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Abstract—The problem of finite-blocklength lossy com-

pression is considered. Motivated by troubling behavior of

the rate expressions under an excess-distortion probability

constraint, we define the mean excess distortion crite-

rion. We evaluate the asymptotic performance of various

settings under this criterion, and show that sharp and

insightful rate bounds can be derived.

I. INTRODUCTION

Excess-distortion analysis is a powerful tool for un-
derstanding the finite-blocklength behaviour of lossy
compression. If a source block xn is reconstructed as
yn, and under a single-letter distortion measure d(x, y),
an excess-distortion event E(n,D) happens when the
empirical distortion

d(xn, yn) =
1

n

nX

i=1

d(x
i

, y
i

) (1)

exceeds some prescribed threshold D; the excess-
distortion probability p

e

(n,D) is the probability of this
event. The reason for considering excess distortion is
that from an operational point of view, the mean is not
enough; for example, the fact that one source block
is very accurately described may not compensate for
another block that is distorted to the extent that it cannot
be used. More generally, such considerations can be
taken into account by applying any vector distortion mea-
sure to source blocks. However, the fact that the excess
distortion is constructed from a scalar measure using the
simple additive relation (1) maintains tractability.

The excess-distortion probability was introduced by
Marton in [1], where its exponential behavior for fixed-
rate compression was derived. Much more recently, the
second-order (dispersion) behavior was found in [2], [3]:
for fixed excess-distortion probability ✏ and blocklength
n, the required rate of fixed-rate coding is given by:

R = R(D) +

r
V (D)

n
Q�1

(✏) +O

✓
log n

n

◆
, (2)

where R(D) and V (D) are the source rate-distortion
function (RDF) and dispersion, respectively, and Q�1

(·)

is the inverse Gaussian tail probability function. This
analysis extends to joint source-channel coding [4], [5]
as well as to some network settings. In [6], it is extended
the case where the quantizer dimension, and the rate over
which the fixed-rate constraint is measured, may differ
from n.

We are motivated by a recent work by Kostina et al. [7]
where the basic fixed excess-distortion probability was
studied under an average rate constraint. The required
rate was found to differ fundamentally from (2):

R ⇠
=

(1� ✏)R(D)�
r

V (D)

n
�

�
Q�1

(✏)
�
, (3)

where �(·) is the Guassian probability density function.
The main (1�✏) rate gain is due to allocating zero rate in
case of an excess-distortion event. The second-order term
is always negative, reflecting a further gain; this is since
one can choose to have the excess-distortion in case of a
“complicated” source block that requires high rate, thus
the expected required rate given no excess distortion is
lower than R(D). A troubling phenomenon, observed in
[7], is that the asymptotic rate is approached from below:
the smaller the blocklength n, the bigger the second-
order rate reduction. Could it be that it is desirable to
work with small blocks?

It should be noted, that a similar phenomenon occurs
in the context of lossless source coding under an average
rate constraint [7]. In this digital case, it may not come
as a big surprise, a longer blocklength n means a more
stringent requirement of correctly reconstructing a larger
amount of data.1 However, distortion does satisfy the
additive relation (1); thus with growing blocklength it
retains the same average, while the variance should de-
crease thanks to statistical averaging. It is only the act of

1Indeed, a longer blocklength also means a richer family of
encoders and decoders, which is favorable, although apparently
less significant than the more strict requirement; in the case of
channel coding under an average cost constraint [8], the situation is
reversed and shorter blocklength means worse performance. Making
the distinction between different blocklengths as in [6] allows to
decouple these effects.
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translating the “analog” distortion into the binary excess-
distortion event that may cause performance degradation
with increasing blocklength.

We would like, then, to have a measure that reflects
finite-blocklength behavior and is tractable (i.e., building
on a scalar measure) as the excess-distortion probability,
but has the property that it is easier to achieve as
blocklength grows. To that end, we introduce the (soft)
excess distortion for threshold D:

�(n,D) = [d(xn, yn)�D]

+

, (4)

where [·]
+

denotes truncation of negative values. In the
rest of this paper we study the rate required in order
obtain a mean excess distortion E [�(n,D)]  � for
some fixed D and �, as a function of the blocklength
n. After giving some definitions and background, we
turn in Section III to the average-rate problem of [7].
Then in Section IV we consider the “classical” fixed-
rate setting, before extending the view in Section V to a
multiple-blocklength scenario following [6].

II. DEFINITIONS AND BACKGROUND

We consider a memoryless source which takes values
in some finite alphabet of size M , and some single-
letter distortion measure d(·, ·)  d

max

< 1. For any
distribution Q over this alphabet and any distortion level
˜D � 0, the RDF is given by:

R(Q, ˜D) = min

W :EQ,W d(X,Y ) ˜

D

I(Q,W ).

