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ABSTRACT
This monograph develops unifying perspectives on the prob-
lem of identifying universal low-dimensional features from
high-dimensional data for inference tasks in settings involv-
ing learning. For such problems, natural notions of uni-
versality are introduced, and a local equivalence among
them is established. The analysis is naturally expressed
via information geometry, which provides both conceptual
and computational insights. The development reveals the
complementary roles of the singular value decomposition,
Hirschfeld-Gebelein-Rényi maximal correlation, the canoni-
cal correlation and principle component analyses of Hotelling
and Pearson, Tishby’s information bottleneck, Wyner’s and
Gács-Körner common information, Ky Fan k-norms, and
Breiman and Friedman’s alternating conditional expecta-
tions algorithm. Among other uses, the framework facilitates
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understanding and optimizing aspects of learning systems, in-
cluding multinomial logistic (softmax) regression and neural
network architecture, matrix factorization methods for col-
laborative filtering and other applications, rank-constrained
multivariate linear regression, and forms of semi-supervised
learning.
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1
Introduction

In many contemporary and emerging applications of machine learning
and statistical inference, the phenomena of interest are characterized
by variables defined over large alphabets. Familiar examples, among
many others, include the relationship between individual consumers
and products that may be of interest to them, and the relationship
between images and text in a visual search setting. In such scenarios,
not only are the data high-dimensional, but the collection of possible
inference tasks is also large. At the same time, training data available
to learn the underlying relationships is often quite limited relative to
its dimensionality.

From this perspective, for a given level of training data, there is a
need to understand which inference tasks can be most effectively carried
out, and, in turn, what features of the data are most relevant to them.
A natural framework for addressing such questions rather broadly can
be traced back to the pioneering work of Hirschfeld [112], building on
that of Pearson [223], [224].

In this monograph, we develop an interpretation of the fundamental
problem as one of extracting “universally good” features, and establish
that diverse notions of such universality lead to precisely the same fea-

3
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4 Introduction

tures. The development emphasizes an information theoretic treatment
of the associated questions, and in particular we adopt a convenient “lo-
cal” information geometric analysis that provides useful insight. In turn,
as we describe, the interpretation of such features in terms of a suitable
singular value decomposition (SVD) facilitates their computation in a
host of applications.

While a variety of the included results exist in one form or another,
the treatment aims to be as self-contained as possible. It emphasizes
a development from first-principles together with common, unifying
terminology and notation, and pointers to the rich embodying literature,
both historical and contemporary. Results with no direct or indirect
attribution appear here for the first time, to the best of our knowledge.
Additionally, to make the treatment as accessible as possible, proofs are
largely deferred to appendices, allowing the main text to focus on the
statements of key results, their interpretation, and their application.

For the same reason, the development emphasizes distributions over
finite alphabets, with the continuous alphabet case largely (but not
entirely) focused on Gaussian distributions. These allow the key insights
to be revealed while avoiding a variety of technical issues and conditions
that would otherwise arise.

At its core, the methodology envisioned by Hirschfeld is based
on a particular decomposition of the joint distribution for a pair of
variables (X,Y ) whose relationship is of interest. Accordingly, we begin
by developing and characterizing this decomposition.

The version of record is available at: http://dx.doi.org/10.1561/0100000107



2
The Modal Decomposition of Joint Distributions

As a foundation, in this section we describe the modal decomposition
of bivariate distributions over finite alphabets into constituent features
that arises out of Hirschfeld’s analysis. We develop this decomposition
in terms of the SVD of a convenient matrix characterization of the
distribution and the associated conditional expectation operator. Several
illustrative examples are provided in Section 2.2.

To start, let X and Y denote random variables over finite alphabets
X and Y, respectively, with joint distribution1 PX,Y . Without loss of
generality we assume throughout that the marginals satisfy PX(x) > 0
and PY (y) > 0 for all x ∈ X and y ∈ Y, since otherwise the associated
symbols may be removed from their respective alphabets. Accordingly,
we let P

X×Y denote the set of all such distributions.
For an arbitrary feature2 f : X → R, let g : Y → R be the feature

induced by f through conditional expectation with respect to PX|Y (·|y),
i.e.,

g(y) = E
[
f(X)

∣∣Y = y
]
, y ∈ Y. (2.1)

1We use (upper case) P notation for the probability mass functions of discrete-
valued random variables.

2The literature sometimes refers to these as embeddings, referring to functions
of embeddings as features. However, our treatment does not require this distinction.

5
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6 The Modal Decomposition of Joint Distributions

Then we can express (2.1) in the form

g(y) = 1
PY (y)

∑
x∈X

PX,Y (x, y) f(x)

= 1√
PY (y)

∑
x∈X

PX,Y (x, y)√
PX(x)

√
PY (y)

√
PX(x) f(x),

i.e.,
ξY (y) =

∑
x∈X

B(x, y) ξX(x), (2.2)

where we have defined

B(x, y) ≜
PX,Y (x, y)√
PX(x)

√
PY (y)

, x ∈ X, y ∈ Y, (2.3)

and

ξX(x) ≜
√
PX(x) f(x) (2.4a)

ξY (y) ≜
√
PY (y) g(y). (2.4b)

Clearly ξX and ξY in (2.4) are equivalent representations for f and
g respectively. But B in (2.3) is also an equivalent representation for
PX,Y , as we will verify shortly. Moreover, (2.2) expresses that B has
an interpretation as a conditional expectation operator, and thus is
equivalent to PX|Y .

Next consider an arbitrary feature g̃ : Y→ R, and let f̃ : X→ R be
the feature induced by g̃ through conditional expectation with respect
to PY |X(·|x), i.e.,

f̃(x) = E
[
g̃(Y )

∣∣X = x
]
. (2.5)

Then using the notation (2.3) and that analogous to (2.4), i.e.,

ξ̄X(x) =
√
PX(x) f̃(x) (2.6a)

ξ̄Y (y) =
√
PY (y) g̃(y), (2.6b)

we can express (2.5) in the form

ξ̄X(x) =
∑
y∈Y

B̄(y, x)︸ ︷︷ ︸
≜B(x,y)

ξ̄Y (y), (2.7)
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7

where B̄ is the adjoint of B. Likewise B̄ is an equivalent representation
for PX,Y and, in turn, PY |X .

It is convenient to represent B as a matrix. Specifically, we let B
denote the |Y| × |X| matrix whose (y, x)th entry is B(x, y), i.e.,

B =
[√

PY

]−1
PY,X

[√
PX

]−1
, (2.8)

where
√

PX denotes a |X| × |X| diagonal matrix whose xth diagonal
entry is

√
PX(x), where

√
PY denotes a |Y|× |Y| diagonal matrix whose

yth diagonal entry is
√
PY (y), and where PY,X denotes the |Y| × |X|

matrix whose (y, x)th entry is PY,X(y, x). In [132], B is referred to as
the divergence transfer matrix (DTM) associated with PX,Y .3

Although we generally restrict our attention to the case in which
the marginals PX and PY are positive, note that extending the DTM
definition to arbitrary nonnegative marginals is straightforward. In
particular, it suffices make the x′th column of B all zeros if PX(x′) = 0
for some x′ ∈ X, and, similarly, the y′th row of B all zeros if PY (y′) = 0
for some y′ ∈ Y, i.e., (2.3) is extended via

B(x, y) ≜ 0, all x ∈ X, y ∈ Y such that
PX(x) = 0 or PY (y) = 0.

(2.9)

Useful alternate forms of B and B̄ are [cf. (2.3)]

B(x, y) =
PY |X(y|x)√

PY (y)

√
PX(x)

B̄(x, y) =
PX|Y (x|y)√
PX(x)

√
PY (y),

from which we obtain the alternate matrix representations

B =
[√

PY

]−1
PY |X

[√
PX

]
(2.10)

BT =
[√

PX

]−1
PX|Y

[√
PY

]
, (2.11)

3The work of [132], building on [36], focuses on a communication network setting.
Subsequently, [122]–[124], [192] develop connections to learning that motivate aspects
of, e.g., the present monograph.
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8 The Modal Decomposition of Joint Distributions

where PY |X denotes the |Y| × |X| left (column) stochastic transition
probability matrix whose (y, x)th entry is PY |X(y|x), and where, sim-
ilarly, PX|Y denotes the |X| × |Y| left (column) stochastic transition
probability matrix whose (x, y)th entry is PX|Y (x|y).

The SVD of B takes the form

B =
K−1∑
i=0

σiψ
Y
i

(
ψX

i

)T
i.e., B(x, y) =

K−1∑
i=0

σi ψ
X
i (x)ψY

i (y),
(2.12a)

with
K ≜ min{|X|, |Y|}, (2.12b)

where σi denotes the ith singular value, where ψY
i and ψX

i are the
corresponding left and right singular vectors, and where by convention
we order the singular values according to

σ0 ≥ σ1 ≥ · · · ≥ σK−1. (2.12c)

The following proposition establishes that B (and thus B̄) is a
contractive operator, a proof of which is provided in Appendix A.1.

Proposition 2.1. For B defined via (2.8) we have

∥B∥s = 1, (2.13)

where ∥ · ∥s denotes the spectral (i.e., operator) norm of its matrix
argument.4 Moreover, in (2.12), the left and right singular vectors ψX

0
and ψY

0 associated with singular value

σ0 = 1 (2.14a)

have elements

ψX
0 (x) ≜

√
PX(x) and ψY

0 (y) ≜
√
PY (y). (2.14b)

4The spectral norm of an arbitrary matrix A is

∥A∥s = max
i
σi(A),

where σi(A) denotes the ith singular value of A.
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9

It follows immediately from the second part of Proposition 2.1 that
B is an equivalent representation for PX,Y . Indeed, given B, we can
compute the singular vectors ψX

0 and ψY
0 , from which we obtain PX and

PY via (2.14b). In turn, using these marginals together with B, whose
(y, x)th entry is (2.3), yields PX,Y (x, y) = B(x, y)

√
PX(x)

√
PY (y). We

provide a more complete characterization of the class of DTMs, i.e.,
B(PX×Y) in Appendix A.2. In so doing, we extend the equivalence result
above, establishing the continuity of bijective mapping between PX,Y

and B.
The SVD (2.12) provides a key expansion of the joint distribution

PX,Y (x, y). In particular, we have the following result.

Proposition 2.2. Let X and Y denote finite alphabets. Then for any
PX,Y ∈ P

X×Y, there exist features f∗
i : X → R and g∗

i : Y → R, for
i = 1, . . . ,K − 1, such that

PX,Y (x, y) = PX(x)PY (y)
[
1 +

K−1∑
i=1

σi f
∗
i (x) g∗

i (y)
]
, (2.15)

where σ1, . . . , σK−1 are as defined in (2.12), and where5

E
[
f∗

i (X)
]

= 0, i ∈ {1, . . . ,K − 1} (2.16a)
E
[
g∗

i (Y )
]

= 0, i ∈ {1, . . . ,K − 1} (2.16b)
E
[
f∗

i (X) f∗
j (X)

]
= 1i=j , i, j ∈ {1, . . . ,K − 1} (2.16c)

E
[
g∗

i (Y ) g∗
j (Y )

]
= 1i=j , i, j ∈ {1, . . . ,K − 1}. (2.16d)

Moreover, f∗
i and g∗

i are related to the singular vectors in (2.12) accord-
ing to

f∗
i (x) ≜ ψX

i (x)√
PX(x)

, i = 1, . . . ,K − 1 (2.17a)

g∗
i (y) ≜ ψY

i (y)√
PY (y)

, i = 1, . . . ,K − 1, (2.17b)

5We use the Kronecker notation

1A =
{

1 A is true
0 otherwise
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10 The Modal Decomposition of Joint Distributions

where ψX
i (x) and ψY

i (y) are the xth and yth entries of ψX
i and ψY

i ,
respectively.

Proof. It suffices to note that

B(x, y) =
PX,Y (x, y)√
PX(x)

√
PY (y)

(2.18)

=
√
PX(x)

√
PY (y) +

K−1∑
i=1

σi ψ
X
i (x)ψY

i (y) (2.19)

=
√
PX(x)

√
PY (y)

+
K−1∑
i=1

σi

√
PX(x) f∗

i (x)
√
PY (y) g∗

i (y) (2.20)

=
√
PX(x)

√
PY (y)

[
1 +

K−1∑
i=1

σi f
∗
i (x) g∗

i (y)
]
, (2.21)

where to obtain (2.18) we have used (2.3), to obtain (2.19) we have
used (2.12a) with (2.14), and where to obtain (2.20) we have made
the choices (2.17), which we note satisfy the constraints (2.16). In
particular, (2.16a) follows from the fact that ψX

0 and ψX
i are orthogonal,

for i = 1, . . . ,K − 1, and, likewise, (2.16b) follows from the fact that
ψY

0 and ψY
i are orthogonal, for i = 1, . . . ,K − 1. Finally, (2.16c) and

(2.16d) follow from the remaining orthogonality relations among the
ψX

i and ψY
i , respectively. ■

The expansion (2.15) in Proposition 2.2 effectively forms the basis of
the methodology introduced by Hirschfeld [112], who sought to extend
the applicability of the methods of Pearson [224], [225]. An independent
development began with the work of Gebelein [91], upon which the
work of Rényi [232] was based.6 Building on the insights of Hirschfeld,
but independent of the work of Gebelein and Rényi, related aspects of
such analysis were also explored by Lancaster [158], [160]. The analysis
was reinvented again and further developed in [30], [31] using the
terminology “correspondence analysis,” and further interpreted in [102],

6The associated analysis was expressed in terms of eigenvalue decompositions of
BTB instead of the SVD of B, since the latter was not widely-used at the time.
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11

[165]. A particular focus of the correspondence analysis literature is on
visualization tools and techniques. Subsequent developments appear
in [94], [204], and more recent expositions and expansions include
[164], [212], and the practical guide [103]. More recently still, [47]–[49]
studies aspects of what correspondence analysis terms “principal inertia
components” (which are the squared singular values σ2

1, . . . , σ
2
K−1) in the

context of information and estimation theory. In particular, generalizing
the first principal inertia component (i.e. σ2

1), the work introduces the
term “k-correlation” to refer to σ2

1 + · · ·+σ2
k, establishes some properties

of k-correlation such as convexity and a data-processing inequality (DPI)
[47, Section II], and demonstrates some applications in the context of
estimation.

The features (2.17) in (2.15) can be interpreted as suitably normal-
ized sufficient statistics for inferences involving X and Y . Indeed, since

PY |X(y|x) = PY (y)
[
1 +

K−1∑
i=1

σi f
∗
i (x) g∗

i (y)
]

(2.22a)

PX|Y (x|y) = PX(x)
[
1 +

K−1∑
i=1

σi f
∗
i (x) g∗

i (y)
]
, (2.22b)

it follows that7

fK−1
∗ (x) ≜

(
f∗

1 (x), . . . , f∗
K−1(x)

)
is a sufficient statistic for inferences about y based on x, i.e., we have
the Markov structure

Y ↔ fK−1
∗ (X)↔ X.

Analogously,
gK−1

∗ (y) ≜
(
g∗

1(y), . . . , g∗
K−1(y)

)
is a sufficient statistic for inferences about x based on y, i.e., we have
the Markov structure

X ↔ gK−1
∗ (Y )↔ Y.

7Throughout, we use the convenient sequence notation a
l ≜ (a1, . . . , al).
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12 The Modal Decomposition of Joint Distributions

Moreover, we have8

X ↔ fK−1
∗ (X)↔ gK−1

∗ (Y )↔ Y. (2.23)

In turn, we have the mutual information (data-processing) relation9

I(X;Y ) = I
(
fK−1

∗ (X); gK−1
∗ (Y )

)
. (2.24)

Additionally, note that Proposition 2.2 has further consequences
that are direct result of its connection to the SVD of B. In particular,
since the left and right singular vectors are related according to

σiψ
Y
i = BψX

i (2.25a)

σiψ
X
i = BTψY

i , (2.25b)

it follows from (2.17) that the f∗
i and g∗

i are related according to

σi f
∗
i (x) = E

[
g∗

i (Y )
∣∣X = x

]
(2.26a)

σi g
∗
i (y) = E

[
f∗

i (X)
∣∣Y = y

]
, (2.26b)

for i = 1, . . . ,K−1. Moreover, in turn, we obtain, for i, j ∈ {1, . . . ,K−
1},

E
[
f∗

i (X) g∗
j (Y )

]
= E

[
E
[
f∗

i (X)
∣∣Y = y

]
g∗

j (Y )
]

= E
[
σi g

∗
i (Y ) g∗

j (Y )
]

= σi 1i=j . (2.27)
8Indeed, with F ≜ f

K−1
∗ (X) and G ≜ g

K−1
∗ (Y ), we have

PG|F,X(g, f, x) = PG|F (g, f)

since G ↔ Y ↔ F ↔ X so G ↔ F ↔ X, and

PY |G,F,X(y|g, f, x) = PY |G(y|g).

since Y ↔ G ↔ X ↔ F so Y ↔ G ↔ (X,F ).
9Indeed, since

X ↔ F ≜ f
K−1
∗ (X) ↔ G ≜ g

K−1
∗ (Y ) ↔ Y,

we have, with I(·; ·) denoting mutual information,

I(X;Y ) = I(F ;Y ) + I(X;Y |F )︸ ︷︷ ︸
=0

= I(F ;Y,G) = I(F ;G) + I(F ;Y |G)︸ ︷︷ ︸
=0

= I(F ;G).
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2.1 The Canonical Dependence Matrix

In our development, it is convenient for the analysis to remove the zeroth
mode from B. We do this by defining the matrix B̃ whose (y, x)th entry
is

B̃(y, x) ≜
PX,Y (x, y)− PX(x)PY (y)√

PX(x)
√
PY (y)

=
K−1∑
i=1

σi ψ
X
i (x)ψY

i (y), (2.28)

where in the last equality we have expressed its SVD in terms of that
for B, and from which we see that B̃ has singular values

1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σK−1 ≥ σK = 0,

where we have defined the zero singular value σK as a notational
convenience. Note that we can interpret B̃ as the conditional expectation
operator E[·|Y = y] restricted to the (sub)space of zero-mean features
f(X), which produces a corresponding zero-mean features g(Y ). We
refer to B̃, which we can equivalently write in the form10

B̃ =
[√

PY

]−1 [
PY |X −PY 1 1T

] [√
PX

]
(2.29)

=
K−1∑
i=1

σiψ
Y
i

(
ψX

i

)T
, (2.30)

as the canonical dependence matrix (CDM). Some additional perspec-
tives on this representation of the conditional expectation operator—and
thus the particular choice of SVD—are provided in Appendix A.3.

It is worth emphasizing that restricting attention to features of X
and Y that are zero-mean is without loss of generality, as there is an
invertible mapping between any set of features and their zero-mean
counterparts. As a result, we will generally impose this constraint.

2.2 Examples

We conclude with some simple, illustrative examples.

10As first used in Appendix A.1, we use 1 to denote a vector of all ones (with
dimension implied by context).
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Figure 2.1: A binary symmetric channel with parameter ϵ ∈ (0, 1/2].

Example 2.3. Suppose X is uniformly distributed over X = {0, 1}, and
suppose that Y is the output of a binary symmetric channel whose input
is X; specifically, with Y = {0, 1} and for some parameter ϵ ∈ [0, 1/2],
we have

PY |X(y|x) =

1− ϵ y = x

ϵ y ̸= x,
(2.31)

as depicted in Figure 2.1. Then Y is also uniformly distributed, and

B̃(x, y) =

1/2− ϵ x = y

ϵ− 1/2 x ̸= y,

i.e.,

B̃ =
(1

2 − ϵ
)[ 1 −1
−1 1

]
.

It follows that

σ1 = 1− 2ϵ and ψX
1 = ψY

1 = 1√
2

[
1
−1

]
,

whence
f∗

1 (x) = (−1)x

and g∗
1 = f∗

1 . By comparison, the log-likelihood ratio for this model is
(when ϵ > 0)

ℓ(x) ≜ log
PX|Y (x|0)
PX|Y (x|1) = (−1)x log

(1− ϵ
ϵ

)
∝ f∗

1 (x).

Example 2.4. Suppose X is uniformly distributed over X = {0, 1}, and
suppose that Y is the output of a binary erasure channel whose input is
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Figure 2.2: A binary erasure channel with parameter ϵ ∈ (0, 1/2].

X; specifically, with Y = {0,−, 1} and for some parameter ϵ ∈ [0, 1/2],
we have

PY |X(y|x) =

1− ϵ y = x

ϵ y = −,
(2.32)

as depicted in Figure 2.2. Then

PY (y) =

(1− ϵ)/2 y ∈ {0, 1}
ϵ y = −

and

B̃(x, y) =


√

1− ϵ/2 (x, y) ∈ {(0, 0), (1, 1)}
−
√

1− ϵ/2 (x, y) ∈ {(0, 1), (1, 0)}
0 y = −,

i.e.,

B̃ =
√

1− ϵ
2

 1 −1
0 0
−1 1

 .
It follows that

σ1 =
√

1− ϵ, ψX
1 = 1√

2

[
1
−1

]
, ψY

1 = 1√
2

 1
0
−1

 ,
whence

f∗
1 (x) = (−1)x and g∗

1(y) =

(−1)y/
√

1− ϵ y ∈ {0, 1}
0 y = −.
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Figure 2.3: A ternary channel with parameter ϵ ∈ (0, 1/2].

By comparison, the likelihood ratios for this model are, e.g.,

L1(x) =
PX|Y (x|0)
PX|Y (x|−) = (−1)x + 1 = f∗

1 (x) + 1

L2(x) =
PX|Y (x|1)
PX|Y (x|−) = (−1)1−x + 1 = f∗

1 (1− x) + 1.

Example 2.5. Suppose X is uniformly distributed over X = {0, 1, 2},
and suppose Y is the output of a ternary channel whose input is X. In
particular, with Y = {0, 1, 2} and for some parameter ϵ ∈ (0, 1/2] we
have

PY |X(y|x) =


1− ϵ/2 (x, y) ∈ {(0, 0), (2, 2)}
1− ϵ (x, y) = (1, 1)
ϵ/2 (x, y) ∈ {(0, 1), (2, 1), (1, 0), (1, 2)}
0 (x, y) ∈ {(0, 2), (2, 0)},

as depicted in Figure 2.3. Then Y is also uniformly distributed, and

B̃ =

1− ϵ/2 ϵ/2 0
ϵ/2 1− ϵ ϵ/2
0 ϵ/2 1− ϵ/2

− 1
3 · 1 · 1

T.

It follows that
σ1 = 1− ϵ

2 , σ2 = 1− 3
2ϵ,

and

ψX
1 = ψY

1 = 1√
2

 1
0
−1

 , ψX
2 = ψY

2 = 1√
6

 1
−2
1

 ,
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whence

f∗
1 (x) =


√

3/2 x = 0
0 x = 1
−
√

3/2 x = 2,
f∗

2 (x) =


1/
√

2 x = 0
−
√

2 x = 1
1/
√

2 x = 2,

and g∗
i = f∗

i for i ∈ {1, 2}. By comparison, likelihood ratios for this
model are, e.g.,

L1(x) =
PX|Y (x|0)
PX|Y (x|1) =


a x = 0
b x = 1
0 x = 2

L2(x) =
PX|Y (x|2)
PX|Y (x|1) =


0 x = 0
b x = 1
a x = 2

a ≜
1− ϵ/2
ϵ/2

b ≜
ϵ/2

1− ϵ .

It is straightforward to verify that there exists an invertible transfor-
mation between (f∗

1 , f
∗
2 ) and (L1,L2); in particular, one can readily

construct a one-to-one function ϑ : f∗
1 (X) × f∗

2 (X) → L1(X) ×L2(X)
such that ϑ

(
f∗

1 (x), f∗
2 (x)

)
=
(
L1(x),L2(x)

)
for all x ∈ X.

Example 2.6. Suppose X has a (positive) distribution PX over X =
{1, . . . ,K} for some K > 0, and Y = X. Then PX,Y (x, y) = PX(x)1y=x

and PY = PX , and B̃ has entries

B̃(x, y) =

1− PX(x) x = y

−
√
PX(x)PY (y) x ̸= y,

which we note is symmetric and idempotent (i.e., an orthogonal projec-
tion matrix): B̃2 = B̃ = B̃T. Hence, σ1, . . . , σK−1 ∈ {0, 1}. Moreover,11

B̃− I = ψX
0
(
ψX

0
)T
,

with ψX
0 as defined via (2.14b). It follows that σ1 = · · · = σK−1 = 1, and

the corresponding (left and right) singular vectors span the orthogonal
complement of the vector ψX

0 .
11We use I to denote the identity matrix of appropriate dimension.
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That all the singular values (except σK) are unity reflects that Y is
perfectly predictable from X (and vice-versa). Note that we obtain the
same modal decomposition structure when, more generally, Y = ϑ(X)
for some one-to-one map ϑ : X→ ϑ(X), i.e, Y = ϑ(X) is a relabeling of
the symbols in X.

Example 2.7. For δ ∈ (0, 1), suppose X = Y = {0, 1, 2}, and

PX,Y (x, y) =


δ (x, y) = (0, 0)
(1− δ)/4 (x, y) ∈ {1, 2} × {1, 2}
0 otherwise.

Then

PX(x) =

δ x = 0
(1− δ)/2 x ∈ {1, 2},

and PY = PX , and thus

B̃ =

 1− δ −
√
δ(1− δ)/2 −

√
δ(1− δ)/2

−
√
δ(1− δ)/2 δ/2 δ/2

−
√
δ(1− δ)/2 δ/2 δ/2

 .
It follows that

σi =

1 i = 0
0 i ∈ {1, 2}

and ψX
1 = ψY

2 =

−
√

1− δ√
δ/2√
δ/2

 ,
and hence

f∗
1 (x) =

−
√

(1− δ)/δ x = 0√
δ/(1− δ) x ∈ 1, 2

with g∗
1 = f∗

1 . That there is a unit singular value reflects that part of Y
is perfectly predictable from X (and vice-versa).

Example 2.8 ([81]). For n > 0, suppose C,A1, . . . , An−1, B1, . . . , Bn−1
are independent and uniformly distributed on {0, 1}, and let

X = C +
n−1∑
i=1

Ai2
i and Y = C +

n−1∑
i=1

Bi2
i.
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Then X and Y are uniformly distributed on X = Y = {0, 1, . . . , 2n − 1}
and

PX,Y (x, y) =

1/2n+1 x− y is even
0 x− y is odd,

so
B̃(x, y) = (−1)x−y/2n, x ∈ X, y ∈ Y.

For example, for n = 2, we have

B̃ = 1
4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .
It follows that σi = 1i=1 and ψY

1 = ψX
1 with ψX

1 (x) = (−1)x/2n/2,
whence f∗

1 (x) = (−1)x and g∗
1 = f∗

1 . That there is a unit singular
value again reflects that part of Y is perfectly predictable from X (and
vice-versa).
Example 2.9 ([75]). Suppose U ∈ {−1, 1}, V ∈ {−1, 1}, and W ∈ {0, 1}
are independent random variables with P(U = 1) = P(V = 1) = 1/2
and P(W = 1) = ϵ ∈ (0, 1). In turn, let X = UW and Y = VW , so
X = Y = {−1, 0, 1}. Then since |X| = |Y |, it follows that σ1 = 1. A
more detailed analysis yields

B̃ =

 (1− ϵ)/2 −
√
ϵ(1− ϵ)/2 (1− ϵ)/2

−
√
ϵ(1− ϵ)/2 ϵ −

√
ϵ(1− ϵ)/2

(1− ϵ)/2 −
√
ϵ(1− ϵ)/2 (1− ϵ)/2

 ,
from which we obtain

σ1 = 1, σ2 = 0 and f∗
1 (x) = (−1)|x|

(1− ϵ
ϵ

)|x|−1/2
,

and g∗
1 = f∗

1 . More generally, for an arbitrary numeric random variable
W we obtain σ1 = 1, as discussed in [75].
Example 2.10. Suppose X = Y = {0, 1, 2} and

PX,Y (x, y) =


1/2 (x, y) = (0, 0)
1/6 (x, y) ∈ {(1, 1), (2, 2)}
1/12 (x, y) ∈ {(1, 2), (2, 1)}
0 (x, y) ∈ {(0, 1), (1, 0), (0, 2), (2, 0)},
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so

PX(x) =

1/2 x = 0
1/4 x ∈ {1, 2}

and PY = PX . Then

B̃ =

 1/2 −1/
√

8 −1/
√

8
−1/
√

8 5/12 1/12
−1/
√

8 1/12 5/12

 .
It follows that

σ1 = 1 and σ2 = 1/3,

and

ψX
1 = ψY

1 =

−1/
√

2
1/2
1/2

 and ψX
2 = ψY

2 =

 0
1/
√

2
−1/
√

2

 ,
whence

f∗
1 (x) =

−1 x = 0
1 x ∈ {1, 2}

and f∗
2 (x) =


0 x = 0
1 x = 1
−1 x = 2,

and (g∗
1, g

∗
2) = (f∗

1 , f
∗
2 ). We note that, consistent with (2.27), we have

P
(
f∗

1 (X) = g∗
1(Y )

)
= 1.
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3
Variational Characterization of the

Modal Decomposition

There is a natural and insightful variational characterization of the
modal decomposition of Section 2. In this section, we develop this
alternative view in terms of standard SVD analysis, following an ap-
proach to which both Gebelein [91] and Rényi [232] made foundational
contributions. Accordingly, the result is often referred to as Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation analysis. Using this analysis,
we interpret HGR maximal correlation as the Ky Fan k-norm of the
CDM, and obtain the features defining the modal decomposition via an
optimization.

We develop the desired variational characterization of the feature
functions (2.17), viz., (f∗

i , g
∗
i ), i = 1, 2, . . .K − 1, in Section 3.2, after

first summarizing the requisite linear algebra in the following section.

3.1 Variational Characterizations of the SVD

Some classical variational results on the SVD that will be useful in
our analysis. First, we have the following lemma (see, e.g., [114, Corol-
lary 4.3.39, p. 248]).
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22 Variational Characterization of the Modal Decomposition

Lemma 3.1. Given an arbitrary k1 × k2 matrix A and any k ∈
{
1, . . . ,

min{k1, k2}
}
, we have

max{
M∈Rk2×k : MTM=I

}∥∥AM
∥∥2

F =
k∑

i=1
σi(A)2, (3.1)

where ∥ · ∥F denotes the Frobenius norm of its matrix argument,1 and
where σ1(A) ≥ · · · ≥ σmin{k1,k2}(A) denote the (ordered) singular values
of A. Moreover, the maximum in (3.1) is achieved by

M =
[
ψ1(A) · · · ψk(A)

]
, (3.2)

with ψi(A) denoting the right singular vector of A corresponding to
σi(A), for i = 1, . . . ,min{k1, k2}.

Second, the following lemma, essentially due to von Neumann (see,
e.g., [174] [114, Theorem 7.4.1.1]), will also be useful in our analysis,
and can be obtained using Lemma 3.1 in conjunction with the Cauchy-
Schwarz inequality.

Lemma 3.2. Given an arbitrary k1 × k2 matrix A, we have

max{
M1∈Rk1×k

, M2∈Rk2×k :
MT

1 M1=MT
2 M2=I

} tr
(
MT

1 AM2
)

=
k∑

i=1
σi(A), (3.3)

with σ1(A) ≥ · · · ≥ σmin{k1,k2}(A) denoting the (ordered) singular
values of A. Moreover, the maximum in (3.3) is achieved by

Mj =
[
ψ

(j)
1 (A) · · · ψ(j)

k (A)
]
, j = 1, 2, (3.4)

with ψ(1)
i (A) and ψ(2)

i (A) denoting the left and right singular vectors,
respectively, of A corresponding to σi(A), for i = 1, . . . ,min{k1, k2}.

1Specifically, the Frobenius norm of an arbitrary matrix A is

∥A∥F ≜ tr
(
ATA

)
=
∑

i

σi(A)2
,

where σi(A) denotes the ith singular value of A, and were tr(·) denotes the trace of
its matrix argument.
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3.2 Maximal Correlation Features

We now have the following result, which relates the modal decomposition
and correlation maximization, and reveals the role of Ky Fan k-norms
(as defined in, e.g., [114, Section 7.4.8]) in the analysis.

Proposition 3.3. For any k ∈ {1, . . . ,K − 1}, the dominant k features
(2.17) in Proposition 2.2, i.e.,

fk
∗ ≜ (f∗

1 , . . . , f
∗
k ) and gk

∗ ≜ (g∗
1, . . . , g

∗
k), (3.5)

are obtained via2

(fk
∗ , g

k
∗ ) = arg min

(fk
,g

k)∈Fk×Gk

E
[∥∥fk(X)− gk(Y )

∥∥2] = arg max
(fk

,g
k)∈Fk×Gk

σ(fk, gk),

(3.6a)

where
σ(fk, gk) ≜ E

[(
fk(X)

)T
gk(Y )

]
(3.6b)

and

Fk ≜
{
fk : E

[
fk(X)

]
= 0, E

[
fk(X) fk(X)T

]
= I

}
(3.6c)

Gk ≜
{
gk : E

[
gk(Y )

]
= 0, E

[
gk(Y ) gk(Y )T

]
= I

}
. (3.6d)

Moreover, the resulting maximal correlation is

σ(fk
∗ , g

k
∗ ) = E

[(
fk

∗ (X)
)T
gk

∗ (Y )
]

=
k∑

i=1
σi, (3.7)

which we note is the Ky Fan k-norm of B̃.3

2We use ∥ · ∥ to denote the Euclidean norm, i.e.,
∥∥ak
∥∥ =

√∑k

i=1 a
2
i for any k

and a
k.

3We use ∥·∥(k) to denote the Ky Fan k-norm of its argument, i.e., for A ∈ Rk1×,k2 ,

∥A∥(k) ≜
k∑

i=1

σi(A), (3.8)

with σ1(A) ≥ · · · ≥ σk(A) denoting the singular values of A, for k ∈ {1,min{k1, k2}}.
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24 Variational Characterization of the Modal Decomposition

Proof. First, note that the constraints (3.6c) and (3.6d) express (2.16)
in Proposition 2.2. Next, to facilitate our development, we define [cf.
(2.4)]

ξX
i (x) ≜

√
PX(x) fi(x), x ∈ X (3.9a)

ξY
i (y) ≜

√
PY (y) gi(y), y ∈ Y. (3.9b)

for i = 1, . . . ,K We refer to ξX
i and ξY

i as the feature vectors associated
with the feature functions fi and gi, respectively, and we further use ξX

i

and ξY
i to denote column vectors whose xth and yth entries are ξX

i (x)
and ξY

i (y), respectively. Then

σ(fk, gk) =
k∑

i=1
σi(fi, gi) (3.10a)

with

σi(fi, gi) = E[fi(X) gi(Y )] =
(
ξY

i

)TB ξX
i =

(
ξY

i

)TB̃ ξX
i , (3.10b)

where the last equality in (3.10b) follows from the mean constraints in
(3.6c) and (3.6d), which imply, for i = 1, . . . ,K,∑

x∈X

√
PX(x) ξX

i (x) =
∑
y∈Y

√
PY (y) ξY

i (y) = 0.

In turn, from (3.10) we have

σ(fk, gk) =
k∑

i=1

(
ξY

i

)TB̃ ξX
i = tr

((
ΞY )TB̃ ΞX

)
, (3.11)

where

ΞX ≜
[
ξX

1 · · · ξX
k

]
(3.12a)

ΞY ≜
[
ξY

1 · · · ξY
k

]
. (3.12b)

Moreover, from the covariance constraints in (3.6c) and (3.6d) we have(
ΞX)TΞX =

(
ΞY )TΞY = I. (3.13)
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Hence, applying Lemma 3.2 we immediately obtain that (3.11) is maxi-
mized subject to (3.13) by the feature vectors

ΞX = ΨX
(k) (3.14a)

ΞY = ΨY
(k), (3.14b)

with

ΨX
(k) ≜

[
ψX

1 · · · ψX
k

]
(3.15a)

ΨY
(k) ≜

[
ψY

1 · · · ψY
k

]
, (3.15b)

whence f∗
i and g∗

i as given by (2.17), for i = 1, . . . , k. The final statement
of the proposition follows immediately from the properties of the SVD;
specifically, (

ψY
i

)TB̃ψX
i = σi, i = 1, . . . , k,

i.e., (
ΨY

(k)
)TB̃ ΨX

(k) = Σ(k), (3.16)

with Σ(k) denoting a (k × k) diagonal matrix with diagonal entries
σ1, . . . σk. ■

The quantity (3.7) is often referred to as the Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation associated with the distribution PX,Y ,
particularly in the special case k = 1. Note that when k = 1, the Ky Fan
k-norm specializes to the spectral norm. In practice, larger values of k are
generally more useful for measuring the degree of dependence. Indeed,
as follows from the discussion in [81], [106], [149], ∥B̃∥s can achieve
its maximum of unity even when X and Y are nearly independent,
as Example 2.8 (reproduced from [81]) illustrates when n is large. By
contrast, in this example, ∥B̃∥(k) = 1 when k = 2n − 1, which is much
smaller than its maximum possible value of 2n − 1 in this regime,
reflecting the weak dependence.
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4
Local Information Geometry

The introduction to modal decompositions in the preceding sections
emphasizes a Euclidean geometry. In contrast, the standard information
geometry based on Kullback-Leibler (KL) divergence [8], [9], [63], [71],
which underlies the information-theoretic analysis of inference and
learning, is nonEuclidean. However, information geometry is locally
Euclidean, and thus valuable information-theoretic perspectives can be
obtained through a local geometric analysis on the (relative interior
of the) probability simplex. This analysis corresponds to the use of
χ2-divergence. The roots of such analysis date back at least to the work
of Pearson, whose mean-square contingency measure is based on this
divergence [223], and, later, Hirschfeld [112].

In this section, we develop the required foundations of this anal-
ysis. In the resulting Euclidean information space, distributions are
represented as information vectors, and features as feature vectors, and
we develop an equivalence between them via log-likelihoods. Via this
geometry, we develop a suitable notion of weakly dependent variables
for which we obtain a decomposition of mutual information and through
which we interpret truncated modal decompositions as “information
efficient.” Additionally, we characterize the error exponents in local
decision-making in terms of (mismatched) feature projections.

26
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4.1. Basic Concepts, Terminology, and Notation 27

Further interpretation of the features fK−1
∗ and gK−1

∗ arising out
of the modal decomposition of Section 2 benefits from developing the
underlying inner product space. More specifically, a local analysis of
information geometry leads to key information-theoretic interpretations
of (2.17) as universal features. Accordingly, we begin with some basic
definitions.

4.1 Basic Concepts, Terminology, and Notation

Let P
Z denote the space of distributions on some finite alphabet Z,

where |Z| <∞, and let relint(PZ) denote the relative interior of PZ, i.e.,
the subset of positive distributions.

Definition 4.1 (ϵ-Neighborhood). For a given ϵ > 0, the ϵ-neighborhood
of a reference distribution P0 ∈ relint(PZ) is the set of distributions in
a (Neyman) χ2-divergence [211] ball of radius ϵ2 about P0, i.e.,

N
Z
ϵ (P0) ≜

{
P ′ ∈ P

Z : χ2(P ′∥P0) ≤ ϵ2
}
, (4.1a)

where for P ∈ P
Z and Q ∈ relint(PZ),

χ2(P∥Q) ≜
∑
z∈Z

(
Q(z)− P (z)

)2
Q(z) . (4.1b)

The use of χ2-divergence is both convenient and natural, as it is a
second-order approximation to KL divergence [71]; specifically,1

1More generally, [71, Theorem 4.1] establishes that χ2-divergence is a second-order
approximation to any f -divergence

Df (P∥Q) =
∑
z∈Z

Q(z) f
(
P (z)
Q(z)

)
for which f

′′(1) exists and is positive, where f : (0,∞) → R is convex and satisfies
f(1) = 0.
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D(P∥Q) =
∑
z∈Z

P (z) log P (z)
Q(z)

=
∑
z∈Z

[
Q(z) +

(
P (z)−Q(z)

)]
log
[
1 +

(
P (z)−Q(z)

Q(z)

)]

=
∑
z∈Z

[
Q(z) +

(
P (z)−Q(z)

)] ∞∑
l=1

(−1)l−1

l

(
P (z)−Q(z)

Q(z)

)l

= 1
2χ

2(P∥Q) + OO

(
χ2(P∥Q)

)
, χ2(P∥Q)→ 0,

where we have used the Taylor series expansion

log(1 + ω) =
∞∑

l=1

(−1)l−1

l
ωl.

In the sequel, we assume that all the distributions of interest, in-
cluding all empirical distributions that may be observed, lie in such
an ϵ-neighborhood of the prescribed P0. While we don’t restrict ϵ to
be small, most of the information-theoretic insights arise from the
asymptotics corresponding to ϵ→ 0.

An equivalent representation for a distribution P ∈ N
Z
ϵ (P0) is in

terms of its information vector

ϕ(z) ≜ P (z)− P0(z)
ϵ
√
P0(z)

, (4.2)

which we note satisfies
∥ϕ∥ ≤ 1, (4.3)

with ∥ · ∥ denoting the usual Euclidean norm.2 We will sometimes find
it convenient to express ϕ = ϕ(·) as a |Z|-dimensional column vector ϕ,
according to some arbitrarily chosen but fixed ordering of the elements
of Z.

2Specifically, for ϕ defined on Z,

∥ϕ∥2 ≜
∑
z∈Z

ϕ(z)2
.
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Hence, we can equivalently interpret the (|Z|− 1)-dimensional neigh-
borhood N

Z
ϵ (P0) as the set of distributions whose corresponding infor-

mation vectors lie in the unit Euclidean ball about the origin. Note that
since ∑

z∈Z

√
P0(z)ϕ(z) = 0, (4.4)

the (|Z| − 1)-dimensional vector space subset

I
Z(P0) =

{
ϕ :
〈√

P0, ϕ
〉

= 0 and ∥ϕ∥ ≤ 1
}
, (4.5)

with ⟨·, ·⟩ denoting the usual Euclidean inner product,3 characterizes
all the possible information vectors: ϕ ∈ I

Z(P0) if and only if P ∈
N

Z
ϵ (P0), for all ϵ sufficiently small. It is convenient to refer to I

Z(P0) as
information space. When the relevant reference distribution P0 is clear
from context we will generally omit it from our notation, and simply
use I

Z to refer to this space.
For a feature function h : Z→ R, we refer to

ξ(z) ≜
√
P0(z)h(z) (4.6)

as its associated feature vector.4 As with information vectors, we will
sometimes find it convenient to express ξ = ξ(·) as a |Z|-dimensional
column vector ξ, according to the chosen ordering of the elements of
Z. Moreover, there is an effective equivalence of feature vectors and
information vectors, which the following proposition establishes. A proof
is provided in Appendix B.1.

Proposition 4.2. Let P0 ∈ relint(PZ) be an arbitrary reference distri-
bution, and ϵ a positive constant. Then for any distribution P ∈ P

Z,

h(z) = 1
ϵ

(
P (z)
P0(z) − 1

)
(4.7)

3Specifically, for ϕ1 and ϕ2 defined on Z,

⟨ϕ1, ϕ2⟩ ≜
∑
z∈Z

ϕ1(z)ϕ2(z).

4Note that is a simple generalization of the terminology introduced after (3.9).
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is a feature function satisfying

EP0

[
h(Z)

]
= 0, (4.8)

and has as its feature vector the information vector of P (z), i.e.,

ξ(z) = ϕ(z) = P (z)− P0(z)
ϵ
√
P0(z)

. (4.9)

Conversely, for any feature function h : Z→ R such that (4.8) holds,

P (z) = P0(z)
(
1 + ϵh(z)

)
(4.10)

is a valid distribution for all ϵ sufficiently small, and has as its informa-
tion vector the feature vector of h, i.e.,

ϕ(z) = ξ(z) =
√
P0(z)h(z). (4.11)

The following corollary of Proposition 4.2 specific to the case of
(relative) log-likelihood feature functions is further useful in our analysis.
A proof is provided in Appendix B.2.

Corollary 4.3. Let P0 ∈ relint(PZ) be an arbitrary reference distribution
and ϵ a positive constant. Then for any distribution P ∈ N

Z
ϵ (P0) with

associated information vector ϕ, the feature vector ξLL associated with
the relative log-likelihood feature function5

hLL(z) ≜ 1
ϵ

(
log P (z)

P0(z) − EP0

[
log P (Z)

P0(Z)

])
, z ∈ Z (4.12)

satisfies6

ξLL(z) = ϕ(z) + OO(1), ϵ→ 0, z ∈ Z. (4.13)
Conversely, every feature function h : Z→ R satisfying EP0

[
h(Z)

]
= 0

can be interpreted to first order as a (relative) log-likelihood, i.e., can
be expressed in the form

h(z) = 1
ϵ

(
log P (z)

P0(z) − EP0

[
log P (Z)

P0(Z)

])
+ OO(1), ϵ→ 0, z ∈ Z,

(4.14)
for some P ∈ P

Z

5Throughout, all logarithms are base e, i.e., natural.
6Note that the OO(1) term has zero mean with respect to P0, consistent with

ξLL ∈ I
Z(P0).
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A consequence of Proposition 4.2 is that we do not need to distinguish
between feature vectors and information vectors in the underlying inner
product space. Indeed, note that when without loss of generality we
normalize a feature h so that both (4.8) and

EP0

[
h(Z)2] = 1,

are satisfied, then we have ξ ∈ I
Z(P0), where ξ is the feature vector

associated with h, as defined in (4.6).
The following lemma, verified in Appendix B.3, interprets inner

products between feature vectors and information vectors.

Lemma 4.4. For any P0 ∈ relint(PZ), let h be a feature function
satisfying (4.8) with associated feature vector ξ ∈ I

Z(P0). Then for any
ϵ > 0 and P ∈ N

Z
ϵ (P0) with associated information vector ϕ ∈ I

Z(P0),

EP [h(Z)] = ϵ
〈
ϕ, ξ

〉
.

The squared-norm of a feature vector is its variance; specifically, for
a feature function h satisfying (4.8) so ξ ∈ I

Z(P0),

EP0

[
h(Z)2] = ∥ξ∥2. (4.15)

However, it is natural to interpret the squared-norm of an information
vector in terms of KL divergence7 with respect to P0, which follows as
a special case of the following more general lemma. A proof is provided
in Appendix B.4.

Lemma 4.5. For a given P0 ∈ relint(PZ) and ϵ > 0, let P1, P2 ∈ N
Z
ϵ (P0)

be arbitrary, and let ϕ1 and ϕ2 denote the corresponding information
vectors, respectively. Then

D(P1∥P2) ≜
∑
z∈Z

P1(z) log P1(z)
P2(z) = ϵ2

2 ∥ϕ1 − ϕ2∥
2 + OO(ϵ2), ϵ→ 0.

(4.16)
7For P,Q ∈ P

Z, we use the usual

D(P∥Q) =
∑
z∈Z

P (z) log P (z)
Q(z)

to denote KL divergence of Q from P .
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Moreover, for P ∈ N
Z
ϵ (P0) and with ϕ denoting its information vector,8

we have as a special case

D(P∥P0) = ϵ2

2 ∥ϕ∥
2 + OO(ϵ2), ϵ→ 0, (4.17)

since ϕ0 ≡ 0 is the information vector associated with P0.

Note that as (4.16) reflects, divergence is locally symmetric in P1
and P2—specifically, to first order in ϵ2.

Additionally, in (4.16) we recognize ϕ1− ϕ2 as, to first order, the in-
formation vector associated with the log-likelihood ratio feature function

hLLR(z) ≜ 1
ϵ

(
log P1(z)

P2(z) − EP0

[
log P1(z)

P2(z)

])
. (4.18a)

In particular, since

log P1(z)
P2(z) = log P1(z)

P0(z) − log P2(z)
P0(z) ,

it follows from the first part of Corollary 4.3 that (4.18a) has feature
vector

ξLLR(z) = ϕ1(z)− ϕ2(z) + OO(1), ϵ→ 0, z ∈ Z. (4.18b)

It is also important to appreciate that (4.16) is invariant to the
choice of reference distribution within the neighborhood, which is an
immediate consequence of the following result, verified in Appendix B.5.

Lemma 4.6. For a given P0 ∈ relint(PZ) and ϵ > 0 sufficiently small
that N

Z
ϵ (P0) ⊂ relint(PZ), let P1, P2 ∈ N

Z
ϵ (P0) be arbitrary, and let

ϕ1 and ϕ2 be the corresponding information vectors. Then for any
P̃0 ∈ N

Z
ϵ (P0), the information vectors

ϕ̃1(z) ≜ P1(z)− P̃0(z)

ϵ
√
P̃0(z)

and ϕ̃2(z) ≜ P2(z)− P̃0(z)

ϵ
√
P̃0(z)

satisfy, for each z ∈ Z,

ϕ̃1(z)− ϕ̃2(z) =
(
ϕ1(z)− ϕ2(z)

)(
1 + OO(1)

)
, ϵ→ 0. (4.19)

8Note, for comparison, that χ2(P∥P0) = ϵ
2∥ϕ∥2.
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4.2 Weakly Dependent Variables

An instance of local analysis corresponds to weak dependence between
variables, a concept we formally define as follows.

Definition 4.7 (ϵ-Dependence). Let Z and W be defined over alphabets
Z and W, respectively, and distributed according to PZ,W ∈ P

Z×W,
where P

Z×W is the (usual) restriction of the simplex to distributions
with positive marginals. Then Z and W are ϵ-dependent if there exists
an ϵ > 0 such that9

PZ,W ∈ N
Z×W
ϵ (PZPW ), (4.21)

where PZ and PW are the marginal distributions associated with PZ,W .

As related notions of ϵ-dependence, we can replace (4.21) with one
of

PW |Z(·|z) ∈ N
W
ϵ (PW ), all z ∈ Z (4.22)

PZ|W (·|w) ∈ N
Z
ϵ (PZ), all w ∈W. (4.23)

These notions are all locally equivalent, which the following lemma
establishes; a proof is provided in Appendix B.6.

Lemma 4.8. Let Z and W be defined over alphabets Z and W, re-
spectively, and distributed according to PZ,W ∈ P

Z×W, where P
Z×W

is the (usual) restriction of the simplex to distributions with positive
marginals. When

lim inf
ϵ→0

PZ(z) > 0, all z ∈ Z (4.24a)

lim inf
ϵ→0

PW (w) > 0, all w ∈W, (4.24b)

9Note that the condition (4.21) is equivalent to

χ
2(PZ,W ∥PZPW ) ≤ ϵ

2
, (4.20)

the left-hand side of which defines mutual information with respect to χ2-divergence.
This mutual information was historically referred to as “mean-square contingency,”
a concept introduced by Pearson [112], [223]. Note that χ2(PX,Y ∥PXPY ) = σ

2
1 +

· · · + σ
2
K−1. As such, the k-correlation quantity used in [47, Section II] represents an

approximation of classical mean-square contingency by truncation.
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the following statements are equivalent as ϵ→ 0:

PZ,W ∈ N
Z×W
O(ϵ) (PZPW ) (4.25a)

PW |Z(·|z) ∈ N
W
O(ϵ)(PW ), all z ∈ Z (4.25b)

PZ|W (·|w) ∈ N
Z
O(ϵ)(PZ), all w ∈W. (4.25c)

Accordingly, any of (4.25) can be used to characterize O(ϵ)-depen-
dence. In the sequel, except where the distinction is needed, with some
abuse of terminology we will use ϵ-dependence and O(ϵ)-dependence
interchangeably.

A further asymptotic equivalence between the notion of ϵ-dependence
based on χ2-divergence and one based on KL divergence is established
by the following lemma, whose proof is provided in Appendix B.7.

Lemma 4.9. Under the hypotheses of Lemma 4.8,

I(Z;W )=O(ϵ2) if and only if PZ,W ∈N
Z×W
O(ϵ) (PZPW ). (4.26)

Finally, for completeness, we have the following asymptotic equiva-
lences among notions of ϵ-dependence based on KL divergence, analogous
to Lemma 4.8. A proof is provided in Appendix B.8.

Lemma 4.10. Under the hypotheses of Lemma 4.8, the following state-
ments are equivalent as ϵ→ 0:

I(Z;W ) = O(ϵ2) (4.27a)
D
(
PW |Z(·|z)∥PW

)
= O(ϵ2), all z ∈ Z (4.27b)

D
(
PZ|W (·|w)∥PZ

)
= O(ϵ2), all w ∈W. (4.27c)

We will exploit the various equivalences (4.25)–(4.27) in our analysis.

4.3 The Modal Decomposition of Mutual Information

The modal decomposition (2.15) of PX,Y leads directly to a correspond-
ing decomposition of mutual information when X and Y are weakly
dependent. In particular, we have the following result.
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Lemma 4.11. Let X ∈ X and Y ∈ Y with PX,Y ∈ P
X×Y be ϵ-dependent

random variables, and let B̃ denote the associated CDM. Then

I(X;Y ) = 1
2
∥∥B̃∥∥2

F + OO(ϵ2) = 1
2

K−1∑
i=1

σ2
i + OO(ϵ2), (4.28)

where the summation is O(ϵ2), as ϵ→ 0.

Proof. It suffices to make the choices P = PX,Y and P0 = PXPY in
(4.17) of Lemma 4.5, and recognize that the corresponding information
vector—which is convenient to express as a matrix in this case—has
elements

ϕ(x, y) =
PX,Y (x, y)− PX(x)PY (y)

ϵ
√
PX(x)

√
PY (y)

= 1
ϵ
B̃(x, y). (4.29)

Then, since the Frobenius norm of an information vector in matrix
form coincides with its Euclidean norm, and since for any matrix
A whose singular values are σ1(A), . . . , σl(A) for some l, we have
∥A∥2F =

∑l
i=1 σi(A)2, (4.28) follows. Finally, that the first term on the

right-hand side of (4.28) is at most O(ϵ2) follows from applying the
constraint (4.3) to the information vector defined via (4.29). ■

A key interpretation of the decomposition (4.28) is as follows. For
each 1 ≤ k ≤ K − 1, the bivariate function

P
(k)
X,Y (x, y) ≜ PX(x)PY (y)

(
1 +

k∑
i=1

σi f
∗
i (x) g∗

i (y)
)

(4.30a)

obtained by truncating (2.15) sums to unity and, for all ϵ sufficiently
small, is nonnegative for all (x, y) ∈ X×Y, so has the interpretation as a
joint distribution for new variables

(
X(k), Y (k)), i.e., P (k)

X,Y = P
X

(k)
,Y

(k) ,
having the same (original) marginals PX and PY for all such k. Moreover,
these new variables have mutual information

I
(
X(k);Y (k)) = 1

2

k∑
i=1

σ2
i + OO(ϵ2), ϵ→ 0. (4.30b)

Hence, the kth term in the expansion contributes an increment of
σ2

k/2 + OO(ϵ2) to the mutual information. From this perspective, in
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the weak-dependence regime the chosen ordering captures the largest
proportion of mutual information from the fewest number of terms.
Valuable complementary perspectives on these order-k distributions will
become apparent later in the development.

4.4 The Local Geometry of Decision Making

In our development, it will be useful to exploit a geometric interpreta-
tion of traditional binary hypothesis testing, which we now describe. In
particular, suppose we observe m samples zm

1 = (z1, . . . , zm) drawn in
an independent, identically distributed (i.i.d.) manner from either distri-
bution P1 or distribution P2, where P1, P2 ∈ N

Z
ϵ (P0). As in Section 4.1,

let ϕ1 and ϕ2 denote the associated information vectors.
For this problem, for some 1 ≤ k ≤ K − 1, consider a sequence of

k-dimensional statistics

ℓk = (ℓ1, . . . , ℓk) (4.31a)

with
ℓl = 1

m

m∑
j=1

hl(zj), l ∈ {1, . . . , k}, (4.31b)

for some feature functions hk = (h1, . . . , hk) with associated feature
vectors ξk = (ξ1, . . . , ξk).

Without loss of generality we restrict our attention to normalized
feature functions such that the statistics

hk(Z) =
(
h1(Z), . . . , hk(Z)

)
are zero mean, unit-variance, and uncorrelated with respect to P0, i.e.,

EP0

[
hi(Z)

]
= 0, i ∈ {1, . . . , k} (4.32a)

EP0

[
hi(Z)hj(Z)

]
= 1i=j , i, j ∈ {1, . . . , k}. (4.32b)

Indeed, if hk(Z) had any other mean and (nonsingular) covariance
structure, then we could apply an invertible transformation to ℓk to
generate an equivalent statistic ℓ̃k with the desired structure.10 Note

10In particular, with ℓ denoting the vector representation of ℓk, if ℓ has mean
vector µℓ and covariance matrix is Λℓ, then ℓ̃ ≜ Λ−1/2

ℓ (ℓ− µℓ), with Λ1/2
ℓ denoting

any square root matrix of Λℓ, has mean µℓ̃ = 0 and covariance matrix Λℓ̃ = I as
desired.
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Figure 4.1: The local geometry of decision making for distinguishing i.i.d. samples
z

m over alphabet Z from one of P1, P2 ∈ P
Z based on a statistic ℓ = (1/m)

∑m

i=1h
k(zi)

involving feature functions hk. In information space I
Z(P0), where the reference

distribution P0 maps to the origin, ℓ corresponds to the projection of the information
vector ϕ̂ for P̂ onto subspace spanned by the feature vectors ξk for hk. The optimum
decision rule projects ϕ̂ directly onto ϕ1 −ϕ2, the feature vector associated with the
log-likelihood ratio hLLR.

that for feature functions normalized according to (4.32a), the feature
vectors lie in information space, i.e.,

ξi ∈ I
Z(P0), i ∈ {1, . . . , k},

and when the feature functions are further normalized according to
(4.32b), the associated feature vectors are orthonormal, i.e.,

⟨ξi, ξj⟩ = 1i=j , i, j ∈ {1, . . . , k}. (4.33)

With P̂ denoting the empirical distribution of the data zm
1 , we can

express (4.31b) in the form

ℓl =
∑
z∈Z

P̂ (z)hl(z) = ϵ
〈
ϕ̂, ξl

〉
where we have used Lemma 4.4 with P = P̂ , and where

ϕ̂(z) = 1
ϵ

P̂ (z)− P0(z)√
P0(z)

. (4.34)

is the observed information vector [cf. (4.2)]. The associated geometry
is depicted in Figure 4.1.

Our main result is as follows, a proof of which is provided in Ap-
pendix B.9.
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38 Local Information Geometry

Lemma 4.12. Given a reference distribution P0 ∈ relint(PZ) a constant
ϵ > 0 and integers m and k, let z1, . . . , zm denote i.i.d. samples from
one of P1 or P2, where P1, P2 ∈ N

Z
ϵ (P0) and both positive. Then the

error probability pe for deciding whether P1 or P2 is the generating
distribution, based on a statistic ℓk of the form (4.31) with normalized
feature functions hk, decays exponentially in m as m → ∞, with
(Chernoff) exponent

lim
m→∞

− log pe
m

≜ E
h

k =
k∑

l=1
Ehl

, (4.35a)

where
Ehl

≜
ϵ2

8 ⟨ϕ1 − ϕ2, ξl⟩
2 + OO(ϵ2), ϵ→ 0. (4.35b)

The k-fold local efficiency ν(hk) of the rule defined by hk quantifies
the goodness of the exponent (4.35) in Lemma 4.12 relative to the ideal
exponent

E ≜
ϵ2

8 ∥ϕ1 − ϕ2∥.

