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Abstract

To fully enable voice interaction in wearable devices, a
system requires low-power, customizable voice-authenticated
wake-up. Existing speaker-verification (SV) methods have
shortcomings relating to power consumption and noise sus-
ceptibility. To meet the application requirements, we propose
a low-power, text-dependent SV system comprising a sparse
spectral feature extraction front-end showing improved noise
robustness and accuracy at low power, and a back-end running
an improved dynamic time warping (DTW) algorithm that pre-
serves signal envelope while reducing misalignments. Without
background noise, the proposed system achieves an equal-error-
rate (EER) of 1.1%, compared to 1.4% with a conventional
Mel-frequency cepstral coefficients (MFCC)+DTW system and
2.6% with a Gaussian mixture universal background (GMM-
UBM) based system. At 3dB signal-to-noise ratio (SNR), the
proposed system achieves an EER of 5.7%, compared to 13%

with a conventional MFCC+DTW system and 6.8% with a
GMM-UBM based system. The proposed system enables sim-
ple, low-power implementation such that the power consump-
tion of the end-to-end system, which includes a voice activity
detector, feature extraction front-end, and back-end decision
unit, is under 380 µW.

1. Introduction

With the increasing popularity of mobile devices and wearable
electronics, it is competitively advantageous to enable full voice
interaction beginning with voice-authenticated wake-up. An
ideal SV system for such applications requires a combination
of security, low power usage, noise resiliency, and customized
passphrases. In consideration of these constraints, we develop a
novel text-dependent SV system in which the user defines his or
her own short passphrase (< 1s in duration) by enrolling a small
number of samples. Some characteristics of our system include:
(1) low-power sparse spectral feature extraction front-end; (2)
DTW with adaptive signal envelope distortion constraints; (3)
robustness to noisy environments by adjusting features selec-
tion to noise spectral conditions.

Existing techniques for SV can be ‘text-independent’ [1, 2]
or ‘text-dependent’ [3]. Text-independent SV has the flexibil-
ity to recognize a speaker’s identity without constraints on the
speech (i.e., any word can be uttered during enrollment and test-
ing). However, it usually requires a large amount of speaker-
specific enrollment data (typically more than 30s) to extract
sufficient useful features to discriminate between speakers. A
performance penalty is paid for the high degree of variability in
speech contents. On the other hand, text-dependent SV assumes
the utterances being tested are the same as, or a subset of, the
enrollment lexicon. Therefore, a more specialized model can be

Figure 1: Block diagram of our proposed system including
the feature extraction front-end, which consists of K (⇠ 10)
narrowband filters with fixed bandwidth (⇠ 300Hz) centered
around multiples of f0 (estimated from enrollments). All or a
subset of the K features are used for decision making depending
on the background noise spectrum. The back-end is a weighted-
DTW algorithm, in which the adaptive warping constraint is
inversely proportional to the temporal total signal energy.

built, achieving better accuracy using shorter enrollment (usu-
ally less than 8s). Our applications falls into the category of
text-dependent SV.

A successful technique in SV is to leverage speech across
a cohort of speakers to train a background model as a prior,
which is then used to make speaker-specific refinements, see
e.g. Gaussian mixture universal background models (GMM-
UBM) [4, 5], i-vectors [6], deep neural networks (DNNs) [7,
8] and hidden-Markov-models (HMMs) [9, 10]. Since these
methods require background model training on a priori known
passphrases, it is not suitable for our application due to lack of
training data besides the few samples of user enrollment.

Our system solves SV as a pattern matching problem based
on similarity measures between the input signal and the enroll-
ment samples directly. As shown in Figure 1, the process in-
cludes two stages: feature extraction and pattern matching on
features. We develop novel designs in both stages:

Feature extraction: In speech recognition applications,
the Mel-frequency cepstral coefficients (MFCCs) [11, 12] are
widely used and have yielded good performance. Nevertheless,
the extraction process usually involves fast sampling, a large
number of filters (26 to 40) and high-rate processing, that are
associated with high computation and power costs. We propose
a low-complexity, power-efficient feature extraction front-end
that completes feature extraction in two simple steps: (1) filter-
ing the analog speech signal using a handful of (⇠ 10) fixed-
width narrowband filters, whose center frequencies are chosen
according to the fundamental frequency f0 estimated from en-
rollments; and (2) taking the logarithm of the filterbank power.
We show through analysis and experiments that these sparse
features retain essential speech information and offer the ben-
efits of low-power implementation, high verification accuracy
and noise robustness by automatically discarding features with
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high noise occupancy. The low-dimensionality of the features
also reduces the back-end computation since the complexity of
the back-end SV algorithm is proportional to the feature dimen-
sion.