Further, we say that a distribution P and distortion level
D form a regular point if the RDF is twice differentiable
w.r.t. Q and differentiable w.r.t. ˜D in a neighborhood of
(P,D);2 we will only be interested in such points, and
we denote the slope w.r.t. D by

� = � @R(Q, ˜D)

@ ˜D

�����
˜

D=D

. (5)

For a regular point, the source dispersion V (P,D) is
well-defined and finite; for alternative expressions for
this quantity, see [2], [3]. When the identity of the source
is clear from the context, we write R(D) and V (D).

A fixed-rate code of blocklength n and rate R assigns
to any source sequence Xn an index in 1, . . . , 2nR. A
variable-rate code assigns a codeword of length R(Xn

)

bits where the set of all possible codewords is prefix-
free.; the average rate of the code is the mean of R(Xn

)

w.r.t. the source distribution.
2The neighborhood contains distributions outside the simplex, this

is of no concern.

We use the method of types; specifically, the type class
T
Q

is the set of all n-length sequences that have type Q,
where the blocklength is supressed.

We also use Gaussian distributions. Beyond the den-
sity �(x) and the tail probability Q(x), we use:

K(x) =

Z 1

x

Q(x0)dx0 = �(x)� xQ(x).

A. Optimal Type-Dependent Coding

In the following we consider a code where both rate
and distortion are allowed to depend on the source
realization.

Proposition 1: Consider a source which emits ex-
changeable sequences3 over an alphabet size M . Con-
sider a variable-rate code that allocates to each sequence
a rate R(Xn

). Let 0  D(Q) be a finite function of
distributions. For any finite M there exist finite a(M)

and b(M), s.t.:
1) Direct: There exists a code, such that for any Xn 2

T
Q

, d(Xn, Y n

)  D(Q) and

R(Xn

)  R(Q,D(Q)) + a(M)

log n

n

2) Converse: For any code, and for any type Q, if

E[R(Xn

)|Xn 2 T
Q

]  R(Q,D(Q))� b(M)

log n

n

then E [d(Xn, Y n

)|Xn 2 T
Q

] � D(Q).
A few remarks are in place.

1) Note that the direct is given in terms of maximum
per-type rate and distortion, while the converse is
given in terms of average ones.

2) The direct part can be seen as a “type covering”
code, plus a prefix that describes the type; by the
polynomial number of types, this prefix is included
in the logarithmic redundancy term. The converse
part holds even if the source is uniformly distributed
over a single type class. See e.g. [2].

3) Taking D(Q) constant results in a fixed-distortion
code. Similarly, taking R(Xn

) constant results in a
fixed-rate code.

B. A simple source

Throughout the paper we use the following example,
which suffices to capture much of the essence of the
results. It is a version of “erasure” source/distortion.
The source and reproduction are both over the ternary
alphabet {0, 1, E}. The source is 0 or 1 with probability

3That is, the probability of a sequence is invariant to permutations,
e.g., an i.i.d. source.
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p/2, E with probability 1 � p. The distortion measure
is: d(x, y) = 1 if x 6= E and y = E, d(x, y) = 0 if
x = E or y = x, infinite distortion otherwise. That is,
source symbols can be “erased” with unit cost, except
when the source has the “don’t care” value E, then it
never suffers from distortion.

The rate-distortion function is simply

R(p,D) = p�D.

That is, it takes 1 bit to accurately describe a source
symbol that matters. It is the linearity of this function
that makes this source convenient; in the general case,
we will need linearizations.

For this source, it is convenient to consider “super
type classes”. That is, let the E-type class T

q

contain
all sequences that contain qn E-symbols, regardless of
the number of zeros and ones. As the probability of se-
quences within T

q

that are far from type (q/2, q/2, 1�q)
is exponentially small, Proposition 1 holds with respect
to T

q

. That is, the type-dependent rate R(q) needed to
achieve a type-dependent distortion D(q) in the sense of
Proposition 1 is:

R(q) = q �D(q) +O

✓
log n

n

◆
. (6)

Also, it is not difficult to verify that the source dispersion
is only “with respect to” the E-symbols, that is, it is the
variance of a Bernoulli-p variable: V (p,D) = p(1� p).

III. AVERAGE RATE CONSTRAINT

The following shows that for an average rate con-
straint, excess distortion is a “zero-sum game”: there is
no loss of generality in restricting attention to expected
distortion. Indeed, with � = 0 the following result
reduces to the expected distortion redundancy [9].

Theorem 1: Let R
n

be the required expected rate at
blocklength n for any distortion threshold D � 0 and
mean excess-distortion � � 0. Then

R
n

= R(P,D + �) +O

✓
log n

n

◆
.