Specifically,

ν(hk) ≜ lim
ϵ→0

E
h

k

E
=
∑k

l=1⟨ϕ1 − ϕ2, ξl⟩
2

∥ϕ1 − ϕ2∥
2 . (4.36)

It follows from Bessel’s inequality that 0 ≤ ν(hk) ≤ 1, and from (4.18)
that the upper bound is achieved by the choices

h1 = hLLR, and hi ≡ 0, i ∈ {2, . . . , k}, (4.37)

i.e., the log-likelihood ratio is an optimum statistic, as expected. In the
sequel, we focus on inference scenarios in which such a statistic cannot
be used directly.
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5
Universal Feature Characterizations

In this section, we introduce several different notions of feature uni-
versality. In turn, using the local analysis of Section 4, we show that
these diverse characterizations of universality all yield precisely the
same features—those that arise in the modal decomposition of the joint
distribution PX,Y as developed in Sections 2 and 3.

The section is structured as follows. We begin by noting that the
modal decomposition features characterize a locally exponential family
for the conditional distributions. For the remaining characterizations,
we introduce latent attribute variables. In Section 5.4 we obtain the
modal decomposition features as the solution to a game between system
designer and nature, where the system designer must choose features
to detect attributes that nature chooses at random after these features
are fixed. In Section 5.5, we obtain the same features as the solution
to a cooperative game in which the system designer and nature seek
the most detectable attributes and locally sufficient statistics for their
detection. In Section 5.6, we obtain the same features as the solution to
a local symmetric version of Tishby’s information bottleneck problem
that seeks mutual information-maximizing attributes and the associated
locally sufficient statistics. And in Section 5.7, we show that superposi-

39
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40 Universal Feature Characterizations

tions of these same features arise as sufficient statistics in the solution
to a local version of Wyner’s common information, which using varia-
tional analysis we show specializes to the nuclear (trace) norm of the
CDM. In turn, Section 5.8 develops the Markov structure relating the
resulting common information variable to the attributes optimizing the
information bottleneck. Finally, for comparison, Section 5.9 shows how
these features appear in the characterization of Gács-Körner common
information.

5.1 A Preliminary Exponential Family Perspective

As an initial viewpoint, when X and Y are weakly dependent, their
conditional distributions are exponential families in which the features
in the modal decomposition (2.15) are natural statistics. Specifically,
when X and Y are ϵ-dependent according to Definition 4.7, we have,
starting from (2.22a),

PY |X(y|x) = PY (y) exp
{

K−1∑
i=1

σi f
∗
i (x) g∗

i (y) + OO(ϵ)
}
, ϵ→ 0, (5.1)

where we have used the Taylor series approximation eω = 1 + ω + OO(ω)
and that the exponent in the first term in (5.1) is O(ϵ). We recognize
the posterior (5.1) as an exponential family with natural parameters
gK−1

∗ (y) and natural statistics fK−1
∗ (x). Moreover, by symmetry we

have, or equivalently via (2.22b),

PX|Y (x|y) = PX(x) exp
{

K−1∑
i=1

σi f
∗
i (x) g∗

i (y) + OO(ϵ)
}
, ϵ→ 0, (5.2)

from which we see that for inferences about X from Y , the roles of
the features are reversed in the associated posterior: fK−1

∗ (x) are the
natural parameters and gK−1

∗ (y) are the natural statistics.
Since exponential families with such structure are widely used in

discriminative models for learning, we can interpret the (5.1) and (5.2)
as indicating universal feature choices. Moreover, dimensionally-reduced
families of the form
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P
(k)
Y |X(y|x) = PY (y) exp

{
k∑

i=1
σi f

∗
i (x) g∗

i (y) + OO(ϵ)
}

P
(k)
X|Y (x|y) = PX(x) exp

{
k∑

i=1
σi f

∗
i (x) g∗

i (y) + OO(ϵ)
}

for some 1 ≤ k ≤ K − 1 represent approximations that maximize the
retained mutual information, as per the discussion in Section 4.3 sur-
rounding (4.30). We develop and interpret these posterior distributions
further in Section 8. However, there are other senses in which the fea-
tures in (2.15) are universal, which we develop first, and which require
a data model we now introduce.

5.2 Latent Attribute and Statistic Model

In the sequel, we develop universal features from the modal decomposi-
tion (2.15) via the introduction of latent (auxiliary) variables. Latent
variable models have a long history in facilitating both the interpretation
and exploitation of relationships in data. While the original focus was
on linear relationships, corresponding to factor analysis as introduced
by Spearman [254], the modern view is considerably broader; see, e.g.,
[33] for a discussion.

As we now describe, our treatment models scenarios in which the
inference task involving X and Y is not known in advance through
the introduction of latent attribute variables whose values we seek to
determine. We emphasize at the outset that in this model, we treat PX,Y

as known or, equivalently, to have been sufficiently reliably estimated
from training samples, a process for which we will later discuss.

We begin by formalizing the notion of an attribute.1

Definition 5.1 (ϵ-Attribute). Given ϵ > 0 and PZ ∈ relint(PZ) for
some Z, then W on some alphabet W with 2 ≤ |W| ≤ |Z| and having
distribution PW ∈ relint(PW) is an ϵ-attribute of Z if W is ϵ-dependent
on Z, i.e.,

PZ|W (·|w) ∈ N
Z
ϵ (PZ), w ∈W,

1More generally, we use attribute to refer to an ϵ-attribute in which there is no
restriction on ϵ, i.e., it can be arbitrarily large.

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



42 Universal Feature Characterizations

PZ|W (·|w) ̸∈ N
Z
0 (PZ) for all w ∈W, and W is conditionally independent

of all other variables in the model given Z.

Such attributes are specified by a collection of parameters. In par-
ticular, we have the following.

Definition 5.2 (ϵ-Attribute Configuration). Given ϵ > 0 and PZ ∈
relint(PZ) for some Z, then ϵ-attribute W of Z is characterized by
its configuration

C
Z
ϵ (PZ) ≜

{
W, {PW (w), w ∈W}, {PZ|W (·|w), w ∈W} :

PZ|W (·|w) ∈ N
Z
ϵ (PZ), w ∈W,∑

w∈W

PW (w)PZ|W (z|w) = PZ(z), z ∈ Z

}
, (5.3)

which can be equivalently expressed in the form

C
Z
ϵ (PZ) =

{
W, {PW (w), w ∈W}, {ϕZ|W

w , w ∈W} :

ϕZ|W
w ∈ I

Z(PZ), w ∈W,∑
w∈W

PW (w)ϕZ|W
w (z) = 0, z ∈ Z

}
, (5.4)

where
ϕZ|W

w (z) ≜
PZ|W (z|w)− PZ(z)

ϵ
√
PZ(z)

, z ∈ Z, w ∈W (5.5)

define the information vectors associated with the ϵ-attribute W .

In Definition 5.2, we note that the equivalent form (5.4) is a conse-
quence of the fact the constraint∑

w∈W

PW (w)PZ|W (z|w) = PZ(z),

implies the information vectors must satisfy∑
w∈W

PW (w)ϕZ|W
w (z) = 0. (5.6)
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In the context of a given model PX,Y , the attribute variables U and
V for X and Y , respectively, are characterized by the Markov structure

U ↔ X ↔ Y ↔ V. (5.7)

More generally, in the case of m samples drawn from PX,Y , our model
has the Markov structure

U ↔ Xm ↔ Y m ↔ V (5.8a)

with the conditional independence and memoryless structure

PX
m|U (xm|u) =

m∏
i=1

PX|U (xi|u) (5.8b)

PY
m|V (ym|v) =

m∏
i=1

PY |V (yi|v) (5.8c)

PX
m

,Y
m(xm, ym) =

m∏
i=1

PX,Y (xi, yi). (5.8d)

The attributes U and V can be interpreted as instances of class variables,
whose values correspond to different aspects of X and Y , respectively.

Our development focuses on the case where U and V depend only
weakly on X and Y . Specifically, we consider the ϵ-dependence

PX|U (·|u) ∈ N
X
ϵ (PX), for all u ∈ U

PY |V (·|v) ∈ N
Y
ϵ (PY ), for all v ∈ V.

Via Lemma 4.5, ϵ-dependence can be equivalently expressed as the
condition

D(PX|U (·|u)∥PX) ≤ ϵ2

2
(
1 + OO(1)

)
, ϵ→ 0, for all u ∈ U (5.9a)

D(PY |V (·|v)∥PY ) ≤ ϵ2

2
(
1 + OO(1)

)
, ϵ→ 0, for all v ∈ V, (5.9b)

which, in turn, of course implies

I(X;U) =
∑
u∈U

PU (u)D(PX|U (·|u)∥PX) ≤ ϵ2

2
(
1 + OO(1)

)
, ϵ→ 0

(5.10a)
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I(Y ;V ) =
∑
v∈V

PV (v)D(PY |V (·|v)∥PY ) ≤ ϵ2

2
(
1 + OO(1)

)
, ϵ→ 0

(5.10b)
For inferences about attributes U and V , we will generally consider

statistics of the form

Sk ≜
1
m

m∑
i=1

fk(Xi) and T k ≜
1
m

m∑
i=1

gk(Yi), (5.11)

for some k ∈ {1, . . . ,K − 1} and feature choices fk : X → Rk and
gk : Y→ Rk. Moreover, in accordance with our earlier discussion, with-
out loss of generality we restrict our attention to normalized features,
i.e. (fk, gk) ∈ Fk × Gk with Fk and Gk as defined in (3.6c) and (3.6d),
respectively. As we will develop, the particular choices

Sk
∗ ≜

1
m

m∑
i=1

fk
∗ (Xi) and T k

∗ ≜
1
m

m∑
i=1

gk
∗ (Yi), (5.12)

with fk
∗ and gk

∗ as defined in (3.5) play a special role.
Finally, we will sometimes extend the model (5.8) to the case of

multidimensional U and V with special structure, which we term multi-
attributes.2

Definition 5.3 (ϵ-Multi-Attribute). Given ϵ > 0, l, and Z over some
alphabet Z, then an attribute W of Z with configuration C

Z
lϵ(PZ) over

alphabet W is an l-dimensional ϵ-multi-attribute W l over alphabet
W = W1 × · · · ×Wl if the variables W l are:
1) such that

|Wi| ≥ 2 and PWi
∈ relint(PWi), i ∈ {1, . . . , l};

2) ϵ-dependent on Z, i.e.,

PZ|Wi
(·|wi) ∈ N

Z
ϵ (PZ),

PZ|Wi
(·|wi) ̸∈ N

Z
0 (PZ),

all wi ∈Wi and i ∈ {1, . . . , l};

2As in the case of attributes, we more generally use multi-attribute to refer to an
ϵ-multi-attribute in which there is no restriction on ϵ, i.e., it can be arbitrarily large.
Key to a multi-attribute is the simultaneous marginal and conditional independence
structure. As an example, if the automobile in a digital image Z has color W1 and
motor type W2, then one might reasonably model (W1,W2) as a multi-attribute.
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3) conditionally independent given Z, i.e.,

P
W

l|Z(wl|z) =
l∏

i=1
PWi|Z(wi|z), all wl ∈W, z ∈ Z;

and
4) (marginally) independent, i.e.,

P
W

l(wl) =
l∏

i=1
PWi

(wi), all wl ∈W.

We use C
Z,l
ϵ (PZ) to denote the configuration of such a ϵ-multi-attribute

variable.

Multi-attribute variables have the following key orthogonality prop-
erty. A proof is provided in Appendix C.1.

Lemma 5.4. For some ϵ > 0 and integer l ≥ 1, let W l be an ϵ-multi-
attribute of Z ∈ Z over alphabet W = W1 × · · · ×Wl. Then with the
information vector notation

ϕZ|Wi
wi

(z) ≜
PZ|Wi

(z|wi)− PZ(z)
ϵ
√
PZ(z)

, i = 1, . . . , l, (5.13)

we have, for i, j ∈ {1, . . . , l},〈
ϕZ|Wi

wi
, ϕ

Z|Wj
wj

〉
= 0, for all i ̸= j, wi ∈Wi and wj ∈Wj .

In addition, multi-attributes admit the following information vector
decomposition.3

Lemma 5.5. For some ϵ > 0 and integer l ≥ 1, let W l be an ϵ-multi-
attribute of Z ∈ Z over alphabet W = W1 × · · · ×Wl. Then with the
information vector notation

ϕ
Z|W l

w
l (z) ≜

P
Z|W l(z|wl)− PZ(z)

ϵ
√
PZ(z)

, (5.14)

and ϕZ|Wi
wi

as defined in (5.13), we have

ϕ
Z|W l

w
l =

l∑
i=1
ϕZ|Wi

wi
+ OO(1), ϵ→ 0. (5.15)

3Note that this decomposition implies that an ϵ-multi-attribute is an lϵ-attribute.
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A proof is provided in Appendix C.2, and exploits the following
simple approximation.
Fact 5.6. For any integer l ≥ 1 and constants ϵ and a1, . . . , al, then

l∏
i=1

(1 + ϵai) = 1 + ϵ
l∑

i=1
ai + OO(ϵ), ϵ→ 0. (5.16)

For multi-attributes Uk and V k of X and Y , respectively, we use

ϕX|Ui
ui

(x) ≜
PX|Ui

(x|ui)− PX(x)
ϵ
√
PX(x)

(5.17a)

ϕY |Vi
vi

(y) ≜
PY |Vi

(y|vi)− PY (y)
ϵ
√
PY (y)

(5.17b)

to denote the information vectors corresponding to PX|Ui
(·|ui) and

PY |Vi
(·|vi), respectively.

Note that for the extended Markov model (5.8), orthogonality for
multi-attribute Uk of Xm further implies that the Uk are conditionally
independent given Xj , each j ∈ {1, . . . ,m}, and Xm are conditionally
independent given Ui, each i ∈ {1, . . . , k}, i.e.,

P
U

k|Xj
(uk|xj) =

k∏
i=1

PUi|Xj
(ui|xj) (5.18a)

PX
m|Ui

(xm|ui) =
m∏

j=1
PXj |Ui

(xj |ui), (5.18b)

and the orthogonality for multi-attribute V k of Y m implies V k are
conditionally independent given Yj , each j ∈ {1, . . . ,m}, and Y m are
conditionally independent given Vi, each i ∈ {1, . . . , k}, i.e.,

P
V

k|Yj
(vk|yj) =

k∏
i=1

PVi|Yj
(vi|yj) (5.19a)

PY
m|Vi

(ym|vi) =
m∏

j=1
PYj |Vi

(yj |vi). (5.19b)

5.3 Induced Local Geometries of Attribute Variables

We now express the relationships between U, V and X,Y geometrically.
In particular, we show that the local geometry of PX|U (·|u) in the
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simplex P
X induces a corresponding local geometry for PY |U (·|u) in the

simplex P
Y via the operator B, and, likewise, the local geometry of

PY |V (·|v) in the simplex P
Y induces a corresponding local geometry for

PX|V (·|v) in the simplex P
X via the adjoint.

Indeed, the Markov relation U ↔ X ↔ Y implies

PY (y) =
∑
x∈X

PY |X(y|x)PX(x)

PY |U (y|u) =
∑
x∈X

PY |X(y|x)PX|U (x|u),

from which we conclude that a neighborhood of PX in the simplex P
X

maps to a neighborhood of PY in the simplex P
Y. In particular, with

PX and PY as the reference distributions in P
X and P

Y, respectively,
the information vectors

ϕX|U
u (x) =

PX|U (x|u)− PX(x)
ϵ
√
PX(x)

(5.20a)

ϕY |U
u (y) =

PY |U (y|u)− PY (y)
ϵ
√
PY (y)

(5.20b)

associated with the distributions PX|U (·|u) and PY |U (·|u), respectively,
satisfy

ϕY |U
u (y) = 1√

PY (y)
∑
x∈X

PY |X(y|x)
√
PX(x)ϕX|U

u (x). (5.21)

With ϕX|U
u and ϕY |U

u denoting the associated column vectors, using
(2.10) we can equivalently express (5.21) in the matrix form

ϕY |U
u = BϕX|U

u . (5.22)

Evidently, B maps a local divergence sphere in P
X to a local diver-

gence ellipsoid in P
Y whose principal axes correspond to the left singular

vectors of B, as Figure 5.1 depicts.
Analogously, the Markov relation X ↔ Y ↔ V implies

PX(x) =
∑
y∈Y

PX|Y (x|y)PY (y)

PX|V (x|v) =
∑
y∈Y

PX|Y (x|y)PY |V (y|v),
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Figure 5.1: The information geometry associated with the DTM B. For i =
1, . . . ,K − 1, the unit information vector ψX

i in I
X maps via B to the shorter

information vector σiψ
Y
i in I

Y, and the unit information vector ψY
i in I

Y maps via
BT to the shorter information vector σiψ

X
i in I

X.
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from which we conclude that a neighborhood of PY in the simplex P
Y

maps to a neighborhood of PX in the simplex P
X. In particular, with

the same reference distributions, and using (2.11), we obtain that the
information vectors

ϕY |V
v (y) =

PY |V (y|v)− PY (y)
ϵ
√
PY (y)

(5.23a)

ϕX|V
v (x) =

PX|V (x|v)− PX(x)
ϵ
√
PX(x)

(5.23b)

associated with the distributions PY |V (·|v) and PX|V (·|v) are related
according to

ϕX|V
v = BTϕY |V

v , (5.24)
where ϕY |V

v and ϕX|V
v denote the corresponding column vectors. In this

case, as Figure 5.1 also depicts, BT maps a local divergence sphere in
P
Y to a local divergence ellipsoid in P

X whose principal axes correspond
to the right singular vectors of B.

Finally, we note that there are constraints on the distributions
governing the attributes U and V . In particular, we have [cf. (5.6)]∑

u∈U

PU (u)ϕX|U
u (x) = 0, x ∈ X (5.25a)

∑
v∈V

PV (v)ϕY |V
v (y) = 0, y ∈ Y. (5.25b)

5.4 Minimum Error Probability Universal Features

In this section, we model the universal feature selection problem as the
following game between a system designer and nature. First, nature
chooses the distribution for latent attribute variables (U, V ) in the
Markov chain (5.7) at random. Next, before nature reveals its chosen
distributions, the system designer chooses feature functions fk and gk

knowing PX,Y and the probability law according to which nature chooses
its distribution. Finally, after revealing its chosen distributions, the
system designer implements a test for determining (U, V ) with minimum
error probability from statistics formed from its chosen features applied
to samples of (X,Y ). The details are as follows.
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Let C
X
ϵ (PX) and C

Y
ϵ (PY ) denote configurations for attributes U and

V , respectively, in the sense of Definition 5.2, i.e.,

C
X
ϵ (PX) =

{
U, {PU (u), u ∈ U}, {PX|U (·|u), u ∈ U} :

PX|U (·|u) ∈ N
X
ϵ (PX), u ∈ U,∑

u∈U

PU (u)PX|U (x|u) = PX(x), x ∈ X

}
(5.26a)

=
{
U, {PU (u), u ∈ U}, {ϕX|U

u , u ∈ U} :

ϕX|U
u ∈ I

X, u ∈ U,∑
u∈U

PU (u)ϕX|U
u (x) = 0, x ∈ X

}
and

C
Y
ϵ (PY ) =

{
V, {PV (v), v ∈ V}, {PY |V (·|v), v ∈ V} :

PY |V (·|v) ∈ N
Y
ϵ (PY ), v ∈ V,∑

v∈V

PV (v)PY |V (y|v) = PY (y), y ∈ Y

}
, (5.26b)

=
{
V, {PV (v), v ∈ V}, {ϕY |V

v , v ∈ V} :

ϕY |V
v ∈ I

Y, v ∈ V,∑
v∈V

PV (v)ϕY |V
v (y) = 0, y ∈ Y

}
.

In choosing a configuration pair, nature uses a probability law in
which the ensemble for each attribute is characterized by rotational
invariance, our definition for which relies on the following concept of
spherical symmetry [58], [74].

Definition 5.7 (Spherical Symmetry). A k1 × k2 random matrix Z is
spherically symmetric if for any orthogonal k1×k1 and k2×k2 matrices
Q1 and Q2, respectively, we have

Z d= QT
1 Z Q2, (5.27)
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where d= denotes equality in distribution.

Moreover, the following consequence of spherical symmetry is useful
in our analysis; a proof is provided in Appendix C.3.4

Lemma 5.8. Let Z be a k1 × k2 spherically symmetric random matrix.
Then if A1 and A2 are any fixed matrices of compatible dimensions,
then

E
[∥∥AT

1 ZA2
∥∥2

F

]
= 1
k1k2

∥∥A1
∥∥2

F
∥∥A2

∥∥2
F E
[∥∥Z∥∥2

F

]
. (5.28)

Our ensemble of interest is defined in terms of spherical symmetry
as follows.

Definition 5.9 (Rotation Invariant Ensemble). Given ϵ > 0, a rotationally
invariant ensemble (RIE) for an ϵ-attribute W of a variable Z is a
collection of attribute configurations of the form (5.4), together with a
probability measure over the collection such that ΦZ|W , the |Z| × |W|
matrix whose columns are ϕZ|W

w , w ∈W,5 is spherically symmetric.

In what follows, we denote the error probability in decisions for U
and V based on Sk, respectively, via

pU |S
e
(
C
X
ϵ (PX), fk) and pV |S

e
(
C
Y
ϵ (PY ), fk), (5.30a)

and those for the decisions based on T k via, respectively,

pU |T
e
(
C
X
ϵ (PX), gk) and pV |T

e
(
C
Y
ϵ (PY ), gk), (5.30b)

4The proof makes use of the notation ei for the (elementary) vector whose
ith element is 1, and all other elements are 0, which we will more generally find
convenient in our analysis.

5With some abuse of terminology and notation, we will say the wth column of
ΦZ|W is ΦZ|W ew = ϕ

Z|W
w , to avoid cumbersome exposition. More precisely, given

an (arbitrary) bijective function IW : W → {1, . . . , |W|} with inverse I
−1
W ,

ΦZ|W ≜
[
ϕ

Z|W
I
−1
W (1)

· · · ϕ
Z|W
I
−1
W (|W|)

]
, (5.29)

i.e., the IW(w)th column of ΦZ|W is ΦZ|W eIW(w) = ϕ
Z|W
w .
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where Sk and T k are as defined in (5.11) for feature choices fk : X→ Rk

and gk : Y→ Rk. In turn, we define the error exponents

ĒU |S(fk) ≜ lim
m→∞

−
ERIE

[
log pU |S

e
(
C
X
ϵ (PX), fk)]

m
(5.31a)

ĒV |S(fk) ≜ lim
m→∞

−
ERIE

[
log pV |S

e
(
C
Y
ϵ (PY ), fk)]

m
(5.31b)

ĒU |T (gk) ≜ lim
m→∞

−
ERIE

[
log pU |T

e
(
C
X
ϵ (PX), gk)]

m
(5.31c)

ĒV |T (gk) ≜ lim
m→∞

−
ERIE

[
log pV |T

e
(
C
Y
ϵ (PY ), gk)]

m
, (5.31d)

where ERIE
[
·
]

denotes expectation with respect to the RIEs for C
X
ϵ (PX)

and C
Y
ϵ (PY ).

Our main result is the following proposition, which identifies the
features the system designer should choose, and the exponent of the
resulting error probability. A proof is provided in Appendix C.4.

Proposition 5.10. Given PX,Y ∈ P
X×Y and attributes U and V of X

and Y , respectively, each drawn from a RIE for some ϵ > 0, then for
any dimension k ∈ {1, . . . ,K − 1},6(
ĒU |S(fk), ĒV |S(fk), ĒU |T (gk), ĒV |T (gk)

)
≤
(
Ē

X|U
0 ϵ2 k, Ē

Y |V
0 ϵ2

k∑
i=1

σ2
i , Ē

X|U
0 ϵ2

k∑
i=1

σ2
i , Ē

Y |V
0 ϵ2 k

)
+ OO(ϵ2)

(5.32)

as ϵ → 0, where ĒX|U
0 and Ē

Y |V
0 are positive constants that do not

depend on ϵ, k, or PX,Y . Moreover, all the inequalities in (5.32) si-
multaneously hold with equality for the choices

(
fk

∗ , g
k
∗
)

as defined in
(3.5), i.e., the associated multi-objective maximization has a unique7

Pareto-optimal solution.

6For arbitrary sequences al and bl of arbitrary length l, we use al ≤ b
l to denote

that ai ≤ bi for i ∈ {1, . . . , l}.
7Note that while the optimized multi-objective function is unique, the features

that achieve them need not be, as is the case when there are repeated singular values.
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We emphasize that the result does not depend on any details of the
probability law governing nature’s choice other than the RIE property.
In particular, fk

∗ , g
k
∗ are optimum no matter what priors we might

place over various parameters of the configurations C
X
ϵ (PX),CY

ϵ (PY )
generating the RIE. In this sense, their optimality is fairly strong.

5.5 Universal Features via a Cooperative Game

In this section, we show how the same universal features arise as the
solution to a cooperative game, which further reveals the latent variable
configurations for which these features are effectively sufficient statistics.
In this game, for a given k ∈ {1, . . . ,K − 1}, nature chooses configu-
rations C

X,k
ϵ (PX) and C

Y,k
ϵ (PY ) of multi-attribute variable collections

U = Uk and V = V k in (5.8), and the system designer chooses the
features fk and gk. Their shared goal is to identify variables (Uk, V k)
that are, in an appropriate sense, most detectable from the statistics
(Sk, T k) as defined in (5.11) in terms of these features.

The specific shared goal of nature and the system designer is to
maximize the probability that the least detectable of U1, . . . , Ui and the
least detectable of V1, . . . , Vi, for i = 1, . . . , k, are correctly detected, as
m→∞.

For the analysis of this game, the following min-max characterization
of singular values is useful. [114, Theorem 4.2.6].

Lemma 5.11 (Courant-Fischer). Let A be a k1×k2 matrix with singular
values σ1(A) ≥ · · · ≥ σk(A) where k = min{k1, k2}. Then for every
i ∈ {1, . . . , k},

σi(A) = max
{S⊂Rk : dim(S)=i}

min
{ϕ∈S : ∥ϕ∥=1}

∥∥Aϕ∥∥, (5.33)

where S denotes a subspace, and the maximum is achieved by ϕ = ψR
i ,

a right singular vector of A corresponding to σi(A).

In addition, in our development the following well-known inequality,
which follows from the fact that the spectral norm ∥ · ∥s (defined on
p. 8) is the matrix norm induced by the (Euclidean) vector norm ∥ · ∥,
is convenient.
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Fact 5.12. For any compatible matrices A1 and A2, we have

∥A1A2∥F ≤ ∥A1∥s ∥A2∥F.

In the sequel, we denote the error probabilities in decisions based on
Sk about each of constituent elements of Uk and V k, respectively, via

pUi|S
e

(
C
X,k
ϵ (PX), fk) and pVi|S

e
(
C
Y,k
ϵ (PY ), fk), (5.34a)

and those based on T k via, respectively,

pUi|T
e

(
C
X,k
ϵ (PX), gk) and pVi|T

e
(
C
Y,k
ϵ (PY ), gk), (5.34b)

for i ∈ {1, . . . , k}, where Sk and T k are as defined in (5.11) for feature
choices fk : X → Rk and gk : Y → Rk. In turn, we define the error
exponents

EUi|S(CX,k
ϵ (PX), fk) ≜ lim

m→∞

− log pUi|S
e

(
C
X,k
ϵ (PX), fk)
m

(5.35a)

EVi|S(CY,k
ϵ (PY ), fk) ≜ lim

m→∞

− log pVi|S
e

(
C
Y,k
ϵ (PY ), fk)
m

(5.35b)

EUi|T (CX,k
ϵ (PX), gk) ≜ lim

m→∞

− log pUi|T
e

(
C
X,k
ϵ (PX), gk)
m

(5.35c)

EVi|T (CY,k
ϵ (PY ), gk) ≜ lim

m→∞

− log pVi|T
e

(
C
Y,k
ϵ (PY ), gk)

m
. (5.35d)

Our main result is as follows. A proof is provided in Appendix C.5.

Proposition 5.13. Given k ∈ {1, . . . ,K − 1} and PX,Y ∈ P
X×Y, let

C
X,k
ϵ (PX) and C

Y,k
ϵ (PY ) denote configurations of ϵ-multi-attribute vari-

ables Uk and V k of X and Y , respectively, for some ϵ > 0. Then(
min
j≤i

EUj |S(
C
X,k
ϵ (PX), fk), i ∈ {1, . . . , k},

min
j≤i

EVj |S(
C
Y,k
ϵ (PY ), fk), i ∈ {1, . . . , k},

min
j≤i

EUj |T (
C
X,k
ϵ (PX), gk), i ∈ {1, . . . , k},

min
j≤i

EVj |T (
C
Y,k
ϵ (PY ), gk), i ∈ {1, . . . , k})
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≤
(
ϵ2

2 , i ∈ {1, . . . , k},

ϵ2

2 σ
2
i , i ∈ {1, . . . , k},

ϵ2

2 σ
2
i , i ∈ {1, . . . , k},

ϵ2

2 , i ∈ {1, . . . , k}
)

+ OO(ϵ2), ϵ→ 0. (5.36)

Moreover, the inequalities in (5.36) all hold with equality when
(
fk, gk)

are chosen to be
(
fk

∗ , g
k
∗
)

as defined in (3.5), and C
X,k
ϵ (PX) and C

Y,k
ϵ (PY )

as chosen to be, respectively,

C
X,k
ϵ,∗ (PX) ≜

{
Ui = {+1,−1},

{
PUi

(ui) = 1/2, ui ∈ Ui

}
,{

PX|Ui
(x|ui) = PX(x)

(
1 + ϵui f

∗
i (x)

)
,

ui ∈ Ui, x ∈ X
}
, i = 1, . . . , k

}
(5.37a)

and

C
Y,k
ϵ,∗ (PY ) ≜

{
Vi = {+1,−1},

{
PVi

(vi) = 1/2, vi ∈ Vi

}
,{

PY |Vi
(y|vi) = PY (y)

(
1 + ϵvi g

∗
i (y)

)
,

vi ∈ Vi, y ∈ Y
}
, i = 1, . . . , k

}
, (5.37b)

i.e., the associated multi-objective maximization has a unique Pareto-
optimal solution.

In addition, from the Markov structure (5.7) and the modal structure
(2.26), we immediately obtain the following corollary.

Corollary 5.14. The optimizing multi-attribute variables Uk and V k in
Proposition 5.13 have the property that

PX|Vi
(x|vi) = PX(x)

(
1 + ϵvi σi f

∗
i (x)

)
(5.38a)

PY |Ui
(y|ui) = PY (y)

(
1 + ϵui σi g

∗
i (y)

)
, (5.38b)

for i = 1, . . . , k.
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Given data (xm, ym) from the extended Markov model (5.8), it
further follows that (Sk

∗ , T
k
∗ ) defined via (5.12) is, as ϵ→ 0, a sufficient

statistic for inferences about the optimizing multi-attributes (Uk, V k),
i.e., in this limit, we have the Markov chains

(Uk, V k)↔ (Sk
∗ , T

k
∗ )↔ (Xm, Y m) (5.39)

and
Uk ↔ Sk

∗ ↔ T k
∗ ↔ V k. (5.40)

In particular, we have the following result, a proof of which is provided
in Appendix C.6.

Corollary 5.15. In the solution to the optimization in Proposition 5.13
for the extended model (5.8),

P
U

k
,V

k|Xm
,Y

m(uk, vk|xm, ym) = 1
4k

(
1 + ϵm

k∑
i=1

(
ui s

∗
i + vi t

∗
i

))
+ OO(ϵ),

(5.41)

as ϵ→ 0, with, consistent with (5.12),

s∗
i = 1

m

m∑
j=1

f∗
i (xj) and t∗i = 1

m

m∑
j=1

g∗
i (yj). (5.42)

Moreover,

P
U

k|Sk
∗ ,T

k
∗ ,V

k(uk|sk
∗, t

k
∗, v

k) = 1
2k

(
1 + ϵm

k∑
i=1

ui s
∗
i

)
+OO(ϵ) (5.43a)

P
V

k|Sk
∗ ,T

k
∗ ,U

k(vk|sk
∗, t

k
∗, u

k) = 1
2k

(
1 + ϵm

k∑
i=1

ui t
∗
i

)
+OO(ϵ), (5.43b)

as ϵ→ 0.

In essence, Corollary 5.15 shows that in making inferences about the
(optimizing) attributes Uk and V k from high-cardinality data (Xm, Y m),
it is (asymptotically) sufficient to extract a low-dimensional real-valued
sufficient statistic (Sk, T k). Moreover, it is sufficient to extract a statistic
of dimension k corresponding to the number of “significant” singular
values of B̃. As significantly, the sufficient statistic pair (Sk

∗ , T
k
∗ ) is
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obtained by separate processing of Xm and Y m; joint processing of
(Xm, Y m) is not required.

In addition, as suggested by Corollary 5.15 and revealed in its proof,

P
U

k
,V

k|Xm
,Y

m(uk, vk|xm, ym) =
k∏

i=1
PUi,Vi|X

m
,Y

m(ui, vi|x
m, ym)

(5.44a)
with

PUi,Vi|X
m

,Y
m(ui, vi|x

m, ym) = 1
4
(
1 + ϵm(ui s

∗
i + vi t

∗
i )
)

+ OO(ϵ), (5.44b)

as ϵ→ 0, from which we see that to achieve the optimum exponents given
by (5.36), it is sufficient for decisions about the attribute pair (Ui, Vi) to
be made based on the statistic (S∗

i , T
∗
i ) alone. Moreover, (5.44a) reveals

that although not imposed as a constraint, the optimizing configuration
is such that the Uk are conditionally independent of Y m (and the V k

are conditionally independent of Xm).

5.6 Universal Features via an Information Bottleneck

In this section, we show that the same configurations C
X,k
ϵ,∗ (PX) and

C
Y,k
ϵ,∗ (PY ) that are optimum in the cooperative game of Section 5.5 are

the solution to a natural mutual information maximization problem,
which provides a third viewpoint from which to interpret fk

∗ and gk
∗ as

universal features.
Our main result is as follows. A proof is provided in Appendix C.7.

Proposition 5.16. Given ϵ > 0, PX,Y ∈ P
X×Y, and ϵ-multi-attribute

variables U = Uk and V = V k for some k in the Markov chain (5.7),
then

I(Uk;V k) ≤ ϵ4

2

k∑
i=1

σ2
i + OO(ϵ4), ϵ→ 0. (5.45)

Moreover, the inequality in (5.45) holds with equality when the config-
urations C

X,k
ϵ,∗ (PX) and C

Y,k
ϵ,∗ (PY ) of Uk and V k, respectively, are given
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by (5.37), in which case

P
U

k
,V

k(uk, vk) = 1
4k

(
1 + ϵ2

k∑
i=1

σi ui vi

)
+ OO(ϵ2), uk, vk ∈ {+1,−1}k.

(5.46)

We interpret the optimizing multi-attribute pair (Uk, V k) in Propo-
sition 5.16, with joint distribution (5.46), as expressing the dominant
components of the dependency in the relationship between X and Y as
determined by PX,Y . This is reflected in the fact that

P
U

k
,V

k(uk, vk) =
k∏

i=1
PUi,Vi

(ui, vi)

with, for i, j = 1, . . . , k,

PUi,Vj
(ui, vj) = 1

4
(
1 + ϵ2 σi ui vj 1i=j

)
+ OO(ϵ2), (5.47)

for which [cf. (4.28)]

I(Ui;Vj) = ϵ4

2 σ2
i 1i=j + OO(ϵ4). (5.48)

An immediate consequence of Proposition 5.16 is that for observa-
tions Xm, Y m from the model (5.8), we have that (Sk

∗ , T
k
∗ ) is a (locally)

sufficient statistic for inferences about Uk, V k, i.e., Corollary 5.15 applies.
This local sufficiency can be equivalently expressed in the form

lim
ϵ→0

I(Uk, V k;Xm, Y m)
I(Uk, V k;Sk

∗ , T
k
∗ )

= 1. (5.49)

Note too that (5.46) provides a higher-order characterization of
P

U
k

,V
k than that derived from (5.41). Indeed, from the latter (setting

m = 1 for convenience) we obtain only

P
U

k
,V

k(uk, vk)

=
∑

x∈X,y∈Y

PX,Y (x, y)P
U

k
,V

k|X,Y
(uk, vk, x, y)

= 1
4k

∑
x∈X,y∈Y

PX,Y (x, y)
(

1 + ϵm
k∑

i=1

(
ui f

∗
i (x) + vi g

∗
i (y)

))
+ OO(ϵ)

= 1
4k

+ OO(ϵ), ϵ→ 0.
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Additionally, it follows from the discussion in Section 4.2 that when
Ui = Vi = {+1,−1} and PUi

= PVi
≡ 1/2, then the ϵ-multi-attribute

constraints PX|Ui
(·|ui) ∈ N

X
ϵ (PX) and PY |Vi

(·|ui) ∈ N
Y
ϵ (PY ) are equiva-

lent to I(X,Ui) ≤ ϵ2/2 and I(Y ;Vi) ≤ ϵ2/2 as ϵ → 0, for i = 1, . . . , k.
As a result, Proposition 5.16 can be equivalently expressed in the form
of a solution to a information bottleneck problem [258] in the weak
dependence regime.8 In particular, we have the following immediate
corollary.9

Corollary 5.17. Given ϵ > 0, PX,Y ∈ P
X×Y and variables U = Uk and

V = V k in the Markov chain (5.7), then

max
U

k
,V

k
I(Uk;V k) = ϵ4

2

k∑
i=1

σ2
i + OO(ϵ4), ϵ→ 0,

where the maximization is over all configurations of (Uk, V k) such that:
constituent variables (Ui, Vi), i = 1, . . . , k satisfy:

1) max
{
I(Ui;X), I(Vi;Y )

}
≤ ϵ2/2;

2) they are binary and equiprobable, i.e., Ui, Vi ∈ {+1,−1} and
PUi

= PVi
≡ 1/2;

3) Uk and V k are each collections of independent variables; and

4) the Uk and V k are each collections of conditionally independent
variables given X and Y , respectively.

Moreover, the maximum is achieved by the configurations (5.37).

As an aside, different but related one-sided information bottleneck
problems can also be analyzed within the same framework of analysis.

8For an early application of the use of information bottleneck techniques in
learning, see [253], [259].

9As the proof reveals, sufficiently weak pairwise dependence will suffice for
condition 3, but we impose mutual independence for convenience. Moreover, while
condition 4 alone implies a degree of weak marginal dependence, it is insufficient.
Finally, conditions 3 and 4 together can be viewed, in some sense, as “entropy
maximizing” conditions.
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For example, the following result is proved in Appendix C.8.10

Proposition 5.18. Given ϵ > 0, PX,Y ∈ P
X×Y and variables U = Uk

and V = V k in the Markov chain (5.7), then

max
V

k
I(V k;X) = max

U
k
I(Uk;Y ) = ϵ2

2

k∑
i=1

σ2
i + OO(ϵ2), ϵ→ 0,

where the maximization is over all configurations of (Uk, V k) such that:
constituent variables Ui, Vi, i = 1, . . . , k satisfy:

1) max
{
I(Ui;X), I(Vi;Y )

}
≤ ϵ2/2;

2) they are binary and equiprobable, i.e., Ui, Vi ∈ {+1,−1} and
PUi

= PVi
≡ 1/2;

3) Uk and V k are each collections of independent variables; and

4) the Uk and V k are collections of conditionally independent vari-
ables given X and Y , respectively.

Moreover, the maximum is achieved by the configurations (5.37).

As a further comment, work on aspects of the more general informa-
tion bottleneck problem and the associated role of hypercontractivity
analysis in its treatment includes [3], [10]–[12], [35], [142], [155], [196],
[226], [228]. From this perspective, the development of this section
reveals that a number of the subtleties that complicate such analysis
and lead to anomalous behavior are avoided by the restriction to local
variables.

5.7 Universal Features via Wyner Common Information

As we develop in this section, there is a key relationship between the
optimizing multi-attributes (Uk, V k) in Section 5.6 (and Section 5.5),

10Other variations of this result correspond to avoiding the binary, equiprobable
and mutual information constraints and instead using D(PX|U (·|u)∥PX) ≤ ϵ

2
/2

for all u ∈ U. Alternatively, by the equidistant property of capacity-achieving
output distributions, we can equivalently express this divergence constraint as
maxPU

I(X;U) ≤ ϵ
2
/2.
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and the Wyner common information C(X,Y ) in the pair (X,Y ) charac-
terized by a given joint distribution PX,Y . Recall that Wyner common
information can be expressed in terms of an auxiliary variable W ac-
cording to [279]

C(X,Y ) ≜ min
PW |X,Y :
X↔W ↔Y

I(W ;X,Y ), (5.50)

and satisfies C(X,Y ) ≥ I(X;Y ).
The results we obtain are for the case where X and Y are extra-

weakly dependent; specifically, for some ϵ > 0,

∥B̃∥∗ ≤ ϵ, (5.51)

where ∥ · ∥∗ denotes the nuclear norm of its argument.11 We refer to
X and Y as sub-ϵ dependent in this case, since by standard norm
inequalities [97]

∥B̃∥F ≤ ∥B̃∥∗, (5.52)
whence PX,Y ∈ N

X×Y
ϵ (PXPY ), i.e., sub-ϵ dependence implies ϵ-depen-

dence.12 We further use N̄
X×Y
ϵ (PXPY ) to denote the joint distributions

in P
X×Y with sub-ϵ dependence given marginals PX and PY , via which

(5.52) expresses

N̄
X×Y
ϵ (PXPY ) ⊂ N

X×Y
ϵ (PXPY ). (5.53)

Under sub-ϵ dependence, we define the following restricted common
information.

Definition 5.19 (ϵ-Common Information). Given PX,Y ∈ N̄
X×Y
ϵ (PXPY )

for ϵ > 0, the ϵ-common information is

Cϵ(X,Y ) = min
PW |X,Y ∈Pϵ

I(W ;X,Y ), (5.54)

11Specifically, the nuclear norm of an arbitrary matrix A is

∥A∥∗ ≜ tr
(√

ATA
)

=
∑

i

σi(A),

where σi(A) denotes the ith singular value of A. Note that the nuclear norm is the
Ky Fan k-norm with k = rank(A), i.e., ∥A∥∗ = ∥A∥(rank(A)).

12Of course, since ∥A∥∗ ≤
√

rank(A) ∥A∥F for any A, we also have that ϵ-
dependence implies sub-(Kϵ) dependence. In turn, O(ϵ)-dependence and sub-O(ϵ)
dependence are equivalent.
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where

Pϵ ≜
{
PW |X,Y ∈ P

W, some W : X ↔W ↔ Y and

PX|W (·|w)∈NX√
δ(ϵ)(PX), PY |W (·|w)∈NY√

δ(ϵ)(PY ),

for all w∈W and δ(·) > 0 such that lim
ϵ→0

δ(ϵ)→0.
}
. (5.55)

In Definition 5.19, a configuration of W such that PW |X,Y ∈ Pϵ

takes the form

C
X,Y
ϵ (PX,Y ) ≜

{
W, {PW (w), w ∈W},
{PX|W (·|w), w ∈W},
{PY |W (·|w), w ∈W}

}
(5.56)

subject to the constraints

PX|W (·|w) ∈ N
X√

δ(ϵ)(PX), w ∈W, (5.57a)

PY |W (·|w) ∈ N
Y√

δ(ϵ)(PY ), w ∈W, (5.57b)

for some δ such that δ(ϵ)→ 0 as ϵ→ 0, and

PX|W (x|w)PY |W (y|w) = PX,Y |W (x, y|w). (5.58)

In turn, (5.58) implies the constraint∑
w∈W

PW (w)PX|W (x|w)PY |W (y|w) = PX,Y (x, y), (5.59)

which further implies the constraints∑
w∈W

PW (w)PX|W (x|w) = PX(x) (5.60a)

∑
w∈W

PW (w)PY |W (y|w) = PY (y). (5.60b)

Defining the information vectors

ϕX|W
w (x) ≜

PX|W (x|w)− PX(x)
√
δ(ϵ)

√
PX(x)

(5.61a)

ϕY |W
w (y) ≜

PY |W (y|w)− PY (y)
√
δ(ϵ)

√
PY (y)

, (5.61b)
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and

ϕ̃X,Y |W
w (x, y) ≜

PX,Y |W (x, y|w)− PX(x)PY (y)
√

2δ(ϵ)
√
PX(x)PY (y)

, (5.61c)

we can equivalently express (5.56) in the form

C
X,Y
ϵ (PX,Y ) ≜

{
W, {PW (w), w ∈W},

{ϕX|W
w , w ∈W}

{ϕY |W
w , w ∈W}

}
(5.62)

subject to the constraints

ϕX|W
w ∈ I

X, w ∈W, (5.63a)

ϕY |W
w ∈ I

Y, w ∈W, (5.63b)

which correspond to (5.57), and

ϕ̃X,Y |W
w (x, y) = ϕ̌X,Y |W

w (x, y) +

√
δ(ϵ)

2 ϕX|W
w (x)ϕY |W

w (y) (5.64a)

with

ϕ̌X,Y |W
w (x, y) ≜ 1√

2

(√
PY (y)ϕX|W

w (x) +
√
PX(x)ϕY |W

w (y)
)
, (5.64b)

as well as

δ(ϵ)
∑

w∈W

PW (w)ϕX|W
w (x)ϕY |W

w (y) = B̃(y, x), (5.65)

for x ∈ X, y ∈ Y, and∑
w∈W

PW (w)ϕX|W
w (x) = 0, x ∈ X, (5.66a)

∑
w∈W

PW (w)ϕY |W
w (y) = 0, y ∈ Y, (5.66b)

which correspond to (5.58)–(5.60), respectively. In particular, we obtain
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(5.66) from (5.60) using (5.61a)–(5.61b), and we obtain (5.64) from

PX,Y |W (x, y|w) (5.67)
= PX|W (x|w)PY |W (y|w) (5.68)

=
(
PX(x) +

√
δ(ϵ)

√
PX(x)ϕX|W

w (x)
)

·
(
PY (y) +

√
δ(ϵ)

√
PY (y)ϕY |W

w (y)
)

= PX(x)PY (y) +
√
δ(ϵ)

√
PX(x)PY (y)

·
[√

PY (y)ϕX|W
w (x) +

√
PX(x)ϕY |W

w (y)

+
√
δ(ϵ)ϕX|W

w (x)ϕY |W
w (y)

]
, (5.69)

where we have used (5.58) and (5.61a)–(5.61b), and where we recognize
the term in brackets as

√
2 ϕ̃X,Y |W

w (x) according to (5.61c). Finally,
we obtain (5.65) from the expectation of (5.69) with respect to PW ,
yielding

PX,Y (x, y)

=
∑

w∈W

PW (w)PX|W (x|w)PY |W (y|w)

= PX(x)PY (y)

+
√
PX(x)PY (y) δ(ϵ)

∑
w∈W

PW (w)ϕX|W
w (x)ϕY |W

w (y), (5.70)

where we have used (5.66), and where we recognize B̃(y, x) as defined
in (2.28) as the final factor in (5.70).

The following variational characterization of the nuclear (i.e., trace)
norm (see, e.g., [16], [230]) is useful in our development.

Lemma 5.20. Given an arbitrary k1 × k2 matrix A, we have

min{
k, M1∈Rk1×k

, M2∈Rk×k2 :
M1M2=A

}
(1

2∥M1∥
2
F + 1

2∥M2∥
2
F

)
= ∥A∥∗. (5.71)

In particular, we obtain that the ϵ-common information is given by
the nuclear norm of B̃. A proof is provided in Appendix C.9.
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Proposition 5.21. Given PX,Y ∈ N̄
X×Y
ϵ (PXPY ) for ϵ > 0, we have13

C(X,Y ) ≤ Cϵ(X,Y ) = ∥B̃∥∗ + OO(ϵ), ϵ→ 0, (5.72a)

where

∥B̃∥∗ =
K−1∑
i=1

σi, (5.72b)

which is achieved by the configuration

CX,Y
∗ (PX,Y )

=
{
W = {±1, . . . ,±(K − 1)},

PW (w) =
σ|w|

2∥B̃∥∗
,

PX|W (x|w) = PX(x)
(
1 + sgn(w) ∥B̃∥1/2

∗ f∗
|w|(x)

)
,

PY |W (y|w) = PY (y)
(
1 + sgn(w) ∥B̃∥1/2

∗ g∗
|w|(y)

)}
. (5.73)

and δ(ϵ) = ϵ in (5.55).

We note that while in general the cardinality of W in the charac-
terization of Wyner common information is known only to satisfy the
upper bound |W| ≤ |X|× |Y|, we obtain that cardinality |W| = 2(K−1),
which is much smaller when X and/or Y is large, suffices to achieve
ϵ-common information as ϵ→ 0.

Given data (xm, ym) from the extended model

Xm ↔W ↔ Y m, (5.74a)

13Since I(W ;X,Y ) ≥ max{I(W ;X), I(W ;Y )} by the chain rule, it follows that
our result does not change if we further include in (5.55) of Definition 5.19 all
distributions PX|W (·|w) and PY |W (·|w) that for all w ∈ W do not depend on ϵ,
since they will give rise to nonvanishing I(W ;X) and I(W ;Y ). In essence, the
configurations our definition omits are those for which the PW is increasingly severely
imbalanced as ϵ → 0.
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with

PX
m|W (xm|w) =

m∏
i=1

PX|W (xi|w) (5.74b)

PY
m|W (ym|w) =

m∏
i=1

PY |W (yi|w) (5.74c)

PX
m

,Y
m(xm, ym) =

m∏
i=1

PX,Y (xi, yi), (5.74d)

it further follows from Proposition 5.21 that

RK−1
∗ ≜ SK−1

∗ + TK−1
∗ (5.75)

with SK−1
∗ and TK−1

∗ as defined via (5.12), is, as ϵ → 0, a sufficient
statistic for inferences about the ϵ-common information variable W , i.e.,
we have the Markov chain

W ↔ RK−1
∗ ↔

(
SK−1

∗ , TK−1
∗

)
↔ (Xm, Y m), ϵ→ 0. (5.76)

In particular, we have the following result, a proof of which is provided
in Appendix C.10.

Corollary 5.22. In the solution to the optimization in Proposition 5.21
for the extended model (5.74),

PW |Xm
,Y

m(w|xm, ym) =
σ|w|

2∥B̃∥∗

(
1 +m sgn(w) ∥B̃∥1/2

∗ r∗
|w|

)
+ OO(
√
ϵ),

(5.77)

as ϵ→ 0, where, consistent with (5.75),

r∗
i = s∗

i + t∗i , (5.78)

and s∗
i and t∗i are as defined in (5.42).

The sufficiency relation of Corollary 5.22 can be equivalently ex-
pressed in the form

lim
ϵ→0

I(W ;Xm, Y m)
I(W ;RK−1

∗ )
= 1.

In essence, Corollary 5.22 shows that in making inferences about the ϵ-
common information variable W from high-cardinality data (Xm, Y m),
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it is sufficient to extract a low-dimensional real-valued sufficient statistic
RK−1. And we emphasize that a consequence of the way common
information is defined is that the sufficient statistic RK−1

∗ involves
separate processing of Xm and Y m.

5.8 Relating Common Information to Dominant Structure

The ϵ-common information variable W of Proposition 5.21 can be re-
lated to the dominant structure sequence pair (UK−1, V K−1) of Propo-
sition 5.16 (and Proposition 5.13). To develop this, let us equivalently
express W as

W ≜WK−1 = (W1, . . . ,WK−1), (5.79a)

where each Wi is a variable defined over alphabet

W◦ ≜ {−1, 0,+1} (5.79b)

according to

Wi ≜


+1 W = i

−1 W = −i
0 otherwise.

(5.79c)

We can interpret Wi as effectively capturing the ϵ-common infor-
mation in (Ui, Vi), which is defined, consistent with Definition 5.19,
as

Cϵ(Ui, Vi) = min
PW̃i|Ui,Vi

∈P̃ϵ

I(W̃i;Ui, Vi), (5.80)

where

P̃ϵ ≜
{
PW̃i|Ui,Vi

∈ P
W̃i , some W̃i : Ui ↔ W̃i ↔ Vi and

PUi|W̃i
(·|w̃i)∈N

Ui√
δ(ϵ)

(PUi
), PVi|W̃i

(·|w̃i)∈N
Vi√

δ(ϵ)
(PVi

),

for all w̃i∈W̃i and δ(·) > 0 such that lim
ϵ→0

δ(ϵ)→0.
}
. (5.81)

In particular, we have the following result, a proof of which is
provided in Appendix C.11.
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Corollary 5.23. Given PX,Y ∈ N̄
X×Y
ϵ (PXPY ) for ϵ > 0, and let WK−1

be the representation (5.79) of the optimizing ϵ-common information
variable W in Proposition 5.21. Then

Cϵ(X,Y ) = I(W ;X,Y ) =
K−1∑
i=1

I(Wi;X,Y ) + OO(ϵ), ϵ→ 0, (5.82)

where

I(Wi;X,Y ) = σi + OO(ϵ), ϵ→ 0, i ∈ {1, . . . ,K − 1}. (5.83)

Moreover, if (UK−1, V K−1) are the optimizing ϵ̃-multi-attributes in
Proposition 5.16 for some ϵ̃ > 0, then

Cϵ(Ui, Vi) = ϵ̃2 I(Wi;X,Y ) + OO(ϵ̃2ϵ), ϵ̃, ϵ→ 0, i ∈ {1, . . . ,K − 1}.
(5.84)

The associated data processing implications follow from the extended
Markov structure (5.74). In particular, an (asymptotically) sufficient
statistic for making decisions about Wi from (Xm, Y m) is

R∗
i = S∗

i + T ∗
i , (5.85)

i.e., we have the Markov chain

Wi ↔ R∗
i ↔ (S∗

i , T
∗
i )↔ (Xm, Y m), ϵ→ 0.

In particular, we have the following result, a proof of which is provided
in Appendix C.12.

Corollary 5.24. For Wi as defined in (5.79),

PWi|X
m

,Y
m(wi|x

m, ym)

=


σi

2 ∥B̃∥∗
(
1 +mwi ∥B̃∥1/2

∗ r∗
i

)
+ OO(
√
ϵ) wi = ±1(

1− σi

∥B̃∥∗

)
+ OO(
√
ϵ) wi = 0,

(5.86)

as ϵ→ 0, whose dominant term depends on xm, ym only through r∗
i .
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By comparison, W̃i satisfies the asymptotic Markov structure

W̃i ↔ Zi ↔ R∗
i ↔ (Xm, Y m),

in the limit ϵ̃, ϵ→ 0, where

Zi ≜ Ui + Vi. (5.87)

In particular, we have the following result, a proof of which is provided
in Appendix C.13.

Corollary 5.25. For W̃i as defined in (5.80),

PW̃i|Zi,X
m

,Y
m(w̃i|zi, x

m, ym)

= OO(ϵ̃
√
ϵ) +


(
1 + sgn(w̃i zi)

√
σi

)
/2 zi = ±2

0 zi = 0,
(5.88a)

as ϵ̃, ϵ→ 0, whose dominant term depends on xm, ym (and thus r∗
i ) only

through zi, and

PZi|X
m

,Y
m(zi|x

m, ym)

= OO(ϵ̃) +


(
1 + ϵ̃m sgn(zi) r

∗
i

)
/4 zi = ±2

1/2 zi = 0,
(5.88b)

as ϵ̃→ 0, whose dominant term depends on xm, ym only through r∗
i .

5.9 Universal Features and Gács-Körner Common Information

In contrast to the formulation of Wyner, a notion of common information
better suited to some applications is that introduced by Gács and
Körner [89], and further developed by Witsenhausen [277]. Recall that
with functions f : X → W and g : Y → W, the Gács-Körner common
information can be expressed in the form14

C̄(X,Y ) ≜ max
f,g :

P(f(X)=g(Y ))=1

H(f(X)), (5.89)

14We use H(Z) to denote the entropy of a random variable Z.
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and satisfies C̄(X,Y ) ≤ I(X;Y ), in contrast to Wyner common infor-
mation. Moreover, as shown in [4], [5] (and, additionally, [141]), an
equivalent characterization in the form of a dual to (5.50) is

C̄(X,Y ) = max
PW |X,Y :

W ↔X↔Y,
X↔Y ↔W

I(W ;X,Y ). (5.90)

As established in [277], Gács-Körner common information can be
expressed in terms of universal features rather simply, in contrast to
Wyner common information. To see this, the following lemma is useful;
a proof is provided in Appendix C.14.

Lemma 5.26. For given k ∈ {1, . . . ,K−1}, PX , PY , fk
∗ , and gk

∗ , consider
the family of PX,Y of the form (2.15) satisfying (2.16) and having σi = 0
for k < i ≤ K − 1. Then15

max
(σ1,...,σk)

I(X;Y ) = H
(
fk

∗ (X)
)

=
∑
x∈X

PX(x) log
(

1 +
k∑

i=1
f∗

i (x)2
)
,

(5.91)
and the maximum is achieved when σ1 = · · · = σk = 1.

In particular, use of this lemma yields the following result, whose
proof is provided in Appendix C.15.

Proposition 5.27. In terms of the decomposition (2.15), the Gács-
Körner common information takes the form

C̄(X,Y ) =


∑
x∈X

PX(x) log
(

1+
k∑

i=1
f∗

i (x)2
)

=H
(
fk

∗ (X)
)

σ1 = 1

0 otherwise,
(5.92)

where k ∈ {1, . . . ,K − 1} is defined via the property that σi = 1 for
i ≤ k and σi < 1 for i > k.

15By symmetry, it further follows that

max
(σ1,...,σk)

I(X;Y ) = H
(
g

k
∗ (Y )

)
=
∑
y∈Y

PY (y) log

(
1 +

k∑
i=1

g
∗
i (y)2

)
.
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As (5.92) reflects, maximizing f and g in (5.89) are the maximal
correlation features when the maximal correlation is unity, in which
case

P
(
fk

∗ (X) = gk
∗ (Y )

)
= 1,

and the corresponding optimizing alphabet is

W = fk
∗ (X) = gk

∗ (Y) ⊂ Rk.

Distributions for which C̄(X,Y ) ̸= 0 include those of Examples 2.7, 2.8,
2.9, and 2.10, for instance. Evidently, C̄(X,Y ) ̸= 0 only for distributions
PX,Y with very special structure, and in particular C̄(X,Y ) = 0 when
X and Y are weakly dependent.
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6
Learning Modal Decompositions

Having now characterized and interpreted universal features in a variety
of complementary ways, in this section we now turn our attention to
the problem of their estimation from training data. Indeed, since the
universal features developed in Section 5 are naturally expressed in
terms of the modal decomposition (2.15) of the joint distribution PX,Y ,
efficient learning of this decomposition from data is key to the practical
applicability of these features. We discuss aspects of such issues in this
section.

A suitable development arises out of orthogonal iteration method of
computing an SVD, which itself arises out of the variational characteri-
zation of the SVD. In particular, Section 6.1 shows that the statistical
interpretation of orthogonal iteration takes the form of what is referred
to as the alternating conditional expectations (ACE) algorithm intro-
duced by Breiman and Friedman [38]. In turn, Section 6.2 develops
aspects of the sample complexity of feature recovery, in partial support
of the empirical observation that in practice the dominant modes can
typically be recovered with comparatively less training data.

We begin by more fully describing the scenario of interest. To this
point in our development, for pedagogical reasons our model has been

72
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that PX,Y is known, by which we mean practically that it has been
reliably estimated from some training phase. When this is the case,
the problem of computing the modal decomposition is simply one of
computing the SVD of the associated CDM B̃. However, in practice,
of course, learning PX,Y from samples is an important aspect of the
overall feature selection process in the inference pipeline.

