
Model-Code Separation Architectures for
Compression Based on Message-Passing

by

Ying-zong Huang
B.S. with Honors, Stanford University (2004)

M.S., Stanford University (2004)

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

c© 2015 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: .
Department of Electrical Engineering and Computer Science

December 31, 2014

Certified by: .
Gregory W. Wornell

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Committee on Graduate Students

Model-Code Separation Architectures for
Compression Based on Message-Passing

by
Ying-zong Huang

Submitted to the Department of Electrical Engineering and Computer Science
on December 31, 2014, in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy

Abstract
Data is compressible by presuming a priori knowledge known as a data model, and applying
an appropriate encoding to produce a shorter description. The two aspects of compression —
data modeling and coding — however are not always conceived as distinct, nor implemented
as such in compression systems, leading to difficulties of an architectural nature.
For example, how would one make improvements upon a data model whose specific form

has been standardized into the encoding and decoding processes? How would one design
coding for new types of data such as in biology and finance, without creating a new system
in each case? How would one compress data that has been encrypted when the conventional
encoder requires data-in-the-clear to extract redundancy? And how would mobile acqui-
sition devices obtain good compression with lightweight encoders? These and many other
challenges can be tackled by an alternative compression architecture.
This work contributes a complete “model-code separation” system architecture for com-

pression, based on a core set of iterative message-passing algorithms over graphical models
representing the modeling and coding aspects of compression. Systems following this archi-
tecture resolve the challenges posed by current systems, and stand to benefit further from
future advances in the understanding of data and the algorithms that process them.

In the main portion of this thesis, the lossless compression of binary sources is examined.
Examples are compressed under the proposed architecture and compared against some of the
best systems today and to theoretical limits. They show that the flexibility of model-code
separation does not incur a performance penalty. Indeed, the compression performance of
such systems is competitive with and sometimes superior to existing solutions.
The architecture is further extended to diverse situations of practical interest, such as mis-

matched and partially known models, different data and code alphabets, and lossy compres-
sion. In the process, insights into model uncertainty and universality, data representation and
alphabet translation, and model-quantizer separation and low-complexity quantizer design
are revealed. In many ways, the proposed architecture is uniquely suitable for understanding
and tackling these problems.

iii

Throughout, a discourse is maintained over architectural and complexity issues, with a
view toward practical implementability. Of interest to system designers, issues such as rate
selection, doping, and code selection are addressed, and a method similar to EXIT-chart
analysis is developed for evaluating when compression is possible. Suggestions for system in-
terfaces and algorithmic factorization are distilled, and examples showing compression with
realistic data and tasks are given to complete the description of a system architecture acces-
sible to broader adoption.

Ultimately, this work develops one architecturally principled approach toward flexible,
modular, and extensible compression system design, with practical benefits. More broadly,
it represents the beginning of many directions for promising research at the intersection of
data compression, information theory, machine learning, coding, and random algorithms.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science

iv

Acknowledgements
I am indebted to the help of many people without whom this work could not have come to
fruition. Foremost among them is my advisor Professor Gregory Wornell. When I first came
to MIT, I had an inkling about doing the type of research represented by this work, but it
would take a long journey of learning and reflection to get here. Without his investment
in me, his tremendous patience and faith, his way of developing my skills and perspectives,
his long-term support of my research goals, his interest and encouragement, or his technical
input, this journey would have been unimaginable. For this support and guidance I feel
extremely grateful, and for having his deep insight, broad vision, and consummate intellectual
ideals to draw on I feel fortunate. Most of all, being enabled to create what I genuinely set
out to create is my best dream fulfilled, which significance cannot be properly measured in
words.
I also owe many thanks to my thesis committee for their helpful comments. Professor

Devavrat Shah raised important questions that clarified parts of the work related to coding,
and Dr. Emin Martinian contributed additional perspectives that led to a more refined view
on performance. Over the years I have learned from my committee in many ways. Sometimes
it is through their teaching, and other times through mentorship and collaboration. The seeds
of a few ideas came partly from my earlier collaboration with Dr. Martinian and from his
prior work on the subject.
A number of people contributed additional input into this work. Ying Liu introduced

several graphical algorithms to me; Chong Wang offered a detailed explanation of Ising
models; Venkat Chandar pointed out the linear processing bound due to Ancheta; David
Romero referred me to the literature on large-alphabet LDPC codes; Ying Yin provided
expertise on sequential hierarchical graphical models; Da Wang made suggestions about
existing compression algorithms; Qing He referred me to the literature on neural networks
and discriminative models; Professor Bill Freeman gave me a crash course on modern image
models; and Professor Yuval Kochman, who was also a collaborator when we overlapped at
SIA, identified connections to more related problems. There are others with whom I have
exchanged ideas about the content or presentation of the work. I would like to thank all of
them.
Given the practical angle of this work, I greatly benefited from prior research conducted in

the industry with these additional collaborators: Drs. Jonathan Yedidia and Ali Azarbaye-
jani at MERL where I developed practical graphical algorithms; Drs. John Apostolopoulos,
Mitchell Trott, and Ton Kalker at HP Labs where I worked on information, multimedia, and
security problems; and Drs. Sanjeev Mehrotra and Jin Li at Microsoft Research where I
developed error correction systems and learned about audio compression. These researchers
made a significant impact on the perspectives and tools I used to approach this work. In
many ways, this topic also returns to my own earlier academic experience, and I thank those
who first introduced me to a rich and beautiful field and set me on the path of finding out
more: I enjoyed interacting closely with Profs. Lizhong Zheng, Vivek Goyal, and Polina
Golland at MIT, and I am grateful for the wisdom and opportunities I was given by Profs.
Robert Gray, Abbas El Gamal, and Brian Wandell at Stanford University.

v

A journey of discovery always begins from a home base and I had one of the most welcoming
ones. I thank all my SIA colleagues past and present for our lively discussions, shared
experiences, and fellowship. The recent cohort that saw me go through the uncertain parts
of this work or shared in its satisfaction I am especially thankful for; and those who have
been along since my first day — Tricia, Giovanni — or recurringly so — Maryam, Hiroyuki,
Uri — add something special to the feeling of SIA as a second home. Likewise, I am fortunate
to have had the company of my areal colleagues in RLE and LIDS, my classmates, and inter-
office frequenters. Each person I’ve had the privilege to meet here has been an important
part of my experience, and I remember our time with warm memories.
In undeniable ways, this endeavor has also been a journey of self-discovery alongside a

journey of scholarship; certainly one could not have happened without the other. I am
blessed with friends and family, here and away, who had an influence on me during these
years. They challenged me and inspired me, brought me along for seriousness and folly,
listened to me, humored my ideas, cheered me up, moved me deeply. Most importantly, they
saw in me things I did not know I had. I express my heartfelt gratitude to them.

Lastly, I give my most reverent thanks to my parents, who sustained me in life and spirit
during my age of impression, and gave me what I’ve always considered the ultimate support
and understanding during my age of standing.

Research and training for this work have been supported in part by grants from Draper Laboratory, Air
Force Office of Scientific Research, Microsoft Research, Hewlett-Packard, and by a fellowship from the
National Science Foundation.

vi

to J.Y. & Z.N.,
who endowed me with

‘mind & hand’

Model-Code Separation Architectures for
Compression Based on Message-Passing

Contents

Abstract iii

Acknowledgements v

1 Introduction 15
1.1 Motivation . 15

1.1.1 Toy example . 15
1.1.2 Crisis in compression . 16

1.2 Compression architecture . 17
1.2.1 The compression landscape . 17
1.2.2 Joint design: an architectural dilemma 18
1.2.3 Separation: an architectural proposal 20

1.3 Thesis guide . 21
1.3.1 Highlight . 21
1.3.2 Organization . 21
1.3.3 Notation . 22

2 Background and Tools 23
2.1 Source coding theory . 23

2.1.1 Entropy and achievability . 23
2.1.2 Applied system design . 24

2.2 Sparse linear coding . 24
2.2.1 Linear codes . 25
2.2.2 LDPC codes for error correction . 25
2.2.3 LDPC codes for compression . 26
2.2.4 Applied system design . 26

2.3 Probabilistic graphical models . 27
2.3.1 Graphical model representation . 27
2.3.2 Iterative algorithms . 28

2.3.2.1 Gibbs sampling . 28
2.3.2.2 Belief-propagation marginalization 28

2.3.3 Pairwise models . 31
2.3.4 Applied system design . 32

2.4 Summary . 32

3

Contents

3 Proposed Scheme 33
3.1 Toy example . 33
3.2 Basic system construction . 34

3.2.1 Required inputs . 34
3.2.2 Encoder . 34
3.2.3 Decoder . 35

3.2.3.1 Code subgraph . 35
3.2.3.2 Source subgraph . 35
3.2.3.3 Decoding algorithm . 35

3.2.4 Doping symbols . 39
3.2.5 Rate selection . 39

3.3 Discussion . 40
3.3.1 Architecture . 40
3.3.2 Performance . 41
3.3.3 Complexity . 42

3.4 Related ideas . 43
3.4.1 Side information problems . 43
3.4.2 Graphical algorithms . 43
3.4.3 Dual problems . 44

4 Compressing Binary Sources 45
4.1 Experimental setup . 45

4.1.1 Threshold rate . 46
4.1.2 Expected performance . 47

4.2 Bernoulli i.i.d. sources . 47
4.2.1 Results . 48

4.3 Binary Markov sources . 49
4.3.1 Results . 50

4.4 Binary Ising model . 50
4.4.1 Entropy rate . 52
4.4.2 Results . 53

4.5 Summary . 54
4.6 Appendix: Parity lemma* . 54

5 Coding Details 57
5.1 Code selection . 57

5.1.1 Degree distribution and threshold . 57
5.1.1.1 Degree distribution* . 57
5.1.1.2 Channel coding thresholds* 58
5.1.1.3 Source coding thresholds . 58

5.1.2 Coding improvements . 60
5.2 Doping . 60

5.2.1 Initialization function . 60

4

Contents

5.2.2 Coding function . 61
5.3 Decoding mechanics . 61

5.3.1 Rate characteristics . 61
5.3.2 Convergence dynamics . 63

5.3.2.1 Examples . 63
5.3.2.2 Message ensemble evolution 64

5.4 Appendix: EXIT analysis* . 66
5.4.1 EXIT with sources . 69

6 Modeling Details 73
6.1 Model representation revisited . 73

6.1.1 Enumerative representation . 73
6.1.1.1 Codebook information . 74
6.1.1.2 Compression . 74
6.1.1.3 Learning . 75

6.1.2 Choice of representation . 76
6.2 Unknown model . 77
6.3 Model mismatch . 77

6.3.1 Results . 79
6.4 Parameter estimation . 79

6.4.1 Parametric decoding . 80
6.4.2 Augmented graphical model . 81
6.4.3 Results . 83
6.4.4 Discussion . 85

7 Architectural Generalization 87
7.1 Large-alphabet sources . 87
7.2 Representation and translation . 88
7.3 System construction . 89