Proof outline: First consider the erasure source. For
achievability, we cover all source sequences with fixed
distortion ˜D. For a source realization with E-type q, The
rate needed is R(q) of (6). Thus the expected rate is:

E[R(q)] = E[q]� ˜D+O

✓
log n

n

◆
= p� ˜D+O

✓
log n

n

◆
.

Since the distortion is fixed, we may take ˜D = D + �
for any � � 0. For the converse, by Jensen’s inequality
for the convex [x]

+

,

D + � � E[d(Xn, Y n

)]

and then:
E[d(Xn, Y n

)] = E[E[d(Xn, Y n

)|q]]

� E


q �R(q) +O

✓
log n

n

◆�

= p�R+O

✓
log n

n

◆
,

where for the inequality we have used again (6).
For generalizing to any source, one can define a Q-

neighborhood of P that has vanishing radius, and at
the same time very high probability. Within that neigh-
borhood R(Q,D) is approximately linear in Q, with
mean R(P,D). Finally, Jensen’s inequality is applied to
R(Q,D) which is convex in D, in order to assert that it
is indeed optimal to have E[d(Xn, Y n

)|Q] independent
of Q.

IV. FIXED RATE CONSTRAINT

We now turn to the “classical” setting of fixed-rate
quantization. Let us first interpret the excess-distortion
probability dispersion (2). Consider the erasure source.
A fixed-rate code of rate R

n

can achieve for a given
E-type q a distortion:4

D(q) = q �R
n

+O

✓
log n

n

◆
. (7)

The excess-distortion probability is thus approximately
the probability of D(q) to exceed the threshold D:

✏ ⇠
=

Pr


q > D +R

n

+O

✓
log n

n

◆�
.

By the CLT, q is approximately normal with mean p and
variance p(1 � p)/n. The correction to the CLT, given
by the Berry-Essen theorem, only gives a correction of
order 1/n, thus we have:

R
n

= p�D +

r
p(1� p)

n
Q�1

(✏) +O

✓
log n

n

◆
,

which is exactly (2) applied to the erasure source.
The same nearly optimal scheme can be applied to

mean excess-distortion analysis as well. Since the distri-
bution of q scales as 1/

p
n, the mean excess distortion

also scales as 1/
p
n when ✏ is fixed. Indeed, we use this

normalization in the following.
Theorem 2: Let R

n

be the required rate at blocklength
n for distortion threshold D and mean excess-distortion
� = �

0

/
p
n. For any fixed D, �

0

� 0,

R
n

= R(P,D) +

r
V (P,D)

n
K�1

(��
0

) +O

✓
log n

n

◆
.

4For excess-distortion probability, one uses a version of Proposi-
tion 1 where the second part states that with very high probability,
the distortion will be above D.
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Proof outline: First consider the erasure source. By
Proposition 1 there exists a fixed-rate code of rate R

n

,
such that the maximum distortion given a type class
satisfies (7), and there does not exist a code such that
the average distortion is better than (7). Thus we have:

�
0p
n
= E


q �D �R

n

+O

✓
log n

n

◆�

+

�
.

Now, since for X that is Gaussian (µ,�2/n),

E
⇥
[X � µ� x

0

]

+

⇤
=

1p
n
·K

✓r
n

�2

x
0

◆
,

it follows that under a Gaussian approximation for q,

�
0

= K

✓r
n

p(1� p)

✓
R

n

� p+D +O

✓
log n

n

◆◆◆
,

which is equivalent to the required result. For applying
the Gaussian approximation, the Berry-Essen theorem
does not suffice (as the uniform gap to the Gaussian cu-
mulative distribution function explodes in the calculation
of the expected value), thus a stronger approximation is
applied, as in the proof of [7, Lemma 1].

Generalization to any source follows by linearization,
closely following [2]. Locally, we have

R(Q,D) = R(P,D) +

MX

i=1

R0
i

(Q
i

� P
i

),

where R0
i

is the derivative of R(Q,D) w.r.t. the i-th
coordinate, evaluated at P = Q. The dispersion V (P,D)

is the variance of R
i

when the source is distributed
according to P . The RDF slope � (5) serves to normalize
from distortion to rate.

V. GENERAL RESULT

We now consider the setting defined and motivated in
[6], where a distinction is made between three block-
lengths:

1) Processing blocklength k: the dimension of the
code.

2) Fidelity blocklength n: the dimension of the distor-
tion measurement.

3) Resource blocklength m: the dimension over which
the rate constraint is enforced.

