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Abstract

Conventional quantum key distribution (QKD) typically uses binary encoding based on photon polar-
ization or time-bin degrees of freedom and achieves a key capacity of at most one bit per photon. Under
photon-starved conditions the rate of detection events is much lower than the photon generation rate,
because of losses in long distance propagation and the relatively long recovery times of available single-
photon detectors. Multi-bit encoding in the photon arrival times can be beneficial in such photon-
starved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival
times is robust and can be implemented to yield high secure throughput. In this work we demonstrate
entanglement-based QKD with high-dimensional encoding whose security against collective Gaussian
attacks is provided by a high-visibility Franson interferometer. We achieve unprecedented key capacity
and throughput for an entanglement-based QKD system because of four principal factors: Franson
interferometry that does not degrade with loss; error correction coding that can tolerate high error rates;
optimized time—energy entanglement generation; and highly efficient WSi superconducting nanowire
single-photon detectors. The secure key capacity yields as much as 8.7 bits per coincidence. When opti-
mized for throughput we observe a secure key rate of 2.7 Mbit s ' after 20 km fiber transmission with a
key capacity of 6.9 bits per photon coincidence. Our results demonstrate a viable approach to high-rate
QKD using practical photonic entanglement and single-photon detection technologies.

1. Introduction

Quantum communication and quantum cryptography enable provably secure transfer of information between
distant parties. The ability to distribute photonic entanglement reliably and efficiently has been an essential
ingredient in many quantum information applications, including quantum key distribution (QKD) [1, 2],
quantum teleportation, and quantum repeaters [3]. Entangled photons are attractive carriers of secure
information, with numerous information-bearing degrees of freedom and proven immunity against
eavesdropping when used in suitable communication protocols [2, 4]. If swapped with high fidelity at quantum
repeater nodes, photonic entanglement could be extended over long distances, possibly to a global scale [3].
However, entanglement is a costly and fragile resource that often requires a dedicated quantum channel and
specification-demanding hardware for implementing quantum communication protocols. QKD systems based
on polarization entanglement that use commonly available spontaneous parametric down-conversion (SPDC)
sources and Geiger-mode avalanche photodiodes have so far delivered secure key rates on the order of 10 kbit s
atadistance no more than a few kilometers [5], which is not attractive for practical applications in which loss
due to long fiber distance is inevitable. There are novel communication protocols that are tolerant to photon loss
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Figure 1. Large-alphabet temporal encoding using correlated photon pairs (in blue). Timing jitter errors are represented by gray slots,
and red shadows indicate the reset time of the detectors combined with the dead time of the counting electronics, during which no
additional detection can be registered (marked by crosses). To achieve both high PIE and throughput, an optimal frame size Ty and
time bin duration 7 should be chosen to fully utilize the available photon detection resource.

and entanglement degradation [6, 7], but it is still unknown whether these protocols can outperform existing
QKD systems in terms of overall secure key rates and transmission distances.

One approach to significantly increase entanglement-based QKD throughput is to encode multiple bits per
photon pair in their times of arrival, similar to the way pulse-position modulation is used in classical optical
communication under photon-starved conditions. To date, most QKD protocols use binary encoding,
corresponding to a key capacity, which we also call photon information efficiency (PIE), of <1 bit per photon.
Fundamentally this limits the secure bit rate to at most the photon flux reaching the receiver. Actual rates would be
further reduced due to sifting, error correction, privacy amplification and other post-processing overheads for
secure bit extraction. Therefore, to achieve higher throughput at a given photon flux (for a specific source and
channel loss), increasing the bit-per-photon capacity or PIE to greater than one would provide a substantial
improvement to QKD secure key rates. An obvious choice for high dimensional encoding is the arrival times of
single photons, because of their excellent preservation after propagation through low-loss, minimal dispersion fiber,
and their convenient detection with high timing resolution. Time binning the random arrival of a coincident photon
pair in an N-bin time frame yields a symbol comprisinglog, N bits, as depicted in figure 1. This approach can
provide a sizable benefit to the throughput of a QKD system in the photon-starved regime in which the (average)
interval between photon detection events is much longer than the timing resolution of the detectors. As illustrated in
figure 1, typical QKD systems operate under photon-starved conditions: photon pairs generated by SPDC suffer
propagation losses and are detected at low rates, and single-photon detectors have long recovery times after each
detection event [8]. In photon-starved situations, high-dimensional encoding with a frame size of N time bins yields
araw throughput given approximatelyby R o min [Rph, Rge] - log,N, i.e., ~log,N times better than binary
QKD, where R, is the photon flux at the receiver and R is the maximum count rate of single-photon detectors.

