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Abstract—The problem of finite-blocklength lossy com-
pression under an excess-distortion constraint is consid-
ered. If the blocklength constraint comes from the length
of the source sequence itself, the excess rate needed above
the rate-distortion function decays inversely proportional
to the square root of the blocklength, according to
second-order (dispersion) analysis. We consider a dif-
ferent case, where the source emits a long sequence, but
shorter sub-sequences are considered for reasons such as
delay, complexity and smoothness of the reconstruction
fidelity. We analyze the redundancy of the rate with
respect to different constraints. We show that the rate
redundancy with respect to the processing blocklength,
i.e. the dimension of the quantizer used, decays much
faster than the dispersion analysis suggests. Thus, one
may use much shorter source codes without sacrificing
second-order performance.

I. INTRODUCTION

Imagine that a source sequence needs to be com-
pressed, in order to be recovered subject to some
fidelity criterion. It is well known that in an asymptotic
sense, the optimal compression rate is given by the
rate-distortion function (RDF). There may be several
constraints that prohibit approaching this asymptotic
limit.

1) Finite source block. It may be that the source only

emits a sequence of some finite length /.

2) Finite processing block. Due to delay and/or com-
plexity constraints, only k source samples can be
processed simultaneously.

3) Finite fidelity block. In order for the reconstruc-
tion to be useful, the distortion has to be low
enough when averaging over n consecutive source
samples.

4) Finite resource block. It may be that the rate
constraint has to be enforced over some finite
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horizon, i.e., for any A consecutive processing
blocks, representing m = Ak source samples, the
encoder will use at most mR bits.

Having understood that various blocklengths con-
strain performance, it is only natural to ask: which
of these constraints limits performance? In this work
we further develop the framework presented in [1],
pointing at a rather surprising conclusion: in many
cases, it is not the processing blocklength k. More
precisely, the gap from the RDF due to finite processing
blocklength decays as logk/k, while with respect to the
other constraints it may decay much slower, inversely
proportional to the square root of the blocklength.

Specifically, we make a distinction between two fun-
damentally different scenarios. In a one-shot scenario,
the source block ¢ is short enough, such that the other
constraints play no role. Thus, without loss of general-
ity one can assume k = n = m = /. In this setting, the
excess-distortion asymptotics are well approximated
by the dispersion [2], [3]: for distortion threshold D,
excess-distortion probability ¢ and blocklength /¢, the

required coding rate is given by
log ¢
1
o). o

\/ Q
) are the source RDF and disper-

where R(D) and V(D
sion, respectively, and Q~1(-) is the inverse Gaussian

composite distribution function. Large-deviation type
asymptotics have been derived decades earlier in [4].

Consider, on the other hand, a “many-shots” sce-
nario, where the source blocklength ¢ > k,n,m.
The source produces a very long sequence, which is
parsed by the encoder into many processing blocks,
and also contains many fidelity and resource blocks.
We note that it is a very important scenario in practice.
Consider the compression of a long video, for example.
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Practical encoders will not process the whole video
jointly, but use much shorter processing blocks. Also,
the fidelity is not measured over the whole source
block: lost frames in one part of the video cannot be
compensated for by excellent-quality reproduction in
another part. If, in addition, the video is to be streamed
over a communication channel with constraint over the
data throughput over some time window, then the high
coding rate of one part cannot be balanced with a low
rate for another.

In order to facilitate tractable analysis, we ignore
edge effects of the source sequence, and take in this
regime the source blocklength ¢ to be infinite. Also,
as a first stage we make the simplifying assumption of
synchroneous fidelity blocks, where either the fidelity
block is composed of an integer number of processing
blocks, or vice versa. Within the remaining block-
lengths k£, m,n we find that the following tradeoff is
achievable:

R=R(D) + W@l(e) +0 <1Oin> )

where

max(m,n)

> 11>

3)

min(k,n).