7.3.1 Required inputs . 89
7.3.2 Represented encoding . 89
7.3.3 Translated decoding . 89
7.3.4 Doping symbols . 91

7.4 Modular decoder . 91
7.5 Related ideas . 92

8 Compressing Large-Alphabet Sources 93
8.1 Markov sources . 93

8.1.1 MarkovZ . 93
8.1.2 Results . 94

8.2 Potts model . 96
8.2.1 PottsZ . 96
8.2.2 Results . 97

5

Contents

8.3 Summary . 98

9 Lossy Compression 99
9.1 Rate-distortion theory* . 99

9.1.1 Achievability . 100
9.1.2 Applied system design . 101

9.2 Separation architecture . 101
9.2.1 A naive hashing encoder . 101
9.2.2 Model-quantizer separation . 102

9.3 Model-free quantization . 103
9.3.1 Existing quantizers . 104

9.3.1.1 Coded quantization* . 104
9.3.1.2 Geometric hashing* . 105

9.3.2 Low-density hashing quantizer . 106
9.3.2.1 Quantization function . 106
9.3.2.2 Encoding algorithm . 107
9.3.2.3 Decoding algorithm . 107
9.3.2.4 Exploratory results . 108

9.4 Quantization codebook mismatch . 109
9.4.1 Entropy coding . 110
9.4.2 Main results . 110
9.4.3 Examples . 112

9.5 Summary . 113
9.6 Appendix: Ancheta bound* . 113

10 Toward Realistic Applications 115
10.1 Bi-level image compression . 115

10.1.1 Experimental setup . 115
10.1.2 Palmprints under the Ising model . 115
10.1.3 Handwritten digits under the Ising model 116
10.1.4 Discussion . 116

10.2 Encrypted compression . 116
10.2.1 Encrypted encoding . 118
10.2.2 Encrypted decoding . 118
10.2.3 Image data example . 119
10.2.4 Discussion . 120

11 Conclusion 123
11.1 Review . 123

11.1.1 Requirements . 123
11.1.2 Design proposals . 123

11.2 Future work . 124
11.2.1 Modeling . 124

6

Contents

11.2.2 Coding . 124
11.2.3 Quantizer design . 125
11.2.4 Communication system design . 125
11.2.5 Algorithms and implementation . 125
11.2.6 Hardware acceleration of BP . 126
11.2.7 Ecosystem . 126

11.3 Epilogue . 126

Index 132

Bibliography 142

7

List of Figures

1.1 A compression system for Source A. 15
1.2 State diagram of Source B, a Markov source with recurrence probability close

to 1. 16
1.3 A lossless compression system with the joint model-code architecture. In this

common two-stage design, the data model is used to design both Process and
Code. 19

1.4 A postulated compression system with a model-code separation architecture.
Code must essentially operate model-free. 20

2.1 Linear subspaces of Sn can serve as codebooks or index collections for coding.
Here, the dots indicate the set of typical words according to some probability
law, and the circle indicates the true realization among them. For channel
coding, L = col(G) is the codebook. For source coding, L⊥ = row(H) is the
index collection. The gray dashed subspace is the syndrome decoding coset
in channel coding, or the hash constraint set in source coding. 25

2.2 Conversion of an undirected graph G (left) to its factor graph F (right), as-
suming the maximal cliques of G represent factors of psn that cannot be further
factored. 29

2.3 Examples of nodes exchanging messages (unary functions) on the factor graph
F , viewed as local I/O. 29

3.1 System diagram for the model-code separation architecture. On the left is a
model-free encoder. On the right is an inferential decoder. 34

3.2 The structure of the combined decoder source-code graph U for the system
in Section 3.2 (left). The differently colored subgraphs behave as if modular
components connected via dashed virtual ports (right). 36

3.3 A rateless system with minimal decoder acknowledgement on the feedback. . 39
3.4 A zero-error, variable-rate system featuring a decoder simulation within the

encoder and internal feedback. 40

4.1 The BP decoding threshold εBP is a lower rate that more accurately describes
the useful rate of a particular code under BP. 46

4.2 Source subgraph for Bern(p), with φi = [1− p; p]. 47
4.3 Compression performance for the Bern(p) source family over a range of p

values. rdope = 0. 49

9

List of Figures

4.4 Source subgraph for Markov(q), with ψji =
[

q 1− q
1− q q

]
. 49

4.5 Compression performance for the Markov(q) source family over a range of q
values. rdope = 0.1. 50

4.6 Source subgraph for Ising(p, q), with φ = [1− p; p], ψ =
[

q 1− q
1− q q

]
. . . 51

4.7 100 × 100 Gibbs sampled images according to Eq. 4.6 of Ising(1
2 , q). From

left to right, q = 0.5, 0.6, 0.7, 0.8, 0.9. 51
4.8 Compression performance for the Ising(p, q) source family for p = 1

2 and a
range of q values. rdope = 0.04. 53

5.1 A binary doping source BDS(ε) modeled as being generated from an observed
pre-source on the left. The pre-source takes the entropic state (∗) with prob-
ability ε, and the doping states (0, 1) with overall probability 1− ε. 59

5.2 SEP-prot compression performance at different doping rates. No one doping
rate is good for all situations. 62

5.3 Decoding Markov(q) sources of various entropy rates (0.1 to 0.9). n = 10000.
Traces each show the decoding of one sample at various coding rates. Circles
mark critical coding points. 63

5.4 Convergence process of decoding a sample from Ising(1
2 , 0.7), (h,w) = (32, 32),

using SEP-prot, rdope = 0.04, and (top to bottom) rcode = 0.6, 0.7, 0.8. Plotted
are source uncertainty h̄G vs. code uncertainty h̄C (left), and total uncertainty
h̄U along with source and checksum error rates εs and εx vs. iteration (right). 65

5.5 Decoding a sample from Ising(1
2 ,

7
10), (h,w) = (32, 32), using SEP-prot,

rdope = 0.04: (a) ground truth sh×w; (b) doping initialization d(sh×w = 1);
(c)-(e) total beliefs b(sh×w = 1) at termination for rcode = 0.6, 0.7, 0.8, respec-
tively. 66

5.6 Message entropy evolution for Ising(1
2 , 0.7). EXIT vs. SEP. 67

5.7 Message entropy evolution for Ising(1
2 , 0.9). EXIT vs. SEP. 68

6.1 In this sketch, the vertical axis is the expected number of times an sn occurs
in a codebook. The curves are q(sn) |Dn|. A codebook generated according
to q needs a much larger size to cover the red set than the blue set; many
duplicate entries are also generated. 78

6.2 Performance of SEP on compressing a Bern(p) source with a Bern(q) source
graph. rdope = 0, n = 1000. For each value p, q = p+ 0.1, p+ 0.2 (bottom to
top) are shown. 79

6.3 Parametric decoding begins with an initial guess of the parameter at θ0 and
searches a neighborhood Bδ(1)(θ(0)) within the parameter space. The scope of
the search narrows in subsequent iterations, finally converging on θ(I). 80

6.4 Augmented source subgraph G4 for Bern(θ), with π = [1− θ; θ]. 82

10

List of Figures

6.5 Performance of compressing Bern(θ) with SEP and the augmented graphical
model G4 (left). Estimation diagnostic is shown, with estimation mean and
normalized variance (right). n = 1000, rdope = 0.001. 83

6.6 Convergence of Θ beliefs from the 1-bit doping initialization to the final form
at decoding success (every 5 iterations plotted). The true θ ≈ 0.7570 differs
from the empirical type-class of the sample (728 1’s out of 1000). 84

7.1 The structure of the decoder inference graph U for the system in Section 7.
The illustrated model is pairwise, with factor nodes elided. 91

7.2 Message translation is functionally distinct (left), and it can be encapsulated
into a separate component (i.e., not part of the controller), but interfacing
with the controller (right). 92

8.1 MarkovZ[256](h) sources: (a) A transition matrix for h = 0.9 (brighter value
is higher probability; the bright band would be narrower at lower entropies);
(b) a sample path for h = 0.5. 94

8.2 Compressing MarkovZ[256](h) by SEP and other systems, compared to source
entropy. rdope = 0.04. For all systems, n = 1000 are plotted; for GZIP and
CTW, n = 100, 000 are also given. 95

8.3 Compressing MarkovZ[2B](h) for B = 1, 2, 3, 4, 5, 8. rdope = 0.04, n = 1000.
On the left is the performance of SEP-prot; on the right, that of SEP-thresh. 95

8.4 100 × 100 Gibbs sampled images of PottsZ[256](h). From left to right, h =
0.1, 0.3, 0.5, 0.7, 0.9. 96

8.5 Compression performance for the PottsZ[256](h) source family. (h,w) =
(25, 25), rdope = 0.1. 97

9.1 A common joint architecture for lossy compression systems. The data model
along with the distortion measure are used to design Process, Quantize, and
Code. (Confusingly, the latter two units of the encoder are sometimes together
called the quantizer, but we reserve that term only for Quantize.) 100

9.2 System diagram for a lossy compression architecture featuring model-quantizer
separation and model-code separation. The encoder is model-free but distor-
tion measure aware. 102

9.3 The structure of the decoder inference graph (left), and the modularized quan-
tizer component (right) for separation architecture lossy compression. This
left drawing assumes the full complement of transformations are required,
including alphabet translation and entropy coding — these stages may be
omitted in some settings. 103

9.4 Compressing Bern(1
2) under Hamming distortion with LDHQ. n = 1000, and

rdope = 0.04. 109
9.5 Performance comparison of compressing i.i.d. sources with mismatched code-

books: (a) Q = Bern(0.5) when Q∗ = Bern(p 6= 0.5); (b) Q = Unif(−3, 3)
when Q∗ = N(0,Σ < 1). 112

11

List of Figures

10.1 Example of (a) palmprint and (b) handwritten digits images used in Section
10.1. 116

10.2 Under the Ising(p, q) model, performance of SEP-prot is comparable to JBIG2
and better than GZIP on 80 images (96 × 128) derived from the CASIA bio-
metric palmprints database. 117

10.3 Under the Ising(p, q) model, performance of SEP-prot is comparable to JBIG2
and better than GZIP on 3750 images (50 × 50) derived from the MNIST
handwritten digits database. 117

10.4 Compressing an encrypted source with a model-free encoder. The already
encrypted bits are presented to the encoder to compress, which without the
secret key, is impossible to do traditionally. 118

10.5 The structure of the decoder inference graph for the system in Section 10.2. . 119
10.6 Compressing an encrypted grayscale image (S = Z256) of size (h,w) = (30, 44),

using the image model PottsZ[256](0.4). rcode = 0.7, and rdope = 0.04. . . . 121

12

List of Tables

1.1 Research problems (and some canonical designs) in compression systems.
Most familiar systems are in Domains II and III, but Domain I systems are
important for being the basis for them. 18

2.1 Tensor shorthand notation for the node computations of the BP algorithm. A
message with a higher-order tensor superscript means it is formed by a tensor
product. Wildcards refer to an open neighborhood, either NFi or NFC , relative
to the other side of the arrow. 30

2.2 Tensor shorthand notation for the pairwise model without factor nodes. . . . 32

3.1 Node computations of the BP algorithm within a component, with a virtual
port opened for each si to receive external message M i← from the outside and
emit external message M i→ to the outside. 37

3.2 Node computations of the BP algorithm for the various components in a
decoder for the pairwise model. Component external port connections are
made in the controller. 38

6.1 Node computations on the extended (top) and existing (bottom) parts of the
augmented graph G4. 82

9.1 Node computations for the LDHQ quantizer component. The wildcards are
taken over neighbors in the graph L. 108

13

1 Introduction
Data compression has a rich history of research and practice that have given us both the
familiar systems we use and the science that describes their operation. There are now
hundreds of compression systems that achieve good performance across targeted settings [1,
2] and some widely used algorithms (e.g. arithmetic coding, Lempel-Ziv) that are proven to
attain the limits of optimal performance. Therefore, it may be surprising to learn that current
systems have significant and deep-seated inadequacies that limit the wider application and
continued advancement of data compression.