Recently, there has been great interest to exploit the very high entropy (as many as ~20 bits per photon from
10° temporal modes) of a time—energy entangled photon pair produced by continuous-wave (CW) SPDC for
high-rate QKD [9-13]. But its implementation with proven security for multiple bits per photon has been a
longstanding challenge. Proposals for such time—energy entanglement-based QKD have suggested security
measures based on multiple Franson interferometers [10], Franson and conjugate-Franson interferometers
[11], time-to-frequency conversion [12], dispersive optics [13], and recirculating Mach—Zehnder
interferometers [ 14]. These different security checks highlight the complexity of implementing high-
dimensional QKD (HDQKD) protocols. Recently, security proofs against collective attacks have been
established for HDQKD based on Franson and conjugate-Franson interferometers [11] and on dispersive optics
[13], using estimates of Alice and Bob’s time-frequency covariance matrix (TFCM) to bound Eve’s Holevo
information. In particular, [11] shows that it is feasible to use a single Franson interferometer [ 15] to secure
time—energy entanglement-based HDQKD. We should note that previous experiments involving Franson
interferometry were limited to either demonstrations of immunity against individual attacks or feasibility
studies of isolated components [16, 17]. As a result, they do not represent QKD implementations in which the
security against collective attacks can be assured and the corresponding secure key rates determined.

In this work we report an experimental demonstration of photon-efficient HDQKD based on time—
energy entanglement whose security against collective Gaussian attacks is achieved through a single Franson
interferometer with near-unity visibility performance that does not degrade with fiber propagation loss. Eve’s
Holevo information is bounded by precise frequency correlation measurements via non-locally dispersion-
canceled Franson quantum interference capable of operation over long fiber links. Using highly efficient WSi
superconducting nanowire detectors [ 18] and an efficient error correction code designed specifically for
high-dimensional encoding with tolerance to high symbol error rates (SERs), our HDQKD protocol yielded
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Figure 2. Schematic of entanglement-based HDQKD setup. Orthogonally polarized outputs from SPDC source at 1560 nm are
separated using a polarizing beam splitter. Fiber beam splitters with a 90:10 ratio are used for key generation and Franson
measurements. BPF: 10 nm bandpasss filter; PBS: polarizing beam splitter; SMF: single-mode fiber; TDC: time-to-digital converter.

up to 8.7 bits per photon coincidence if secure key capacity is maximized. When optimized for throughput,
we obtained a secure key rate of 2.7 (7.0) Mbit s ' through 20 km (100 m) of single-mode fiber with a PIE of
6.9 (7.4) bits per photon coincidence. These secure key rates significantly surpass previous entanglement-
based QKD systems using polarization or time-bin entangled qubits. Our results demonstrate a viable
approach to high-rate QKD using practical photonic entanglement and single-photon detection
technologies.

2. QKD protocol

The photon-efficient HDQKD protocol is shown schematically in figure 2. The system uses time—energy
entangled photon pairs generated from a CW SPDC source in Alice’s possession. Alice sends one photon from
each entangled pair to Bob through an optical fiber that is subject to Eve’s attack, and retains the conjugate
photon for measurements. Alice and Bob independently measure the photon arrival times at a resolution 7 that
defines a time bin. Both parties share a publicly synchronized clock to align their time bins, and they use N
consecutive bins to form a time frame. For each frame, Alice and Bob randomly choose to measure the arrival
time bin position of the photon either directly, for extracting a symbol of k = log,N bits, or after passing
through their respective arms of the Franson interferometer, for establishing security. After the use of this
quantum channel, Alice and Bob post-select frames that contain exactly one detection event by each party, and
proceed to perform error correction and privacy amplification.