IS 3

Perhaps the most important conclusion is, that the pro-
cessing blocklength k never appears in the dispersion
(1/v/7) term, but only in the logarithmic term which
decays much faster. We see that if one considered
designing a quantization scheme guided by (1), the
required quantizer dimension £ can now be reduced to
be in the order of a square root of the estimate given
by dispersion!

Within this scenario, we highlight two cases. In the
first, n > k = m, the coding rate is strictly fixed for
all processing blocks, but the fidelity is measured over
a larger blocklength. Here,

R=R(D)+ W@l(e) +0 <loik>

can be achieved and is, in fact, optimal. Further, we
know that under average distortion constraint, [5]

log k
T 4)
Since this can be seen as the limit of an excess-
distortion constraint with n — oo, (2) can be seen as
a bridge between (1) and (4).
Next, consider the case m > k = n, where the
distortion is measured over a blocklength which equals

R= R(D) +

the processing one, but the rate constraint is more
flexible. We have that

R~ R(D) + WQ‘%) +0 <loik>

is achievable. Here, we make no claim for optimality.
Specifically, with an average rate constraint, which can
be seen as m — oo, and with zero excess-distortion
probability, the behaviour was shown in [5] to be
similar to (4); however, this is only with zero excess-
distortion probability. Allowing excess distortion, using
more elaborate rate allocation strategies, as was done
by Kostina et al. [6] in the one-shot setting under an
average rate constraint,’ may improve the bounds even
further.

From an operational point of view, synchronous fi-
delity blocks do not give the whole picture: in order for
them to have an operational meaning, the fidelity mea-
surement has to be aware of the parsing of the source
sequence into processing blocks, which seems rather
unjustified. Thus, we consider the corrections needed
when considering asynchronous fidelity measurements.
It can be easily shown that for n > k these are at most
O(k/n),? thus our main conclusions, concerning the
regime where n > k, remain unchanged.

The rest of this paper is organized as follows. After
making some definitions, we turn in Section III to
describe a universal encoder that will serve as our
main building block. In Section IV we illustrate our
ideas using an example where some of the technical
difficulties are not present. In Section V we present
our main results for a simplified, synchronized, setting,
and then in Section VI we address their extension
to the unsynchronized setting. Finally in Section VII
we discuss the limitations of the analysis and possible
extensions.

II. DEFINITIONS

The source is an infinite ii.d. sequence
..., Xp,X1,... where the symbols belong to
some alphabet X and have some distribution P. The
encoder is a function from X’* to an index, applied to
processing blocks Xgki1,..., X(qq1)x for integer a.
It is convenient to think of the index as a sequence
of bits of length R, - k, where R, is the rate of the

! Although the justification for considering average rate in a one-
shot setting is not clear.

2We can_also show an achievable rate with a correction of
O (k/ng/Z), see Section VI.
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a-th block.> Let ¢ be some positive integer. Then R,
is a function of the source within the a-th processing
block and of past encoder cardinalities, chosen to
satisfy the rate constraint:
¢

> kRacyp < CkREmR

b=1
for any integer A. The decoder is a function from
the index to X k used to reconstruct an infinite se-
quence o Xo, X, by placing each reconstructed
processing block in the location of the original block.
The fidelity is measured using a single-letter function
d: X x X — R, averaged over blocks:

no+n
Z d(Xi, X;)

1 no+1

The parsing into processing and fidelity blocks is

demonstrated in Figure 1. We make a distinction be-

tween two settings:

1) Synchronized fidelity blocks. This model is suit-
able for, e.g., compress-and-forward relaying,
where different blocklength constraints come from
the delay and complexity requirements at the relay
and the final destination, as well as the required
smoothness of transmission rate over the channel.
In this setting, either n = pk for some integer
p > 1, in which case the fidelity block spans p
whole processing blocks, or p = 1/u where 1 > 1
is an integer, in which case each processing block
is composed of p whole fidelity blocks.

