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Abstract
Conventional quantumkeydistribution (QKD) typically uses binary encoding based onphotonpolar-
izationor time-bindegrees of freedomand achieves a key capacity of atmost one bit per photon.Under
photon-starved conditions the rate of detection events ismuch lower than the photon generation rate,
because of losses in long distance propagation and the relatively long recovery times of available single-
photondetectors.Multi-bit encoding in the photon arrival times can be beneficial in suchphoton-
starved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival
times is robust and can be implemented to yield high secure throughput. In thisworkwedemonstrate
entanglement-basedQKDwith high-dimensional encodingwhose security against collectiveGaussian
attacks is provided by a high-visibility Franson interferometer.Weachieve unprecedented key capacity
and throughput for an entanglement-basedQKDsystembecause of four principal factors: Franson
interferometry that does not degradewith loss; error correction coding that can tolerate high error rates;
optimized time–energy entanglement generation; andhighly efficientWSi superconductingnanowire
single-photondetectors. The secure key capacity yields asmuch as 8.7 bits per coincidence.Whenopti-
mized for throughputweobserve a secure key rate of 2.7Mbit s−1 after 20 kmfiber transmissionwith a
key capacity of 6.9 bits per photon coincidence.Our results demonstrate a viable approach tohigh-rate
QKDusingpractical photonic entanglement and single-photondetection technologies.

1. Introduction

Quantumcommunication and quantum cryptography enable provably secure transfer of information between
distant parties. The ability to distribute photonic entanglement reliably and efficiently has been an essential
ingredient inmany quantum information applications, including quantumkey distribution (QKD) [1, 2],
quantum teleportation, and quantum repeaters [3]. Entangled photons are attractive carriers of secure
information, with numerous information-bearing degrees of freedom and proven immunity against
eavesdroppingwhen used in suitable communication protocols [2, 4]. If swappedwith high fidelity at quantum
repeater nodes, photonic entanglement could be extended over long distances, possibly to a global scale [3].
However, entanglement is a costly and fragile resource that often requires a dedicated quantum channel and
specification-demanding hardware for implementing quantum communication protocols. QKD systems based
on polarization entanglement that use commonly available spontaneous parametric down-conversion (SPDC)
sources andGeiger-mode avalanche photodiodes have so far delivered secure key rates on the order of 10 kbit s−1

at a distance nomore than a few kilometers [5], which is not attractive for practical applications inwhich loss
due to longfiber distance is inevitable. There are novel communication protocols that are tolerant to photon loss
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and entanglement degradation [6, 7], but it is still unknownwhether these protocols can outperform existing
QKD systems in terms of overall secure key rates and transmission distances.

One approach to significantly increase entanglement-basedQKD throughput is to encodemultiplebits per
photonpair in their times of arrival, similar to thewaypulse-positionmodulation is used in classical optical
communicationunder photon-starved conditions. Todate,mostQKDprotocols use binary encoding,
corresponding to a key capacity,whichwe also call photon information efficiency (PIE), of ⩽1 bit per photon.
Fundamentally this limits the secure bit rate to atmost the photonflux reaching the receiver. Actual rateswould be
further reduceddue to sifting, error correction, privacy amplification andother post-processing overheads for
secure bit extraction.Therefore, to achieve higher throughput at a givenphotonflux (for a specific source and
channel loss), increasing the bit-per-photon capacity or PIE to greater thanonewouldprovide a substantial
improvement toQKDsecure key rates. Anobvious choice for highdimensional encoding is the arrival times of
single photons, because of their excellent preservation after propagation through low-loss,minimal dispersionfiber,
and their convenient detectionwithhigh timing resolution.Timebinning the randomarrival of a coincident photon
pair in anN-bin time frame yields a symbol comprising Nlog2 bits, as depicted infigure 1. This approach can
provide a sizablebenefit to the throughput of aQKDsystem in the photon-starved regime inwhich the (average)
interval betweenphotondetection events ismuch longer than the timing resolutionof the detectors. As illustrated in
figure 1, typicalQKDsystemsoperate under photon-starved conditions: photonpairs generated by SPDCsuffer
propagation losses and are detected at low rates, and single-photondetectors have long recovery times after each
detection event [8]. In photon-starved situations, high-dimensional encodingwith a frame size ofN timebins yields
a raw throughput given approximatelyby ∝R R R Nmin [ , ] · logph det 2 , i.e.,∼ Nlog2 times better thanbinary
QKD,whereRph is the photonflux at the receiver andRdet is themaximumcount rate of single-photondetectors.