1.1 Motivation
To see this, let us begin with a toy example.

1.1.1 Toy example
Suppose we have an n-bit data source (Source A) that takes on two possible values, either
one of

n︷ ︸︸ ︷
0000...00 or

n︷ ︸︸ ︷
1111...11

with equal probability. How should we design a system to compress this data?
We may arrive at a system like that in Fig. 1.1. This encoder-decoder pair (or codec) is

ideal in one sense: it compresses n bits to 1 bit, the best we can do. It also seems like a
natural and intuitive design.
However, suppose we discover that our knowledge of the source is only an approximation,

and that we actually have a Markov source (Source B) with high recurrence probability, as
in Fig. 1.2. Our prior codec becomes useless, as there may be sequences with both 0’s and

Output
1st bit.

Repeat
n times.data data0 or 1

compressed
data

ENC DEC

Figure 1.1: A compression system for Source A.

15

1 Introduction

0 10.99

0.01

0.99

0.01

Figure 1.2: State diagram of Source B, a Markov source with recurrence probability close to
1.

1’s. What is worse, it is not apparent how to modify the system to suit Source B. We would
have to completely redesign the encoder to, e.g. check all the input bits, code the length of
each run in the sequence, build a coding tree and apply entropy coding to those values, etc.
Correspondingly, the decoder would have to be redesigned.
This example illustrates that something in the way a compression system is designed can

cause its entire system pipeline to be tied to specific assumptions about data, which we call
data model. Even small changes lead to system overhaul and incompatibility. Despite the
simplicity of this example, almost all practical compression systems today have this type of
design at their core.

1.1.2 Crisis in compression
The toy example captures a range of inadequacies that affect the design and use of current
systems. These become more apparent as our data processing needs grow.
For example, systems over the past decades to compress a variety of data, including text,

programs, audio, images, video, etc., followed a similar design process: domain experts
manually analyzed the structure of data to come up with a new coding system nearly from
scratch each time, relying on a great deal of artfulness and intuition. Evidently, this process
does not scale with complexity or adapt to system changes well. Modern video compression
systems represent a late example for a complex data type and application that took many
years of joint effort by hundreds of experts to construct and standardize into a prescribed
set of capabilities.
Today, our data processing needs are even more complex. Numerous domains generate

prolific data sets such as financial time series, bioscience data, and search/ranking/social
network databases, whose size, dynamism, and intricate internal structure present great
opportunities for compression but also make them difficult to intuit. Designing compression
systems for such data by artful means is extremely challenging, so they are now compressed
by lower-performing or generic solutions, if at all. Alongside, there are evolving storage
and communication paradigms, such as mobile devices backed by powerful cloud servers
on the network. These open up exciting new modalities for applications, but demand a
different allocation of information and complexity along the system pipeline. At the moment,
compression has no direct answer for these concerns, having assumed local processing and
bulk transmission to be normative. However, a patchwork of adjustments exist for individual

16

1.2 Compression architecture

applications.
To design compression systems for the present era and future, we must meet a growing

list of requirements that current systems fail to satisfy, among them:

• Design flexibility: We should have a design process that effectively utilizes various
sources of data knowledge, whether it be expert knowledge, or increasingly, machine
knowledge.

• Upgrade flexibility: Once we design a system, we should have a method to easily change
various parts of the system in order to make improvements, particularly in the data
model.

• Security: If the data is stored with an untrusted third party provider, we want it to
be compressible in the encrypted domain, securely.

• Mobility: We want our power constrained mobile acquisition devices to have state-of-
the-art compression capability even with a lightweight encoder.

• Distributivity: Our data may be distributed across a network of machines or sensors,
and we want them to be locally compressible.

• Robustness: Networks may shard compressed data for routing or corrupt them with
losses, and we should allow graceful recovery without changing the compression mech-
anism.

Instead of viewing these requirements as isolated engineering goals, what if there is a path
forward that obtains systemic flexibility generally, to support all of them? This is possible
if we re-consider data compression at the level of system architecture.

1.2 Compression architecture
What is it about current systems that prevents them from having the flexibility we desire?
We will see, after we categorize the many systems that now exist and realize how they are
constructed similarly, that it is in how they treat data models in coding.

1.2.1 The compression landscape
From a bird’s eye view, the compression landscape is divided into four domains, contingent
on the amount of data model assumed and the acceptability of reconstruction imperfection
(Table 1.1).
Along one axis, systems can be categorized by whether their data model is (almost fully)

specified or (almost fully) unspecified at design time.

• If specified, the system is for compressing specialized data, e.g., text, audio, images,
and videos; a small number of parameters may still be learned from input.

17

1 Introduction

Fidelity�Model Specified Unspecified

Perfect
I. Entropy Coding

(processing+Huffman/
arithmetic coding)

II. Universal Entropy Coding
(LZW, CTW,

adaptive entropy coding)

Imperfect
III. Rate-Distortion Coding

(processing+
quantization+coding)

IV. Universal Rate-Distortion
Coding

Table 1.1: Research problems (and some canonical designs) in compression systems. Most
familiar systems are in Domains II and III, but Domain I systems are important
for being the basis for them.

• If unspecified, the system is for compressing generic data (i.e. universal compression),
e.g., binary files, unspecified data types, etc., where significant model structure and
parameters are expected to be learned from input.

Along the other axis, compression systems can be categorized by whether we insist on perfect
reconstruction or allow for imperfect reconstruction.

• If the former, then the system is for lossless compression; it is usually applied to
instructional content of digital origins, e.g. programs, documents, and data files.

• If the latter, then the system is for lossy compression (i.e. rate-distortion); and it is
usually applied to perceptual content of ultimately analog origins, e.g. music, photos,
and movies.

Domain I is the repository of systems that compress data both losslessly and with the model
fully specified. Scientific inquiry into compression began here and formed the basis upon
which other systems are built. For example, Domain II systems are typically Domain I
systems with additional switching, learning, or adaptivity. Domain III systems are typically
Domain I systems with additional quantization. The way they perform the core coding
portion of their task, however, turns out to be very similar.
Incidentally, relatively lesser attention is received in Domain I now because the coding

problem is thought to have mature solutions. For example, provably good entropy coders
like Huffman coding and arithmetic coding suffice in the sense that they can implement any
data model. In reality, the form of the data model they require — Huffman tree, arithmetic
coding intervals — presents complexity problems, such that most of the compression gain
in practical systems also derives from a preceding processing stage (often a representation
transform, which includes prediction), and entropy coders are only used in a clean-up role
to remove simple, usually memoryless, residual structures (Fig. 1.3).

1.2.2 Joint design: an architectural dilemma
The style of design in Domain I can be termed a joint model-code architecture, because it
treats the two tasks of compression — data modeling and coding — as one. By data modeling,

18

1.2 Compression architecture

Process Code DECdata data

compressed
data

data model

ENC

Figure 1.3: A lossless compression system with the joint model-code architecture. In this
common two-stage design, the data model is used to design both Process and
Code.

we mean introducing data assumptions including all prior knowledge — data model — into
the system; and by coding, we mean assigning the compressed output to each reproduction
of input.
Remark 1.1. Let us immediately reiterate that our definitions of modeling and coding differ
from traditional terminology in important and subtle ways. There are at least two definitions
of “modeling” in common use — model learning, as in e.g. [3, 4, 5], and model-deconstructive
processing, as in e.g. [1]. The second definition refers essentially to Process in Fig. 1.3.
Neither definition is what we mean, though systems that perform these types of “modeling”
often introduce data knowledge into the system at the same time. There are also at least
two definitions of “coding” in common use — encoding, as referring to ENC in its entirety in
Fig. 1.3, and codeword output, as referring to a final functional block that produces output.
The second definition refers essentially to Code in Fig. 1.3. Again, neither definition is what
we mean, though in the simplest systems all definitions of “coding” may become equivalent.
For monolithic entropy coders like Huffman coding and arithmetic coding, the entwining

of modeling and coding (as we define them) is easy to see because the data model is the
coding machinery. But this is even true for practical two-stage systems (Fig. 1.3). Despite
appearances of encoder decomposition, there is no clear distinction between what Process
does and what Code does. Both partake in the modeling task and both partake in the coding
task. The presumed data model (equivalently, the coding machinery) is spread across the
two stages, which now must be carefully designed together.
In terms of compression systems, a joint model-code architecture is limiting. Firstly,

designing algorithms to simultaneously perform modeling and coding functions requires art
and compromise. We already saw how that compelled the two-stage design, but even there,
a good representation for residual entropy coding may not be the natural outcome of easy
pre-processing (or any pre-processing) of the input; it may be awkward to inversely represent
data knowledge in the first place. Secondly, a joint architecture embeds design-time decisions
into the coding machinery and therefore fossilizes the same in the fabric of the entire system
pipeline; this is because the coding machinery determines everything downstream, so the
compressed output and therefore the decoder are also tied to the same choices that may
need to be changed later. Finally, the compressed output of a joint architecture is highly
specialized and fragile, so it does not admit non-catastrophic modification, corruption, or

19

1 Introduction

Code

data model
?

DECdata data

compressed
data

ENC

Figure 1.4: A postulated compression system with a model-code separation architecture.
Code must essentially operate model-free.

further atomization unless specifically designed for. Clearly, joint model-code architecture is
the true source of major systemic inflexibility in current systems.