2) Unsynchronized fidelity blocks. This model is
suitable for the video compression problem de-
scribed in the introduction. Since the distortion
measurement should be oblivious of the parsing
into processing blocks, the excess-distortion prob-
ability of a scheme with observation blocklength
n is averaged over the offset between the start of

processing and fidelity blocks:
k—1

% Y Pr {dn,nO(X,X) > D}. ©6)
no=0
As the synchronized setting is easier to analyze, it is
assumed until Section VI. As will become clear later,
the two settings differ mostly when n and k are close.
The rate-distortion function (RDF) of a source with
an i.i.d. distribution () is given by

R(Q, D) =

dnno (X, X 5)

pe(n,D) =

min

I(X; X).
W(X|X):Eqwd(X,X)<D

(N

3We ignore everywhere the fact that this length may not be an
integer, as it has no effect on the order of appriximation of interest.

A A A A

Fig. 1: Unsynchronized fidelity blocks: schematic view
of the processing and fidelity blocks.

If @ is the source distribution P, we simply write
R(D). The inverse function is denoted by D(R) or
D(Q, R).* We call a source-distortion pair (P, D) a
regular point if R(P, D) is differentiable with respect
to D and twice differentiable with respect to P in a
neighborhood of (P, D). For a regular point, the source
dispersion is given by

_ OR(Q, D)
V(P,D)—Var{ 90, ‘Q P}, (®)

where Q; are the elements of the distribution Q.

Our analysis is based on the method of types. We
adopt the notation of Csiszar and Korner [7]: The type
of a sequence x € X™ is the vector () over X whose
elements are the relative frequencies of the alphabet
letters in X. 7, (X)) denotes all the types of sequences
in X™. The type class of the type @ € T, (X'), denoted
Tq, is the set of all sequences x € &A™ with type Q.
For a reconstruction word X € X, we say that x is
D-covered by x if d(x,x) < D.

III. A SIMPLE UNIVERSAL ENCODER

In this section we present a simple encoder for a
one-shot scenario with blocklength ¢, which will serve
as our main building block in the sequel. It is nearly
optimal universally with respect to the source type. We
start, then, with the optimal performance for a given
type, following the formuation in [2].

Proposition 1 (Type covering): Let Q € Ty(X) with
a corresponding type class Tg. Let A(Q,C, D) be the
intersection of Ty with the set of source sequences
x € X! which are D-covered by at least one of the
words in a codebook C with rate R (i.e. |C| = ).
Assume that (@, D) is a regular point. Then there exists
a constant J = J(|X|,|X]) such that:

1) There exists a codebook Cg that completely D-
covers Ty (ie. A(Q,Cq,D) = Ty), where for

*If the inverse is not unique at rate R, we take the lowest
distortion satisfying the equality.

SThese derivatives point in general outside the simplex. They are
defined with respect to the following function of the RDF (7): @
is not necessarily a probability distribution but W (X |X) is still a
valid conditional distribution. Expectation and mutual information
are still given as sums weighted by the elements of Q.
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large enough 7,
1
Zlog ICql =R < R(Q,D) + JT. )

2) If R(Q, D) > R, the fraction of the type class that
is D-covered by any code with rate R is bounded
by

1 JAQ.C. D)

——log
n Tq|

log ¢

1
> R(Q.D)— R+ J%g.

(10)

The first part of this proposition is a refinement
of Berger’s type-covering lemma [8], found in [9].
The second part is a corollary of [5, Lemma 3]. The
universal performance is as follows.

Proposition 2 (Type-universal encoder): For any fi-
nite alphabets X, X there exists a constant J =
J(]X],]X]) such that for any large enough blocklength
¢ and for any {Rg,Dg} defined on @ € Ty(X)
satsfying

log ¢
Ro < R(Q,Dg) + J%.

there exists a single codebook satisfying:

1D

o It is uniquely decodable.

o If the source type is () then the distortion is at

most Dg.