Recently, there has been great interest to exploit the very high entropy (asmany as≈20 bits per photon from
106 temporalmodes) of a time–energy entangled photon pair produced by continuous-wave (CW) SPDC for
high-rateQKD [9–13]. But its implementationwith proven security formultiple bits per photon has been a
longstanding challenge. Proposals for such time–energy entanglement-basedQKDhave suggested security
measures based onmultiple Franson interferometers [10], Franson and conjugate-Franson interferometers
[11], time-to-frequency conversion [12], dispersive optics [13], and recirculatingMach–Zehnder
interferometers [14]. These different security checks highlight the complexity of implementing high-
dimensionalQKD (HDQKD) protocols. Recently, security proofs against collective attacks have been
established forHDQKDbased on Franson and conjugate-Franson interferometers [11] and on dispersive optics
[13], using estimates of Alice and Bob’s time-frequency covariancematrix (TFCM) to bound Eve’sHolevo
information. In particular, [11] shows that it is feasible to use a single Franson interferometer [15] to secure
time–energy entanglement-basedHDQKD.We should note that previous experiments involving Franson
interferometry were limited to either demonstrations of immunity against individual attacks or feasibility
studies of isolated components [16, 17]. As a result, they do not representQKD implementations inwhich the
security against collective attacks can be assured and the corresponding secure key rates determined.

In this workwe report an experimental demonstration of photon-efficient HDQKDbased on time–
energy entanglement whose security against collective Gaussian attacks is achieved through a single Franson
interferometer with near-unity visibility performance that does not degrade with fiber propagation loss. Eve’s
Holevo information is bounded by precise frequency correlationmeasurements via non-locally dispersion-
canceled Franson quantum interference capable of operation over long fiber links. Using highly efficientWSi
superconducting nanowire detectors [18] and an efficient error correction code designed specifically for
high-dimensional encoding with tolerance to high symbol error rates (SERs), ourHDQKDprotocol yielded

Figure 1. Large-alphabet temporal encoding using correlated photon pairs (in blue). Timing jitter errors are represented by gray slots,
and red shadows indicate the reset time of the detectors combinedwith the dead time of the counting electronics, duringwhich no
additional detection can be registered (marked by crosses). To achieve both high PIE and throughput, an optimal frame sizeTf and
time bin duration τ should be chosen to fully utilize the available photon detection resource.
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up to 8.7 bits per photon coincidence if secure key capacity is maximized.When optimized for throughput,
we obtained a secure key rate of 2.7 (7.0) Mbit s−1 through 20 km (100 m) of single-mode fiber with a PIE of
6.9 (7.4) bits per photon coincidence. These secure key rates significantly surpass previous entanglement-
basedQKD systems using polarization or time-bin entangled qubits. Our results demonstrate a viable
approach to high-rate QKDusing practical photonic entanglement and single-photon detection
technologies.

2.QKDprotocol

The photon-efficientHDQKDprotocol is shown schematically infigure 2. The systemuses time–energy
entangled photon pairs generated from aCWSPDC source inAlice’s possession. Alice sends one photon from
each entangled pair to Bob through an optical fiber that is subject to Eve’s attack, and retains the conjugate
photon formeasurements. Alice and Bob independentlymeasure the photon arrival times at a resolution τ that
defines a time bin. Both parties share a publicly synchronized clock to align their time bins, and they useN
consecutive bins to form a time frame. For each frame, Alice and Bob randomly choose tomeasure the arrival
time bin position of the photon either directly, for extracting a symbol of =k Nlog2 bits, or after passing
through their respective arms of the Franson interferometer, for establishing security. After the use of this
quantum channel, Alice and Bob post-select frames that contain exactly one detection event by each party, and
proceed to perform error correction and privacy amplification.