The secure PIE is given by Al,g = Bl — y© — Apk in bits per coincidence, where fis the reconciliation
efficiency, Ip is Alice and Bob’s Shannon information (SI), x ¥ is Eve’s Holevo information for collective
Gaussian attacks in the asymptotic limit of infinitely long keys [4], and Apg accounts for penalties due to the
finite key length [21, 22]. Error correction performed on the raw k-bit symbols is implemented using a custom
code developed by Zhou et al [ 19] for large-alphabet QKD protocols. The code uses a layered scheme that
successively applies low-density parity check (LDPC) binary error correction on all bit layers of the symbols, and
has high reconciliation efficiency f even at high SERs.

3. Security of HDQKD using a single Franson interferometer

To bound Eve’s Holevo information, Alice and Bob monitor the visibility V of a single Franson
interferometer. It is long established that Franson quantum interference provides a measure of time—energy
entanglement quality, and is routinely used as an equivalent Clauser—Horne—Shimony—Holt (CHSH) form of
Bell’s inequality measurement [23] for time-bin entanglement (a discrete case of time—energy entanglement
with N=2 in which a photon arrives either in an early or late time bin). However, it is less explicitly
understood that the Franson visibility is directly linked to the two-photon frequency anti-correlation via

V = ( cos [(wp — @p)AT]) [15], where AT is the propagation delay between the interferometer’s long and
short paths, @, (@p) is the frequency operator measuring the zero-mean detuning of Alice’s (Bob’s) photon at
frequency wp/2 + @, (@,/2 — wg),and @y, is the SPDC pump frequency. Here we consider the interference
visibility of a single photon pair emitted by Alice’s source. Following the proof oflemma 1in [11], we have the
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following inequalities according to Taylor-series expansion,

yth =< cos [(d)AO - d)BO)AT]>

>1 - <((z)A0 - (;)BO)Z>AT2/2, (1)
\% =< cos [(d)A - d)B)AT]>
<1 - <<a)A - d)B)2>AT2/2 + <(a)A - d)B)z >2AT4/8, 2)

where V" is the theoretical Franson visibility for an unperturbed entangled pair assuming a perfect measurement
apparatus, { (@9 — @ )?) is the undisturbed frequency correlation from the source (determined by the pump
laser spectral linewidth), and a Gaussian attack has been assumed. Combining equations (1) and (2) gives

<(@A - cbg)2>2 - ﬁ<(m - @B)2> + %(V‘h - V+ <(@A0 ~ d)BO)Z>AT2/2> >0.  (3)

For the two distinct roots of the inequality (3), the root with a higher value resultsin { (#, — @g)?) being orders
of magnitude larger than the experimental values, thus it is rejected. Using the lower value root as an upper
bound, the inequality (3) reduces to

<(d)A - @B)2>< ﬁ[l - J1 - z(vth V4 <(05A0 - cho)2>AT2/2))

2 th . A2 2
NF(V —V+<(C¢)A0—w30) >AT /2), (4)

where we consider V" — V < Tand((@y9 — @po)?)AT? < 1. Rearranging the last term in the parentheses on
the right-hand side and assuming, with no access to Alice’s photon, Eve’s interaction could only disturb Bob’s
variance (@ ) and the frequency covariance (@, @ ), we obtain the following inequality to bound the total
change in the mean-squared frequency difference (0, — @p)*):

Mg = 2dpdp) < 2(Vh = V)/AT?. (5)

The security analysis then follows the well-established proofs for Gaussian CV-QKD protocols based on the
optimality of Eve’s Gaussian collective attack for a given TEFCM " [11, 24]. To start, we consider the undisturbed
state of one signal-idler photon pair generated from CW SPDC

(tatm) (ta-ts)’ (ta+ts)

|¢)=/ dtadtge 1602, e 40d 7% 3 |ta), |tB)g (6)

where 6.}, is the pump coherence time, and o, is the biphoton correlation time. The two photons are correlated
in the time domain, and anti-correlated in the frequency domain where time and frequency form a pair of
conjugate bases. We thus introduce the arrival-time operator f,, and the frequency operator a,, where

m, n € {A, B}. The state|w), (|)g) represents a single photon of the signal (idler) at frequency w,/2 + @