From this perspective, there is a need to understand both the
computational and sample complexity of universal feature recovery.
Accordingly, it will be convenient in our exposition to first consider the
modal computation from known PX,Y , from which some of the compu-
tational complexity issues can be appreciated, then use the resulting
foundation to address the problem of learning the modal decomposi-
tion from samples, through which sample complexity behavior can be
examined.

6.1 Computing the Modal Decomposition

Given PX,Y , computation of the SVD of B̃ is a straightforward exercise in
numerical linear algebra. In particular, from PX,Y we compute marginals
PX and PY , then construct B̃ via (2.29), then apply any of many well-
established numerical methods for computing the SVD of a matrix—see,
e.g., [97], [237], [264]. However, in this section we further develop an
interpretation of the resulting computation in the context of probabilistic
analysis that will be insightful in the sequel. We emphasize at the outset
that the results of this subsection are largely not new, but rather
establish the viewpoints and interpretations we need for our subsequent
development.

6.1.1 Orthogonal Iteration

Among the oldest and simplest approaches to the computation of the
principal singular value and vector of a matrix is referred to as power
iteration or the power method [97], [237], [264]. Moreover, power iteration
can be used in a sequential manner to recover any number of the largest
singular values and their corresponding singular vectors. However, when
the first 1 < k ≤ K − 1 dominant modes are desired, it is more efficient
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to compute them in parallel via a generalization of power iteration.
The most direct generalization is referred to as orthogonal iteration
[97, Section 7.3.2].1 This algorithm has a corresponding relation to
the generalized variational characterizations of the SVD we have used
throughout our analysis.

To implement orthogonal iteration, we start with some |X| × k

matrix Ψ̄X,0
(k) , which is typically chosen at random, and then execute

the following iterative procedure:

1. Set l = 0.

2. Orthogonalize Ψ̄X,l
(k) to obtain Ψ̂X,l

(k) via the (thin or reduced) QR
decomposition [97]

Ψ̄X,l
(k) = Ψ̂X,l

(k) ΘX,l
(k) , (6.1)

in which ΘX,l
(k) is a k × k upper triangular matrix.

3. Compute
Ψ̄Y,l

(k) = B̃ Ψ̂X,l
(k) , (6.2)

then orthogonalize to obtain Ψ̂Y,l
(k) via the (thin or reduced) QR

decomposition
Ψ̄Y,l

(k) = Ψ̂Y,l
(k) ΘY,l

(k), (6.3)

in which ΘY,l
(k) is a k × k upper triangular matrix.

4. Produce the update

Ψ̄X,l+1
(k) = B̃TΨ̂Y,l

(k). (6.4)

5. Increment l and return to Step 2.

The QR decompositions employed in the orthogonalizations in this
algorithm can be directly implemented using, e.g., the Gram-Schmidt
procedure. However, numerical stability can be improved in practice
through the use of Householder transformations [97].

1A refinement of orthogonal iteration referred to as QR iteration [97, Section 7.3.3]
forms the basis of most practical implementations, and can be used in conjunction
with various acceleration techniques.

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



6.1. Computing the Modal Decomposition 75

The convergence of this procedure depends on the properties of

A =
(
ΨX

(k)
)TΨ̄X,0

(k) , (6.5)

where ΨX
(k) is the matrix of dominant singular vectors defined in

(3.15). In particular, using ai,j to denote the (i, j)th entry of A, when
σ1, . . . , σk+1 are unique and there exist distinct j1, . . . , jk such that
ai,ji
̸= 0 for each i, then we obtain, as l→∞, [97, Theorem 7.3.1]

Ψ̂X,l
(k) → ΨX

(k)

Ψ̂Y,l
(k) → ΨY

(k)(
Ψ̂Y,l

(k)
)TB̃ Ψ̂X,l

(k) → Σ(k),

with Σ(k) as defined following (3.16). Moreover, convergence is expo-
nentially fast.2 When σ1, . . . , σk are not distinct (but still σk > σk+1),
natural generalizations of these results are obtained [97, Theorem 7.3.1].

6.1.2 Statistical Interpretation as the ACE Algorithm

The use of orthogonal iteration to compute the dominant modes in
(2.15) has a direct statistical interpretation that corresponds to what is
referred to as the alternating conditional expectations (ACE) algorithm
[38], [270].

In particular, choosing the correspondences

f̂i(x) ≜ ψ̂X,l
i (x)√
PX(x)

, f̄i(x) ≜ ψ̄X,l
i (x)√
PX(x)

,

ĝi(y) ≜ ψ̂Y,l
i (y)√
PY (y)

, ḡi(y) ≜ ψ̄Y,l
i (y)√
PY (y)

,

for i = 1, . . . , k, with

Ψ̂X,l
(k) =

[
ψ̂X,l

1 · · · ψ̂X,l
k

]
, Ψ̄X,l

(k) =
[
ψ̄X,l

1 · · · ψ̄X,l
k

]
,

Ψ̂Y,l
(k) =

[
ψ̂Y,l

1 · · · ψ̂Y,l
k

]
, Ψ̄Y,l

(k) =
[
ψ̄Y,l

1 · · · ψ̄Y,l
k

]
,

2However, it is worth emphasizing that the closer a pair of dominant singular
values are to each other, the poorer the convergence rate.
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we can rewrite the procedure of Section 6.1.1 in the form of Algorithm 1,
which iteratively computes both the dominant k features (fk

∗ , g
k
∗ ) and

σ(k) =
k∑

i=1
σi,

the Ky Fan k-norm of B̃. As such, the convergence behavior follows
immediately from the corresponding analysis of orthogonal iteration.3

To obtain Algorithm 1, we use that (6.1) and (6.3) can be equiva-
lently expressed in the form4

f̄k(x) =
(
ΘX

(k)
)T
f̂k(x), x ∈ X

ḡk(y) =
(
ΘY

(k)
)T
ĝk(y), y ∈ Y,

via which we also obtain∑
x∈X

PX(x) f̄k(x) f̄k(x)T =
(
Ψ̄X

(k))
TΨ̄X

(k) =
(
ΘX

(k))
TΘX

(k)∑
y∈Y

PY (y) ḡk(y) ḡk(y)T =
(
Ψ̄Y

(k))
TΨ̄Y

(k) =
(
ΘY

(k))
TΘY

(k),

since (
Ψ̂X

(k))
TΨ̂X

(k) =
(
Ψ̂Y

(k))
TΨ̂Y

(k) = I.
Additionally, we use that, via (2.28), (6.2) and (6.4) can be equivalently
expressed in the form

ḡk(y) = 1√
PY (y)

∑
x∈X

B̃(y, x)
√
PX(x) f̂k(x)

= E
[
f̂k(X)

∣∣Y = y
]
− E

[
f̂k(X)

]
f̄k(x) = 1√

PX(x)
∑
x∈X

B̃(y, x)
√
PY (y) ĝk(y)

= E
[
ĝk(Y )

∣∣X = x
]
− E

[
ĝk(Y )

]
.

3We emphasize that the Cholesky decompositions in Algorithm 1 are unique
when the associated covariance matrices are full rank, which is the case when: 1)
the singular values are distinct; and 2) the covariance matrix of the initialization is
positive definite, with components correlated with each of the dominant features in
the modal decomposition.

4For convenience, in this derivation, we drop the dependence on iteration (super-
script l) from our the notation, consistent with the notation in Algorithm 1.
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Algorithm 1 ACE Algorithm for Multiple Mode Computation
Require: Joint distribution PX,Y , number of modes k

1. Initialization: randomly choose f̄k(x), ∀x ∈ X

repeat
2a. Center: f̄k(x)← f̄k(x)− E

[
f̄k(X)

]
, ∀x ∈ X

2b. Cholesky factor:
E
[
f̄k(X) f̄k(X)T] =

(
ΘX

(k)
)TΘX

(k)
2c. Whiten:

f̂k(x)←
(
ΘX

(k)
)−T

f̄k(x), ∀x ∈ X

2d. ḡk(y)← E
[
f̂k(X)

∣∣Y = y
]
, ∀y ∈ Y

2e. Center: ḡk(y)← ḡk(y)− E
[
ḡk(Y )

]
, ∀y ∈ Y

2f. Cholesky factor:
E
[
ḡk(Y ) ḡk(Y )T] =

(
ΘY

(k)
)TΘY

(k)
2g. Whiten:

ĝk(y)←
(
ΘY

(k)
)−T

ḡk(y), ∀y ∈ Y

2h. f̄k(x)← E
[
ĝk(Y )

∣∣X = x
]
, ∀x ∈ X

2i. σ̂(k) ← E
[
f̄k(X)Tĝk(Y )

]
until σ̂(k) stops increasing.
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Note, too, that via standard Bayesian estimation theory, the con-
ditional expectations in Algorithm 1 can be interpreted as minimum
mean-square error (MMSE) estimates, and thus we can equivalently
write the corresponding steps 2h and 2d as optimizations; specifically,
we have, respectively, the variational characterizations

f̄k(·)← arg min
f

k(·)
E
[∥∥fk(X)− ĝk(Y )

∥∥2] (6.6a)

ḡk(·)← arg min
g

k(·)
E
[∥∥f̂k(X)− gk(Y )

∥∥2]
, (6.6b)

where we note that these optimizations can, themselves, be carried
out by an iterative procedure. Such implementations can be attractive
when there are constraints on fk

∗ (·) and gk
∗(·) based on, e.g., domain

knowledge and/or other considerations.

6.2 Estimating the Modal Decomposition from Data

When the joint distribution PX,Y is unknown, as is common in applica-
tions, but we have (labeled) training data

T ≜ {(x1, y1), . . . , (xn, yn)}, (6.7)

drawn i.i.d. from PX,Y , we can replace PX,Y in Algorithm 1 with the
empirical distribution

P̂X,Y (x, y) ≜ 1
n

n∑
i=1

1x=xi
1y=yi

(6.8)

to generate an estimate of the modal decomposition. In this case, the
expectations in Algorithm 1 are all with respect to the corresponding
empirical distributions. In particular, those in steps 2a-b and 2e-f are
with respect to, respectively,

P̂X(x) ≜
∑

y

P̂X,Y (x, y) and P̂Y (y) ≜
∑

x

P̂X,Y (x, y),
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while those in steps 2d and 2h are with respect to, respectively,

P̂X|Y (x|y) ≜
P̂X,Y (x, y)
P̂Y (y)

and P̂Y |X(y|x) ≜
P̂X,Y (x, y)
P̂X(x)

,

and that in step 2i is with respect to P̂X,Y (x, y).
Evidently, in this version of Algorithm 1, the computational com-

plexity scales with the number of training samples n. There are a variety
of ways to reduce this complexity in practice. For example, among other
possibilities, in each basic iteration we can choose to operate on only a
(comparatively small) randomly chosen subset of the training data and
exploit bootstrapping techniques.

It is also worth emphasizing that in some scenarios we may have
both labeled and unlabeled training data available, the latter of which
correspond to samples x1, . . . , xn

′ and y1, . . . , yn
′ , drawn i.i.d. from PX

and PY , respectively. While labeled data is typically expensive to obtain,
since the labeling process often involves a significant amount of manual
labor, unlabeled data is comparatively inexpensive to obtain, since
no correspondences need be identified. As such, it is often possible to
accurately estimate PX and PY . In such scenarios, the corresponding
version of Algorithm 1 replaces PX,Y with an estimate based the labeled
training data subject the marginal constraints PX and PY , which can
be constructed in a variety of ways.5

In the sequel, we quantify the accuracy of the modal decomposition
when estimated from data. In light of the preceding discussion, for
this analysis, f̂∗

i , ĝ∗
i , and σ̂i for i = 1, . . . ,K are defined via the modal

decomposition

P̂X,Y (x, y) = PX(x)PY (y)
[
1 +

K∑
i=1

σ̂i f̂
∗
i (x) ĝ∗

i (y)
]
, (6.9)

where σ̂1 ≥ · · · ≥ σ̂K ≥ 0 and E
[
f̂∗

i (X) f̂∗
j (X)

]
= E

[
ĝ∗

i (Y ) ĝ∗
j (Y )

]
=

1i=j for i, j ∈ {1, . . . ,K}. We emphasize that in (6.9) we only have
σ̂K = 0 and E

[
f̂i(X)

]
= E

[
ĝi(Y )

]
= 0 for i ∈ {1, . . . ,K}, when P̂X =

5Such estimation procedures for PX,Y are often referred to as raking and have a
long history. A common approach is to use iterative scaling (iterative proportional
fitting) [71], [134]. See also, e.g., [95], [104], [275].
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PX and P̂Y = PY .6 Accordingly, in analysis, we will frequently find it
convenient to use the equivalent zero-mean features

f̌∗
i (x) ≜ f̂∗

i (x)− E
[
f̂∗

i (X)
]

(6.10a)
ǧ∗

i (y) ≜ ĝ∗
i (y)− E

[
ĝ∗

i (Y )
]
, (6.10b)

for i = 1, . . . ,K.
The decomposition (6.9) corresponds to the singular value decom-

position of the quasi-CDM B̂ whose (y, x)th entry is

B̂(x, y) ≜
P̂X,Y (x, y)− PX(x)PY (y)√

PX(x)
√
PY (y)

, (6.11)

i.e.,

B̂ ≜
[√

PY

]−1[
P̂Y,X −PY PX

][√
PX

]−1
(6.12)

=
K∑

i=1
σ̂iψ̂

Y
i

(
ψ̂X

i

)T
, (6.13)

where the singular vectors in (6.13) have elements

ψ̂X
i (x) ≜

√
PX(x) f̂∗

i (x), x ∈ X, (6.14a)

ψ̂Y
i (y) ≜

√
PY (y) ĝ∗

i (y), y ∈ Y, (6.14b)

for i = 1, . . . ,K.
There are several aspects of the modal decomposition estimation

whose sample complexity is of interest, which we now address.

6.2.1 Sample Complexity of Maximal Correlation Estimates

In this section, we determine the number of samples required to ob-
tain accurate estimates σ̂1, . . . , σ̂k of σ1, . . . , σk, for k ∈ {1, . . . ,K}.7

Specifically, we focus on the measure

µk
1(PX,Y , P̂X,Y ) ≜

k∑
i=1
|σ̂i − σi|, (6.15)

and related quantities.
We begin with the following tail probability bound, a proof of which

is provided in Appendix D.1.
6As such these properties effectively hold when n ≫ max{|X|, |Y|}.
7Although the case k = K is typically less of interest (since σK = 0), we include

it for completeness. For this case, f∗
K(X) and g∗

K(Y ) can be chosen freely subject to
the constraint that they are uncorrelated with fK−1

∗ (X) and gK−1
∗ (Y ), respectively.
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Proposition 6.1. For PX,Y ∈ P
X×Y, let p0 > 0 be such that

PX(x) ≥ p0 and PY (y) ≥ p0, all x ∈ X, y ∈ Y. (6.16)

Then for k ∈ {1, . . . ,K} and 0 ≤ δ ≤
√
k/2/p0,

P
(

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ δ) ≤ exp
{

1
4 −

p2
0 δ

2n

8k

}
, (6.17)

where σ̂i for i = 1, . . . ,K are defined via (6.9) with P̂X,Y denoting the
empirical distribution based on n training samples.

A key consequence of Proposition 6.1 is the following corollary.

Corollary 6.2. Suppose PX,Y ∈ P
X×Y is such that (6.16) is satisfied

for some p0 > 0. Then for k ∈ {1, . . . ,K} and n sufficiently large that
n ≥ 16 log(4kn),

E

( k∑
i=1

∣∣σ̂i − σi

∣∣)2 ≤ 6k + 8k log(nk)
p2

0n
, (6.18)

where σ̂i for i = 1, . . . ,K are defined via (6.9) with P̂X,Y denoting the
empirical distribution based on n training samples.

The proof of Corollary 6.2, provided in Appendix D.2, makes use
of the following simple lemma, which is a straightforward exercise in
calculus.

Lemma 6.3. Given a, b > 0, the convex function φa,b : R→ R defined
via

φa,b(ω) ≜ ω + ae−bω, (6.19)

has its minimum at

ω∗ ≜ arg min
ω

φa,b(ω) = 1
b

log(ab), (6.20)

where it takes value

min
ω
φa,b(ω) = φa,b(ω∗) = 1 + log(ab)

b
. (6.21)
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Additional consequences of Proposition 6.1 and Corollary 6.2 are
that

P
(∣∣∣∣∣

k∑
i=1

(
σ̂i − σi

)∣∣∣∣∣ ≥ δ
)
≤ exp

{
1
4 −

p2
0 δ

2n

8k

}
and

E

( k∑
i=1

(
σ̂i − σi

))2 ≤ 6k + 8k log(nk)
p2

0n
,

respectively, which follow from the triangle inequality; specifically,

∣∣∣∥A1∥(k) − ∥A2∥(k)

∣∣∣ =
∣∣∣∣∣

k∑
i=1

(
σi(A1)− σi(A2)

)∣∣∣∣∣ ≤
k∑

i=1

∣∣σi(A1)− σi(A2)
∣∣,

(6.22)

for any A1,A2 ∈ Rk1×k2 and k ∈
{
1,min{k1, k2}

}
, with σ1(·) ≥ · · · ≥

σmin{k1,k2}(·) denoting the ordered singular values of its (matrix) argu-
ment.8

And still further consequences of Proposition 6.1 and Corollary 6.2
are that

P
(

k∑
i=1

(
σ̂i − σi

)2 ≥ δ2
)
≤ exp

{
1
4 −

p2
0 δ

2n

8k

}
and

E
[

k∑
i=1

(
σ̂i − σi

)2] ≤ 6k + 8k log(nk)
p2

0n
,

respectively, which follow from the standard norm inequality∥∥ak∥∥ ≤ ∥∥ak∥∥
1 ≜

∑
i=1
|ai|, any k and ak. (6.23)

Finally, for ϵ-dependent X and Y , variables X(k), Y (k) defined via
(4.30a) have mutual information I(X(k);Y (k)) given by (4.30). Accord-
ingly, a natural estimate of this mutual information is

Î(X(k);Y (k)) ≜ 1
2

k∑
i=1

σ̂2
i ,

8Note that (6.22), in turn, means that, more generally, Lemma D.2 in Ap-
pendix D.1 also quantifies the stability of Ky Fan k-norms.
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for which the error is

Î(X(k);Y (k))− I(X(k);Y (k)) = 1
2

k∑
i=1

(
σ̂2

i − σ̂
2
i

)
+ OO(ϵ2), ϵ→ 0. (6.24)

The results of Proposition 6.1 and Corollary 6.2 can be used to bound
the error (6.24); specifically, we have the following corollary, whose
proof is provided in Appendix D.3.

Corollary 6.4. Suppose PX,Y ∈ P
X×Y is such that (6.16) is satisfied for

some p0 > 0, and let σ̂i for i = 1, . . . ,K be defined via (6.9) with P̂X,Y

denoting the empirical distribution based on n training samples. Then
for any k ∈ {1, . . . ,K} and 0 ≤ δ ≤

√
k/2/p2

0,

P
(∣∣∣∣∣12

k∑
i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣ ≥ δ
)
≤ exp

{
1
4 −

p4
0 δ

2n

8k

}
, (6.25)

and, for n such that n ≥ 16 log(4kn),

E

∣∣∣∣∣12
k∑

i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣
2 ≤ 6k + 8k log(nk)

p4
0n

. (6.26)

More generally, it should be emphasized that, as the proofs of
Proposition 6.1, Corollary 6.2, and Corollary 6.4 reveal, their results
hold not only for the k dominant singular values σ̂i and σi, but for
arbitrary (corresponding) subsets of k singular values.

It is also worth noting that Proposition 6.1, Corollary 6.2, and
Corollary 6.4 all suggest that when some value of x (or some value of
y) occurs with low probability, then estimating the singular values can
require a correspondingly large amount of data. An instance of this is
Example 2.7 when δ is small.

6.2.2 Sample Complexity of Feature Estimates

In this section, we determine the number of samples required to obtain
accurate estimates

f̌k
∗ =

(
f̌∗

1 , . . . , f̌
∗
k

)
and ǧk

∗ =
(
ǧ∗

1, . . . , ǧ
∗
k

)
of the features fk

∗ and gk
∗ , respectively, for k ∈ {1, . . . ,K − 1}. Our

development focuses on measuring the accuracy of these estimates by
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the extent to which they preserve as much of the mutual information
between X and Y as possible, in the local sense, corresponding to
σ2

1 + · · ·+ σ2
k. Specifically, we measure this via9

µk
2(PX,Y , P̂X,Y ) ≜ EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2]

. (6.27)

To facilitate interpretation of the measure (6.27), note that since∥∥B̃ ΞX∥∥2
F = EPY

[∥∥EPX|Y

[
fk(X)

]∥∥2]
, (6.28)

with ΞX denoting the collection of feature vectors associated with fk

as defined in (3.12a), we have

max
f

k∈Fk

EPY

[∥∥EPX|Y

[
fk(X)

]∥∥2] = EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2] =

k∑
i=1

σ2
i ,

where Fk is as defined in (3.6c).
We begin with the following tail probability bound, a proof of which

is provided in Appendix D.4.

Proposition 6.5. Let PX,Y ∈ P
X×Y be such that (6.16) is satisfied for

some p0 > 0. Then for k ∈ {1, . . . ,K} and 0 ≤ δ ≤ 4k,10

P
f̌

k
∗

(
EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≥ δ)

≤
(
|X|+ |Y|

)
exp

{
−p0 δ

2n

64k2

}
, (6.29)

where f̌∗
i for i = 1, . . . ,K − 1 are defined via (6.10a) and (6.9), with

P̂X,Y denoting the empirical distribution based on n training samples.

Note that by symmetry, it also follows immediately from Proposi-
tion 6.5 that

P
ǧ

k
∗

(
EPX

[∥∥EPY |X

[
gk

∗ (Y )
]∥∥2 −

∥∥EPY |X

[
ǧk

∗ (Y )
]∥∥2] ≥ δ)

≤
(
|X|+ |Y|

)
exp

{
−p0 δ

2n

64k2

}
, (6.30)

9To avoid unnecessarily cumbersome expressions, we have left implicit the condi-
tioning on f̌

k
∗ (·) in the expectation in (6.27).

10With slight abuse of notation, we use Pf̌
k
∗

(·) to denote probability with respect
to the distribution governing the random map f̌

k
∗ (·).
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where, analogously, ǧ∗
i for i = 1, . . . ,K − 1 are defined via (6.10b) and

(6.9).
A key consequence of Proposition 6.5 is the following corollary,

whose proof, provided in Appendix D.5, makes use of Lemma 6.3.

Corollary 6.6. Let PX,Y ∈ P
X×Y be such that (6.16) is satisfied for some

p0 > 0. Then for k ∈ {1, . . . ,K} and n sufficiently large that
p0n

64 ≥
1(

|X|+ |Y|
) (6.31a)

and
p0n

4 ≥ log
(
p0n

64
(
|X|+ |Y|

))
, (6.31b)

we have

E
f̌

k
∗

[(
EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2])2

]

≤
64k2

(
log
[
p0n

(
|X|+ |Y|

)]
− 3

)
p0n

, (6.32)

where f̌∗
i for i = 1, . . . ,K − 1 are defined via (6.10a) and (6.9), with

P̂X,Y denoting the empirical distribution based on n training samples,
and where (with slight abuse of notation) we use E

f̌
k
∗

[
·
]

to denote
expectation with respect to the distribution governing the random map
f̌k

∗ .

As with the case of maximal correlation estimates, we note that
Proposition 6.5 and Corollary 6.6 suggest that a large amount of data
is required to estimate the features when some value of x (or some
value of y) occurs with low probability. An instance of this is, again,
Example 2.7 when δ is small.

6.2.3 Complementary Sample Complexity Bounds

In Proposition 6.1, we bound the sample complexity of maximal correla-
tion estimates via a Frobenius norm bound, while in Proposition 6.5, we
bound the sample complexity of feature estimates via a spectral norm
bound. However, we may interchange these analyses, using spectral
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norm bounds to analyze sample complexity of maximal correlation esti-
mates, and Frobenius norm bounds to analyze the sample complexity
of feature estimates.

In this way, we obtain complementary results. In particular, we have
the following alternative bound on the sample complexity of maximal
correlation estimates, a proof of which is provided in Appendix D.6.

Proposition 6.7. For PX,Y ∈ P
X×Y, let p0 > 0 be such that (6.16) is

satisfied. Then for k ∈ {1, . . . ,K} and 0 ≤ δ ≤ k,

P
(

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ δ) ≤ (|X|+ |Y|) exp
{
−p0 δ

2n

4k2

}
, (6.33)

where σ̂i for i = 1, . . . ,K are defined via (6.9) with P̂X,Y denoting the
empirical distribution based on n training samples.

Moreover, Proposition 6.7 can be used to obtain an alternative
version of Corollary 6.2.

Likewise, we have the following alternative bound on the sample
complexity of feature estimates, a proof of which is provided in Ap-
pendix D.7.

Proposition 6.8. Let PX,Y ∈ P
X×Y be such that (6.16) is satisfied for

some p0 > 0. Then for k ∈ {1, . . . ,K} and 0 ≤ δ ≤ (4/p0)/
√
k/2,

P
f̌

k
∗

(
EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≥ δ)

≤ exp
{

1
4 −

p2
0 δ

2n

128k

}
, (6.34)

where f̌∗
i for i = 1, . . . ,K − 1 are defined via (6.10a) and (6.9), with

P̂X,Y denoting the empirical distribution based on n training samples.

Proposition 6.8 can similarly be used to obtain an alternative version
of Corollary 6.6.

Comparing (6.33) to (6.17) for maximum correlation estimates, and
(6.34) to (6.29) for feature estimates, we see that the alternative bounds
depend on the parameters in different ways, and apply in different
regimes. As such, each may be better than the other in different regimes.

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



6.2. Estimating the Modal Decomposition from Data 87

6.2.4 A Related Measure of Feature Quality

A natural measure of feature quality closely related to that defined in
(6.27) is

µk
2′(PX,Y , P̂X,Y ) ≜

∥∥E[fk
∗ (X) gk

∗ (Y )T]− E
[
f̌k

∗ (X) ǧk
∗ (Y )T]∥∥

F. (6.35)

See Appendix D.8 for an analysis of (6.35), which establishes that
sample complexity bounds very similar to those for (6.27) apply.

6.2.5 Sample Complexity Error Exponent Analysis

Further sample complexity results can be obtained in the limit n→∞
via large deviations analysis, complementing the results of Sections 6.2.1–
6.2.3.

In this analysis, for a given P̂X,Y we focus on the empirical DTM B̂
whose (y, x)th entry is11

B̂(x, y) ≜
P̂X,Y (x, y)√
P̂X(x)

√
P̂Y (y)

, (6.36)

for which f̂∗
i , ĝ∗

i , and σ̂i for i = 1, . . . ,K are defined via the modal
decomposition

P̂X,Y (x, y) = P̂X(x) P̂Y (y)
[
1 +

K−1∑
i=1

σ̂i f̂
∗
i (x) ĝ∗

i (y)
]
, (6.37)

where σ̂1 ≥ · · · ≥ σ̂K−1 ≥ 0 and

EP̂X

[
f̂∗

i (X) f̂∗
j (X)

]
= EP̂Y

[
ĝ∗

i (Y ) ĝ∗
j (Y )

]
= 1i=j , i, j ∈ {1, . . . ,K−1}.

Eq. (6.37) corresponds to the singular value decomposition

B̂ =
K−1∑
i=0

σ̂iψ̂
Y
i

(
ψ̂X

i

)T
, (6.38)

11By contrast, in the preceding sections the analysis focused on the quasi-CDM
defined via (6.11), which uses true instead of empirical marginals and removes the
zeroth mode, resulting in the decomposition (6.9). However, the re-use of notation
is convenient. Also, more generally B̂(x, y) ≜ 0 for all (x, y) ∈ X × Y such that
P̂X(x) = 0 or P̂Y (y) = 0, consistent with (2.9).
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where for i = 1, . . . ,K − 1 the singular vectors in (6.38) are related to
the feature vectors in (6.37) as in (6.14), and where [cf. (2.14)]

σ̂0 = 1, ψ̂X
0 (x) =

√
P̂X(x), ψ̂Y

0 (y) =
√
P̂Y (y).

Motivated by the analyses in the previous sections, we consider the
following neighborhoods of PX,Y :

S
F
δ(PX,Y ) ≜

{
P̂X,Y ∈ P

X×Y :
∥∥B̂−B

∥∥
F ≤ δ

}
(6.39a)

S
s
δ(PX,Y ) ≜

{
P̂X,Y ∈ P

X×Y :
∥∥B̂−B

∥∥
s ≤ δ

}
(6.39b)

S
k
δ (PX,Y ) ≜

{
P̂X,Y ∈ P

X×Y :
∣∣∣∥∥BΨX

(k)
∥∥2

F −
∥∥BΨ̂X

(k)
∥∥2

F

∣∣∣ ≤ δ},
k ∈ {1, . . . ,K − 1},

(6.39c)

for any δ > 0, where B̂ is the DTM corresponding to P̂X,Y . We denote
the k dominant singular vectors using ψ̂X

i , and ψ̂Y
i , and define

Ψ̂X
(k) ≜

[
ψ̂X

1 · · · ψ̂X
k

]
and Ψ̂Y

(k) ≜
[
ψ̂Y

1 · · · ψ̂Y
k

]
. (6.40)

Our main result relates the error exponents for (6.39c) to those of
(6.39a) and (6.39b); a proof is provided in Appendix D.9.

Proposition 6.9. For any PX,Y ∈ relint(PX×Y), any 0 < δ < Bmin(PX,Y )
with

Bmin(PX,Y ) ≜ min
x∈X,y∈Y

B(x, y) > 0, (6.41)

and S
F
δ(PX,Y ), Ss

δ(PX,Y ), and S
k
δ (PX,Y ) as defined in (6.39), we have

E
(
S

k
4δ

√
k(PX,Y )

)
≥ E−

(
S

F
δ(PX,Y )

)
= E∗

(
S

F
δ(PX,Y )

)
(6.42a)

E
(
S

k
4δk(PX,Y )

)
≥ E−

(
S

s
δ(PX,Y )

)
= E∗

(
S

s
δ(PX,Y )

)
≥ E∗

(
S

F
δ(PX,Y )

)
,

(6.42b)

for k ∈ {1, . . . ,K − 1}, where for S ⊆ P
X×Y,

E(S) ≜ − lim sup
n→∞

1
n

logP
(
P̂X,Y ∈ P

X×Y\S
)

(6.43)

E∗(S) ≜ − lim
n→∞

1
n

logP
(
P̂X,Y ∈ P

X×Y\S
)

(6.44)

E−(S) ≜ inf
P̂X,Y ∈P

X×Y\S
D(P̂X,Y ∥PX,Y ). (6.45)
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Proposition 6.9 quantifies, e.g., the relative difficulties of achieving
small ∑

x∈X,y∈Y

(
B̂(x, y)−B(x, y)

)2
,

which corresponds to (6.39a), small12

max
(f,g)∈F1×G1

(
E
[
f(X) g(Y )

]
− EP̂X,Y

[
f(X) g(Y )

])
,

which corresponds to (6.39b) when P̂X = PX and P̂Y = PY (and which
is a good approximation for moderately large n), and small∣∣∣EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̂k

∗ (X)
]∥∥2]∣∣∣,

which corresponds to (6.39c)—and which is closely related to achieving
small ∥∥∥E[fk

∗ (X) gk
∗ (Y )T]− E

[
f̂k

∗ (X) ĝk
∗ (Y )T]∥∥∥

F
,

according to the discussion of Section 6.2.4.
Finally, the following lemma provides a local characterization of

related Chernoff exponents.13 A proof is provided in Appendix D.10.

Lemma 6.10. For PZ ∈ relint(PZ) and every h : Z → R such that
E[h(Z)] ̸= 0 and var[h(Z)] > 0, and with P̂Z denoting the empirical
distribution formed from n i.i.d. samples of PZ , we have

lim
γ→0+

lim
n→∞

2
γ2n

logP
(∣∣∣∣∣EP̂Z

[
h(Z)

]
E[h(Z)] − 1

∣∣∣∣∣ ≥ γ
)
−
(
E[h(Z)]

)2
var[h(Z)] . (6.46)

We can apply Lemma 6.10 to h(Z) = f(X) g(Y ) with Z = (X,Y )
for different choices of f and g. In particular, it follows immediately
that for any PX,Y ∈ relint(PX×Y), and any f and g such that

E
[
f(X)2] = E

[
g(Y )2] = 1

E
[
f(X) g(Y )

]
̸= 0

var
[
f(X) g(Y )

]
> 0,

12This is the special (k = 1) case of expressing ∥B − B̂∥(k) in the form

max
(f

k
,g

k)∈Fk×Gk

[
E
[
f

k(X)T
g

k(Y )
]

− EP̂X,Y

[
f

k(X)T
g

k(Y )
]]
.

13For related and expanded local exponent analysis, see, e.g., [126], [127].
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we have

− lim
∆→0+

1
∆2 lim

n→∞
1
n

log

P
∣∣∣∣∣∣

EP̂X,Y

[
f(X) g(Y )

]
E
[
f(X) g(Y )

] − 1

∣∣∣∣∣∣ ≥ ∆


= 1

2
E
[
f(X) g(Y )

]2
var
[
f(X) g(Y )

] . (6.47)

As one instance of (6.47), we can choose f = f∗
1 and g = g∗

1 to
quantify the sample complexity of estimating σ1. As another, we can
choose

f(x) =
1x=x0√
PX(x)

and g(y) =
1y=y0√
PY (y)

,

for some (x0, y0), to quantify the sample complexity of estimating the
(x0, y0)th entry of B, i.e.,

E
[
f(X) g(Y )

]
=

PX,Y (x0, y0)√
PX(x0)

√
PY (y0)

= B(x0, y0).

6.2.6 Additional Perspectives

While the preceding results represent useful insights into the sample
complexity of modal decomposition estimation, ultimately more work is
needed to fully characterize the behavior of such estimates. Moreover,
one can view modal decompositions of the empirical joint distribution
truncated to the dominant modes as a kind of rank-based “smoothing”
of the empirical distribution to improve its quality when the number
of samples is small relative to the alphabet sizes involved. As such, it
can, in principle, be compared to (and potentially augmented with) a
variety of ways that maximum likelihood estimates have traditionally
been improved in such settings. These include parametric methods such
as those based on exponential families [25], [65], [99], [199], [210], for ex-
ample. They also include nonparametric smoothing, early developments
of which appear in [45], [221], [234], [276]; see, e.g., [251] for an overview.
And they include smoothing methods specifically tailored to settings
with very large alphabets, such as additive-constant (i.e., generalized
Laplace) smoothing [37], [137], [139], [163], [183], [220], Good-Turing
estimation [98], [145], [198], [216], Jelinek-Mercer smoothing [138], and
absolute discounting (i.e., Kneser-Ney smoothing) [152], [209].
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Collaborative Filtering and Matrix Factorization

A variety of high-dimensional learning and inference problems can be
addressed within the framework of analysis of the preceding sections.
One example is the design of recommender systems [201] based on
collaborative filtering [96]. These systems aim to predict the preferences
of individual users for various items from (limited) knowledge of some
of their and other users’ item preferences, such as may be obtained
from ratings data and/or records of prior choices. Among the most
successful forms of collaborative filtering to date have been matrix
factorization methods based on latent factor models and involving low-
rank approximation techniques [153], [233], [255], a subset of which
are formulated as matrix completion problems [50], [52], [53], [147] or
variations thereof [90], [267].

In applying such methods, the system designer must (implicitly
or otherwise) choose: 1) how to model the available data expressing
user preferences; 2) what matrix representation to factor; and 3) a
criterion for evaluating the quality of candidate factorizations. The
large literature in this area reflects the many choices available.

In this section, we use the context of collaborative filtering to de-
velop key matrix factorization perspectives associated with the modal

91
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decomposition. In particular, we formulate the problem of collabora-
tive filtering as one of Bayesian (multi-)attribute matching, and find
that the optimum such filtering is achieved using a truncated modal
decomposition. In addition, we demonstrate how the resulting filtering
corresponds to the optimum low-rank approximation to the empirical
CDM, and note how to differs in some significant respects from some
other commonly proposed factorizations for such applications.

7.1 Bayesian Attribute Matching

As a convenient context popularized in [28], consider the content-
provider problem of recommending movies to subscribers. Let X be
the collection of subscribers, and let Y be the collection of available
movies. In turn, (X,Y ) = (x, y) ∈ X × Y denotes the event that the
next instant a movie is watched, it will be subscriber x watching movie
y, and PX,Y (x, y) denotes the probability of this event.

With this notation, the associated conditional PY |X(y|x) denotes
the probability that if x is the next subscriber to watch a movie, he/she
will select movie y. From this perspective, the recommendation problem
can be interpreted as identifying values of y for which this conditional
probability is high for the given x, or more generally sampling from
PY |X(·|x). Alternatively, if one seeks to avoid biasing the recommen-
dation according to PY and replace it with a uniform distribution, we
sample from the distribution proportional to PX|Y (x|·) instead.

In practice, we must estimate PX,Y from data (x1, y1), . . . , (xn, yn),
where (xj , yj) is a record of subscriber X = xj having selected movie
Y = yj to watch at some point in the past. In particular, we treat these
n records as i.i.d. samples from PX,Y . In the regime of interest, there
are comparatively few training samples n relative to the joint alphabet
size X× Y, so to obtain meaningful results the procedure for estimating
PX,Y must take this into account. In the sequel, this is accomplished
by exploiting attribute variables, as we now develop.

In developing the key concepts, it is convenient to initially treat
PX,Y as known, then return to the scenario of interest in which only
the empirical distribution P̂X,Y is available.
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To begin, we view the multi-attribute variables Uk and V k in the
Markov chain Uk ↔ X ↔ Y ↔ V k obtained in Section 5.5 (and
Section 5.6) as the dominant attributes of subscribers and movies,
respectively. In turn the corresponding Sk

∗ and T k
∗ , as defined in (5.12),

represent sufficient statistics for the detection of these attributes.
Conceptually, for each movie y, there is an associated movie multi-

attribute V k(y) generated randomly from y according to P
V

k|Y (·|y), as
defined via (5.37b), that expresses its dominant characteristic. Likewise,
for the target subscriber x, there is an associated movie multi-attribute
V k

◦ (x) generated randomly from x according to P
V

k|X(·|x), as defined
via (5.38a), that expresses his/her preferred movie characteristic. Hav-
ing defined these multi-attributes, we can express the recommendation
problem as one of Bayesian decision-making among multiple (not mu-
tually exclusive) hypotheses. Specifically, Ey(x) denotes the event that
there is an attribute match with movie y for subscriber x, i.e.,

Ey(x) ≜
{
V k(y) = V k

◦ (x)
}
. (7.1)

The following result characterizes the movie recommendation rule
that results from maximizing the expected number of matches. A proof
is provided in Appendix E.1.

Proposition 7.1. Given k ∈ {1, . . . ,K − 1}, l ∈ {1, . . . , |Y|}, PX,Y ∈
relint(PX×Y), and a collection Ŷ(x) of l (distinct) movies for subscriber
x ∈ X, let the number that are a match be

M ≜
∑

y∈Ŷ(x)

1Ey(x), (7.2)

where Ey(x) as defined in (7.1), with the movie multi-attributes V k(y)
(for movie y ∈ Y) and V k

◦ (x) (for user x ∈ X) being independent and
distributed according to, respectively, P

V
k|Y (·|y) and P

V
k|X(·|x) as

defined via Proposition 5.13 and Corollary 5.14, i.e., according to1

P
V

k
◦ ,V

k
,X,Y

(vk
◦ , v

k, x, y) = P
V

K |X(vk
◦ |x)P

V
K |Y (vk|y)PX,Y (x, y). (7.3)

1Note that (7.3) implies, e.g., 1) V k
◦ ↔ (X,Y ) ↔ V

k; 2) X ↔ Y ↔ V
k; and 3)

V
k

◦ ↔ X ↔ Y . These, in turn, imply, e.g., V k
◦ ↔ X ↔ V

k and V
k

◦ ↔ X ↔ V
k.
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Then

E[M ] ≤ 1
2k

∑
y∈Ŷ

∗(x)

(
1 + ϵ2

k∑
i=1

σi f
∗
i (x) g∗

i (y)
)

+ OO(ϵ2), (7.4)

as ϵ→ 0, where
Ŷ

∗(x) ≜
{
y∗

1(x), . . . , y∗
l (x)

}
(7.5)

is constructed sequentially according to

y∗
1(x) ≜ arg max

y∈Y

k∑
i=1

σi f
∗
i (x) g∗

i (y) (7.6a)

y∗
j (x) ≜ arg max

y∈Y\{y
∗
1(x),...,y∗

j−1(x)}

k∑
i=1

σif
∗
i (x) g∗

i (y), j ∈ {2, . . . , l}. (7.6b)

Moreover, the inequality in (7.4) holds with equality when we choose
Ŷ(x) = Ŷ

∗(x).

Note that in the case l = 1, the criterion in Proposition 7.1 special-
izes to the probability of a decision error, which our result establishes is
minimized by the use of the maximum a posteriori (MAP) decision rule,
generalizing the familiar result for Bayesian hypothesis testing. More
generally, Proposition 7.1 establishes that we maximize the expected
number of matches in our list by an MAP list decision rule: we recom-
mend to subscriber x the l movies having the l highest probabilities
of an attribute match. Note, too, that using (2.26b) we can write the
k-dimensional (weighted) inner product that is the core computation in
(7.6) in the form

k∑
i=1

σi f
∗
i (x) g∗

i (y) =
k∑

i=1
g∗

i (y)E
[
g∗

i (Y )
∣∣X = x

]
,

which provides additional interpretation of the maximum inner product
decision rule.

7.2 Interpretation as Matrix Factorization

To interpret Bayesian attribute matching as a form of matrix factor-
ization, we have the following result establishing the decision rule as
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a maximum likelihood one based on a rank-reduced approximation to
PX,Y .

Corollary 7.2. Given k ∈ {1, . . . ,K − 1}, l ∈ {1, . . . , |Y|}, and PX,Y ∈
relint(PX×Y), the optimum recommendation list in Proposition 7.1 can
be expressed in the form

y∗
1(x) = arg max

y∈Y

P
(k)
X|Y (x|y)

y∗
j (x) = arg max

y∈Y\{y
∗
1(x),...,y∗

j−1(x)}
P

(k)
X|Y (x|y), j ∈ {2, . . . , l},

where

P
(k)
X|Y (x|y) ≜

P
(k)
X,Y (x, y)
PY (y) ,

with P
(k)
X,Y as defined in (4.30a).

This corollary is an immediate consequence of the fact that the
objective function in (7.6) can be equivalently written in terms of P (k)

X,Y ;
specifically,

k∑
i=1

σi f
∗
i (x) g∗

i (y) =
P

(k)
X,Y (x, y)

PX(x)PY (y) − 1.

Moreover, P (k)
X,Y is the distribution corresponding to B̃(k), which is

the rank-k approximation to B̃ obtained by retaining the dominant
k modes in the SVD of B̃. Equivalently, B̃(k) is the rank-constrained
approximation to B̃ obtained by minimizing

∥∥B̃ − B̃(k)∥∥
F, which fol-

lows from the well-known matrix approximation theorem [84] [114,
Corollary 7.4.1.3(a) and Section 7.4.2] [97, Theorem 2.4.8]:2

Lemma 7.3 (Eckart-Young). If A and Ã are k1 × k2 matrices such that
A has singular values σ1(A) ≥ · · · ≥ σmin{k1,k2}(A) and rank(Ã) ≤ k,
then ∥∥A− Ã

∥∥2
F ≥

min{k1,k2}∑
i=k+1

σ2
i . (7.7)

2As discussed in [256], the original version of this approximation theorem was
actually due to Schmidt [244].
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Algorithm 2 Collaborative Filtering by Attribute-Matching

Require: Subscriber list X, movie list Y, selections history T, i.e., P̂X,Y ,
dimension k, recommendation list size l, target subscriber x
1. Estimate k modes of PX,Y from P̂X,Y via ACE:

σ̂i, f̂i(·), ĝi(·), for i = 1, . . . , k
2. Initialize recommendation list: Ŷ∗ = ∅
3. Initialize candidates list: Ȳ = Y

for j = 1, . . . , l do

4a. y∗ ← arg max
y∈Ȳ

k∑
i=1

σ̂i f̂
∗
i (x) ĝ∗

i (y)

4b. Update recommendation list: Ŷ∗ ← Ŷ
∗ ∪ {y∗}

4c. Update candidates list: Ȳ← Ȳ \ {y∗}
end for

7.3 Collaborative Filtering Based on Attribute Matching

The preceding results lead directly to a straightforward collaborative
filtering procedure. In particular, given a history (6.7) of n prior movie
selections by users, modeled as drawn i.i.d. from PX,Y , we form the
empirical distribution P̂X,Y , and use this distribution in Proposition 7.1
and Corollary 7.2. Consistent with the discussion in Section 6.2, we
focus on the case in which PX and PY can be accurately estimated, but
PX,Y cannot.

As such, we effectively obtain the dominant k modes from the modal
decomposition (6.9) using Algorithm 1 with the empirical distribution,
then use the resulting σ̂i, f̂

∗
i , and ĝ∗

i , for i = 1, . . . , k, to form the score
function

k∑
i=1

σ̂i f̂
∗
i (x) ĝ∗

i (y),

whose maxima over y for a given subscriber x produce the movie
recommendations. As the analysis in Section 6.2 reflects, we can expect
the estimated modes to be accurate provided k is sufficiently small
relative to n. The complete procedure takes the form of Algorithm 2.

It is worth emphasizing that the attribute matching approach to
collaborative filtering dictates factoring B̂ as defined in (6.12), which
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differs from other approaches used in the literature. For example, popular
alternatives include factoring the matrix representation P̂Y,X of P̂X,Y

itself [153], and factoring the matrix representation for pointwise mutual
information [60] (information density [107]), i.e., the matrix whose
(y, x)th entry is

log
P̂X,Y (x, y)
PX(x)PY (y) , (7.8)

as arises in natural language processing [173], [205].

7.4 Extensions

Finally, a natural alternative to the procedure of Corollary 7.2 are the
recommendations

y∗
1(x) = arg max

y∈Y

P
(k)
Y |X(y|x) (7.9a)

y∗
j (x) = arg max

y∈Y\{y
∗
1(x),...,y∗

j−1(x)}
P

(k)
Y |X(y|x), j ∈ {2, . . . , l}, (7.9b)

where

P
(k)
Y |X(y|x) ≜

P
(k)
X,Y (x, y)
PX(x) .

Unlike that of Corollary 7.2, this procedure includes the effect of PY in
its recommendations. It is obtained by replacing (7.2) with

M ≜
∑

y∈Ŷ(x)

PY (y) 1Ey(x),

and analytically extending the local analysis to ϵ = 1, i.e., relaxing the
weak dependence constraint.
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8
Softmax Regression

In this section, we develop a further characterization of the universal
features arising out of the modal decomposition as the optimizing param-
eters in softmax regression (i.e., multinomial logistic regression) in the
weak-dependence regime. Softmax regression [34], which originated with
the introduction of logistic regression by Cox [64], has proven to be an
extraordinarily useful classification architecture in a wide range of prac-
tical applications, and has well known approximation properties—see,
e.g., [24], [73], [115]. As such, viewing our results from this perspective
yields valuable additional interpretations and insights. More generally,
this form of regression can be expressed as an elementary form of neural
network, and thus its analysis is useful in relating the preceding results
to aspects of the contemporary neural network architectures that are of
particular interest for emerging applications.

The section is structured as follows. In Section 8.1, we analyze a
local version of multinomial logistic regression. Specifically, under weak
dependence we show that softmax weights correspond to (normalized)
conditional expectations. In turn, in Section 8.2, we establish that
the resulting discriminative model matches, to first order, that of a
Gaussian mixture without any Gaussian assumptions in the analysis.

98
 

The version of record is available at: http://dx.doi.org/10.1561/0100000107



8.1. A Local Analysis of Softmax Regression 99

Most significantly, in Section 8.3 we further show that the optimizing
features are, again, those of the modal decomposition, in which case the
associated softmax weights are proportional to the “dual” features of
the decomposition. Our analysis additionally quantifies the performance
limits in this regime in terms of the associated singular values. As we
discuss in Section 8.4, this analysis implies a relationship between the
ACE algorithm and methods used to train at least some classes of neural
networks.

8.1 A Local Analysis of Softmax Regression

In softmax regression, for a class index Y and k-dimensional real-valued
data S we fit a posterior of the form

P̃ g,β
Y |S(y|s) = PY (y) exp

{
sTg(y) + β(y)− α(s)

}
,

to some PS,Y by choosing parameters g and β. Note that g is defined
by1 |Y| parameter vectors g(1), . . . , g(|Y|), each of dimension k. Likewise,
β is defined by |Y| scalar parameters β(1), . . . , β(|Y|).

We characterize the optimizing softmax parameters in the weak-
dependence regime as follows; a proof is provided in Appendix F.1.

Proposition 8.1. Given PX,Y ∈ P
X×Y such that X,Y are ϵ-dependent

for some ϵ > 0, a dimension k, and s = f(x) for some f : X→ Rk, let

PS,Y (s, y) =
∑

{x : f(x)=s}
PX,Y (x, y)

be the induced distribution, and let PS denote the associated induced
marginal, with µS its mean, and ΛS its covariance, which we assume
to be nonsingular.2 Let

1In this section, we omit the superscript notation that we previously used to
explicitly indicate the dimension of a multi-dimensional variable.

2It is comparatively straightforward to verify that when ΛS is singular, the
proposition holds provided we replace the inverse Λ−1

S wherever it appears with the
Moore-Penrose pseudoinverse Λ†

S and add to g∗,S(y) any g∅(y) ∈ null(ΛS) such that
E
[
g∅(Y )

]
= 0.
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P̃
Y
s (PY ) ≜

{
P ∈ P

Y :

P = P̃ g,β
Y |S(y|s) ≜ PY (y) exp

{
sTg(y) + β(y)− α(s)

}
for some β : Y→ R and g : Y→ Rk

}
(8.1)

denote the exponential family with natural statistic g(y) and natural
parameter s ∈ S, where S ≜ f(X). Then

min
P̃Y |S(·|s)∈P̃

Y
s (PY )

∑
s∈S

PS(s)D
(
PY |S(·|s)

∥∥ P̃Y |S(·|s)
)

= I(Y ;S)− 1
2 E
[∥∥Λ−1/2

S

(
µS|Y (Y )− µS

)∥∥2]+ OO(ϵ2) (8.2)

as ϵ→ 0, with
µS|Y (y) ≜ E

[
S|Y = y

]
, (8.3)

and is achieved by the parameters

g(y) = g∗,S(y) ≜ Λ−1
S

(
µS|Y (y)− µS

)
+ OO(ϵ) (8.4a)

β(y) = β∗,S(y) ≜ −µT
S g∗,S(y) + OO(ϵ), (8.4b)

i.e.,

P̃ ∗
Y |S(y|s) ∝ PY (y) exp

{
(s−µS)TΛ−1

S (µS|Y (y)−µS)
}(

1 + OO(1)
)
,

(8.4c)

as ϵ→ 0.

8.2 Relationships to Gaussian Mixture Analysis

It is useful to note that the optimum posterior (8.4c) in Proposition 8.1
matches that for a Gaussian mixture in which the components depend
weakly on the class index, despite the fact that there are no Gaussian
assumptions in the proposition. In particular, suppose that PS|Y (·|y) =
N(µS|Y (y),ΛS|Y ), where ΛS|Y is positive definite and, as the notation
reflects, does not depend on y, and where µS|Y (y) ≜ µS + ϵe(y) with
E
[
e(Y )

]
= 0 and ϵ > 0. Then
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PY |S(y|s)
∝ PY (y)PS|Y (s|y)

∝ PY (y) exp
{
−1

2(s− µS|Y (y))TΛ−1
S|Y (s− µS|Y )

}
= PY (y) exp

{
−1

2
[
(s− µS)TΛ−1

S|Y (s− µS)

+ 2 (s− µS|Y (y))TΛ−1
S|Y (µS − µS|Y (y))

+ (µS − µS|Y (y))TΛ−1
S|Y (µS − µS|Y (y))

]}
(8.5)

∝ PY (y) exp
{

(s− µS|Y (y))TΛ−1
S|Y (µS|Y (y)− µS)

}
(1 + OO(1)) (8.6)

= PY (y) exp
{

(s−µS)TΛ−1
S (µS|Y (y)−µS)

}
(1 + OO(1)), (8.7)

as ϵ→ 0, where to obtain (8.5) we have used the simple expansion

s− µS|Y (y) = (s− µS) + (µS − µS|Y (y)),

and to obtain (8.6) we have used that in the exponent in (8.5) the first
term does not depend on y, the second term is O(ϵ), and the third term
is OO(ϵ). To obtain (8.7) we have used that µS|Y − µS and Λ−1

S −Λ−1
S|Y

are both OO(1). Hence, (8.7) and (8.4c) match, to first order.

8.3 Optimum Feature Design

Proposition 8.1 describes the optimizing softmax weights g and biases β
for a given choice of f . When we further optimize over the choice of f , we
obtain a direct relation to the modal decomposition of Proposition 2.2
and the universal posterior (5.1). In particular, we have the following
result, a proof of which is provided in Appendix F.2.

Corollary 8.2. Given dimension k ∈ {1, . . . ,K− 1}, if PX,Y is such that
fk

∗ as defined in (3.5) is injective (i.e., a one-to-one function), then

min
{injective f :

s=f(x)}

∑
s∈S

PS(s)D
(
PY |S(·|s)

∥∥ P̃ ∗
Y |S(·|s)

)
= 1

2

K∑
i=k+1

σ2
i + OO(ϵ2),

(8.8)
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as ϵ→ 0, and is achieved by

fi(x) = f∗
i (x), x ∈ X, i = 1, . . . , k, (8.9)

with f∗
i as defined in Proposition 2.2 . Moreover, for this choice of f ,

the parameters

g∗,S(y) =
(
g∗,S

1 (y), . . . , g∗,S
k (y)

)
and β∗,S(y)

in Proposition 8.1 take the form

g∗,S
i (y) = σi g

∗
i (y), y ∈ Y, i = 1, . . . , k, (8.10a)

β∗,S = 0, (8.10b)

where g∗
i (y) and σi are as defined in Proposition 2.2, and thus

P̃ ∗
Y |S∗

(y|fk
∗ (x)) ∝ PY (y) exp

{
k∑

i=1
σif

∗
i (x) g∗

i (y)
}(

1 + OO(1)
)
, ϵ→ 0.

(8.11)

8.4 A Neural Network Perspective

Since softmax regression can be interpreted as a simple neural network
classifier with a single hidden layer [100], [207], the preceding results can
be equivalently expressed in terms of the optimization of such networks.
Moreover, with the interpretation of universal features as a solution
to a local information bottleneck as developed in Section 5.6, these
results shed insight into recent analyses of deep learning based on such
bottlenecks [2], [7], [250], [260] as well as related information-theoretic
analyses [206].

The neural network architecture associated with softmax analysis
is, in our notation, as depicted in Figure 8.1. The input layer uses
a so-called “one-hot” representation of the input x, corresponding to
weights 1x=j . Next, in the hidden layer, features si = fi(x) of the input
x are generated using weights fi(j). Finally, in the output layer, the
(unnormalized) log-posterior τ(y) is constructed according to

τ(y) =
k∑

i=1
si gi(y) + β(y), y = 1, . . . , |Y|
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�(y)

x j

1

|X|

s1

si

sk

⌧(1)

⌧(y)

⌧(|Y|)

+1

1x=j fi(j) gi(y)
&(·)

P ⇤
Y |X(1|x)

P ⇤
Y |X(y|x)

P ⇤
Y |X(|Y||x)

...
...

...
...

...
...

...
...

Figure 8.1: A neural network representation of the softmax regression framework.
In this network, we use a one-hot representation of the input x, corresponding to
the kronecker weights 1x=j . The hidden layer is characterized by the feature weights
fi(j) for i ∈ {1, . . . , k}, j ∈ {1, . . . , |X|}, and the output layer is parameterized by
the weights gi(y) and biases β(y), for i ∈ {1, . . . , k}, y ∈ {1, . . . , |Y|}. The softmax
processing, as defined in (8.12), is represented by the sigmoid function ς(·) and
operates on the unnormalized log-posterior τ(y).

using output layer weights gi(y) and biases β(y). The τ(y) are then
combined and normalized to produce the posterior via the softmax
processing

P ∗
Y |X(y|x) = eτ(y)

|Y|∑
y

′=1

eτ(y′)

= ς

− log
∑
y

′ ̸=y

eτ(y′)−τ(y)

, (8.12a)

where
ς(ω) ≜ 1

1 + e−ω (8.12b)

is the sigmoid function [100].
For such networks and their multi-layer generalizations, the optimiza-

tion of the weights and biases is typically carried out using stochastic
gradient descent (SGD) [100]. As such, Proposition 8.1 implies that
SGD is effectively computing empirical conditional expectations, and as
such corresponds to an approximation to one step of the ACE algorithm.
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More generally, Corollary 8.2 establishes that jointly optimizing the soft-
max parameters and data embeddings (features) can be accomplished
iteratively via the full ACE algorithm.

To see this, let P̂S,Y denote the empirical distribution for induced
training data

Tf = {(s1, y1), . . . , (sn, yn)}
generated from PS,Y , and note that∑

s∈S

P̂S(s)D
(
P̂Y |S(·|s)

∥∥P̃ g,β
Y |S(·|s)

)
= Ĥ(Y |S)− EP̂S,Y

[
log P̃ g,β

Y |S(Y |S)
]

︸ ︷︷ ︸
≜ℓ(g,β)

,

where ℓ(g, β) is the log-likelihood function, and Ĥ(Y |S) denotes the
empirical conditional entropy. Then if the number of training samples
is sufficiently large that, effectively,3

P̂Y (y) =
∑
s∈S

P̂S,Y (s, y) = PY (y), y ∈ Y,

the maximum-likelihood parameters are, via Proposition 8.1

ĝ∗,S(y) = Λ̂−1
S

(
µ̂S|Y (y)− µ̂S

)
+ OO(ϵ) (8.13a)

β̂∗,S(y) = −µ̂T
S ĝ∗,S(y) + OO(ϵ), (8.13b)

where

µ̂S = EP̂S

[
S
]

µ̂S|Y (y) = EP̂S|Y (·|y)
[
S
]

Λ̂S = EP̂S

[(
S − µ̂S

)(
S − µ̂S

)T]
,

with

P̂S(s) =
∑
y∈Y

P̂S,Y (s, y), s ∈ S

P̂S|Y (s|y) =
P̂S,Y (s, y)
PY (y) , s ∈ S, y ∈ Y.

3There are only |Y| − 1 degrees of freedom in PY , so that when |S| is large, as we
assume, PY can be more accurately estimated from a given number of samples than
PS,Y , since the latter is described by |S||Y| − 1 degrees of freedom.
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Likewise, further optimizing the likelihood for the training data
(6.7) with respect to f such that s = f(x) under the condition that
P̂S(s) = PS(s) for s ∈ S yields that

f̂i(x) = f̂∗
i (x) and ĝi(y) = σ̂i ĝ

∗
i (y), i ∈ {1, . . . , k},

where f̂i, ĝi, and σ̂i are as defined in the analysis of Section 6.2 and can
(effectively) be computed via Algorithm 1; specifically, they characterize
the modal decomposition of the empirical distribution as expressed by
(6.9).