The secure PIE is given by Δ β χ Δ= − −I IAB AB
E

FK in bits per coincidence, where β is the reconciliation
efficiency, IAB is Alice andBob’s Shannon information (SI), χ E is Eve’sHolevo information for collective
Gaussian attacks in the asymptotic limit of infinitely long keys [4], and ΔFK accounts for penalties due to the
finite key length [21, 22]. Error correction performed on the raw k-bit symbols is implemented using a custom
code developed by Zhou et al [19] for large-alphabetQKDprotocols. The code uses a layered scheme that
successively applies low-density parity check (LDPC) binary error correction on all bit layers of the symbols, and
has high reconciliation efficiency β even at high SERs.

3. Security ofHDQKDusing a single Franson interferometer

To bound Eve’s Holevo information, Alice and Bobmonitor the visibilityV of a single Franson
interferometer. It is long established that Franson quantum interference provides ameasure of time–energy
entanglement quality, and is routinely used as an equivalent Clauser–Horne–Shimony–Holt (CHSH) form of
Bell’s inequalitymeasurement [23] for time-bin entanglement (a discrete case of time–energy entanglement
withN= 2 inwhich a photon arrives either in an early or late time bin). However, it is less explicitly
understood that the Franson visibility is directly linked to the two-photon frequency anti-correlation via

ω ω Δ= 〈 − 〉V Tcos [( ˆ ˆ ) ]A B [15], where ΔT is the propagation delay between the interferometer’s long and
short paths,ω ωˆ ( ˆ )A B is the frequency operatormeasuring the zero-mean detuning of Alice’s (Bob’s) photon at
frequencyω ω+2p A ω ω−( 2 )p B , andωp is the SPDCpump frequency. Here we consider the interference
visibility of a single photon pair emitted by Alice’s source. Following the proof of lemma 1 in [11], we have the

Figure 2. Schematic of entanglement-basedHDQKD setup.Orthogonally polarized outputs fromSPDC source at 1560 nmare
separated using a polarizing beam splitter. Fiber beam splitters with a 90:10 ratio are used for key generation and Franson
measurements. BPF: 10 nmbandpasssfilter; PBS: polarizing beam splitter; SMF: single-mode fiber; TDC: time-to-digital converter.
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following inequalities according to Taylor-series expansion,
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whereVth is the theoretical Franson visibility for an unperturbed entangled pair assuming a perfectmeasurement
apparatus, ω ω〈 − 〉( ˆ ˆ )A0 B0

2 is the undisturbed frequency correlation from the source (determined by the pump
laser spectral linewidth), and aGaussian attack has been assumed. Combining equations (1) and (2) gives
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For the two distinct roots of the inequality (3), the root with a higher value results in ω ω〈 − 〉( ˆ ˆ )A B
2 being orders

ofmagnitude larger than the experimental values, thus it is rejected. Using the lower value root as an upper
bound, the inequality (3) reduces to
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wherewe consider − ≪V V 1th and ω ω Δ〈 − 〉 ≪T( ˆ ˆ ) 1A0 B0
2 2 . Rearranging the last term in the parentheses on

the right-hand side and assuming, with no access toAlice’s photon, Eve’s interaction could only disturb Bob’s
variance ω〈 〉ˆ B

2 and the frequency covariance ω ω〈 〉ˆ ˆA B , we obtain the following inequality to bound the total
change in themean-squared frequency difference ω ω〈 − 〉( ˆ ˆ )A B

2 :

Δ ω ω ω Δ− ⩽ −( )V V Tˆ 2 ˆ ˆ 2 . (5)B
2
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The security analysis then follows thewell-established proofs for GaussianCV-QKDprotocols based on the
optimality of Eve’s Gaussian collective attack for a given TFCMΓ [11, 24]. To start, we consider the undisturbed
state of one signal-idler photon pair generated fromCWSPDC
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whereσcoh is the pump coherence time, andσcor is the biphoton correlation time. The two photons are correlated
in the time domain, and anti-correlated in the frequency domainwhere time and frequency form a pair of
conjugate bases.We thus introduce the arrival-time operator t̂m and the frequency operator ω̂n, where

∈m n A B, { , }. The state ω ω∣ 〉 ∣ 〉( )A B represents a single photon of the signal (idler) at frequencyω ω+2p