Similarity measure: Speech pattern matching is often per-
formed with DTW [13, 14]. Variations of the DTW algorithm
are developed to constrain the warping path [14, 15], to add
weightings to the feature vector based on the intraspeaker vari-
ability for each feature element [13] or to add weighting based
on temporal characteristics of the warping path [14]. One com-
mon issue associated with applying these methods to our appli-
cation is they either apply too much warping that distorts the
signal characteristics or insufficient warping to compensate the
long pauses between words. We propose a modified version of
the DTW algorithm that adaptively adjusts warping constraints
based on the signal’s total energy envelope, thus restricting ex-
cessive distortion on the main signal envelope while still allow-
ing sufficient time warping to take care of long pauses between
words and speaking speed variations.

We describe and analyze the narrow-band feature extraction
scheme in Section 2 and introduce the weighted-DTW algo-
rithm in Section 3. In Section 4, we compare our system perfor-
mance with the conventional constrained DTW with MFCC fea-
tures approach and with the widely used fixed-text SV method
based on GMM-UBM.

2. Speaker-dependent Narrowband Feature

Extraction

In this section, we describe our narrowband feature extraction
front-end and justify its design.

2.1. Description of the front-end

Our front-end consists of the following steps:

1. Estimate the average fundamental frequency f0 from
each enrollment sample. The final f0 is determined as
the mean of the f0 estimation from all enrollments. (This
step is only performed once during initialization. As a
result, even though it uses the full spectrum, it does not
affect power consumption for prediction.)

2. Let B be the bandwidth of the speech signal and K, the
number of filterbanks. The center frequencies of the fil-
terbanks are at

k ⇥ f0 ⇥
�

B

f0K

⌫
, 1  k  K.

These K filters are evenly spaced across the frequency
spectrum and B/K is approximately the spacing be-
tween adjacent filters. K is selected such that B/K is
smaller than a threshold parameter ✓h (i.e., K � B/✓h).
The parameter ✓h is dependent on the property of speech
(defined in Section 2.2.2). Usually, ✓h = 2 cycle/kHz, is
sufficient. For example, with B = 4 kHz and ✓h = 2 cy-
cle/kHz, K � 8. The bandwidth of the filters is narrow
(⇠ 200 Hz) and Section 2.2.2 discusses the effects of the
filter bandwidth.

3. The logarithms of the narrowband filter energies are ag-
gregated and framed to form the narrowband spectral co-
efficients (NBSCs). The dimension of the feature vector
is equal to the number of bands K.

4. Assuming knowledge of the noise spectrum, a subset of
the NBSCs, where the SNR is the highest, is retained as
features. The remaining bands are discarded.

2.2. Analysis

The purpose of a speech-processing front-end can be thought
of as dimension reduction of a high-dimensional speech sam-
ple to a few representational coefficients. In speech applica-
tions, cepstral domain features such as MFCCs are widely used
[11, 12] because speech information is sparse in the cepstral
domain [16, 17, 18]. Cepstral coefficients are Fourier duals of
the logarithm of the power spectrum density (PSD) of a time-
domain speech segment.

Given that a major driver of power consumption in cep-
stral domain feature extraction is high-rate sampling and pre-
processing required to transform the signal to the cepstral do-
main, our aim here is to show that substantially the same fea-
tures can be extracted using a set of narrowband filters directly
from the raw speech waveform by exploiting certain properties
of speech and the desired application, thus reducing power con-
sumption. We begin by reviewing the process by which cepstral
domain features such as MFCCs are extracted.

2.2.1. Cepstral analysis of speech

Speech signals, denoted by s(t), can be modeled as a time-
domain convolution between the excitation signal e(t) and the
vocal tract modulation function h(t):

s(t) = e(t) ⇤ h(t). (1)

For voiced sounds, e(t) is a periodic glottal pulse with funda-
mental frequency f0. For unvoiced sounds, e(t) can be modeled
as a stochastic noise sequence. It is understood that most of the
speech information is embedded in the time-varying vocal tract
function h(t) [19, 20, 12].