Remark 1.2. Joint model-code architecture is not only seen in lossless compression but in
lossy compression as well. JPEG image compression standards (ITU-T T.81, ITU-T T.83;
1993) define an encoding process — DCT+quantization+entropy coding — to which com-
pliant systems must adhere. Embedded in the system is an implied data model under which
still images decorrelate well in the discrete cosine transform (DCT) domain. Subsequently,
research into wavelets found that they form an even better basis for images. Consequently,
JPEG2000 image compression standards (ITU-T T.800, ITU-T T.803; 2002) define an encod-
ing process that replaces the DCT with a selection of wavelet transforms. Though JPEG2000
adds many additional features to the compression format to entice adoption, the core im-
provement to performance is essentially the result of an improved data model. Nevertheless,
JPEG and JPEG2000 are incompatible and to this day acceptance of the latter is low. Fur-
thermore, image processing and vision research continue to improve models of images and
perception, but some of the best results remain costly, if not intractable, to bring into the
current joint model-code architecture of image compression systems.

So, even in the simplest setting of Domain I systems, with important ramifications for all
compression systems, the story does not end with entropy coders or naive decomposition, but
rather begins with the intriguing interplay between modeling and coding — an architectural
question at the core of compression.

1.2.3 Separation: an architectural proposal
Suppose there is an alternative in what can be termed a model-code separation architecture
(Fig. 1.4). In this architecture, the data model and potentially other assumptions are
introduced into the system separately from the coding machinery and therefore can be altered
without affecting the system as a whole.
This would require, at the least, a method of model-free coding that is agnostic to data

assumptions, and a method of model representation that the coding machinery can easily
use. If this can be done practically and without sacrificing compression performance, then

20

1.3 Thesis guide

the primary difficulties encountered so far are resolved, not to speak of other gains allowed
by virtue of this systemic flexibility. This thesis posits exactly such a practical architecture.

1.3 Thesis guide

1.3.1 Highlight
In this thesis, we present a practical model-code separation architecture that divides into a
part for data modelers and a part for coding theorists, mediating them using the common
language of graphs and messages. Systems designed with this architecture can meet the
requirements of contemporary and future compression that current systems cannot (Section
1.1.2), and in a principled and unified way.
Moreover, this architecture is flexible, modular, and extensible. Consequently, designers

work within their domain expertise, and a wide range of requirements are met by building
upon a baseline design. State-of-the-art tools from coding and graphical inference are in-
corporated in a transparent way, and system parts are reusable for situations that have not
been considered. The architecture also bridges theory and practice in a way that is easy
to reason about. We can evaluate performance against well defined ground truths, identify
the sources of performance gain and loss, make informed design decisions, and obtain better
insight into constituent parts of compression.
This thesis is developed primarily over Domain I of Table 1.1. In later parts our attention

also turn to the ramifications for other categories of systems. By the conclusion, it will be
apparent how to approach design under this architecture for the full spectrum of traditional
and non-traditional compression scenarios that may interest researchers and practitioners.

1.3.2 Organization
The treatment of the subject is in the order of its natural development. In some chapters,
additional background sections are marked by stars.
The main conceptual underpinnings of model-code separation and an adapted interpre-

tation of several important tools are given in Chapter 2 (Background and Tools), followed
by a complete description of a baseline lossless compression system in Chapter 3 (Proposed
Scheme). Chapter 4 (Compressing Binary Sources) is a direct application of the described
system to compressing binary data with binary codes.
Chapter 5 (Coding Details) examines the coding aspects of the system, including code

selection, doping, and fine-grained decoder behavior. Chapter 6 (Modeling Details) examines
the data modeling aspects of the system, addressing model mismatch, uncertainty, and
universality, and introducing conceptual extensions to deal with parametric models.
Chapter 7 (Architectural Generalization) extends the system architecture to handle more

complex situations involving processing of input. This is considered through the prototypical
application of compressing large-alphabet sources with binary codes, the examples of which
are in Chapter 8 (Compressing Large-Alphabet Sources).

21

1 Introduction

Chapter 9 (Lossy Compression) considers the question of lossy compression by introducing
an analogous architecture involving model-quantizer separation in additional to model-code
separation. A novel low-complexity quantizer is proposed.
Chapter 10 (Toward Realistic Applications) gives a flavor of applications with real data,

including the compression of grayscale images in the encrypted domain.
Finally, Chapter 11 (Conclusion) briefly summarizes the work and elaborates on a few

ideas for further exploration.

1.3.3 Notation
We write e.g. s for a scalar or vector variable, depending on context. If necessary, we specify
the length by a superscript, e.g. sn, a particular element or elements by a subscript e.g. si.
Likewise, we write s, sn, and si, respectively, for the random scalar or vector version of the
same; and we write s, sn, and si, respectively, for constant values.
We write e.g. M for a matrix and indicate its dimensions by subscript as Mk×n.
We write e.g. S for an alphabet of symbols, or a vector space.
We write e.g. V for a set, and e.g. C for a collection, class, or family of objects.
We write e.g. G for a graph, and put G = (V , E) where V is the set of nodes and E is the

set of edges. We put G = (V1,V2, E) for a bipartite graph where edges in E only connect
between subsets of nodes V1 and V2. We put N Gi for the open neighborhood of vi ∈ V , and
N G[i] for its closed neighborhood.
We write e.g. Z for a function value, and e.g. H(·) for a statistical function of random

variables or vectors.
We write e.g. Samp for an algorithmic pattern, subroutine, or block, and e.g. GZIP for a

system or scheme.
We write e.g. Sym for miscellaneous special objects like named groups and distributions.

22

2 Background and Tools
To build practical compression systems for the model-code separation architecture, we will
find ourselves concerned with the twin questions of low-complexity model-free coding and
low-complexity model representation. To address these questions, we draw inspiration from
theory and practice. This chapter introduces three important tools and interprets them
for the compression context: classical source coding theory for architectural insight, sparse
linear coding as a coding machinery, and probabilistic graphical models as a data model
representation. Some important terminology and notational shorthands are also defined.

2.1 Source coding theory
Claude Shannon initiated the study of data processing and communication problems as sta-
tistical information problems in 1948 [6]. In particular, he introduced two source-coding
theories for the problem of compression, one for lossless compression and one for lossy com-
pression (i.e. rate-distortion theory, see also Chapter 9). Both theories assume the knowledge
of a stochastic source model (a kind of data model) that represents the prior knowledge we
have about the class of data we wish to compress. Given some arbitrarily long data symbols
sn = s1, ..., sn, where each si belongs to a finite alphabet S, the source is taken to be a
random vector sn, whose source model is the probability mass function (pmf) psn(·) over Sn.
The symbols sn are interpreted as a random drawing of sn occurring with probability psn(sn).

2.1.1 Entropy and achievability
For lossless compression, the theory defines the entropy rate as

H(s) , lim
n→∞

1
n
H(sn) = lim

n→∞

1
n
E(− log psn(sn)) (2.1)

whose value lower bounds the average number of bits required to represent each symbol of
sn.
A random codebook scheme can approach this bound arbitrarily closely. Roughly, the

scheme is to build a codebook Cn of 2n(H(s)+ε) entries, each n symbols in length, filled entirely
with random draws of sn. By letting n grow large, an asymptotic equipartition property
(AEP) ensures that all the statistically typical sequences are found in the codebook, and

23

2 Background and Tools

consequently any sequence arising from sn can be represented by not much more than the
n(H(s) + ε) bits it takes to specify a codebook entry label.1 In this way, we obtain a
compression of sn from the original log |S| bits per symbol to about H(s) bits per symbol.
An alternative, random binning scheme can also approach the entropy rate. In this scheme

known as Slepian-Wolf coding [8], the encoder generates 2n(H(s)+ε) “bins” and randomly
assigns all sequences in Sn to them. AEP again ensures that each bin will contain no more
than one statistically typical sequence on average, so with high probability, any sequence
arising from sn can be represented by not much more than the n(H(s) + ε) bits it takes to
specify a bin label. Again we obtain compression to about H(s) bits per symbol.

2.1.2 Applied system design
The greater interest of source coding theory to this work lies in the ways it suggests for
building compression systems. Already two distinctive design patterns are suggested here.
The random codebook scheme typifies an early-binding system, where the encoder uses psn

to identify the statistically typical sequences to match against input data. The random
binning scheme typifies a late-binding system, where the encoder only knows how many bins
to create, and it is the decoder that uses psn to identify the statistically typical sequences to
infer the input data. Clearly, early-binding permits (and entices) joint model-code design,
while late-binding imposes model-code separation, so indeed random-binning is a popular
scheme in applications where separation is required, such as locally compressing separated
sources.
More to the point, in the random binning scheme we see the key components we seek

for model-code separation: randomized bin assignment as a prototype of model-free coding,
and the pmf psn as a prototype of model representation. Of course, naive random binning
has complexity (e.g. of storing bin assignment, of searching bins for typical sequences) that
grows exponentially in n. To that end, we need to replace the coding and representation
components with lower complexity analogs.

2.2 Sparse linear coding
We now know that some of the best channel codes for reliable transmission are among the
class of randomly generated sparse linear codes, made practical by message-passing decoding
on their graphs. These codes are continually improved and extended for features by coding
theorists. They have implementations on hardware platforms including GPU’s and ASIC’s.
And, we have rigorous evaluations of them, including gaps to theoretical limits. Interestingly,
there is evidence that these codes are also good for compressing data. In Shannon’s original
information theory, data compression and reliable transmission are two closely related facets
— in some cases, dual problems — with similar proofs of achievable rates by random linear
coding.

1This particular construction is restricted to stationary ergodic sources, for which the Shannon-McMillan-
Breiman theorem provides the AEP. Non-ergodic sources require a different construction [7].

24

2.2 Sparse linear coding

row(H)row(H)

col(G)col(G)

SnSn

Figure 2.1: Linear subspaces of Sn can serve as codebooks or index collections for coding.
Here, the dots indicate the set of typical words according to some probability law,
and the circle indicates the true realization among them. For channel coding,
L = col(G) is the codebook. For source coding, L⊥ = row(H) is the index
collection. The gray dashed subspace is the syndrome decoding coset in channel
coding, or the hash constraint set in source coding.

Next, we describe how linear codes are good for compression via a channel-coding duality
and how sparse linear codes in particular make for good low-complexity model-free coding.

2.2.1 Linear codes
Linear subspaces of a finite-field vector space Sn are structured objects that admit low-
complexity storage and processing. When identified with codebooks or index collections,
they are called linear codes. A typical processing is an embedding or projection operation
involving a coding matrix .
An (n − k)-dimensional linear subspace L ⊆ Sn is defined by a tall matrix Gn×(n−k) or a

wide matrix Hk×n. Equivalently, L has the generator form L = {v : v = Gu} or the parity
form L = {v : 0 = Hv}, where HG = 0. In coding literature, a tall or embedding matrix like
G is termed a generator matrix , while a wide or projection matrix like H is termed a parity
matrix . When L or a related subspace is used in coding, G and H are the coding matrices
that define encoder and decoder operations.