« If the source type is ) then the length is at most

{- Rqg.

This codebook is just a union of type-covering codes
as in the direct part of Proposition 1, with a prefix that
identifies the type. We can thus satisfy the conditions
with:

¢ log|Te(X)|
log ¢ L
In light of the second part of Proposition 1, these
universal codes have a rate penalty of O (log ¢/¢) over
the optimal code that knows the source type in advance.

We note that two particular variants of the encoder
are of special interest: a fixed-distortion encoder where
Dg = D for all @ and a fixed-rate encoder where
Rg = R for all Q.

J=J+

<J+ X+ 1.

IV. A MOTIVATING EXAMPLE

We take the following example, which suffices to
capture a lot of the essence. It is a version of “erasure”
source/distortion. The source and reproduction are both
ternary: X = X = {0,1, E}. The source is 0 or 1
with probability p/2, E with probability 1 — p. The
distortion measure is: d(z,z) = lifx # Eandy = E,
d(x,z) = 0 if x = E or x = Z, infinite distortion

otherwise. That is, source symbols can be “erased” with
unit cost, except when the source has the “don’t care”
value FE, then it never suffers from distortion.

The rate-distortion function is simply

R(p,D)=p—D.

That is, it takes 1 bit to accurately describe a source
symbol that matters. It is the linearity of this function
that makes this source convenient; in the general case,
we will need linearizations. Note also that for any
distribution P over the ternary input alphabet with
P(0) + P(1) = p, R(P,D) < R(p,D). Thus, in
Proposition 2 we can replace R(Q,D) by R(q,D)
where ¢ is the empirical portion of source symbols
that are not E.° Namely, we have for the fixed-rate
and fixed-distortion variants of the universal encoder,
and for distortion measured over the processing block:

log k
R<q—Dq~|—JO§ (12)
log k
Ry<q-D+J2 (13)

We analyze this source in synchronized setting, in
three cases; together, they reflect the techniques used
to achieve (2).

First consider the case n = pk for p > 1, and assume
that m = k; that was the case addressed in [1]. That
is, the code has to be strictly fixed-rate, but the fidelity
block includes many processing blocks. Under this, (6)
becomes:

12
pe(n, D) = Pr fZqu >Dy,
P
J_
where D, is given by (12) with ¢; being the portion

of non-E symbols in the j-th processing block. Sub-
stituting (12) and denoting by

1 P
¢ =-> g
p=

we have:

~log k
pe(n,D):Pr{qP>R+D+ Igc }
The source of improvement over one-shot analysis
is now evident: In (1), the main redundancy term,
the dispersion proportional to 1/y/n, is due to the

®This can also be shown to be optimal to the order of interest, as
the dispersion “with respect to” the empirical distribution between
the input letters O and 1 is zero.
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variation of the source type; we have now managed to
identify the relevant type ¢ measured over the fidelity
blocklength n, rather than the individual {¢;} measured
over the processing blocks. We thus use now CLT
analysis over the fidelity block. Loosely speaking, g”
is approximately Gaussian with mean g and variance
V(p, D)/n, where

V(p, D) =p(1 - p).

More precisely, in order to ensure that p.(n,D) < €
for a fixed €, we need:’

(14)

R=p—-—D+
(15)

Second, let m = (k for ( > 1, but n = k. Now,
within the resource block, for any processing block we
use the fixed-distortion encoder (13), until we have
exhausted our rate budget (. When that happens,
we can allocate zeros rate and suffer excess distortion
in the remaining processing blocks. We make a very
severe assumption that if the rate was exhausted at
some point, all of the processing blocks within the
resource block had excess distortion. Even with this,
we have:

¢
1
pe(n,D) < Pr EZR% >R
j=1

~log k
gPr{qC >R+D+ Oi }
Applying again dispersion analysis, this time over the
resource blocklength m, we can have pe(n,D) < €
where:

Vv log k 1
R=p—D+ @Q—l(eHo(Og )+0< >
m k m
(16)
Finally, consider the case where m = k£ = un

for integer p > 1, i.e., the fidelity block is short.
Obviously, one can work with encoders of dimension n
and distortion D, as long as the rate constraint is kept
over the original blocklength k. Thus, we can have the
performance of (16), substituting k£ by n:

R=p—-D+
(17)

Taeo (i) o)

‘/T(f)@—l(e) +0 <1°i”> +0 <1711> .