The convolution relationship in (1) becomes multiplication
in the frequency domain:

S(f) = E(f) ·H(f). (2)

Taking the logarithm of the PSD, the multiplication operation is
converted to summation:

ˆS(f) = ˆE(f) + ˆH(f), (3)

where ˆS(f), ˆE(f) and ˆH(f) denote log |S(f)|, log |E(f)|
and log |H(f)|, respectively. By taking the inverse Fourier-
transform (IFT) of the logarithm of the PSD, the signal is trans-
formed to the cepstral domain. Let us use ŝ(⌧), ê(⌧) and ˆh(⌧)

to denote IFT( ˆS(f)), IFT( ˆE(f)) and IFT( ˆH(f)), respectively.
Then, it follows from the linearity of IFT and (3) that:

ŝ(⌧) = ê(⌧) + ˆh(⌧). (4)

Figure 2 illustrates the process of cepstral analysis. In Fig-
ure 2-(b) and (c), the narrow spikes (solid lines) are due to the
excitation component ˆE(f) and the signal envelopes (dashed
lines) correspond to the modulation function ˆH(f) and high
frequency falloff of speech. When transformed to the cepstral
domain, the speech signal becomes sparse (Figure 2-(d) and
(e)). The low-quefrency component corresponds to vocal-tract
modulation: ˆh(⌧), and the higher-quefrency component corre-
sponds to the excitation signal, ê(⌧). Usually, the location of
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Figure 2: Cepstral analysis of a speech sample. (a): the spec-
trogram of a speech command. (b) and (c) show the logarithm
of the PSD of the speech segment (solid line). (d): the signal
cepstrum is sparse and consists of two components: ˆh(⌧) and
ê(⌧). (e) shows the cepstra of the unvoiced frame, where only
the ˆh(⌧) component is present.

the excitation component ✓e is much higher than the cutoff fre-
quency of ˆH(f), denoted by ✓h, and ✓e = 1/f0 s (i.e., cy-
cle/Hz). The low-quefrency components contain most of the
information for speech recognition and are extracted as features
[16, 17, 18].

In implementation, the conventional approach of cepstral
coefficients extraction involves the following steps: (1) sam-
pling time-domain speech signal frames; (2) computing short-
time Fourier transform of each frame; (3) rescaling the fre-
quency axis based on the Mel-scale (in the case of MFCCs); (4)
computing the filter-bank energies; (4) transforming to the cep-
stral domain and (5) performing liftering (i.e., low-pass filtering
in the cepstral domain) to obtain the low-quefrency components
of the cepstral coefficients. Due to sampling and processing of
the high-dimensional raw speech signal and the large number
of steps involved in feature extraction, it is highly desirable to
seek an alternative when power consumption is a constraint.

2.2.2. Proposed narrowband feature extraction

Referring to the description in Section 2.1, we propose a sim-
ple feature extraction method that performs dimension reduc-
tion directly on the time-domain signal, using a small number
of narrowband filters.

Figure 3-(a) plots the logarithm of the PSD of a typical
speech frame. The fast fluctuation corresponds to the glottal
pulse excitation ˆE(f) at the fundamental frequency f0 and its
harmonics, and the envelope (dashed line in Figure 3-(c)) out-
lines ˆH(f), the vocal tract modulation function. The cepstral
domain also shows these two components: ê(⌧) represented by
a delta function at ✓e and ˆh(⌧) represented by a narrow trian-
gle (Figure 3-(b)). Since the most essential information of ˆh(⌧)
is concentrated at the low-quefrencies (typically under 2-3 cy-
cle/kHz [17, 19]), the ˆh(⌧) component is shown to have a cutoff
at ✓h in Figure 3-(b).

Figure 3: Narrowband feature extraction: (a) and (b) show the
PSD and the cepstrum of a speech segment. The cepstrum is
simplified as the summation of ˆh(⌧) (triangle shape) and ê(⌧)

(delta function). In (c), ˆS(f) is measured at evenly spaced
points (denoted by ˆSp(f)). �p is an integer multiple of f0. In
(d), ŝp(⌧) (cepstrum of ˆSp(f)) is an aliased version of ŝ(⌧). In
(e), ˆS(f) is measured with evenly spaced rectangular functions
with arbitrary spacing, �p. Aliasing between ˆh(⌧) and ê(⌧)
occurs in (f) and ê(⌧) is attenuated with the sinc function.

The constraint that ˆh(⌧) is assumed to be (cepstrally) band-
limited to low quefrencies allows the opportunity to ‘under-
sample the spectral domain signal. Consider the case where
we sample ˆS(f) at a set of evenly-spaced points (dots in Figure
3(c)). The point sampling function is defined by P (f):

P (f) =
X

k2Z
�(f � k�p), (5)

where �p = �f0 is an integer multiple of the fundamental fre-
quency. In the example in Figure 3(c), � = 5.