(@p/2 — ), so that with this convention the detunings, w, from w,,/2 are correlated, rather than anti-correlated.
The TFCM for the above state is then

0 0
7, 7,
ro=|=e (7)
YBa  7BB
where
[ 1
Zaczor + Uczoh 0
0 _ .0 _
Yan =78 = 0 1 1 >
| 46c20r 16(;520h
_O-czor + CTczoh 0
0 0
YaB = VBa = 0 1 1| (8)

2 2
4Ucor 16(7coh
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Eve’s presence disturbs Alice and Bob’s initial TFCM to become

Yaa = }/XA’
1 -7, 0 0
YaB = VA = 0 1-g Vap>
w
1+ ¢ 0 0
VBB = [ 0 1+ €w:|73B) (9)

where{#,, 1, } denotes the loss in time and frequency correlation, and {e;, €, } denotes the excess noise in Bob’s
photon. The measured Franson visibility restricts the possible s, , €, values via inequality (5). We note that any
disturbance in the biphoton time correlation or Bob’s arrival time variance (reflected by, and ¢;) cannot be
bounded by our Franson interference measurement. Nevertheless, such disturbance by Eve does not afford her
any benefit in gaining symbol information encoded in the time basis, thus it has negligible impact on y&. To
ensure stronger security, we therefore take the mean-squared time arrival difference { (f, — #3)?) to be square of
the detector timing jitter (beyond which Eve’s intrusion would have been readily detected by Alice and Bob), and
(fé ) to be the time variance integrated over the entire frame duration.

For a given TFCM, a Gaussian attack maximizes Eve’s Holevo information by assuming that she purifies the
state to a joint Gaussian state between Alice, Bob and Eve. The Holevo information y;. for covariance matrix /" is

ar=S(pe) - fdtp(tA)S(ﬁE|tA), (10)

where S (p) = —Tr [p log,(p) ]is the von Neumann entropy of the quantum state /. The inequality (5)
constrains the set, M, of physically allowed TFCMs with corresponding frequency variance and covariance
elements. An upper bound on Eve’s Holevo information is then calculated by maximizing

xr=Spg) =S (ﬁE|rA) =SPpp) — S (ﬁB|tA) over all TFCMsin M, i.e.,

2= sup {x}, (11)

rem

where py|, denotes the Eve’s quantum state conditioned on Alice’s arrival-time measurement, and we assume
Eve, Alice, and Bob share a pure joint-Gaussian state.

Secret keys can in principle be encoded in both time and frequency conjugate bases. Keys encoded in the
photon-arrival-time bins are secured by Franson interferometry, which measures two-photon frequency
correlation. Additional bits can be encoded in multiple frequency bins that can be secured by the newly proposed
conjugate-Franson interferometer [11], which measures the time correlation between photon pairs. However,
frequency-bin encoding necessarily requires dense wavelength-division multiplexing (DWDM) components
that incur substantial insertion loss given today’s technology. (For instance, a typical four-channel 50 GHz
DWDM filter has typical excess insertion loss of &3 dB, which leads to a 6 dB reduction in coincidence rates but
gains only two extra bits in the most ideal scenario). Hence, in this work we choose an HDQKD implementation
that favors a higher key rate and a simpler setup without DWDM by encoding only in the photon arrival times
and securing it with a Franson interferometer. Here we should point out that in a TFCM, there are also time-
correlation elements (e.g.,( (f, — #3)?)) that could be disturbed by Eve’s intrusion. Nevertheless, we find that
the change in these elements has a negligible impact on y ¥, because Eve’s attack on time correlations only gives
her information encoded in frequency and therefore does not yield any knowledge about keys that are encoded
in arrival time.