ω ω−( 2 )p , so that with this convention the detunings,ω, fromω 2p are correlated, rather than anti-correlated.
The TFCM for the above state is then
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Eve’s presence disturbs Alice and Bob’s initial TFCM to become
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where η ηω{ , }t denotes the loss in time and frequency correlation, and ϵ ϵω{ , }t denotes the excess noise in Bob’s
photon. Themeasured Franson visibility restricts the possible ηω,ϵω values via inequality (5).We note that any
disturbance in the biphoton time correlation or Bob’s arrival time variance (reflected byηt andϵt) cannot be
bounded by our Franson interferencemeasurement. Nevertheless, such disturbance by Eve does not afford her
any benefit in gaining symbol information encoded in the time basis, thus it has negligible impact on χ E. To
ensure stronger security, we therefore take themean-squared time arrival difference〈 − 〉t t(ˆ ˆ )A B

2 to be square of
the detector timing jitter (beyondwhich Eve’s intrusionwould have been readily detected byAlice and Bob), and
〈 〉t̂B

2 to be the time variance integrated over the entire frame duration.
For a given TFCM, aGaussian attackmaximizes Eve’sHolevo information by assuming that she purifies the

state to a jointGaussian state betweenAlice, Bob andEve. TheHolevo information χΓ for covariancematrixΓ is

∫χ ρ ρ= −Γ ( )( ) ( )S t p t Sˆ d ˆ , (10)tE A E A

where ρ ρ ρ= −S ( ˆ) Tr [ ˆ log ( ˆ)]2 is the vonNeumann entropy of the quantum state ρ̂. The inequality (5)
constrains the set,, of physically allowedTFCMswith corresponding frequency variance and covariance
elements. An upper bound onEve’sHolevo information is then calculated bymaximizing
χ ρ ρ ρ ρ= − = −Γ ∣ ∣S S S S( ˆ ) ( ˆ ) ( ˆ ) ( ˆ )t tE E AB BA A

over all TFCMs in, i.e.,

χ χ=
Γ

Γ
∈

sup { }, (11)E

where ρ ∣ˆ tE A
denotes the Eve’s quantum state conditioned onAlice’s arrival-timemeasurement, andwe assume

Eve, Alice, and Bob share a pure joint-Gaussian state.
Secret keys can in principle be encoded in both time and frequency conjugate bases. Keys encoded in the

photon-arrival-time bins are secured by Franson interferometry, whichmeasures two-photon frequency
correlation. Additional bits can be encoded inmultiple frequency bins that can be secured by the newly proposed
conjugate-Franson interferometer [11], whichmeasures the time correlation between photon pairs. However,
frequency-bin encoding necessarily requires dense wavelength-divisionmultiplexing (DWDM) components
that incur substantial insertion loss given today’s technology. (For instance, a typical four-channel 50 GHz
DWDMfilter has typical excess insertion loss of≈3 dB, which leads to a 6 dB reduction in coincidence rates but
gains only two extra bits in themost ideal scenario). Hence, in this workwe choose anHDQKD implementation
that favors a higher key rate and a simpler setupwithoutDWDMby encoding only in the photon arrival times
and securing it with a Franson interferometer. Herewe should point out that in a TFCM, there are also time-
correlation elements (e.g.,〈 − 〉t t(ˆ ˆ )A B

2 ) that could be disturbed by Eve’s intrusion.Nevertheless, wefind that
the change in these elements has a negligible impact on χ E, because Eve’s attack on time correlations only gives
her information encoded in frequency and therefore does not yield any knowledge about keys that are encoded
in arrival time.

The ability to bound Eve’sHolevo information, and thus to secure themultiple bits encoded in a coincident
photon pair, depends critically on themeasured Franson visibility byAlice and Bob. Although high visibility up
to 96.5%has been routinely reported in prior Franson experiments [25], our numerical calculation shows that
to bound χ ⩽E 1.0 bit, visibility (without background subtraction) exceeding 99.5% is required (assuming
Δ =T 5ns, pump laser linewidth of 1 MHz, SPDCphasematching bandwidth of 250 GHz). This result is in
qualitative agreementwith [10], which claimed that a 97%Franson visibility would lead to leakage of 5 out of 10
bits of information to Eve. To achieve andmaintain the required near-unity visibility after long-distance fiber
distribution of the photon pairs, our experiment used non-locally dispersion-canceled Franson interferometry,
whichwe recently demonstrated to show a visibility of 99.6% [26]. It was pointed out in [26] that non-local
dispersion compensation recovers the degradation of visibility due to group-velocitymismatchwithin each arm
of the interferometer, and the visibility is not affected by any dispersion along the fiber connecting the source to
Alice/Bob. Therefore, neglecting the detector dark counts, near-unity Franson visibility can bemaintained, in
principle, at arbitrarily longQKDdistance.
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4. Experimental implementation

