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Abstract—This paper considers the problem of communication
over a discrete memoryless channel subject to the constraint that
the probability that an adversary who observes the channel out-
puts can detect the communication is low. Specifically, the relative
entropy between the output distributions when a codeword is
transmitted and when no input is provided to the channel must
be sufficiently small. For a channel whose output distribution
induced by the zero input symbol is not a mixture of the output
distributions induced by other input symbols, it is shown that
the maximum number of bits that can be transmitted under this
criterion scales like the square root of the blocklength. Exact
expressions for the scaling constant are also derived.

Index Terms—Low probability of detection, covert communi-
cation, information-theoretic security, Fisher information.

1. INTRODUCTION

In many secret-communication applications, it is required
not only that the adversary should not know the content
of the message being communicated, as in [1], but also
that it should not know whether the legitimate parties are
communicating at all or not. Such problems are often referred
to as communication with low probability of detection (LPD)
or covert communication. Depending on the application, they
can be formulated in various ways.

In [2] the authors consider a wiretap channel model [3],
and refer to this LPD requirement as stealth. They show that
stealth can be achieved without sacrificing communication rate
or using an additional secret key. In their scheme, when not
sending a message, the transmitter sends some random noise
symbols to simulate the distribution of a codeword. There are
many scenarios, however, where this cannot be done, because
the transmitter must be switched off when not transmitting
a message. Indeed, the criterion is often that the adversary
should not be able to tell whether the transmitter is on or off,
rather than whether it is sending anything meaningful or not.
It is the former criterion that is considered in the current paper.
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Our work is closely related to the recent works [4]-[6]. In
[4] the authors consider the problem of communication over
an additive white Gaussian noise (AWGN) channel with the
requirement that a wiretapper should not be able to tell with
high confidence whether the transmitter is sending a codeword
or the all-zero sequence. It is observed that the maximum
number of bits that can be transmitted under this requirement
scales like the square root of the blocklength. In [5] the authors
consider a similar problem for the binary symmetric channel
and show that the “square-root law” also holds. One difference
between [4] and [5] is that in the former the transmitter and the
receiver use a secret key to generate their codebook, whereas
in the latter no key is used. More recently, [6] studies the LPD
problem from a resolvability perspective and improves upon
[4] in terms of secret-key length.

In the current paper, we show that the square-root law holds
for a broad class of discrete memoryless channels (DMCs).!
Furthermore, we provide exact characterizations for the scaling
constant of the number of bits with respect to the square root
of the blocklength, which is not done in [4]-[6].

The square-root law has been observed in various scenarios
in steganography [7]-[9]. Due to space limitation, we cannot
discuss the connections and differences between steganogra-
phy and LPD communications here.

Our setting can be briefly described as follows:

o We consider a DMC whose input alphabet contains an
“off” symbol. When the transmitter is switched off, it
always sends this symbol.

o The transmitter and the receiver share a secret key that
is sufficiently long.

e The adversary observes the same channel outputs as the
intended receiver, i.e., there is no wiretap structure.

e The LPD criterion is that the relative entropy between
the output distributions when a codeword is transmitted
and when the all-zero sequence is transmitted must be
sufficiently small [10].

IThe achievability part of the square-root law, but not the converse, is
independently derived in [6].
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We assume that the receiver does know when the transmitter
is sending a message. This is a realistic assumption because
the transmitter and the receiver can use part of their secret key
to perform synchronization prior to transmission.

The rest of this paper is arranged as follows. In Section II
we formulate the problem and briefly analyze the case where
the “off” input symbol induces an output distribution that can
be written as a mixture of the other output distributions; the
remaining sections focus on the case where it cannot. In Sec-
tion III we derive formulas that can be used to characterize the
maximum number of bits that can be transmitted. In Section IV
we derive a simpler expression for this number under some
conditions that are satisfied by many channels in practice. We
conclude the paper with some remarks in Section V. The key
ideas for proving our theorems are included. A full-length
paper with complete proofs is in preparation [11].

II. PROBLEM FORMULATION

Consider a DMC of finite input and output alphabets X
and ), and of transition law W (:|-). Throughout this paper,
we use the letter P to denote input distributions on & and the
letter () to denote output distributions on ). Let 0 € X be the
“off” input symbol; i.e., when the transmitter is not sending a
message, it always transmits 0. Denote

Qo(-) & W (-]0). (1

Without loss of generality, we assume that no two input
symbols induce the same output distribution; in particular,
Qo(-) = W(:|z) implies x = 0.

A (deterministic) code of blocklength n for message set M
consists of an encoder M — X", m — z" and a decoder
Y — M, y" +— m. The transmitter and the receiver choose
a random code of blocklength n for message set M using
a secret key shared between them. The adversary is assumed
to know the distribution according to which the transmitter
and the receiver choose the random code, but not their actual
choice.