2.2.2 LDPC codes for error correction
Linear codes are prevalent for error correction because of a result in channel coding theory:

Fact 2.1. Linear codes over finite-field alphabets (as codebooks) achieve capacity over sym-
metric discrete memoryless channels (DMC’s) [9, 10, 11]. In particular, additive-noise
DMC’s are symmetric.

In channel coding, encoding to a linear code is a complexity O(n(n − k)) operation, as
we map an information word u ∈ Sn−k into a codeword v ∈ L ⊆ Sn by embedding with

25

2 Background and Tools

the matrix Gn×(n−k): v = Gu. With channel noise w applied, the received word set is
L + w = {y : y = Gu + w}, or equivalently L + w = {y : Hw = Hy}. The optimal
decoding seeks to recover w from Hy by maximum-likelihood (ML) inference, which has
general complexity O(n |S|k) [12], too high to be useful.
For further reduction in decoding complexity, (suboptimal) iterative local decoding meth-

ods are developed to exploit additional structure in linear codes if available. For instance,
low-density parity-check (LDPC) codes are linear subspaces L whose parity matrix H has
row and column weights that become a negligible fraction of n as n grows [13, 14]. These
codes approach capacity for symmetric DMC’s [15, 16], and some varieties perform well even
with iterative local decoding [17, 18, 19]. For such decoding, the complexity is O(k |S|ρ I)
where ρ is the largest row weight of H, and I is the number of iterations that is O(1) for
any fixed rate. Thus for LDPC channel coding we have O(n2) encoding and O(n) decoding
complexity.2

2.2.3 LDPC codes for compression
Via a coding duality where the channel law of an additive-noise DMC is identified with the
source distribution of a discrete memoryless source (DMS), a related result is known:
Fact 2.2. Linear codes over finite-field alphabets (as index collections) achieve entropy in
the lossless data compression of DMS’s [22, 23].

In this case, source encoding takes the form of a projection with the matrix Hk×n (Fig.
2.1): ṽ = Hũ, mapping a source word ũ ∈ Sn into an index word ṽ ∈ Sk ∼= L⊥, at complexity
O(nk). Source decoding seeks to recover ũ from Hũ, again with complexity O(n |S|k) for
general ML, but by using LDPC codes with iterative local decoding, the equivalent result
has these codes approach entropy for DMS’s at low complexity: the encoding complexity is
O(ρk) while the decoding complexity is O(k |S|ρ I) as in channel coding. In essence, both
encoding and decoding are O(n).
It is asserted in [24] (Theorem 2.1) that linear codes also achieve entropy rate for general

sources, including sources with memory and non-stationary sources. While this does not
automatically imply that LDPC codes approach the same, particularly with other than
ML decoding, recent results in LDPC coding for channels with memory [25, 26] provide
grounds for optimism that a much larger class of sources than DMS’s too lay open to high-
performance, low-complexity LDPC coding.

2.2.4 Applied system design
LDPC source coding applies the source distribution at the decoder (as does LDPC channel
coding with the channel law), so it forms a late-binding system. With its linear encoding
and decoding complexity and entropy-approaching performance characteristics, it is an ideal
candidate for low-complexity model-free coding. Indeed, in many distributed source coding,
or “practical Slepian-Wolf” problems, we see their use frequently.

2O(n) encoding is possible [20]. Linear programming (LP) decoding may have similar complexity [21].

26

2.3 Probabilistic graphical models

2.3 Probabilistic graphical models
In recently years, the machine learning community has refined a toolkit based on probabilistic
graphical models to perform important reasoning tasks on complex data. Among them are
a compact way to represent statistical structures in data, inference algorithms to compute
updates from prior knowledge, and learning algorithms to train models automatically from
data (or with some intervention from domain experts). While these tools are used primarily
for data mining and understanding, they can be turned equally well to the problem of data
compression.
Next, we describe how graphical models represent data and how iterative algorithms make

them good for low-complexity model representation.

2.3.1 Graphical model representation
Choosing a good data model representation is an art. We are simultaneously concerned with
the richness, specificity, and complexity of the representation. Some examples of represen-
tations are enumeration, list of examples, list of features, algorithms (i.e. functions) that
generate examples, or data structures (i.e. mathematical objects) that are interpreted by
algorithms to generate examples or filter features.
Over time, graphs have become a preferred tool for model representation in machine

learning and statistics. Directed acyclic graphs (DAG’s) are used to represent causal depen-
dency in Bayesian networks, undirected graphs (UG’s) are used to represent configurational
compatibility in Markov random fields (MRF’s), factor graphs (FG’s) are used to represent
factorization of probability distributions, and computation graphs are used to represent func-
tional composition in neural networks (NN’s). In each case, graphs admit low-complexity
storage for the data model and double as data structure for low-complexity, local computa-
tion.
Probabilistic graphical models (PGM’s) refer to data models built on DAG-represented

causality assertions and UG-represented compatibility assertions [27]. The general represen-
tational power of PGM’s is cemented by the following result:

Fact 2.3. Any strictly positive distribution psn over Sn can be represented by an undirected
graph G = (S, E) over the n source nodes S , {s1, ..., sn}, in the sense that psn simultaneously
factorizes over the maximal cliques of G,

psn(sn) = 1
Z

∏
C∈cl(G)

ψC(sC)

and (by the Hammersley-Clifford theorem [28]) respects the list of global conditional indepen-
dence relationships generated by graph-separation tests on G [29, 30].

A similar statement exists regarding distributions psn whose factors ψC are conditional
probability distributions psi|sπi defined over DAG nodes si and parents sπi . Thus, PGM’s
have the feature that the representational complexity of the data model (as measured by

27

2 Background and Tools

the number and size of statistical assertions that compose the graph) directly relates to the
algebraic complexity of psn that sets the complexity of many Bayesian computations.

2.3.2 Iterative algorithms
Sampling and marginalization are two important tasks on data models. Being able to con-
struct iterative algorithms with local computations for both tasks is what makes PGM’s
particularly useful for compression. Marginalization (Section 2.3.2.2) in particular is a key
step in decoding for the model-code separation architecture, which we will see many times
later.

2.3.2.1 Gibbs sampling

Sampling a Markov random field sn ∼ psn benefits from its undirected graph representation G
by the method of local Gibbs sampling. Suppose we have a single-element sampler Samp(qs)
capable of drawing s ∈ S according to a (possibly unnormalized) distribution qs(·) in O(|S|)
time. Begin with an initialization sn and a walking order σ ∈ Sym(n). In each pass of an
iterative procedure, we re-sample all n values of sn in turn,

i = σ(1), ..., σ(n) : si ⇐ Samp (psn(·, s∼i)) ≡ Samp
 ∏
C∈cl(G):si∈C

ψC(·, sC\i)

where the right-hand equivalence uses the relationship si |= S\N G[i]
∣∣∣ N Gi to provide local

computation.
Under some technical conditions, an asymptotically independent sample from psn is ob-

tained after enough iterations. This procedure has O(κ |S|η) storage complexity where κ is
the number of cliques and η is the maximum clique size of G, and essentially O(n |S| I) time
complexity where I is the number of iterations.

2.3.2.2 Belief-propagation marginalization

Approximate marginalization of sn ∼ psn can be carried out on one of its PGM representa-
tions using the iterative sum-product or belief-propagation (BP) algorithm.
Because BP performs repeated operations on the factors of psn , it is best described in

terms of a graph whose structure shows the factors explicitly. To do so when the data model
is provided by a UG G = (S, E), we convert G to its equivalent bipartite factor graph form
F = (S,Ψ, E ′), where S are variable nodes, Ψ are factor nodes (one corresponding to each
unfactorizable clique C of G), and E ′ = {(ψC , si) : ψC ∈ Ψ, si ∈ C} are edges between factor
nodes and their corresponding clique variable nodes (Fig. 2.2). Then, let us view each node
in the graph as a local computation device accepting inputs and emitting outputs on its
edges, or ports. For convenience, label input or output ports of a node by the adjacent node
to which they are connected in F .

28

2.3 Probabilistic graphical models

G = (S; E)G = (S; E) F = (S;ª;E 0)F = (S;ª;E 0)

Figure 2.2: Conversion of an undirected graph G (left) to its factor graph F (right), assuming
the maximal cliques of G represent factors of psn that cannot be further factored.

F = (S;ª;E 0)F = (S;ª;E 0)

sisi

ÃCÃC

mi!C(si)mi!C(si)

F = (S;ª;E 0)F = (S;ª;E 0)

sisi

ÃCÃC

miÃC(si)miÃC(si)

Figure 2.3: Examples of nodes exchanging messages (unary functions) on the factor graph
F , viewed as local I/O.

Notationally it is also useful to write factors and factor operations compactly. Any function
f(s1, ..., sl) over l variables, f : Sl → R, can be represented by a tensor f il′+1,...,il

i1,...,il′
of total

order l. It can be interpreted as a machine with number of input (subscripted indices) and
output (superscripted indices) ports summing to l. We may therefore refer to a function and
its tensor interchangeably. For the special case of a (1, 0)-tensor mi representing a unary
function m : S→ R, we call it a message.
Define two atomic operations on messages,

• The accumulation operation on a set of messagesM: ◦m∈Mm, where ◦ is the Hadamard
product.

• The filtration operation by a factor ψ : Sl → R on a set of messagesM: ψ(⊗m∈Mm),
where ⊗ is the tensor product, and the leftmost operation is a tensor contraction.

With these, we can finally describe the computation rules governing BP. Referring to Fig.
2.3, denote a variable-node output message of the node si, on the port ψC , by mi→C(si).
Denote a factor-node output message of the node ψC , on the port si, by mi←C(si). Thus to
each edge of E ′ are associated two directional messages, so of course mi→C(si) and mi←C(si)
are also respectively a factor-node input message and a variable-node input message. Note
that we may conveniently shorten e.g. mi→C(si) tomi→C , with the variable being understood
and mi→C being treated as the tensor mi with additional decoration marking port and I/O
direction.
Define the three node computations of BP,

29

2 Background and Tools

• The variable node output computation. For every output port ψC of si, accumulate
messages on ports not ψC :

mi→C(si)⇐
∏

ψD∈NFi \ψC

mi←D(si) (2.2)

where NFi is the set of factor nodes adjacent to si. In tensor notation,

mi→C ⇐ ◦ψD∈NFi \ψCm
i←D (2.3)

• The factor node output computation. For every output port si of ψC , filter messages
on ports not si by ψC :

mi←C(si)⇐
∑
sC\i

ψC(si, sC\i)
∏

sj∈NFC \si

mj→C(sj) (2.4)

where NFC is the set of variable nodes adjacent to ψC , and the left summation is over
the values of all the variables indicated. In tensor notation,

mi←C ⇐ ψiC\i(⊗sj∈NFC \si
mj→C) (2.5)

• The total belief computation. For every si, accumulate messages on all ports:

bi(si) =
∏

ψD∈NFi

mi←D(si) (2.6)

In tensor notation,
bi = ◦ψD∈NFi m

i←D (2.7)

We further simplify the tensor notation by writing the three computations in shorthand
respectively as:

Variable node output: mi→C ⇐ mi←∼C

Factor node output: mi←C ⇐ ψi∼im
∼i→C

Total belief computation: bi = mi←∗

Table 2.1: Tensor shorthand notation for the node computations of the BP algorithm. A
message with a higher-order tensor superscript means it is formed by a tensor
product. Wildcards refer to an open neighborhood, either NFi or NFC , relative to
the other side of the arrow.

