
Playback Delay in On-Demand Streaming
Communication with Feedback

Kaveh Mahdaviani, Ashish Khisti
ECE Dept., University of Toronto
Toronto, ON M5S3G4, Canada

Email: {kaveh, akhisti}@comm.utoronto.ca

Gauri Joshi, Gregory Wornell
EECS Dept., MIT

Cambridge, MA 02139, USA
Email: {gauri, gww}@mit.edu

Abstract—We consider a streaming communication system
where the source packets must be played back sequentially at
the destination and study the associated average playback delay.
We assume that all the source packets are available before the
start of transmission at the transmitter and consider the case
of an i.i.d. erasure channel with perfect feedback. We first
consider the case when the receiver buffer can be arbitrarily
large, and show that the average playback delay remains bounded
in the length of the stream provided that the channel bandwidth
is greater than a critical threshold. Our analysis involves the
application of martingale theory to study the transient behaviour
of a one dimensional random walk with drift. Conversely when
the channel bandwidth is smaller than the above threshold,
the average playback delay increases linearly with the stream
length. We also consider the finite buffer case and analyse the
playback delay of a greedy dynamic bandwidth scheme. We
further show through simulations that the achievable delay with
a finite receiver buffer is close to the infinite buffer case for
moderately large buffer values.

I. INTRODUCTION

In streaming communication, a sequence of source packets
must be delivered to the destination in-order and under strict
delay constraints. Unlike classical block transmission, the
study of fundamental limits of streaming communication re-
mains a fertile area of research. In this paper we are interested
in a point-to-point streaming setup when the entire stream is
available at the source at the start of the communication. The
source packets are labelled sequentially and must be played
in the same order. In each time step, only one packet can be
played, and the receiver is subject to a playback interruption
until the current packet becomes available. We consider an
i.i.d. packet erasure channel with ideal feedback and study the
achievable delay.

In [1] a similar setup is considered for real-time sources
where source packets are revealed to the transmitter in a causal
fashion. A delay metric called the total playback delay is intro-
duced (see also [2]) and shown to increase logarithmically with
the length of the stream, with or without feedback, when the
channel bandwidth is larger than a certain critical threshold. In
contrast in the present paper we show that in the same setup,
the expected playback delay remains bounded when all the
source packets are available non-causally at the transmitter.
Intuitively this gain arises from the fact that in the non-causal
setting, the receiver can fill its buffer with as many packets as
the channel allows the transmitter to send successfully, without

any limitations due to the unavailability of new packets. This
induces a positive drift on the buffer size, and the expected
time to get back to the empty buffer state tends to infinity.
Our formal analysis is based on the martingale theory and
involves analysis of the expected time spent in the transient
state of a one dimensional random walk with drift. We also
consider the case when the buffer at the receiver is finite,
and show via simulations that the achievable delay approaches
the infinite buffer case for moderately large buffer values.
In contrast the analysis technique in [1] is very different.
In the real-time setup the receiver experiences a sequence of
renewal processes. Using the Generalized Ballot theorem [3]
the probability distribution of the length of renewal processes
is derived and it is shown that the introduced delay metric
always grows logarithmically with the length of the stream. In
related works, broadcast extensions have been studied in [4],
[5], while streaming of causal sources in bursty adversarial
channels and without feedback has been studied in [6].

II. PROBLEM SETUP

The source consists of a stream of k information packets,
s1, · · · , sk, to be transmitted to the destination. Each source
packet is of unit size. Throughout this work we will inter-
changeably refer to the order of the packets with their age, as
if they have been created with that order, i.e. the packet sj will
be said to be older than the packet si+j , i > 0. The transmitter
transmits encoded packets xi at time step i ≥ 1, based on
a transmission scheme known by the receiver. Each encoded
packet is of size B for some integer1 B > 0 and packet xi is
transmitted at time step i over the channel. The link between
the source and the receiver is assumed to be an i.i.d. packet
erasure channel. We will denote the probability of erasure in
the channel by ε. Hence, the receiver will receive yi in time
step i which is equal to xi with probability 1−ε or is an erasure
indicator with probability ε independently for all i ≥ 1. We
assume that the transmitter will receive an instantaneous and
error-free feedback message about the transmitted packets. As
a result, the transmitter produces packet xi using an encoder
function fi as xi = fi(s1, · · · , sk, y1, · · · , yi−1), i > 0.