The random code, together with a message M uniformly
drawn from M, induces a distribution Q™(-) on V™. We
require that, for some constant § > 0,

D(Q Q™) <. @)

Here Qf" denotes the n-fold product distribution of Qo,
i.e., the output distribution over n channel uses when the
transmitter is off. Note that condition (2), together with the
assumption that the adversary does not know the secret key
that is used to choose the random code, provides a limit on
the adversary’s probability of successfully detecting whether
the transmitter is on or off. For example, the total variation
distance between Q™ and Q" can be bounded via Pinsker’s
inequality.

At this point, we observe that an input symbol x with
supp(W (-|x)) &€ supp(Qo), where supp(-) denotes the support
of a distribution, should never be used by the transmitter.
Indeed, using such an input symbol with nonzero probability
would result in D (Q™[| Q") being infinity. Hence we can

drop all such input symbols, as well as all output symbols that
do not lie in supp(Qo), reducing the channel to one where

supp(Qo) = V. 3)

Throughout this paper we assume that (3) is satisfied.?

Our goal is to find the maximum possible value for log | M]|
for which a random codebook of length n exists that satisfies
condition (2), and whose average probability of error is at
most e. (Later we shall require that e be arbitrarily small.) We
denote this maximum value by K, (J,¢).

We call an input symbol z redundant if W (-|z) can be
written as a mixture of the other output distributions, i.e., if

W(-|z) € conv{W(:|z'): 2’ € X,2" # x}, 4

where conv denotes the convex hull. As we shall show,
K, (d,€) can increase either linearly with the blocklength n
or like \/n, depending on whether 0 is redundant or not.

A. Case 1: input symbol O is redundant

This is the case where there exists some distribution P on
X such that

P(0)=0 (5a)
> P@W(|z) = Qo). (5b)
TzEX
It can be seen that, for any ¢ > 0,
K
lim lim Knld,6) =max I(P,W), (6)
el0 n—o0 n

where the maximum is taken over input distribution P that sat-
isfies (5). Indeed, a random codebook generated independently
and identically distributed (IID) according to P that satisfies
(5) yields D(Q™|QF™) = 0. By the standard typicality
argument [12], the probability of a decoding error can be
made arbitrarily small as n goes to infinity. Conversely, for a
codebook whose empirical input distribution does not satisfy
(5b), D(Q™]|Q™) grows linearly in n and is hence unbounded
as n goes to infinity. Finally, a codebook that uses the symbol
0 in this case can be shown to be suboptimal, i.e., the empirical
distribution of an optimal codebook should satisfy (5a).

As an example, consider a binary symmetric channel with
an additional “off”” symbol as shown in Fig. 1. Its optimal input
distribution is uniform on {—1, 1}, and its capacity under the
LPD constraint (2) is the same as its capacity without this
constraint, and equals 1 — Hy(p), where Hy(-) is the binary
entropy function.

B. Case 2: input symbol 0 is not redundant

This is the case where no P satisfying (5) can be found. It
is the focus of the rest of this paper. We shall show that, in
this case, K,, grows like /n. Let?

K, (d,¢)

2For channels that cannot be reduced to one that satisfies (3), such as the
binary erasure channel, nontrivial LPD communication is not possible.
3By definition L can be infinity, as it is in Case 1.

L 2 lim lim
el poo

)
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Fig. 1. A binary symmetric channel on the alphabet {—1,1} with cross-
over probability p, with an additional “off” input symbol O which induces a
uniform output distribution.

Fig. 2. The binary symmetric channel with cross-over probability p.

We shall characterize L in the following sections.

Before proceeding with mathematical analyses, we provide
some intuition why positive communication rates cannot be
achieved in this case. We note that, to achieve a positive rate,
a necessary condition is that a non-vanishing proportion of
input symbols used in the codebook should be different from
the “off”” symbol 0. This would mean that the average marginal
distribution P on X has a positive probability at values other
than 0 and, since (Jy cannot be written as a mixture of output
distributions produced by nonzero input symbols, ) must
be different from Qo so D(Q||Qo) > 0. This implies that
D(Q™||QF™) must grow without bound as n tends to infinity.

A simple example for this case is the binary symmetric
channel in Fig. 2. Later we compute L for this channel.

III. GENERAL EXPRESSIONS FOR L

We have the following natural but nontrivial result.*
Theorem 1: For any DMC,

L= lim

n—oo

D max I(Py, W) ®)
where the maxima are taken over joint distributions on X’ x
Y induced by input distributions P, and channel W, whose
marginals @,, on ) satisfy

0
—. ®
n

4The results in [4] are derived based on the assumption that a similar
formula holds for the AWGN channel, but it does not prove such a formula.
We provide a complete proof in [11].