The sampled PSD, ˆSp(f), can be expressed as the product
of ˆS(f) and the sampling function P (f):

ˆSp(f) = ˆS(f)⇥
X

k2Z
�(f � k�p). (6)

The cepstrum of P (f) is another set of delta functions spaced
by 1/�p. Since multiplication becomes convolution in the cep-
stral domain, the cepstrum of ˆSp(f), denoted by ŝp(⌧), is an
aliased version of ŝ(⌧) (Figure 3(d)):

ŝp(⌧) =
X

k2Z
(ê(⌧ � k

�p
) +

ˆh(⌧ � k

�p
)). (7)

As long as we choose �p < 1
2✓h

, repetitions of ˆh(⌧) and ê(⌧)

will not overlap. With �p = �f0 = �/✓e, copies of ê(⌧) occur
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at 0 and multiples of ✓e/� (Figure 3-(d)). Hence, the vocal tract
modulation components, ˆh(⌧), are not corrupted by aliasing and
are preserved in the ‘sampled’ spectrum Sp(f).

What this implies is that if we have a good estimation of
the fundamental frequency, f0, a few judiciously selected points
from the signal PSD can capture most of the essential speech
information ˆh(⌧). What if the estimation of the fundamental
frequency f0 is not accurate? In this case, ê(⌧) is not centered
around 0 and may be aliased with ˆh(⌧). This problem can be
mitigated by capturing ˆS(f) with rectangular windows instead
of a point function. As shown in Figure 3-(e), we measure ˆS(f)
using a set of evenly spaced rectangular windows (implemented
as a set of narrowband filters), which can be expressed as the
convolution of the point sampling function Sp(f) and a scaled
rectangular function of width W0:

G(f) = P (f) ⇤ rectW0(f),

=

X

k2Z
rectW0(f � k�p), (8)

where,

rectW0(f) =

(
1

W0
, if �W0

2 < f < W0
2

0, otherwise.

Since the cepstrum of the rectangular function is a sinc function
and convolution in the frequency domain becomes multiplica-
tion in the cepstral domain, the cepstrum of G(f) is an impulse
train whose amplitudes are scaled by the sinc function:

ĝ(⌧) =
X

k2Z
sinc(W0⇡

k

�p
)�(⌧ � k

�p
). (9)

Therefore, the filtered spectrum, ŝr(⌧), is an aliased version of
ŝ(⌧) where the amplitudes of the aliased copies are scaled by
the amplitude of a sinc function as follows:

ŝr = (

ˆh(⌧) + ê(⌧)) ⇤ ĝ(⌧), (10)

= (

ˆh(⌧) + ê(⌧)) ⇤
 
X

k2Z
sinc(W0⇡

k

�p
)�(⌧ � k

�p
)

!
,

=

X

k2Z
sinc(W0⇡

k

�p
)

✓
ê(⌧ � k

�p
) +

ˆh(⌧ � k

�p
)

◆
.

This is illustrated in Figure 3-(e-f). The modulation function
ˆh(⌧) is now aliased with ê(⌧ � k⇤/�p), where

k⇤
=

�
✓e

1/�p

⌫
, (11)

and the location of aliasing is offset from 0 at (✓e � k⇤/�p).
When �p = �f0, this offset is equal to 0. As indicated in
Figure 3-(f), the amplitude of the aliasing component is scaled
by a sinc function:

sinc
✓
W0⇡

k⇤

�p

◆
· ê
✓
⌧ � k⇤

�p

◆
. (12)

As a result, the wider the filter bandwidth W0, the more atten-
uation there is on ê(⌧ � k⇤/�p), and hence, the less ˆh(⌧) will
suffer from aliasing with ê(⌧). As long as �p < 1

2✓h
is still

satisfied, ˆh(⌧) will not be corrupted by its own aliases.

Figure 4: Illustration of the DTW algorithm. The warping path
is represented by the highlighted line. The warping window
(window length m0) is represented by the unshaded area. At
each point, there are three candidate movements: (1, 0), (1, 1)
and (0, 1).