Such analysis suggests the potential for alternatives to SGD that
more directly approximate empirical conditional expectation, and for
interpretations of the iterative matrix factorizations inherent in, e.g.,
[83], [268]. Moreover, the analysis provides an upper bound (8.8) on per-
formance against which the performance of various weight optimization
strategies can be measured.

Finally—and perhaps more importantly—we can view existing neu-
ral network implementations as a tool for efficiently computing condi-
tional expectations. Indeed, direct computation of empirical conditional
expectations can be prohibitively expensive in practice for typical al-
phabet sizes, which the use of SGD can circumvent.
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Gaussian Distributions and Linear Features

While the preceding sections have focused on distributions over finite
alphabets, in this section we turn our attention to the case of continuous-
valued variables, emphasizing the case in which X,Y are Gaussian. Our
treatment closely parallels the preceding one for finite alphabets, and
has its roots in the pioneering work of Pearson [224] and Hotelling
[116], [117]. Indeed, as we will develop, the resulting features in this
case are linear, and strongly connected to both canonical correlation
analysis (CCA) [109], [110], [117] and principal component analysis
(PCA) [116], [140], [224]. More generally, the associated framework
provides an analysis for the case of arbitrary distributions of continuous-
valued variables subject to linear processing constraints.

The section is organized as follows. We first establish some notation
in Section 9.1, then proceed in Section 9.2 to construct the modal
decomposition of covariance via the SVD of the canonical correlation
matrix (CCM), and in Section 9.3 to obtain the familiar formulation of
Hotelling’s canonical correlation analysis (CCA) via the corresponding
variational characterization. We further define a local Gaussian geome-
try in Section 9.4, the associated notion of weakly correlated variables
in Section 9.5, and then, in Section 9.6, construct a local modal decom-
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position of joint distributions of such variables in terms of the CCA
features, which are linear. Section 9.6 also includes a brief discussion of
aspects of extensions to nonlinear features and nonGaussian distribu-
tions. In Section 9.7 we introduce Gaussian attribute models, and then
show that the CCA features arise in the solution to universal feature
problem formulations. In particular, Section 9.8 shows they arise in the
solution of an attribute estimation game in which nature chooses the
attribute at random after the system designer chooses the linear features
from which it will be estimated using a minimum mean-square error
(MMSE) criterion, and Section 9.9 shows they arise in the solution of
the corresponding cooperative MMSE attribute estimation game; these
analyses are global. Section 9.10, shows the CCA features arising in the
solution to the local symmetric version of Tishby’s Gaussian information
bottleneck problem, and Section 9.11 describes how superpositions of
CCA features arise in the solution to the (global) Gaussian version of
Wyner’s common information problem; locally this common information
is given by the nuclear norm of the CCM. Section 9.12 describes the
Markov relationships between the dominant attributes in the solution
to the information bottleneck and the common information variable.
Section 9.13 interprets the features arising out of Pearson’s principal
component analysis (PCA) as a special case of the preceding analyses
in which the underlying variables are simultaneously diagonalizable,
and Section 9.14 discusses the estimation of CCA features, interpreting
the associated SVD computation as a version of the ACE algorithm
in which the features are linearly constrained. Section 9.15 develops
Gaussian attribute matching, and interprets the resulting procedure as
one of optimum rank-constrained linear estimation, and Section 9.16
develops a form of rank-constrained linear regression as the counterpart
to softmax regression, and distinguishes it from classical formulations.

9.1 Gaussian Variables

We begin with some convenient terminology, notation, and conventions.
Our development focuses on Gaussian variables that take the form
of (column) vectors. We use N(µZ ,ΛZ) to denote the corresponding
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distribution of such a variable1 Z ∈ RKZ , where µZ and ΛZ denote the
associated mean vector and covariance matrix, respectively, parameter-
izing the distribution, i.e.,2

PZ(z) = |ΛZ |
−1/2

(2π)KZ/2 exp
{
−1

2 (z − µZ)TΛ−1
Z (z − µZ)

}
, (9.1)

with | · | denoting the determinant of its argument. Without loss of gen-
erality, we restrict our attention to variables Z such that ΛZ is (strictly)
positive definite since otherwise we may eliminate the associated redun-
dancy by reducing the dimensionality of Z until the covariance matrix
is positive definite. Also, for simplicity of exposition we restrict our
attention to zero-mean variables whenever possible, while recognizing
that nonzero means are unavoidable when conditioning on other such
variables. The extension to the more general case is straightforward.

It will frequently be convenient to work with the following equivalent
representation of a random variable.

Definition 9.1 (Normalized Variable). For a variable Z ∈ RKZ with
mean µZ and covariance ΛZ , the corresponding normalized variable is

Z̃ ≜ Λ−1/2
Z (Z − µZ) (9.2)

and has mean 0 and covariance I.

In the sequel, we will generally use ˜ notation to indicate variables
normalized according to Definition 9.1.

Next, consider an arbitrary pair of Gaussian variables, Z ∈ RKZ

and W ∈ RKW , which are jointly represented by

C =
[
Z

W

]
∼ N(0,ΛC), (9.3a)

1In the Gaussian development, to avoid certain notational conflicts we drop the
use of boldface characters for random vectors, but retain them for nonrandom ones,
and to further simplify notation, we also forgo the use of superscripts to indicate the
dimension of a variable, as in Section 8.

2We use (upper case) P notation for the probability density functions of
continuous-valued random variables.
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where
ΛC = E

[
CCT] =

[
ΛZ ΛZW

ΛW Z ΛW

]
, (9.3b)

so Z ∼ N(0,ΛZ), W ∼ N(0,ΛW ), ΛW Z = E
[
WZT], and ΛZW = ΛT

W Z .
It will frequently be convenient to express the relationship between

such variables in the familiar innovations form, the notation for which
we summarize as follows.

Lemma 9.2 (Innovations Form and MMSE Estimation). For any zero-
mean jointly Gaussian variables Z,W characterized by ΛZ , ΛW , and
ΛZW , we have

Z = ΓZ|W W + νW →Z , (9.4)

with gain matrix
ΓZ|W ≜ ΛZW Λ−1

W , (9.5)

and where νW →Z ∼ N(0,ΛZ|W ) is independent of W and thus

ΛZ|W = E
[
νW →Z ν

T
W →Z

]
= ΛZ −ΛZW Λ−1

W ΛW Z . (9.6)

Moreover, the MMSE estimate of Z based on W follows immediately as

Ẑ(W ) = E
[
Z|W

]
= ΓZ|W W, (9.7)

for which the mean-square error (MSE) in the resulting estimation error
νW →Z is, from (9.6),

λZ|W
e ≜ E

[∥∥νW →Z

∥∥2] = tr
(
ΛZ|W

)
. (9.8)

9.2 The Modal Decomposition of Covariance

For the model of interest involving zero-mean jointly Gaussian X ∈ RKX

and Y ∈ RKY with covariances ΛX and ΛY , respectively, and cross-
covariance ΛXY , it follows that the correlation structure among the
equivalent normalized variables

Ã ≜

[
X̃

Ỹ

]
(9.9)
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is
ΛÃ =

[
I B̃T

B̃ I

]
, (9.10)

where
B̃ ≜ Λ−1/2

Y ΛY X Λ−1/2
X = Λ−1/2

Y ΓY |X Λ1/2
X (9.11)

plays the role in Gaussian analysis corresponding to B̃ in the discrete
case [124]. We recognize B̃ as, of course, the central quantity in CCA,
and refer to it as the canonical correlation matrix (CCM).

The SVD of B̃ takes the form

B̃ = ΨY Σ
(
ΨX)T =

K∑
i=1

σiψ
Y
i

(
ψX

i

)T
, (9.12)

with
K ≜ min{KX ,KY }, (9.13)

where Σ is an KY ×KX diagonal matrix whose K diagonal entries are
σ1, . . . , σK , where

ΨX =
[
ψX

1 · · · ψX
KX

]
(9.14a)

ΨY =
[
ψY

1 · · · ψY
KY

]
(9.14b)

are KX×KX and KY ×KY orthogonal matrices, respectively, and where,
as before, we order the singular values according to σ1 ≥ · · · ≥ σK .

Analogous to the case of finite alphabets, B̃ is a contractive operator
representing conditional expectation, i.e., σi ≤ 1 for i = 1, . . . ,K, as
is the case for B̃ in the finite-alphabet case. In particular, this follows
from the following standard result, a derivation of which we provide for
convenience in Appendix G.1.

Fact 9.3. Let M be a matrix such that

Λ =
[

I M
MT I

]

is symmetric, and let σi(M) denote the ith singular value of M. Then
Λ is positive semidefinite if and only if σi(M) ≤ 1 for all i. More
specifically, the ith pair of eigenvalues of Λ are 1 ± σi(M) and the
remaining eigenvalues are all unity.
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In turn, the SVD (9.12) yields the following modal decomposition
of the covariance ΛY X .

Proposition 9.4. Let X ∈ RKX , Y ∈ RKY be zero-mean jointly Gaus-
sian variables characterized by ΛX , ΛY , and ΛXY , and let (9.12) denote
the SVD of its CCM (9.11). Then there exist invertible linear mappings
(coordinate transformation)

S∗ ≜ f∗(X) =
[
f∗

1 (X) · · · f∗
KX

(X)
]T

≜
(
F∗)TX (9.15a)

T ∗ ≜ g∗(Y ) =
[
g∗

1(Y ) · · · g∗
KY

(Y )
]T

≜
(
G∗)TY (9.15b)

satisfying

E
[
f∗(X) f∗(X)T] =

(
F∗)TΛX F∗ = I (9.16a)

E
[
g∗(Y ) g∗(Y )T] =

(
G∗)TΛY G∗ = I, (9.16b)

such that
E
[
g∗(Y ) f∗(X)T] = Σ, (9.17)

i.e.,
ΛY X =

(
G∗)−TΣ

(
F∗)−1 = ΛY G∗ Σ

(
F∗)TΛX . (9.18)

Proof. Let

F∗ ≜ Λ−1/2
X ΨX (9.19a)

G∗ ≜ Λ−1/2
Y ΨY , (9.19b)

which we note satisfy (9.16)(
F∗)TΛX F∗ =

(
ΨX)TΛ−1/2

X ΛXΛ−1/2
X ΨX = I(

G∗)TΛY G∗ =
(
ΨY )TΛ−1/2

Y ΛY Λ−1/2
Y ΨY = I.

Moreover, since (
F∗)−1 =

(
ΨX)TΛ1/2

X(
G∗)−1 =

(
ΨY )TΛ1/2

Y ,

it follows that (9.18) is satisfied, i.e.,(
G∗)−TΣ

(
F∗)−1 = Λ1/2

Y ΨY Σ
(
ΨX)TΛ1/2

X = ΛY X ,

where to obtain the last equality we have used (9.12). ■
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One consequence of Proposition 9.4 are the following conditional
expectation relations, which are derived in Appendix G.2

Corollary 9.5. The features f∗ and g∗ defined via (9.19) satisfy

Σ f∗(X) = E
[
g∗(Y )

∣∣X] (9.20a)
Σ g∗(Y ) = E

[
f∗(X)

∣∣Y ]. (9.20b)

Finally, note that B̃ has the interpretation of the gain matrix in
estimates of Ỹ based on X̃ (and vice-versa). In particular, from Lem-
ma 9.2 it is readily verified that we have the innovations form

Ỹ = B̃X̃ + ν̃, (9.21)

i.e., ΓỸ |X̃ = B̃, with

E
[
ν̃ν̃T] = ΛỸ |X̃ = I− B̃B̃T,

so the resulting MSE in the MMSE estimate

ˆ̃Y (X̃) = E
[
Ỹ |X̃

]
= B̃X̃ (9.22)

is
λ̃e ≜ E

[
∥ν̃∥2

]
= tr

(
I− B̃B̃T) = KY − ∥B̃∥2F. (9.23)

As such, the SVD (9.12) has the further interpretation as a modal
decomposition of the MMSE estimator (9.22).

9.3 Variational Characterization of the Modal Decomposition

As in the case of finite alphabets, the linear features
(
f∗,g∗) in Proposi-

tion 9.4 can be equivalently obtained from a variational characterization,
via which we obtain the key connection to CCA [109], [110], [117].3

3In some of the literature, the term CCA is used to refer to a general maximal
correlation framework, and the term linear CCA is used to designate the special case
in which the features are restricted to be linear. We largely avoid this terminology,
and use CCA to refer only to the latter, consistent with its original conception.
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Proposition 9.6. For any k ∈ {1, . . . ,K}, let F∗
(k) and G∗

(k) denote the
first k columns of F∗ and G∗, respectively, in Proposition 9.4, i.e.,

S∗
(k) ≜

(
F∗

(k)
)T
X ≜

[
f∗

1 (X) · · · f∗
k (X)

]T
(9.24a)

T ∗
(k) ≜

(
G∗

(k)
)T
Y ≜

[
g∗

1(Y ) · · · g∗
k(Y )

]T
. (9.24b)

Then (
F∗

(k),G∗
(k)
)

= arg min
(F(k),G(k))∈L

E
[∥∥FT

(k)X −GT
(k)Y

∥∥2]
= arg max

(F(k),G(k))∈L

σ(F(k),G(k)), (9.25)

where

σ(F(k),G(k)) ≜ E
[(

FT
(k)X

)TGT
(k)Y

]
= tr

(
GT

(k)ΛY XF(k)
)

(9.26)

and

L ≜
{

(F(k),G(k)) : FT
(k)ΛX F(k) = GT

(k)ΛY G(k) = I
}
. (9.27)

Moreover, the resulting maximal correlation (generalized Pearson corre-
lation coefficient) is

σ(F∗
(k),G∗

(k)) = tr
((

G∗
(k)
)TΛY XF∗

(k)
)

=
k∑

i=1
σi, (9.28)

the Ky Fan k-norm of B̃.

Proof. Without loss of generality, we reparameterize F(k) and G(k) in
terms of new matrices4 ΞX and ΞY according to

F(k) = Λ−1/2
X ΞX (9.29a)

G(k) = Λ−1/2
Y ΞY , (9.29b)

in which case

σ(F(k),G(k)) = tr
(
GT

(k)ΛY XF(k)
)

= tr
((

ΞY )TB̃ ΞX
)
, (9.30)

4We refer to ΞX and ΞY as the feature weights associated with the linear features
S and T , and note that they play the role in Gaussian analysis corresponding to
that played by the feature vectors ΞX and ΞY in the discrete case.
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and (9.27) dictates that(
ΞX)TΞX =

(
ΞY )TΞY = I. (9.31)

From Lemma 3.2, it follows immediately that (9.30) is maximized
subject to (9.31) when we choose

ΞX = ΨX
(k) (9.32a)

ΞY = ΨY
(k), (9.32b)

where

ΨX
(k) ≜

[
ψX

1 · · · ψX
k

]
(9.33a)

ΨY
(k) ≜

[
ψY

1 · · · ψY
k

]
, (9.33b)

and the resulting maximal correlation is (9.28), i.e.,

F∗
(k) = Λ−1/2

X ΨX
(k) (9.34a)

G∗
(k) = Λ−1/2

Y ΨY
(k), (9.34b)

as claimed. ■

9.4 Local Gaussian Information Geometry

It will sometimes be useful to define a local analysis for Gaussian
variables. For such analysis, there is a natural counterpart of the χ2-
divergence (4.1b) used in the finite-alphabet case. In particular, we will
make use of the following notion of neighborhood.

Definition 9.7 (Gaussian ϵ-Neighborhood). For a given ϵ > 0, the ϵ-
neighborhood of a K0-dimensional Gaussian distribution P0 = N(µ0,Λ0)
with positive definite Λ0 is the set of Gaussian distributions in the
following generalized divergence ball of radius ϵ2 about P0, i.e.,

N
K0
ϵ (P0) ≜

{
P ′ = N(µ,Λ) : D̄(P ′∥P0) ≤ ϵ2K0

}
, (9.35a)

where for P = N(µP ,ΛP ) and Q = N(µQ,ΛQ) with positive definite ΛQ,

D̄(P∥Q) ≜ (µP−µQ)TΛ−1
Q (µP − µQ) + 1

2
∥∥Λ−1/2

Q

(
ΛP−ΛQ

)
Λ−1/2

Q

∥∥2
F.

(9.35b)
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The divergence (9.35b) is a second-order approximation to KL di-
vergence for Gaussian distributions; specifically,

2D
(
N(µP ,ΛP )

∥∥ N(µQ,ΛQ)
)

= tr
(
Λ−1

Q ΛP

)
−K − log

∣∣ΛP Λ−1
Q

∣∣+ (µP − µQ)TΛ−1
Q (µP − µQ)

= tr
(
Λ−1/2

Q ΛP Λ−1/2
Q − I

)
− log

∣∣Λ−1/2
Q ΛP Λ−1/2

Q

∣∣
+ (µP − µQ)TΛ−1

Q (µP − µQ)

= 1
2
∥∥Λ−1/2

Q ΛP Λ−1/2
Q − I

∥∥2
F + (µP − µQ)TΛ−1

Q (µP − µQ)

+ OO

(∥∥ΛP −ΛQ

∥∥2
F
)

= 1
2
∥∥Λ−1/2

Q

(
ΛP −ΛQ

)
Λ−1/2

Q

∥∥2
F + (µP − µQ)TΛ−1

Q (µP − µQ)

+ OO

(∥∥ΛP −ΛQ

∥∥2
F
)

= D̄
(
N(µP ,ΛP )

∥∥ N(µQ,ΛQ)
)

+ OO

(∥∥ΛP −ΛQ

∥∥2
F
)
,

as
∥∥ΛP −ΛQ

∥∥
F → 0, where we have used the second-order Taylor series

approximation

log |I + A| = tr(A)− 1
2∥A∥

2
F + OO

(
∥A∥2F

)
, ∥A∥F → 0.

Just as D(·∥·), is invariant to a change of coordinates, D̄(·∥·) is
invariant to invertible linear transformation of variables, i.e., mappings
of the form Z ′ = AZ + c with nonsingular A. In particular, we have
the following result.

Lemma 9.8. Let N(µP ,ΛP ) and N(µQ,ΛQ) be K0-dimensional Gaussian
distributions with nonsingular ΛQ. Then for any nonsingular matrix A
vector c of compatible dimensions,

D̄
(
N(µP ,ΛP )

∥∥ N(µQ,ΛQ)
)

= D̄
(
N
(
AµP + c,AΛP AT) ∥∥ N

(
AµQ + c,AΛQAT)). (9.36)

A proof of this invariance is provided in Appendix G.3, and makes
use of the following simple identity.

Lemma 9.9. For any symmetric matrices M1 and M2 of equal dimen-
sion, ∥∥M1/2

1 M2M1/2
1
∥∥2

F = tr
(
M1M2M1M2

)
. (9.37)
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9.5 Weakly Correlated Variables

An instance of the local analysis of Section 9.4 corresponds to weak
correlation between variables, a concept we formally define as follows.

Definition 9.10 (ϵ-Correlation). Let Z and W be zero-mean jointly
Gaussian with dimensions KZ and KW , respectively. Then Z and W

are ϵ-correlated when

PZ,W ∈ N
KZ+KW
ϵ (PZPW ), (9.38)

where PZ and PW are the marginal distributions associated with PZ,W .

The following lemma, a proof of which is provided in Appendix G.4,
is useful in further characterizing ϵ-correlated variables.

Lemma 9.11. For any ϵ > 0 and zero-mean, ϵ-correlated jointly Gaus-
sian variables Z,W characterized by ΛZ , ΛW , and ΛZW , we have

D̄(PZ,W ∥PZPW ) = ϵ2
∥∥ΦZ|W ∥∥2

F, (9.39)

where
ΦZ|W ≜

1
ϵ

Λ−1/2
Z ΛZW Λ−1/2

W , (9.40)

which we refer to as the innovation matrix.

In particular, it follows immediately from Lemma 9.11 that Z,W
being ϵ-correlated is equivalent to the condition∥∥ΦZ|W ∥∥2

F ≤ KZ +KW . (9.41)

It also follows that Z,W are ϵ-correlated when, on average, PZ|W (·|w)
∈ N

KZ+KW
ϵ (PZ). The following lemma is useful in establishing this

result; a proof is provided in Appendix G.5.

Lemma 9.12. For ϵ > 0 and zero-mean, ϵ-correlated jointly Gaussian
variables Z,W characterized by ΛZ , ΛW , and ΛZW ,

D̄(PZ|W (·|w)∥PZ) = ϵ2
∥∥ΦZ|Ww

∥∥2 + OO(ϵ2), ϵ→ 0, (9.42)

where ΦZ|W is as defined in (9.40).
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Our further equivalent condition for ϵ-correlation is then a con-
sequence of the following result, a proof of which is provided in Ap-
pendix G.6.

Lemma 9.13. For ϵ > 0 and zero-mean, ϵ-correlated jointly Gaussian
variables Z,W characterized by ΛZ , ΛW , and ΛZW , we have5

EPW

[
D̄(PZ|W (·|W )∥PZ)

]
= D̄(PZ,W ∥PZPW )

(
1 + OO(1)

)
, ϵ→ 0.

(9.44)

Finally, yet another such equivalent notion of ϵ-correlation is

I(Z;W ) = D(PZ,W ∥PZPW ) ≤ ϵ2(KZ +KW ) (9.45)

where for Gaussian distributions, KL divergence takes the familiar form

D
(
N(µP ,ΛP )∥N(µQ,ΛQ)

)
= 1

2
[
(µP − µQ)TΛ−1

Q (µP − µQ) + tr
(
Λ−1

Q ΛP − I
)
− log

∣∣ΛP Λ−1
Q

∣∣].
(9.46)

To establish (9.45), we make use of the following simple fact, whose
proof is provided in Appendix G.7.

Fact 9.14. For δ > 0 and any matrix A,

log
∣∣I− δA AT∣∣ = −δ∥A∥2F + OO(δ), δ → 0.

As a first step, we have the following result, a proof of which is
provided in Appendix G.8.

Lemma 9.15. For ϵ > 0 and zero-mean, ϵ-correlated jointly Gaussian
variables Z,W characterized by ΛZ , ΛW , and ΛZW ,

D
(
PZ|W (·|w)

∥∥ PZ

)
= 1

2 D̄
(
PZ|W (·|w)

∥∥ PZ

)
+ OO(ϵ2), ϵ→ 0. (9.47)

5Note, too, that by symmetry we have

EPZ

[
D̄(PW |Z(·|Z)∥PW )

]
= EPW

[
D̄(PZ|W (·|W )∥PZ)

]
. (9.43)

Indeed, ΦW |Z =
(
ΦZ|W )T.
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The equivalence (9.45) is then an immediate consequence of the
following corollary, whose proof is provided in Appendix G.9.

Corollary 9.16. For ϵ > 0 and zero-mean, ϵ-correlated jointly Gaussian
variables Z,W characterized by ΛZ , ΛW , and ΛZW ,

I(Z;W ) = 1
2 D̄(PZ,W ∥PZPW )

(
1 + OO(1)

)
, ϵ→ 0. (9.48)

Finally, the following lemma is a useful generalization; a proof is
provided in Appendix G.10.

Lemma 9.17. Let PX,Y and QX,Y denote candidate jointly Gaussian
distributions for ϵ-correlated variables X,Y with given covariances ΛX ,
ΛY , and ϵ > 0, where ΛP

XY and ΛQ
XY denote the respective cross-

covariances. Then

D(PX,Y ∥QX,Y ) = 1
2 ∥B̃P − B̃Q∥

2
F + OO(ϵ2), ϵ→ 0, (9.49)

where [cf. (9.11)]

B̃P = Λ−1/2
Y ΛP

Y XΛ−1/2
X (9.50a)

B̃Q = Λ−1/2
Y ΛQ

Y XΛ−1/2
X . (9.50b)

9.6 Modal Decomposition of Jointly Gaussian Distributions

Section 9.2 describes how the SVD of B̃ provides a modal decomposition
of covariance for the jointly Gaussian X,Y model. As related analysis,
this section describes how in the weak correlation regime, this SVD
also provides a modal decomposition of mutual information and, more
generally, the joint distribution PX,Y .

First, since
ΦY |X = 1

ϵ
B̃, (9.51)

specializing Lemma 9.11, we obtain that X,Y are ϵ-correlated when

∥∥B̃∥∥2
F =

K∑
i=1

σ2
i ≤ ϵ

2(KX +KY ). (9.52)
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In turn, when X,Y are ϵ-correlated we have, specializing Corollary 9.16,

I(X;Y ) = 1
2

K∑
i=1

σ2
i + OO(ϵ2). (9.53)

An interpretation of (9.53) is obtained in terms of the modal de-
composition of PX,Y , as we now describe. In this Gaussian scenario,
in contrast to the finite alphabet case, the SVD is both a logarithmic-
domain one and asymptotic. In particular, observe that with ΛÃ as
given by (9.10) for Ã as defined in (9.9), we have

Λ−1
Ã

=
[

(I− B̃TB̃)−1 −B̃T(I− B̃B̃T)−1

−B̃(I− B̃TB̃)−1 (I− B̃B̃T)−1

]

=
[
I + B̃TB̃ −B̃T

−B̃ I + B̃B̃T

]
+ OO(ϵ2) (9.54)

=
[

I −B̃T

−B̃ I

]
+ OO(ϵ), ϵ→ 0, (9.55)

whence

PX̃,Ỹ (x̃, ỹ) = exp
{
−KA

2 log(2π)− 1
2 x̃

Tx̃− 1
2 ỹ

Tỹ + ỹTB̃ x̃+ OO(ϵ)
}

= PX̃(x̃)PỸ (ỹ) exp
{

K∑
i=1

σi x̃
TψX

i (ψY
i )Tỹ + OO(ϵ)

}

= PX̃(x̃)PỸ (ỹ)
K∏

i=1
exp

{
σi x̃

TψX
i (ψY

i )Tỹ
}(

1 + OO(1)
)
,

as ϵ→ 0, with KA = KX +KY .
As a result, we have

PX,Y (x, y) = |ΛX |
−1/2|ΛY |

−1/2 PX̃,Ỹ (Λ−1/2
X x,Λ−1/2

Y y)

= PX(x)PY (y)
(

K∏
i=1

eσi f
∗
i (x) g

∗
i (y)

)(
1 + OO(1)

)
, (9.56)

as ϵ→ 0, where f∗
i and g∗

i are the linear functions (9.15) determined in
Proposition 9.4.

Furthermore, meaningful approximations to this joint distribution
arise by considering, for k < K,

B̃(k)
∗ ≜ ΨY

(k) Σ(k)
(
ΨX

(k)
)T
, (9.57a)
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where
Σ(k) ≜

(
ΨY

(k)
)TB̃ ΨX

(k) (9.57b)

is a diagonal matrix whose diagonal elements are σ1, . . . , σk. In particu-
lar, if we let X(k) and Y (k) denote zero-mean jointly Gaussian variables
with the same marginals as X and Y , respectively, but covariance6 [cf.
(9.18)]

Λ(k)∗
Y X ≜ Λ

Y
(k)

X
(k) = Λ1/2

Y B̃(k)
∗ Λ1/2

X

=
(
G∗

(k)
)†TΣ(k)

(
F∗

(k)
)†

= ΛY G∗
(k) Σ(k)

(
F∗

(k)
)TΛX , (9.58)

where F∗
(k) and G∗

(k) are as defined in (9.34) and Σ(k) is as defined in
(9.57b), then it follows that the joint distribution of these new variables
takes the form

P
(k)∗
X,Y (x, y) ≜ P

X
(k)

,Y
(k)(x, y)

= PX(x)PY (y)
(

k∏
i=1

eσi f
∗
i (x) g

∗
i (y)

)(
1 + OO(1)

)
,

and

I(X(k);Y (k)) = 1
2

k∑
i=1

σ2
i + OO(ϵ2).

9.7 Latent Gaussian Attributes and Statistical Model

In this section, we describe useful interpretations of the modal decom-
position for Gaussian variables in terms of latent variable analysis, in
a manner analogous to that of Section 5.2 for distributions over finite-
alphabets. In this case, our development is more directly related to its
roots in factor analysis [13], [26] as introduced by Spearman [254].

6Note that Λ(k)∗
Y X so-defined is a valid cross covariance matrix, i.e.,[

ΛY Λ(k)∗
Y X(

Λ(k)∗
Y X

)T ΛX

]
is positive definite, as can be verified using Fact 9.3.
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We begin with the introduction of latent Gaussian attribute variables.
Although our definition includes a correlation constraint, in the Gaussian
case analysis we do not limit our attention to the vanishing correlation
regime.

Definition 9.18 (Gaussian ϵ-Attribute). For [cf. (9.41)]

0 < ϵ ≤
√

KW

KZ +KW
, (9.59)

the variable W ∈ RKW is a Gaussian ϵ-attribute of Z ∈ RKZ if: 1)
KW ≤ KZ and ΛW is nonsingular; 2) W,Z are jointly Gaussian; 3)
W,Z are ϵ-correlated but ΛW Z ̸= 0; and 4) W conditionally independent
of all other variables in the model given Z.

Definition 9.19 (Gaussian ϵ-Attribute Configuration). Given a zero-mean
Gaussian variable Z ∈ RKZ with covariance ΛZ , then for ϵ satisfying
(9.59), an ϵ-attribute W of Z is characterized by its configuration [cf.
(9.41)]

C
KZ
ϵ (ΛZ) =

{
KW , ΛW , ΦZ|W :

∥∥ΦZ|W ∥∥2
F ≤ KZ +KW

}
, (9.60)

with ΦZ|W as defined in (9.40).

As in the case of discrete variables, the notion of a multi-attribute
is also useful in the Gaussian case.

Definition 9.20 (Gaussian ϵ-Multi-Attribute). A Gaussian ϵ-multi-attri-
bute is a Gaussian ϵ-attribute satisfying the additional property that∥∥ΦZ|W ∥∥2

s ≤
KZ +KW

KW
, (9.61)

with ΦZ|W as defined in (9.40).

Note that (9.61) is a stronger version of the ϵ correlation property,
since

∥∥ΦZ|W ∥∥
s ≤

∥∥ΦZ|W ∥∥
F ≤ KW

∥∥ΦZ|W ∥∥
s.

Definition 9.21 (Gaussian ϵ-Multi-Attribute Configuration). Given a zero-
mean Gaussian variable Z ∈ RKZ with covariance ΛZ , then for ϵ
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satisfying (9.59), an ϵ-multi-attribute W of Z is characterized by its
configuration [cf. (9.61)]

C̄
KZ
ϵ (ΛZ) =

{
KW , ΛW , ΦZ|W :

∥∥ΦZ|W ∥∥2
s ≤

KZ +KW

KW

}
, (9.62)

with ΦZ|W as defined in (9.40).

For inferences about an attribute W , we consider features of the
form

h(Z) = HTZ =
(
Ξ
)T
Z̃,

where Ξ is the associated feature weight matrix. Without loss of gen-
erality, we restrict our attention to normalized (zero-mean) h(Z), so
that7

E
[
h(Z)h(Z)T] = HTΛZH =

(
Ξ
)TΞ = I.

In the context of a given model PX,Y , the Gaussian ϵ-attribute
variables U and V for X and Y , respectively, are characterized by the
(now Gauss-) Markov structure

U ↔ X ↔ Y ↔ V, (9.63)

where U ∈ RKU and V ∈ RKV for some dimensions KU and KV .
The following familiar fact will be useful, whose short proof we

provide for convenience in Appendix G.12.

Fact 9.22. Normalized zero-mean Gaussian variables Z̃1, Z̃2, Z̃3 form a
Markov chain Z̃1 ↔ Z̃2 ↔ Z̃3 if and only if

ΛZ̃1Z̃3
= ΛZ̃1Z̃2

ΛZ̃2Z̃3
. (9.64)

7Indeed, if they were not, so long as the columns of Ξ are linearly independent,
so
(
Ξ
)TΞ is invertible, we can transform H into H̃ via

H̃ = H
((

Ξ
)TΞ

)−1/2
= Ξ

((
Ξ
)TΞ

)−1/2

︸ ︷︷ ︸
≜Ξ̃

,

where we note
(
Ξ̃
)TΞ̃ = I.
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As an application of Fact 9.22, we have, for example,

ΦY |U = B̃ ΦX|U (9.65a)

ΦX|V = B̃TΦY |V . (9.65b)

For inferences about attributes U and V , we will generally consider
statistics of the form

S(k) ≜
(
F(k)

)T
X ≜

[
f1(X) · · · fk(X)

]T
(9.66a)

T(k) ≜
(
G(k)

)T
Y ≜

[
g1(Y ) · · · gk(Y )

]T
(9.66b)

for some dimension k ∈ {1, . . . ,K} and feature matrices F(k) ∈ RKX×k

and G(k) ∈ RKY ×k. Without loss of generality we restrict our attention
to normalized features, i.e. (F(k),G(k)) ∈ L with L as defined in (9.27).
As we will develop, the particular choices S∗

(k), T
∗
(k) defined in (9.24)

play a special role.
For arbitrary jointly Gaussian W and Z, we use λW |Z

e to denote the
MSE in the MMSE estimate of W based on Z, so with respect to our
specific variables of interest, λU |S

e (F(k)), λ
V |S
e (F(k)), λ

U |T
e (G(k)), and

λV |T
e (G(k)) denote the associated MSEs, with their dependencies on

F(k) and G(k) made explicit.

9.8 MMSE Universal Features

In this formulation, we seek to determine optimum k-dimensional fea-
tures for estimating a pair of unknown Gaussian attributes (U, V ) for
(X,Y ) in the Gauss-Markov model (9.63), where k ∈ {1, . . . ,K}.

As in the finite-alphabet setting, we view the configurations of
attributes U and V as randomly drawn by nature from a RIE. In
this case, this ensemble is also defined via the spherical symmetry of
Definition 5.7.

Definition 9.23 (Gaussian Rotation Invariant Ensemble). Given ϵ sat-
isfying (9.59), the Gaussian rotationally invariant ensemble (RIE) for
an attribute W of a Gaussian variable Z is the collection of all jointly
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Gaussian attribute configurations of the form (9.60) together with a
probability measure over the collection such that ΦZ|W is spherically
symmetric.

Let C
KX
ϵX

(ΛX) and C
KY
ϵY

(ΛY ) denote configurations for attributes U
and V , respectively, in the sense of Definition 9.19, i.e.,

C
KX
ϵX

(ΛX) =
{
KU , ΛU , ΦX|U :

∥∥ΦX|U∥∥2
F ≤ KU +KX

}
(9.67a)

C
KY
ϵY

(ΛY ) =
{
KV , ΛV , ΦY |V :

∥∥ΦY |V ∥∥2
F ≤ KV +KY

}
, (9.67b)

where [cf. (9.59)]

0 < ϵ2X ≤
KU

KU +KX
and 0 < ϵ2Y ≤

KV

KV +KY
. (9.68)

In what follows, we denote the MSE in the MMSE estimates U and
V based on S(k) as defined in (9.66a), respectively, via

λU |S
e
(
C

KX
ϵX

(ΛX),F(k)
)

and λV |S
e
(
C

KY
ϵY

(ΛY ),F(k)
)
, (9.69a)

and those for the MMSE estimates based on T(k) as defined in (9.66b)
via, respectively,

λU |T
e
(
C

KX
ϵX

(ΛX),G(k)
)

and λV |T
e

(
C

KY
ϵY

(ΛY ),G(k)
)
. (9.69b)

In turn, we let

λ̄U |S
e
(
F(k)

)
≜ ERIE

[
λU |S

e
(
C

KX
ϵX

(ΛX),F(k)
)]

(9.70a)

λ̄V |S
e
(
F(k)

)
≜ ERIE

[
λV |S

e
(
C

KY
ϵY

(ΛY ),F(k)
)]

(9.70b)

λ̄U |T
e
(
G(k)

)
≜ ERIE

[
λU |T

e
(
C

KX
ϵX

(ΛX),G(k)
)]

(9.70c)

λ̄V |T
e

(
G(k)

)
≜ ERIE

[
λV |T

e
(
C

KY
ϵY

(ΛY ),G(k)
)]
, (9.70d)

where ERIE
[
·
]

denotes expectation with respect to the Gaussian RIEs
for C

KX
ϵX

(ΛX) and C
KY
ϵY

(ΛY ).
For this scenario, we have following result, a proof of which is

provided in Appendix G.13.

Proposition 9.24. Given zero-mean jointly Gaussian X ∈ RKX , Y ∈
RKY characterized by ΛX , ΛY , and ΛXY , and attributes U and V of X
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and Y , respectively, each drawn from a Gaussian RIE for some ϵX and ϵY ,
respectively, satisfying (9.68), then for any dimension k ∈ {1, . . . ,K},
the multi-objective minimization

min
(F(k),G(k))∈L

(
λ̄U |S

e (F(k)), λ̄
V |S
e (F(k)), λ̄

U |T
e (G(k)), λ̄

V |T
e (G(k))

)
(9.71)

has a unique Pareto optimal solution, which is achieved by
(
F∗

(k),G∗
(k)
)

as defined in (9.19). Moreover,

λ̄U |S
e (F∗

(k)) = tr(ΛU )
[
1− ϵ2XĒ

X|U
0 k

]
(9.72a)

λ̄V |S
e (F∗

(k)) = tr(ΛV )
[
1− ϵ2Y Ē

Y |V
0

k∑
i=1

σ2
i

]
(9.72b)

λ̄U |T
e (G∗

(k)) = tr(ΛU )
[
1− ϵ2XĒ

X|U
0

k∑
i=1

σ2
i

]
(9.72c)

λ̄V |T
e (G∗

(k))
)

= tr(ΛV )
[
1− ϵ2Y Ē

Y |V
0 k

]
, (9.72d)

where ĒX|U
0 and Ē

Y |V
0 are nonnegative constants that do not depend

on ϵX , ϵY , k, or PX,Y .

We emphasize that Proposition 9.24 is not asymptotic: we do not
require ϵX , ϵY → 0.

9.9 MMSE Cooperative Game

A characterization of the associated cooperative game for MSE min-
imization, in which nature chooses the attribute that can be most
accurately estimated, is given by the following. A proof is provided in
Appendix G.14.

Proposition 9.25. Given zero-mean jointly Gaussian X ∈ RKX , Y ∈
RKY characterized by ΛX , ΛY , and ΛXY , parameters ϵX , ϵY of multi-
attributes U and V , respectively, satisfying (9.68), and a dimension
k ∈ {1, . . . ,K}, then the multi-objective minimization
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min
(CKX

ϵX
(ΛX),CKY

ϵY
(ΛY ))∈C(k),

(F(k),G(k))∈L

(
λU |S

e (CKX
ϵX

(ΛX),F(k)),

λV |S
e (CKY

ϵY
(ΛY ),F(k)),

λU |T
e (CKX

ϵX
(ΛX),G(k)),

λV |T
e (CKY

ϵY
(ΛY ),G(k))

)
, (9.73)

where

C(k) ≜
{(

C
KX
ϵX

(ΛX),CKY
ϵY

(ΛY )
)
:

KU = KV = k,∥∥Λ−1
U

∥∥
s ≤ 1,

∥∥Λ−1
V

∥∥
s ≤ 1,

}
, (9.74)

has a unique Pareto optimal solution, which is achieved by
(
F∗

(k),G∗
(k)
)

as defined in (9.19), and
(
C̄

KX
ϵX ,∗(ΛX), C̄KY

ϵY ,∗(ΛY )
)

characterized by

ΛU = ΛV = I (9.75a)

and

ΛXU = ϵX

√
KX + k

k
ΛX F∗

(k) (9.75b)

ΛY V = ϵY

√
KY + k

k
ΛY G∗

(k). (9.75c)

Moreover,

λU |S
e
(
C̄

KX
ϵX ,∗(ΛX),F∗

(k),G∗
(k)
)

= k − ϵ2X(KX + k) (9.76a)

λV |S
e
(
C̄

KY
ϵY ,∗(ΛY ),F∗

(k),G∗
(k)
)

= k − ϵ2Y
(
KY +k
k

) k∑
i=1

σ2
i (9.76b)

λU |T
e
(
C̄

KX
ϵX ,∗(ΛX),F∗

(k),G∗
(k)
)

= k − ϵ2X
(
KX +k
k

) k∑
i=1

σ2
i (9.76c)

λV |T
e
(
C̄

KY
ϵY ,∗(ΛY ),F∗

(k),G∗
(k)
)

= k − ϵ2Y (KY + k). (9.76d)

Note that Proposition 9.25 is also not asymptotic: it does not require
ϵX , ϵY → 0. Note, too, that via Proposition 9.25 we obtain the multi-
attributes U and V for which the features

(
F∗

(k),G∗
(k)
)

are sufficient
statistics.
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9.10 The Local Gaussian Information Bottleneck

The following result establishes the optimum attributes in the MMSE
cooperative game of Section 9.9 coincide with those of a Gaussian
version of the local information double bottleneck problem. A proof is
provided in Appendix G.15.

Proposition 9.26. Let X ∈ RKX , Y ∈ RKY be zero-mean jointly
Gaussian variables characterized by ΛX , ΛY , and ΛXY , and given
ϵX , ϵY > 0, let U and V be Gaussian ϵX - and ϵY -multi-attributes of X
and Y , respectively, with KU = KV = k. Then

I(U ;V ) ≤ ϵ2Xϵ
2
Y

2

(
KX +k
k

)(
KY +k
k

) k∑
i=1

σ2
i + OO(ϵ2Xϵ

2
Y ), ϵX , ϵY → 0,

(9.77)
where the inequality holds with equality when the configurations of U
and V are given by (9.75), in which case

ΛUV = ϵXϵY

√
KX + k

k

√
KY + k

k
Σ(k), (9.78)

where Σ(k) is as defined in (9.57b).

Proposition 9.26 can be equivalently expressed in the form of a
solution to a symmetric version of the Gaussian information bottleneck
problem [55] in the weak dependence regime. In particular, we have the
following corollary, a proof of which is provided in Appendix G.16.

Corollary 9.27. Let X,Y be zero-mean jointly Gaussian variables char-
acterized by ΛX , ΛY , and ΛXY , and let U and V be variables in the
Gauss-Markov chain (9.63) such that we satisfy the independence re-
lations ΛU = ΛV = I, the conditional independence relations that8

ΛT
XU Λ−1

X ΛXU and ΛT
Y V Λ−1

Y ΛY V are diagonal, and the dependence
constraints max

{
I(Ui;X), I(Vi;Y )

}
≤ ϵ2/2 for i = 1, . . . , k. Then

max
U,V

I(U ;V ) = ϵ4

2

k∑
i=1

σ2
i + OO(ϵ4), ϵ→ 0. (9.79)

8The elements of U are conditionally independent given X when ΛU|X = ΛU −
ΛT

XU Λ−1
X ΛXU is diagonal, and similarly for the V, Y relation.

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



128 Gaussian Distributions and Linear Features

Moreover, the maximum is achieved by the configurations [cf. (9.75b)–
(9.75c)]

ΛXU = ϵΛX F∗
(k) (9.80a)

ΛY V = ϵΛY G∗
(k), (9.80b)

in which case
ΛUV = ϵ2 Σ(k). (9.81)

with Σ(k) as defined in (9.57b).

It further follows that (S∗
(k), T

∗
(k)) is a sufficient statistic for inferences

about the optimizing (U, V ), i.e., for any dimension k ∈ {1, . . . ,K} we
have the Markov chains

(U, V )↔ (S∗
(k), T

∗
(k))↔ (X,Y ) (9.82)

and
U ↔ S∗

(k) ↔ T ∗
(k) ↔ V. (9.83)

In particular, we have the following result; a proof is provided in
Appendix G.17.

Corollary 9.28. In the solution to the optimization in Proposition 9.26,

PU,V |X,Y (u, v|x, y) = PU |X(u|x)PV |Y (v|y), (9.84)

with

PU |X(·|x) = N
(
ϵs∗

(k) , (1− ϵ2) I
)

(9.85a)
PV |Y (·|y) = N

(
ϵt∗(k) , (1− ϵ2) I

)
, (9.85b)

where [cf. (9.24)] s∗
(k) = F∗

(k) x and t∗(k) = G∗
(k) y, and where we note

that (9.85) depend on (x, y) only through (s∗
(k), t

∗
(k)). Moreover,

PU |S∗
(k),T

∗
(k),V

(
u|s∗

(k), t
∗
(k), v

)
= PU |S∗

(k)

(
u|s∗

(k)
)

(9.86a)

PV |S∗
(k),T

∗
(k),U

(
v|s∗

(k), t
∗
(k), u

)
= PV |T ∗

(k)

(
v|t∗(k)

)
, (9.86b)

and

PV |X(·|x) = N
(
ϵΣ(k) s

∗
(k) , I− ϵ2 Σ2

(k)
)

(9.87a)
PU |Y (·|y) = N

(
ϵΣ(k) t

∗
(k) , I− ϵ2 Σ2

(k)
)
. (9.87b)
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We emphasize that the sufficient statistic pair (S∗
(k), T

∗
(k)) involves

separate processing of X and Y . We also emphasize that Corollary 9.28
is not an asymptotic result—it holds for finite ϵ.

The more classical one-sided Gaussian information bottleneck prob-
lem [55] can also be analyzed in the weak-dependence regime. For
example, we have the following result, a proof of which is provided in
Appendix G.18.

Proposition 9.29. Let X ∈ RKX , Y ∈ RKY be jointly Gaussian vari-
ables characterized by ΛX , ΛY , and ΛXY , and given ϵ > 0, let U and
V be variables in the Gauss-Markov chain (9.63) such that we satisfy
the independence relations ΛU = ΛV = I, the conditional independence
relations that ΛT

XU Λ−1
X ΛXU and ΛT

Y V Λ−1
Y ΛY V are diagonal, and the

dependence constraints max
{
I(Ui;X), I(Vi;Y )

}
≤ ϵ2/2 for i = 1, . . . , k.

Then

max
U

I(U ;Y ) = max
V

I(V ;X) = ϵ2

2

k∑
i=1

σ2
i + OO(ϵ2), ϵ→ 0. (9.88)

Moreover, the maximum is achieved by the configurations (9.80).

Note, finally, that (S, T ) given by (9.24a) and (9.24b) are sufficient
statistics for inferences about the resulting (U, V ), which we emphasize
are obtained by separate processing of X and Y .

9.11 Gaussian Common Information

We now develop the relationship between the optimizing Gaussian multi-
attributes (U, V ) in Section 9.10 (and Section 9.9), and the common
information associated with the pair (X,Y ) characterized by a given
joint distribution PX,Y .

In the Gaussian case, common information can be readily evaluated,
without the local restriction of the finite-alphabet case, and takes the
following form, as shown in [241, Corollary 1]. For convenience, the
proof is provided in Appendix G.19.9

9As a possible indirect application, aspects of the results of this section may
provide useful guidance on the design of Bayesian CCA methods [151], [269] that
build on the latent variable perspectives of CCA in [18].
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Proposition 9.30. Let X ∈ RKX , Y ∈ RKY be zero-mean jointly
Gaussian variables characterized by ΛX , ΛY , and ΛXY . Then

C(X,Y ) = min
PW |X,Y :
X↔W ↔Y

I(W ;X,Y ) = 1
2

K∑
i=1

log
(1 + σi

1− σi

)
. (9.89)

Moreover, an optimizing PW |X,Y is Gaussian with

ΛXW = ΛX F∗
(K) Σ1/2

(K) (9.90a)

ΛY W = ΛY G∗
(K) Σ1/2

(K). (9.90b)

Note that since for 0 < ω < 1,
1
2 log 1 + ω

1− ω ≥ ω,

we have

C(X;Y ) ≥
K∑

i=1
σi = ∥B̃∥∗,

where the bound is tight in the limit of weak correlation, i.e.,

C(X;Y )
∥B̃∥∗

→ 1 as ∥B̃∥∗ → 0.

We further have

W ↔ R∗
(K) ↔ (S∗

(K), T
∗
(K))↔ (X,Y ). (9.91)

where
R∗

(K) ≜ S∗
(K) + T ∗

(K), (9.92)
with S∗

(K) and T ∗
(K) as defined in (9.24). In particular, we have the

following result, a proof of which is provided in Appendix G.20.

Corollary 9.31. In the solution to the optimization in Proposition 9.30

E
[
W |X,Y

]
= Σ1/2

(K)
(
I + Σ(K)

)−1
R∗

(K) (9.93a)

ΛW |X,Y =
(
I−Σ(K)

)(
I + Σ(K)

)−1
. (9.93b)
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9.12 Relating Common Information to Dominant Structure

The common information auxiliary variable W of Proposition 9.30 is
naturally related to the multi-attributes (U, V ) of Proposition 9.26 (and
Proposition 9.25) when we choose the normalization

ϵX =
√

k

KX + k
and ϵY =

√
k

KY + k
,

or, equivalently, ϵ = 1 in Corollary 9.27. In particular, the following
result, a proof of which is provided in Appendix G.21, establishes that
common information can be equivalently characterized by

C(X,Y ) = min
PW |X,Y :
X↔W ↔Y

W ↔(U,V )↔(X,Y )

I(W ;X,Y ). (9.94)

so that the optimizing W satisfies

W ↔ (U, V )↔
(
S∗

(K), T
∗
(K)
)
↔ (X,Y ). (9.95)

Corollary 9.32. Let X,Y be zero-mean jointly Gaussian variables char-
acterized by ΛX , ΛY , and ΛXY , and let (U, V ) be the dominant K-
dimensional multi-attributes of Corollary 9.27 with ϵ = 1. If W̌ is chosen
so that W̌ ↔ (U, V )↔ (X,Y ) is a Gauss-Markov chain with

ΛW̌ U = ΛW̌ V = Σ1/2
(K), (9.96)

and ΛW̌ = I, then
I(W̌ ;X,Y ) = C(X,Y ), (9.97)

where C(X,Y ) is as given in Proposition 9.30.

When W̌ is constructed according to Corollary 9.32, we have the
additional Markov structure

W̌ ↔ (U + V )↔ R∗
(K) ↔ (X,Y ). (9.98)

Specifically, we have the following readily verified result.

Corollary 9.33. With W̌ as constructed in Corollary 9.32, we have

E
[
W̌ |U, V

]
= Σ1/2

(K)
(
I + Σ(K)

)−1(U + V ) (9.99)

ΛW̌ |U,V =
(
I−Σ(K)

)(
I + Σ(K)

)−1
. (9.100)
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9.13 An Interpretation of PCA

PCA [116], [140], [224] can be interpreted as a special case of the
preceding results. Specifically, in some important instances, the form of
dimensionality reduction realized by PCA corresponds to the optimum k-
dimensional statistics S∗ = f∗(Y ) and T∗ = g∗(X) as defined in (9.24a)
and (9.24b), respectively, for the universal estimation of the unknown
k-dimensional attributes U and V under any of our formulations.

Example 9.34. As an illustration, suppose we have the innovations
form

Y = X + νX→Y ,

where X and Y are K-dimensional, and where Λν = σ2
ν I but ΛX is

arbitrary. Moreover, let

ΛX = Υ Λ ΥT

denote the diagonalization of ΛX , so the columns of

Υ =
[
υ1 · · · υK

]
, (9.101)

are orthonormal, and Λ is diagonal with entries λ1 ≥ λ2 ≥ · · · ≥ λK .
Then it is immediate that ΛY has diagonalization

ΛY = Υ
(
Λ + σ2

ν I
)

ΥT.

In this case, it follows immediately that B̃ has SVD

B̃ = Λ−1/2
Y Λ1/2

X = Υ︸︷︷︸
=ΨY

(
I + σ2

ν Λ−1)−1/2︸ ︷︷ ︸
=Σ

ΥT︸︷︷︸
=
(

ΨX
)T

. (9.102)

As a result, we have, for a given 1 ≤ k ≤ K, that (9.24a) specializes
to

F∗
(k) =

(
Υ Λ−1/2ΥT)Υ(k) = Υ(k) Λ−1/2

(k) , (9.103)

where Υ(k) denotes the K × k matrix consisting of the first k columns
of Υ, i.e.,

Υ(k) =
[
υ1 · · · υk

]
,
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and where Λ(k) denotes the k × k upper left submatrix of Λ, i.e.,
the matrix whose diagonal entries are λ1, . . . , λk. Likewise, (9.24b)
specializes to

G∗
(k) =

(
Υ
(
Λ + σ2

ν I
)−1/2ΥT

)
Υ(k) = Υ(k)

(
Λ(k) + σ2

ν I
)−1/2

. (9.104)

In turn, it follows from (9.103) and (9.104) that the k-dimensional
PCA vector

SPCA = fPCA(X) ≜ ΥT
(k)X (9.105a)

is a sufficient statistic for inferences about the unknown U and V based
on X, and

TPCA = gPCA(Y ) ≜ ΥT
(k) Y (9.105b)

is a sufficient statistic for such inferences based on Y , i.e., we have the
Markov structure

(U, V )↔ SPCA ↔ X (9.106a)

(U, V )↔ TPCA ↔ Y. (9.106b)

Beyond this illustrative example, for a general jointly Gaussian pair
(X,Y ), the statistics

S(k) =
(
F∗

(k)
)T
X and T(k) =

(
G∗

(k)
)T
Y

specialize to (invertible transformations of) the PCA statistics (9.105)
whenever KX = KY = K and ΛX and ΛY are simultaneously diagonal-
izable, i.e., when they share the same set of eigenvectors (9.101), which
is equivalent to the condition that ΛX and ΛY commute (see, e.g., [114,
Theorem 1.3.12]). In fact, if ΛX has distinct eigenvalues and commutes
with ΛY , then there is a polynomial π(·) of degree at most K − 1 such
that ΛY = π(ΛX), which follows from the Cayley-Hamilton theorem
(see, e.g., [114, Theorem 2.4.3.2 and Problem 1.3.P4]).

9.14 Learning Covariance Modal Decompositions

The linear features f(x) and g(y) in the modal decomposition of co-
variance ΛXY are readily constructed via an iterative procedure. In
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particular, a natural approach corresponds to applying orthogonal iter-
ation to B̃ to generate the dominant modes of its SVD. The resulting
procedure has a statistical interpretation as an ACE algorithm.

To obtain the Gaussian version of the ACE algorithm Algorithm 1,
it suffices to note that the conditional expectations in this case are all
linear—specifically,

E
[
FT

(k)X
∣∣Y = y

]
= FT

(k)E[X|Y = y] = FT
(k)ΛXY Λ−1

Y y (9.107a)

and

E
[
GT

(k)Y
∣∣X = x

]
= GT

(k)E[Y |X = x] = GT
(k)ΛT

XY Λ−1
X x, (9.107b)

and that [cf. (9.17)]

E
[
FT

(k)X
(
GT

(k)Y
)T] = FT

(k)ΛXY G(k). (9.107c)

The resulting procedure then takes the form of Algorithm 3. Computa-
tional complexity behavior is analogous to the corresponding algorithm
for discrete data. As in our discussion of Section 6.1.2, steps 2f and 2c
can be equivalently expressed in their respective variational forms [cf.
(6.6)]

F̄(k) ← arg min
F

E
[∥∥FT

(k)X − ĜT
(k)Y

∥∥2] (9.108a)

Ḡ(k) ← arg min
G

E
[∥∥F̂T

(k)X −GT
(k)Y

∥∥2]
, (9.108b)

and evaluated iteratively or otherwise.
When the covariance structure ΛX , ΛY , and ΛXY is unknown, but

we have training data

T ≜ {(x1, y1), . . . , (xn, yn)}, (9.109)

drawn i.i.d. from the associated Gaussian distribution, we can use
sample covariance matrices in place of the true ones in Algorithm 3,
viz.,
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Algorithm 3 Gaussian ACE, Multiple Mode Computation
Require: Covariance matrices ΛXY , ΛX , and ΛY ; dimension k

1. Initialization: randomly choose F̄(k)
repeat

2a. Cholesky factor:
F̄T

(k)ΛXF̄(k) =
(
ΘX

(k)
)TΘX

(k)
2b. Whiten:

F̂(k) = F̄(k)
(
ΘX

(k)
)−1

2c. Ḡ(k) ← Λ−1
Y ΛY X F̂(k)

2d. Cholesky factor:
ḠT

(k)ΛY Ḡ(k) =
(
ΘY

(k)
)TΘY

(k)
2e. Whiten:

Ĝ(k) = Ḡ(k)
(
ΘY

(k)
)−1

2f. F̄(k) ← Λ−1
X ΛT

Y XĜ(k)

2g. σ̂(k) ← tr
(
ĜT

(k)ΛY X F̄(k)
)

until σ̂(k) stops increasing.

Λ̂X = 1
n

n∑
i=1

(xi − µ̂X) (xi − µ̂X)T

Λ̂Y = 1
n

n∑
i=1

(yi − µ̂Y ) (yi − µ̂Y )T

Λ̂XY = 1
n

n∑
i=1

(xi − µ̂X) (yi − µ̂Y )T,

for example, where

µ̂X = 1
n

n∑
i=1

xi and µ̂Y = 1
n

n∑
i=1

yi.

Sample complexity analysis of modal estimation in this Gaussian case
can be carried out in a manner analogous to that described in Section 6.2.

9.15 Gaussian Attribute Matching

The preceding analysis can be used to develop the natural Gaussian
counterpart of the Bayesian attribute matching formulation of collab-
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orative filtering in Section 7. Our analysis can be interpreted as a
formulation of a problem of high-dimensional linear estimation. As such,
they can be viewed in a broader context that includes related results
on shrinkage-based methods (see, e.g., [168] and the references therein)
that generalize James-Stein estimators [136]. Recent work more directly
analogous to the analyses of matrix factorization in, e.g., collaborative
filtering as discussed in Section 7 include, e.g., [208], [230]. As such, this
section provides an additional interpretation of such relationships.

For the purposes of illustration, consider a simple problem of low-
level computer vision. Let Y denote a vector representing a (e.g., raster-
ized) KY -pixel target image of some scene of interest, and let X denote
a vector representing a (linearly) distorted KX -pixel source image of
the scene. Such distortions could include, e.g., complex geometric trans-
formations, nonuniform sampling, spatially-varying filtering, and noise.
Then PY |X(·|x) denotes the probability density for the target image
associated with a given source image x.

Given a choice for k ∈ {1, . . . ,K}, the k-dimensional variables U
and V in the Gaussian Markov chain (9.63) correspond to the dominant
attributes of source and target images, respectively, and where S∗

(k) and
T ∗

(k) represent sufficient statistics for the estimation of these attributes.
Conceptually, for each target image y, there is an associated target

attribute V (y) generated randomly from y according to PV |Y (·|y) that
expresses the dominant attribute of the target image. Likewise, for the
source image x, there is an associated target attribute V◦(x) generated
randomly from x according to PV |X(·|x).

Next, let ∆y(x) denote how close the target attribute of target image
y is to the target attribute of the source image x, i.e.,

∆y(x) ≜ V (y)− V◦(x),

and define the set

Ŷ(x) ≜ arg min
y∈RKY

E
[∥∥∆y(x)

∥∥2]
. (9.110)

The following characterization of Ŷ(x)—the collection of target
images whose attributes match that of the source image most closely—
is useful in our development. A proof is provided in Appendix G.22.
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Lemma 9.35. Given k ∈ {1, . . . ,K} and zero-mean jointly Gaussian
X,Y characterized by ΛX , ΛY , and ΛXY , define k-dimensional Gaussian
multi-attributes in the Gauss-Markov structure (9.63) according to
Corollary 9.27 for some ϵ > 0. Then for a given x ∈ RKX and Ŷ(x) as
defined (9.110), it follows y ∈ Ŷ if and only if the associated (linear)
features are related according to

g∗
i (y) = σi f

∗
i (x), i = 1, . . . , k. (9.111)

Among the target images y for which the attribute match with x

is closest, we seek the most likely, which we denote using y∗(x). We
have the following characterization of y∗(x). A proof is provided in
Appendix G.23.