The experimental setup infigure 2was carefully optimized for achieving photon-efficient secure key
distribution.We used a type-II phase-matched, single-spatial-mode periodically poled potassium titanyl
phosphate (PPKTP)waveguide to generate high quality time–energy entangled photon pairs at 1560 nmwith
≈80% spectral-spatial extraction efficiency into a single-mode fiber [27]. The pump coherence timewas
≈250 ns,measured using a setup similar to self-homodyning but with thefiber loop path difference less than the
laser coherence time so that only the intrinsic laser frequency noise wasmeasured. For a crystal length of
15.6 mm, the SPDCphase-matching bandwidthwasmeasured to be 1.6 nm (250 GHz), corresponding to a
biphoton correlation time of≈2 ps, with a source brightness of 107 pairs per second permWof pump. The
orthogonally-polarized photon pairs were separatedwith afiber polarizing beam splitter, sending the signal
photons to Bob through a single-mode fiber. In the experiment we usedWSi superconducting nanowire single-
photon detectors (SNSPDs) [18]with≈90%detection efficiency at 1560 nm, dark-count rates of≈1000 counts
per second, an average timing jitter of≈80 ps full-width at half-maximum, and amaximum count rate
of≈ ×1.5 106 counts per second. A total of sixWSi SNSPDswere used: twowere used for the Franson-
interferometric security check, and the other four detectors for key generation. Tomitigate the long reset times
ofWSi SNSPDs in the key generation portion of the experiment, Alice (and Bob) used a passive 50:50 beam
splitter to distribute incident photons equally between twoWSi SNSPDs (not shown in figure 2), and their data
were interleaved. Typical singles and coincidence count rates were 2–3million, and 700 000 to 1million counts
per second, respectively.

To achieve higher key capacity, it is generally desirable to use small time bins, long frame durations and large
Franson differential delays. In actual implementation, the optimal operating parameters are determined by
factors including the pump coherence time, biphoton correlation time, and the detector timing jitter
performance. Given the timing jitter ofWSi SNSPDs beingmuch larger than the SPDCbiphoton correlation
time, we chose a time bin size of 80 ps throughout our experiments. Accordingly, the 250 ns pump coherence
time leads to an expected optimal frame size on the order ofN=1000 bins per frame. Large Franson differential
delays up to 250 ns can be implemented in principle. However, in practice, we used a short delay of a fewns in
the interferometer that allowed us to achieve excellent long-termphase stability.

As pointed out in the previous section, it is essential to have high visibility Franson interferometry in order to
tightly boundEve’sHolevo information.Non-local dispersion cancellation [26]was incorporated into our
fiber-based Franson interferometer by applying a negative differential dispersion (using low dispersion LEAF
fiber) in Bob’s armof the interferometer to achieve near-unity Franson visibilities. The long-short fiber length
difference of the Franson interferometer corresponded to a Δ =T 9.5 ns differential delay. For long-termphase
stability, we enclosed the interferometer in amultilayered thermally-insulated boxwith active temperature
stabilization. Also, the fiber length differences in the two arms of the Franson interferometer were fine tuned to
match their differential delays towithin 1 ps by incorporating an additional closed-loop temperature control on
one of the fiber paths. The variable phase shift of each armwas set by a piezoelectric transducer fiber stretcher.
We implemented the random choice ofmeasurements between key generation and Franson security checkwith
a 90:10fiber beam splitter. This asymmetric configurationmaximizes the systemkey throughput while ensuring
sufficient coincident count rates to establish Franson security. Detection events were time stamped byAlice and
Bobwith time-to-digital converters (PicoQuantHydraHarp 400). For long-distanceQKDmeasurements, we
inserted two spools of fiberwithmatched length L between the source andAlice and Bob’s detectors to evaluate
QKDperformance at L2 distance. Thismatched-fiber configuration avoids the technical difficulty of aligning
two timing records that are >10 μs apart.Without thematched fibers, Alice and Bob’s detectors were separated
by about 100 moffiber.