The ability to bound Eve’s Holevo information, and thus to secure the multiple bits encoded in a coincident
photon pair, depends critically on the measured Franson visibility by Alice and Bob. Although high visibility up
t0 96.5% has been routinely reported in prior Franson experiments [25], our numerical calculation shows that
to bound yE< 1.0 bit, visibility (without background subtraction) exceeding 99.5% is required (assuming
AT = 5ns, pump laser linewidth of 1 MHz, SPDC phase matching bandwidth of 250 GHz). This result is in
qualitative agreement with [10], which claimed that a 97% Franson visibility would lead to leakage of 5 out of 10
bits of information to Eve. To achieve and maintain the required near-unity visibility after long-distance fiber
distribution of the photon pairs, our experiment used non-locally dispersion-canceled Franson interferometry,
which we recently demonstrated to show a visibility of 99.6% [26]. It was pointed out in [26] that non-local
dispersion compensation recovers the degradation of visibility due to group-velocity mismatch within each arm
of the interferometer, and the visibility is not affected by any dispersion along the fiber connecting the source to
Alice/Bob. Therefore, neglecting the detector dark counts, near-unity Franson visibility can be maintained, in
principle, at arbitrarily long QKD distance.
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4. Experimental implementation

The experimental setup in figure 2 was carefully optimized for achieving photon-efficient secure key
distribution. We used a type-1I phase-matched, single-spatial-mode periodically poled potassium titanyl
phosphate (PPKTP) waveguide to generate high quality time—energy entangled photon pairs at 1560 nm with
~80% spectral-spatial extraction efficiency into a single-mode fiber [27]. The pump coherence time was

~250 ns, measured using a setup similar to self-homodyning but with the fiber loop path difference less than the
laser coherence time so that only the intrinsic laser frequency noise was measured. For a crystal length of

15.6 mm, the SPDC phase-matching bandwidth was measured to be 1.6 nm (250 GHz), corresponding to a
biphoton correlation time of ~2 ps, with a source brightness of 107 pairs per second per mW of pump. The
orthogonally-polarized photon pairs were separated with a fiber polarizing beam splitter, sending the signal
photons to Bob through a single-mode fiber. In the experiment we used WSi superconducting nanowire single-
photon detectors (SNSPDs) [ 18] with ~#90% detection efficiency at 1560 nm, dark-count rates of #1000 counts
per second, an average timing jitter of 80 ps full-width at half-maximum, and a maximum count rate

of #1.5 X 10° counts per second. A total of six WSi SNSPDs were used: two were used for the Franson-
interferometric security check, and the other four detectors for key generation. To mitigate the long reset times
of WSi SNSPDs in the key generation portion of the experiment, Alice (and Bob) used a passive 50:50 beam
splitter to distribute incident photons equally between two WSi SNSPDs (not shown in figure 2), and their data
were interleaved. Typical singles and coincidence count rates were 2—3 million, and 700 000 to 1 million counts
per second, respectively.

To achieve higher key capacity, it is generally desirable to use small time bins, long frame durations and large
Franson differential delays. In actual implementation, the optimal operating parameters are determined by
factors including the pump coherence time, biphoton correlation time, and the detector timing jitter
performance. Given the timing jitter of WSi SNSPDs being much larger than the SPDC biphoton correlation
time, we chose a time bin size of 80 ps throughout our experiments. Accordingly, the 250 ns pump coherence
time leads to an expected optimal frame size on the order of N = 1000 bins per frame. Large Franson differential
delays up to 250 ns can be implemented in principle. However, in practice, we used a short delay of a few ns in
the interferometer that allowed us to achieve excellent long-term phase stability.

As pointed out in the previous section, it is essential to have high visibility Franson interferometry in order to
tightly bound Eve’s Holevo information. Non-local dispersion cancellation [26] was incorporated into our
fiber-based Franson interferometer by applying a negative differential dispersion (using low dispersion LEAF
fiber) in Bob’s arm of the interferometer to achieve near-unity Franson visibilities. The long-short fiber length
difference of the Franson interferometer corresponded toa AT = 9.5 ns differential delay. For long-term phase
stability, we enclosed the interferometer in a multilayered thermally-insulated box with active temperature
stabilization. Also, the fiber length differences in the two arms of the Franson interferometer were fine tuned to
match their differential delays to within 1 ps by incorporating an additional closed-loop temperature control on
one of the fiber paths. The variable phase shift of each arm was set by a piezoelectric transducer fiber stretcher.
We implemented the random choice of measurements between key generation and Franson security check with
a90:10 fiber beam splitter. This asymmetric configuration maximizes the system key throughput while ensuring
sufficient coincident count rates to establish Franson security. Detection events were time stamped by Alice and
Bob with time-to-digital converters (PicoQuant HydraHarp 400). For long-distance QKD measurements, we
inserted two spools of fiber with matched length L between the source and Alice and Bob’s detectors to evaluate
QKD performance at 2L distance. This matched-fiber configuration avoids the technical difficulty of aligning
two timing records that are >10 us apart. Without the matched fibers, Alice and Bob’s detectors were separated
by about 100 m of fiber.