Proposition 9.36. Given k ∈ {1, . . . ,K} and zero-mean jointly Gaus-
sian X ∈ RKX , Y ∈ RKY characterized by ΛX , ΛY , and ΛXY , define
k-dimensional Gaussian multi-attributes in the Gauss-Markov chain
(9.63) according to Corollary 9.27 for some ϵ > 0. Then for a given
x ∈ RKX and Ŷ(x) as defined (9.110), we have that

y∗(x) ≜ arg max
y∈Ŷ(x)

PY (y), (9.112)

with PY = N(0,ΛY ) denoting the marginal for Y , satisfies

y∗(x) =
(
G∗

(k)
)†T Σ(k)

(
F∗

(k)
)T
x, (9.113a)

where the Moore-Penrose pseudoinverse of G(k) takes the form(
G∗

(k)
)† =

(
G∗

(k)
)TΛY . (9.113b)

The optimizing y∗(x) in Proposition 9.36 has the interpretation as
an MMSE estimate based not on ΛXY but on the approximation Λ(k)∗

XY

of rank k defined in (9.58). In particular, the following corollary is an
immediate consequence of (9.58).

Corollary 9.37. An equivalent characterization of (9.113) in Proposi-
tion 9.36 is

y∗(x) = Λ(k)∗
Y X Λ−1

X x, (9.114)

where Λ(k)∗
Y X is as defined in (9.58).
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Connections to PCA

As we now illustrate, PCA naturally arises in special cases of the
preceding matching framework. In particular, returning to the scenario
of the example in Section 9.13, we first interchange the roles of U and
V , and X and Y , obtaining that the optimum target image x∗(y) for a
given source image y based on Gaussian attribute matching is

x∗(y) =
(
F∗

(k)
)†T Σ(k)

(
G∗

(k)
)T
y, (9.115a)

where (
F∗

(k)
)† =

(
F∗

(k)
)TΛX . (9.115b)

Gaussian attribute matching in this scenario takes a familiar form.
In particular, specializing (9.115) using (9.102), (9.103), and (9.104),
we obtain

x∗(y) = Υ(k)Λ
1/2
(k)
(
I + σ2

ν Λ−1
(k)
)−1/2 (Λ(k) + σ2

ν I)
)−1/2 ΥT

(k) y

= Υ(k)Λ(k)
(
Λ(k) + σ2

ν I)
)−1 ΥT

(k) y.

The result is, of course, a standard approach to simple (linear)
denoising, whereby a signal of interest is expanded in the basis prescribed
by PCA, only the dominant modes are retained, and the associated
coefficients are appropriately attenuated. As such, our analysis provides
an additional interpretation of such processing, further insights into
which also arise in the next section.

9.16 Rank-Constrained Linear Regression

In this section, we develop the counterpart to softmax regression analysis
of Section 8 for jointly Gaussian variables, which is a form of rank-
constrained linear regression. Such regression problems have a long
history. Indeed, Young [287] recognized the relationship between early
factor analysis and low-rank approximation. Subsequent results on the
topic appear in, e.g., [229], and, later, in [39, Theorem 10.2.1] [135].
Later still, interpretations of the special case of PCA in terms of neural
networks appeared in, e.g., [21], [213], [214], and the general case of CCA
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in [146], in which an alternative to the ACE algorithm of Section 9.14
is involved in its implementation. The results of this section provide
some complementary perspectives.

To begin, the counterpart of Proposition 8.1 is immediate in the
Gaussian case. In particular, the following simple result expresses that
the particular exponential family form is not restrictive.

Proposition 9.38. Let X ∈ RKX , Y ∈ RKY be zero-mean jointly
Gaussian variables characterized by ΛX , ΛY , and ΛXY . Furthermore,
given a dimension k ∈ {1, . . . ,K}, let S = FTX for some KX×k matrix
F, so ΛY S = ΛY X F and ΛS = FTΛXF are the induced covariances.
Then the joint probability density for S, Y takes the form

PS,Y (s, y) = PY (y)PS|Y (s|y) = N(y; 0,ΛY ) N
(
s; GTy,ΛS−GTΛY G

)
,

(9.116)

where
GTY ≜ E

[
S|Y

]
. (9.117)

Proof. It suffices to exploit that since (9.117) is the MMSE estimate of
S given Y , we have

S = GTY + ν,

where the error ν is independent of Y . Moreover,

ΛS|Y = ΛS −ΛSY Λ−1
Y ΛY S = ΛS −GTΛY G,

where to obtain the last equality we have used that

GT = ΛSY Λ−1
Y .

since S, Y are jointly Gaussian. ■

In turn, the counterpart to Corollary 8.2 is the following result
optimizing F, whose proof is provided in Appendix G.24.

Proposition 9.39. Let X ∈ RKX , Y ∈ RKY be ϵ-correlated zero-mean
jointly Gaussian variables whose joint density PX,Y is characterized by
ΛX , ΛY , and ΛXY . Furthermore, given a dimension k ∈ {1, . . . ,K}, let
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P̃
KX ,KY
k (ΛX ,ΛY ) ≜

{
P : P = N

(
0,
[

ΛX Λ̃XY

Λ̃T
XY ΛY

])
,

some Λ̃XY with rank(Λ̃XY ) ≤ k
}

(9.118)

denote the collection of zero-mean jointly Gaussian distributions with
rank-constrained cross-covariance. Then for P̃X,Y ∈ P̃

KX ,KY
k (ΛX ,ΛY ),

D(PX,Y ∥P̃X,Y ) ≥
K∑

i=k+1
σ2

i + OO(ϵ2), ϵ→ 0,

where the inequality holds with equality when P̃X,Y has cross-covariance
Λ̃Y X = Λ(k)∗

Y X , with Λ(k)∗
Y X as given by (9.58).

This result expresses that among all k-dimensional linear restrictions
S = FTX of the data, that corresponding to F = F∗

(k) is optimum.
In turn, given the choice S =

(
F∗

(k)
)T
X, the matrix G(k)

∗ defines the
weights in the associated estimate of Y ; specifically, [cf. (9.113)]

Ŷ ∗ =
(
Λ(k)∗

XY

)TΛ−1
X X = ΛY G∗

(k) Σ(k) S. (9.119)

We emphasize that the estimate (9.119), in which Λ(k)∗
XY can be equiva-

lently expressed in the form

Λ(k)∗
XY =

(
Λ1/2

X ΨX
(k)
)(

Λ1/2
X ΨX

(k)
)† ΛXY , (9.120)

is generally different from the MMSE estimator limited to rank k, which
can be expressed in the following form [135], a derivation of which is
provided in Appendix G.25.

Proposition 9.40. For zero-mean, jointly Gaussian X ∈ RKX and
Y ∈ RKY characterized by covariance ΛX , ΛY , and ΛXY , then given
k ∈ {1, . . . ,K},

Ŷ ◦ = arg min
{Ŷ : Ŷ =Γ̃Y |XX,

rank(Γ̃Y |X)≤k}

E
[
∥Y − Ŷ ∥2

]
=
(
Λ(k)◦

XY

)TΛ−1
X X, (9.121a)

where
Λ(k)◦

XY =
(
Λ1/2

X Ψ̃X
(k)
)(

Λ1/2
X Ψ̃X

(k)
)† ΛXY , (9.121b)
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with Ψ̃X
(k) denoting the first (dominant) k columns of Ψ̃X in the (alter-

native) SVD [cf. (9.12)]

ΛY X Λ−1/2
X = Λ1/2

Y B̃ = Ψ̃Y Σ̃
(
Ψ̃X)T (9.121c)

in which Ψ̃X and Ψ̃Y are orthogonal matrices and Σ̃ is a diagonal
matrix.

We note, in particular, that the generally different estimators (9.121)
and (9.119) coincide when ΛY = I, since the SVDs (9.12) and (9.121c)
are identical in this case.

Finally, the implied rank-constrained linear regression procedure
is as follows. First, we assume that sufficient unlabeled training data
is available that ΛX and ΛY are accurately recovered. Second, from
the labeled training data we obtain the empirical covariance Λ̂XY . We
then let P̂X,Y denote the distribution of zero-mean jointly Gaussian
variables characterized by ΛX , ΛY , and Λ̂XY and apply Proposition 9.39
with PX,Y = P̂X,Y to obtain that the (locally) divergence-minimizing
(cross-entropy maximizing) regression parameters are given by

Λ̂(k)∗
Y X ≜ ΛY Ĝ∗

(k) Σ̂(k)
(
F̂∗

(k)
)TΛX , (9.122)

where F̂(k), Ĝ(k), and Σ̂(k) correspond to the k dominant modes in the
modal decomposition of the empirical cross-covariance, viz., [cf. (9.18)]

Λ̂Y X = ΛY Ĝ∗ Σ̂
(
F̂∗)TΛX . (9.123)

In turn, the quality of the model fit is given by

D
(
P̂X,Y

∥∥ P̂ (k)∗
X,Y

)
=

K∑
i=k+1

σ̂2
i + OO(ϵ2), ϵ→ 0, (9.124)

where P̂ (k)∗
X,Y denotes the (optimized) distribution of zero-mean jointly

Gaussian variables characterized by ΛX , ΛY , and Λ̂(k)∗
XY , and σ̂1, . . . , σ̂K

are the diagonal entries of Σ̂.
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Nonlinear Features and nonGaussian Distributions

While a comprehensive treatment is beyond the scope of this mono-
graph, in this section we briefly discuss selected aspects of modal
decompositions involving nonlinear features and nonGaussian variables,
for completeness. More generally, this is an active area of research, and
additional emerging directions are summarized in Section 13.

10.1 Nonlinear Features for Gaussian Distributions

If we seek a modal decomposition of the form (2.15) for the Gaus-
sian case, an infinite number of terms must be involved: the modal
decomposition takes the form

PX,Y (x, y) = PX(x)PY (y)
(

1 +
∞∑

i=1
σ̃i f̃

∗
i (x) g̃∗

i (y)
)
, (10.1a)

with
E
[
f̃∗

i (X̃)
]

= E
[
g̃∗

i (Ỹ )
]

= 0, i=1, 2, . . .
E
[
f̃∗

i (X̃) f̃∗
j (X̃)

]
= E

[
g̃∗

i (Ỹ ) g̃∗
j (Ỹ )

]
= 1i=j , i, j=1, 2, . . . .

(10.1b)

And in such an expansion, it is important to emphasize that the terms
involving linear features need not dominate. In the sequel, we briefly
develop this insight.

142
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In a modal decomposition of the form (10.1), only some of the
features f̃∗

1 , g̃
∗
1, f̃

∗
2 , g̃

∗
2, . . . are linear, which is implied by expanding the

exponentiation operator in (9.56) using a Taylor Series. For instance,
when KX = KY = 1, one obtains Mehler’s decomposition [200]

PX̃,Ỹ (x̃, ỹ) = PX̃(x̃)PỸ (ỹ)
[
1 +

∞∑
i=1

ρi πi(x̃)πi(ỹ)
]

= PX̃(x̃)PỸ (ỹ)
[
1 +

∞∑
i=1
|ρ|i sgn(ρ)i πi(x̃)πi(ỹ)

]
, (10.2a)

where ρ = λX̃Ỹ = E
[
X̃Ỹ

]
, and where πi is the (scaled) ith-order

Hermite polynomial

πi(x̃) ≜ 1√
i!

(−1)iex̃
2
/2 di

dx̃i e−x̃
2
/2, i = 1, 2, . . . . (10.2b)

Note that f̃∗
i = sgn(ρ)i g̃∗

i = πi satisfy (10.1b) as required, and that the
features corresponding to the dominant mode (i = 1) are linear,1 i.e.,
π1(υ) = υ, as discussed in, e.g., [159], [240], and which may have been
first observed by Kolomogorov.

For K > 1 [with (9.13)], the modal decomposition of the form (10.1)
is straightforward to derive as a generalization of (10.2), and involves
the corresponding multivariate Hermite polynomials—see, e.g., [148],
[252]. However, if K > 1 and k > 1, then the k dominant modes need
not, in general, be linear, as the following example shows.

Example 10.1. Suppose KX = KY = k = 2, (X̃1, Ỹ1) and (X̃2, Ỹ2) are
independent, and ρl = λX̃lỸl

= E
[
X̃lỸl

]
> 0 for l = 1, 2. Then we have

the decomposition

PX̃,Ỹ (x̃, ỹ) = PX̃1
(x̃1)PX̃2

(x̃2)PỸ1
(ỹ1)PỸ2

(ỹ2)

·
[
1 +

∞∑
i=1

ρi
1 πi(x̃1)πi(ỹ1)

][
1 +

∞∑
i=1

ρi
2 πi(x̃2)πi(ỹ2)

]
,

1Evidently, the maximal correlation is the magnitude of Pearson’s usual correla-
tion coefficient in this Gaussian case, i.e., σ1 = σ(f∗

1 , g
∗
1) = |ρ|.
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which when expanded is of the form (10.1). But if ρ2
1 > ρ2, then the

dominant feature pair is

f̃∗
1 (x̃) = π1(x̃1) = x̃1

g̃∗
1(ỹ) = π1(ỹ1) = ỹ1,

corresponding to singular value σ̃1 = ρ1, while the features for the next
largest singular value are

f̃∗
2 (x̃) = π2(x̃1) = (x̃2

1 − 1)/
√

2
g̃∗

2(ỹ) = π2(ỹ1) = (ỹ2
1 − 1)/

√
2,

corresponding to singular value ρ2
1, rather than the linear features

corresponding to singular value ρ2.

10.2 Linear Features for nonGaussian Distributions

Second, with respect to nonGaussian distributions, we first emphasize
that in Proposition 9.4 (and, in turn, Proposition 9.6), only the second-
moment properties of the joint distribution PX,Y are required to derive
the optimizing linear features. As such, those results obviously apply
more broadly.

Additionally, when the nonGaussian variables are defined on finite
(but real-valued) alphabets, we can equivalently interpret the CCA
optimization problem as that of HGR maximal correlation with the
features constrained to be linear, i.e., maximizing the vector correlation
(3.6b) over linear fk and gk. Such constraints may be practically moti-
vated, for example. In such cases, we can relate the CCM B̃ from the
Gaussian analysis to the associated DTM B from the discrete analysis.
In particular, we have the following theorem, whose proof is provided
in Appendix G.11.

Proposition 10.2. Let X ⊂ RKX and Y ⊂ RKY be finite sets with
probability mass function PX,Y such that E[X] = 0 and E[Y ] = 0, and
let B be as defined in (2.8). Then

ΠY B
(
ΠX)T = BG, (10.3)
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where BG is as defined in (9.11) (with the notation refined to distinguish
it from B), and where

ΠX = X
√

PX and ΠY = Y
√

PY , (10.4)

with X and Y denoting KX ×|X| and KY ×|Y| matrices whose columns
are the vectors in X and Y, respectively.

10.3 Features for General Continuous Variables

The extension of modal decompositions to both more general bivariate
distributions over continuous alphabets—and the extraction of corre-
sponding features—is naturally of interest in many applications. In
this section, we provide a summary of some of the wide range of con-
tributions to this area, together with representative references on the
topic.

As our discussion in Section 10.1 would suggest, for bivariate distri-
butions over continuous alphabets, many basic geometric insights carry
over from the finite-alphabet case. However, the underlying Hilbert space
is generally infinite-dimensional—as in (10.1)—from which subtleties
arise. A natural restriction is to absolutely continuous distributions
satisfying the Hilbert-Schmidt condition∫∫

PX,Y (x, y)2

PX(x)PY (y) dx dy <∞, (10.5)

which ensures compactness of the conditional expectation operators.
Among the earliest work for such scenarios is contained in the

foundational contributions of Gebelein [91]. In subsequent work [231],
[232], Rényi develops key aspects of the associated Hilbert space for
modal decompositions, building on the work of both Hirschfeld [112]
and Gebelein [91]. In turn, Csáki and Fischer [66]–[68] build on this
work of Rényi, developing further aspects of the Hilbert space geometry
and including some insightful examples. Aspects of the geometry also
appear in Witsenhausen’s analysis of common information [277], which
likewise leverages the developments of Rényi [231].

In related but separate developments, modal decompositions for
continuous distributions are also explored by Lancaster [160], [161],
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building on the work of Hirschfeld [112].2 Included are a variety of
results on the special case of jointly Gaussian distributions. See also
the related work [108]. Analysis similar to some of that of Lancaster
also appears in the work of Sarmanov [238], [239].

While infinite-dimensional modal decompositions are conceptually
straightforward in many respects, their practical computation is less
so. In particular, in the development of the ACE algorithm in [38],
Breiman and Friedman follow the framework of Rényi [232] and consider
bivariate distributions over arbitrary alphabets, including continuous
ones. Mild sufficient conditions for convergence of the ACE procedure
are developed in this setting. However, even when these conditions
are satisfied the procedure generally does not have a direct numerical
implementation when applied to a continuous distribution. When using
the ACE algorithm to estimate the modal decomposition from training
data in such cases, [38] advocates replacing each conditional expectation
step with an approximation that exploits some intuitive but heuristic
data smoothing. However, in practice, the resulting features tend to
depend somewhat strongly on the choice of smoothing.

The work of Buja [42], [43] on modal decompositions emphasizes
continuous bivariate distributions whose features are (orthogonal) poly-
nomials of increasing order, which includes the case of jointly Gaussian
variables. The treatment leverages the work of Lancaster [162] on such
distributions. As a result of the associated parametric structure, im-
plementations of the ACE algorithm are more straightforward in this
case. In the course of this development, Buja also provides a variety of
other examples and observations involving modal decompositions and
the ACE algorithm.

It is worth emphasizing that distributions whose modal decom-
positions have polynomial features have been useful in a variety of
applications. For example, in [1], they are used to show that the capac-
ity region of a degraded fading broadcast channel with Gaussian noise
is not achieved by Gaussian input distribution.

2The treatment emphasizes distributions of bounded χ2 mutual information—i.e.,
mean-square contingency (4.20); it is straightforward to verify that this condition is
equivalent to (10.5).
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Further results on distributions with polynomial features are de-
veloped in, e.g., [194], [195]. In particular, a characterization of such
distributions in terms of their conditional moments is derived, and
distributions with Laguerre, Jacobi, and Hermite polynomial features
are constructed as illustrative examples.

10.4 Feature Constraints: Nonlinear CCA and PCA

In a variety of settings, it is often desirable to restrict the space of
features under consideration (under the HGR maximal correlation crite-
rion, for example), for implementational or application-specific reasons.
In some cases, such constraints are straightforward to incorporate.

As a first example, when features are restricted to lie in a finite-
dimensional subspace, any such feature can be expressed as finite linear
combination of basis functions for this subspace. As a result, the HGR
maximal correlation features over this subspace have a representation
in this basis whose coefficients are the solution to a corresponding CCA
problem. This is perhaps the simplest example of what is sometimes
referred to as nonlinear CCA,3 since the subspace will generally define a
class of nonlinear features. In essence, the nonlinear feature optimization
problem effectively becomes a linear feature optimization problem in
this case, which can be applied to training data as a learning procedure
in a straightforward manner. Accordingly, the optimization is over
representations whose dimension corresponds to the size of the subspace.

In other scenarios, it is natural to restrict the features to an infinite-
dimensional subspace, to which the preceding approach cannot prac-
tically be applied to solve the HGR maximal correlation problem. An
alternative in this case is to use a nonparametric nonlinear CCA method
typically referred to as kernel CCA, whereby the features are constrained
to lie in a reproducing kernel Hilbert space [6], [17], [133], [157], [202].
In this case, for a given set of training data one can avoid having to
perform computation directly in the underlying infinite-dimensional
subspace, and instead exploit the kernel representation for the space,

3By extension to infinite-dimensional features spaces, sometimes HGR maximal
correlation analysis is more generally referred to as nonlinear CCA in the literature.
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resulting in an optimization over representations whose dimension corre-
sponds to the size of the training set. A variety of approaches have been
developed to reduce the complexity of kernel CCA or extend its range
of applicability; see, e.g., [15], [17], [20], [105], [110], [266], [288]. Beyond
kernel CCA, other nonparametric approaches build more directly on
modal decompositions of the form (10.1); see, e.g., [203].

Another alternative to restricting the features to a finite-dimensional
subspace (corresponding to linearly parameterized classes of features) is
to use nonlinearly parameterized feature classes. This approach yields yet
another form of nonlinear CCA, early examples of which include [44] and
[157], with the latter exploiting simple neural networks. Generalizations
based on deep neural network (DNN) architectures are developed in
[14], with multivariate extensions explored in [29]. For a comparative
evaluation of such methods in representative application domains, see,
e.g., [274].

Other methods for indirectly constraining the class of features have
also been investigated. For example, in [218], the candidate features
are (generally) randomized functions such that the mutual information
between the data and its feature representation is constrained. In essence,
this imposes that the representation be a sufficiently compressed version
of the original data. Analysis of the methodology reveals connections
to rate-distortion theory [63, Chapter 10], the information bottleneck
method [258], and remote source coding [80], [278]. As such, the analysis
therein is perhaps closest in spirit to that of this monograph.

Finally, a variety of nonlinear generalizations have also been devel-
oped for the special case of PCA. For example, kernel-based methods
for PCA that are the counterparts to kernel CCA are developed in [245],
[246] and referred to as kernel PCA. Others, such as [154], [182], are
based on the use of neural network architectures and correspond to non-
linearly parameterized feature classes. As such, they are counterparts
to the analogously constructed CCA methods.
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Semi-Supervised Learning

A variety of problems deviates from the standard supervised learning
model on which we have focused in previous sections. In these problems,
labeled data are used in more limited ways, and instead relying more
on unlabeled data in their training. These are typically referred to as
semi-supervised learning problems, and there is a rich taxonomy and
literature; see, e.g., [54] and the many references therein, including the
early work [247]. While a broader development on the topic is beyond
the scope of the present monograph, in this section we briefly discuss
some of the most immediate implications of universal features and their
analysis to some such problems.

An outline of the section is as follows. Section 11.1 describes the
problem of “indirect” learning in which to carry out clustering on
data, relationships to secondary data are exploited to define an appro-
priate measure of distance. We show, in particular, that the softmax
analysis of Section 8 implies a natural procedure in which Gaussian
mixture modeling is applied to the dominant features obtained from the
modal decomposition with respect to the secondary data. In a different
direction, Section 11.2 discusses the problem of partially-supervised
learning in which features are learned in an unsupervised manner, and
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labeled data is used only to obtain the classifier based on the resulting
features. As an illustration of the use of universal features in this set-
ting, an application to handwritten digit recognition using the MNIST
database is described in which the relevant features are obtained via the
common information between subblocks of MNIST images. A simple
implementation achieves an error probability of 3.02%, close to that of
a 3-layer neural net (with 300+100 hidden nodes), which yields an error
probability of 3.05%.

11.1 Indirect Learning

A problem of significant interest is that of unsupervised learning, in
which only unlabeled data is available to train the system. These
correspond to clustering problems, and there are a number of classical
approaches, originating with the work of Pearson [222]; see, e.g., [82]
and the references therein for a summary.

In practice, there can be many valid clusterings of data, some more
useful than others for a given target application. For instance, in the
case of movies, one could cluster by any number of attributes, including
time period, genre, etc. One can view these alternatives as capturing
different measures of proximity in carrying out the clustering. But if
one is interested in clustering movies according to the way people select
movies to watch, then the measure of proximity is less straightforward
to quantify.

In such cases, auxiliary labeled data can be used to effectively capture
the right notion of distance for such problems, and express them in
terms of universal features. To develop this notion of “indirect” learning,
which has similarities in spirit to methods such as those described in
[27], let

X ↔ Y ↔ Z

denote a Markov chain of discrete variables in which Y ∈ Y represents the
data we seek to cluster (e.g., movies), Z ∈ Z represents the class index,
and X ∈ X represents auxiliary data (e.g., people). We assume that in
general X and Y are large alphabets, but that Z may be comparatively
small, and that we have an empirical distribution P̂X,Y obtained from

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



11.2. Partially-Supervised Learning 151

i.i.d. training data from PX,Y (e.g., the Netflix database), but no training
samples of Z from which to directly estimate PZ|Y , or even PZ .

For this scenario, our universal analysis suggests the following pro-
cedure. First, for some suitably small k ∈ {1, . . . ,K − 1}, we extract
the k dominant modes in the decomposition (2.15) from P̂X,Y (via, e.g.,
the ACE algorithm), then use the resulting estimate of g to define a
new variable T = g(Y ) ∈ Rk. In turn, our softmax analysis reveals that
a locally universal model for the latent variable Z is [cf. (8.4)]

P̃ ∗
Z|T (z|t) ∝ PZ(z) exp

{
(t−µT )TΛ−1

T (µT |Z(z)−µT )
}
, (11.1)

and unsupervised learning corresponds to fitting this model to the
(induced) samples of T .

The softmax analysis further implies a rather natural model fitting
procedure. In particular, as discussed in Section 8.2, the resulting distri-
bution PY , matches, to first order, that of a Gaussian mixture, where
PT |Z(·|z) for z ∈ Z are the Gaussian components. Hence, this suggests
that carrying out Gaussian mixture modeling on the estimate of PT ob-
tained from the training data—e.g., via the Expectation-Maximization
(EM) algorithm [77]—to learn the parameters µT |Z(t), ΛT |Z , and PZ ,
and (soft) clustering according to the resulting PZ|T (·|t) is locally opti-
mal. Of course, such soft clustering can be replaced by any of a number
of hard-decision alternatives if desired, such as that based on the Lloyd
algorithm [92], which correspond to so-called k-means1 clustering on
the induced samples of T = g(Y ).

In practice, this procedure is straightforward to apply and effective.
For example, applying it to, e.g., the Netflix database yields meaningful
movie clusterings. For related developments and additional insights, see,
e.g., [227].

11.2 Partially-Supervised Learning

Another class of learning system architectures is one in which labeled
data is used to design a classifier of interest, but the design of the
features themselves for such a classifier is based on unlabeled data.

1Note that k refers a different quantity (specifically, |Z|) in this nomenclature
than it does in our use.
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These can be viewed as partially-supervised learning systems, and can
provide performance close to that of fully supervised architectures
while requiring significantly less labeled training data. In such cases,
the feature extraction step corresponds to unsupervised dimensionality
reduction, for which there are a variety of well established methods,
both linear and nonlinear; see, e.g., [243].

The characterization of common information in terms of universal
features, as described in Section 5.7, suggests a natural framework for
nonlinear dimensionality reduction, and, in turn, constructing such
partially-supervised learning systems, which we illustrate through an
example involving handwritten digit recognition, using the MNIST
database [167].

The MNIST database consists of a set of n = 60 000 training images
x(1), . . . , x(n) and a set of n′ = 10 000 test images, each depicting a
single handwritten digit from the set Z ≜ {0, . . . , 9}. We let z(i) ∈ Z

denote the label corresponding to training image x(i), and let z ∈ Z

denote that for a given test image x, which are all provided in the
database. Each training and test image is a black-and-white, 28× 28
pixels size, and quantized to 8-bits per pixel (corresponding to intensity
levels {0, . . . , 255}), so |X| = 28 ·28 ·256 = 200 704 is the image alphabet
size.

Using the labeled data
(
x(1), z(1)), . . . , (x(n), z(n)), we seek to train

a classifier based on our framework to predict the label z of a test image
x as accurately as possible.

11.2.1 Classification Architecture

The architecture we develop for this application involves three stages in
a manner corresponding to a two-layer neural network. The first stage
is a preprocessing step that converts the test image x to a represen-
tation y = q(x) from a smaller alphabet Y. In the second stage, we
extract a low-dimensional real-valued feature r = h(y) from the image
representation y. Finally, in the third stage we classify the image based
on this low-dimensional feature using a predictor φ(·), generating label
ẑ = φ(h(q(x))).
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Figure 11.1: Image representation for the preprocessing stage of the semi-supervised
handwritten digit classifier. Each 28 × 28 MNIST database image is decomposed into
an array of 6 × 6 = 36 subimages, each of size 7 × 7 pixels, and each overlapping
with its immediate neighbors by 3 pixels, horizontally and/or vertically.

We restrict our attention to designs based on semi-supervised
learning. Specifically, q and h are designed from the unlabeled data
x(1), . . . , x(n) in an unsupervised manner, while φ is designed in a su-
pervised manner from the reduced labeled data(

r(1), z(1)), . . . , (r(n), z(n)), (11.2a)

with
r(d) = h(y(d)), d = 1, . . . , n. (11.2b)

The details of our classifier design are as follows.

Stage 1 (Preprocessing)

As depicted in Figure 11.1, we first decompose each MNIST database
image into an array of 6× 6 = 36 overlapping subimages, each of size
7× 7 pixels, with immediately neighboring subimages overlapping by 3
pixels, horizontally and/or vertically. We denote the (i, j)th subimage
by ỹi,j , for i, j = 1, . . . , 6, which takes value in an alphabet of size
|Ỹ | = 7 · 7 · 256 = 12 544.

Second, quantize each subimage in a lossy manner to reduce the
size of the alphabet Ỹ . For this purpose, for each (i, j), we cluster all
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the subimages ỹ(1)
i,j , . . . , ỹ

(n)
i,j extracted from the training data using the

“balanced iterative reducing and clustering using hierarchies” (BIRCH)
algorithm [289], which is simple and has computationally efficient (linear
complexity). In particular, we use the implementation [156] with thresh-
old parameter to 256

√
3 and branching factor 1000. Each subimage ỹi,j

is then represented by the cluster to which it maps, which we denote
using yi,j .

2 We further use y to denote the resulting composite image
presentation, i.e.,

y =


y1,1 · · · y1,6

... . . . ...
y6,1 · · · y6,6

 .

Stage 2: Feature Extraction

We generate a k-dimensional feature from the unlabeled training data
that captures as much of the common information among the subimages
as possible; in our experiment we choose k = 500. In particular, for each
of the m =

(36
2
)

= 630 pairs
(
yi,j , yi

′
,j

′
)

of preprocessed subimages, we
determine the k′ dominant modes of the empirical pairwise distribution
P̂Yi,j ,Y

i
′
,j

′ generated from the reduced unlabeled training data

y(1), . . . , y(n).

In our experiment we choose k′ = 16, and use Algorithm 1 to obtain
these modes. We then order this aggregate list of k′m = 10 080 modes
by singular value, and construct the feature set from the subset corre-
sponding to the overall k largest singular values, which we denote using
σ̂1, . . . , σ̂k.

Specifically, with
{
(il, jl), (i

′
l, j

′
l)
}

denoting the indices of the subim-
age pair whose mlth mode has singular value σ̂l, and with f̂∗

(il,jl),(i
′
l,j

′
l),ml

and ĝ∗
(il,jl),(i

′
l,j

′
l),ml

denoting the corresponding feature functions in the
decomposition of P̂Yil,jl

,Yi
′
l,j

′
l
, for a test image with representation y, we

choose as our k-dimensional feature

r = h(y) =
(
h1(y), . . . , hk(y)

)
(11.3a)

2The resulting alphabets Yi,j differ in size, ranging from roughly 10 for subimages
at the perimeter of the image, to roughly 500 for subimages in the middle.
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with

hl(y) = f̂∗
(il,jl),(i

′
l,j

′
l),ml

(yil,jl
) + ĝ∗

(il,jl),(i
′
l,j

′
l),ml

(yi
′
l,j

′
l
). (11.3b)

We emphasize that, in accordance with our development in Section 5.7
that leads to (5.85), the elements of (11.3) are sufficient statistics for the
relevant components of the common information between the associated
subimage pairs.

Stage 3 (Feature Classification)

The final stage implements a low-dimensional feature classifier generated
from the reduced labeled training data (11.2), with h as defined in (11.3).
In particular, we choose a linear support vector machine (SVM) [62] for
this purpose.

11.2.2 Performance Evaluation

When we evaluate the performance of the classifier of Section 11.2.1
on the full the set of 10 000 MNIST test images, we achieve an digit
recognition error probability of 3.02%.

The classifier, which is characterized by its k = 500 scalar features, is
naturally compared to alternatives with similar numbers of features. For
example, one such alternative classifier would omit the preprocessing and
feature extraction stages, and apply a linear SVM directly to the original
representation of image data, corresponding to 28 · 28 = 784 scalar
features. This involves training parameters of the linear classifier in
fully-supervised manner, yet only achieves an error probability of 8.17%
based on our experimental analysis. This reflects the importance of
nonlinearities inherent in the feature formation stages of the architecture.

As another alternative, we can compare this architecture to a DNN
with two hidden layers and using sigmoidal activation functions [100],
and trained in a fully supervised manner. For instance, using 300 units
in the first layer and 100 units in the second corresponds to a total
of 300 + 100 = 400 scalar features, and yields an error probability of
3.05% [166], [167], which is comparable to that of our classifier, which
is effectively a network with a single hidden layer. As such, this reflects
the effectiveness of the universal features extracted via our methodology,
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which we further emphasize are designed in an unsupervised manner—
without taking into account the inference task.

As a further evaluation, in Stage 3 of our architecture, we reduced
the amount of (labeled) data used to train the classifier from n = 60 000
to n/2 = 30 000, while still using all n unlabeled training samples for
Stages 1 and 2. In this case, we obtain an only mildly degraded error
probability of 3.4%, which is a reflection of the efficiency with which
the architecture uses labeled training data, by restricting its use to the
final stage.

As a final comment, we emphasize that the example in this section is
not aimed at demonstrating state-of-the-art classification performance
on complex data sets. Rather, it is provided simply to illustrate that
useful levels of performance can be achieved in nontrivial settings even
with comparatively straightforward application of the basic concepts
and methodologies in the monograph.
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Modal Decomposition of Markov Random Fields

When the distributions of interest have additional structure, as is often
the case in practice, we seek modal decompositions whose features
capture this additional information. In particular, when

X = (X1, . . . , XKX
) and Y = (Y1, . . . , YKY

) (12.1)

for some KX and KY , there are often key relationships among these
constituent variables to be reflected in the representation. One important
example is obviously the case of jointly Gaussian structure among
the variables, as developed in Section 9. In this section, we consider
another important form of such structure in the form of conditional
independencies, as arise when the variables involved form a Markov
random field (MRF).

As we illustrate in this section, the modal decomposition analysis
of Section 2 naturally extends to this case and generally expands the
number of features. We focus on the case of Markov random fields
characterized by pairwise relationships among the constituent variables.

Accordingly, in Section 12.1 we begin with some useful refined
notation for the modal decompositions of the corresponding marginal
distributions. Section 12.3 develops more detailed results for the case of
tree-structured graphical models. Via the further special case of Markov
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chains, connections to spectral graph theory and the graph Laplacian
are identified.

12.1 Pairwise Marginal Notation

For notational convenience, we use X1, . . . , Xn to generically denote the
collection of the combined constituent variables in X and Y , viz., (12.1);
for example, we would relabel a collection (X1, X2, Y1) as (X1, X2, X3).1

In turn, based on the results of Section 2, any pairwise marginal of the
form pXi,Xj

can be decomposed according to

pXi,Xj
(xi, xj) = pXi

(xi) pXj
(xj)

1 +
Ki,j−1∑

k=1
σi,j,k f

∗
j→i,k(xi) f

∗
i→j,k(xj)

,
(12.2)

where Ki,j = min{|Xi|, |Xj |} and the embeddings f∗
j→i,k : Xi → R and

f∗
i→j,k : Xj → R have the properties

E
[
f∗

j→i,k(Xi)
]

= E
[
f∗

i→j,k(Xi)
]

= 0

and

E
[
f∗

j→i,k(Xi) f
∗
j→i,k

′(Xi)
]

= E
[
f∗

i→j,k(Xi) f
∗
i→j,k

′(Xi)
]

= 1k=k
′ .

In particular, with B̃Xi,Xj
denoting the |Xi| × |Xj | CDM, whose entries

are
B̃Xi,Xj

(xi, xj) ≜
pXi,Xj

(xi, xj)− pXi
(xi) pXj

(xj)√
pXi

(xi) pXj
(xj)

, (12.3)

for xi ∈ Xi, xj ∈ Xj , we can express the SVD of B̃Xi,Xj
as

B̃Xi,Xj
=

Ki,j−1∑
k=1

σi,j,k ψ
Xi
j→i,k

(
ψ

Xj

i→j,k

)T
, (12.4)

where 1 ≥ σi,j,1 ≥ · · · ≥ σi,j,Ki,j−1 ≥ 0 are the ordered singular values,
and

ψ
Xi
j→i,1, . . . ,ψ

Xi
j→i,Ki,j−1 and ψ

Xj

i→j,1, . . . ,ψ
Xj

i→j,Ki,j−1

1Obviously, in applications it is typically more useful to choose notation that
explicitly distinguishes the variables in each of the X and Y subcollections and
reflects their roles.
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are the corresponding collections of (orthonormal) left and right sin-
gular vectors. Using this decomposition, the relevant embeddings are
constructed according to

f∗
j→i,k

′(xi) ≜
ψ

Xi

j→i,k
′(xi)√

pXi
(xi)

and f∗
i→j,k

′(xj) ≜
ψ

Xj

i→j,k
′(xj)√

pXj
(xj)

, (12.5)

for k′ = 1, . . . ,Ki,j−1, where ψXi
j→i,k(xi) and ψXi

i→j,k(xi) are, respectively,
the xith and xjth elements in the singular vectors ψXi

j→i,k and ψXj

i→j,k.

12.2 Pairwise Markov Random Fields

Consider a MRF whose graphical representation has edges between
arbitrary pairs of nodes, but where the distribution is characterized by
pairwise potentials. With V = {1, . . . , n} denoting the set of nodes, and
E ⊂ V× V the set of edges, such a distribution factors according to

PXV
(xV) ∝ exp

∑
i∈V

ϕ̃Xi
(xi) +

∑
(i,j)∈E

ϕ̃Xi,Xj
(xi, xj)

, (12.6)

where the ϕ̃Xi
and ϕ̃Xi,Xj

are node and edge (log-)potential functions,
respectively. Edge sets E that do not include all possible node pairs
correspond to the case of structure in the distribution.

Under mild conditions, such models are equivalently characterized
by their pairwise marginals PXi,Xj

. To see this, note that (12.6) takes
the form of an exponential family. Specifically, we have

PXV
(xV) = 1

Z
exp

{ ∑
(i,j)∈E

∑
ai∈Xi,
aj∈Xj

ϕ̃Xi,Xj
(ai, aj)︸ ︷︷ ︸

≜θ
ai,aj
i,j

1xi=ai,xj=aj︸ ︷︷ ︸
≜s

ai,aj
i,j (xi,xj)

}
,

where
θ ≜

{
θ

ai,aj

i,j : (i, j) ∈ E, ai ∈ Xi, aj ∈ Xj

}
(12.7)

are the natural parameters, and

s ≜
{
s

ai,aj

i,j : (i, j) ∈ E, ai ∈ Xi, aj ∈ Xj

}
(12.8)

are the natural statistics, both of which we express as column vectors.
In turn, α(θ) ≜ logZ is the associated log-partition function. For any

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



160 Modal Decomposition of Markov Random Fields

naturally-parameterized exponential family, the gradient and Hessian
of the log-partition function satisfy, respectively,

∇α(θ) = E[S] (12.9a)

∇2α(θ) = E
[
SST], (12.9b)

where we note that the latter is positive semidefinite. But

E
[
S

ai,aj

i,j (Xi, Xj)
]

= E
[
1Xi=ai,Xj=aj

]
= PXi,Xj

(ai, aj),

so the right-hand side of (12.9a) is

E[S] =
{
PXi,Xj

(ai, aj) : (i, j) ∈ E, ai ∈ Xi, aj ∈ Xj

}
. (12.10)

Hence, when (12.9b) is strictly positive definite, then (12.9a) is invertible,
and thus all the parameters of the distribution (12.6) can be recovered
from (12.10).

We conclude that subject to this mild condition, the collection of
modal decompositions for the constituent PXi,XJ

, (i, j) ∈ E, as described
in Section 12.1, characterize such an MRF, and yields universal features
for such distributions.

12.3 Trees and Markov Chains

The dependency of (12.6) on the pairwise marginals —and thus the
CDMs (12.3)—takes a simple form in the key special case in which the
graphical model corresponding to the MRF is a tree. In this case, the
distribution factors according to

PXV
(xV) =

∏
i∈V

PXi
(xi)

∏
(i,j)∈E

PXi,Xj
(xi, xj)

PXi
(xi)PXj

(xj) , (12.11)

which using (12.3) can be equivalently expressed in the form

PXV
(xV) =

∏
i∈V

PXi
(xi)

∏
(i,j)∈E

1 +
B̃Xi,Xj

(xi, xj)√
PXi

(xi)PXj
(xj)

. (12.12)

A further special case of tree-structured models are Markov chains
X1 ↔ X2 ↔ · · · ↔ Xn. To obtain still further insights, let us additional
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constrain the class of such chains to those in which: 1) Xi = X for some
finite X; 2) the chain is homogeneous with PXi|Xi−1

(·|·) = w(·|·) for
some w; 3) the chain is irreducible; and 4) the chain is reversible. Such
chains have a stationary distribution π satisfying detailed balance

π(x′)w(x|x′) = π(x)w(x′|x) ≜ P (x, x′).

The resulting symmetry means that the joint distribution PXi,Xi−1
for such variables can be expressed in terms of unique embeddings
f∗

k : X→ R that are obtained from the SVD

B̃(x, x′) ≜ P (x, x′)− π(x)π(x′)√
π(x)π(x′)

=
|X|−1∑
k=1

σk ψk(x)ψk(x′), (12.13)

whence the modal expansion

P (x, x′) = π(x)π(x′)

1 +
|X|−1∑
k=1

σif
∗
k (x) f∗

k (x′)

,
with

f∗
k (x) ≜ ψk(x)√

π(x)
.

Specifically, we have

PXV
(xV) =

n∏
i=1

π(xi)
n∏

i=2

(
1 +

|X|−1∑
k=1

σk f
∗
k (xi) f

∗
k (xi−1)

)
. (12.14)

Since reversible Markov chains correspond to random walks on a graph
with nodes V and edges E such that edge (x, x′) has weight P (x, x′),
then the f∗

k correspond to embeddings on this graph.
For the still further special case of an unweighted random walk in

which the edge traversed from any node is chosen uniformly at random,
the resulting |X| × |X| CDM B̃ whose entries are (12.13) is essentially
equivalent to the so-called Laplacian (or admittance, or Kirchoff) matrix
of graph theory, which has numerous related applications [56], [59], [72],
[78], [87], [88], [150], [184], [249]. In particular, the DTM B for this
chain, which has entries

B(x, x′) = P (x, x′)√
π(x)π(x′)
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specializes to
B = D−1/2AD−1/2, (12.15)

where D and A are the (diagonal) degree matrix and the adjacency
matrix, respectively, associated with the graph. In turn, the (symmetric,
normalized [59]) graph Laplacian is

L ≜ I−B.

Moreover, since the singular values of a DTM satisfy σ(B) ≤ 1, the
eigenvalues of the (symmetric) DTM (12.15) satisfy |λ(B)| ≤ 1, and
thus λ(L), whose values are referred to as the spectrum of the graph
Laplacian, satisfy 0 ≤ λ(L) ≤ 2.

From this perspective, the diffusion maps for dimensionality reduc-
tion introduced in [61], which generate embeddings from the graph
Laplacian, are equivalent to the embeddings f∗

k described above, and
thus can be viewed as an instance of Hirschfeld’s modal decomposition
analysis. Related discussion of graph Laplacians can be found in, e.g.,
[191].
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13
Emerging Applications and Related Developments

In recent years, there has been rapid growth in activity in the area
of statistical inference and machine learning, largely motivated by the
increasingly abundant computational resources available for implement-
ing the associated methods. This, in turn, has led to an ever-expanding
set of application domains, and a burgeoning literature has sought to
address the corresponding challenges. Within this literature is a growing
variety rooted in methods, analyses, and perspectives discussed in this
monograph. In this section we provide a representative sample of just
some of the many active developments in this realm.

One application involves the imposition of privacy constraints in
problems of inference. For example, [189], which considers the use of χ2

analysis in differential privacy problems, replacing mutual information
with its more convenient χ2 counterpart, corresponding to a local geo-
metric analysis. As another example, [46] applies such χ2 analysis to the
privacy funnel problem [190], a dual of the information bottleneck [258].
Similarly, [271], [272] investigates problems of estimation under privacy
constraints using χ2 analysis, and aspects of the corresponding infor-
mation bottleneck are likewise analyzed in [118], providing additional
perspectives on the results in Section 5.6.
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Another application area of growing interest is that of imposing
fairness constraints in machine learning, using independence, separa-
tion, sufficiency, and other criteria [23]. Early uses of χ2 analysis for
this purpose appear in [19], [101], [197]. Refined approaches with low
complexity are developed in [169], [170] using further HGR maximal cor-
relation tools, with competitive performance on standard datasets. For
learning problems in which abstention is allowed, [40] develops practical
methods for imposing fairness in selective classification using methods
based on similar HGR maximal correlation tools, with its effectiveness
demonstrated on diverse datasets; a treatment of the corresponding
selective regression problem is developed in [248]. Still other aspects
of efficient learning with fairness constraints using χ2 formulations are
developed in [41], [242].

Another area of application for these methods has been in problems
of domain adaptation in machine learning, and transfer learning. Ex-
amples of activity in this area include [171], which develops a method
of transfer learning from an ensemble of pre-trained networks using a
maximal correlation weighting technique, and [22], [263] which develop
the use maximal correlation measures to quantify transferability in
learning. Aspects of invariant learning for domain adaptation based on
χ2 analysis are also discussed in [242].

Motivated by multimodal learning and related scenarios, a variety
of work explores multivariate extensions to HGR maximal correlation
and the associated modal decompositions, of which those described in
Sections 9 and 12 are just two. Indeed, multivariate extensions have a
long history. For example, [161, Chapter XXI] considers χ2 analysis for
higher dimensional contingency tables, and [17] develops a particular
multivariate extension of HGR maximal correlation. This extension can
be shown to effectively correspond to a local version of Watanabe’s
“total correlation” generalization of mutual information to multiple
variables [236]. More recently, a local version of multivariate common
information based on total correlation is developed as part of [130],
extending the treatment described in Section 5.7.

Multivariate extensions of the ACE algorithm (termed MACE) are
developed in [175], along with associated generalizations of PCA. Moti-
vated by problems involving multimodal data, a methodology referred to
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as soft HGR is introduced in [273], and applied to some representative
problems. And [285] further considers multivariate feature extraction
and related problems, including learning with side information. Other
multivariate extensions arise in [85] in the context of a network model
with graph structure; related results on graphs appear in [79], which
includes some associated sample complexity analysis.

Other aspects of computing and robustly approximating modal
decompositions are explored in, e.g., [282], which investigates the in-
corporation of Oja’s algorithm [213], and [125], which studies a noisy
version of ACE corresponding to conditional expectation operator ap-
proximation. Connections of the latter to multilayer residual learning
[111] are also developed. Other aspects of robustness, including regu-
larization methods aimed at reducing the vulnerability to adversarial
attacks, appear in [177]. Complementing such work, sample complexity
analysis is a similarly active area. For example, beyond the content of
Section 6.2 and [193], and the specialized results in [79], [280], additional
results to the topic appear in [262], [284].

A variety of problems of feature selection and learning involving
limited or incomplete labeled data have been approached using the
resulting tools. Examples include unsupervised learning in the form
of clustering using maximal matrix norm couplings [227], as well as
other forms of unsupervised feature selection and learning [128]. Other
examples involve self- and semi-supervised learning [280], [286] with
accompanying sample complexity analysis, and data augmentation
[186]. Still others investigate methods for multilabel learning with
missing labels [175]. Moreover, complementary activity in the context
of distributed learning includes [261], [283].

Specific application domains continue to receive new or renewed
attention. For example, there has been a variety of work in emotion
recognition [185], [187], [188], [290], multimodal person recognition
[181], and traffic and mobility pattern analysis [178]–[180]. Likewise,
cross-modal retrieval has emerged as a potential application [176], and
potential applications in communication and compression arise rather
naturally. Examples include distributed source and channel coding [143],
and communication of type classes [121].

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



166 Emerging Applications and Related Developments

Within the realm of nonlinear CCA and PCA, there continues to
be significant activity, building on that listed in Section 10.4. Examples
include the deep CCA architectures proposed in [119], [120] and the
maximal correlation regression framework of [281]. In such directions,
information theoretic interpretations of deep networks, such as those
in [129], [131] that extend the analysis in Section 8, are likely to be
valuable. Similarly, information-theoretic approaches to nonlinear PCA
using maximal correlation tools are developed in [128], and the use
of maximal correlation methods in PCA are explored in [57], [86].
Likewise, there is renewed interest in other forms of constraints on
modal decompositions to expand their range of potential applications.
For example, [81] arrives at monotonicity constraints on features [149]
via an axiomatic approach to obtaining measures of dependence.

Another promising application of the tools of this monograph is in
independent component analysis (ICA). An early use of neural networks
in ICA appears in e.g., [144], [215], and kernel methods for ICA are
developed in [17], where maximal correlation is used to approximate
mutual information as a contrast function. Combining such work with
information theoretic analyses of ICA—such as that in [172] and, for
finite alphabets, [217], [219]—may lead to still further advances.

Ultimately, the examples of activity summarized in this section are
only a sampling, and many more directions remain to be investigated.
As such, there are abundant opportunities for further research and
fruitful application across multiple communities.
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A
Appendices for Section 2

A.1 Proof of Proposition 2.1

It suffices to show that the maximum eigenvalue of BBT is at most
unity. To this end, note that via (2.10) and (2.11) we have

BBT =
[√

PY

]−1
PY |XPX|Y

√
PY . (A.1)

Now PY |X and PX|Y are both column-stochastic matrices, so their
product PY |X PX|Y is as well. As such, this product has maximum
eigenvalue of unity, which follows from, e.g., [114, Theorem 8.3.4] and
the fact that by definition a matrix A is column stochastic if 1TA = 1T.
Finally, since (A.1) is a similarity transformation of PY |X PX|Y , it has
the same eigenvalues.

Finally, (2.14b) can be verified by direct calculation using (2.3):∑
x∈X

B(x, y)
√
PX(x) = 1√

PY (y)
∑
x∈X

PX,Y (x, y) =
√
PY (y)

∑
y∈Y

B̄(y, x)
√
PY (y) = 1√

PX(x)
∑
y∈Y

PX,Y (x, y) =
√
PX(x).

■
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A.2 DTM Characterization

As notation, let B(PX,Y ) denote the Y×X dimensional DTM associated
with joint distribution PX,Y . Moreover, let B

X×Y denote the set of all
DTMs, i.e.,

B
X×Y = B(PX×Y), (A.2)

and let BX×Y
◦ denote the set of all DTMs corresponding to distributions

with positive probabilities, i.e.,

B
X×Y
◦ = B(relint(PX×Y)). (A.3)

As further notation, for a matrix A, we use A > 0 to denote that
every entry of A is positive, and, likewise A ≥ 0 when all entries are
nonnegative.

The following proposition characterizes B
X×Y
◦ in (A.3).

Proposition A.1. A matrix M is a DTM corresponding to a joint
distribution in relint(PX×Y) if and only if M > 0 and ∥M∥s = 1, i.e.,

B
X×Y
◦ = {M ∈ R|Y|×|X| : M > 0 and ∥M∥s = 1}, (A.4)

where ∥ · ∥s denotes the spectral norm of its argument.

Proof. The “only if” part of the claim is immediate. Indeed, since
M = B(PX,Y ) for some positive PX,Y , it follows that M > 0. Moreover,
as developed in Section 2, ∥B(PX,Y )∥s = 1.

For the “if” part of the claim, consider any matrix M ∈ R|Y|×|X|

satisfying M > 0 and ∥M∥s = 1. We can construct a PX,Y for which
M is its DTM. To see this, first note that MTM > 0, MMT > 0, and
λ(MTM) = ∥M∥2s = 1, where λ(·) denotes the largest eigenvalue of its
argument. Then, applying the Perron-Frobenius theorem [114, Theorem
8.2.2], it follows that there exist unit-norm vectors ψX(M) and ψY(M)
with positive elements such that

MTMψX(M) = ψX(M) and MMTψY(M) = ψY(M).

In turn, this implies that ψX(M) and ψY(M) are the right and left
singular vectors corresponding to the unit principal singular value of
M, respectively, i.e.,

MψX(M) = ψY(M) and MTψY(M) = ψX(M). (A.5)
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We now define a PX,Y lying on the simplex, and show that its DTM
is M. In particular, we let

PX,Y (x, y) ≜
[
PY,X

]
y,x
, x ∈ X, y ∈ Y,

where
PY,X ≜ diag

(
ψY(M)

)
M diag

(
ψX(M)

)
, (A.6)

with diag(·) denoting a diagonal matrix with diagonal entries specified
by its (vector) argument.

That PX,Y is positive follows by construction, since the quantities
forming PY,X are all positive. To verify that it sums to unity, observe
that ∑

x,y

PX,Y (x, y) = 1TP 1
= 1T diag

(
ψY(M)

)
M diag

(
ψX(M)

)
1

= ψY(M)TMψX(M)

= ψY(M)TψY(M)
= 1.

Moreover, applying (A.5), we obtain that the marginals take the
form

PY (y) = P 1
= diag

(
ψY(M)

)
M diag

(
ψX(M)

)
1

= diag
(
ψY(M)

)
MψX(M)

= diag
(
ψY(M)

)
ψY(M)

= ψY(M)2 (A.7a)

and

PX(x) = PT1
= diag

(
ψX(M)

)
MT diag

(
ψY(M)

)
1

= diag
(
ψX(M)

)
MTψY(M)

= diag
(
ψX(M)

)
ψX(M)

= ψX(M)2, (A.7b)
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where ψX(M)2 and ψY(M)2 are vectors whose elements are the squares
of the elements of ψX(M) and ψY(M), respectively.

Hence, using (A.7) in (A.6) we obtain

M =
[√

diag
(
ψY(M)

)]−1
PY,X

[√
diag

(
ψX(M)

)]−1

=
[√

PY

]−1
PY,X

[√
PX

]−1
, (A.8)

where PX and PY are diagonal matrices whose diagonal elements are
the elements of PX and PY , respectively, which are all positive. Hence,
M is the DTM corresponding to the PX,Y we have constructed, i.e.,
M = B(PX,Y ). ■

The following generalization of Proposition A.1 characterizes B
X×Y

in (A.2).

Proposition A.2. A matrix M is a DTM corresponding to a joint
distribution in P

X×Y if and only if M ≥ 0, ∥M∥s = 1, and each of
MTM and MMT have a positive eigenvector corresponding to their
unit eigenvalue, i.e.,

B
X×Y =

{
M ∈ R|Y|×|X| : M ≥ 0, ∥M∥s = 1,

∃ψX(M) > 0 s.t. MTMψX(M) = ψX(M),

∃ψY(M) > 0 s.t. MMTψY(M) = ψY(M)
}
.

Proof. For the “only if” part, since M = B(PX,Y ) for some PX,Y ∈ P
X×Y,

it follows by construction that M ≥ 0, and as developed in Section 2,
∥B∥s = 1 with corresponding right and left principal singular vectors
ψX(M) and ψY (M) whose elements are {

√
PX , x ∈ X} and {

√
PY , y ∈

Y}, respectively, which are positive according to our assumption at the
outset of this appendix. As such, these positive ψX(M) and ψY (M)
must be eigenvectors of BTB and BBT corresponding to the unit
eigenvalue.

The “if” part follows from the same proof as that for Proposition A.1
mutatis mutandis. However, we must be careful when applying the
Perron-Frobenius theorem [114, Theorem 8.3.1] to M ≥ 0 as it only
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guarantees that the eigenvectors ψX(M) and ψY(M) are entrywise
nonnegative. If an entry of ψX(M) or ψY(M) were zero, then the
corresponding column or row of

PY,X = diag(ψY(M)) M diag(ψX(M)),

which defines PX,Y , would be zero. In turn, this would imply that
PX(x) = 0 for some x ∈ X or PY (y) = 0 for some y ∈ Y, which would
mean that PX,Y ̸∈ P

X×Y, so that M could not be a DTM. Accordingly,
we add the ψX(M) > 0 and ψY(M) > 0 conditions in the statement of
the proposition. ■

Remark A.3. It is worth noting that a nonnegative square matrix
A ≥ 0 has positive left and right eigenvectors corresponding to its
Perron-Frobenius eigenvalue (or spectral radius) ρ(A) if and only if the
triangular block form of A is a direct sum of irreducible nonnegative
square matrices whose spectral radii are also ρ(A)—see Theorem 3.14
and the preceding discussion in [32, Chapter 2, Section 3]. This means
that MTM and MMT have positive eigenvectors corresponding to their
spectral radius of unity if and only if they have the aforementioned
direct form structure after suitable similarity transformations using
permutation matrices.

Finally, we establish the following.

Proposition A.4. The DTM function B : PX×Y → B
X×Y is bijective and

continuous.

Proof. The DTM function B : PX×Y → B
X×Y is bijective because: 1) its

range is defined to be B
X×Y; and 2) the proof of Proposition A.1 (and,

in turn, its extension Proposition A.2) delineates the inverse function.
To prove that B : PX×Y → B

X×Y is continuous, consider any sequence
of distributions {Pn

X,Y ∈ P
X×Y, n = 1, 2, . . . } such that for all (x, y) ∈

X× Y

lim
n→∞

Pn
X,Y (x, y) = PX,Y (x, y).
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By the triangle inequality, we have, for all x ∈ X,∣∣Pn
X(x)− PX(x)

∣∣ =
∣∣∣∣∣∑
y∈Y

Pn
X,Y (x, y)− PX,Y (x, y)

∣∣∣∣∣
≤
∑
y∈Y

∣∣Pn
X,Y (x, y)− PX,Y (x, y)

∣∣,
which implies that Pn

X(x)→ PX(x) as n→∞ for all x ∈ X. Likewise,
Pn

Y (y)→ PY (y) as n→∞ for all y ∈ Y. Hence, we have

lim
n→∞

Pn
X,Y (x, y)√
Pn

X(x)Pn
Y (y)

=
PX,Y (x, y)√
PX(x)PY (y)

for all (x, y) ∈ X × Y, which means that the elements of B
(
Pn

X,Y

)
converge to the elements of B

(
PX,Y

)
, and where we note that the

denominator terms are positive according to our assumption at the
outset of this appendix. Therefore, the DTM function is continuous. ■

A.3 Conditional Expectation Operator Representations

It is reasonable to ask why it is natural to focus on the SVD of the
CDM B̃ corresponding to B̃, as opposed to other commonly used
representations of the conditional expectation operator PX|Y , such as
simply

B0(x, y) ≜ PX,Y (x, y),
or

B1(x, y) ≜
PX,Y (x, y)
PX(x)PY (y) ,

whose logarithm is the pointwise mutual information [60] (also referred to
as the information density [107]). While fulling addressing this question
is beyond the scope of the present development, we can show that B̃
generates inner product spaces with the “right” properties, and that it
does so uniquely over a reasonable class of candidates.

Our characterization takes the form of the following proposition, in
which PX|Y is the representation of the conditional expectation operator
E
[
·|Y = y

]
defined in (2.11). In particular, expressing a function f as a

length-|X| (column) vector f ,

E
[
f(X)|Y = y

]
= PT

X|Y f .
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Proposition A.5. Define an inner product on R|X| using a distribution
QX

⟨f1, f2⟩QX
≜
∑
x∈X

QX(x) f1(x) f2(x),

yielding ℓ2(X, QX), and similarly use PY to convert R|Y| into ℓ2(Y, PY ),
i.e.,

⟨g1,g2⟩PY
≜
∑
y∈Y

PY (y) g1(y) g2(y).