After the quantum communication, Alice andBob’s raw timing data at a resolution of 1 pswere downloaded
from the time-to-digital converters after everyQKD session of 1 s, andwerefirst parsed into Nlog2 bit symbols
for each coincident frame that had one detection by each party. Software error correction then proceededwith
blocks of 4000 symbols each, resulting in an output streamof error-corrected symbols. After calculating the
secure PIE, corrected symbols from the 1 sQKD sessionswere fed into the privacy amplification algorithm to
obtain thefinal keys. The key length for each session varied for different frame sizeN, but was on the order of 106

symbols. The information loss due to the finite key length ΔFK takes into account thefinite probabilities that
error correction (ϵEC), privacy amplification (ϵPA), smoothmin-entropy estimation (ϵ̄), or security parameter
estimation (ϵPE) fail [22]. Thefinite key penalties due to error correction, privacy amplification and smooth
min-entropy estimationwere calculated in the sameway as in [22], withϵ ϵ ϵ= = = −¯ 10EC PA

10 for optimal
result. For the estimation of χFK

E , Eve’sHolevo informationwithfinite key consideration, Alice and Bob calculate

their normalized frequency correlation frommeasured Franson visibilities via equation (5), which has a χ2

distribution:
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This upper bound is then used to calculate theworst case χ E and themost pessimistic secure PIE. In our
experiment,m=100, andwe chooseϵ = −10PE

5. The overall failure probability of the entire protocol is thus
ϵ ϵ ϵ ϵ ϵ= + + + ≈ −¯ 10s EC PA PE

5. All data post-processing, if desired, can be implemented using afield
programmable gate array tominimize the latency in key extraction.

5. Results

The high dimensional encoding scheme offers greatflexibility to adjusting the dimensionality in order to
optimize for the highest throughput.Without any change in hardware implementation, the frame size can be
chosen in the data post-processing step by parsing the raw timing records into the desired symbol length [20]. In
this way, secure key throughput can be easily optimized as operating conditions, such as transmission orfiber-
coupling losses, change. For our setupwithout thematched fiber spools, figure 3 shows the secure PIE in bits per
photon coincidence and the secure key rate in bits per second for different frame sizeN at a constantmean pair
generationα = 0.03%per time bin of 80 ps duration.We plot both the final secure PIE (filled black squares) and
the theoretical SI (right axis offigure 3), with the gap between them reflecting the error correction efficiency and
the effectiveness of using Franson visibility to boundEve’sHolevo information.We see that the secure PIE rises
sharply asN increases, peaking at 8.7 bits per coincidence for =N 4096, where themean pair generationwas just
over one pair per time frame.We note that for =N 4096 the frame duration of≈ 330 ns is comparable to the
average inter-arrival times between detection events produced byAlice’s (and Bob’s) pair ofWSi SNSPDs. For
longer time frames, the PIE decreases due primarily to the larger number ofmulti-pair events.

Themore usefulmetric of the secure key rates (red filled squares) asN increases is also shown infigure 3 (left
axis). As expected, the throughput rises sharply as the key capacity also rises rapidly at lowerN. The peak secure
key rate of 7.0 Mbit s−1 is reached at =N 1024 (10 bits per frame)where the secure PIE is 7.4 bits per
coincidence. The peak key rate does not occur at the same frame size as that for the peak PIE. This is expected
because the secure rate also depends on the number of frames per second, which decreases by a factor of twowith
each bit that is added to the symbol length of the frame. Indeed, one observes that the key rates drop rapidly for

Figure 3.Entanglement-basedHDQKDmeasurement results at various frame sizes. Plots of secure PIE (right axis) and the theoretical
Shannon information (SI) show a gap that reflects the error correction efficiency and the effectiveness of using Franson visibility to
bound Eve’sHolevo information. Secure key throughputs (left axis) show a peak atN=1024which does not coincide with the
location of the peak PIE. The error bars originate from experimental uncertainties of the Franson visibilitymeasurement, and they are
based on one standard deviation.
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longer frame sizes. The ability to use software in the processing step to decide on the frame sizemakes it possible
to dynamically optimize the systemkey rates as operating conditions change.

