous uniform λ
2 -spaced grid of

⌊

Nt+(k−1)
k

⌋k

Nr

elements.

5. SIGNAL SET SYNTHESIS

In this section we provide a proof for lemma 3.1. Namely, we de-
sign a signal set {an(t)} such as to satisfy the correlation property
∫

t
ân′(t)â∗

n(t)dt = δnn′ ĝn. In what follows we present a construc-
tion technique that results in constant modulus signals, which is
desirable for practical applications.
For kth order nonlinearity and Nt transmitters the Tx signals
{an(t)} , n = 0, · · · , Nt − 1 are defined to be windowed pure
discrete tones amplitude modulating a rectangular shaping function:

an(t) =

ΩNt
−1

∑

m=0

exp(j2π
Ωnm

ΩNt

)h(t−mTc) (11)
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Fig. 3. Signal set frequency occupation for k = 3 nonlinearity and
Nt = 3 transmitters: Ω0 = 1, Ω1 = 4, Ω2 = 13.

where h(t) = 10≤t≤Tc
(t) is a rectangular shaping function and

Tc the chip length. The nth discrete tone frequency Ωn is defined
recursively according to:

{

Ω0 = 1
Ωn = kΩn−1 + 1, n ≥ 1

(12)

The discrete tones are windowed to a finite time record of length
ΩNt

. This is schematically depicted in Fig. 3 for k = 3 and Nt = 3.
With the definition above and using (5), the virtual signal set be-

comes:

ân′(t) =
√
cn′

ΩNt
−1

∑

m=0

exp(j2π
m

ΩNt

Nt−1
∑

j=0

γ
(n′)
j Ωj)h(t−mTc)

(13)

We now show that the signal set as defined satisfies lemma 3.1. The
next lemma is useful for proving the orthogonality relations:

Lemma 5.1. for every {γi ≥ 0}, such that
∑Nt−1

i=0 γi = k:

1.
∑R−1

i=0 γiΩi < ΩR for every R ≤ Nt

2. {γi} are uniquely determined from u =
∑Nt−1

i=0 γiΩn

Proof. The first claim is easy. To prove the second claim, use the

first claim with R = Nt− 1 to show γNt−1 =
⌊

u
ΩNt−1

⌋

. Then, ap-

ply the same procedure on u−γNt−1ΩNt−1 get γNt−2 and continue
similarly for all following coefficients.

Finally, using
∫

t
h(t−mTc)h

∗(t−mTc) = Tc we have:

∫

t

ân′(t)â∗
n(t)dt =

Tc
√
cn′cn

ΩNt
−1

∑

m=0

exp(j2π
m

Ωk
Nt

[

Nt−1
∑

j=0

γ
(n′)
j Ωk

j −
Nt−1
∑

j=0

γ
(n)
j Ωk

j

]

) =

δnn′ ĝn (14)

with ĝn = TccnΩk
Nt

, where in the last equality we have used lemma
5.1 to claim that the term in brackets is zero if and only if n = n′.
Thus, our signal set adheres to lemma 3.1 as required.

6. NUMERICAL EXPERIMENT

We complement our analysis with the results of a numerical exper-
iment. The setup is comprised of 13 far-field reflecting targets with
angles as depicted in red in Fig. 4. The targets exhibit nonlinear
reflectance with k = 3 and unit coupling coefficients β = 1. We
design a Tx array with Nt = 7 elements according to the scheme
of section 4 and the example given there as the union of three con-
stituent equi-populated sub-arrays. In units of λ

2 the constituent sub-
arrays are positioned at {0, 1, 2} , {0, 3, 6} , {0, 9, 18} such that the
Tx locations are {0, 1, 2, 3, 6, 9, 18} as in Fig. 2. The receiver ar-
ray is degenerate with a single element at xr

0 = 0. For the signal-
ing set we implemented the design scheme of section 5 with tones

Fig. 4. Single-shot MUSIC score for 13 k = 3 nonlinear reflecting
targets and a setup as described in the text.

Ω ∈ {1, 4, 13, 40, 121, 364, 1093} and a sequence length equal to
Ω7 = 3280 chips. To probe the stability of the estimation problem
we have included the effect of a complex AWGN impairing the re-
ceived signal. For the simulation described here we have assumed
SNR = 10dB. With the setup as defined above the virtual array
strictly covers the contiguous section {0, · · · , 26} which was used
in the estimation procedure.
For DOA estimation we implemented a single-shot MUSIC algo-
rithm [9]. In Fig. 4 we plot the score function vs. ψ where it is
evident that the algorithm gives excellent estimates for the location
of all 13 targets, in accord with Theorem 3.1 which guarantees iden-
tifiability of up to 13 targets under these conditions. Also notice that
with seven transmitting elements and one receiving element conven-
tional MIMO radar techniques cannot support DOA estimation for
more than 6 targets under any circumstances, such that the above ex-
periment exemplifies the additional degrees of freedom supported by
the nonlinear interaction between the probing field and the reflecting
targets.

7. DISCUSSION

We have introduced the notion of target probing through nonlinear-
ities as a means to enhance the number of identifiable targets in
applications utilizing antenna arrays in MIMO configurations. We
have shown that a virtual Tx array emerges in conjunction with the
nonlinearities such that the effective number of degrees of freedom
available for DOA estimation is asymptotically orders of magnitude
larger than available in conjunction with linear reflectors.
Our result reveals an inherent asymmetry between the Tx and Rx ar-
rays under such nonlinearities as is evident from our expression for
the number of identifiable targets which scales as O(Nk

t Nr). An ef-
fective way to reap the most benefit from the proposed scheme would
be to introduce a single element for the Rx while transmitting with
multiple antennas at the Tx, which would lead to the biggest impact
under a constraint on the total number of antennas.
With respect to DOA estimation performance in noisy environments
our nonlinear scheme inherits performance bounds from conven-
tional results pertaining to DOA estimation with linear targets with
corresponding virtual arrays and signal sets replacing physical ones.
A full account of this will be provided in future work. We also leave
the detailed analysis of the bandwidth expansion phenomenon cou-
pled with the nonlinear interaction to future work.
A topic we have only briefly alluded to is the applicability of the
nonlinear reflectors model to practical applications. Sophisticated
probing-field-target interaction models have yet to be fully exploited
by conventional radar systems. Further research is required to eval-
uate if such models can be implemented in practice.
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