For example, with filter bank spacing of �p = 800Hz =

0.8kHz, filter bandwidth W0 = 0.2kHz and speech fundamen-
tal frequency f0 = 100Hz = 0.1kHz, the low quefrency cor-
ruption from the component of ê(⌧) is ⇡ �0.04ê(⌧ � k⇤

).
We have shown that by filtering the signal with a set of nar-

rowband filters, centered around the harmonics of the speech
signal and evenly spaced across the frequency spectrum, essen-
tial speech information for speech recognition is preserved. The
inaccuracy in fundamental frequency estimation can be com-
pensated by increasing the bandwidth of the narrowband filters.

This approach is beneficial because, unlike the conventional
approach of using 26� 40 filters with varying bandwidths (e.g.
in MFCC feature extraction), we only need to use a handful
(⇠ 10) of fixed bandwidth filters. In addition, dimension reduc-
tion and feature extraction are done directly on the time-domain
signal without transformation to the cepstral domain, which re-
duces processing complexity. Moreover, if f0 is estimated well,
and the bandpass filters are narrowly centered around the true
harmonics where signal energy is concentrated, we have the op-
portunity to achieve higher in-band SNR than using the general
Mel-frequency band filters.

It is important to point out that even though the narrowband
features are extracted around the harmonics, which uses the in-
formation of f0, the exact value of f0 may be lost. For exam-
ple, if two speakers have very similar vocal tract characteristics
ˆh(⌧), but one person’s fundamental frequency is an exact mul-
tiple of the other person’s, narrowband features from these two
speakers may be indistinguishable.

3. The weighted-DTW algorithm

The back-end operates by comparing features of a trial utterance
with features from each of the enrollment samples. In this sec-
tion, we describe the weighted-DTW algorithm that forms our
back-end. We begin with the classical DTW algorithm, then
describe our modification.

3.1. Classical DTW

Let the enrollment signal, R, and the input signal, T , each rep-
resent a sequence of feature vectors,

R = [R(1), R(2), . . . , R(i), . . . , R(I)];

T = [T (1), T (2), . . . , T (j), . . . , T (J)];
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where R(i) and T (j) are feature vectors with dimension K, and
I and J are the number of temporal frames in R and T , respec-
tively. We would like to measure the similarity between R and
T to determine whether T is generated by the target speaker.
Due to temporal variations such as speaking speed differences
and pauses in the speech utterance (e.g., pauses between words),
the similarity between the input features and the enrollment
features cannot be directly compared frame-by-frame. There
are however standard algorithms such as the DTW algorithm
[13, 14, 20], that are designed to mitigate the problem of sig-
nal misalignment by applying a warping function coupling two
sequences so that they can be directly compared. The warping
function, W , can be represented as a sequence of index pairs
that provide a mapping between the frames of R and T . More
specifically,

W = [W (1),W (2), . . . ,W (m), . . . ,W (M)],

where W (m) = (i(m), j(m)), and i and j are warping indexes
corresponding to R and T , respectively.

As shown in Figure 4, the warping function forms a path on
the i�j plane and M corresponds to the length of the path. Due
to conditions of the DTW algorithm[14], two consecutive points
on the warping path can only be connected by three candidate
movements:

W (m) =

8
><

>:

W (m� 1) + (0, 1), move up
W (m� 1) + (1, 1), diagonal
W (m� 1) + (1, 0). move right

(13)

The optimal warping path is obtained by first filling up the
accumulative distance matrix DI⇥J under a chosen distance
measure (denoted by ‘dist’), and then traversing back the ma-
trix along the entries that yielded the minimum overall distance.
More specifically:

D(i, 1) = dist(R(i), T (1)),

D(1, j) = dist(R(1), T (j)),

D(i, j) = dist(R(i), T (j)) + min{D(i� 1, j),

D(i� 1, j � 1), D(i, j � 1)}. (14)

In order to restrict the total amount of warping and
save computation, a warping constraint can be added. A
widely used warping constraint is the Sakoe-Chuba window
constraint as shown with the unshaded region in Figure 4 (i.e.,
|i(m) � j(m)|  m0). Details of the DTW algorithm can be
found in [14]. Subsequent variations of the DTW algorithm
have also been developed to add weightings to different frames
along the time-axis[14], or to add weightings to different
features of each frame [13] .