V. MAIN RESULT WITH SYNCHRONIZED FIDELITY

In this section we prove the achievable rate (2), and
also show its optimality for the case n > m = k, in
the synchronized setting. A main technical ingredient
is the following.

Lemma 1: Let f(Q) be some function of distribu-
tions over a finite alphabet X. Let P be the source
distribution and D be a distortion lebel, such that
(P,D) is a regular point. Let = = pn where p €
{1,2,...}. Let X™ be a sequence drawn i.i.d.-P. De-
note by Q,, a = 1,..., A the types of the subsequence
X(ail)A+1, oo, Xaa. Let

9a = f(Qa) +d(n).
Let € be a given probability, and let A = A(n,7n) be

chosen such that
> A} = €.
%

1 A
Pr{ Aazlga_f(P)
~Q Ye)+6(n)+0 (1057"‘) .

Then, as n and n grow,
A =
n

Furthermore, the same result holds if € is replaced by
€+ g(n) as long as g(n) = O(logn/\/n).

We do not give here the proof; it is a straightfor-
ward (though tedious) generalization of [10, Theorem
1], which itself is the generalization of the analysis
of [2] used to describe “dispersion-like” behavior of
any function of distributions satisfying some technical
conditions. The Lemma above is an adaptation to a
setting where the distribution is drawn over a block
rather than per sample. We are now ready to state our
main result.

Theorem 1: Consider the synchronized fidelity set-
ting, with blocklengths k, m,n. Let m and n be defined
according to (3). Assume that (P, D) is a regular point.
Then there exists a sequence of encoders and decoders
satisfying the constraints, indexed by k,m,n, with
rates satisfying:

R(k,m,n) = R(P,D) + @Q_l(e) +0 (

n n
(18)

Proof: Let A =n/n. We use A times an encoder
with blocklength n. We use the universal encoder of
Proposition 2, with one of the following two modes of
operation:

932
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1) If n > m we use a universal fixed-rate scheme
of rate R, which achieves at the a-th block a
distortion D, satisfying:

logn

R:R(QmDa)"‘j n

19)

where (), is the type measured over the a-th
block. The processing and resource constraints
are satisfied trivially. In order to have excess-
distortion probability below €, we require:

A
1
Pr{—S"D,>D}<e

(20)

2) Otherwise (m > n) we use a universal fixed-
distortion scheme with distortion D and rate sat-
isfying:

1
R = R(Qq, D) + J282

2
n

The processing and fidelity constraints are sat-
isfied trivially. In order to satisfy the resource
constraint, we check the cumulative length; if it
will pass the allowed length with the new block,
we stop the process. In that case, we make a worst-
case assumption that any measurement over the
block results in an excess-distortion event. Thus,
we can bound the excess-distortion probability by
€, as long as:

A
1
Pr{AZRa>R} <e.

a=1

(22)

Now we would like to use Lemma 1. For (22) this
is a direct process. For (20), however, we need a
linearization of (19):

_ ~logn
_ p-1 _ n
D,=R (Qa, R—-J n )

— R (QuR) -0 ( log”)

n

and then we have for the function

f(Qa) =R! (Qaa R) :

Since
0f(Qs) _ OR(P,D)/0Qu;
0Qa; OR(P,D)/0D "’
we have the dispersion:
V(P,D)

(OR(P,D)/dD)*

Applying Lemma 1, the distortion threshold is given
by:

_ [V(P) Q" '(e)
D=R(P.R)+ n  OR(P,D)/dD

1
co((sn).
n

Taking the RDF of both sides, the proof is completed.

|

The following states when the above rate is optimal.