The receiver-end application plays the decoded packets
strictly in-order, at the rate of one packet per time step. We

1Although we consider the integer case for simplicity in this work the
results are extendible to the case of non-integer B as well.
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assume that all packets decoded until time step i are available
for playback in the same time step. At the receiver side,
correctly received packets will be collected and the receiver
uses recovery functions ŝj,i = gj,i(y1, · · · , yi) to recover the
information packet sj at time step i, which has not been
recovered before that time step. We assume ŝj,i is either equal
to sj or is equal to a failure symbol.

Since the playback is strictly in-order, any out-of-order
decoded packets are added to a playback buffer. Let the buffer
size be m. If the number of packets that are decoded but not
played exceeds m, the extra packets are dropped and marked
erased in the feedback sent to the source. We will denote the
first time step a specific source packet sj is correctly decoded
at the receiver and used or saved in the buffer by tj . We
denote the time step at which a source packet sj is used at
the receiver by dj . Therefore, for the first source packet s1 we
have d1 = t1, while for any other source packet sj , j > 1 we
have dj = max{dj−1 +1, tj}. In Section III we first consider
infinite buffer size m, and study the general case of finite
buffer in Section IV.

Definition 1 (Total Playback Delay). Assuming that the re-
ceiver uses the last information packet at time step tk we will
refer to the quantity Dk = dk−k, as the total playback delay
for the stream.

Remark 1. Note that for the ideal channel case, clearly dj =
j for j ∈ {1, · · · , k}, and therefore we must have that dj ≥
j in general. The difference dj − j represents the delay at
the receiver for using source packet sj compared to the ideal
playback. Moreover, since dj = max{dj−1+1, tj}, then dj is
indeed a non-decreasing function of the source packet index.
Dk then is referring to the maximum of the individual packet
delays in the stream consisting of k packets.

Remark 2. Having instantaneous and error-free feedback
available at the transmitter and only one receiver, it is easy
to see that the simple ARQ scheme which transmits the oldest
B packets at every time step is the optimal strategy in terms
of reducing the total playback delay Dk. Hence, throughout
this work we limit our discussion to this transmission strategy
and its dynamic bandwidth usage variations.

III. BANDWIDTH-DELAY TRADE-OFF WITH INFINITE

BUFFER

In this section we assume that the receiver buffer is infinite,
while the finite buffer case will be studied in section IV. Our
main result is summarized below.

Theorem 1. If B(1− ε) > 1, then the expected total playback
delay, E[Dk] for a stream of length k, is upper bounded by a
constant independent of k. Moreover, if B(1−ε) < 1, then the
expected total playback delay, E[Dk] for a stream of length k,
grows linearly with k.

The key tool used in establishing the first half of Theoem 1
is an analytical upper bound on the number of visits at a
transient state in a general one dimensional random walk.

D 0 1 B − 1 Bε

ε ε
ε

ε

1− ε1− ε

1− ε1− ε1− ε

Fig. 1. The one dimensional random walk defined on the set of states S

with infinite buffer size, fixed bandwidth usage B, and memoryless transition
probabilities as depicted in the figure.

Lemma 1. Consider a discrete time, one dimensional random
walk defined on the set of states S = {D, 0, 1, 2, · · · } as
depicted in Fig. 1 for a fixed positive integer B and 0 < ε < 1.
State D transitions to itself with probability ε and to state
B − 1 otherwise. Also for any other state i ∈ {0, 1, · · · }, the
state will change to i− 1 with probability ε and to i+B − 1
otherwise.

Let the number transitions from state 0 to state D, be
denoted by ND. Then starting from state 0, if B(1 − ε) > 1
then the expected time spent at state D will be upper bounded
by

E[ND]

1− ε
≤

εB

(1− ε)((1− ε)B − 1)
. (1)

The proof of this Lemma is provided in the Appendix. In
what follows the proof of Theorem 1 is provided.

Proof of Theorem 1: The first part of Theorem 1 is a
direct consequence of Lemma 1. Let us model the receiver
buffer with a one dimensional random walk with states S =
{D, 0, 1, 2, · · · }, where state D is the buffer starvation state
where the receiver experiences an interruption in the playback.
Hence the playback delay which is the number of interruptions
in the playback is equal to the number of visits to state D.
Every other state refers to the case that the receiver has played
back the required packet and the number of remaining packets
in the buffer is denoted by the state name. Hence the random
walk describing the buffer state of the receiver is isomorphic
to the random walk introduced in the description in Lemma
1, and we can directly apply Eq. (1) to first part of this proof:

E[Dk] ≤ E[D∞] =
E[ND]

1− ε
.