Then

min
QX

max
f∈ℓ

2(X,QX)

∥∥PT
X|Y f

∥∥
PY∥∥f∥∥

QX

= 1,

and, moreover,
Q∗

X = PX = PY PX|Y

is the unique minimizer.

Proof. Note that for all QX we have 1 ∈ ℓ2(X, QX) with ∥1∥QX
= 1.

Also,
∥∥PT

X|Y 1
∥∥

PY
= ∥1∥PY

= 1. Hence,

max
f∈ℓ

2(X,QX)

∥∥PT
X|Y f

∥∥
PY∥∥f∥∥

QX

≥ 1, for all PY and QX .

But we know that QX = PX achieves the lower bound, which proves
the minimum. In particular, via Jensen’s inequality we have

E
[
E[f(X)|Y ]2

]
≤ E

[
E
[
f(X)2∣∣Y ]] = E

[
f(X)2].

To prove that PX is the unique minimizer, suppose we use QX ̸= PX

for the inner product. Then consider the adjoint operator, which for
f ∈ ℓ2(X, QX) and g ∈ ℓ2(Y, PY ) is defined by

EPY

[
E
[
f(X)|Y

]
g(Y )

]
= EPX,Y

[
f(X) g(Y )

]
= EPX

[
f(X)E

[
g(Y )|X

]]
= EQX

[
f(X)E

[
g(Y )|X

] PX(X)
QX(X)

]
.

So the adjoint operator is

(P ∗
X|Y g)(x) = PX(x)

QX(x) EPY |X

[
g(Y )|X = x

]
.
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Now observe that
(P ∗

X|Y 1)(x) = PX(x)
QX(x) ,

so ∥1∥PY
= 1 and

∥∥P ∗
X|Y 1

∥∥2
QX

=
∑
x∈X

QX(x)PX(x)2

QX(x)2 = 1+χ2(Q∥P ) > 1,

where the last inequality follows because PX ̸= QX . Hence the largest
singular value of P ∗

X|Y is greater than unity. Hence, Q∗
X = PX is the

unique minimizer. ■

Note that Proposition A.5 shows that given PX,Y , the only choice
of inner products that make PY |X and PX|Y adjoints and contractive
operators (so that the data processing inequality is satisfied locally)
are those with respect to PX and PY . It also establishes that if we are
given only PX|Y , we are free to choose PY , but we must choose the
corresponding PX for the other inner product to obtain the required
contraction property.

We comment that the restriction in Proposition A.5 to inner products
corresponding to weighting by distribution is natural. In general, each
inner product corresponds to a positive semidefinite matrix A, i.e.,
⟨f ,g⟩A = fTAg. For simplicity, we neglect the orthogonal matrices in
the spectral decomposition of A, and only consider diagonal matrices
A with positive diagonal entries, which correspond to weighted inner
products. Moreover, we restrict the diagonal entries to sum to unity to
have a “well-defined” problem (indeed, allowing arbitrary scaling would
make the infimum in our proposition zero).
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B.1 Proof of Proposition 4.2

The first part of the proposition is immediate: from (4.7) we obtain
both

EP0

[
h(Z)

]
=
∑
z∈Z

P0(z)h(z) = 1
ϵ

∑
z∈Z

(
P (z)− P0(z)

)
= 0,

and
ξ(z) =

√
P0(z)h(z) = P (z)− P0(z)

ϵ
√
P0(z)

= ϕ(z), (B.1)

where we have further used (4.6), and where to obtain the last equality
we have used (4.2). The second part of the proposition is trivially true
when h ≡ 0. When h ̸≡ 0, it suffices to note that P in (4.10) satisfies∑

z∈Z

P (z) =
∑
z∈Z

P0(z) + ϵEP0

[
h(Z)

]
= 1,

and that P (z) ∈ [0, 1] whenever

ϵ ≤ min

 −1
min
z∈Z

h(z) ,
1−max

z∈Z
P0(z)

max
z∈Z

h(z) max
z∈Z

P0(z)

,
177
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where we have used that since h ̸≡ 0,

min
z∈Z

h(z) < 0 and max
z∈Z

h(z) > 0,

and that since P0 ∈ relint(PZ),

max
z∈Z

P0(z) < 1.

Finally, using, in turn, (4.2), (4.10), and (4.6), we obtain

ϕ(z) = P (z)− P0(z)
ϵ
√
P0(z)

=
√
P0(z)h(z) = ξ(z).

■

B.2 Proof of Corollary 4.3

To obtain the first part of the corollary, we have that given P there
exists h such that

1
ϵ

log P (z)
P0(z) = 1

ϵ
log
(
1 + ϵh(z)

)
= h(z) + hϵ(z), (B.2)

with hϵ(z) denoting an OO(1) term, where to obtain the first equality we
have used (4.7), and to obtain the second equality we have used the
first-order Taylor series approximation log(1 + ω) = ω + OO(ω). In turn,
using (4.8) it follows that

hLL(z) = h(z) + h̃ϵ(z) (B.3)

where h̃ϵ is a function such that

h̃ϵ(z) = OO(1), ϵ→ 0, z ∈ Z and EP0

[
h̃ϵ(Z)

]
= 0. (B.4)

Multiplying both sides of (B.3) by
√
P0(z) yields the (4.13).

To obtain the second part of the corollary, we use from (4.10)
that given h satisfying (4.8) there exists P such that (B.2) holds for
sufficiently small ϵ. Subtracting the mean with respect to P0 from (B.2)
then yields (4.14). ■
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B.3 Proof of Lemma 4.4

We have

EP [h(Z)] =
∑
z∈Z

P (z)h(z)

=
∑
z∈Z

(
P0(z) + ϵ

√
P0(z) ϕ(z)

) ξ(z)√
P0(z)

(B.5)

=
∑
z∈Z

√
P0(z) ξ(z) + ϵ

∑
z∈Z

ϕ(z) ξ(z) (B.6)

= ϵ
〈
ϕ, ξ

〉
, (B.7)

where to obtain (B.5) we have used (4.2) and (4.6), and to obtain (B.7)
we have used that (4.8), i.e., ξ ∈ I

Z(P0), implies that the first term in
(B.6) is zero in accordance with (4.5). ■

B.4 Proof of Lemma 4.5

With the feature functions

Li(z) ≜
1
ϵ

(
Pi(z)
P0(z) − 1

)
we have, for i = 1, 2,

log Pi(z)
P0(z) = log

(
1 + ϵLi(z)

)
= ϵLi(z)−

1
2ϵ

2Li(z)
2 + OO(ϵ2) (B.8)

= ϵ
ϕi(z)√
P0(z)

− 1
2ϵ

2ϕi(z)
2

P0(z) + OO(ϵ2), (B.9)

where to obtain (B.8) we have used the second-order Taylor series
approximation

log(1 + ω) = ω − 1
2ω

2 + OO(ω2), ω → 0,
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and where to obtain (B.9) we have used (4.9) from the first part of
Proposition 4.2. Hence,

log P1(z)
P2(z) = log P1(z)

P0(z) − log P2(z)
P0(z)

= ϵ
ϕ1(z)− ϕ2(z)√

P0(z)
− 1

2ϵ
2ϕ1(z)2 − ϕ2(z)2

P0(z) + OO(ϵ2),

and, in turn,

D(P1∥P2) =
∑
z∈Z

P1(z) log P1(z)
P2(z)

=
∑
z∈Z

P0(z) log P1(z)
P2(z) +

∑
z∈Z

(
P1(z)− P0(z)

)
log P1(z)

P2(z)

=
∑
z∈Z

P0(z) ϵ ϕ1(z)− ϕ2(z)√
P0(z)

−
∑
z∈Z

P0(z) 1
2ϵ

2 ϕ1(z)2 − ϕ2(z)2

P0(z)

+
∑
z∈Z

ϵ
√
P0(z)ϕ1(z) ϵϕ1(z)− ϕ2(z)√

P0(z)

−
∑
z∈Z

ϵ
√
P0(z)ϕ1(z) 1

2ϵ
2 ϕ1(z)2 − ϕ2(z)2

P0(z)

+ OO(ϵ2)

= 0− 1
2ϵ

2 ∑
z∈Z

(
ϕ1(z)2 − ϕ2(z)2)

+ ϵ2
∑
z∈Z

ϕ1(z)
(
ϕ1(z)− ϕ2(z)

)
+ OO(ϵ2)

= 1
2ϵ

2[∥ϕ2∥
2 − ∥ϕ1∥

2 + 2∥ϕ1∥
2 − 2⟨ϕ1, ϕ2⟩

]
+ OO(ϵ2)

= 1
2ϵ

2∥ϕ1 − ϕ2∥
2 + OO(ϵ2).

■

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



B.5. Proof of Lemma 4.6 181

B.5 Proof of Lemma 4.6

To obtain (4.19), it suffices to note that since

P̃0(z) = P0(z) + ϵ
√
P0(z) ϕ̃0(z)

for some ϕ̃0(z) such that ∥ϕ̃0∥ ≤ 1, we have, for i = 1, 2,

ϕ̃i(z) = Pi(z)− (P0(z) + ϵ
√
P0(z) ϕ̃0(z))

ϵ
√
P0(z) + ϵ

√
P0(z) ϕ̃0(z)

=
(
Pi(z)− P0(z)

)
− ϵ

√
P0(z) ϕ̃0(z)

ϵ
√
P0(z)

√
1 + ϵ ϕ̃0(z)√

P0(z)

=
(
ϕi(z)− ϕ̃0(z)

) (
1 + OO(1)

)
,

where to obtain the last equality we have used that (1+ω)−1/2 = 1+OO(1)
as ω → 0. ■

B.6 Proof of Lemma 4.8

It suffices to note that since

χ2(PZ,W

∥∥ PZPW

)
= EPZ

[
χ2(PW |Z(·|Z)

∥∥ PW

)]
= EPW

[
χ2(PZ|W (·|W )

∥∥ PZ

)]
,

we have for all z ∈ Z,

χ2(PW |Z(·|z)
∥∥ PW

)
min
z

′∈Z

PZ(z′)

≤ χ2(PZ,W

∥∥ PZPW

)
≤ max

z
′∈Z

χ2(PW |Z(·|z′)
∥∥ PW

)
,

and, similarly, for all w ∈W,

χ2(PZ|W (·|w)
∥∥ PZ

)
min
w

′∈W

PW (w′)

≤ χ2(PZ,W

∥∥ PZPW

)
≤ max

w
′∈W

χ2(PZ|W (·|w′)
∥∥ PZ

)
,

where both the constituent minima are finite and nonzero as ϵ→ 0 due
to (4.24). ■
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B.7 Proof of Lemma 4.9

The “if” part of the lemma follows from using O(ϵ)-dependence between
Z and W in the form (4.25c) with Lemma 4.5 to obtain

D(PZ|W (·|w)∥PZ) = ϵ2

2
∥∥ϕZ|W

w

∥∥2 + OO(ϵ2), w ∈W, (B.10)

where for each w ∈W,

ϕZ|W
w (z) ≜

PZ|W (z|w)− PZ(z)
ϵ
√
PZ(z)

, z ∈ Z

is the information vector associated with PZ|W (·|w), and for which∥∥ϕZ|W
w

∥∥ ≤ 1. Alternatively, the inequality
D(p∥q) ≤ log

(
1 + χ2(p∥q)

)
≤ χ2(p∥q),

valid for all finite Z and p, q ∈ P
Z, which is derived in, e.g., [93, Theo-

rem 5], is sufficient to obtain this part of the lemma, using p = PZ,W

and q = PZPW .
To obtain the “only if” part of the lemma, note that for any finite

Z and p, q ∈ P
Z, we have, using Pinsker’s inequality [70],

χ2(p∥q) ≤ 1
minz∈Z q(z)

∑
z∈Z

(
p(z)− q(z)

)2

≤ 1
minz∈Z q(z)

∑
z∈Z

∣∣p(z)− q(z)∣∣
2

≤ 2D(p∥q)
minz∈Z q(z)

. (B.11)

The result then follows setting, again, p = PZ,W and q = PZPW , since
the minimum in (B.11) is finite and nonzero due to (4.24). ■

B.8 Proof of Lemma 4.10

It suffices to note that since
I(Z;W ) ≜ D

(
PZ,W

∥∥ PZPW

)
= EPZ

[
D
(
PW |Z(·|Z)

∥∥ PW

)]
= EPW

[
D
(
PZ|W (·|W )

∥∥ PZ

)]
,

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



B.9. Proof of Lemma 4.12 183

we have for all z ∈ Z,

D
(
PW |Z(·|z)

∥∥ PW

)
min
z

′∈Z

PZ(z′)

≤ I(Z;W ) ≤ max
z

′∈Z

D
(
PW |Z(·|z′)

∥∥ PW

)
,

and, similarly, for all w ∈W,

D
(
PZ|W (·|w)

∥∥ PZ

)
min
w

′∈W

PW (w′)

≤ I(Z;W ) ≤ max
w

′∈W

D
(
PZ|W (·|w′)

∥∥ PZ

)
,

where both the constituent minima are finite and nonzero as ϵ→ 0 due
to (4.24). ■

B.9 Proof of Lemma 4.12

Let Qi(ℓ
k) denote the probability of obtaining a given value ℓk in (4.31)

when the sequence zm
1 from which ℓk is formed is generated from Pi, for

i ∈ {1, 2}. Then the optimum error exponent is obtained by a rule that
decides based on comparing

1
m

log Q1(ℓk)
Q2(ℓk)

(B.12)

to a threshold.
For i ∈ {1, 2}, we have

lim
m→∞

1
m

logQi(ℓ
k) = min

{P̂ : EP̂

[
h

k(Z)
]
=ℓ

k}
D(P̂∥Pi) (B.13)

= min
{ϕ̂ : ϵ⟨ϕ̂,ξl⟩=ℓl,

l=1,...,k}

ϵ2

2 ∥ϕ̂− ϕi∥
2 + OO(ϵ2) (B.14)

= ϵ2

2 ∥ϕ̂∗ − ϕi∥
2 + OO(ϵ2) (B.15)

= 1
2

k∑
l=1

(
ℓl − ϵ⟨ϕi, ξl⟩

)2 + OO(ϵ2), (B.16)
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where to obtain (B.13) we have used Sanov’s Theorem [76], to obtain
(B.14) we have used both Lemma 4.5 and that

EPi
[hl(Z)] = ϵ⟨ϕi, ξl⟩, i = 1, 2 and l = 1, . . . , k, (B.17)

which follows from Lemma 4.4 since (4.32a) holds, and to obtain (B.15)
and, in turn, (B.16), we have used

ϕ̂∗ = arg min
{ϕ̂ : ϵ⟨ϕ̂,ξl⟩=ℓl,

l=1,...,k}

∥ϕ̂− ϕi∥
2 = ϕi −

1
ϵ

k∑
l=1

(
ℓl − ϵ⟨ϕi, ξl⟩

)
ξl,

the last equality of which is obtained using, e.g., Lagrange multipliers,
together with (4.33).

Using (B.16) in (B.12) then yields

lim
m→∞

1
m

log Q1(ℓk)
Q2(ℓk)

=
k∑

l=1
ℓlϵ⟨ϕ2−ϕ1, ξl⟩+ ϵ2

k∑
l=1

(
⟨ϕ1, ξl⟩

2−⟨ϕ2, ξl⟩
2
)

=
k∑

l=1
ℓlϵ⟨ϕ2−ϕ1, ξl⟩+ OO(ϵ2), (B.18)

where (B.18) is obtained as follows: via the triangle inequality, P̃0 =
(P1 + P2)/2 ∈ N

Z
ϵ (P0), so according to Lemma 4.6 we have

0 = ϕ̃1(z)− ϕ̃2(z) =
(
ϕ1(z)− ϕ2(z)

)(
1 + OO(1)

)
,

whence ϕ1(z)− ϕ2(z) = OO(1).
Using (B.18) with (B.17), we obtain that an asymptotically optimal

decision rule compares the projection
k∑

l=1
ℓl
(
EP1

[
hl(Z)

]
− EP2

[
hl(Z)

])
to a threshold. Accordingly, via Cramér’s Theorem [76] the error expo-
nent under Pi is

Ei(λ) = min
P ∈S(λ)

D(P∥Pi), (B.19)
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where

S(λ) ≜
{
P ∈ P

Z :

k∑
l=1

EP

[
hl(Z)

](
EP1

[
hl(Z)

]
− EP2

[
hl(Z)

])

=
k∑

l=1

(
λEP1

[
hl(Z)

]
+ (1− λ)EP2

[
hl(Z)

])
·
(
EP1

[
hl(Z)

]
− EP2

[
hl(Z)

])}
. (B.20)

Using (B.17), the constraint (B.20) is expressed in information space as

k∑
l=1
⟨ϕ, ξl⟩⟨ϕ1 − ϕ2, ξl⟩ =

k∑
l=1
⟨λϕ1 + (1− λ)ϕ2, ξl⟩⟨ϕ1 − ϕ2, ξl⟩,

i.e., 〈
ϕ−

(
λϕ1 + (1− λ)ϕ2

)
,

k∑
l=1
⟨ϕ1 − ϕ2, ξl⟩ ξl

〉
= 0 (B.21)

In turn, the optimizing P in (B.19), which we denote by P ∗, lies in the
exponential family through Pi with natural statistic

k∑
l=1
⟨ϕ1 − ϕ2, ξl⟩hl(z),

i.e., the family whose members are of the form

log P̃θ(z) = θ
k∑

l=1
⟨ϕ1 − ϕ2, ξl⟩hl(z) + logPi(z)− α(θ),

for which the associated information vector is

ϵ ϕ̃θ(z) = θ
k∑

l
′=1

⟨ϕ1 − ϕ2, ξl
′⟩ ξl

′(z) + ϵϕi(z)− α(θ)
√
P0(z) + OO(ϵ),

so
ϵ ⟨ϕ̃θ, ξl⟩ = θ⟨ϕ1 − ϕ2, ξl⟩+ ϵ ⟨ϕi, ξl⟩+ OO(ϵ),
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where we have used (4.33). Hence, via (B.21) we obtain that the inter-
section with the linear family (B.20) is at P ∗ = Pθ

∗ with

θ∗ = ϵ

∑k
l=1⟨ϕ1 − ϕ2, ξl⟩⟨λϕ1 + (1− λ)ϕ2 − ϕi, ξl⟩∑k

l=1⟨ϕ1 − ϕ2, ξl⟩
2 + OO(ϵ),

and thus

Ei(λ) = D(P ∗∥Pi)

= 1
2

∥∥∥∥θ∗
k∑

l=1
⟨ϕ1 − ϕ2, ξl⟩ ξl

∥∥∥∥2
+ 1

2α(θ∗)2 + OO(ϵ2)

= (θ∗)2

2

k∑
l=1
⟨ϕ1 − ϕ2, ξl⟩

2 + 1
2α(θ∗)2 + OO(ϵ2)

= ϵ2

2

(∑k
l=1⟨ϕ1−ϕ2, ξl⟩⟨λϕ1 + (1−λ)ϕ2 − ϕi, ξl⟩

)2∑k
l=1⟨ϕ1 − ϕ2, ξl⟩

2 + OO(ϵ2),

(B.22)

where to obtain the penultimate equality we have again exploited (4.33),
and where to obtain the last equality we have used that

α(θ∗) = OO(ϵ2)

since θ∗ = O(ϵ), α(0) = 0, and

∇α(0) = EPi

[
k∑

l=1
⟨ϕ1−ϕ2, ξl⟩hl(Z)

]
= ϵ

k∑
l=1
⟨ϕ1−ϕ2, ξl⟩ ⟨ϕi, ξl⟩ = O(ϵ).

Finally, E1(λ) = E2(λ) when λ = 1/2, so the overall error probability
has exponent (4.35). ■
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C.1 Proof of Lemma 5.4

Via (5.13), we have∑
z∈Z

ϕZ|Wi
wi

(z)ϕZ|Wj
wj

(z)

= 1
ϵ2

[∑
z∈Z

PZ|Wi
(z|wi)PZ|Wj

(z|wj)
PZ(z)

−
∑
z∈Z

(
PZ|Wi

(z|wi) + PZ|Wj
(z|wj)

)
+
∑
z∈Z

PZ(z)
]

= 0,

where the first sum within the brackets is 1 since, using the pairwise
marginal and conditional independencies,

PZ|Wi
(z|wi)PZ|Wj

(z|wj)
PZ(z) =

PWi|Z(wi|z)PWj |Z(wj |z)PZ(z)
PWi

(wi)PWj
(wj)

=
PWi,Wj |Z(wi, wj |z)PZ(z)

PWi,Wj
(wi, wj)

187
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= PZ|Wi,Wj
(z|wi, wj).

■

C.2 Proof of Lemma 5.5

Due to the conditional independence among the W k,

P
Z|W k(z|wk) = PZ(z)

P
W

k(wk)

k∏
i=1

PWi|Z(wi|z)

= PZ(z)
π
(
wk) k∏

i=1

PZ|Wi
(z|wi)

PZ(z) , (C.1)

with

π
(
wk) =

P
W

k(wk)∏k
i=1 PWi

(wi)
=
∑
z

′

PZ(z′)
k∏

i=1

PZ|Wi
(z′|wi)

PZ(z′)
.

Moreover,

PZ(z)
k∏

i=1

PZ|Wi
(z|wi)

PZ(z) = PZ(z)
k∏

i=1

(
1 + ϵ√

PZ(z)
ϕZ|Wi

wi

)

= PZ(z) + ϵ
√
PZ(z)

k∑
i=1

ϕZ|Wi
wi

+ OO(ϵ), (C.2)

where to obtain (C.2) we have used Fact 5.6. In turn, summing (C.2)
over z we obtain

π
(
wk) = 1 + OO(ϵ), (C.3)

where we have used that since ϕZ|Wi
wi

∈ I
Z,∑

z

√
PZ(z)ϕZ|Wi

wi
(z) = 0.

Hence, using (C.2) and (C.3) with (5.14) in (C.1), we obtain (5.15).
■
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C.3 Proof of Lemma 5.8

First, note that the (i, j)th entry of AT
1 Z A2 is aT

1,iZa2,j , where a1,i and
a2,j denote the ith and jth columns of A1 and A2, respectively. Hence,

E
[∥∥AT

1 Z A2
∥∥2

F

]
= E

[∑
i,j

(
aT

1,i Z a2,j

)2] =
∑
i,j

E
[(

aT
1,iZ a2,j

)2]
. (C.4)

Next, with Zij denoting the (i, j)th element of Z, note that

E
[(

aT
1,iZ a2,j

)2] = E
[(

aT
1,iQT

1,i︸ ︷︷ ︸
≜ãT

1,i

Z Q2,j a2,j︸ ︷︷ ︸
≜ã2,j

)2] (C.5)

=
∥∥a1,i

∥∥2 ∥∥a2,j

∥∥2 E
[(

eT
1 Z e1︸ ︷︷ ︸
=Z11

)2]
, (C.6)

where to obtain (C.5) we have used Definition 5.7 with orthogonal
matrices Q1,i and Q2,j , and to obtain (C.6) we have chosen Q1,i and
Q2,j so that

ã1,i =
∥∥a1,i

∥∥ e1 and ã2,j =
∥∥a2,j

∥∥ e1.

In turn, substituting (C.6) into (C.4) yields

E
[∥∥AT

1 Z A2
∥∥2

F

]
= E

[
Z2

11
] ∑

i,j

∥∥a1,i

∥∥2 ∥∥a2,j

∥∥2

= E
[
Z2

11
] ∑

i

∥∥a1,i

∥∥2 ∑
j

∥∥a2,j

∥∥2

= E
[
Z2

11
] ∥∥A1

∥∥2
F
∥∥A2

∥∥2
F. (C.7)

Finally, with Q̃l denoting the permutation matrix that interchanges the
first and lth columns of the identity matrix, it follows from Definition 5.7
with Q1 = Q̃i and Q2 = Q̃j that Zij

d=Z11, and thus

E
[∥∥Z∥∥2

F

]
= k1k2 E

[
Z2

11
]
,

which when used in conjunction with (C.7) yields (5.28). ■
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C.4 Proof of Proposition 5.10

Without loss of generality, as discussed in Section 4.4 we assume that fk

and gk are normalized according to (3.6c) and (3.6d), so the associated
feature vectors ΞX and ΞY , respectively, satisfy (3.13).

We first analyze the error probability in decisions about the value
of V based on Sk. To begin, we have

ĒV |S(fk) = lim
m→∞

−ERIE
[
log pV |S

e (CY
ϵ (PY ), fk)

]
m

= ERIE

[
lim

m→∞
− log pV |S

e (CY
ϵ (PY ), fk, v∗, v

′
∗)

m

]
(C.8)

= ERIE
[
EV |S(CY

ϵ (PY ), fk, v∗, v
′
∗)
]
, (C.9)

where to obtain the (C.8) we have used standard pairwise exponent anal-
ysis. Specifically, (with slight abuse of notation) pV |S

e (CY
ϵ (PY ), fk, v, v′)

denotes the pairwise error probability distinguishing distinct v and v′

in V based on sk, and

(v∗, v
′
∗) = arg min

{v,v
′∈V : v ̸=v

′}
pV |S

e (CY
ϵ (PY ), fk, v, v′), (C.10)

whose dependence on fk and C
X
ϵ (PX) we leave implicit in our notation.

Finally, in (C.9) we have used the notation

EV |S(CY
ϵ (PY ), fk, v, v′) ≜ lim

m→∞
− log pV |S

e (CY
ϵ (PY ), fk, v, v′)
m

for any distinct v and v′.
Now

EV |S(CY
ϵ (PY ), fk, v, v′)

= ϵ2

8

k∑
i=1

((
ϕX|V

v − ϕX|V
v

′
)T
ξX

i

)2
+ OO(ϵ2) (C.11)

= ϵ2

8
∥∥(ΞX)TBT(ϕY |V

v − ϕY |V
v

′
)∥∥2 + OO(ϵ2) (C.12)

= ϵ2

8
∥∥(ΞX)TBTΦY |V (ev − ev

′
)∥∥2 + OO(ϵ2), (C.13)
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where to obtain (C.11) we have used Lemma 4.12 with ϕY |V
v and ϕ

Y |V
v

′

as defined in (5.23a), to obtain (C.12) we have used (5.24), and in
(C.13) we have exploited elementary vector notation (with an abuse of
notation as discussed in footnote 5). Moreover, for fixed v and v′,

ERIE
[
EV |S(CY

ϵ (PY ), fk, v, v′)
]

= ERIE

[
ϵ2

8
∥∥(ΞX)TBTΦY |V (ev − ev

′
)∥∥2
]

+ OO(ϵ2)

=
ϵ2 ERIE

[∥∥ΦY |V ∥∥2
F

]
4 |Y| |V|

∥∥B ΞX∥∥2
F + OO(ϵ2), (C.14)

where to obtain (C.14) we have used Lemma 5.8.
Then since (C.14) does not depend on v or v′, it follows from the

law of total expectation that (C.9) satisfies

ERIE
[
EV |S(CY

ϵ (PY ), fk, v∗, v
′
∗)
]

= ϵ2
ERIE

[∥∥ΦY |V ∥∥2
F

]
4 |Y| |V|︸ ︷︷ ︸
≜Ē

Y |V
0

∥∥B ΞX∥∥2
F + OO(ϵ2) (C.15)

≤ ĒY |V
0 ϵ2

k∑
i=1

σ2
i + OO(ϵ2), (C.16)

where to obtain (C.16) we have used Lemma 3.1 with the relevant
constraint in (3.13) induced by our choice of normalization (3.6c). More-
over, the inequality in (C.16) holds with equality when we choose ΞX

according to (3.14a), i.e., the optimal features are fk = fk
∗ .

We analyze the error probability in decisions about V based on T k

similarly. In particular, we obtain

ĒV |T (gk) = lim
m→∞

−ERIE
[
log pV |T

e (CY
ϵ (PY ), gk)

]
m

=
ϵ2 ERIE

[∥∥ΦY |V ∥∥2
F

]
4 |Y| |V|

∥∥ΞY ∥∥2
F + OO(ϵ2) (C.17)

= Ē
Y |V
0 ϵ2 k + OO(ϵ2), (C.18)

for any ΞY satisfying (3.13), i.e., any choice of (normalized) gk.
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We obtain the error probability in decisions about the value of U
from symmetry considerations. In particular, it suffices to interchange
the roles of U and V , and X and Y—so B is replaced with its adjoint—in
the preceding analysis, which yields that

ĒU |T (gk) ≤
ERIE

[∥∥ΦX|U∥∥2
F

]
4 |X| |U|︸ ︷︷ ︸
≜Ē

X|U
0

ϵ2
k∑

i=1
σ2

i + OO(ϵ2),

with equality when gk = gk
∗ , and

ĒU |S(fk) = Ē
X|U
0 ϵ2 k + OO(ϵ2),

for any choice of (normalized) fk.
It follows that the inequalities in (5.32) simultaneously all hold with

equality for the choices fk = fk
∗ and gk = gk

∗ . ■

C.5 Proof of Proposition 5.13

Without loss of generality, as discussed in Section 4.4 we assume that fk

and gk are normalized according to (3.6c) and (3.6d), so the associated
feature vectors ΞX and ΞY , respectively, satisfy (3.13).

We first analyze the error probability in decisions about the value
of V k based on Sk. To begin, the error exponent in decisions about Vi

satisfies

EVi|S(CY,k
ϵ (PY ), fk) ≤ EVi|S(CY,k

ϵ (PY ), fk, vi, v
′
i) (C.19)

= ϵ2

8
∥∥(ΞX)TBT(ϕY |Vi

vi
− ϕY |Vi

v
′
i

)∥∥2 + OO(ϵ2) (C.20)

≤ ϵ2

2 max
vi∈Vi

∥∥(ΞX)TBTϕY |Vi
vi

∥∥2 + OO(ϵ2) (C.21)

≤ ϵ2

2
∥∥ΞX∥∥2

s max
vi∈Vi

∥∥BTϕY |Vi
vi

∥∥2 + OO(ϵ2) (C.22)

≤ ϵ2

2 max
vi∈Vi

∥∥BTϕY |Vi
vi

∥∥2 + OO(ϵ2) (C.23)

= ϵ2

2 max
vi∈Vi

∥∥BTϕ̃Y |Vi
vi

∥∥2(
δY |Vi

vi

)2 + OO(ϵ2) (C.24)
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≤ ϵ2

2 max
vi∈Vi

∥∥BTϕ̃Y |Vi
vi

∥∥2 + OO(ϵ2) (C.25)

= ϵ2

2
∥∥BTϕ̃Y |Vi

∗
∥∥2 + OO(ϵ2), (C.26)

where (C.19) follows from standard pairwise error analysis with the
pairwise error exponent in distinguishing distinct vi and v′

i in Vi de-
noted using EVi|S(CY,k

ϵ (PY ), fk, vi, v
′
i), to obtain (C.20) we have adapted

(C.12) in the proof of Proposition 5.10, to obtain (C.21) we have used
the triangle inequality, to obtain (C.22) we have used Fact 5.12, to
obtain (C.23) we have used that

∥∥ΞX∥∥
s =

∥∥ΞY ∥∥
s = 1, and to obtain

(C.24) and (C.25) we have used the decomposition

ϕY |Vi
vi

= ϕ̃Y |Vi
vi

δY |Vi
vi

,

where
∥∥ϕ̃Y |Vi

vi

∥∥ = 1 and
∣∣δY |Vi

vi

∣∣ ≤ 1. In (C.26), we have introduced the
notation

ϕ̃Y |Vi
∗ ≜ arg max{

ϕ̃
Y |Vi
vi

: vi∈Vi

}∥∥BTϕ̃Y |Vi
vi

∥∥2
,

and note that since V k is a multi-attribute, by Lemma 5.4 the matrix

Φ̃Y |V k

∗ ≜
[
ϕ̃Y |V1

∗ · · · ϕ̃Y |Vk
∗

]
(C.27a)

has orthogonal columns, so(
Φ̃Y |V k

∗
)TΦ̃Y |V k

∗ = I. (C.27b)

Hence, for each i ∈ {1, . . . , k},

max
C
Y,k
ϵ (PY ),fk

min
j≤i

EVj |S(CY,k
ϵ (PY ), fk)

≤ max
C
Y,k
ϵ (PY ),fk

min
j≤i

ϵ2

2
∥∥BTϕ̃

Y |Vj

B
∥∥2 + OO(ϵ2) (C.28)

= max
Φ̃Y |V i

B :

(Φ̃Y |V i

B )TΦ̃Y |V i

B =I

min
j≤i

ϵ2

2
∥∥BTϕ̃

Y |Vj

B
∥∥2 + OO(ϵ2) (C.29)

= max
S⊂RKY : dim(S)=i

min
ϕ̃∈S : ∥ϕ̃∥=1

ϵ2

2
∥∥BTϕ̃

∥∥2 + OO(ϵ2) (C.30)
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= ϵ2

2 σ2
i + OO(ϵ2), (C.31)

where to obtain (C.28) we have used (C.26), to obtain (C.29) we have
used (C.27), to obtain (C.30) we have used the definition of a subspace,
and to obtain (C.31) we have used Lemma 5.11.

We further note that the inequalities leading to the right-hand side
of (C.31) hold with equality for all i ∈ {1, . . . , k} when we choose

Vi = {+1,−1} and ϕ
Y |Vi
+1 = −ϕY |Vi

−1 = ψY
i ,

for i = 1, . . . , k (so PVi
(+1) = PVi

(−1) = 1/2), and

ΞX = ΨX
(k),

with ΨX
(k) as defined in (3.15). In particular, the equalities leading to

(C.26) all hold with equality with these choices so (C.28) holds with
equality, and, via Lemma 5.11, (C.31) holds when S is the space spanned
by the columns of ΨY

(i) and ϕ̃ = ψY
i .

We similarly analyze the error probability in decisions about Uk

based on Sk. In particular, the error exponent in decisions about Ui

satisfies
EUi|S(CX,k

ϵ (PX), fk) ≤ ϵ2

2
∥∥ϕ̃X|Ui

∗
∥∥2 + OO(ϵ2), (C.32)

where we have used the decomposition

ϕX|Ui
ui

= ϕ̃X|Ui
ui

δX|Ui
ui

with
∥∥ϕ̃X|Ui

ui

∥∥ = 1 and
∣∣δX|Ui

ui

∣∣ ≤ 1, and where

ϕ̃X|Ui
∗ ≜ arg max{

ϕ̃
X|Ui
ui

: ui∈Ui

}∥∥ϕ̃X|Ui
ui

∥∥2
.

Analogously, we note that since Uk is a multi-attribute, by Lemma 5.4
the matrix

Φ̃X|Uk

∗ ≜
[
ϕ̃X|U1

∗ · · · ϕ̃X|Uk
∗

]
(C.33a)

has orthogonal columns, so(
Φ̃X|Uk

∗
)TΦ̃X|Uk

∗ = I. (C.33b)

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



C.5. Proof of Proposition 5.13 195

Hence, for each i ∈ {1, . . . , k},

max
C
X,k
ϵ (PX),fk

min
j≤i

EUj |S(CX,k
ϵ (PX), fk)

≤ max
S⊂RKY : dim(S)=i

min
ϕ̃∈S : ∥ϕ̃∥=1

ϵ2

2
∥∥ϕ̃∥∥2 + OO(ϵ2) (C.34)

= ϵ2

2 + OO(ϵ2). (C.35)

In this case, it is straightforward to verify that the corresponding
inequalities leading to (C.35)—and so to (C.32) as well—all hold with
equality when

Ui = {+1,−1} and ϕ
X|Ui
+1 = −ϕX|Ui

−1 = ϕ̃X|Ui
∗ ,

for any Φ̃X|Uk

∗ satisfying (C.33b), and when ΞX = Φ̃X|Uk

∗ .
The associated error probabilities for decisions about Uk and V k

based on T k follow from symmetry considerations. In particular, it
suffices to interchange the roles of U and V , and X and Y—so B is
replaced with its adjoint—in the preceding analysis. This immediately
yields that for i ∈ {1, . . . , k},

max
C
X,k
ϵ (PX),gk

min
j≤i

EUj |T (CX,k
ϵ (PX), gk) = ϵ2

2 σ2
i + OO(ϵ2), (C.36)

which is achieved by the choices

Ui = {+1,−1} and ϕ
X|Ui
+1 = −ϕX|Ui

−1 = ψX
i ,

for i = 1, . . . , k (so PUi
(+1) = PUi

(−1) = 1/2), and

ΞY = ΨY
(k),

with ΨY
(k) as defined in (3.15).

And it likewise yields, also for i ∈ {1, . . . , k}, that

max
C
Y,k
ϵ (PY ),gk

min
j≤i

EVj |T (CY,k
ϵ (PY ), gk) = ϵ2

2 + OO(ϵ2), (C.37)
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which is achieved by the choices

Vi = {+1,−1} and ϕ
Y |Vi
+1 = −ϕY |Vi

−1 = ϕ̃Y |Vi
∗ ,

for any Φ̃Y |V k

∗ satisfying (C.27b), and when ΞY = Φ̃Y |V k

∗ .
It follows that the inequalities in (5.36) simultaneously all hold with

equality for the choices fk = fk
∗ and gk = gk

∗ . and (5.37). ■

C.6 Proof of Corollary 5.15

First, note that

P
U

k|Xm
,Y

m(uk|xm, ym) = P
U

k|Xm(uk|xm) (C.38)

=
k∏

i=1
PUi|X

m(ui|x
m) (C.39)

=
k∏

i=1
PUi

(ui)
PX

m|Ui
(xm|ui)

PX
m(xm)

=
k∏

i=1
PUi

(ui)
m∏

j=1

PX|Ui
(xj |ui)

PX(xj) (C.40)

=
(1

2

)k k∏
i=1

m∏
j=1

(
1 + ϵui f

∗
i (xj)

)
(C.41)

=
(1

2

)k
1 + ϵ

k∑
i=1

ui

m∑
j=1

f∗
i (xj)

+ OO(ϵ)

(C.42)

=
(1

2

)k
(

1 + ϵm
k∑

i=1
ui si∗

)
+ OO(ϵ), (C.43)

where to obtain (C.38) we have used the Markov structure (5.8a), to
obtain (C.39) we have used that Uk is a multi-attribute of Xm, to obtain
(C.40) we have used (5.8b) and (5.8d) with (5.18b), to obtain (C.41)
we have used (5.37a), and to obtain (C.42) we have used Fact 5.6.

Next, from symmetry considerations, we obtain the analogous result

P
V

k|Xm
,Y

m(vk|xm, ym) =
(1

2

)k
(

1 + ϵm
k∑

i=1
vi t

∗
i

)
+ OO(ϵ), (C.44)

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



C.7. Proof of Proposition 5.16 197

We then obtain (5.41) by substituting (C.43) and (C.44) into

P
U

k
,V

k|Xm
,Y

m(uk, vk|xm, ym)

= P
U

k|Xm
,Y

m(uk|xm, ym)P
V

k|Xm
,Y

m(vk|xm, ym),

which is a consequence of the Markov structure (5.8a).
Finally, using the preceding results we have

P
U

k|Sk
∗ ,T

k
∗ ,V

k(uk|sk
∗, t

k
∗, v

k) =
P

U
k

,V
k|Sk

∗ ,T
k
∗

(uk, vk|sk
∗, t

k
∗)

P
V

k|Sk
∗ ,T

k
∗

(vk|sk
∗, t

k
∗)

=
P

U
k

,V
k|Xm

,Y
m(uk, vk|xm, ym) + OO(ϵ)

P
V

k|Y m(vk|ym) + OO(ϵ)

=
P

U
k|Xm(uk|xm)P

V
k|Y m(vk|ym) + OO(ϵ)

P
V

k|Y m(vk|ym) + OO(ϵ)

= P
U

k|Xm(uk|xm) + OO(ϵ),

which combined with (C.43) verifies (5.43a), and (5.43b) follows from
symmetry considerations. ■

C.7 Proof of Proposition 5.16

The following lemma is useful in our proof.

Lemma C.1. Given ϵ > 0 and configurations C
X
ϵ (PX) and C

Y
ϵ (PY ) for

ϵ-attributes U and V , respectively, we have

PU,V (u, v)
PU (u)PV (v) = 1 + ϵ2 σ̃(u, v), (C.45)

and

I(U ;V ) = ϵ4

2
∑

u∈U,v∈V

PU (u)PV (v) σ̃(u, v)2 + OO(ϵ4), (C.46)

where
σ̃(u, v) ≜

(
ϕY |V

v

)TBϕX|U
u . (C.47)
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Proof of Lemma C.1. First, we obtain (C.45) via

PU,V (u, v)
PU (u)PV (v) =

∑
x∈X,y∈Y

PY |V (y|v)PY |X(y|x)PX|U (x|u)
PY (y)

=
∑

x∈X,y∈Y

[
PY,X|U (y, x|u) + PX,Y |V (x, y|v)− PX,Y (x, y)

+
PY |V (y|v)− PY (y)√

PY (y)

·
PX,Y (x, y)√
PX(x)

√
PY (y)

·
PX|U (x|u)− PX(x)√

PX(x)

]
= 1 + ϵ2 σ̃(u, v), (C.48)

with σ̃(u, v) as defined in (C.47). In turn, we obtain (C.46) via

I(U ;V ) = D(PU,V ∥PUPV )

=
∑

u∈U,v∈V

PU,V (u, v) log
PU,V (u, v)
PU (u)PV (v)

=
∑

u∈U,v∈V

PU,V (u, v)
[
ϵ2σ̃(u, v)− ϵ4

2 σ̃(u, v)2 + OO(ϵ4)
]

(C.49)

=
∑

u∈U,v∈V

PU (u)PV (v)
[
1 + ϵ2σ̃(u, v)

]
·
[
ϵ2σ̃(u, v)− ϵ4

2 σ̃(u, v)2 + OO(ϵ4)
]

(C.50)

= ϵ4

2
∑

u∈U,v∈V

PU (u)PV (v) σ̃(u, v)2 + OO(ϵ4), (C.51)

where to obtain (C.49) we have used (C.45) and the Taylor series
expansion log(1 + ω) = ω − ω2/2 + OO(ω2), where to obtain (C.50) we
have again used (C.45), and where to obtain (C.51) we have used that∑

u∈U,v∈V

PU (u)PV (v) σ̃(u, v) = 0

as a consequence of (5.25), since σ̃(u, v) takes the form (C.47). ■

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



C.7. Proof of Proposition 5.16 199

Proceeding to the proof of Proposition 5.16, we have

I(Uk;V k) = ϵ4

2
∑

u
k

,v
k

P
U

k(uk)P
V

k(vk) σ̃(uk, vk)2 + OO(ϵ4) (C.52)

≤ ϵ4

2 max
u

k
,v

k
σ̃(uk, vk)2 + OO(ϵ4)

= ϵ4

2
((
ϕY |V k)TBϕX|Uk)2

+ OO(ϵ4) (C.53)

= ϵ4

2
( k∑

i=1

k∑
j=1

(
ϕY |Vi

)TBϕX|Uj

)2
+ OO(ϵ4) (C.54)

= ϵ4

2
∥∥(ΦY |V k)TB ΦX|Uk∥∥2

F + OO(ϵ4) (C.55)

= ϵ4

2
∥∥(Φ̃Y |V k

∆Y |V k)TB Φ̃X|Uk

∆X|Uk∥∥2
F + OO(ϵ4) (C.56)

≤ ϵ4

2

(
max

i

∥∥ϕY |Vi
∥∥2
)(

max
i

∥∥ϕX|Ui
∥∥2
)

·
∥∥Φ̃Y |V k∥∥2

s
∥∥B Φ̃X|Uk∥∥2

F + OO(ϵ4) (C.57)

≤ ϵ4

2
∥∥B Φ̃X|Uk∥∥2

F + OO(ϵ4) (C.58)

≤ ϵ4

2

k∑
i=1

σ2
i + OO(ϵ4), (C.59)

where to obtain (C.52) we have used (C.46) of Lemma C.1 with U = Uk

and V = V k so
σ̃(uk, vk) ≜

(
ϕ

Y |V k

v
k

)TBϕX|Uk

u
k , (C.60)

in (C.53) we have introduced the notation

ϕX|Uk

≜ ϕX|Uk

u
k
max

and ϕY |V k

≜ ϕY |V k

v
k
max

,

where
(uk

max, v
k
max) ≜ arg max

u
k

,v
k

σ̃(uk, vk)2.

To obtain (C.54) we have used Lemma 5.5 together with the notation

ϕX|Ui ≜ ϕX|Ui

u
max
i

and ϕY |Vi ≜ ϕY |Vi

v
max
i
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with

uk
max = (umax

1 , . . . , umax
k )

vk
max = (vmax

1 , . . . , vmax
k ),

and in (C.55) we have introduced the notation

ΦX|Uk

≜
[
ϕX|U1 · · · ϕX|Uk

]
ΦY |V k

≜
[
ϕY |V1 · · · ϕY |Vk

]
.

To obtain (C.56) have used the factorizations

ΦX|Uk

= Φ̃X|Uk

∆X|Uk

ΦY |V k

= Φ̃Y |V k

∆Y |V k

,

where, due to Lemma 5.4,(
Φ̃X|Uk)TΦ̃X|Uk

=
(
Φ̃Y |V k)TΦ̃Y |V k

= I,

and where ∆X|Uk

and ∆Y |V k

are diagonal matrices, to obtain (C.57)
we have repeatedly used Fact 5.12, to obtain (C.58) we have used
the properties of the factorization, and to obtain (C.59) we have used
Lemma 3.1. Finally, it is straightforward to verify that the inequalities
leading to (C.59) all hold with equality when we choose the particular
configurations (5.37), i.e., when

ϕX|Ui
ui

= uiψ
X
i , ui ∈ {+1,−1} (C.61a)

ϕY |Vi
vi

= viψ
Y
i , vi ∈ {+1,−1}. (C.61b)

To obtain (5.46), first note that, starting from (C.60),

σ̃(uk, vk) =
(
ϕ

Y |V k

v
k

)TBϕX|Uk

u
k

=
(

k∑
i=1
ϕY |Vi

vi

)T

B

 k∑
j=1
ϕ

X|Uj
uj

+ OO(1) (C.62)

=
(

k∑
i=1

viψ
Y
i

)T

B

 k∑
j=1

uj ψ
X
j

+ OO(1) (C.63)
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=
k∑

i=1

k∑
j=1

uj vi

(
ψY

i

)TBψX
j + OO(1)

=
k∑

i=1
ui vi σi + OO(1), (C.64)

where to obtain (C.62) we have used Lemma 5.5 to obtain (C.63) we
have used (C.61), and to obtain (C.64) we have used (2.12a).

Hence, using (C.45) in Lemma C.1 with U = Uk and V = V k and
substituting (C.64), we obtain

P
U

k
,V

k(uk, vk) = P
U

k(uk)P
V

k(vk)
(
1 + ϵ2 σ̃(uk, vk)

)
= 1

4k

(
1 + ϵ2

k∑
i=1

ui vi σi

)
+ OO(ϵ2),

viz., (5.46). ■

C.8 Proof of Proposition 5.18

First, we note that, in accordance with the discussion of Section 4.2,
the conditions of the proposition imply that Uk has a configuration of
the form C

X,
ϵ(1+OO(1)). Next, we have

I(Uk;Y ) = 1
2k

∑
u

k

D(P
Y |Uk(·|uk)∥PY ) (C.65)

= ϵ2

2k+1

∑
u

k

∥∥ϕY |Uk

u
k

∥∥2 + OO(ϵ2) (C.66)

= ϵ2

2k+1

∑
u

k

∥∥BϕX|Uk

u
k

∥∥2 + OO(ϵ2) (C.67)

= ϵ2

2k+1

∑
u

k

∥∥∥∥∥B
k∑

i=1
ϕX|Ui

ui

∥∥∥∥∥
2

+ OO(ϵ2) (C.68)

= ϵ2

2

k∑
i=1

∥∥BϕX|Ui
∥∥2 + OO(ϵ2) (C.69)

= ϵ2

2
∥∥B ΦX|Uk∥∥2

F + OO(ϵ2)
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= ϵ2

2
∥∥B Φ̃X|Uk

∆X|Uk∥∥2
F + OO(ϵ2) (C.70)

≤ ϵ2

2
∥∥B Φ̃X|Uk∥∥2

F
∥∥∆X|Uk∥∥2

s + OO(ϵ2) (C.71)

≤ ϵ2

2
∥∥B Φ̃X|Uk∥∥2

F + OO(ϵ2)

≤ ϵ2

2

k∑
i=1

σ2
i + OO(ϵ2), (C.72)

where to obtain (C.65) we have used that all configurations uk are
equiprobable due to condition 1, to obtain (C.66) we have used Lem-
ma 4.5, to obtain (C.67) we have used (5.22) with U = Uk, to obtain
(C.68) we have used Lemma 5.5, and to obtain (C.69) we have used
that constraint 2 implies that

ϕ
X|Ui
+1 = −ϕX|Ui

−1 ≜ ϕX|Ui , (C.73)

for i = 1, . . . ,K − 1, since∑
x

PUi
(u)ϕX|Ui

u = 0.

To obtain (C.70) we have used the notation

ΦX|Uk

≜
[
ϕX|U1 · · · ϕX|Uk

]
with factorization

ΦX|Uk

= Φ̃X|Uk

∆X|Uk

where, due to Lemma 5.4,(
Φ̃X|Uk)TΦ̃X|Uk

= I (C.74)

and ∆X|Uk

is a diagonal matrix whose ith diagonal entry is ∥ϕX|Ui∥ ≤
1 + OO(1). To obtain (C.71) we have used Fact 5.12, and to obtain (C.72)
we have used Lemma 3.1 with the constraint (C.74). Furthermore, the
inequalities leading to (C.72) hold with equality when we choose

ΦX|Uk

= ΨX
(k),

with ΨX
(k) as defined in (3.15), so the optimum configuration is (5.37a).
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The corresponding result, including (5.37b), for the maximization
of I(V k;X) subject to I(Vi;Y ) ≤ ϵ2/2 and the other corresponding
constraints follows immediately from symmetry considerations. ■

C.9 Proof of Proposition 5.21

First, without loss of generality let us choose δ(·) such that

δ(ϵ) ≥ ϵ, (C.75)

in which case, we have, for all ϵ sufficiently small,

PX,Y ∈ N̄
X×Y
ϵ (PXPY ) (C.76)

⊂ N
X×Y
ϵ (PXPY ) (C.77)

⊂ N
X×Y
δ(ϵ) (PXPY ) (C.78)

⊂ N
X×Y√

2δ(ϵ)(PXPY ), (C.79)

where (C.76) is given, where (C.77) follows from (5.53), where (C.78)
follows from (C.75), and where (C.79) holds when ϵ ≤ 2.

Next, from (5.64) and (5.63) it follows that for w ∈W,

ϕ̃X,Y |W
w (x, y) = ϕ̌X,Y |W

w (x, y) + OO(1), x ∈ X, y ∈ Y, (C.80)

wherein∥∥ϕ̌X,Y |W
w

∥∥2 = 1
2
∑
x,y

(√
PY (y)ϕX|W

w (x) +
√
PX(x)ϕY |W

w (y)
)2

= 1
2

(∑
x,y

PY (y)ϕX|W
w (x)2 +

∑
x,y

PX(x)ϕY |W
w (y)2

)

= 1
2
(∥∥ϕX|W

w

∥∥2 +
∥∥ϕY |W

w

∥∥2) (C.81)

≤ 1. (C.82)

Hence,

PX,Y |W (·, ·|w) ∈ N
X×Y√

2δ(ϵ)(1+OO(1))(PXPY ), w ∈W. (C.83)

Furthermore, due to (C.79) and (C.83), we may apply Lemma 4.6
with P1 = PX,Y |W (·, ·|w), P2 = PX,Y , P0 = PXPY , and P̃0 = PX,Y to

ϕX,Y |W
w (x, y) ≜

PX,Y |W (x, y|w)− PX,Y (x, y)
√

2δ(ϵ)
√
PX,Y (x, y)

(C.84)
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yielding

ϕX,Y |W
w (x, y) = ϕ̃X,Y |W

w (x, y)− B̃(y, x)√
2δ(ϵ)

+ OO(1)

= ϕ̌X,Y |W
w (x, y) + OO(1), (C.85)

where to obtain (C.85) we have used both (C.80) and that (C.78) implies
|B̃(y, x)| ≤ δ(ϵ). Combining (C.85) with (C.82), we conclude

PX,Y |W (·, ·|w) ∈ N
X×Y√

2δ(ϵ)(1+OO(1))(PX,Y ), w ∈W. (C.86)

As a result, for all w ∈W,

D(PX,Y |W (·, ·|w)∥PX,Y ) = δ(ϵ)
∥∥ϕX,Y |W

w

∥∥2 + OO(δ(ϵ)) (C.87)

= δ(ϵ)
∥∥ϕ̌X,Y |W

w

∥∥2 + OO(δ(ϵ)), (C.88)

where to obtain (C.87) we have used the special case of Lemma 4.5,
and to obtain (C.88) we have used (C.85). In turn,

I(W ;X,Y ) =
∑

w∈W

PW (w)D(PX,Y |W (·, ·|w)∥PX,Y )

= δ(ϵ)
∑

w∈W

PW (w)
∥∥ϕ̌X,Y |W

w

∥∥2 + OO(δ(ϵ)) (C.89)

= δ(ϵ)
2

∑
w∈W

PW (w)
(
∥ϕX|W

w ∥2 + ∥ϕY |W
w ∥2

)
+ OO(δ(ϵ)),

(C.90)

where to obtain (C.89) we have used (C.88), and where to obtain (C.90)
we have used (C.81).

Hence, we seek to minimize (C.90) subject to the constraint (5.65).
To this end, let us define

Φ̃X|W ≜
√
δ(ϵ) ΦX|W√PW (C.91)

Φ̃Y |W ≜
√
δ(ϵ) ΦY |W√PW , (C.92)

where, consistent with the notation and terminology in Definition 5.9,
ΦX|W is a |X| × |W| matrix whose wth column is ϕX|W

w , where ΦY |W

is a |Y| × |W| matrix whose wth column is ϕY |W
w , and where PW is a
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|W| × |W| diagonal matrix whose wth diagonal entry is PW (w). Then
we can equivalently express the constraint (5.65) in the form

B̃ = Φ̃Y |W (
Φ̃X|W )T, (C.93)

and the objective function (C.90) as

I(W ;X,Y ) = 1
2
(
∥Φ̃X|W ∥2F + ∥Φ̃Y |W ∥2F

)
+ OO(δ(ϵ)) ≥ ∥B̃∥∗ + OO(δ(ϵ)),

(C.94)
where to obtain the inequality we have used Lemma 5.20 with (C.93).

It is straightforward to verify that the inequality in (C.94) holds
with equality subject to the constraints in (5.62) when we choose the
configuration for W according to

W = {±1, . . . ,±(K − 1)} (C.95a)

ϕ
X|W
i = −ϕX|W

−i =
√

σi

σ̃i δ(ϵ)
ψX

i , i = 1, . . . ,K − 1 (C.95b)

ϕ
Y |W
i = −ϕY |W

−i =
√

σi

σ̃i δ(ϵ)
ψY

i , i = 1, . . . ,K − 1 (C.95c)

PW (i) = PW (−i) = 1
2 σ̃i, i = 1, . . . ,K − 1, (C.95d)

where
σ̃i ≜

σi∑K−1
i
′=1 σi

′
. (C.95e)

Specifically, with the choices (C.95) we have∥∥ϕX|W
w

∥∥ ≤ 1 and
∥∥ϕY |W

w

∥∥ ≤ 1

since
K−1∑
i=1

σi = ∥B̃∥∗ ≤ ϵ ≤ δ(ϵ)

from PX,Y ∈ N̄
X×Y
ϵ (PXPY ) as given and the choice (C.75), so the

constraints (5.63) are satisfied. Moreover, we satisfy constraints(5.66)
by the symmetric construction of our information vector sets. And we
satisfy the constraint (5.65) by construction since

δ(ϵ)
∑

w∈W

PW (w)ϕY |W
w

(
ϕX|W

w

)T = δ(ϵ)
K−1∑
i=1

σi

δ(ϵ) ψ
Y
i

(
ψX

i

)T = B̃,
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where last equality follows from (2.30). Finally, evaluating the leading
term in (C.90) we obtain

δ(ϵ)
2

∑
w∈W

PW (w)
(
∥ϕX|W

w ∥2+∥ϕY |W
w ∥2

)
= δ(ϵ)

2

(
2

K−1∑
i=1

σi

δ(ϵ)

)
=

K−1∑
i=1

σi,

so the inequality in (C.94) is achieved with equality.
It remains only to choose δ(·) satisfying (C.75) and limϵ→0 δ(ϵ) = 0.

The leading term in (C.90) with the configuration (C.95) does not de-
pend on this choice, so we focus on the OO(δ(ϵ)) term, which is minimized
by the choice δ(ϵ) = ϵ, yielding (5.72). In turn, (5.73) is obtained by
rewriting (C.95) using (5.61a)–(5.61b) and (2.17). ■

C.10 Proof of Corollary 5.22

We have, for the extended model (5.74),

PX
m

,Y
m|W (xm, ym|w)

= PX
m(xm)PYm

(ym)

·
m∏

l=1

(
1 + sgn(w) ∥B̃∥1/2

∗ f∗
|w|(xl)

)(
1 + sgn(w) ∥B̃∥1/2

∗ g∗
|w|(yl)

)
(C.96)

= PX
m(xm)PYm

(ym)
(
1 +m sgn(w) ∥B̃∥1/2

∗ r∗
|w|

)
+ OO(
√
ϵ) (C.97)

= PX
m

,Y
m(xm, ym)

(
1 +m sgn(w) ∥B̃∥1/2

∗ r∗
|w|

)
+ OO(
√
ϵ), (C.98)

where to obtain (C.96) we have used (5.73) and (5.74), to obtain (C.97)
we have used that X,Y are sub-ϵ dependent so (5.51) holds, together
with Fact 5.6 and (5.78), and to obtain (C.98) we have used that since
sub-ϵ dependence implies |B̃(y, x)| ≤ ϵ for all x ∈ X and y ∈ Y,

PX,Y (x, y) = PX(x)PY (y) + O(ϵ) = PX(x)PY (y) + OO(
√
ϵ),

whence

PX
m

,Y
m(xm, ym) = PX

m(xm)PY
m(ym) + OO(

√
ϵ).

Finally, substituting PW from (5.73) and using (C.98) in

PW |Xm
,Y

m(w|xm, ym) =
PX

m
,Y

m|W (xm, ym|w)PW (w)
PX

m
,Y

m(xm, ym)
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yields (5.77). ■

C.11 Proof of Corollary 5.23

For the first part of the corollary, note that (5.83) and (5.72) together
imply (5.82). To show (5.83), we begin by defining

ϕX,Y |Wi
wi

≜
PX,Y |Wi

(x, y|wi)− PX,Y (x, y)
√

2ϵ
√
PX,Y (x, y)

, wi ∈W◦. (C.99)

Then, since

PX,Y |Wi
(x, y|+ 1) = PX,Y |W (x, y|i)

PX,Y |Wi
(x, y| − 1) = PX,Y |W (x, y|−i).

we have

ϕ
X,Y |Wi
+1 = ϕ

X,Y |W
i = ϕ̌

X,Y |W
i + OO(1) (C.100a)

ϕ
X,Y |Wi
−1 = ϕ

X,Y |W
−i = ϕ̌

X,Y |W
−i + OO(1), (C.100b)

where ϕX,Y |W
w and ϕ̌X,Y |W

w are as defined in (C.84) (setting δ(ϵ) = ϵ)
and (5.64b), respectively.