After the quantum communication, Alice and Bob’s raw timing data at a resolution of 1 ps were downloaded
from the time-to-digital converters after every QKD session of 1 s, and were first parsed intolog,N bit symbols
for each coincident frame that had one detection by each party. Software error correction then proceeded with
blocks of 4000 symbols each, resulting in an output stream of error-corrected symbols. After calculating the
secure PIE, corrected symbols from the 1 s QKD sessions were fed into the privacy amplification algorithm to
obtain the final keys. The key length for each session varied for different frame size N, but was on the order of 10°
symbols. The information loss due to the finite key length Agx takes into account the finite probabilities that
error correction (egc), privacy amplification (ep, ), smooth min-entropy estimation (€), or security parameter
estimation (epg) fail [22]. The finite key penalties due to error correction, privacy amplification and smooth
min-entropy estimation were calculated in the same way as in [22], withegc = epy = € = 1071 for optimal
result. For the estimation of )(FFk, Eve’s Holevo information with finite key consideration, Alice and Bob calculate

their normalized frequency correlation from measured Franson visibilities via equation (5), which has a y?
distribution:
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Figure 3. Entanglement-based HDQKD measurement results at various frame sizes. Plots of secure PIE (right axis) and the theoretical
Shannon information (SI) show a gap that reflects the error correction efficiency and the effectiveness of using Franson visibility to

bound Eve’s Holevo information. Secure key throughputs (left axis) show a peak at N = 1024 which does not coincide with the
location of the peak PIE. The error bars originate from experimental uncertainties of the Franson visibility measurement, and they are
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where m is the number of Franson visibility measurements taken in each QKD session. An upper bound on
((wx — @p)*) with confidence interval 1 — epg is then given by:

<(ch - @B)2>m - <(d)A0 - @BO)Z> + % erf=1(1 - ePE)<(d)A - ch)2>. (13)

This upper bound is then used to calculate the worst case y £ and the most pessimistic secure PIE. In our
experiment, m = 100, and we choose epg = 107°. The overall failure probability of the entire protocol is thus
€ = epc + epa + € + epp ~ 107°. All data post-processing, if desired, can be implemented using a field
programmable gate array to minimize the latency in key extraction.

(m—1) N)(Z(I—GPE,m— 1), (12)

5. Results

The high dimensional encoding scheme offers great flexibility to adjusting the dimensionality in order to
optimize for the highest throughput. Without any change in hardware implementation, the frame size can be
chosen in the data post-processing step by parsing the raw timing records into the desired symbol length [20]. In
this way, secure key throughput can be easily optimized as operating conditions, such as transmission or fiber-
coupling losses, change. For our setup without the matched fiber spools, figure 3 shows the secure PIE in bits per
photon coincidence and the secure key rate in bits per second for different frame size N at a constant mean pair
generationa = 0.03% per time bin of 80 ps duration. We plot both the final secure PIE (filled black squares) and
the theoretical SI (right axis of figure 3), with the gap between them reflecting the error correction efficiency and
the effectiveness of using Franson visibility to bound Eve’s Holevo information. We see that the secure PIE rises
sharply as Nincreases, peaking at 8.7 bits per coincidence for N = 4096, where the mean pair generation was just
over one pair per time frame. We note that for N = 4096 the frame duration of &~ 330 ns is comparable to the
average inter-arrival times between detection events produced by Alice’s (and Bob’s) pair of WSi SNSPDs. For
longer time frames, the PIE decreases due primarily to the larger number of multi-pair events.