We use this shorthand notation in other parts of the thesis where the meaning is unam-

30

2.3 Probabilistic graphical models

biguous.
BP begins with an initialization of all messages on edges and some walking order over

the nodes known as a schedule, and iteratively applies the variable node and factor node
output computations until convergence (if it occurs). The total belief computation obtains
the marginal estimation by

p̂si = bi/
∥∥∥bi∥∥∥

1
(2.8)

If we are only interested in an inferential result as is usually the case, such as the likely
value of si, estimating from this approximate marginal suffices, i.e. ŝi = arg maxsi p̂si(si), or
simply

ŝi = arg max
si

bi(si) (2.9)

Note that BP may not converge, nor give the correct marginals even if it does, in the
presence of graph loops. However, many empirical results and some theoretical analyses
show that its marginal approximations are often good enough for correct inference. The
complexity of BP marginalization is O(κ |S|η I) 3 — where κ is the number of unfactorizable
cliques, η is the maximum unfactorizable clique size of G, and I is the number of iterations
— being largely bottlenecked by the tensor product in the factor node output computation.

2.3.3 Pairwise models
A less powerful class of pairwise models whose factorization takes the form

psn(sn) = 1
Z

∏
si∈S

φi(si)
∏

(si,sj)∈E
ψij(si, sj) (2.10)

are frequently used to represent data — pairwise relationships are sometimes better estimated
from empirical statistics. These also represent data models with limited complexity: BP on
these models encounters η = 2 and κ = O(n+ |E|), so marginalization complexity is at most
O(n2), though usually closer to O(n).4 We will see these models in the remainder of the
thesis, so let us remark on running BP on them.
The node computations of the BP algorithm are somewhat simplified because each bilateral

factor node only has two neighbors, so we can write

Variable node output: mi→(i,j) ⇐ φimi←(i,∼j)

Factor node output: mi←(i,j) ⇐ ψijm
j→(i,j)

Total belief computation: bi = mi←∗

The fact that the factor node computation is so simple means it is customarily rolled into
3This can be reduced in cases with further model structure [31].
4Even for triangle-free graphs, the maximum number of edges can be

⌊
n2/4

⌋
by Turán’s theorem; however,

inherently local models like finite memory sources have bounded variable degree, and sources for which
ergodic effects are apparent at n (most usefully compressible sources) have variable degree negligible
compared to n, both cases giving sub-quadratic complexity.

31

2 Background and Tools

the variable node computation, and we effectively eliminate factor nodes completely and
understand neighbors of si as its variable node neighbors in G:

Variable node output: mj←i ⇐ ψjiφ
imi←∼j

Total belief computation: bi = φimi←∗

Table 2.2: Tensor shorthand notation for the pairwise model without factor nodes.

Thus UG’s without unfactorizable cliques larger than 2 do not need to be converted to
FG’s explicitly for BP because the UG’s are simply FG’s with the unambiguous factor nodes
elided.

2.3.4 Applied system design
PGM’s allow sampling and approximate marginalization on data models at complexity scal-
ing with a particular statistical notion of model complexity. For the large class of real-world
data models for which PGM’s do give a succinct description, they can produce and verify
statistically typical sequences with an acceptable degree of practicality, and therefore serve
as an essential candidate for low-complexity model representation.

2.4 Summary
The Shannon random codebook scheme and the Slepian-Wolf random binning scheme repre-
sent two design patterns for lossless compression systems. The former is the inspiration for
the lineage of current systems, while the latter gives us the insight we need to build systems
with a new model-code separation architecture.
With LDPC codes from channel coding and PGM’s from machine learning, we now have

the necessary tools to implement low-complexity model-free coding and model representation,
respectively, for practical random binning, and therefore practical model-code separation
design.

32

3 Proposed Scheme
In this chapter, we introduce a basic compression system with the model-code separation
architecture. We show a canonical design for lossless compression, featuring a model-free
hashing encoder and a process-replicating inferential decoder . In later parts of the chapter,
we discuss unique questions that arise about this design. But let us begin by returning to
the toy example of Chapter 1 to show how this architecture differs already from existing
methods.

3.1 Toy example
Recall that in the toy example (Section 1.1.1), we have Source A that takes on two possible
values, n bits of all 0 or all 1, with equal probability (so the entropy is 1 bit), and Source B
that is Markov with recurrence probability q close to 1 (so that the entropy is (n−1)h(q)+1
bits).1 Our prior codec could not deal with the switch from Source A to Source B, even
though they are quite similar with similar entropy.
But imagine if the encoder can compute a k-bit hash on the input sequence that divides

all input sequences into 2k groups. Let this hash be the compressed output. In particular,
say that the all 0 and all 1 sequences do not collide for any k. Then if we know we have
Source A, the decoder can check which of these two sequences hashes to a 1-bit compressed
value and infer the correct sequence, thus compressing to the source entropy. If it turns out
we have Source B, the decoder can be modified to check which of the 2(n−1)h(q)+1 typical
sequences hashes to the (n − 1)h(q) + 1 bits of compressed value (again, assuming no hash
collision), and infer the correct sequence. In this case, the encoder does not need to be
modified because it is model-free, and the decoder contains the same inference engine, only
needing to take into account which are the typical sequences by referring to the data model.
We have already seen in Section 2.1 that this is possible with the Slepian-Wolf random

binning scheme, but its complexity is prohibitive. However, in Sections 2.2 and 2.3, we
introduced LDPC codes and PGM’s as components that may take the roles of low-complexity
model-free coding and low-complexity model representation, respectively. Next we show
how these components fulfill the promise of a practical model-code separation compression
architecture.

1h(x) , −x log x− (1− x) log(1− x).

33

3 Proposed Scheme

Code

rate r

DEC

data model psn

sn sn
xk

ENC

Figure 3.1: System diagram for the model-code separation architecture. On the left is a
model-free encoder. On the right is an inferential decoder.

3.2 Basic system construction
We describe a baseline lossless compression system with the model-code separation architec-
ture (Fig. 3.1) and sketch the requisite components that make a complete implementation.
In this chapter, assume all objects are over the finite-field alphabet S = GF(q).

3.2.1 Required inputs

Let sn ∈ Sn be an n-vector source data sequence presumed to be a random sample of sn. To
compress it, we require

• A code: a collection H (n, k) of k× n parity matrices of a rate k/n linear source code
ensemble; to ease presentation, any specific example assumes an LDPC code ensemble
(Section 2.2.3).

• A data model: psn in some factored form or in a PGM representation; to ease presen-
tation, any specific example assumes a pairwise model (Section 2.3.3).

3.2.2 Encoder

The encoder, as promised, is model-free and performs a nearly trivial hashing operation.
Setting k to target rcode = k/n as the nominal compression rate (further discussed in Section
3.2.5), and choosing a random H ∈H (n, k) as the encoding matrix, it produces

xk = Hsn (3.1)

as the compressed result. A variety of terms can describe this encoding, such as binning,
projection, or hashing.
The encoder produces some additional output described in Section 3.2.4.

34

3.2 Basic system construction

3.2.3 Decoder
The compressed value xk corresponds to many possible sn, so a decoder needs to apply
additional information to recover the true sn. This is done by a graphical inference engine
in the decoder that applies both the coding constraints of H and the data model psn .

3.2.3.1 Code subgraph

Since H enforces k hard constraints of the form xa = ∑n
i=1Ha,isi, it can be represented by

a bipartite factor graph C = (S,X ,F), with k factor nodes X , {f1, ..., fk} and n source
nodes S , {s1, ..., sn}. There is an edge between factor node fa and source node si if and
only if Ha,i 6= 0, forming the neighborhoods denoted by A = N Ca .
The meaning of C is observed by viewing it as the graph for the hash constraint function

c(sn) ,
k∏
a=1

fa(sA) =
k∏
a=1

1

xa =
∑

i:Ha,i 6=0
Ha,isi

 (sA) (3.2)

where each factor is an indicator on one hard constraint, and c(sn) = 1 if and only if all
constraints are satisfied. Since c(sn) is an (unnormalized) probability distribution, the entire
PGM machinery of Section 2.3 applies. Indeed, iterative local decoding of the linear source
code with H is identical to approximate marginalization of c(sn) on C.
C is called the code subgraph.

3.2.3.2 Source subgraph

If psn is available algebraically, it is represented directly by a factor graph. If the data model
is given as a directed or undirected PGM, we can convert it to factor graph form using the
procedure in Section 2.3.2.2.
Without loss of generality, let us suppose sn ∼ psn is represented by an undirected graph
G = (S, E) over the n source nodes S , {s1, ..., sn}, in the sense that psn is factored over the
maximal cliques of G:

psn(sn) = 1
Z

∏
C∈cl(G)

ψC(sC) (3.3)

Then let its equivalent factor graph form be G ′ = (S,Ψ, E ′).
Either G or G ′ may be called the source subgraph. For pairwise models, we refer to UG’s

and elided FG’s both as G, since they are identical (see Section 2.3.3).

3.2.3.3 Decoding algorithm

Let U , G ′ ∪ C = (S,Ψ∪X , E ′ ∪F) be a combined source-code graph in factor graph form,
where the source nodes S are shared between the source and code subgraphs (Fig. 3.2 shows
an example for a pairwise model where Ψ nodes are elided). The source nodes divide U into
a source side and a code side.

35

3 Proposed Scheme

HH

…

== == == ==…

source subgraph Gsource subgraph G

code subgraph Ccode subgraph C

SS

XX

psnpsn

G componentG component

…

== == == ==…

C componentC component

…SS ControllerController

…

…

…

Figure 3.2: The structure of the combined decoder source-code graph U for the system in
Section 3.2 (left). The differently colored subgraphs behave as if modular com-
ponents connected via dashed virtual ports (right).