Next, note that

PX,Y |Wi
(x, y|0)

= 1
PWi

(0)
∑

{j : j ̸=i}

(
1− PWj

(0)
)
PX,Y |{Wj ̸=0}(x, y) (C.101)

= 1
(1− σ̃i)

∑
{j : j ̸=i}

σ̃j PX,Y |{Wj ̸=0}(x, y) (C.102)

= 1
2(1− σ̃i)

∑
{j : j ̸=i}

σ̃j

(
PX,Y |W (x, y|j) + PX,Y |W (x, y|−j)

)
,

(C.103)

where to obtain (C.101) we have used that the events {Wi ̸= 0}, i =
1, . . . ,K − 1 form a partition of sample space, to obtain (C.102) we
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have used (C.95d), and to obtain (C.103) we have used that

PX,Y |{Wj ̸=0}(x, y)

=
PX,Y |Wj

(x, y|+1)PW (j) + PX,Y |Wj
(x, y|−1)PW (−j)

PW (j) + PW (−j)

= 1
2
(
PX,Y |W (x, y|j) + PX,Y |W (x, y|−j)

)
.

Hence,

ϕ
X,Y |Wi
0 = 1

2(1− σ̃i)
∑

{j : j ̸=i}
σ̃j

(
ϕ

X,Y |W
j + ϕX,Y |W

−j

)
(C.104)

= 1
2(1− σ̃i)

∑
{j : j ̸=i}

σ̃j

(
ϕ̌

X,Y |W
j + ϕ̌X,Y |W

−j

)
+ OO(1) (C.105)

= OO(1), (C.106)

where to obtain (C.104) we have used (C.103) with (C.84) (setting
δ(ϵ) = ϵ) and (C.99), to obtain (C.105) we have used (C.100), and to
obtain (C.106) we have used (5.64b) with (C.95b)–(C.95c) to conclude
that the term in parentheses is zero, since for w ∈W,

ϕ̌X,Y |W
w = sgn(w)

√
σ|w|

2σ̃|w| ϵ

(√
PY (y)ψY

|w| +
√
PX(x)ψX

|w|

)
. (C.107)

From (C.100) with (C.82), and from (C.106), we conclude

PX,Y |Wi
(·, ·|wi) ∈ N

X×Y√
2ϵ(1+OO(1))(PX,Y ), wi ∈W◦,

whence

D(PX,Y |Wi
(·, ·|j)∥PX,Y ) = ϵ

∥∥ϕX,Y |Wi
j

∥∥2 + OO(ϵ)

=


ϵ
∥∥ϕ̌X,Y |W

i

∥∥2 + OO(ϵ) j = +1
ϵ
∥∥ϕ̌X,Y |W

−i

∥∥2 + OO(ϵ) j = −1
OO(ϵ) j = 0,

(C.108)

where to obtain the first equality we have used the special case of
Lemma 4.5, and to obtain the second equality we have used (C.100)
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and (C.106). In turn, we obtain (5.83) via

I(Wi;X,Y ) =
∑

j∈W◦

PWi
(j)D(PX,Y |Wi

(·, ·|j)∥PX,Y )

= 2 ϵPW (i)
∥∥ϕ̌X,Y |W

i

∥∥2 + OO(ϵ) (C.109)
= σi + OO(ϵ), (C.110)

where to obtain the (C.109) we have used the first equality in (C.95d),
and to obtain (C.110) we have used the second equality in (C.95d) and
that∥∥ϕ̌X,Y |W

w

∥∥2 =
σ|w|

2σ̃|w|ϵ

∑
x,y

(√
PY (y)ψX

|w|(x) +
√
PX(x)ψY

|w|(y)
)2

(C.111)

=
σ|w|
σ̃|w| ϵ

. (C.112)

To obtain (C.111) we have used (C.107), and to obtain (C.112) we have
used (5.63).

Turning now to the second part of the corollary, consistent with
Definition 5.19,

Cϵ(Ui, Vi) = min
PW̃i|Ui,Vi

: Ui↔W̃i↔Vi

I(W̃i;Ui, Vi). (C.113)

by adapting the analysis of Proposition 5.21 we used to obtain Cϵ(X,Y ).
In particular, from (5.47) we have that the counterpart to (2.3) is

Bi(ui, vi) ≜
PUi,Vi

(ui, vi)√
PUi

(ui)
√
PVi

(vi)
= 1

2
(
1 + ϵ̃2 σi ui vi

)
+ OO(ϵ̃2)

for ui, vi ∈ {−1,+1}, and that to (2.8) is

Bi ≜
[√

PVi

]−1
PVi,Ui

[√
PUi

]−1

= 1√
2

[
1 1
1 −1

]
︸ ︷︷ ︸

≜ΨVi

[
1 0
0 ϵ̃2 σi

] [
1 1
1 −1

]
1√
2︸ ︷︷ ︸

≜
(

ΨUi
)T

+OO(ϵ̃2).
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Note too that the counterpart to (2.29), i.e.,

B̃i ≜
[√

PVi

]−1 [
PVi,Ui

−PVi
PUi

] [√
PUi

]−1

satisfies
∥B̃i∥∗ = ϵ̃2 σi + OO(ϵ̃2) ≤ ϵ̃2 ∥B̃∥∗ + OO(ϵ̃2) ≤ ϵ̃2 ϵ+ OO(ϵ̃2),

so
PUi,Vi

∈ N̄
Ui×Vi

ϵ̃
2
ϵ+OO(ϵ̃2)

(PUi
PVi

).

Hence, the counterpart of (5.72) in Proposition 5.21 for the new variables
(Ui, Vi) is

Cϵ(Ui, Vi) = ϵ̃2 σi + OO(ϵ̃2ϵ).
as ϵ, ϵ̃→ 0, and thus (5.84) follows. ■

C.12 Proof of Corollary 5.24

Since the event Wi = j is the event W = ji for j ∈ {−1,+1}, the cases
wi = ±1 in (5.86) follow immediately from Corollary 5.22. The case
wi = 0 in (5.86) is then determined by the constraint that the result is
a distribution. ■

C.13 Proof of Corollary 5.25

First note that (5.88b) is readily obtained from (5.44b), exploiting that
ui and vi are uniquely determined in the cases zi = ±2. Second, note
that
PW̃i|Zi,X

m
,Y

m(w̃i|zi, x
m, ym)

=
∑

{(ui,vi) :
ui+vi=zi}

PW̃i|Ui,Vi
(w̃i|ui, vi)PUi,Vi|Zi,X

m
,Y

m(ui, vi|zi, x
m, ym),

(C.114)

which is obtained by exploiting (5.87) and the structure in W̃i implicit
in (5.80). To obtain (5.88a) from (C.114) we use that

PW̃i|Ui,Vi
(w̃i|ui, vi) = 1

2
(
1 + sgn(w̃i zi)

√
σi

)
+ OO(ϵ̃

√
ϵ),

which is obtained by adapting Corollary 5.22, and that the second factor
in the summation in (C.114) is unity when zi = ±2 since ui and vi are
uniquely determined in these cases. ■
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C.14 Proof of Lemma 5.26

First, note that with

ρ(ω) ≜ (1 + ω) log(1 + ω), ω ∈ [−1,∞) (C.115)

we have

I(X;Y ) =
∑

x∈X,y∈Y

PX(x)PY (y) ρ
(

k∑
i=1

σi f
∗
i (x) g∗

i (y)
)
, (C.116)

which is convex in σk = (σ1, . . . , σk) since ρ is convex. In turn, we have

max
σ

k∈[0,1]k
I(X;Y )

= max
σ

k∈{0,1}k
I(X;Y ) (C.117)

= max
S

∑
x∈X,y∈Y

PX(x)PY (y)
(∏

i∈S

1f
∗
i (x)=g

∗
i (y)

)
ρ

(∑
i∈S

f∗
i (x)2

)
(C.118)

= max
S

∑
x∈X

PX(x) log
(

1 +
∑
i∈S

f∗
i (x)2

)
(C.119)

=
∑
x∈X

PX(x) log
(

1 +
k∑

i=1
f∗

i (x)2
)
, (C.120)

where to obtain (C.117) we have used that the left-hand side is the
maximum of a convex function over a convex set, so achieved on the
boundary of the set, to obtain (C.118) we let

S ≜
{
i ∈ {1, . . . , k} : σi = 1

}
,

and use that when σi = E[f∗
i (X) g∗

i (Y )] = 1 we have f∗
i (X) = g∗

i (Y )
with probability one, so[

σif
∗
i (X) g∗

i (Y )
]∣∣∣

σi=1
= f∗

i (X)2

with probability one, to obtain (C.119) we have used that

∑
y∈Y

PY (y)
∏
i∈S

1f
∗
i (x)=g

∗
i (y) =

(
1 +

∑
i∈S

f∗
i (x)2

)−1
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since
∑

y∈Y PX,Y (x, y) = PX(x), and to obtain (C.120) we have used
the monotonicity of log(·), so I(X;Y ) is maximized when S is as large
as possible, i.e., S = {1, . . . , k}. Finally, to obtain the first equality in
(5.91), note that when σ1 = · · · = σk = 1,

I(X;Y ) = I
(
fk

∗ (X); gk
∗ (Y )

)
(C.121)

= H
(
fk

∗ (X)
)
−H

(
fk

∗ (X)
∣∣gk

∗ (Y )
)︸ ︷︷ ︸

=0

= H
(
fk

∗ (X)
)
, (C.122)

where to obtain (C.121) we have used (the analysis yielding) (2.24), and
to obtain (C.122) we have used that fk

∗ (X) = gk
∗(Y ) with probability

one. ■

C.15 Proof of Proposition 5.27

To obtain (5.92), first note that in (5.90) we have

I(W ;X,Y ) = I(W ;X) + I(W ;Y |X)︸ ︷︷ ︸
=0

= I(W ;X) (C.123)

due to the first Markov constraint. Next, we define the additional CDMs
B̃X,W and B̃W,Y with entries [cf. (2.28) and (2.29)]

B̃X,W (x,w) =
PX,W (x,w)− PX(w)PW (w)√

PX(x)
√
PW (w)

, x ∈ X, w ∈W

and

B̃Y,W (y, w) =
PY,W (y, w)− PY (y)PW (w)√

PW (w)
√
PY (y)

, w ∈W, y ∈ Y,

respectively, and note that that the Markov constraints in (5.90) can
be expressed in the matrix form

B̃Y,W = B̃ B̃X,W and B̃X,W = B̃TB̃Y,W ,

whence (
I− B̃TB̃︸ ︷︷ ︸

≜A

)
B̃X,W = 0. (C.124)

Since B̃ has SVD [cf. (2.30), (3.15), and (3.16)]

B̃ = ΨY
(K−1)Σ(K−1)

(
ΨX

(K−1)
)T
,
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it follows that A has SVD

A = ΨX
(K−1)(I−Σ2

(K−1))
(
ΨX

(K−1)
)T
,

and, thus, singular values 1− σ2
1, . . . , 1− σ

2
K−1.

Accordingly, if σ1 < 1, then A has full rank and (C.124) is satisfied
if and only if B̃X,W = 0, i.e., X and W are independent, in which case
C̄(X,Y ) = I(W ;X) = 0, as the second case of (5.92) reflects. But if,
instead, σ1 = 1, the columns of B̃X,W must lie in the nullspace of A,
i.e., B̃X,W must have an SVD of the form

B̃X,W = ΨX
(k)Λ

(
ΨW )T, (C.125)

where Λ is an k × k diagonal matrix with diagonal entries λ1, . . . , λk ∈
[0, 1], with k defined as in (5.92), and ΨW is an orthogonal matrix.1

It remains only to determine the optimizing choices of λ1, . . . , λk in
(5.90) for this case. For this, applying Lemma 5.26 with W replacing Y ,
we conclude that the optimizing λ1, . . . , λk in (C.125) are all unity and

I(X;W ) = H
(
fk

∗ (X)
)

=
∑
x∈X

PX(x) log
(

1 +
k∑

i=1
f∗

i (x)2
)
.

■

1Note, in particular, this implies |W| = k suffices.
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D
Appendices for Section 6

D.1 Proof of Proposition 6.1

Our proof makes use of two lemmas. The first is the following vector
generalization of Bernstein’s inequality [51, Theorem 2.4].

Lemma D.1 (Bernstein Inequality (Vector Version)). For some dimension
d, let Z̃1, . . . , Z̃n ∈ Rd be independent zero-mean random vectors such
that for some constant c > 0,

P
(
∥Z̃i∥ ≤ c

)
= 1, i = 1, . . . , n.

Moreover, let c̄ ∈ (0, c2] be a constant such that

1
n

n∑
i=1

E
[
∥Z̃i∥

2
]
≤ c̄.

Then, for all 0 ≤ δ ≤ c̄/c,1

P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥ ≥ δ
)
≤ exp

{
1
4 −

δ2n

8c̄

}
.

The second lemma is the following.
1As noted in [51], this bound does not depend on d.

214
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Lemma D.2. Given dimensions k1 and k2 and any matrices A1,A2 ∈
Rk1×k2 , we have, for every k ∈

{
1, . . . ,min{k1, k2}

}
,

k∑
i=1

∣∣σi(A1)− σi(A2)
∣∣ ≤ √k ∥A1 −A2∥F. (D.1)

Proof of Lemma D.2. We have
k∑

i=1

∣∣σi(A1)− σi(A2)
∣∣ ≤ k∑

i=1
σi(A1 −A2) (D.2)

≤
√
k

√√√√ k∑
i=1

σi(A1 −A2)2 (D.3)

≤
√
k

√√√√√min{k1,k2}∑
i=1

σi(A1 −A2)2

=
√
k ∥A1 −A2∥F, (D.4)

where to obtain (D.2) we use the following standard inequality (see,
e.g., [113, Theorem 3.4.5]):

Lemma D.3 (Lidskii Inequality). Given dimensions k1 and k2 and any
matrices A1,A2 ∈ Rk1×k2 , we have, for every k ∈

{
1,min{k1, k2}

}
and

1 ≤ i1 < i2 < · · · < ik ≤ min{k1, k2},
k∑

j=1

∣∣σij
(A1)− σij

(A2)
∣∣ ≤ ∥A1 −A2∥(k),

where σ1(·) ≥ · · · ≥ σmin{k1,k2}(·) denote the ordered singular values of
its (matrix) argument.

In turn, to obtain (D.3) we use the Cauchy-Schwarz inequality, and
to obtain (D.4) we use the definition of the Frobenius norm. ■

Our proof of Proposition 6.1 proceeds as follows. First, for each
i ∈ {1, . . . , n} let Zi denote a random |Y| × |X| matrix with (y, x)th
element

Zi(x, y) ≜
1{Xi=x, Yi=y} − PX(x)PY (y)√

PX(x)PY (y)
, x ∈ X, y ∈ Y.
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Accordingly, the Z1, . . . ,Zn are i.i.d. and E
[
Zi

]
= B̃. Now

Z̃i ≜ Zi − E
[
Zi

]
= Zi − B̃ (D.5)

satisfies

∥∥Z̃i

∥∥2
F =

∑
x∈X

∑
y∈Y

(
1{Xi=x, Yi=y} − PX,Y (x, y)

)2

PX(x)PY (y)

≤ 1
p2

0

∑
x∈X

∑
y∈Y

(
1{Xi=x, Yi=y} − PX,Y (x, y)

)2
(D.6)

= 1
p2

0

[∑
x∈X

∑
y∈Y

1{Xi=x, Yi=y}

− 2
∑
x∈X

∑
y∈Y

1{Xi=x, Yi=y} PX,Y (x, y)

+
∑
x∈X

∑
y∈Y

PX,Y (x, y)2
]

(D.7)

≤ 2
p2

0
≜ c2, (D.8)

where to obtain (D.6) we have used (6.16), and where to obtain (D.8)
we have used that in (D.7) the first term within the brackets is unity, the
second is upper bounded by zero, and the third term is upper bounded
by unity since∑

z∈Z

q(z)2 ≤
∑
z∈Z

q(z) = 1, any (countable) Z and q ∈ P
Z. (D.9)

Moreover,

1
n

n∑
i=1

E
[∥∥Z̃i

∥∥2
F

]
= E

[∥∥Z̃1
∥∥2

F

]
(D.10)

≤ 1
p2

0

∑
x∈X

∑
y∈Y

var
[
1{X1=x, Y1=y}

]
(D.11)

= 1
p2

0

∑
x∈X

∑
y∈Y

[
PX,Y (x, y)− PX,Y (x, y)2

]
(D.12)

≤ 1
p2

0
≜ c̄, (D.13)
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where to obtain (D.10) we have used that Z̃1, . . . , Z̃n are i.i.d., to obtain
(D.11) we take the expectation of (D.6), to obtain (D.12) we have used
that

var
[
1{X1=x, Y1=y}

]
= PX,Y (x, y)− PX,Y (x, y)2

since 1{X1=x, Y1=y} is a Bernoulli random variable, and to obtain (D.13)
we have used that the second term in (D.12) is upper bounded by zero.

Finally, for 0 ≤ δ ≤
√
k/2/p0 we have

P
(

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ δ) ≤ P
(
∥B̂− B̃∥F ≥

δ√
k

)
(D.14)

= P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
F
≥ δ√

k

)
(D.15)

≤ exp
{

1
4 −

p2
0 δ

2n

8k

}
, (D.16)

where to obtain (D.14) we have used Lemma D.2, to obtain (D.15) we
have used that

B̂− B̃ = 1
n

n∑
i=1

Z̃i, (D.17)

and to obtain (D.16) we have used Lemma D.1 with [cf. (D.8)] c =√
2/p0 and [cf. (D.13)] c̄ = 1/p2

0 (and construed the associated Z̃i as
vectors). ■

D.2 Proof of Corollary 6.2

First, we have
k∑

i=1

∣∣σ̂i − σi

∣∣ ≤ k∑
i=1

(
σ̂i + σi

)
(D.18)

= ∥B̂∥(k) + ∥B̃∥(k)

≤ k
(
1 + ∥B̂∥s

)
(D.19)

≤ k
(
1 + ∥B̂∥F

)
, (D.20)

where to obtain (D.18) we have used the triangle inequality, to obtain
(D.19) we have used that ∥A∥(k) ≤ k∥A∥s for any matrix A ∈ Rk1×k2

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



218 Appendices for Section 6

and k ∈ {1, . . . ,min{k1, k2}}, and to obtain (D.20) we have used the
standard inequality

∥A∥s ≤ ∥A∥F for any matrix A. (D.21)

In turn,

∥B̂∥2F =
∑
x∈X

∑
y∈Y

(
P̂X,Y (x, y)− PX(x)PY (y)

)2
PX(x)PY (y)

≤
∑
x∈X

∑
y∈Y

[
P̂X,Y (x, y)2

PX(x)PY (y) + PX(x)PY (y)
]

≤
∑
x∈X

∑
y∈Y

[
P̂X,Y (x, y)2

p2
0

+ PX(x)PY (y)
]

(D.22)

≤ 1
p2

0
+ 1 (D.23)

≤ 2
p2

0
, (D.24)

where to obtain (D.22) we have used (6.16), and to obtain (D.23) we
have used (D.9).

Next, with the event

Eδ ≜

{
k∑

i=1

∣∣σ̂i − σi

∣∣ ≥ δ}, 0 ≤ δ ≤ 1
p0

√
k

2 ,

we have2

E

( k∑
i=1

∣∣σ̂i − σi

∣∣)2 = E

( k∑
i=1

∣∣σ̂i − σi

∣∣)2∣∣∣∣∣∣Ec
δ

P(Ec
δ)

+ E

( k∑
i=1

∣∣σ̂i − σi

∣∣)2∣∣∣∣∣∣Eδ

P(Eδ)

≤ δ2 + k2
(

1 +
√

2
p0

)2

exp
{

1
4 −

p2
0 δ

2n

8k

}
, (D.25)

2We use (·)c to denote set complement.
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where to obtain the inequality we have used that P(Ec
δ) ≤ 1, (D.20)

with (D.24), and (6.17) in Proposition 6.1.
To obtain the tightest bound, we optimize (D.25) over δ, yielding

(6.18). In particular, we have

E

( k∑
i=1

∣∣σ̂i − σi

∣∣)2 ≤ min
δ

δ2 + k2
(

1 +
√

2
p0

)2

exp
{

1
4 −

p2
0 δ

2n

8k

}
= 8k
p2

0n

1 + log

k2
(

1 +
√

2
p0

)2

e1/4 p
2
0n

8k


(D.26)

≤ 8k
p2

0n

(3
4 + log(kn)

)
(D.27)

= 6k + 8k log(kn)
p2

0n
, (D.28)

where to obtain (D.26) we recognize that the right-hand side of (D.25)
takes the form of (6.19) with the mappings

a = k2
(

1 +
√

2
p0

)2

e1/4, b = np2
0

8k , ω = δ2, (D.29)

and apply Lemma 6.3, and to obtain (D.27) we have used that p0+
√

2 ≤
2 since p0 ≤ 1/2 as min{|X|, |Y|} ≥ 2, and that log(2) ≥ 1/2.

It remains to determine conditions under which

ω∗ ≜ δ2
∗ = 8k

p2
0n

log

k2
(

1 +
√

2
p0

)2

e1/4 p
2
0n

8k

 (D.30)

satisfies the conditions of Proposition 6.1, viz.,

0 ≤ ω∗ ≤
k

2p2
0
. (D.31)

Proceeding, since from (D.30) we have

ω∗ ≤
8k
p2

0n

(
log(4kn) + 1

4 − log(8)︸ ︷︷ ︸
<0

)
<

k

2p2
0

[16
n

log(4kn)
]
,
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where to obtain the first inequality we have again used that p0 +
√

2 ≤ 2.
Hence, the second inequality in (D.31) is satisfied when n is sufficiently
large that n ≥ 16 log(4kn).

Moreover, since from (D.30) we also have

ω∗ = 8k
p2

0n
log
[
k
(
p0 +

√
2
)2e1/4n

8

]
>

8k
p2

0n
log
(
n

4

)
,

where to obtain the inequality we have used that k ≥ 1, p0 > 0, and
e1/4 > 1. Hence, the first inequality in (D.31) is satisfied when n ≥ 4,
which we note is satisfied when our condition for satisfying the second
inequality in (D.31) is. Indeed, satisfying n ≥ 16 log(4kn) even for k = 1
requires n ≥ 96. ■

D.3 Proof of Corollary 6.4

First, note that∣∣∣∣∣12
k∑

i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣ ≤ 1
2

k∑
i=1

∣∣σ̂2
i − σ

2
i

∣∣
= 1

2

k∑
i=1

∣∣σ̂i − σi

∣∣(σ̂i + σi

)
≤ 1

2
(
σ̂1 + σ1

) k∑
i=1

∣∣σ̂i − σi

∣∣,
where

σ1 + σ̂1 =
∥∥B̃∥∥s +

∥∥B̂∥∥s

≤ 1 +
∥∥B̂∥∥F (D.32)

≤ 1 +
√

2
p0

= p0 +
√

2
p0

(D.33)

≤ 2
p0
, (D.34)

whence ∣∣∣∣∣12
k∑

i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣ ≤ 1
p0

k∑
i=1

∣∣σ̂i − σi

∣∣. (D.35)
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To obtain (D.32) we have used (D.21) and that B̃ is contractive, and
to obtain (D.33) we have used (D.24) in the proof of Corollary 6.2, and
to obtain (D.34) we have used that p0 ≤ 1/2 as min{|X|, |Y|} ≥ 2.

Hence, we obtain (6.25) from (D.35) via

P
(∣∣∣∣∣12

k∑
i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣ ≥ δ
)
≤ P

(
1
p0

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ δ)

= P
(

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ p0 δ

)

≤ exp
{

1
4 −

p4
0 δ

2n

8k

}
,

where to obtain the final inequality we have used (6.17), which holds
for 0 ≤ p0 δ ≤

√
k/2/p0. Moreover, we obtain (6.26) from (D.35) via

E

∣∣∣∣∣12
k∑

i=1

(
σ̂2

i − σ
2
i

)∣∣∣∣∣
2 ≤ E

 1
p2

0

(
k∑

i=1

∣∣σ̂i − σi

∣∣)2 ≤ 6k + 8k log(nk)
p4

0n
,

where to obtain the final equality we have used (6.18). ■

D.4 Proof of Proposition 6.5

Our proof makes use of two lemmas. The first is the following matrix
generalization of Bernstein’s inequality [265, Theorem 1.6].

Lemma D.4 (Bernstein Inequality (Matrix Version)). For some dimensions
d1 and d2, let Z̃1, . . . , Z̃n ∈ Rd1×d2 be independent, zero-mean random
matrices such that for some constant c > 0,

P
(
∥Z̃i∥s ≤ c

)
= 1, i = 1, . . . , n.

Moreover, let c̄ ∈ (0, c2] be a constant such that

max
{∥∥∥∥∥ 1

n

n∑
i=1

cov
(
Z̃i

)∥∥∥∥∥
s
,

∥∥∥∥∥ 1
n

n∑
i=1

cov
(
Z̃T

i

)∥∥∥∥∥
s

}
≤ c̄,

where for an arbitrary random matrix W

cov(W) ≜ E
[(

W− E[W]
)(

W− E[W]
)T]

.
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Then, for all 0 ≤ δ ≤ c̄/c,

P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃
∥∥∥∥∥

s
≥ δ

)
≤ (d1 + d2) exp

{
−3δ2n

8c̄

}
.

The second of these lemmas is as follows.

Lemma D.5. Given A1,A2 ∈ Rk1×k2 and k ∈
{
1, . . . ,min{k1, k2}

}
, we

have

0 ≤
∥∥A1ΨA1

(k)
∥∥2

F −
∥∥A1ΨA2

(k)
∥∥2

F ≤ 4k
∥∥A1

∥∥
s
∥∥A1 −A2

∥∥
s, (D.36)

where ψA
i denotes the right singular vector of A corresponding to σi(A),

and
ΨA

(k) ≜
[
ψA

1 · · · ψA
k

]
,

which has orthonormal columns.

Proof of Lemma D.5. The left-hand inequality follows immediately from
Lemma 3.1. For the right-hand inequality, we have∥∥A1ΨA1

(k)
∥∥2

F −
∥∥A1ΨA2

(k)
∥∥2

F

=
k∑

i=1

(∥∥A1ψ
A1
i

∥∥2 −
∥∥A1ψ

A2
i

∥∥2)

≤
k∑

i=1

∣∣∣∥∥A1ψ
A1
i

∥∥2 −
∥∥A1ψ

A2
i

∥∥2
∣∣∣ (D.37)

=
k∑

i=1

∣∣∣∥∥A1ψ
A1
i

∥∥− ∥∥A1ψ
A2
i

∥∥∣∣∣(∥∥A1ψ
A1
i

∥∥+
∥∥A1ψ

A2
i

∥∥)

≤ 2
∥∥A1

∥∥
s

k∑
i=1

∣∣∣∥∥A1ψ
A1
i

∥∥− ∥∥A1ψ
A2
i

∥∥∣∣∣ (D.38)

≤ 2
∥∥A1

∥∥
s

k∑
i=1

(∣∣∣∥∥A1ψ
A1
i

∥∥− ∥∥A2ψ
A2
i

∥∥∣∣∣
+
∣∣∣∥∥A2ψ

A2
i

∥∥− ∥∥A1ψ
A2
i

∥∥∣∣∣) (D.39)

≤ 2
∥∥A1

∥∥
s

k∑
i=1

(∣∣σi(A1)− σi(A2)
∣∣+ ∥∥(A1 −A2)ψA2

i

∥∥) (D.40)
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≤ 2
∥∥A1

∥∥
s

k∑
i=1

(∣∣σi(A1)− σi(A2)
∣∣+ ∥∥A1 −A2

∥∥
s

)
(D.41)

≤ 4k
∥∥A1

∥∥
s
∥∥A2 −A1

∥∥
s, (D.42)

where to obtain (D.37) we have used the triangle inequality, to obtain
(D.38) we have used Fact 5.12, to obtain (D.39) we have again used
the triangle inequality, to obtain (D.40) we have used that

∥∥A1ψ
A1
i

∥∥ =
σi(A1) and

∥∥A2ψ
A2
i

∥∥ = σi(A2), and the (reverse) triangle inequality,
to obtain (D.41) we have again used Fact 5.12, and to obtain (D.42)
we have used the following standard inequality [114, Corollary 7.3.5(a)]
[257, Theorem 1]:

Lemma D.6 (Weyl Inequality). For every A1,A2 ∈ Rk1×k2 , we have,
with K ≜ min{k1, k2},

max
1≤i≤K

∣∣σi(A1)− σi(A2)
∣∣ ≤ ∥∥A1 −A2

∥∥
s. (D.43)

■

Our proof of Proposition 6.5 proceeds as follows. First, with f̌i as
defined in (6.10a) and ψ̂X

i as defined via (6.14a), we have

EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2]

=
∥∥B̃ ΨX

(k)
∥∥2

F −
∥∥B̃ Ψ̂X

(k)
∥∥2

F (D.44)
≤ 4k

∥∥B̃∥∥s
∥∥B̃− B̂

∥∥
s (D.45)

≤ 4k
∥∥B̃− B̂

∥∥
s, (D.46)

where to obtain (D.44) we have used (6.28), to obtain (D.45) we have
used Lemma D.5, and to obtain (D.46) we have used that

∥∥B̃∥∥s ≤ 1.
Now let B̂i denote an |Y| × |X| matrix with (y, x)th entry

B̂i(x, y) ≜
1Xi=x, Yi=y√
PX(x)PY (y)

,

and let
Z̃i ≜ B̂i −B,
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which we note is consistent with the definition (D.5) in the proof of
Proposition 6.1 and thus E

[
Z̃i

]
= 0. Then we have∥∥Z̃i

∥∥
s =

∥∥B̂i −B
∥∥

s

≤
∥∥B∥∥s +

∥∥B̂i

∥∥
s (D.47)

= 1 + 1√
PX(Xi)PY (Yi)

(D.48)

≤ 1 + 1
p0

≜ c, (D.49)

where to obtain (D.47) we have used the spectral norm triangle in-
equality, to obtain (D.48) we have used that ∥B∥s = 1 and B̂i has a
single nonzero entry so (with the usual abuse of notation as discussed in
footnote 5) eYi

and eXi
are its principal left and right singular vectors,

respectively, and to obtain (D.49) we have used the definition of p0.
Next, we have∥∥∥∥∥ 1

n

n∑
i=1

cov(Z̃i)
∥∥∥∥∥

s
=
∥∥cov(Z̃1)

∥∥
s (D.50)

=
∥∥E[(B̂1 −B)(B̂1 −B)T]∥∥

s

=
∥∥E[B̂1B̂T

1
]
−BBT∥∥

s

≤
∥∥BBT∥∥

s +
∥∥E[B̂1B̂T

1
]∥∥

s (D.51)

= 1 + max
y∈Y

∑
x∈X

PX|Y (x|y)
PX(x) (D.52)

≤ 1 + 1
p0

max
y∈Y

∑
x∈X

PX|Y (x|y) (D.53)

= 1 + 1
p0
, (D.54)

where to obtain (D.50) we have used that the Z̃1, . . . , Z̃n are identically
distributed, to obtain (D.51) we have again used the triangle inequality,
to obtain (D.52) we have used that σ2

0 = 1 is the principal singular
value of BBT, and that B̂1B̂T

1 is a diagonal matrix whose (y, y)th entry
is 1Y1=y/

(
PX(X1)PY (y)

)
, so E

[
B̂1B̂T

1
]

has (y, y)th entry

E
[

1Y1=y

PX(X1)PY (y)

]
=

∑
x

′∈X, y
′∈Y

PX,Y (x′, y′)
1y

′=y

PX(x′)PY (y′)
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=
∑
x∈X

PX,Y (x, y)
PX(x)PY (y)

=
∑
x∈X

PX|Y (x|y)
PX(x) ,

and to obtain (D.53) we have again used the definition of p0. Moreover,
interchanging the roles of x and y, we have, by symmetry,∥∥∥∥∥ 1

n

n∑
i=1

cov(Z̃T
i )
∥∥∥∥∥

s
=
∥∥∥∥∥ 1
n

n∑
i=1

cov(Z̃i)
∥∥∥∥∥

s
= 1 + 1

p0
≜ c̄, (D.55)

where to obtain the second equality we have used (D.54).
Finally, we have

P
f̌

k
∗

(
EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≥ δ)

≤ P
(∥∥B̃− B̂

∥∥
s ≥

δ

4k

)
(D.56)

≤ P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
s
≥ δ

4k

)
(D.57)

≤
(
|X|+ |Y|

)
exp

{
−3n

8

( 1
1 + 1/p0

)(
δ

4k

)2}
(D.58)

≤
(
|X|+ |Y|

)
exp

{
−p0 δ

2 n

64k2

}
, (D.59)

where to obtain (D.56) we have used (D.46), to obtain (D.57) we have
used (D.17), to obtain (D.58) we have used Lemma D.4, and to obtain
(D.59) we have again used that p0 ≤ 1/2 since min{|X|, |Y|} ≥ 2. ■

D.5 Proof of Corollary 6.6

First, adapting our notation from (6.27) for convenience,

µ̃2
(
f̌k

∗
)
≜ EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2]

=
∥∥B̃ΨX

(k)
∥∥2

F −
∥∥B̃Ψ̂X

(k)
∥∥2

F (D.60)

≤
∥∥B̃ΨX

(k)
∥∥2

F

≤
∥∥B̃∥∥2

s
∥∥ΨX

(k)
∥∥2

F (D.61)
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≤
k∑

i=1

∥∥ψX
i

∥∥2 (D.62)

= k, (D.63)

where to obtain (D.60) we have used (D.44), to obtain (D.61) we have
used Fact 5.12, to obtain (D.62) we have used that

∥∥B̃∥∥s ≤ 1, and to
obtain (D.63) we have used that the singular vectors have unit norm.

Next, with the event

Eδ ≜
{
µ̃2
(
f̌k

∗
)
≥ δ

}
, 0 ≤ δ ≤ 4k,

we have that the left-hand side of (6.32) is bounded according to

E
f̌

k
∗

[
µ̃2
(
f̌k

∗
)2] = E

f̌
k
∗

[
µ̃2
(
f̌k

∗
)2∣∣∣Ec

δ

]
P(Ec

δ) + E
f̌

k
∗

[
µ̃2
(
f̌k

∗
)2∣∣∣Eδ

]
P(Eδ)

≤ δ2 + k2(|X|+ |Y|) exp
{
−p0 δ

2n

64k2

}
, (D.64)

where to obtain the inequality we have used that P(Ec
δ) ≤ 1, (D.63),

and Proposition 6.5.
To obtain the tightest bound, we optimize (D.64) over δ, yielding

(6.32). In particular, we have

E
f̌

k
∗

[
µ̃2
(
f̌k

∗
)2] ≤ min

δ

(
δ2 + k2(|X|+ |Y|) exp

{
−p0 δ

2n

64k2

})

= 64k2

p0n

[
1 + log

(
k2(|X|+ |Y|) p0n

64k2

)]
(D.65)

= 64k2

p0n

(
log
[(
|X|+ |Y|

)
p0n

]
+
[
1− log(64)

])
≤ 64k2

p0n

(
log
[(
|X|+ |Y|

)
p0n

]
− 3

)
, (D.66)

where to obtain (D.65) we recognize that the right-hand side of (D.64)
takes the form of (6.19) with the mappings

a = k2(|X|+ |Y|), b = p0n

64k2 , ω = δ2, (D.67)

and apply Lemma 6.3, and to obtain the last inequality we have used
that log(64) ≥ 4.
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It remains to impose the constraints 0 ≤ δ∗ ≤ 4k on the minimizer
δ∗, which we equivalently express in the form 0 ≤ ω∗ ≤ 16k2 using
(D.67). Substituting (6.20) from Lemma 6.3 for ω∗ and using a and b

from (D.67), the constraint ω∗ ≥ 0 imposes (6.31a), viz.,

p0n

64 ≥
1(

|X|+ |Y|
) .

Meanwhile, the constraint ω∗ ≤ 16k2 imposes (6.31b), viz.,

p0n

4 ≥ log
(
p0n

64
(
|X|+ |Y|

))
.

■

D.6 Proof of Proposition 6.7

To obtain Proposition 6.7, we adapt the proof of Proposition 6.1, re-
placing the use of the Frobenius norm of Lemma D.2 with the following
spectral norm bound.

Lemma D.7. Given dimensions k1 and k2 and any matrices A1,A2 ∈
Rk1×k2 , we have, for every k ∈

{
1, . . . ,min{k1, k2}

}
,

k∑
i=1

∣∣σi(A1)− σi(A2)
∣∣ ≤ k ∥A1 −A2∥s. (D.68)

Proof of Lemma D.7. We have
k∑

i=1

∣∣σi(A1)− σi(A2)
∣∣ ≤ k∑

i=1
σi(A1 −A2) ≤ k ∥A1 −A2∥s,

where the second inequality follows from Lemma D.3. ■

In particular, to establish Proposition 6.7, we replace (D.14)–(D.16)
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in Appendix D.1 with

P
(

k∑
i=1

∣∣σ̂i − σi

∣∣ ≥ δ) ≤ P
(
∥B̂− B̃∥s ≥

δ

k

)
(D.69)

= P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
s
≥ δ

k

)
(D.70)

≤
(
|X|+ |Y|

)
exp

{
−p0 δ

2n

4k2

}
, 0 ≤ δ ≤ k, (D.71)

where to obtain (D.69) we use Lemma D.7, then, as in the proof of
Proposition 6.5, to obtain (D.70) we use (D.17), and to obtain (D.71) we
use Lemma D.4 with (D.49) and (D.55) providing c and c̄, respectively,
and that p0 ≤ 1/2. ■

D.7 Proof of Proposition 6.8

We adapt the proof of Proposition 6.5, replacing the use of the spectral
norm bound of Lemma D.5 with the following Frobenius norm bound.

Lemma D.8. Given A1,A2 ∈ Rk1×k2 and k ∈
{
1, . . . ,min{k1, k2}

}
, we

have

0 ≤
∥∥A1ΨA1

(k)
∥∥2

F −
∥∥A1ΨA2

(k)
∥∥2

F ≤ 4
√
k
∥∥A1

∥∥
s
∥∥A1 −A2

∥∥
F, (D.72)

where ΨA
(k) is as defined in Lemma D.5.

Proof of Lemma D.8. First, reproducing (D.40) from the proof of Lem-
ma D.5, we have∥∥A1ΨA1

(k)
∥∥2

F −
∥∥A1ΨA2

(k)
∥∥2

F

≤ 2
∥∥A1

∥∥
s

(
k∑

i=1

∣∣σi(A1)− σi(A2)
∣∣+ k∑

i=1

∥∥(A1 −A2)ψA2
i

∥∥).
(D.73)
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For the second sum in (D.73), we have(
k∑

i=1

∥∥(A1 −A2)ψA2
i

∥∥)2

≤ k
k∑

i=1

∥∥(A1 −A2)ψA2
i

∥∥2 (D.74)

= k
∥∥(A1 −A2)ΨA2

(k)
∥∥2

F

≤ k
∥∥A1 −A2

∥∥2
F, (D.75)

where to obtain (D.74) we use the Cauchy-Schwarz inequality, and to
obtain (D.75) we use Lemma 3.1, recognizing that the right-hand side
of (3.1) is upper bounded by ∥A∥2F. Hence, using Lemma D.2 to bound
the first term in (D.73), and (D.75) to bound the second, we obtain
(D.72). ■

To establish Proposition 6.8, starting from (D.44) in Appendix D.4,
but using Lemma D.8 instead of Lemma D.5, the bound (D.46) becomes

EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2]

=
∥∥B̃ ΨX

(k)
∥∥2

F −
∥∥B̃ Ψ̂X

(k)
∥∥2

F

≤ 4
√
k
∥∥B̃− B̂

∥∥
F. (D.76)

In turn, (D.56)–(D.59) then becomes [cf. (6.29)]

P
f̌

k
∗

(
EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≥ δ)

≤ P
(∥∥B̃− B̂

∥∥
F ≥

δ

4
√
k

)
(D.77)

= P
(∥∥∥∥∥ 1

n

n∑
i=1

Z̃i

∥∥∥∥∥
s
≥ δ

4
√
k

)
(D.78)

≤ exp
{

1
4 −

p2
0 δ

2n

128k

}
, 0 ≤ δ ≤ (4/p0)

√
k/2, (D.79)

where, as in the proof of Proposition 6.1, to obtain (D.78) we use (D.17),
and to obtain (D.79) we use Lemma D.1, with (D.8) and (D.13) again
providing c and c̄, respectively. ■
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D.8 Analysis of the Feature Quality Measure (6.35)

To begin, we have∥∥E[fk
∗ (X) gk

∗ (Y )T]− E
[
f̌k

∗ (X) ǧk
∗ (Y )T]∥∥

F

=
∥∥(ΨY

(k)
)TB̃ΨX

(k) −
(
Ψ̂Y

(k)
)TB̃Ψ̂X

(k)
∥∥

F

=
∥∥(ΨY

(k)
)TB̃ΨX

(k) −
(
Ψ̂Y

(k)
)TB̂Ψ̂X

(k)

−
(
Ψ̂Y

(k)
)TB̃Ψ̂X

(k) +
(
Ψ̂Y

(k)
)TB̂Ψ̂X

(k)
∥∥

F

=
∥∥(Σ(k) − Σ̂(k)

)
−
(
Ψ̂Y

(k)
)T(B̃− B̂)Ψ̂X

(k)
∥∥

F, (D.80)

where Σ̂(k) is a diagonal matrix whose diagonal elements are σ̂1, . . . , σ̂k.
This measure exhibits similar sample complexity behavior to that

obtained in Section 6.2.2. To see this, note that in this case we have∥∥(Σ(k) − Σ̂(k)
)
−
(
Ψ̂Y

(k)
)T(B̃− B̂)Ψ̂X

(k)
∥∥

F

≤
∥∥Σ(k) − Σ̂(k)

∥∥
F +

∥∥Ψ̂Y
(k)
∥∥

s︸ ︷︷ ︸
=1

∥∥(B̃− B̂)Ψ̂X
(k)
∥∥

F, (D.81)

where we have used, in turn, the triangle inequality for the Frobenius
norm, and Fact 5.12, and where the spectral norm is unity because Ψ̂Y

(k)
has orthonormal columns. Moreover, the first term in (D.81) satisfies,
using Lemma D.7,

∥∥Σ(k) − Σ̂(k)
∥∥

F ≤
k∑

i=1
|σi − σ̂i| ≤ k

∥∥B̃− B̂
∥∥

s, (D.82)

while the remaining term satisfies

∥∥(B̃− B̂)Ψ̂X
(k)
∥∥

F ≤

√√√√ k∑
i=1

σi

(
B̃− B̂

)2 (D.83)

≤
k∑

i=1
σi

(
B̃− B̂

)
(D.84)

≤ k
∥∥B̃− B̂

∥∥
s, (D.85)

where to obtain (D.83) we have used Lemma 3.1, and to obtain (D.84)
we have used (6.23). Using (D.82) and (D.85) in (D.81), and, in turn,
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(D.80) yields∥∥E[fk
∗ (X) gk

∗ (Y )T]− E
[
f̌k

∗ (X) ǧk
∗ (Y )T]∥∥

F ≤ 2k
∥∥B̃− B̂

∥∥
s. (D.86)

Thus, we obtain a bound of the same form (to within a factor of two)
as that for the measure (6.27), for which we obtained

EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≤ 4k

∥∥B̃− B̂
∥∥

s. (D.87)

As such analogous sample complexity bounds follow.
Finally, as in Section 6.2.3, we can similarly replace the use of the

spectral norm with the Frobenius norm. In particular, (D.82) can be
replaced with

∥∥Σ(k) − Σ̂(k)
∥∥

F ≤
k∑

i=1
|σi − σ̂i| ≤

√
k
∥∥B̃− B̂

∥∥
F, (D.88)

where we now use Lemma D.2 instead of Lemma D.7. Using (D.88),
and the simple upper bound∥∥(B̃− B̂)Ψ̂X

(k)
∥∥

F ≤
∥∥B̃− B̂

∥∥
F
∥∥Ψ̂X

(k)
∥∥

s︸ ︷︷ ︸
=1

≤
∥∥B̃− B̂

∥∥
F (D.89)

instead of (D.85), in (D.81) yields∥∥E[fk
∗ (X) gk

∗ (Y )T]− E
[
f̌k

∗ (X) ǧk
∗ (Y )T]∥∥

F ≤
(
1 +
√
k
) ∥∥B̃− B̂

∥∥
F

≤ 2
√
k
∥∥B̃− B̂

∥∥
F, (D.90)

the second (looser) inequality of which matches (to within a factor of
two) that for the measure (6.27), for which we obtained

EPY

[∥∥EPX|Y

[
fk

∗ (X)
]∥∥2 −

∥∥EPX|Y

[
f̌k

∗ (X)
]∥∥2] ≤ 4

√
k
∥∥B̃− B̂

∥∥
F. (D.91)

As such analogous sample complexity bounds follow in this form too.

D.9 Proof of Proposition 6.9

First, note that S
F
δ, Ss

δ, and S
k
δ are non-empty as they contain PX,Y ,

and bounded since P
X×Y is bounded in R|X|×|Y|. In addition, our proof

makes use of the following lemma.
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Lemma D.9. For any PX,Y ∈ relint(PX×Y) and δ > 0, let S
F
δ(PX,Y ),

S
s
δ(PX,Y ), and S

k
δ (PX,Y ) be as defined in (6.39). Then

P1. S
F
δ(PX,Y ), Ss

δ(PX,Y ) ⊆ relint(PX×Y) are compact sets for every
0 < δ < Bmin(PX,Y ), with Bmin(·) as defined in (6.41).

P2. S
F
δ(PX,Y ) ⊆ S

k
4δ

√
k(PX,Y ) for every δ > 0.

P3. S
F
δ(PX,Y ) ⊆ S

s
δ(PX,Y ) ⊆ S

k
4δk(PX,Y ) for every δ > 0.

Proof of Lemma D.9. To establish property P1 for S
s
δ(PX,Y ), fix any

0 < δ < Bmin(PX,Y ), and consider the set3

M
s
δ(PX,Y ) ≜

{
M ∈ R|Y|×|X| : M ≥ 0, ∥M∥s = 1, ∥M−B∥s ≤ δ

}
.

We first show that M
s
δ(PX,Y ) is closed. To this end, take any sequence

{Mn ∈ M
s
δ(PX,Y ), n = 1, 2, . . . } such that Mn → M ∈ R|Y|×|X| as

n → ∞. Then, clearly M ≥ 0 and ∥M∥s = 1 (by continuity of the
spectral norm). Moreover, we have

∥M−B∥s ≤ ∥M−Mn∥s + ∥Mn −B∥s
≤ lim

n→∞
∥M−Mn∥s + δ

≤ δ,

where the first inequality is the triangle inequality, the second inequality
follows from using the fact that Mn ∈ M

s
δ(PX,Y ) and then letting

n → ∞, and the final inequality holds because Mn → M. Hence,
M

s
δ(PX,Y ) is closed.
Next, we show that M

s
δ(PX,Y ) ⊆ B

X×Y
◦ , with B

X×Y
◦ as defined in

(A.3). Due to (A.4), it suffices to show that M > 0 for every M ∈
M

s
δ(PX,Y ), which we obtain by noting that for every x ∈ X and y ∈ Y,

we have, with M(x, y) denoting the (y, x)th entry of M,

M(x, y) ≥ B(x, y)− |M(x, y)−B(x, y)| (D.92)
≥ B(x, y)− ∥M−B∥s (D.93)
≥ Bmin(PX,Y )− δ (D.94)
> 0, (D.95)

3As in Appendix A.2, we use A ≥ 0 to denote that all the entries of A are
nonnegative.
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where to obtain (D.92) we have used the triangle inequality, to obtain
(D.93) we have used that for an arbitrary matrix A with entries ai,j ,

|ai,j | = |eT
i Aej | ≤ ∥ei∥∥A∥s∥ej∥ = ∥A∥s, all i, j,

with the inequality due to Lemma 3.2, where to obtain (D.94) we have
used that M ∈ M

s
δ(PX,Y ) and (6.41), and where to obtain (D.95) we

have used the given constraint on δ.
Now via Proposition A.1 it follows that Sδ(PX,Y ) is the preimage

of M
s
δ(PX,Y ) ⊆ B

X×Y
◦ under the DTM function B(·), so Sδ(PX,Y ) ⊆

relint(PX×Y). Furthermore, since, as shown in Proposition A.4, the re-
stricted DTM function B : relint(PX×Y)→ B

X×Y
◦ is continuous, Sδ(PX,Y )

is closed because M
s
δ(PX,Y ) is closed [235, Corollary, p. 87]. Since

S
s
δ(PX,Y ) is also bounded, it is compact [235, Theorem 2.41].

Property P1 for SF
δ(PX,Y ) is obtained in a directly analogous manner.

In particular, since the Frobenius norm is also continuous and satisfies
the triangle inequality, it suffices to follow the same analysis, but now
with respect to the set

M
F
δ(PX,Y ) ≜

{
M ∈ R|Y|×|X| : M ≥ 0, ∥M∥s = 1, ∥M−B∥F ≤ δ

}
.

To obtain property P2, we use the fact that [cf. (D.76)]∣∣∣∥∥B ΨX
(k)
∥∥2

F −
∥∥B Ψ̂X

(k)
∥∥2

F

∣∣∣ ≤ 4
√
k
∥∥B− B̂

∥∥
F,

which is obtained in precisely the same manner as (D.76), from which
it follows immediately that S

F
δ(PX,Y ) ⊆ S

k
4δ

√
k(PX,Y ).

Analogously, to obtain property P3, we use the fact that [cf. (D.46)]∣∣∣∥∥B ΨX
(k)
∥∥2

F −
∥∥B Ψ̂X

(k)
∥∥2

F

∣∣∣ ≤ 4k
∥∥B− B̂

∥∥
s,

which is obtained in precisely the same manner as (D.46), from which
it follows immediately that S

s
δ(PX,Y ) ⊆ S

k
4δk(PX,Y ). Finally, for the

remaining part of property P3, we use the standard norm inequality
∥A∥s ≤ ∥A∥F, for any matrix A, obtaining S

F
δ(PX,Y ) ⊆ S

s
δ(PX,Y ). ■

Proceeding to the proof of Proposition 6.9, with the notation (6.43)–
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(6.45) we have, via Sanov’s theorem [76, Theorem 2.1.10],

E−
(
S

F
δ(PX,Y )

)
= E∗

(
S

F
δ(PX,Y )

)
(D.96)

E−
(
S

s
δ(PX,Y )

)
= E∗

(
S

s
δ(PX,Y )

)
(D.97)

E−
(
S

k
δ (PX,Y )

)
≤ E

(
S

k
δ (PX,Y )

)
, (D.98)

for 0 < δ < Bmin(PX,Y ) with Bmin(·) as defined in (6.41), where
to obtain (D.96) and (D.97) we have used that P

X×Y\SF
δ(PX,Y ) and

P
X×Y\Ss

δ(PX,Y ), respectively, are open sets (with respect to P
X×Y),

since S
F
δ(PX,Y ) and S

s
δ(PX,Y ) are closed according to property P1 of

Lemma D.9. Hence, (6.42a) follows according to

E
(
S

k
4δ

√
k(PX,Y )

)
≥ E−

(
S

k
4δ

√
k(PX,Y )

)
(D.99)

≥ E−
(
S

F
δ(PX,Y )

)
(D.100)

= E∗
(
S

F
δ(PX,Y )

)
, (D.101)

where to obtain (D.99) we have used (D.98), to obtain (D.100) we have
used that

P
X×Y\Sk

4δ
√

k ⊆ P
X×Y\SF

δ,

which follows from property P2 of Lemma D.9, and to obtain (D.101)
we have used (D.96). Analogously, (6.42b) follows according to

E
(
S

k
4δk(PX,Y )

)
≥ E−

(
S

k
4δk(PX,Y )

)
(D.102)

≥ E−
(
S

s
δ(PX,Y )

)
(D.103)

= E∗
(
S

s
δ(PX,Y )

)
(D.104)

≥ E∗
(
S

F
δ(PX,Y )

)
, (D.105)

where to obtain (D.102) we have used (D.98), to obtain (D.103) we
have used the first subset relation in

P
X×Y\Sk

4δk ⊆ P
X×Y\Ss

δ ⊆ P
X×Y\SF

δ, (D.106)

which follows from property P3 of Lemma D.9, to obtain (D.104) we
have used (D.97), and to obtain (D.105) we have used (D.96) and the
second subset relation in (D.106). ■
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D.10 Proof of Lemma 6.10

Our proof makes use of the following special case of Sanov’s Theorem
[76, Theorem 2.1.10, Exercise 2.1.19], [71, Theorem 2.1]:

Lemma D.10. For every distribution PZ ∈ P
Z, and every closed and

convex subset S ⊆ P
Z of probability distributions that has non-empty

interior, we have that the empirical distribution P̂Z formed from n i.i.d.
samples of PZ satisfies

lim
n→∞

1
n

logP
(
P̂Z ∈ S

)
= − min

QZ∈S
D(QZ∥PZ),

where the minimum is achieved by a unique distribution.

Without loss of generality we may restrict our attention to the case
in which E[h(Z)] > 0. For any γ > 0, define the sets

S
+
γ ≜

{
QZ ∈ P

Z : EQZ
[h(Z)] ≥ (1 + γ)E[h(Z)]

}
S

−
γ ≜

{
QZ ∈ P

Z : EQZ
[h(Z)] ≤ (1− γ)E[h(Z)]

}
,

where
EQZ

[h(Z)] ≜
∑
z∈Z

QZ(z)h(z).

Furthermore, since we will eventually let γ → 0, we may assume that

0 < γ < min
{(maxz∈Z h(z)

E[h(Z)] −1
)
,

(
1−minz∈Z h(z)

E[h(Z)]

)}
,

so that

min
z∈Z

h(z) < (1− γ)E[h(Z)] < (1 + γ)E[h(Z)] < max
z∈Z

h(z),

where minz∈Z h(z) < maxz∈Z h(z) because var[h(Z)] > 0. Hence, S+
γ

and S
−
γ are closed and convex sets that have non-empty interiors. Using

Lemma D.10, we have

lim
n→∞

1
n

logP
(
P̂Z ∈ S

+
γ

)
= − min

QZ∈S
+
γ

D(QZ∥PZ) = −D(Q+
Z∥PZ)

(D.107)

lim
n→∞

1
n

logP
(
P̂Z ∈ S

−
γ

)
= − min

QZ∈S
−
γ

D(QZ∥PZ) = −D(Q−
Z∥PZ),

(D.108)
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where the (unique) minimizing distributions Q+
Z ∈ S

+
γ and Q−

Z ∈ S
−
γ are

members of the exponential family

QZ(z; θ) = PZ(z) exp{θ h(z)− α(θ)}, z ∈ Z,

with natural parameter θ ∈ R. Recall that the (infinitely differentiable)
log-partition function

α(θ) ≜ log
(
E[exp{θ h(Z)}]

)
has derivatives4

α′(θ) = EQZ(·;θ)[h(Z)] and α′′(θ) = varQZ(·;θ)[h(Z)] > 0,

where the second derivative is positive because every element of Z has
positive probability under QZ(·; θ). The minimizing distributions are
Q+

Z = QZ(·; θ+) and Q−
Z = QZ(·; θ−), where the optimal parameters

θ+ > 0 and θ− < 0 are chosen to satisfy (cf. [71, Example 2.1])

α′(θ+) = EQZ(·;θ+)[h(Z)] = (1 + γ)E[h(Z)],

α′(θ−) = EQZ(·;θ−)[h(Z)] = (1− γ)E[h(Z)].

Now assume that

lim
γ→0+

D(Q+
Z∥PZ)
γ2 = lim

γ→0+

D(Q−
Z∥PZ)
γ2 = 1

2

(
E[h(Z)]

)2
var[h(Z)] (D.109)

and define

S
±
γ ≜ S

+
γ ∪ S

−
γ =

{
QZ ∈ P

Z :
∣∣∣∣∣EQZ

[h(Z)]
E[h(Z)] − 1

∣∣∣∣∣ ≥ γ
}
. (D.110)

Since S
+
γ and S

−
γ are disjoint, we have

P
(
P̂Z ∈ S

±
γ

)
= P

(
P̂Z ∈ S

+
γ

)
+ P

(
P̂Z ∈ S

−
γ

)
.

Hence, via the Laplace principle it follows that

− lim
n→∞

1
n

logP
(
P̂Z ∈ S

±
γ

)
= min

{
D(Q+

Z∥PZ) , D(Q−
Z∥PZ)

}
, (D.111)

4In this section we use ′, ′′, and ′′′ as notation for first, second, and third
derivatives.
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where we have used (D.107) and (D.108). Applying (D.109) to (D.111),
and recognizing (D.110), we obtain (6.46) as desired.

Thus, it remains only to show (D.109). To this end, consider the
function

d(θ) ≜ D(QZ(·; θ)∥PZ), θ ∈ R.

It is straightforward to verify that

d(θ) = θ α′(θ)− α(θ)
d′(θ) = θ α′′(θ)
d′′(θ) = α′′(θ) + θ α′′′(θ),

which means that d(0) = d′(0) = 0, and d′′(0) = α′′(0) = var[h(Z)].
Hence, by Taylor’s theorem we have

lim
θ→0

d(θ)
θ2 = 1

2 var[h(Z)]. (D.112)

Now given any τ ∈ R, there exists a unique θτ such that

α′(θτ ) = EQZ(·;θτ )[h(Z)] = (1 + τ)E[h(Z)],

since α′ is increasing (since α′′ is positive). Next, observe that

lim
τ→0

d(θτ )
τ2 = lim

τ→0

d(θτ )
θ2

τ

lim
τ→0

θ2
τ

τ2

= var[h(Z)]
2

(
lim
τ→0

θτ

τ

)2

= var[h(Z)]
2

( dθτ

dτ

∣∣∣∣
τ=0

)2

= var[h(Z)]
2

(
E[h(Z)]
α′′(0)

)2

= E[h(Z)]2

2 var[h(Z)] , (D.113)

where the second equality follows from (D.112), the fact that θτ → 0 as
τ → 0 (by the continuity of the inverse of α′(·)), and the continuity of
t→ t2, where the third equality follows from the definition of derivative
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and the fact that θ0 = 0 (since α′(0) = E[h(Z)]), where the fourth
equality holds because

dθτ

dτ

∣∣∣∣
τ=0

=
( dτθ

dθ

∣∣∣∣
θ=0

)−1

with
τθ = α′(θ)

E[h(Z)] − 1,

and where the fifth equality holds because α′′(0) = var[h(Z)].
In turn, setting τ = γ > 0 and θτ = θ+ > 0 yields

lim
γ→0+

D(Q+
Z∥PZ)
γ2 = lim

τ→0+

d(θτ )
τ2 , (D.114a)

and setting τ = −γ < 0 and θτ = θ− < 0 yields

lim
γ→0+

D(Q−
Z∥PZ)
γ2 = lim

τ→0−

d(θτ )
τ2 . (D.114b)

Finally, replacing the right-hand sides of (D.114) with (D.113) yields
(D.109). ■
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Appendices for Section 7

E.1 Proof of Proposition 7.1

From (7.2), it follows immediately that

E[M ] =
∑

y∈Ŷ(x)

P
(
Ey(x)

)
(E.1)

≤ max
{Ŷ(x)⊂Y : |Ŷ(x)|=l}

∑
y∈Ŷ(x)

P
(
Ey(x)

)
(E.2)

=
∑

y∈Ŷ
∗(x)

P
(
Ey(x)

)
, (E.3)

where

y∗
1(x) = arg max

y∈Y

P
(
Ey(x)

)
(E.4a)

y∗
i (x) = arg max

y∈Y\{y
∗
1(x),...,y∗

i−1(x)}
P
(
Ey(x)

)
, i ∈ {2, . . . , l}. (E.4b)

It remains only to evaluate the constituent event probabilities, which
are obtained as follows:

P
(
Ey(x)

)
= P

(
V k(y) = V k

◦ (x)
)

239
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=
∑

{v
k

,v
k
◦ : v

k=v
k
◦ }

P
V

k|Y (vk|y)P
V

k|X(vk
◦ |x)

=
∑
v

k

P
V

k|Y (vk|y)P
V

k|X(vk|x),

wherein, using (5.37b) and (5.38a),

P
V

k|Y (vk|y)P
V

k|X(vk|x)

=
k∏

i=1

(
PVi|Y (vi|y)PVi|X(vi|x)

)

=
k∏

i=1

(
PY |Vi

(y|vi)PVi
(vi)

PY (y)
PX|Vi

(x|vi)PVi
(vi)

PX(x)

)

= 1
22k

k∏
i=1

((
1 + ϵvi g

∗
i (y)

)(
1 + ϵvi σi f

∗
i (x)

))

= 1
22k

k∏
i=1

(
1+ϵ vi

(
σi f

∗
i (x)+g∗

i (y)
)
+ϵ2σi f

∗
i (x) g∗

i (y)
)
.