Since spending a time step in state D represents experiencing
a delay in the playback when B(1− ε) > 1, the expected total
playback delay is upper bounded by (1).

For the second part of the proof, if B(1 − ε) < 1, lets
consider the same one dimensional random walk as used
above, but this time assign the numerical value −1 to the
state D. We will upper bound the expected time between
two entrances to state D, as a renewal. Then showing this
renewal process has a finite renewal duration, using the law of
large numbers for the renewals [3] we conclude the number of
entrances to state D and hence the total playback delay grows
linearly with the stream length k. Let Xj denotes the change
in the number of packets stored in the receiver buffer at time
step j. We define S0 = B − 1 since whenever the receiver
buffer gets out of the state D it restart at state B− 1. Also let
Si = S0+

∑i
j=1 Xj i ≥ 1, and also Yi = Si+ i(1−B(1−ε))
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Fig. 2. The bandwidth-delay trade-off for different values of stream length
k, and ε = 0.5. This figure shows the transition in the behaviour of playback
delay at B =

1
(1−ε) = 2.

for i ≥ 0. Hence, Si is not a martingale since it has a negative
drift, but Yi for i ∈ {1, · · · } is a martingale with respect to
Fi = σ(X1, · · · , Xi) for i ∈ {1, · · · }, and F0 = ∅ as the drift
in the mean value of Si is removed in Yi. Now starting in
state B − 1, we have

Y0 = B − 1. (2)

We define T = inf{t > 0 s.t. St = −1}. Then T is a
stopping time and at T we have
YT = ST + E[T ](1−B(1− ε)) = −1 + E[T ](1−B(1 − ε)).

(3)
Now using the optional stopping time theorem [7] from (2)

and (3) we have
E[YT |F0] = E[Y0]

⇒− 1 + E[T ](1−B(1 − ε)) = B − 1

⇒E[T ] =
B

1−B(1 − ε)
. (4)

Note that the expected time before the first interruption is
upper bounded by this value since at the beginning we start in
state 0 rather than state B − 1. This means that the expected
time between two consecutive interruptions in the playback at
the receiver side would be upper bounded by (4). Since (4) is
a constant, then the number of interruptions before k packets
are recovered at the receiver would grow linearly with k, and
we will have

E[ND] ≥
k(1−B(1− ε))

B
⇒ E[Dk] ≥

k(1 −B(1− ε))

B(1 − ε)
.

(5)

Figure 2 shows the transition in the behaviour of the average
total playback delay as a function of the bandwidth usage B,
for different values of the stream length k from k = 103

packets to k = 106 packets. Here, ε = 0.5, and as depicted
in the figure, when B < 1

(1−ε) the average playback delay
increases linearly with the size of the stream, unlike the B >

1
(1−ε) where it converges to a constant as k grows.

IV. FINITE RECEIVER BUFFER

In this section we will consider the case that the receiver
buffer is limited. As a result at some time steps, depending on
the available free space in the receiver’s buffer, the transmitter
might not be able to transmit B packets. Therefore the
transmission scheme would be different in the sense that the
bandwidth usage at any given time step t would be adaptively
chosen based on the state of the receiver and the transmitter
would then transmit Bt packets. However, as will be shown
in this section, the average bandwidth usage in this case
will always be smaller than the minimum required average
bandwidth usage for having constant expected total playback
delay. In other words, it would not be possible to achieve
E[Bt] > (1 − ε)−1, when E[Bt] denotes the expected value
of Bt over the duration of transmission. As a result, the
expected total playback delay in this case will always be a
linear function of the the stream length k. However simulations
show that in practice for a fixed length of the stream and for
moderately large receiver buffers, we can achieve a playback
delay very close to the infinite buffer case.

First we propose a dynamic bandwidth scheme where the
source transmits just enough packets to refill the playback
buffer after each slot. This transmission scheme hence achieves
the best possible expected total playback delay as it maximizes
the packet transmission at any time step, according to the
limitation of the receiver’s buffer. Here we assume that the
receiver buffer has just enough capacity to keep maximum of
m source packets.

Definition 2 (Buffer Refill Scheme). The source transmits just
enough packets to refill the playback buffer. Thus the number
of packets transmitted in slot t is given by

Bt = m−Nt−1 + 1
where Nt−1 is the number of packets in the receiver buffer at
the end of slot t− 1.