3.2. Weighted-DTW

For our SV application, the passphrase is defined by the user
and could contain long gaps between words. The major chal-
lenge associated with using the classical DTW algorithm for our
SV application is how to apply sufficient warping to realign the
words while still preserving the temporal characteristics of the
signal. Existing variants of the DTW algorithm do not address
this issue properly. If too much warping is allowed (e.g., m0 is
large), it often results in excessive signal mutation such that de-
tails of the signal characteristics are lost, which leads to a large
number of false-positive decisions. On the other hand, if the

warping constraints are too strict (e.g., m0 is small), it results
in insufficient warping to take care of the long pauses between
words and thus results in mis-detections. In order to overcome
this issue, we propose a modified version of the DTW algorithm
that penalizes excessive warping according to the following fac-
tors:

• the penalty scales linearly with the number of consecu-
tive warps of the same type (i.e., ‘move up’, ‘diagonal’
or ‘move right’);

• the penalty scales linearly with the amplitude of the total
power envelope

– more penalty when the signal amplitude is high in
order to retain the shape of the signal envelope;

– less penalty when the signal amplitude is low,
which is an indication of possible pauses.

More specifically, the warping function is found as
follows: we define a movement matrix M (M 2
{(1, 0), (0, 0), (0, 1)}I⇥J ) that records the type of movement
taken to arrive at each point (i, j). We then define a step counter
matrix C (C 2 NI⇥J ) that records the number of accumulative
same-type movement to arrive at each point. For example, if
we take three consecutive horizontal steps (i.e., (1, 0)) to arrive
at (i, j) , then C(i, j) = 3. The counter restarts whenever the
previous step and the current step are not the same type. In or-
der to limit mutation to the signal envelope at each step, we use
the total energy of the two signals (ER and ET ) as a weighting
function to determine the penalty of taking a certain step:

D(i, j) =dist(R(i), T (j))+

min
S

{D((i, j)� S) + P ((i, j), S)}, (15)

where

S 2 {(1, 0), (1, 1), (0, 1)},

and

P ((i, j), S) = 1{M(i� 1, j) = S}C(i� 1, j)|ET (j)|+
1{M(i, j � 1) = S}C(i, j � 1)|ER(i)|.

Eq.(15) replaces (14) of the conventional DTW algorithm. To
save computation, we use the L1 norm as our distance measure
and normalize it over the feature dimension K:

dist(R(i), T (j)) =
1

K

KX

k=1

|R(i)[k]� T (j)[k]|. (16)

The matrices M and C are initialized with

M(1, 1) = (0, 0) and C(1, 1) = 0;

and are updated with S⇤ that yields the minimum D(i, j) (Eq.
15) at each step that

M(i, j) = S⇤,

C(i, j) = (C((i, j)� S⇤
) + 1)1{M((i, j)� S⇤

) = S⇤}.

Without the penalty term in (15), the weighted-DTW algorithm
would yield the same path as the classical DTW algorithm.

For the classical DTW algorithm, the distance between R
and T is equal to D(I, J). That is not the case for the weighted-
DTW algorithm due to the additional penalty term. The final
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Figure 5: Warping of two signals R and T . (a) R and T before
warping. There is a long pause in the signal T . (b) With window
length 100 ms, the classical DTW fails to realign the envelopes
of the two signals. (c) With window length 200 ms, even though
the main bulk of the two signals are aligned, the temporal enve-
lope of T is heavily mutated. (d) The weighted-DTW algorithm
properly aligns the main bulk of the signals without excessive
mutation on the shape of the signal envelopes.

similarity measure between R and T is re-computed after ob-
taining the warping path. We normalize the total distance such
that the average distance is invariant of the warping path length:

Dnorm =

1

M

MX

m=1

dist(R(i(m)), T (j(m))). (17)

Fig. 5 illustrates the difference between the weighted-DTW
algorithm and the conventional DTW algorithm[14]. The sim-
ulations demonstrate that the weighted-DTW algorithm is ca-
pable of applying sufficiently large amounts of warping in the
case of misalignments, while refraining from excessively mu-
tating the signal envelope.

4. Experiment and Results

Using a data set collected at Texas Instruments Kilby Labs, we
compare the practical performance of our front- and back-end to
baseline systems and under different noise conditions. Collec-
tively, the results demonstrate that equivalent or better perfor-
mance can be obtained at much lower power with the proposed
system compared to conventional systems.

4.1. Proposed and baseline systems

The proposed system comprises a front-end extracting NBSC
features (Section 2) and a back-end implementing weighted-
DTW (Section 3).

The baseline systems substitute either the front-end or the
back-end, or both. For the front-end, the baseline substitutes
are conventional features including MFCC and the more prim-
itive Mel-frequency spectral coefficients (MFSCs), which are

spectral domain features representing the power in different
Mel-frequency scale bands. The MFSCs has demonstrated
some success in recent speech recognition research [21]. For
the back-end, the baseline substitutes include the conventional
DTW algorithm[14] and the GMM-UBM based system [5].