Proof Sketch: The converse part follows from standard
techniques. We use Fano’s inequality to show that the random
codebook must satisfy

K, <I(X™Y"™) + Ve, (10)

where €, tends to zero as n tends to infinity. Recall that the
distribution Q™ on Y™ must satisfy (2). Let P and @) denote
the average marginal distributions on X and ), respectively,
averaged over the codebook and over the n channel uses.
Clearly, @ is the output distribution induced by P via W.
By the chain rule and the concavity of I(P,W) in P, we
have

I(X™Y™) < nl(P,W). (11)

On the other hand, by the convexity of D(-||-) and the fact
that QOX " is a product distribution, we have

D(Q"1Qs™) = nD(Q] Qo).

The converse part of Theorem 1 is then established.

The achievability part requires new proof techniques. Let
{P,} be a sequence of input distributions such that the
induced output distributions {@,} satisfy (9). For every n,
we randomly generate a codebook by choosing the codewords
IID according to P,. It is clear that the output distribution on
Y*™ for this code is @, = Q" and that (2) is satisfied. It
remains to show that, provided that the size of the codebook
is smaller than 2"/(P».W)=v7en for some ¢, tending to zero
as n tends to infinity, the probability of a decoding error can
be made arbitrarily small. This cannot be proven using the
asymptotic equipartition property [12], because P, depends
on n. Neither can we directly apply the information-spectrum
method [13], [14], which is used when the communication rate
is positive and when no single-letter expression is required. In
our proof, we start with a one-shot achievability bound as in
[15], [16], and then carefully analyze the probability that the
information density deviates from I(P,,W). Details of the
proof are in [11]. [ |

Using Theorem 1 we can derive the following expression
for L.

Theorem 2: For any DMC satisfying (3), whose “off” input
symbol 0 is not redundant, and which has at least one input
symbol other than 0,° L is positive and finite, and is given by

Ywex P(@)D (W(|2)| Qo)

PO 1. Q) - QW)
,Z—
Qo(y)

(12)

L= (13)

yey

where @ is the output distribution induced by P via V.
Proof Sketch: For large n, the right-hand side of (9) is
close to zero, which, together with the assumption that 0 is not
redundant, requires that P, (0) be close to one. We let P be
P,, conditional on {X # 0}. The rest of the proof consists of

SBy our assumption, this input symbol induces an output distribution
different from Qg.
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Fig. 3. The value of L for the binary symmetric channel in Fig. 2 as a
function of p.

finding approximate expressions for I(P,, W) and D(Q™]|Qo)
in terms of P and Q, respectively. ]

For some channels (13) is very easy to compute.

Example 1: Binary symmetric channel.

Consider the binary symmetric channel in Fig. 2. Clearly,
the only possible choice for P in (13) is P(1) = 1. We
thus obtain the value of L as a function of p, which we
plot in Fig. 3. Not surprisingly, when p approaches 0.5, L
approaches zero, as does the capacity of the channel. It is
however interesting to notice that, when p approaches zero, L
also approaches zero, even though the capacity of the channel
approaches 1 bit per use. This is because, when p is very
small, it is very easy to distinguish the two input symbols 0
and 1 at the receiver end. Hence the LPD criterion requires
that the transmitter must use 1 very sparsely, limiting the
number of information bits it can send. The maximum of L
is approximately 1.35, achieved at p = 0.083.

IV. A SIMPLER BUT LESS GENERAL EXPRESSION FOR L

In this section we consider channels that satisfy the follow-
ing condition.

Condition 1: There exists a capacity-achieving input distri-
bution that uses all the input symbols.

Note that Condition 1 implies that no input symbol is
redundant; in particular, 0 is not redundant.

We next give a simple upper bound on L under Condition 1.
Later we provide an additional condition under which this
bound is tight.

Theorem 3: Consider a DMC that satisfies Condition 1.
Denote its capacity-achieving output distribution by Q*, then

12 o (385)

where varg, (-) denotes the variance of a function of Y where
Y has distribution Q.
The proof of Theorem 3 utilizes the following lemma.
Lemma 1: Let Q* denote the capacity-achieving output
distribution for a DMC W (-|-) of capacity C. Let P’ be any

(14)

input distribution, and let Q" denote the output distribution

induced by P’ via . Then

where equality holds if supp(P’) C supp(P*) for some
capacity-achieving input distribution P*.
Proof: We have the following identity (see [17]):

=Y P'(2)D(W(2)|Q") - D(Q'|Q").

reX

(16)