Thus starting at time zero, the scheme transmits m + 1
packets in each slot. The first successful slot will result in
a full playback buffer. Since one packet is played in each slot,
the source has to transmit at least 1 to replenish the buffer.
In the following we provide the expected bandwidth usage
and the expected total playback delay for this scheme. Note
that the expected total playback delay for this scheme is the
lower bound for the expected total playback delay for any
transmission scheme with finite receiver buffer.

A. Bandwidth Usage

The bandwidth usage in slot t can be expressed as
Bt = 1 +min(m,Et−1)

where Et−1 is the length of the continuous burst of erasures
ending in slot t− 1. It represents the amount of empty space
in the receiver buffer and follows the geometric distribution
with parameter ε.

The expected bandwidth usage E[Bt] for t > m is given
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Fig. 3. The one dimensional random walk defined for the Buffer Refill
scheme with finite buffer size and memoryless transition probabilities as
depicted in the figure.

by,

E[Bt] = 1 +
m−1
∑

i=1

iεi(1 − ε) +mεm

= 1 + ε+ ε2 + · · · εm

=
1− εm+1

1− ε
(6)

In the analysis of the fixed bandwidth scheme, we saw that
when the buffer size m is infinity, we require B > 1/(1− ε).
In (6) we observe that as m→∞, the bandwidth usage goes
to the same limit 1/(1− ε). This implies that the the expected
bandwidth usage of any scheme with finite receiver buffer
will always be below the required bandwidth for the finite
expected total playback delay. In the following the expected
total playback delay of the Buffer Refill scheme is provided.

B. Playback Delay

The expected playback delay is equal to the expected total
playback time, E[Tk], times the steady state probability πD of
being in state D (the buffer starvation state).

The Markov chain for the buffer state Nt is as illustrated
in Fig. 3. We can evaluate the steady-state probabilities by
solving the following state transition equations.

(1− ε)πD = επ0,

πi = επi+1 for 0 ≤ i ≤ m− 1,

πm =
1− ε

ε
(πD + π0 + · · ·πm−1) ,

1 = πD +
m
∑

i=0

πi.

Solving, we get
πm = 1− ε, πD = εm+1. (7)

Moreover, the expected total playback time could be calcu-
lated as

E[Tk] ≥
k

1− πD
⇒ E[DK ] ≥

εm+1k

1− εm+1
.

Therefore E[DK ] grows linearly with k. However, as de-
picted in the figure 4, using a more practical transmission
scheme, the delay-bandwidth trade-off having a practical
buffer size will be very similar to the case of infinite re-
ceiver buffer. In these simulations the transmitter sets Bt =
min{m − Nt−1 + 1, B} for some fixed B. Hence the size
of the transmission packet is clamped to the available buffer
space whenever necessary and remains constant otherwise to
address the practical limits on the transmission packet size.
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Fig. 4. Effect of buffer size m, on bandwidth-delay trade-off for Buffer
Refill scheme with maximum transmission packet size B, k = 106, ε = 0.5.

V. CONCLUSION

We studied the achievable playback delay for perfect feed-
back over an i.i.d. erasure channel. Assuming all the packets
are initially available at the transmitter, we formulated the
problem based on a random walk describing the state of
receiver buffer. Our analysis is based on introducing a new
theorem to describe the transient behaviour of such a random
walk with drift. We showed that when the bandwidth usage
is above the inverse of the channel capacity, the expected
playback delay remains constant while otherwise it grows
linearly with the stream length. Both the result and the analysis
technique are different from the case when the source packets
are generated in real-time at the encoder. We also studied
the finite buffer limitation and dynamic bandwidth schemes
both analytically and using simulations. Study of delayed
feedback, without feedback, and broadcast cases remain as
some interesting follow-ups.

APPENDIX A
PROOF OF LEMMA 1

Proof: Starting from state zero, lets denote the probability
that the random walk would eventually enter the state D some
time in the future by P0. Similarly, starting from state B − 1,
lets denote the probability of entering state D sometime in the
future by PB−1. Then denoting the expected number of times,
random walk enters the state D, starting from state zero by
E[ND], we have

E[ND] =
∞
∑

j=1

jP0(1− PB−1)(PB−1)
(j−1) =

P0

1− PB−1
.