Theorem 2: In the synchronized fidelity setting with

n > m = k, for any sequence of encoders and decoders

satisfying the constraints with excess distortion prob-

ability at most €, the optimal rate grows according to
(18), i.e.,

R(k,m,n) = R(P, D)+WQ_1(6)+O <1°§ k) :

Proof: Consider a genie-aided scenario, where at
each processing block @ = 1,..., A the decoder in
informed of the source type (),. Following the converse
proof in [2], if

log k

k
then the probability of nor having an excess distortion
event is at most 1/n. Now we apply Lemma 1 with
error probability ¢ — 1/n, with linearizations as in the
proof of Theorem 1 to get the desired result. ]

R(Qu,D) >R+ (J+1)

VI. CORRECTION FOR UNSYNCHRONIZED
FIDELITY

Until now we considered a synchronized fidelity
setting, where the distortion measurement is aligned
with the processing blocks. Although this is a con-
venient assumption, it has no justification from an
operational point of view: after the reconstructed blocks
are pasted back together by the decoder, the user should
be oblivious of parsing. Thus, we should measure the
excess-distortion probability according to (6).

How will the results change, then? A trivial way to
bound d(n,ngp) is to round the number of blocks. Let
p = n/k be a real number, then

Lp] [p]+1

=1 =1

where {d;} are distortions measured over independent
processing blocks. Thus, the results of the previous
section hold up to a correction of

o))
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We note that this is sufficient in order extend our
main observation to the unsynchronized fidelity setting.
Specifically, take n > m = k and ask, how should
the processing blocklength & grow in order to get the
same rate redundancy as obtained by the traditional
(one-shot) dispersion analysis where k& = n? The rate
redundancy is at most

1 log k k
O|— O o(—).
(7)o (%) +o (3)
Taking k = O(n®*t1/2) for any a > 0 would give

redundancy
0 (n%_a) ,

which can be made close to O(1/k) by taking small
Q.

However, one can do better than this crude analysis.
Consider the part of the fidelity block which is not
contained in full processing blocks; this part consists
of samples from (at most) two processing blocks. By
arguments of coordinate randomization, an achievable
performance is given by a process of random sampling
from finite populations (the population being the per-
symbol distortion over a processing block). For such a
setting, a central-limit-theorem like analysis is known
to hold (see, e.g., [11]). Thus the dispersion with
respect to that part of the distortion may vary, leading
to a correction term of the form

o) =olon)

Further quantification of this correction term is the
subject of a current research.

VII. CONCLUSION

In this work we have shown, that when compressing
long source sequences, careful consideration of the dif-
ferent system constraints yields meaningful tradeoffs.
From a system designer point of view, it was shown
that the dimension of vector quantizer needed for a
given distortion threshold and excess-distortion proba-
bility is much lower than that suggested by dispersion
analysis.

We acknowledge that the results are not complete
yet. More clever rate allocation may further improve
performance, when the resource blocklength is longer
than the processing blocklength. Furthermore, more
careful analysis is needed in order to refine the analysis
of the asynchronous setting. Also, the analysis need
not be restricted to fixed excess-distortion probability,

and large-deviation (exponent) results are of interest as
well.

We note that at this stage the contribution has limited
practical implication, as vector quantization is rarely
applied to memoryless sources. In this respect, future
extension of the work to sources with memory is
highly needed. Also, the analysis is limited to schemes
operating on source blocks. A natural extension would
be to consider sequential schemes, limited by delay;
this may have a dramatic effect, as is the case for
feedback communications [12].

Beyond source coding, similar distinction between
different constraints can be applied to channel and joint
source-channel coding as well, shedding light on basic
tradeoffs in communications. In fact, some initial joint
source-channel results [13] precede the current work.
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