The detailed parameters are as follows. For the front-end:

• NBSC (Proposed features): We use the following param-
eter settings: B = 6 kHz (cutoff frequency of speech sig-
nal), W0 = 200 Hz (bandwidth of narrowbands) and K=
6, 8, 10, 12. Fundamental frequency f0 is estimated us-
ing the auto-correlation method [22].

• MFCC/MFSC (Baseline features): The MFCC features
have 13 dimensions extracted from the 40-dim Mel fre-
quency filterbank. We experiment on two sets of MFSC
features: the 26 bands and the 13 bands Mel-frequency
filterbank. All features are extracted with frame duration
of 25 ms and frame rate of 10 ms.

For the back-end:

• weighted-DTW (Proposed back-end): as described in
Section 3.2 with a window length of 250 ms.

• DTW (Baseline back-end): the conventional DTW [14]
with the same window length of 250 ms.

• GMM-UBM (Baseline back-end): The GMM-UBM
based SV system [5], which requires background model
training and assumes prescribed passphrase. We vary the
number of Gaussian mixtures and take the parameter that
yields the best result.

4.2. Experimental set-up

4.2.1. Data set

The primary dataset consists of audio from three different
passphrases (two in English and one in Chinese) spoken by
30 to 40 speakers with 20 � 40 repetitions per speaker per
passphrase (Table 1). The data set was collected in multiple
sessions and about 2/3 of all speakers are male and 1/3 are fe-
male. Each passphrase is limited to a duration of 1s and was
sampled at 16 KHz.

Table 1: Experiment dataset

Passphrase # of speakers # of repetitions
Hi Galaxy 40 40
Ok Glass 40 20

Ok Hua Wei 30 20

A secondary dataset of out-of-vocabulary (OOV) utter-
ances, consisting of 5000 samples (1s duration) of short com-
mands, speech clips from conversations and audio books, is also
used. Finally, noisy samples are generated by adding wind noise
or car noise to each clean sample such that the total SNR within
the 1s speech segment is equal to 3dB.

4.2.2. Evaluation and decision threshold

Given a passphrase, every speaker is chosen as the target
speaker once. We take 3 utterances from this speaker as enroll-
ment samples and the rest are used as positive (authentic) test
samples. The same passphrase from all other users are used as
negative (impostor) samples for SV evaluation, while all sam-
ples of the OOV dataset are used as negative samples during
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false-trigger evaluation. For experiments involving noisy sam-
ples, the enrollment samples are clean.

The minimum of the distances between a test sample and
the enrollment samples is compared with a threshold to make
the final verification decision. The threshold is chosen a pos-
teriori such that the false-positive and false-negative rates are
equal (unless otherwise indicated), which gives the equal-error
rate (EER).

For the GMM-UBM model training, the speakers are di-
vided into two halves. The first half is used for background
model training and the other half for evaluation. Each user from
the evaluation set is chosen as the target speaker once and 4

utterances are used as enrollment samples for speaker specific
model adaptation.

4.2.3. Feature adaptation under background noise

When noise is present, we assume a coarse estimate of the noise
spectrum is known. The energy of the wind and car noises is
concentrated in the low-frequency domain under 2kHz. There-
fore, we simple discard spectral features below 2kHz and use
the remaining features for NBSC and MFSC front-ends; for
MFCC this is not feasible, so there is no feature adaptation.

4.3. Experiment results

4.3.1. Front-end and back-end combinations

The first set of experiments compare NBSC (proposed) and
MFCC front-ends combined with weighted-DTW (proposed),
DTW, or GMM-UBM back-ends, for both noiseless and noisy
conditions.

Table 2: EER [%] for combinations of features and algorithms.

Clean Noisy (3dB)
aaaaaaaAlgorithm

Features
MFCC NBSC MFCC NBSC

weighted-DTW 0.9 1.1 10.5 5.7
DTW 1.4 1.5 13 6.7

GMM-UBM 2.6 N/A 6.8 N/A

Table 2 shows the EER for systems with different feature
and verification algorithms. Without background noise, all of
the 12 bands are used as features. With background noise, only
the bands above 2kHz are active. The weighted-DTW algorithm
yields better accuracy than the standard DTW algorithm for
both the MFCC and the NBSC features. Without background
noise, the 12-band NBSC yields slightly worse accuracy than
the MFCC features. Under 3dB SNR, the NBSC yields much
better performance than the MFCC features as a result of spec-
tral domain feature selection. Without the need for background
model training, the proposed system outperforms the GMM-
UBM based system in both clean and noisy conditions. Note
that the GMM-UBM requires background model training with
a large number of training samples (usually generated from a
pool of speakers). Since the NBSCs are extracted based on the
fundamental frequency of the target speaker, different sets of
features are used for different speakers. Hence, the NBSCs are
generally not applicable to algorithms that require model train-
ing with a large number of training samples, such as the GMM-
UBM.