Hence,

P
(
Ey(x)

)
= 1

22k

k∏
i=1

∑
vi

(
1+ϵ vi

(
σi f

∗
i (x)+g∗

i (y)
)
+ϵ2σi f

∗
i (x) g∗

i (y)
)

= 1
2k

k∏
i=1

(
1 + ϵ2σi f

∗
i (x) g∗

i (y)
)

= 1
2k

(
1 + ϵ2

k∑
i=1

σi f
∗
i (x) g∗

i (y)
)

+ OO(ϵ2),

the nonvanishing term of which we note is a monotonic function of the
quantity being maximized in (7.6). ■
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F
Appendices for Section 8

F.1 Proof of Proposition 8.1

First, without loss of generality we impose the constraints

E
[
g(Y )

]
= 0 and E

[
β(y)

]
= 0, (F.1)

since other solutions are simple reparameterizations.
It is convenient to first establish the following special case of Propo-

sition 8.1.

Lemma F.1. Let the hypotheses of Proposition 8.1 be satisfied, together
with the further constraints

µS = 0 and ΛS = I. (F.2)

Then

min
P̃Y |S(·|s)∈P̃

Y
s (PY )

∑
s∈S

PS(s)D
(
PY |S(·|s)

∥∥ P̃Y |S(·|s)
)

= I(Y ;S)− 1
2E
[∥∥µS|Y (Y )

∥∥2]+ OO(ϵ2), (F.3)

and is achieved by the parameters

g(y) = g∗,S(y) ≜ µS|Y (y) + OO(ϵ) and β(y) = β∗,S(y) ≜ OO(ϵ), (F.4a)

241
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i.e.,
P̃ ∗

Y |S(y|s) ∝ PY (y) exp
{
sTµS|Y (y)

}(
1 + OO(1)

)
. (F.4b)

Using Lemma F.1, we establish Proposition 8.1 as follows. First, let
us assume ΛS is nonsingular, and let

s̃ ≜ Λ−1/2
S

(
s− µS

)
(F.5)

so
µS̃ = 0 and ΛS̃ = I.

Then we may rewrite P̃ g,β
Y |S(y|s) in the form

P̃ g,β
Y |S(y|s) = PY (y) exp

{
s̃Tg̃(y) + β̃(y)− α̃(s̃)

}
(F.6)

≜ P̃ g̃,β̃

Y |S̃(y|s̃) (F.7)

where

g̃(y) ≜ Λ1/2
S g(y) (F.8)

β̃(y) ≜ µT
Sg(y) + β(y) (F.9)

α̃(s̃) ≜ α
(
µS + Λ1/2

S s̃
)
, (F.10)

and for which E
[
g̃(Y )

]
= 0 and E

[
β̃(Y )

]
= 0.

Using these definitions, we have

g̃∗,S(y) = EPS̃|Y (·|y)
[
S̃
]

+ OO(ϵ) = Λ−1/2
S

(
µS|Y (y)− µS

)
+ OO(ϵ), (F.11)

where to obtain the first equality we have used Lemma F.1, and to
obtain (F.11) we have used (F.5). Combining (F.11) with (F.8) yields
(8.4a). Similarly, via Lemma F.1 we obtain

β̃∗,S(y) = OO(ϵ),

which when combined with (F.9) yields (8.4b). In turn, we obtain (8.2)
via

min
P̃Y |S̃(·|s)∈P̃

Y
s̃ (PY )

∑
s̃∈S

PS̃(s̃)D
(
PY |S̃(·|s̃)

∥∥ P̃Y |S̃(·|s̃)
)

= I(Y ; S̃)− 1
2E
[∥∥µS̃|Y (Y )

∥∥2]+ OO(ϵ2)

= I(Y ;S)− 1
2 E
[∥∥Λ−1/2

S

(
µS|Y (Y )− µS

)∥∥2]+ OO(ϵ2),

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



F.1. Proof of Proposition 8.1 243

where to obtain the first equality we have used Lemma F.1, and to
obtain the second we have used (F.5) and the invariance of mutual
information to coordinate transformations.

It remains only to establish Lemma F.1.

Proof of Lemma F.1. First, note that

D(PY,S∥P̃Y |SPS) = I(Y ;S)− E
[
STg(Y )− α(S)

]︸ ︷︷ ︸
≜ℓ̃(g,β)

, (F.12)

so we seek to maximize ℓ̃(g, β). Moreover, note that since χ2-divergence
is an f -divergence, it satisfies a data processing inequality [69], so S, Y
are ϵ-dependent for any choice of f that induces S.

Fixing s ∈ S, note that PY |S(·|s) ∈ N
Y
ϵ (PY ) and, in addition,

P̃ 0,0
Y |S(·|s) = PY . As a result, it follows that the optimizing P̃ g,β

Y |S(·|s) is
such that P̃ g,β

Y |S(·|s) ∈ N
Y
ϵ (PY ), and thus we may restrict our search to

parameters (g, β) in this neighborhood.
In turn, defining

ϕ̃Y |S
s (y) ≜

P̃ g,β
Y |S(y|s)− PY (y)

ϵ
√
PY (y)

,

it follows from (8.1) that

ϵ2
∑
y∈Y

ϕ̃Y |S
s (y)2 =

∑
y∈Y

PY (y)
(
exp

{
sTg(y) + β(y)− α(s)

}
− 1

)2
≤ ϵ2,

so
sTg(y) + β(y)− α(s) = OO(1).

Hence, for the Taylor series expansions1 (in ϵ)

g(y) =
2∑

i=0
ϵig(i)(y) + OO(ϵ2) (F.13a)

β(y) =
2∑

i=0
ϵiβ(i)(y) + OO(ϵ2) (F.13b)

α(s) =
2∑

i=0
ϵiα(i)(s) + OO(ϵ2), (F.13c)

1In this analysis we assume the existence of these Taylor series. Moreover, we
use superscript notation (i) to denote the ith derivative (with respect to ϵ.)
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wherein g(i)(y), β(i)(y), and α(i)(s) for i ∈ {0, 1, 2} do not depend on ϵ,
it follows that

sTg(0)(y) + β(0)(y) = α(0)(s). (F.14)
But due to (F.1), in the Taylor series (F.13) we must also have

E
[
g(i)(Y )

]
= 0 and E

[
β(i)(Y )

]
= 0, i ∈ {0, 1, 2}. (F.15)

Taking the expectation of both sides of (F.14) with respect to PY then
yields that

α(0)(s) = 0. (F.16)
Next, with

τ (i)
s (y) ≜ sTg(i)(y) + β(i)(y), i = 1, 2, (F.17)

and using the Taylor series

eω =
l∑

j=0

1
j! ω

j + OO(ωl),

we obtain that Z(s) ≜ eα(s), via (8.1), can be expressed in the form

Z(s) =
∑
y∈Y

PY (y) exp
{
sTg(y) + β(y)

}

= EPY

[
exp

{ 2∑
i=1

ϵiτ (i)
s (Y ) + OO(ϵ2)

}]

= EPY

[( 2∑
j=0

ϵj
1
j!τ

(1)
s (Y )j + OO(ϵ2)

)

·
( 1∑

j=0
ϵ2j 1

j!τ
(2)
s (Y )j + OO(ϵ2)

)(
1 + OO(ϵ2)

)]

= 1 +
2∑

i=1
ϵiυi(s) + OO(ϵ2),

with

υ1(s) ≜ EPY

[
τ (1)

s (Y )
]

= 0 (F.18a)

υ2(s) ≜ EPY

[1
2 τ

(1)
s (Y )2 + τ (2)

s (Y )
]

= 1
2 EPY

[
τ (1)

s (Y )2], (F.18b)
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where we have used (F.14) with (F.16) to conclude τ (0)
s = 0, and that

EPY

[
τ (i)

s (Y )
]

= 0, i = 1, 2, . . .

due to (F.15).
Next, using the Taylor series

log(1 + ω) = ω − 1
2 ω

2 + OO(ω2),

we obtain that α(s) = logZ(s) is of the form

α(s) =
( 2∑

i=1
ϵiυi(s)

)
− 1

2

( 2∑
i=1

ϵiυi(s)
)2

+ OO(ϵ2).

So in the Taylor series (F.13c) for α(s), we obtain

α(1)(s) = υ1(s) = 0 (F.19a)

α(2)(s) = υ2(s)− 1
2 υ1(s)2 = υ2(s). (F.19b)

We write ℓ̃(g, β) in (F.12), which we seek to maximize, in the form

ℓ̃(g, β) =
2∑

i=0
ϵi E

[
STg(i)(Y )− α(i)(S)

]
+ OO(ϵ2) (F.20)

=
2∑

i=1
ϵi E

[
STg(i)(Y )− α(i)(S)

]
+ OO(ϵ2) (F.21)

= ϵE
[
STg(1)(Y )

]
+ ϵ2 E

[
STg(2)(Y )

]
− ϵ2 E

[
α(2)(S)

]
+ OO(ϵ2) (F.22)

= ϵE
[
STg(1)(Y )

]
− ϵ2 E

[
α(2)(S)

]
+ OO(ϵ2), (F.23)

where to obtain (F.20) we have used (F.13), to obtain (F.21) we have
used that

E
[
STg(0)(Y )− α(0)(S)

]
= −E

[
β(0)(Y )

]
= 0,

due to (F.14) and (F.15), to obtain (F.22) we have used (F.19a), and
to obtain (F.23) we have used that the second term in (F.22) is OO(ϵ2),
which follows from the fact that for any i

E
[
STg(i)(Y )

]
= E

[
ST]E[g(i)(Y )

]︸ ︷︷ ︸
=0

+O(ϵ) ∈ O(ϵ),
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since PS,Y ∈ N
X×Y
ϵ (PSPY ).

Hence, we write (F.23) in the form

ℓ̃(g, β) = ℓ̃2
(
g(1), β(1))+ OO(ϵ2), (F.24a)

with

ℓ̃2
(
g(1), β(1)) ≜ ϵE

[
STg(1)(Y )

]
− ϵ2 E

[
α(2)(S)

]
, (F.24b)

where we note ℓ̃2(g(1), β(1)) ∈ O(ϵ2). In addition, we note that there is
no dependence on g(0) and β(0) in (F.24b). Indeed, they can be freely
chosen subject to the constraints (F.15), and those choices have no
effect on the resulting P̃ g,β

Y |S(·|s); for example, we may choose

g(0)(y) = 0 and β(0)(y) = 0, all y ∈ Y.

Proceeding, to express the second term in (F.24b) in terms of g(1)(y)
and β(1)(y), note that, using (F.18b) and (F.17),

υ2(s) = 1
2 EPY

[
τ (1)

s (Y )2]
= 1

2 EPY

[(
sTg(1)(Y ) + β(1)(Y )

)2]
, (F.25)

so

ϵ2 EPS

[
α(2)(S)

]
= ϵ2 EPS

[
υ2(S)

]
(F.26)

= ϵ2

2 EPY

[
EPS

[(
STg(1)(Y )

)2]+ β(1)(Y )2
]

(F.27)

= ϵ2

2 EPY

[∥∥g(1)(Y )
∥∥2]+ ϵ2

2 EPY

[
β(1)(Y )2], (F.28)

where to obtain (F.26) we have used (F.19b), to obtain (F.27) we
have used (F.25) and (F.2), and where to obtain (F.28) we have used
Lemma 5.8 with (F.2) (and k1 = k and k2 = 1).

Since β(1)(y) only appears in (F.24b) through the second term in
(F.28), we conclude that its optimum value is

β
(1)
∗,S(y) ≡ 0. (F.29)
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Combining the remainder of (F.28) with the first term in (F.24b), we
then have, by the Cauchy-Schwarz inequality,

ℓ̃2
(
g(1), β

(1)
∗,S

)
= ϵEPS,Y

[(
S − ϵ

2 g
(1)(Y )

)T
g(1)(Y )

]

= ϵEPY

[
EPS|Y

[
S − ϵ

2 g
(1)(Y )

]T
g(1)(Y )

]

≤ ϵ

√√√√EPY

[∥∥∥∥EPS|Y

[
S − ϵ

2 g
(1)(Y )

]∥∥∥∥2
]√

EPY

[∥∥g(1)(Y )
∥∥2]

,

(F.30)

where the inequality holds with equality when

g(1)(Y ) ∝ EPS|Y

[
S − ϵ

2 g
(1)(Y )

]
= EPS|Y

[S]− ϵ

2 g
(1)(Y ), (F.31)

for some nonnegative constant of proportionality, i.e., when

g(1)(Y ) = cEPS|Y
[S] (F.32)

for 0 ≤ c ≤ 2/ϵ. In this case,

ℓ̃2
(
g(1), β

(1)
∗,S

)
= ϵc

(
1− ϵ

2c
)
EPY

[∥∥EPS|Y

[
S
]∥∥2]

= 1
2
(
1− (1− ϵc)2)EPY

[∥∥EPS|Y

[
S
]∥∥2]

≤ 1
2 EPY

[∥∥EPS|Y

[
S
]∥∥2]

, (F.33)

where equality is achieved when c = 1/ϵ. Hence, the optimum value of
g(1)(y) is

g
(1)
∗,S(y) = 1

ϵ
µS|Y (y), (F.34)

which we note has E
[
g

(1)
∗,S(Y )

]
= 0, as our constraints (F.15) dictate. In

turn, substituting the right-hand side of (F.33) into (F.12) via (F.24),
we obtain (F.3) as desired.

Moreover, the corresponding g∗,S(y) and β∗,S(y) satisfy (F.4a) as
desired, i.e., P̃ ∗

Y |S(y|s) takes the form (F.4b). ■
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F.2 Proof of Corollary 8.2

First, without loss of generality we impose on f the constraints (3.6c),
so

µS = 0 and ΛS = I, (F.35)

Next, note that since f is injective, by the invariance of mutual infor-
mation to coordinate transformations, the first term on the right-hand
side of (8.2) is I(X;Y ), which doesn’t depend on f . Accordingly, we
have, specializing the second term on the right-hand side of (8.2) to the
case (F.35),

f∗ = arg max
f∈Fk

EPY

[∥∥EP̂X|Y

[
f(X)

]∥∥2] = arg max
ΞX

∥∥B̃ ΞX∥∥2
F,

where B̃ is as defined in (2.29), ΞX is the |X| × k matrix whose ith
column is the feature vector associated with fi, the ith element of f ,
and the maximization with respect to ΞX is subject to the constraint(

ΞX)TΞX = I,

which corresponds to (3.6c). Accordingly, applying Lemma 3.1, we
obtain

ΞX = ΨX
(k),

i.e.,
fi(x) = f∗

i (x), i = 1, . . . , k,

Finally, to obtain (8.10a) we use (2.26b) in (8.4a) with (F.35), and
(8.10b) follows immediately via (8.4b). ■
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Appendices for Section 9

G.1 Proof of Fact 9.3

Suppose M is k1×k2. Let ψL
i and ψR

i denote the left and right singular
vectors of M corresponding to σi(M), for i = 1, . . . ,min{k1, k2}. Then[(

ψL
i

)T (
ψR

i

)T]T and
[(
ψL

i

)T −
(
ψR

i

)T]T
are eigenvectors of Λ with eigenvalues 1 + σi(M) and 1 − σi(M), re-
spectively. The remaining max{k1, k2} −min{k1, k2} eigenvalues are 1
and, if k2 > k1, correspond to eigenvectors[

0
(
ψR

j

)T]T ,
for j = k1 + 1, . . . , k2. Likewise, if k1 > k2 these unity eigenvalues
correspond to eigenvectors [(

ψL
j

)T 0
]T
,

for j = k2 + 1, . . . , k1. Hence, we conclude that the eigenvalues are
nonnegative if and only if σi(M) ≤ 1 for i = 1, . . . ,min{k1, k2}. ■

249
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G.2 Proof of Corollary 9.5

Applying (9.18) we have

E
[
g∗(Y )

∣∣X] = E
[(

G∗)TY ∣∣X]
=
(
G∗)TΓY |XX

=
(
G∗)TΛY XΛ−1

X X

=
(
G∗)T(G∗)−TΣ

(
F∗)−1Λ−1

X X

= Σ
(
ΨX)TΛ1/2

X Λ−1
X X

= Σ
(
F∗)TX

= Σ f∗(X)

and, analogously,

E
[
f∗(X)

∣∣Y ] = E
[(

F∗)TX∣∣Y ]
=
(
F∗)TΓX|Y Y

=
(
F∗)TΛXY Λ−1

Y Y

=
(
F∗)T(F∗)−TΣ

(
G∗)−1Λ−1

Y Y

= Σ
(
ΨY )TΛ1/2

Y Λ−1
Y Y

= Σ
(
G∗)TY

= Σ g∗(Y ).

■

G.3 Proof of Lemma 9.8

First, we have

(AµP + c− (AµQ + c))T(AΛQAT)−1(AµP + c− (AµQ + c))

= (µP − µQ)TATA−TΛ−1
Q A−1A(µP − µQ)

= (µP − µQ)TΛ−1
Q (µP − µQ). (G.1)
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Second, we have∥∥(AΛQAT)−1/2(AΛP AT−AΛQAT)(AΛQAT)−1/2∥∥2
F

= tr
((

AΛQAT)−1A
(
ΛP −ΛQ

)
AT(AΛQAT)−1A

(
ΛP −ΛQ

)
AT

)
(G.2)

= tr
(
A−TΛ−1

Q

(
ΛP −ΛQ

)
Λ−1

Q

(
ΛP −ΛQ

)
AT

)
= tr

(
Λ−1

Q

(
ΛP −ΛQ

)
Λ−1

Q

(
ΛP −ΛQ

))
(G.3)

=
∥∥Λ−1/2

Q

(
ΛP −ΛQ

)
Λ−1/2

Q

∥∥2
F, (G.4)

where to obtain (G.2) we have used Lemma 9.9, to obtain (G.3) we
have used the invariance of the trace operator to cyclic permutations,
and to obtain (G.4) we have again used Lemma 9.9. Combining (G.1)
and (G.4) with (9.35b), we obtain (9.36). ■

G.4 Proof of Lemma 9.11

With
C̃ ≜

[
Z̃

W̃

]
, (G.5)

via (9.3), we have

ΛC̃ = E
[
C̃C̃T] =

[
I ϵΦZ|W

ϵΦZ|W I

]
,

Thus,

D̄
(
N(0,ΛC̃)

∥∥ N(0, I)
)

= 1
2
∥∥ΛC̃ − I

∥∥2
F

= 1
2

∥∥∥∥∥
[

0 ϵΦZ|W

ϵ
(
ΦZ|W )T 0

]∥∥∥∥∥
2

F

= ϵ2
∥∥ΦZ|W ∥∥2

F. (G.6)

■
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G.5 Proof of Lemma 9.12

We obtain

D̄(PZ|W (·|w)∥PZ) = D̄(PZ̃|W̃ (·|w̃)∥PZ̃) (G.7)

= ϵ2 w̃T(ΦZ|W )TΦZ|W w̃

+ 1
2

∥∥∥(I− ϵ2ΦZ|W (ΦZ|W )T)− I
∥∥∥2

F
(G.8)

= ϵ2
∥∥ΦZ|W w̃

∥∥2 + ϵ4

2
∥∥ΦZ|W (ΦZ|W )T∥∥2

F

= ϵ2
∥∥ΦZ|W w̃

∥∥2 + OO(ϵ2),

where to obtain (G.7) we have used Lemma 9.8, and to obtain (G.8)
we have used (9.35b) and the fact that

Z̃ = ϵΦZ|W W̃ + νW̃ →Z̃ ,

where ΦZ|W is as defined in (9.40) and

E
[
νW̃ →Z̃ν

T
W̃ →Z̃

]
= I− ϵ2ΦZ|W (ΦZ|W )T.

■

G.6 Proof of Lemma 9.13

We have

EPW

[
D̄(PZ|W (·|W )∥PZ)

]
= ϵ2 E

[∥∥ΦZ|W W̃
∥∥2]+ OO(ϵ2) (G.9)

= ϵ2
∥∥ΦZ|W ∥∥2

F + OO(ϵ2) (G.10)
= D̄(PZ,W ∥PZPW )

(
1 + OO(1)

)
, (G.11)

where to obtain (G.9) we have used Lemma 9.12, to obtain (G.10) we
have used Lemma 5.8 (with k1 = KW and k2 = 1) since W̃ is spherically
symmetric, and to obtain (G.11) we have used Lemma 9.11. ■
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G.7 Proof of Fact 9.14

Let the ith singular value of A be λi. Then it suffices to note that

log
∣∣I− ϵ2A AT∣∣ = log

∏
i

(
1− ϵ2λ2

i

)
= log

(
1− ϵ2

∑
i

λ2
i + OO(ϵ2)

)
= −ϵ2

∑
i

λ2
i + OO(ϵ2)

= −ϵ2∥A∥2F + OO(ϵ2).

■

G.8 Proof of Lemma 9.15

We have

D
(
PZ|W (·|w)

∥∥ PZ

)
= D

(
PZ̃|W̃ (·|w̃)

∥∥ PZ̃

)
(G.12)

= 1
2

[
ϵ2
∥∥ΦZ|W w̃

∥∥2

+ tr
((

I− ϵ2ΦZ|W (ΦZ|W )T)− I
)

− log
∣∣∣I− ϵ2ΦZ|W (ΦZ|W )T∣∣∣]

= ϵ2

2
∥∥ΦZ|W w̃

∥∥2 + OO(ϵ2) (G.13)

= 1
2 D̄(PZ|W (·|w)∥PZ) + OO(ϵ2), (G.14)

where to obtain (G.12) we have used the coordinate invariance of KL
divergence, to obtain (G.13) we have used Fact 9.14, and to obtain
(G.14) we have used Lemma 9.12. ■

G.9 Proof of Corollary 9.16

We have

I(Z;W ) = EPW

[
D
(
PZ|W (·|W )

∥∥ PZ

)]
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= 1
2 EPW

[
D̄
(
PZ|W (·|W )

∥∥ PZ

)]
+ OO(ϵ2) (G.15)

= 1
2 D̄

(
PZ,W

∥∥ PZPW

)
+ OO(ϵ2), (G.16)

where to obtain (G.15) we have used Lemma 9.15, and to obtain (G.16)
we have used Lemma 9.13. ■

G.10 Proof of Lemma 9.17

First, via (9.46) and the invariance of divergence to coordinate trans-
formations we have

D(PX,Y ∥QX,Y ) = 1
2
[
tr
((

ΛQ

X̃,Ỹ

)−1 ΛP
X̃,Ỹ − I

)
− log

∣∣ΛP
X̃,Ỹ

(
ΛQ

X̃,Ỹ

)−1∣∣],
(G.17)

where

ΛP
X̃,Ỹ =

[
I B̃T

P

B̃P I

]
and ΛQ

X̃,Ỹ
=
[

I B̃T
Q

B̃Q I

]
. (G.18)

Next, using (G.18) with (9.54) we obtain

(
ΛQ

X̃,Ỹ

)−1 ΛP
X̃,Ỹ =

[
I + B̃T

QB̃Q −B̃T
Q

−B̃Q I + B̃Q B̃T
Q

] [
I B̃T

P

B̃P I

]
+ OO(ϵ2)

=
[
I + B̃T

Q(B̃Q − B̃P ) (B̃P − B̃Q)T

B̃P − B̃Q I + B̃Q(B̃Q − B̃P )T

]
+ OO(ϵ2),

so

tr
((

ΛQ

X̃,Ỹ

)−1ΛP
X̃,Ỹ −I

)
= 2 tr

(
B̃Q(B̃Q − B̃P )T

)
+ OO(ϵ2)

= 2
∥∥B̃Q

∥∥2
F−2 tr

(
B̃QB̃T

P

)
+ OO(ϵ2). (G.19)

Finally, using Fact 9.14 and the block matrix determinant identity we
obtain

log
∣∣ΛP

X̃Ỹ

∣∣ = log
∣∣I− B̃T

P B̃P

∣∣ = −
∥∥B̃P

∥∥2
F + OO(ϵ2) (G.20a)

log
∣∣ΛQ

X̃Ỹ

∣∣ = log
∣∣I− B̃T

QB̃Q

∣∣ = −
∥∥B̃Q

∥∥2
F + OO(ϵ2), (G.20b)

so substituting (G.19) and (G.20) in (G.17) yields (9.49). ■
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G.11 Proof of Proposition 10.2

Given X = {x1, . . . , x|X|} ⊂ RKX and Y = {y1, . . . , y|Y|} ⊂ RKY , con-
sider (without loss of generality) arbitrary zero-mean, unit-variance
features f : X→ R and g : Y→ R, whose corresponding feature vectors
are ξX ∈ I

X and ξY ∈ I
Y, respectively.

In addition, let fL(x) =
(
ξX

G
)T
x and gL(y) =

(
ξY

G
)T
y denote the

linear MMSE approximations to f and g, respectively, i.e.,

ξX
G = arg min

ξG∈RKX

E
[(
ξT

GX − f(X)
)2] (G.21a)

ξY
G = arg min

ξG∈RKY

E
[(
ξT

G Y − g(Y )
)2]
. (G.21b)

Without loss of generality, we assume that ΛX = I and ΛY = I, since if
not they can be converted to this form by linear transformation. Then,
from standard linear (MMSE) estimation theory it follows that

ξX
G = E

[
f(X)XT] = X

√
PX︸ ︷︷ ︸

≜ΠX

ξX (G.22a)

ξY
G = E

[
g(Y )Y T] = Y

√
PY︸ ︷︷ ︸

≜ΠY

ξY , (G.22b)

where X and Y are matrices whose columns are the vectors in X and
Y, respectively, and where the matrices ΠX and ΠY characterize the
associated projections.

Next, note that if f is linear, i.e.,

f(x) = ζT
G x (G.23)

for some ζG, then (
ΠX)TζG =

√
PX XTζG = ξX

since XTζG is a vector whose xth element is f(x).
Now for any feature f with feature vector ξX , the feature vector

ξY ≜ B ξX corresponds to the feature g(y) = E[f(X)|Y = y]. To see
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this, it suffices to note that ξY has elements

ξY (y) =
∑
x∈X

B(x, y) ξX(x)

=
∑
x∈X

1√
PY (y)

PY |X(y|x)
√
PX(x)

√
PX(x) f(x)

=
√
PY (y)

∑
x∈X

PX|Y (x|y) f(x)︸ ︷︷ ︸
=g(y)

.

In turn, specializing f to the case (G.23) yields

B
(
ΠX)TζG =

√
PY E

[
ζT

G X
∣∣Y ],

and specializing the resulting g in (G.22b) with (G.21b) yields

ΠY B
(
ΠX)TζG = arg min

ξG∈RKY

E
[(
ξT

G Y − E
[
ζT

G X
∣∣Y ])2]

= arg min
ξG∈RKY

E
[(
ξT

G Y − ζ
T
G X

)2] (G.24)

= Λ−1
Y ΛY X ζG (G.25)

= BG ζG. (G.26)

To obtain (G.24) we have used

E
[(
ξT

G Y − ζ
T
G X

)2] = E
[(
ξT

G Y − E
[
ζT

G X
∣∣Y ])2]

+ E
[(
ζT

G X − E
[
ζT

G X
∣∣Y ])2]

− 2E
[(
ζT

G X − E
[
ζT

G X
∣∣Y ])

·
(
ξT

G Y − E
[
ζT

G X
∣∣Y ])],

where we note that the second term does not depend on ξG, and
that the last term is zero due to the orthogonality property of MMSE
estimators. In turn, to obtain (G.25) we recognize (G.24) as a linear
MMSE estimation problem, whose solution depends only on the first
and second moments of (X,Y ), and to obtain (G.26) we use (9.11).
Finally, since (G.26) holds for all ζG, we obtain (10.3) as desired. ■
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G.12 Proof of Fact 9.22

It suffices to note that

ΛZ̃1Z̃3
= E

[
E
[
Z̃1Z̃

T
3
∣∣Z̃2
]]

= E
[
E
[
Z̃1
∣∣Z̃2
]
E
[
Z̃3
∣∣Z̃2
]T]

= E
[
ΛZ̃1Z̃2

Z̃2 Z̃
T
2 ΛT

Z̃3Z̃2

]
= ΛZ̃1Z̃2

ΛZ̃2
ΛZ̃2Z̃3

= ΛZ̃1Z̃2
ΛZ̃2Z̃3

.

■

G.13 Proof of Proposition 9.24

Without loss of generality, we restrict S(k) and T(k) so that they are
normalized with respect to PX and PY , respectively, i.e.,

(
F(k),G(k)

)
∈

L as defined in (9.27). Accordingly, we have the representations (9.29)
in which ΞX and ΞY satisfy (9.31).

For the MMSE estimation of V based on S(k), the MSE is

λV |S
e
(
C

KY
ϵY

(ΛY ),F(k)
)

= tr
(
Λ1/2

V ΛṼ |S(k)
Λ1/2

V

)
= tr(ΛV )− ϵ2Y

∥∥Λ1/2
V

(
ΦY |V )TB̃ ΞX∥∥2

F, (G.27)

where we have used (9.65b), so

λ̄V |S
e
(
F(k)

)
= ERIE

[
λV |S

e
(
C

KY
ϵY

(ΛY ),F(k)
)]

= tr(ΛV )− ϵ2Y
KV KY

tr(ΛV )E
[∥∥ΦY |V ∥∥2

F

] ∥∥B̃ ΞX∥∥2
F (G.28)

≥ tr(ΛV )
[
1− ϵ2Y

KV KY
E
[∥∥ΦY |V ∥∥2

F

] k∑
i=1

σ2
i

]
, (G.29)

where to obtain (G.28) we have used Lemma 5.8, and to obtain (G.29)
we have used Lemma 3.1. It further follows from Lemma 3.1 that the
inequality (G.29) holds with equality when we choose ΞX according to
(9.32a).
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For the MMSE estimation of U based on S(k), the MSE is

λU |S
e
(
C

KX
ϵX

(ΛX),F(k)
)

= tr
(
Λ1/2

U ΛŨ |S(k)
Λ1/2

U

)
= tr(ΛU )− ϵ2X

∥∥Λ1/2
U

(
ΦX|U)TΞX∥∥2

F, (G.30)

so

λ̄U |S
e
(
F(k)

)
= ERIE

[
λU |S

e
(
C

KX
ϵX

(ΛX),F(k)
)]

= tr(ΛU )− ϵ2X
KUKX

tr(ΛU )E
[∥∥ΦX|U∥∥2

F

] ∥∥ΞX∥∥2
F (G.31)

= tr(ΛU )
[
1− ϵ2X k

KUKX
E
[∥∥ΦX|U∥∥2

F

]]
(G.32)

for any (admissible) choice of F(k), where to obtain (G.31) we have used
Lemma 5.8, and to obtain (G.32) we have used that

∥∥ΞX∥∥2
F = k due to

(9.31). Hence, the unique Pareto optimal choice of F(k) in (9.71) is as
given by (9.32a).

Via a symmetry argument (corresponding to interchanging the roles
of X and Y , and U and V , and noting that B̃ and B̃T share the same
singular values), it follows that

λ̄V |T
e

(
G(k)

)
= tr(ΛV )

[
1− ϵ2Y k

KV KY
E
[∥∥ΦY |V ∥∥2

F

]]

λ̄U |T
e
(
G(k)

)
≥ tr(ΛU )

[
1− ϵ2X

KUKX
E
[∥∥ΦX|U∥∥2

F

] k∑
i=1

σ2
i

]
,

with equality in the latter when G(k) is given by (9.32b). Hence, the
unique Pareto optimal choice of G(k) in (9.71) is as given by (9.32a).

Finally, we note that we obtain (9.72) by recognizing that

ĒX|U =
E
[∥∥ΦX|U∥∥2

F

]
KUKX

and ĒY |V =
E
[∥∥ΦY |V ∥∥2

F

]
KV KY

.

■
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G.14 Proof of Proposition 9.25

For the MMSE estimation of V based on S, the MSE is, starting from
(G.27),

λV |S
e
(
C

KY
ϵY

(ΛY ),F(k),
)

= tr(ΛV )− ϵ2Y
∥∥Λ1/2

V

(
ΦY |V )TB̃ ΞX∥∥2

F

= tr(ΛV )− ϵ2Y
∥∥Λ1/2

V QY |V ∆Y |V (Φ̃Y |V )TB̃ ΞX∥∥2
F (G.33)

≥ tr(ΛV )− ϵ2Y
∥∥Λ1/2

V

∥∥2
s
∥∥∆Y |V ∥∥2

s
∥∥(Φ̃Y |V )TB̃

∥∥2
F
∥∥ΞX∥∥2

s (G.34)

≥ tr(ΛV )− ϵ2Y
∥∥Λ1/2

V

∥∥2
s

(
KY + k

k

) k∑
i=1

σ2
i (G.35)

≥ k − ϵ2Y
(
KY + k

k

) k∑
i=1

σ2
i , (G.36)

where to obtain (G.33) we have expressed ΦY |V in terms of its SVD

ΦY |V = Φ̃Y |V ∆Y |V (QY |V )T, (G.37)

where the KY × k matrix Φ̃Y |V has orthonormal columns, i.e.,(
Φ̃Y |V )TΦ̃Y |V = I, (G.38)

∆Y |V is a k × k diagonal matrix, and QY |V is k × k orthogonal matrix.
To obtain (G.34) we have (repeatedly) used Fact 5.12 and the fact that
QY |V is orthogonal, and to obtain (G.35) we have used that ΞX satisfies
(9.31), that ∥∥∆Y |V ∥∥2

s =
∥∥ΦY |V ∥∥2

s ≤
KY + k

k
(G.39)

since V is a Gaussian multi-attribute and so satisfies the property of
Definition 9.20, and applied Lemma 3.1 with the constraint (G.38).
And to obtain (G.36) we have used the last constraint in (9.74), which
implies that none of the singular values of ΛV are smaller than unity.
Finally, it is straightforward to verify that the inequalities leading to
the right-hand side of (G.36) hold with equality when

ΛV = I (G.40a)

ΦY |V =

√
KY + k

k
ΨY

(k) (G.40b)
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and
ΞX = ΨX

(k). (G.41)

For the MMSE estimation of U based on S, the MSE is, starting
from (G.30),

λU |S
e
(
C

KX
ϵX

(ΛX),F(k)
)

= tr(ΛU )− ϵ2X
∥∥Λ1/2

U

(
ΦX|U)TΞX∥∥2

F

≥ tr(ΛU )− ϵ2X
∥∥Λ1/2

U

∥∥2
s
∥∥∆X|U∥∥2

s
∥∥(Φ̃X|U)TΞX∥∥2

F (G.42)

≥ tr(ΛU )− ϵ2X
∥∥Λ1/2

U

∥∥2
s
(
KX + k

)
(G.43)

≥ k − ϵ2X
(
KX + k

)
, (G.44)

where to obtain (G.42) we have used Fact 5.12, expressing ΦX|U in
terms of its SVD

ΦX|U = Φ̃X|U ∆X|U (QX|U)T, (G.45)

where the KY × k matrix Φ̃X|U has orthonormal columns, i.e.,(
Φ̃X|U)TΦ̃X|U = I, (G.46)

∆X|U is a k × k diagonal matrix, and QX|U is k × k orthogonal matrix.
To obtain (G.43) we have used that Φ̃X|U satisfies (G.46) and ΞX

satisfies (9.31), Lemma 3.1, and that∥∥∆X|U∥∥2
s =

∥∥ΦX|U∥∥2
s ≤

KX + k

k
(G.47)

since U is a Gaussian multi-attribute and so satisfies the property
of Definition 9.20. To obtain (G.44) we have used the penultimate
constraint in (9.74), which implies that none of the singular values
of ΛU are smaller than unity. Finally, the inequalities leading to the
right-hand side of (G.44) hold with equality when, for example,

ΛU = I (G.48a)

ΦX|U =

√
KX + k

k
ΨX

(k) (G.48b)

and ΞX is chosen according to (G.41).
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Via a symmetry argument (corresponding to interchanging the roles
of X and Y , and U and V , and noting that B̃ and B̃T share the same
singular values), it follows that λU |T

e
(
C

KX
ϵX

(ΛX),G(k)
)

is minimized by
choosing (G.48) and

ΞY = ΨY
(k), (G.49)

and that λV |T
e

(
C

KY
ϵY

(ΛY ),G(k)
)

is minimized by choosing, for example,
(G.40) and (G.49). The unique Pareto optimality of the choices then
follows. Finally, (9.75) is obtained by combining the characterizations

ΛXU = ϵX Λ1/2
X ΦX|U and ΛY V = ϵY Λ1/2

Y ΦY |V (G.50)

with (G.48b), (G.40b), and (9.34). ■

G.15 Proof of Proposition 9.26

First, since mutual information is invariant to coordinate transforma-
tions, without loss of generality we may choose ΛU = ΛV = I, in which
case Ũ = U and Ṽ = V . Then, using the conditional independencies
associated with the Markov chain (9.63) we have

ΛUV = E
[
E
[
U V T∣∣X̃, Ỹ ]]

= E
[
E
[
U
∣∣X̃]E[V T∣∣Ỹ ]]

= ϵXϵY E
[(

ΦX|U)TX̃ Ỹ TΦY |V
]

= ϵXϵY
(
ΦX|U)TB̃TΦY |V . (G.51)

Hence, with

C̃ ≜

[
U

V

]
so ΛC̃ =

[
I ΛUV

ΛT
UV I

]
,

we have

I(U ;V ) = −1
2 log |ΛC̃ |

= −1
2 log

∣∣I−ΛUV ΛT
UV

∣∣
= ϵ2Xϵ

2
Y

2
∥∥(ΦY |V )T B̃ ΦX|U∥∥2

F + OO(ϵ2Xϵ
2
Y ) (G.52)
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≤ ϵ2Xϵ
2
Y

2
∥∥B̃ Φ̃X|U∥∥2

F
∥∥Φ̃Y |V ∥∥2

s
∥∥∆X|U∥∥2

s
∥∥∆Y |V ∥∥2

s + OO(ϵ2Xϵ
2
Y )

(G.53)

≤ ϵ2Xϵ
2
Y

2

(
KX + k

k

)(
KY + k

k

) k∑
i=1

σ2
i + OO(ϵ2Xϵ

2
Y ), (G.54)

where to obtain (G.52) we have used (G.51) with Fact 9.14, to obtain
(G.53) we have used the SVDs (G.45) and (G.37) with (repeatedly)
Fact 5.12, and to obtain (G.54) we have used both Lemma 3.1 with
(G.46), and both (G.47) and (G.39). Finally, it is straightforward to ver-
ify that the inequality (G.54) is achieved with equality when ΦY |V and
ΦX|U are chosen according to (G.40b) and (G.48b), respectively, which
correspond to (9.75b)–(9.75c). With these choices, (G.51) specializes to

ΛUV = ϵXϵY

√
KX + k

k

√
KY + k

k

(
ΨX

(k)
)TB̃TΨY

(k)

= ϵXϵY

√
KX + k

k

√
KY + k

k
Σ(k),

where we have used (9.57b). ■

G.16 Proof of Corollary 9.27

It suffices to note from Corollary 9.16 that U and V so constrained
correspond to ϵX(1 + OO(1))- and ϵY (1 + OO(1))-multi-attributes with

ϵX ≜ ϵ

√
k

KX + k
and ϵY ≜ ϵ

√
k

KY + k
. (G.55)

In particular, the multi-attribute property (9.61) specialized to U is
obtained via

∥∥ΦX|U∥∥2
s = λmax

((
ΦX|U)TΦX|U)

= 1
ϵ2X
λmax

(
ΛT

XU Λ−1
X ΛXU

)
= max

i∈{1,...,k}

∥∥ϕX|Ui
∥∥2

≤ KX + k

k

(
1 + OO(1)

)
,
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where to obtain the second equality we have used that ΛU = I, and to
obtain third equality we have used that ΛT

XU Λ−1
X ΛXU is diagonal. To

obtain the inequality, note that with ϵX as defined,

I(Ui;X) = ϵ2X
∥∥ϕX|Ui

∥∥2 + OO(ϵ2X) ≤ ϵ2 = ϵ2X

(
KX + k

k

)
,

whence ∥∥ϕX|Ui
∥∥2 ≤ KX + k

k

(
1 + OO(1)

)
.

The corresponding result for V follows from symmetry. Finally, sub-
stituting for ϵX and ϵY in the right-hand side of (9.77) yields (9.79),

■

G.17 Proof of Corollary 9.28

First, (9.84) holds from the conditional independence in the definition
of an attribute. Next, since the variables are jointly Gaussian, it suffices
to obtain the associated second moment characterization. In particular,
using that ΦX|U = ΨX

(k) and (9.24a) we have

E[U |X] = ϵ
(
ΦX|U)TX̃ = ϵS∗

(k) (G.56)

and

ΛU |X = I− ϵ2
(
ΦX|U)TΦX|U = I− ϵ2

(
F∗

(k)
)TΛXF∗

(k) = (1− ϵ2) I,
(G.57)

whence (9.85a). And via a symmetry argument (corresponding to inter-
changing the roles of X and Y , and U and V ), we obtain (9.85b) from
(9.85a).

Next,

PU |S∗
(k),T

∗
(k),V

(
u|s∗

(k), t
∗
(k), v

)
=
PU,V |S∗

(k),T
∗
(k)

(
u, v|s∗

(k), t
∗
(k)
)

PV |S∗
(k),T

∗
(k)

(v|s∗
(k), t

∗
(k))

=
PU,V |X,Y (u, v|x, y)
PV |X,Y (v|x, y)

= PU |X(u|x)
= PU |S∗

(k)

(
u|s∗

(k)
)
. (G.58)

 
The version of record is available at: http://dx.doi.org/10.1561/0100000107



264 Appendices for Section 9

Verifying (9.86a), and (9.86b) follows from symmetry considerations.
Finally, to obtain (9.87a) we have

E[V |X] = ϵ
(
ΦY |V )TB̃ X̃

= ϵ
(
ΨY

(k)
)TB̃ X̃

= ϵΣ(k)
(
ΨX

(k)
)T
X̃

= ϵΣ(k) S
∗
(k),

and

ΛV |X = I− ϵ2
(
ΦY |V )TB̃ B̃TΦY |V

= I− ϵ2
(
ΨY )TB̃ B̃TΨY

= I− ϵ2 Σ(k)
(
ΨX)TΨX Σ(k)

= I− ϵ2 Σ2
(k).

Via a symmetry argument, we obtain (9.87b) from (9.87a). ■

G.18 Proof of Proposition 9.29

First, since the constraints on U and V coincide with those of Corol-
lary 9.27, from the proof of the latter we obtain that U and V are
ϵX(1 + OO(1))- and ϵY (1 + OO(1))-multi-attributes with ϵX and ϵY as given
by (G.55).

As such, for the maximization of I(U ;Y ) we have

I(Y ;U) = I(Ỹ ;U)

= ϵ2X
2
∥∥B̃ ΦX|U∥∥2

F + OO(ϵ2X) (G.59)

= ϵ2X
2
∥∥B̃ Φ̃X|U ∆X|U∥∥2

F + OO(ϵ2X) (G.60)

≤ ϵ2X
2
∥∥B̃ Φ̃X|U∥∥2

F
∥∥∆X|U∥∥2

s + OO(ϵ2X) (G.61)

≤ ϵ2X
2
∥∥B̃ Φ̃X|U∥∥2

F

(
KX + k

k

)
+ OO(ϵ2X) (G.62)

≤ ϵ2

2

k∑
i=1

σ2
i + OO(ϵ2), (G.63)
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where to obtain (G.59) we have used Lemma 9.11 with Corollary 9.16,
to obtain (G.60) we have used the SVD (G.45), to obtain (G.61) we
have used Fact 5.12, to obtain (G.62) we have used the (G.47), and
to obtain (G.63) we have used Lemma 3.1 with (G.46). Finally, it is
straightforward to verify that the inequalities all hold with equality when
ΦX|U is chosen according to (G.48b), which corresponds to (9.80a).

Via a symmetry argument (corresponding to interchanging the roles
of X and Y , and U and V , and noting that B̃ and B̃T share the same
singular values), it follows that

I(V ;X) ≤ ϵ2

2

k∑
i=1

σ2
i + OO(ϵ2),

where the inequality holds with equality when ΦY |V is chosen according
to (G.40b), which corresponds (9.80b). ■

G.19 Proof of Proposition 9.30

To simplify the exposition, we first consider the case KX = KY = K.
First, as defined in (9.24), S∗ ≜ S∗

(K) and T ∗ ≜ S∗
(K) are invertible

transformations of X and Y , respectively, with [cf. (9.17)]

ΛS
∗ = ΛT

∗ = I and ΛT
∗
S

∗ = Σ

and S∗ ↔ X ↔W ↔ Y ↔ T ∗, a special case of which is

S∗
i ↔W ↔ T ∗

i , i = 1, . . . ,K. (G.64)

Then

I(W ;X,Y )
= I(W ;S∗, T ∗) (G.65)

=
K∑

i=1
I(W ;S∗

i , T
∗
i |(S

∗)i−1, (T ∗)i−1) (G.66)

=
K∑

i=1
I(S∗

i , T
∗
i ;W, (S∗)i−1, (T ∗)i−1)− I(S∗

i , T
∗
i ; (S∗)i−1, (T ∗)i−1)︸ ︷︷ ︸

=0
(G.67)
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=
K∑

i=1
I(W ;S∗

i , T
∗
i ) + I((S∗)i−1, (T ∗)i−1;S∗

i , T
∗
i |W )︸ ︷︷ ︸

≥0

(G.68)

≥
K∑

i=1
I(W ;S∗

i , T
∗
i ) (G.69)

=
K∑

i=1
I(W ;S∗

i ) + I(W ; , T ∗
i |S

∗
i ) (G.70)

=
K∑

i=1
I(W ;S∗

i ) +
(
I(S∗

i ,W ;T ∗
i )− I(S∗

i ;T ∗
i )
)

(G.71)

=
K∑

i=1
I(W ;S∗

i ) + I(W ;T ∗
i )− I(S∗

i ;T ∗
i ) (G.72)

≥
K∑

i=1
I(E

[
S∗

i |W
]
;S∗

i ) + I(E
[
T ∗

i |W
]
;T ∗

i )− I(S∗
i ;T ∗

i ) (G.73)

≥
K∑

i=1
RS

∗
i
(DS

∗
i
) +RT

∗
i
(DT

∗
i
)− I(S∗

i ;T ∗
i ) (G.74)

= 1
2

K∑
i=1

log 1− σ2
i

DS
∗
i
DT

∗
i

, (G.75)

where to obtain (G.65) we have used the invariance of mutual informa-
tion to coordinate transformation, to obtain (G.66) have used chain rule
of mutual information, to obtain (G.67) we have used the chain rule
of mutual information and note that the second term is zero since the
S∗

i , T
∗
i are independent of (S∗)i−1, (T ∗)i−1, to obtain (G.68) we have

used the chain rule of mutual information on the first term in (G.67),
to obtain (G.69) we neglect the second term in (G.68), to obtain (G.70)
we use the chain rule of mutual information, to obtain (G.71) we use
the chain rule of information on the second term in (G.70), to obtain
(G.72) we have used (G.64), to obtain (G.73) we have used the data
processing inequality, and to obtain (G.74) we have used the definition
of the (Gaussian) rate-distortion function (see, e.g., [63, Chapter 10]).
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Now

DS
∗
i

= E
[(
S∗

i − E
[
S∗

i

∣∣W ])2] = 1− E
[
E
[
S∗

i

∣∣W ]2]︸ ︷︷ ︸
≜δ

S
∗
i

(G.76)

DT
∗
i

= E
[(
T ∗

i − E
[
T ∗

i

∣∣W ])2] = 1− E
[
E
[
T ∗

i

∣∣W ]2]︸ ︷︷ ︸
≜δ

T
∗
i

(G.77)

and

σ2
i = E

[
E
[
S∗

i T
∗
i

∣∣W ]]2
= E

[
E
[
S∗

i

∣∣W ]
E
[
T ∗

i

∣∣W ]]2
≤ E

[
E
[
S∗

i

∣∣W ]2]E[E[T ∗
i

∣∣W ]2]
= δS

∗
i
δT

∗
i
, (G.78)

where we have used the Cauchy-Schwarz inequality.
Hence, the lower bound (G.75) is minimized by maximizing

(
1 −

δS
∗
i
)(1− δT

∗
i

)
for each i ∈ {1, . . . ,K}, subject to the constraint (G.78),

which is a straightforward exercise, yielding δS
∗
i

= δT
∗
i

= σi, whence

I(W ;X,Y ) ≥ 1
2

K∑
i=1

log
(1 + σi

1− σi

)
.

To show that the lower bound is achieved, choose W such that
W,X, Y are jointly Gaussian, and let W ∈ RK be zero-mean with
ΛW = I. Finally, choose

ΛS
∗
W = ΛT

∗
W = Σ1/2. (G.79)

Then using Fact 9.22, we confirm that with W so defined, S∗ ↔W ↔ T ∗

since
ΛS

∗
W ΛT

T
∗
W = Σ = ΛS

∗
T

∗ .

Finally, exploiting the resulting conditional independence structure, we
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have

I(W ;S∗, T ∗) =
K∑

i=1
I(Wi;S

∗
i , T

∗
i )

=
K∑

i=1
I(Wi;S

∗
i ) + I(Wi;T

∗
i )− I(S∗

i ;T ∗
i )

= −1
2

K∑
i=1

[
log(1− λS

∗
i Wi

) + log(1− λT
∗
i Wi

)

+ log(1− λS
∗
i T

∗
i
)
]

= 1
2

K∑
i=1

log 1− σ2
i

(1− σi)(1− σi)

= 1
2

K∑
i=1

log 1 + σi

1− σi
.

The extension to the case KX ̸= KY is straightforward. In particular,
when KX ≤ KY , we write

B̃ = ΨY
− Σ−

(
ΨX)T,

where the KY ×KX matrix ΨY
− is formed from the first KX columns

of ΨY , and where the KX ×KX matrix Σ− is formed from the first
KX rows of Σ (the rest being all zeros). In the associated analysis, we
then replace (G.79) with

ΛS
∗
W = Σ1/2

−

ΛT
∗
W = Σ1/2.

Likewise, when KX > KY we write

B̃ = ΨY Σ̃−
(
ΨX

−
)T
,

where the KX ×KY matrix ΨX
− is formed from the first KY columns

of ΨX , and where the KY ×KY matrix Σ̃− is formed from the first
KY columns of Σ (the rest being all zeros). In this case, the associated
analysis replaces (G.79) with

ΛS
∗
W = Σ1/2

ΛT
∗
W = Σ̃1/2

− .
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The result in both cases can be expressed in the form

ΛXW = Λ1/2
X ΨX

(K) Σ1/2
(K)

ΛY W = Λ1/2
Y ΨY

(K) Σ1/2
(K),

and, in turn, (9.90). ■

G.20 Proof of Corollary 9.31

With
A∗ ≜

[
S∗

T ∗

]
we have, as a straightforward exercise in linear algebra,

E
[
W |X,Y

]
= E

[
W |S∗, T ∗]

= ΛW,A
∗ Λ−1

A
∗A∗

=
[
Σ1/2

(K) Σ1/2
(K)

] [ I Σ(K)
Σ(K) I

]−1 [
S∗

(K)
T ∗

(K)

]

= Σ1/2
(K)
(
I + Σ(K)

)−1 [I I
] [S∗

(K)
T ∗

(K)

]
,

and

ΛW |X,Y = ΛW |S∗
,T

∗

= I−ΛT
W |A∗Λ−1

A
∗ΛW |A∗

= I− 2Σ(K)
(
I + Σ(K)

)−1

=
(
I−Σ(K)

)(
I + Σ(K)

)−1
.

■

G.21 Proof of Corollary 9.32

It suffices to verify that W̌ so defined has ΛW̌ X and ΛW̌ Y matching
(9.90), i.e., that

[
ΛW̌ X ΛW̌ Y

]
=
[
ΛW̌ U ΛW̌ V

] [ I ΛUV

ΛT
UV I

]−1 [ΛUX ΛUY

ΛV X ΛV Y

]
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=
[
ΛW X ΛW Y

]
(G.80)

holds. But from (9.80) and (9.81) with ϵ = 1, and using Fact 9.22 with
(9.18), we have[

ΛUX ΛUY

ΛV X ΛV Y

]
=
[

I Σ(K)
Σ(K) I

] [(
F∗

(K)
)TΛX 0
0

(
G∗

(K)
)TΛY

]

and ΛUV = Σ(K), and from (9.90) we have[
ΛW X ΛW Y

]
= Σ1/2

(K)

[(
F∗

(K)
)TΛX

(
G∗

(K)
)TΛY

]
.

Hence, with the choices (9.96), it follows that (G.80) holds. ■

G.22 Proof of Lemma 9.35

First, note that

E
[∥∥V (y)− V◦(x)

∥∥2]
= E

[
tr
((
V (y)− V◦(x)

)(
V (y)− V◦(x)

)T)]
= tr ΛV (y)−V◦(x) +

∥∥E[V (y)− V◦(x)
]∥∥2 (G.81)

= tr
(
ΛV |Y

)
+ tr

(
ΛV |X

)
+
∥∥E[V |Y = y

]
− E

[
V |X = x

]∥∥2
,

(G.82)

where to obtain (G.81) we have used the trivial identity E
[
ZZT] =

ΛZ +E
[
Z
]
E
[
Z
]T, and to obtain (G.82) we have used that V (y) and V◦(x)

are independent and distributed according to PV |Y (·|y) and PV |X(·|x),
respectively.

Finally, substituting (9.85b) and (9.87a) from Corollary 9.28 into
(G.82), we obtain

E
[∥∥V (y)− V◦(x)

∥∥2] = 2k − k ϵ2 − ϵ2
k∑

i=1
σ2

i + ϵ2
k∑

i=1

(
gi(y)− σi fi(x)

)2
and the lemma follows. ■
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G.23 Proof of Proposition 9.36

First, we rewrite (9.111) in the equivalent form(
ΨY

(k)
)T
ỹ = Σ(k)

(
ΨX

(k)
)T
x̃. (G.83)

Next, we note that the objective function PY (y) in (9.112) is a monoton-
ically decreasing function of ∥ỹ∥, and thus we seek to find the minimum
norm solution ỹ∗(x) to (G.83). Via familiar linear algebra results—see,
e.g., [114, Problem 7.3.P9]—the solution follows as

ỹ∗(x) =
(
ΨY

(k)
)†TΣ(k)

(
ΨX

(k)
)T
x = ΨY

(k)Σ(k)
(
ΨX

(k)
)T
x̃. (G.84)

Rewriting (G.84) in terms of y and x and using standard pseudoinverse
properties then yields (9.113). ■

G.24 Proof of Proposition 9.39

We have

D
(
PX,Y

∥∥ P (k)
X,Y

)
=
∥∥B̃− B̃(k)∥∥2

F + OO(ϵ2) (G.85)

≥
K∑

i=k+1
σ2

i + OO(ϵ2), (G.86)

where to obtain (G.85) we have used Lemma 9.17 with B̃ as defined in
(9.11) and

B̃(k) ≜ Λ−1/2
Y Λ(k)

Y XΛ−1/2
X , (G.87)

and to obtain (G.86) we have used Lemma 7.3 together with the fact
that rank

(
B̃(k)) ≤ k since rank

(
Λ(k)

XY

)
≤ k and ΛX and ΛY are positive

definite. Finally, it is straightforward to verify that the inequality (G.86)
holds with equality when B̃(k) = B̃(k)

∗ , with B̃(k)
∗ as given in (9.57). ■

G.25 Proof of Proposition 9.40

First, with the gain matrix [cf. (9.5)] ΓY |X = ΛY X Λ−1
X we rewrite the

optimization in (9.121a) as

arg min
Γ̃Y |X : rank(Γ̃Y |X)≤k

EPX,Y

[∥∥Y − Γ̃Y |XX
∥∥2]
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= arg min
Γ̃Y |X : rank(Γ̃Y |X)≤k

(
EPX,Y

[∥∥Y − ΓY |XX
∥∥2]

+ EPX

[∥∥(ΓY |X − Γ̃Y |X
)
X
∥∥2]) (G.88)

= arg min
Γ̃Y |X : rank(Γ̃Y |X)≤k

EPX

[∥∥(ΓY |X − Γ̃Y |X
)
X
∥∥2] (G.89)

= arg min
Γ̃Y |X : rank(Γ̃Y |X)≤k

∥∥(ΓY |X − Γ̃Y |X
)
Λ1/2

X

∥∥2
F, (G.90)

where to obtain (G.88) we have used the orthogonal properties of the
error in the MMSE estimate, and to obtain (G.89) we have used that
the first term does not depend on Γ̃Y |X .

In turn, with

A ≜ ΓY |XΛ1/2
X = ΛY X Λ−1/2

X and Ã ≜ Γ̃Y |XΛ1/2
X , (G.91)

we can rewrite (G.90) in the form

min
Γ̃Y |X : rank(Γ̃Y |X)≤k

∥∥(ΓY |X − Γ̃Y |X
)
Λ1/2

X

∥∥2
F = min

Ã : rank(Ã)≤k

∥∥A− Ã
∥∥2

F,

(G.92)

since rank
(
Ã
)
≤ k if and only if rank

(
Γ̃Y |X

)
≤ k since ΛX is nonsin-

gular. Hence, with the SVD for A expressed in the form (9.121c), it
follows form Lemma 7.3 that the minimum on the right-hand side of
(G.92) is achieved by the choice

Ã = Ψ̃Y
(k)Σ̃(k)

(
Ψ̃X

(k)
)T = A Ψ̃X

(k)
(
Ψ̃X

(k)
)T
,

i.e., using (G.91),

Γ̃Y |X = ΛY XΛ−1/2
X Ψ̃X

(k)
(
Ψ̃X

(k)
)TΛ−1/2

X

= ΛY X

((
Ψ̃X

(k)
)TΛ1/2

X

)† (
Ψ̃X

(k)
)TΛ−1/2

X

=
(
Λ−1/2

X Ψ̃X
(k)
(
Λ1/2

X Ψ̃X
(k)
)†ΛXY

)T
,

where we obtain the second and third equalities using standard pseu-
doinverse properties. Finally, since

Λ(k)◦
XY = ΛXΓ̃T

Y |X ,

we obtain (9.121). ■
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