The more useful metric of the secure key rates (red filled squares) as N increases is also shown in figure 3 (left
axis). As expected, the throughput rises sharply as the key capacity also rises rapidly at lower N. The peak secure
key rate of 7.0 Mbit s~ ' is reached at N = 1024 (10 bits per frame) where the secure PIE is 7.4 bits per
coincidence. The peak key rate does not occur at the same frame size as that for the peak PIE. This is expected
because the secure rate also depends on the number of frames per second, which decreases by a factor of two with
each bit that is added to the symbol length of the frame. Indeed, one observes that the key rates drop rapidly for
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Table 1. Operating parameters and QKD results for our HDQKD proto-
col, entanglement-based BBM92 protocol, and decoy-state BB84

protocol.

Parameter HDQKD BBM92 [5] Decoy-BB84 [30 ]
a 0.03% ~5% 42.5%
N(log,N) 1024 (10) 2(1) 2(1)

SER 39.6% 3.2% 4.26%

Plas (PIE) 7.9 Unknown Unknown
)(FFi( 0.52 Unknown Unknown
Secure PIE 7.38 ~0.35 0.26
Securebit s! 7.0 M 14.5k 1.09 M (at 50 km)

longer frame sizes. The ability to use software in the processing step to decide on the frame size makes it possible
to dynamically optimize the system key rates as operating conditions change.

In table 1 we summarize the optimized throughput performance of our HDQKD protocol and compare it
with state-of-the-art protocols. For our protocol, @ = 0.03% with a bin durationz = 80 ps. The total symbol
errors indicated in table 1 consist of a constant amount of local errors (x30%) due to detector timing jitter,
plus uniform errors (<10%) due to the increase in the multi-pair probability for a frame that occurs with
increased N. In examining the details of the error correction process we have identified the local errors as
coincidences that occurred in neighboring time bins. They appear commonly as flipping a symbol’s least
significant bit, thus these local errors have a small effect on the extractable SI. The uniform errors are the main
limiting factor to SI, especially at very large N. Because of high encoding dimensionality, our protocol can
tolerate much higher symbol error rate than conventional binary QKD protocols can [29]. Our layered LDPC
code performed error correction with high efficiency for all symbol lengths, ranging from # = 83.8% for N=2
t0 91.2% for N=16 384. The measured raw Franson visibilities (without dark-count subtraction) at all frame
sizes were consistently at V' > 99.8% as a result of complete non-local dispersion cancellation, leading to a
tightly bounded y, < 0.52 bits per coincidence including the finite key length effect. To reduce Eve’s
information to an arbitrarily small amount, privacy amplification was applied using low-density random
matrices [28]. Table 1 compares our entanglement-based HDQKD implementation with the state-of-the-art
implementation of BBM92 protocol that uses binary encoding (N = 2) based on polarization entanglement to
achieve a secure key rate of 14.5 kbit s [5]. By using high dimensional encoding, efficient single-photon
detection, and highly efficient error correction, our results show an increase in PIE by a factor of >20 and in
QKD throughput by a factor of 500.

We also performed the HDQKD measurements (a=0.03% and N = 1024) at separations of 5, 10 and 20 km
of standard optical fiber between Alice and Bob, obtaining the results shown in figure 4. Here, the total
separation 2L was implemented by a pair of matched fiber of length L, each connecting Alice’s or Bob’s detector
to the source. We assume that the fiber linking Alice’s detector and the source is not accessible to Eve, thus
mimicking the QKD configuration in figure 2 in which Alice possesses the source and the total distance to Bob
equals the sum of the fiber lengths used in the experiment. We were able to maintain a minimum secure PIE
(green filled circles) of 6.9 bits per coincidence at all three distances, which compares well with the 7.4 bits per
coincidence that we obtained without the additional fiber. The PIE results clearly show no key capacity
degradation over long distance fiber transmission, because we were able to maintain near-unity Franson
visibility at long distances, but longer acquisition times were needed due to losses. In key generation, we
observed a broadening of the two-photon coincidence measurements to 2250 ps caused by chromatic
dispersion in the 20 km of fiber. However, this broadening only contributed to increased local errors (in each
symbol’s least significant bit) that were reconciled efficiently with our error correction code. Moreover, it had no
effect on the Franson measurement results because Franson visibility is only sensitive to the differential
dispersion between the long and short paths inside each interferometer arm [26]. The secure-key throughputs
(red filled squares) at different fiber transmission distances, plotted in figure 4 (left axis), show the decreasing
key rates that are expected with fiber transmission loss. At 20 km we obtained a secure key rate of 2.7 Mbit s~ ',
which compares favorably with the highest reported decoy-state QKD rate of over 1 Mbit s ' at 50 km [30], as
shown in table 1. Note that the decoy-state protocol does not use entangled photons, thus it is not compatible
with the quantum repeater architecture that can extend quantum communications over much longer distances
[3]. Lastly, it is worth mentioning that at currently measured fiber distances, the detector dark counts have
negligible contribution to the accidental coincidences, thus affecting neither the Franson visibility nor the SER.
With increasing fiber transmission loss, we expect the detector dark counts to eventually become the limiting
factor to the secure key rate. Dark counts will begin to degrade the Franson visibility when Bob’s singles rate
becomes comparable to his detector’s dark-count rate. Neglecting coupling losses and using our source’s singles
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Figure 4. Secure PIE and throughput of HDQKD at various fiber distances. The time—energy entangled photon source was placed at
equal distance from Alice and Bob, and secure PIE and QKD throughput were measured for various fiber separations between Alice
and Bob. Measurements were made to optimize throughput with a frame size of 1024, bin duration of 80 ps, and mean pair generation
0f0.03% per bin. The error bars are based on one standard deviation of the Franson visibility measurement.