In table 1 we summarize the optimized throughput performance of ourHDQKDprotocol and compare it
with state-of-the-art protocols. For our protocol,α = 0.03%with a bin duration τ = 80 ps. The total symbol
errors indicated in table 1 consist of a constant amount of local errors (≈30%) due to detector timing jitter,
plus uniform errors (<10%) due to the increase in themulti-pair probability for a frame that occurs with
increasedN. In examining the details of the error correction process we have identified the local errors as
coincidences that occurred in neighboring time bins. They appear commonly as flipping a symbol’s least
significant bit, thus these local errors have a small effect on the extractable SI. The uniform errors are themain
limiting factor to SI, especially at very largeN. Because of high encoding dimensionality, our protocol can
toleratemuch higher symbol error rate than conventional binaryQKDprotocols can [29]. Our layered LDPC
code performed error correction with high efficiency for all symbol lengths, ranging from β = 83.8%forN= 2
to 91.2% forN= 16 384. Themeasured raw Franson visibilities (without dark-count subtraction) at all frame
sizes were consistently at ⩾V 99.8%as a result of complete non-local dispersion cancellation, leading to a
tightly bounded χ ⩽ 0.52FK

E bits per coincidence including the finite key length effect. To reduce Eve’s
information to an arbitrarily small amount, privacy amplificationwas applied using low-density random
matrices [28]. Table 1 compares our entanglement-basedHDQKD implementationwith the state-of-the-art
implementation of BBM92 protocol that uses binary encoding (N= 2) based on polarization entanglement to
achieve a secure key rate of 14.5 kbit s−1 [5]. By using high dimensional encoding, efficient single-photon
detection, and highly efficient error correction, our results show an increase in PIE by a factor of >20 and in
QKD throughput by a factor of 500.

We also performed theHDQKDmeasurements (α=0.03% andN=1024) at separations of 5, 10 and 20 km
of standard opticalfiber betweenAlice and Bob, obtaining the results shown infigure 4.Here, the total
separation L2 was implemented by a pair ofmatched fiber of length L, each connecting Alice’s or Bob’s detector
to the source.We assume that thefiber linking Alice’s detector and the source is not accessible to Eve, thus
mimicking theQKD configuration infigure 2 inwhichAlice possesses the source and the total distance to Bob
equals the sumof thefiber lengths used in the experiment.Wewere able tomaintain aminimum secure PIE
(greenfilled circles) of 6.9 bits per coincidence at all three distances, which compares well with the 7.4 bits per
coincidence that we obtainedwithout the additionalfiber. The PIE results clearly showno key capacity
degradation over long distance fiber transmission, becausewewere able tomaintain near-unity Franson
visibility at long distances, but longer acquisition timeswere needed due to losses. In key generation, we
observed a broadening of the two-photon coincidencemeasurements to≈250 ps caused by chromatic
dispersion in the 20 kmoffiber. However, this broadening only contributed to increased local errors (in each
symbol’s least significant bit) that were reconciled efficiently with our error correction code.Moreover, it had no
effect on the Fransonmeasurement results because Franson visibility is only sensitive to the differential
dispersion between the long and short paths inside each interferometer arm [26]. The secure-key throughputs
(red filled squares) at different fiber transmission distances, plotted infigure 4 (left axis), show the decreasing
key rates that are expectedwith fiber transmission loss. At 20 kmwe obtained a secure key rate of 2.7 Mbit s−1,
which compares favorably with the highest reported decoy-state QKD rate of over 1Mbit s−1 at 50 km [30], as
shown in table 1.Note that the decoy-state protocol does not use entangled photons, thus it is not compatible
with the quantum repeater architecture that can extend quantum communications overmuch longer distances
[3]. Lastly, it is worthmentioning that at currentlymeasured fiber distances, the detector dark counts have
negligible contribution to the accidental coincidences, thus affecting neither the Franson visibility nor the SER.
With increasingfiber transmission loss, we expect the detector dark counts to eventually become the limiting
factor to the secure key rate. Dark counts will begin to degrade the Franson visibility whenBob’s singles rate
becomes comparable to his detector’s dark-count rate. Neglecting coupling losses and using our source’s singles

Table 1.Operating parameters andQKD results for ourHDQKDproto-
col, entanglement-based BBM92 protocol, and decoy-state BB84
protocol.