By the Kuhn-Tucker conditions for channel capacity [18],

DW(|z)|Q")) <C (17)
where equality holds if = € supp(P*). We hence have
C=> P(x)D(W(|2)|Q")
TeEX
> ) P'(@)D(W([2)]|Q), (18)
TEX

where equality holds if supp(P’) C supp(P*). Combining
(16) and (18) proves the lemma. [ |

Proof Sketch for Theorem 3: Note that under Condi-
tion 1, equality always holds in (15). Using this together with
Theorem 1 we obtain

n
L= Jim |2 (€ - min D@,
where the minimum is over @, € conv{W(:|z): z € X}
satisfying (9). To find an upper bound on L, we drop the
condition that Q, € conv{W(:|z): z € X}. Then the
minimum of D(Q,,||Q*) for a fixed D(Q,||Qo) is well known
to be achieved by a distribution of the form [19]

Qo(y)' M Q* (y)*
Zy'ey Qo(y) 12 Q* (')
for some positive A, which tends to zero as n tends to infinity.
It remains to compute D(Q,||/Qo) and D(Q,|Q*) for Q,, of
the form (20) for small \,,. In fact, when ), is close to zero,
D(Q]|Qo) is approximated by the Fisher Information [20]
which, in this case, equals the variance in (14):

A2 Y
Ghvarg, <1og gOEYD +0o(A2). (@)

(19)

@Qn(y) = (20)

D(Qn||Qo) =

This together with (9) implies that

A, < 20

+o(n=1/?).

(22)

e ()

On the other hand, one can show that D(Q,||Q*) satisfies

C — D(Qn]|Q) = Anvarg, <log gOEYD +o(A\). (23)

Combining (19), (22), and (23) proves the theorem. [ |

The bound (14) is tight for many channels, e.g., the binary
symmetric channel in Fig. 2. We next provide a sufficient
condition for (14) to be tight.
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Let s be the |)|-dimensional vector given by

o(y) = Qoly) (1og Q:—EZ’? n c) L yey. @4

Consider the linear system with unknowns o, z € X \ {0}:

Y ar(W(lz) = Qo) =s.

zeX\{0}

(25)

Solving (25) is a simple problem in linear algebra.

Theorem 4: Suppose Condition 1 is met. If (25) has non-
negative solutions, namely, if there exist constants o, > 0,
x € X\ {0} that satisfy (25), then (14) holds with equality.

Proof Sketch: The vector s represents the tangent of the
curve Q,,(y) given in (20) as a function of A, at A\, = 0. That
(25) has nonnegative solutions means that s lies in the convex
cone generated by {W(-|z) — Qo,x € X \ {0}}. This further
implies that, for small enough A,, @, of the form given in
(25) is a valid output distribution, which, as can be seen in the
proof of Theorem 3, guarantees (14) to hold with equality. H

Example 2: A k-array uniform-error channel.

Consider a channel with ¥ =) = {0,1,...,k — 1} and

1 - Db
Wyle) =4 _»

k-1’
where p € (0,1). Such a channel appears in direct-detection
optical communication with temporal or spatial pulse-position
modulation [21], [22]. Clearly, its capacity-achieving output
distribution Q* is uniform. It is easy to check that (25) has
nonnegative solutions. We can hence use Theorem 4 to obtain

y=2x

26
y#w (26)

L =+/2v(k,p) 27
where
1\’ k—1)\7
v(k,p) = (1 —p) (108; 1—p> +p <10g p)
1 k—1\°
—<(1—p)log1_p+plog ) . (28)

V. CONCLUDING REMARKS

A DMC in practice often represents discretization of a
continuous-alphabet channel. For example, Figs. 1 and 2 can
result from two different discretizations of the same AWGN
channel. In this sense, our results suggest that the optimal
discretization may depend heavily on whether there is an LPD
requirement or not.

The current paper focuses on DMCs, but the methods
introduced here can be applied to the AWGN channel as
well. In [11], we show that . = 1 for the AWGN channel
irrespectively of the noise power.

In practice, LPD communication systems of positive data
rates often can be implemented even when the channel model
does not seem to allow positive rates. Indeed, in such appli-
cations, the concern is often not that the transmitted signal
should be sufficiently weak, but rather that it should have
a wide spectrum and resemble white noise [23]. We believe

that one of the reasons why such systems may work is that
realistic channels often have memory. For example, on a
channel whose noise level varies with a coherence time that
is longer than the length of a codeword, the transmitter and
the receiver can use the adversary’s ignorance of the actual
noise level to communicate without being detected. One way
to formulate this scenario is to assume that the channel has
an unknown parameter that is fixed. This is discussed for
the binary symmetric channel in [24]. Further addressing this
scenario is part of ongoing research.
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