rate, this will occur at a telecom-fiber distance of 175 km. Dark counts will increase the SER at shorter distances,
and they will increase the proportion of harder-to-correct uniform errors relative to local errors. Thus 175 km is
an optimistic upper bound on the maximum range of our protocol.

6. Conclusion

We have demonstrated a photon-efficient QKD protocol using high dimensional encoding of time—energy
entangled photons with security against collective Gaussian attacks. High dimensional encoding in the photon
arrival times is particularly advantageous under typical photon-starved conditions in which the rate of detection
events is much lower than the photon generation rate, because of propagation losses, and the long recovery times
of available single-photon detectors. We achieved a secure key capacity of as high as 8.7 bits per photon
coincidence, indicating that much can be gained with high dimensional encoding relative to the binary encoding
used in more conventional QKD protocols. When we optimized for key rates we obtained a peak QKD
throughput of 7.0 Mbit s ' with a secure PIE of 7.4 secure bits per coincidence at 100 m of fiber separation. With
an additional fiber length of 20 km, we were able to maintain a high PIE of 6.9 bits per coincidence without
degradation due to long distance fiber transmission and obtain a secure key rate of 2.7 Mbit s_'. We achieved the
record key capacity and throughput for an entanglement-based QKD system because of four principal factors: a
PPKTP waveguide SPDC source with high extraction efficiency into a single-mode fiber; highly efficient WSi
SNSPDs; Franson interferometry with near-unity visibility that does not degrade with fiber transmission loss;
and efficient error correction coding that can tolerate high SERs.

The security against collective Gaussian attacks is based on a single Franson interferometer implemented
with non-local dispersion cancellation in order to achieve near-unity visibility for bounding Eve’s Holevo
information. However, we are unable to theoretically show that the Franson interferometer alone is sufficient to
provide security against non-Gaussian attacks. To be secure against the most general collective attacks would
require the additional use of a conjugate-Franson interferometer, which is also needed if encoding of frequency
bitsisimplemented [11]. Although a single Franson interferometer provides less comprehensive security, its
simplicity allows for easy implementation in practical HDQKD systems. The simple configuration of our
entanglement-based HDQKD protocol and the ability to change the frame size and bin duration in the
processing step using software make it a robust QKD system to deploy with substantial performance
improvement over today’s binary encoded QKD technology. The use of entangled photons in the current
HDQKD system is compatible with and of potential interest to future implementation of quantum repeater
technology. Multi-bit encoding of time—energy entangled photons could be utilized in quantum repeater
schemes with multi-mode capability [31], especially if high PIE can be maintained over long distances. We note
that a quantum memory with a single photon storage capacity up to 64 temporal modes has been demonstrated
using the atomic frequency combs protocol [32]. Future progress in quantum memory and repeater technology
might lead to efficient relays for large-alphabet time—energy entanglement.
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