The decoder runs belief propagation (BP) on the combined graph, representing approxi-
mate marginalization of the joint objective

u(sn) , c(sn)psn(sn) (3.4)

For each source node si there are now two sets of neighbor nodes, one on each side. It is
notable that only the source nodes interact with both sides. The factor nodes only interact
with nodes in its own subgraph. In the combined BP, messages are passed along all edges,
and we can derive the expressions for computation on the three sets of nodes, S, Ψ and X
(notation as in Table 2.1).
First, the nodes that do not interact with another side directly (we use µ for source-side

messages and m for code-side messages; wildcards only expand within the subgraph of their
message):

• Ψ-node output computation. For every output port si of ψC , filter messages on ports
not si by ψC :

µi←C ⇐ ψi∼iµ
∼i→C (3.5)

• X -node output computation. For every output port si of fa, filter messages on ports
not si by fa:

mi←a ⇐ f i∼im
∼i→a (3.6)

Next, nodes that open ports to both sides of the joint graph:

• S-node output computation – source side. For every output port ψC of si, accumulate
messages on ports not ψC :

µi→C ⇐ µi←∼C
[
mi←∗

]
(3.7)

36

3.2 Basic system construction

• S-node output computation – code side. For every output port fa of si, accumulate
messages on ports not fa:

mi→a ⇐ mi←∼a
[
µi←∗

]
(3.8)

And finally,

• Total belief computation. For every si, accumulate messages on all ports:

bi =
[
µi←∗

] [
mi←∗

]
(3.9)

Let us note that the bracketed terms, despite being Hadamard products of many messages,
may be conceptually interpreted as single lumped messages that do not change with respect
to which port the output is being emitted on. Therefore, when a node of S is emitting on one
subgraph, the lumped message from the other subgraph can be pre-computed and treated
like an external message on a virtual port opened on the latter’s side. This means BP on U
is exactly the same as BP on each subgraph alone, with the simple addition of an external
I/O port and some computation to figure the external message. This makes the decoder
(and by extension, the entire system) architecturally modular, with external messages and
virtual ports acting as the only interface between graph-inferential components.
We summarize by restating the three computations of any subgraph component whose

internal factorization is like that described in Section 2.3.2.2:

Variable node output: mi→C ⇐ mi←∼C
[
M i←

]
Factor node output: mi←C ⇐ ψi∼im

∼i→C

External message output:
[
M i→

]
⇐ mi←∗

Table 3.1: Node computations of the BP algorithm within a component, with a virtual port
opened for each si to receive external message M i← from the outside and emit
external message M i→ to the outside.

Finally, while each component can compute a total belief using external messages, it
makes sense for a main controller to handle component-agnostic operations. The controller
is simply another component over the port-preserving “intersection” subgraph A , G ′∩∗C =
(S, ∅, E ′ ∪ F). All of its ports are to be interpreted as virtual ports to receive external
messages, thus for a controller,

Total belief computation: bi =
[
M i←∗

]
where the wildcard is taken over all virtual ports.
The modular computations for the pairwise model is given as example in Table 3.2 and

the setup is depicted in Fig. 3.2.

37

3 Proposed Scheme

G component –

S node output: µj←i ⇐ ψjiφ
iµi←∼j

[
M i←

]
G

(3.10)

S external message output:
[
M i→

]
G
⇐ φiµi←∗

C component –

S node output: mi→a ⇐ mi←∼a
[
M i←

]
C

(3.11)
X node output: mi←a ⇐ f i∼im

∼i→a (3.12)
S external message output:

[
M i→

]
C
⇐ mi←∗

Controller –

Connectivity:
[
M i←

]
G

=
[
M i→G

]
⇐
[
M i←C

]
=
[
M i→

]
C[

M i←
]
C

=
[
M i→C

]
⇐
[
M i←G

]
=
[
M i→

]
G

Total belief computation: bi =
[
M i←G

] [
M i←C

]
=
[
M i→

]
G

[
M i→

]
C

(3.13)

Table 3.2: Node computations of the BP algorithm for the various components in a decoder
for the pairwise model. Component external port connections are made in the
controller.

The only additional point worth belaboring is the schedule of passing messages, which
a modular decoder greatly simplifies. The fact that we compute external messages in one
pass along with all the messages within a component means, sans further communication
solely for scheduling purposes, the decision is focused at the level of component interactions.
Here there are only a few obvious choices. A parallel macro-schedule would have each
component compute internal messages, then exchange external messages at the same time.
A serial macro-schedule would have one component active at a time, and present its latest
external messages to the next component. This serial macro-schedule, alternating between
source message passing and code message passing, is what we use in this work. Within a
component, we use a parallel schedule.

For the decompression problem, BP is run until convergence at the controller or declaration
of failure. In the first case, we put

ŝi = arg max
si

bi(si) (3.14)

38

3.2 Basic system construction

Code DEC

data model psn

sn sn

x1, x2, ...

ACK

ENC

Figure 3.3: A rateless system with minimal decoder acknowledgement on the feedback.

as the decompressed output.2

3.2.4 Doping symbols
Depending on the source model, the decoding process may not begin without some non-
trivial initial beliefs (trivial belief being the identity message 1(s) = 1/ |S|). Therefore the
encoder randomly selects a fraction rdope of source nodes D ⊆ S to describe directly to the
decoder. They are presented as deterministic controller messages

dD(sD) = 1{sD = sD}(sD) (3.15)

and accumulated to all external messages passing through the controller nodes (Table 3.2
modified accordingly). These known “doping” symbols anchor the decoding process, and
only a small amount — which can be optimized — is necessary.
In addition to considering the doping process as belonging to the controller, we can also

consider it as a part of the data model or the code. If the latter, we can consider it as
augmenting H with additional unit-weight checksum rows to make the true encoding matrix
H4 with total coding rate r = rcode + rdope, and encoding as x = H4s.3
Doping is discussed in more detail, with experimental results, in Section 5.2.

3.2.5 Rate selection
The question of rate selection is nuanced. The system presented can be used in many ways.
As a direct no-feedback, fixed-rate system, the model-free encoder needs the compression
rate r to be supplied (Fig. 3.1). This may come from entropy estimates or upstream
hints, analogous to capacity estimates in channel coding, and comes with the possibility of
vanishingly small but non-zero decoding error even when r is set above the entropy rate.

2The desired maximization is actually ŝn = arg maxsn u(sn) as in ML. However, the approximate version
of the max-product algorithm that would compute this also applies marginal maximizations for graphs
with loops, without guaranteeing inter-symbol consistency [32].

3We do not need to communicate the actual content of the matrix H or the locations of the selected doping
symbols, if the encoder/decoder pair synchronize on a single random seed. This can be done out-of-band,
or the random seed can be included in an initial uncoded header.

39

3 Proposed Scheme

Code

DEC

data model psn

DEC

data model psn

sn sn
xk

ŝnxk

ENC

Figure 3.4: A zero-error, variable-rate system featuring a decoder simulation within the en-
coder and internal feedback.

On the other hand, if feedback is available, the decoder can acknowledge sufficiency as xk
is sent letter-by-letter. This immediately obtains a rateless system (Fig. 3.3). In a static
broadcast setting, even feedback is not necessary [33]. Likewise in a storage setting, we can
begin with a high rate (e.g. uncompressed), and truncate the compressed sequence xk if we
later discover we can decode at a lower rate. These are all examples of late-binding systems,
for which no compression solution currently exists.
However, nothing precludes building a traditional early-binding, zero-error variable-rate

system if we wish to (and can) bind the data model in the encoder. The presented encoder
can simply be augmented with a decoder simulation and choose a rate at which the simulated
decoding succeeds with the output matching the original source sequence (Fig. 3.4). Note
that the Code block is still model-free, though the encoder is not. Model-code separation is
fundamentally not about how to design the encoder, but how to design the coding machinery.
Thus, it is important to emphasize that rate selection in a model-code separation archi-

tecture does not present a drawback with respect to joint design. On the contrary, it enables
additional flexibility such as late binding for situations where the encoder truly does not have
access to the data model, or in more extreme cases, does not have access to the unprocessed
source from which to form an entropy estimate (Section 10.2 gives an application).

3.3 Discussion
We discuss the high-level interpretation, performance, and complexity of the proposed ar-
chitecture. Here we assume the large n regime so finite-length effects can be neglected.

3.3.1 Architecture
The model-code separation architecture achieves the cleavage of the two aspects of lossless
compression — modeling and coding — allowing them to be completed in different pipeline

40

3.3 Discussion

stages, or at different times and locations. Save for the requirement to agree on a rate and
a random seed, the encoder has no need for any interaction with the decoder, nor need any
other prior information about the source at all, even its exact original content (i.e., the source
can be pre-processed in any way, as long as it can be modeled). This is very liberating for
practical system design.
Furthermore, because the decoder is an inferential decoder embodying a generative source

model, it is a replica of the entire process from the (putative) generation of the source from
stochastic origins before it reaches the encoder until the point the compressed data leaves
the encoder. The separation of coding and modeling is therefore reflected in the decoder
structure, whose modularity opens the largest seam at the interface between the source
subgraph that models what happens before the encoding process, and the code subgraph that
models what happens during the encoding process. The model-free nature of the presented
encoder is precisely what allows this to be realized.
Practically, the model-code separation and the modularity of the decoder allow us to

separately design or procure the data model and the code, and to swap them at will either
during codec design or, in the case of the data model, at any time even long afterwards.
As long as the components are able to communicate sensibly with the defined controller
interface, as is the case with LDPC codes and PGM’s, this is possible. This degree of
flexibility is a great asset during system design when more daring trials can be performed,
or afterwards when deployed systems can be upgraded to incorporate new understanding of
data. It also allows a division of labor where coding theorists and model analysts can apply
their greatest expertise and import the farthest-reaching results from their respective fields,
without overwhelming concern about compatibility with other parts of the system.