In order to find an upper bound for this quantity, we will
now derive an upper bound for P0. Also, since according to
the definition of the random walk, PB−1 ≤ P0, then

E[ND] ≤
P∗0

1− P∗0
. (8)

To derive P∗0, we first derive the bound for the first n time
steps, and then we let n to tend to infinity.
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Let Xi for i ∈ {1, 2, · · · , n} be a random variable which
takes value 0 with probability ε and value B with probability
1−ε. The random variable Xi corresponds to the jump at time
step i in the random walk, such that Xi is equal to the size
of the jump plus one. Also let Mi =

1
i

∑i
j=1 Xj .

Note that according to the definitions, whenever Mj < 1,
for any j ∈ {1, · · · , n}, the sum of all the jumps towards right
in the random walk up to time step j is less than the sum of
the jumps towards left, and hence the state D of the random
walk should have been visited.

Now we also define

Z−i =
B −Mi

B − 1
.

Then Z−i is a reverse martingale with respect to the
filtration F−i = σ(Mi,Mi+1, · · · ,Mn).

Note that to emphasise the reverse order considered for the
martingale Z−i and its corresponding information filtration
F−i we are using negative indexes for them. We skip the proof
that Z−i is a martingale with respect to the above information
filtration in the interest of space in this paper, but one could
find similar proofs in [7] (e.g. example 5.6.1).

We now define a stopping time T in the reverse time order
from n to 1 as follows. Let T = max{j ≤ n s.t. Mj < 1},
and set T = 1 if the set is empty. We will refer to this event
that the set {j ≥ −n s.t. M−j < 1} = ∅ as the event E.
Note that in order for T to be a stopping time on the event
E, T could not take any value larger than 1 since we need to
wait until the end of the reverse order of time from n to 1 to
realize such event has happened. In the Ec however, starting
from time n coming backwards to 1, T refers to the first time
that the empirical mean MT drops below one.

Also note that the event E is the event that the random walk
never hits state D as in E the empirical mean Mi is always
above one. Then clearly P0 = P[Ec]. Now we claim that on
E, since we have T = 1 by the definition, then MT = B.
To show this, note that on E, the random walk never goes to
state D, then at the first time step i = 1, the random walk
should have jumped to B − 1, and hence we have X1 = B.
Then MT = M1 = X1 = B. This in turn implies,

Z−T = 0 on E. (9)
Lets now partition the event Ec into the disjoint events

Ec
j = {T = j} for j ∈ {1, · · · , n}. Since j is the last

time Mj < 1 on Ec
j , then we can conclude that on Ec

j ,
Mj = MT≤(1−j)/j . As a result we have,

MT ≤
j − 1

j
⇒ Z−T ≥ 1 +

1

j(B − 1)
on Ec

j , (10)

Now note that, due to the definition of the partition on Ec,
the events Ec

i and Ec
j are disjoint for any i )= j, and they are

also disjoint given the information F−n = σ(Mn). Therefore
we have

P[Ec|Mn] =
n
∑

j=1

P[Ec
j |F−n]. (11)

Moreover, having (9), and (10), by definition we have

E[Z−T |F−n] =
n
∑

j=1

P[Ec
j |F−n]

(

1 +
1

j(B − 1)

)

. (12)

Therefore, since 1 ≤ 1 + 1/(j(B − 1)) for any j ∈
{1, · · · , n}, then from (11) and (12) we have

P[Ec|Mn] ≤ E[Z−T |F−n].
However, using the optional stopping time theorem [7], we

can also see that
E[Z−T |F−n] = E[Z−n|F−n] = Z−n =

B −Mn

B − 1
,

and as a result we have

P[Ec|Mn] ≤
B −Mn

B − 1
.

Now note that the probability of visiting state D, starting
from state zero, is equal to P[Ec], and also note that this is
an upper bound on the probability of visiting state D starting
from any state i > 0, due to the definition of the random walk.
Hence, when n goes to infinity, the probability of entering state
D starting from any state is upper bounded by

P∗0 = lim
n→∞

EMn

[

B −Mn

B − 1

]

= lim
n→∞

B − EMn
[Mn]

B − 1

= lim
n→∞

B − (1− ε)B

B − 1

=
εB

B − 1
.

Now substituting P∗0 in (8) we have

E[ND] ≤
P∗0

1− P∗0
=

εB

(1− ε)B − 1
.

In order to complete the proof, please note that according to
the definition of the random walk, once we enter the state D,
the random variable indicating the waiting time for exiting that
state is a Geometric random variable with mean (1 − ε)(−1).
As a result, the expected total time residing in state D is given
by

E[ND]

1− ε
=

εB

(1− ε) ((1− ε)B − 1))
.
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