For tractability we concentrate on a synchronized version
of the problem, defined as follows. k, n and m are
integers such that any two of them have an integer
ratio. The order between them is arbitrary, except that
m � k, that is, m = Ak for an integer A. Using these
blocklengths, the problem is defined as follows. Let

n = max(k,m, n) = max(m,n) (8a)

n = min(k,m, n) = min(k, n). (8b)

A source block Xn

1

is processed by a coding scheme
operating on blocks Xk

1

, X2k

k+1

... and the reconstructions
are pasted back together in the same order to create the
reconstruction Y n

1

. Let the rate of the r-th processing
block be R

r

. A sequence of A processing blocks is
observed, and then a rate allocation is made, such that
the following constraint is satisfied:5

1

A

CAX

r=(C�1)A+1

R
r

 R.

The mean excess distortion is given by:

� =

1

B

BX

f=1

E

h
d
⇣
Xfn

(f�1)n+1

, Y fn

(f�1)n+1

⌘
�D

i

+

�

(9)

for B = n/n. For these, we have the following.
Theorem 3: Let R

n,n

be the required rate at block-
lengths n and n for the synchronized setting defined
above, and for distortion threshold D and mean excess-
distortion � = �

0

/
p
n. For any fixed D, �

0

� 0,

R
n,n

= R(P,D) +

r
V (P,D)

n
K�1

(��
0

) +O

✓
log n

n

◆
.

Before giving a proof outline, let us discuss some
consequences.

1) A similar expression was derived in [6] for the
excess-distortion probability. However, in that work,
for the case m > k, this was only an achievability
result without a converse; the reason was that one
could gain by allocating zero rate to some source
blocks, as done in [7] for the case of average rate.
Shifting to mean excess distortion allows to prove
the converse result as well.

2) When all the blocklengths are equal (k = n = m),
the result reduces to Theorem 2.

3) In general, we see that the second-order (dispersion)
term is with respect to the maximum of the block-
lengths. In this sense, he result is optimistic: if one
starts from equal blocklengths, some of them can
be reduced without hurting the second-order per-
formance, until they are so small that O(log n/n)
is more significant than O(1/n).

4) Taking the limit of infinite m or infinite n amounts
to average distortion or average rate. Indeed it

5A scheme that allocates rates to the processing blocks sequentially,
only keeping track of the cumulative rate consumption, can also be
devised.
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leads to a zero second-order term, reducing to the
logarithmic redundancy of [9] and of Section III.

Proof outline: we will only treat the erasure source; the
extension to other sources follows in a similar manner to
Theorem 2. We make a distinction between two cases.

1) n = n � m � k = n. Since performance is
monotonic in both m and k, we assume fixed-
rate coding with rate R

n,n

at blocklength `, where
for the direct ` = k = n while for the converse
` = m. Now, the whole source block is composed
of G = n/` processing blocks. At each one, we
have as in (7) a type-dependent distortion of:

D(q
a

) = q
a

�R
n,n

+O

✓
log `

`

◆
, a = 1, . . . , G

where q
a

is the source E-type at the a-th block. For
evaluating � (9) we consider

1

G

GX

a=1

D(q
a

) =

1

G

GX

a=1

q
a

�R
n,n

+O

✓
log `

`

◆

= q �R
n,n

+O

✓
log `

`

◆
,

where q is the E-type of the full source sequence
of length n. Now, following the Gaussian approxi-
mation as in the proof of Theorem 2 we have the
desired result with the logarithmic term being a
function of ` rather than n; but since ` � n, the
result follows.

2) n = m � n. Since performance is monotonic in
both n and k,6 we assume fixed-distortion coding
with distortion ˜D(q) to be determined (where q is
the E-type of the whole source sequence), at block-
length `, where for the direct ` = min(k, n) = n
while for the converse ` = max(k, n). Now, the
whole source block is composed of G = n/`
processing blocks. At each one, we need a type-
dependent rate of:

R(q
a

) = q
a

� ˜D(q) +O

✓
log `

`

◆
, a = 1, . . . , G

where q
a

is the source E-type at the a-th block. In
order to satisfy the rate constraint we have:

R
n,n

= q � ˜D(q) +O

✓
log `

`

◆
.

6Monotonicity in n holds true since we consider mean excess
distortion; if one tries to prove a similar converse for excess-distortion
probability, this is the point where it fails.

Since we used fixed distortion, we have:

�
0p
n
= E

h
˜D(q)�D

i

+

�

= E


q �D �R

n,n

+O

✓
log `

`

◆�

+

�
.

The proof is completed as in the first case.

VI. DISCUSSION

We have presented the mean excess distortion as a
measure for finite-blocklength performance that provides
tractability while avoiding the anomalies encountered
when using the excess-distortion probability. Of course,
one may wonder if other measures would be suitable as
well. Indeed, from a technical point of view the problem
with the excess-distortion probability is that it is the
mean of an indicator function, which is not convex; any
convex function of the empirical distortion would be
adequate. However, the linearity of the mean distortion
gives the simplest results, and it seems that the freedom
to choose the distortion measure gives enough flexibility
in tailoring the analysis to the application.
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