In contrast to Table 2, which evaluates the systems’ SV ac-
curacies (same passphrase produced by different speakers), Ta-

Table 3: False-positive rates [%] with OOV dataset. Decision
threshold is taken from the EER threshold obtained with the
weighted-DTW algorithm in Table 2.

Clean Noisy (3dB)
aaaaaaaAlgorithm

Features
MFCC NBSC MFCC NBSC

weighted-DTW 0 0 1.4 0.6

ble 3 shows the systems’ false-positive rates against the OOV
data set (to evaluate the false-triggering rate as a wake-up appli-
cation). The back-end is fixed to the weighted-DTW algorithm
and the decision threshold is the same as that yielded the EER
in Table 2. Without background noise, the false-trigger rate is 0
for both the MFCC and NBSC features. Under 3dB SNR, the
NBSC yields a false-trigger rate of 0.6%, much lower than the
MFCC features with a false-trigger rate of 1.4%.

4.3.2. Spectral domain features: NBSC vs. MFSC

The second set of experiments fixes a weighted-DTW (pro-
posed) back-end and compares accuracies of NBSC (proposed)
vs. MFSC front-ends at various filter-band counts.

Table 4 shows that, in general, accuracy improves as the
number of bands increases. With fewer bands than what is com-
monly used in MFSC-based front-ends, the NBSC performance
is better than that of the MFSC. When there is background
noise, the accuracy improves significantly by using fewer fea-
tures (i.e., band selection).

Table 4: EER [%] for NBSC and MFSC features with the
weighted-DTW algorithm, under quiet condition and 3dB wind
and car noise.

Features NBSC MFSC
# of filters 6 8 10 12 13 26

Clean 1.99 1.9 1.54 1.1 1.95 1.83
Noisy

(band selection) 6.8 6.6 6.3 5.7 16.4 17.2

Noisy
(all bands) 15.5 15 15 14.5 33.4 33.9

4.4. Power consumption in hardware

The total system power consumption is evaluated as the sum of
the front-end and back-end power consumption. The front-end
power consumption is estimated from Texas Instruments’s chip
design, which consists of a voice-activity-detector (VAD) with
power consumption of 150 µW and a filterbank with an addi-
tional power cost of 10 µW per band. The back-end algorithm
is implemented on the Cortex-M0 processor. The firmware im-
plementation for the algorithm and data occupies less than 40kB
memory. Recall the computation complexity of the back-end al-
gorithm is proportional to the feature dimension (i.e., the num-
ber of bands) and the total number of frames in the utterance.
Given a fixed frame rate of 10ms, the back-end power consump-
tion is proportional to the number of bands and it is slightly un-
der 9 µW per band. With 12 active bands, the end-to-end system
power consumption is kept under 380 µW assuming 100% duty
cycle.
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5. Conclusions and future work

In this paper, we proposed a low-power system for text-
dependent SV allowing the enrollment of a priori unknown
passphrases. The front-end consists of a set of narrow-band fil-
ters that are centered around the harmonics of the fundamental
frequency f0 and evenly spaced across the frequency spectrum.
We show through analysis that essential speech information is
retained by capturing information within a few narrowbands.
Unlike the MFCC features, which require a large number of fil-
ters and high-rate processing, this method offers the benefits of
simple and low-power implementation. The back-end is an im-
proved weighted-DTW algorithm. It penalizes signal mutation
at where the signal amplitude is high while allowing the remain-
ing parts to align. Compared to conventional DTW, the amount
of signal envelope mutation is reduced.

The proposed system delivers improved performance over
the baseline while consuming less power (< 380µW). In quiet
conditions, the proposed system achieves comparable perfor-
mance as the MFCC+DTW and GMM-UBM systems. The
highlight however is in the performance under noisy conditions,
where the proposed system has much improved accuracy. The
gain in accuracy is due to the effects of spectral domain feature
selection based on the noise spectrum.

As a next step, more advanced feature selection algorithms
can be developed for general background noises.
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