Parameter HDQKD BBM92 [5] Decoy-BB84 [30 ]

α 0.03% ≈5% 42.5%
N( Nlog2 ) 1024 (10) 2 (1) 2 (1)

SER 39.6% 3.2% 4.26%
βIAB (PIE) 7.9 Unknown Unknown

χFK
E 0.52 Unknown Unknown

Secure PIE 7.38 ≈0.35 0.26
Secure bit s−1 7.0 M 14.5 k 1.09 M (at 50 km)
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rate, this will occur at a telecom-fiber distance of 175 km.Dark counts will increase the SER at shorter distances,
and theywill increase the proportion of harder-to-correct uniform errors relative to local errors. Thus 175 km is
an optimistic upper bound on themaximum range of our protocol.

6. Conclusion

Wehave demonstrated a photon-efficientQKDprotocol using high dimensional encoding of time–energy
entangled photonswith security against collectiveGaussian attacks. High dimensional encoding in the photon
arrival times is particularly advantageous under typical photon-starved conditions inwhich the rate of detection
events ismuch lower than the photon generation rate, because of propagation losses, and the long recovery times
of available single-photon detectors.We achieved a secure key capacity of as high as 8.7 bits per photon
coincidence, indicating thatmuch can be gainedwith high dimensional encoding relative to the binary encoding
used inmore conventional QKDprotocols.Whenwe optimized for key rates we obtained a peakQKD
throughput of 7.0 Mbit s−1 with a secure PIE of 7.4 secure bits per coincidence at 100 moffiber separation.With
an additional fiber length of 20 km,wewere able tomaintain a high PIE of 6.9 bits per coincidencewithout
degradation due to long distance fiber transmission and obtain a secure key rate of 2.7 Mbit s−1.We achieved the
record key capacity and throughput for an entanglement-basedQKD systembecause of four principal factors: a
PPKTPwaveguide SPDC sourcewith high extraction efficiency into a single-mode fiber; highly efficientWSi
SNSPDs; Franson interferometry with near-unity visibility that does not degradewithfiber transmission loss;
and efficient error correction coding that can tolerate high SERs.

The security against collectiveGaussian attacks is based on a single Franson interferometer implemented
with non-local dispersion cancellation in order to achieve near-unity visibility for bounding Eve’sHolevo
information.However, we are unable to theoretically show that the Franson interferometer alone is sufficient to
provide security against non-Gaussian attacks. To be secure against themost general collective attacks would
require the additional use of a conjugate-Franson interferometer, which is also needed if encoding of frequency
bits is implemented [11]. Although a single Franson interferometer provides less comprehensive security, its
simplicity allows for easy implementation in practical HDQKD systems. The simple configuration of our
entanglement-basedHDQKDprotocol and the ability to change the frame size and bin duration in the
processing step using softwaremake it a robustQKD system to deploywith substantial performance
improvement over today’s binary encodedQKD technology. The use of entangled photons in the current
HDQKD system is compatible with and of potential interest to future implementation of quantum repeater
technology.Multi-bit encoding of time–energy entangled photons could be utilized in quantum repeater
schemeswithmulti-mode capability [31], especially if high PIE can bemaintained over long distances.We note
that a quantummemorywith a single photon storage capacity up to 64 temporalmodes has been demonstrated
using the atomic frequency combs protocol [32]. Future progress in quantummemory and repeater technology
might lead to efficient relays for large-alphabet time–energy entanglement.

Figure 4. Secure PIE and throughput ofHDQKDat various fiber distances. The time–energy entangled photon sourcewas placed at
equal distance fromAlice andBob, and secure PIE andQKD throughputweremeasured for various fiber separations betweenAlice
and Bob.Measurements weremade to optimize throughputwith a frame size of 1024, bin duration of 80 ps, andmean pair generation
of 0.03%per bin. The error bars are based on one standard deviation of the Franson visibilitymeasurement.
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