3.3.2 Performance
Practical performance is presented in detail later (Chapters 4 and 5). Here we discuss
performance conceptually.
In the random binning scheme (Section 2.1) the encoder produces a bin label (i.e., hash)

for sn according to a binning assignment (i.e., hash function), while the decoder seeks to
identify an sn sequence that both maps to the correct bin and is statistically typical. Usually,
ML decoding is used to identify the most probable sn among those in the correct bin. This
provably achieves entropy rate by standard theory. Thus the system is architecturally sound
—with optimal components, a powerful controller, and rich interfaces, model-code separation
incurs no penalty. Performance loss can however be incurred from various additional system
implementation issues.
Suboptimal components — The presented scheme implements a hash function in the form

of a randomly chosen linear projection. Linear source codes achieve entropy rate (Section
2.2) with ML. However, if H is chosen from among a suboptimal coding ensemble, then
any decoding may be penalized by bad code loss. We will return to this loss in Section 5.1.
Likewise, while PGM’s have full modeling power over distributions and can compute optimal
inferences by ML (Section 2.3), modeling with a restricted subset like the pairwise models
may result in model mismatch loss. We will discuss this in Section 6.3. Finally, components

41

3 Proposed Scheme

running BP instead of ML when their internal graphical representation is not tree-like may
incur algorithmic loss.
Suboptimal interfaces — If non-controller components are implemented optimally (e.g.,

optimal codes and representations, internally running ML), and exchange joint messages,
for instance, MC(·) = c(·, sD = sD) and MG′(·) = psn(·, sD = sD), then the controller can
compute the optimal combined inference

ŝnML = arg max
sn

c(sn)psn(sn)
= arg max

sn
MC(sS\D)MG′(sS\D)1{sD = sD}(sD) (3.16)

If instead interfaces are constrained to exchange less than the full joint, there is generally
interface loss, unless it is the case that Eq. 3.16 is satisfied anyway. Such condition exists
if (1) the received messages are factors of c(sn) and psn(sn) so the exact objective u(sn) =
c(sn)psn(sn) is reconstructible by the controller, or somewhat trivially (2) S is partitionable
into three disjoint sets, D, sC, and sG′ , with sC |= sG′

∣∣∣ D, so that

ŝnML = (ŝC,ML, ŝG′,ML, sD) = (arg max
sC

c(·, sD = sD), arg max
sG′

psn(·, sD = sD), sD)

which can be verified by graph separation tests on U . Without such guarantees, e.g. when
the controller receives marginal messages as in the presented decoder, it can at best resort
to alternating optimization methods which amounts to running BP.
Suboptimal inference — When running BP in parts or all of the system, the interaction

between losses is complex. Compared to the losses incurred by running BP in individual
components, there may be additional loss to combining them. There may be intersecting
factors in u(sn), which — if the intersection is over two or more source nodes — adds graph
cycles of very short length (4). For sparse G ′ and sparse and random C, the occurrence
should be negligible, i.e. cycles of all lengths increase in number but not catastrophically
[34]. In some cases, combining graphs may help overall, as a sparse code subgraph with hard
constraints helps alleviate over-confident messages in a dense source subgraph by presenting
its own stronger and more accurate beliefs.

3.3.3 Complexity
For this scheme, the encoding complexity is inherited from linear coding (Section 2.2), which
is O(n2) for general linear codes and O(n) for LDPC codes.
Decoding complexity inherits from both coding and modeling results. If the LDPC code

has largest row weight ρ, and the PGM has κ unfactorizable cliques and maximum unfac-
torizable clique size η, then the combined graph U has BP decoding complexity O((k |S|ρ +
κ |S|η)I), where I is the number of iterations. This compares favorably with ML decoding
at O(n |S|k), if max{ρ, η, log κ} � k.
For pairwise models (Section 2.3.3) and LDPC codes, BP decoding has complexityO((k |S|ρ+

(n+ |E|) |S|2)I), which is at most O(n2) for very dense source subgraphs where complexity is

42

3.4 Related ideas

dominated by the number of source subgraph edges, and O(n) in most other cases especially
at lower rates where the first term can have a large constant due to ρ ≥ 1/r.

3.4 Related ideas
Different aspects of the scheme in this chapter have similarities in prior research. They
generally come from several major areas.

3.4.1 Side information problems
In distributed coding, there is interest in using “data-like” side information for compression.
As in [35], key frames supply side information for scalability in Wyner-Ziv video coding. As
in [36, 37], the secret key is the side information in the decoding of encrypted compressed
data. More broadly, works such as [38] and references therein testify to a wide range of
compression problems that take advantage of “data-like” side information.
In compressed sensing, “structure-like” side information such as sparsity is used for re-

construction with fewer measurements [39]. In works such as [40], structures additional to
sparsity are exploited — in this case, wavelet-domain structures for the sensing of images.
The common thread in these works is this: the encoder decimates the data to a lower

rate by a relatively simple process (e.g. projection, sub-sampling); and the decoder, which
possesses side information about the source, chooses the correct sample from among the
numerous otherwise ambiguous possibilities. Upon this suggestive research milieu born out
of applications requiring partial model-code separation (though not stated as such), this
work builds in several important ways, noting that:

1. the decimation process can be any code;

2. the side information can be any data model;

3. the choice of code can be completely agnostic to the data model, i.e. model-free.

3.4.2 Graphical algorithms
In terms of algorithms, graphical methods are a well studied and algorithmically rich gen-
eral inferential toolkit [27, 41], and they have also become useful to compression or signal
reconstruction problems, see for instance [42, 43, 44]. More closely relevant, graphical data
models are used for direct image reconstruction given some cutset pixels reminiscent of trivial
coding [45], and graphical codes show good performance for compressing structureless (i.e.
memoryless) sources [24].
These works begin to stake out a role for graphical algorithms in applications involving

both data and constraint inference. This work takes a step forward by treating data knowl-
edge and constraint information (i.e. model and code) on an equal footing and showing
that graphical algorithms are eminently suitable as a common language for practical general
compression.

43

3 Proposed Scheme

3.4.3 Dual problems
Finally, architecturally related works include those on the dual problem of coding for channels
with memory, where either a combination of LDPC coding and graphical channel modeling
is suggested [46, 47], or equalization for inter-symbol interference is viewed as a part of turbo
decoding [48].
It is fortuitous that channel coding necessitates late binding and therefore model-code sep-

aration, thus giving us an unencumbered look at a pure coding machinery — both encoding
and decoding. This work takes such construction as cue and obtains something similar for
compression.

44

4 Compressing Binary Sources
We apply the model-code separation scheme of Chapter 3 to some relatively simple sources
over S = GF(2) using codes over the same. We call this class of systems SEP.
For each type of source, we identify factors from its distribution psn to build the graphical

representation, compute its entropy rate, and compare compression performance under SEP
vs. other common codecs in simulated experiments. The excellent performance of SEP shows
that model-code separation comes at little cost in practice.
For an explanation of the experimental setup and tested systems, refer to the next section.

4.1 Experimental setup
A representative range of parameter values for each source type is selected, and 20 random
samples are drawn at each parameter value by, e.g. Gibbs sampling (Section 2.3.2.1). The
average rate performance (output bits per input bit) over the samples is reported for the
following compressors:1

• SEP-prot: An instance of the proposed system. An off-the-shelf library of quasi-
regular-(λ̄ = 3, ρ̄) binary LDPC codes is used.2 The doping rate rdope is fixed and
noted. Rate performance denotes the minimal total rate r = r∗code + rdope, where

r∗code , min
r
rcode (4.1)

for which decoding converges (in this case, within 150 iterations) to the correct result.

• ARITH: Standard arithmetic coding [49] for coding biased i.i.d. symbol streams, with
symbol probabilities supplied. (This compressor is excluded for sources with memory.)

• GZIP: A Lempel-Ziv class universal compressor [50, 51] that learns a dictionary from
serial streams. Input data is provided to it after flattening to a bit-stream. Output

1ARITH is implemented in MATLAB’s Communications System Toolbox (v5.5) as arithenco; GZIP is
implemented in standard GNU distributions as gzip (v1.5); CTW is found at http://www.ele.tue.nl/
ctw/download.html (v0.1); JBIG2 is found at http://github.com/agl/jbig2enc (v0.28).

2“Quasi-regular” denotes degree distributions taking only two adjacent values, viz., checksum degrees (row
weights of H) are bρ̄c and dρ̄e.

45

http://www.ele.tue.nl/ctw/download.html
http://www.ele.tue.nl/ctw/download.html
http://github.com/agl/jbig2enc

4 Compressing Binary Sources

rate

errors

BP decoding threshold

BP
convergesBP

does not
converge

best coding rate

²BP²BP

r¤coder¤code

Figure 4.1: The BP decoding threshold εBP is a lower rate that more accurately describes
the useful rate of a particular code under BP.

length is the compressed file size, less the compressed file size of a zero-length file to
account for headers.

• CTW: The context-tree weighting universal compressor [52] learns a Markovian tree
model from serial streams. Just as for GZIP, input data is provided to it after flattening.

• JBIG2: This state-of-the-art bi-level image compressor (ITU-T T.88; 2000) [53] is based
on 2D context dictionaries. We operate the encoder in lossless mode. The output length
is the file size of raw-stream compression, less the compressed file size of a 1-pixel image
to account for headers. (This compressor is excluded for non-2D sources.)

Universal compressors are included for reference, in particular for when there are no better
data-matched codecs. The meaning of comparisons with them is briefly broached in Section
4.1.2, but a more detailed discussion of universality for model-code separation awaits in
Chapter 6.

4.1.1 Threshold rate
In SEP-prot, for each minimal rate LDPC code found, we can identify its BP decoding
threshold, εBP (Fig. 4.1). This threshold rate serves as a more accurate proxy for the
“utilizable” rate of that code than its coding rate rcode, in that the gap between rcode and εBP
is not primarily an architectural loss, but that associated with code selection and decoding
method. Better code selection such as through degree-distribution optimization or other
methods can be expected to close the gap (see Section 5.1).
The total threshold rates r∗ , εBP + rdope are reported under SEP-thresh, which can be

viewed as another (idealized) system instance where codes are well chosen. These are the
more important quantities when we speak of SEP performance.

46

4.2 Bernoulli i.i.d. sources

4.1.2 Expected performance
We expect compressors that correctly assume a greater amount of data model to achieve
better compression. SEP assumes the exact data model, so it is at an inherent advantage.
However, the other compressors, even universal ones, also make some assumptions to be
effective at finite data lengths.3 JBIG2 assumes recurring 2D symbol motifs, GZIP assumes
recurring 1D symbol motifs, CTW assumes tree-structured symbol occurrence frequencies,
and ARITH assumes fixed symbol occurrence frequencies. Some assumptions clearly subsume
others, thus we expect for sources that demand the stronger of the assumptions, a rate
performance ordering like

SEP ≺ JBIG2 ≺ GZIP

SEP ≺ CTW ≺ ARITH

where “smaller” under≺ refers to lower or better rate. If we distinguish the SEP instances
and also include the ultimate lower bound in the entropy rate, we add

H(s) ≺ SEP-thresh ≺ SEP-prot

For less demanding sources, multiple systems may converge toward similar performance
because they sufficiently capture the same aspect of the data model, e.g., 1D Markovianity;
and the same is expected as universal compressors pick up more of the data model from
learning over longer data lengths.
These are borne out in the results, which follow.

4.2 Bernoulli i.i.d. sources

φ1

s1

φ2

s2

· · ·

φn

sn

Figure 4.2: Source subgraph for Bern(p), with φi = [1− p; p].

A Bernoulli i.i.d source s ∼ Bern(p) has distribution 4

psn(sn) =
n∏
i=1

[1− p; p](si) (4.2)

3More precisely, universal compressors operating at data lengths (or effective data lengths, due to state
memory) where AEP is not effective depend on the peculiarities of their construction to determine the
range of data models they are capable of capturing.

4[α;β](x) , α1{x=0}(x) + β1{x=1}(x).

47

4 Compressing Binary Sources

and entropy rate 5

H(s) = h(p) (4.3)

The source is trivially pairwise, has no edges, and only has φi factors, known as node poten-
tials.
Compressing a Bern(p) source is dual to the problem of channel coding for the binary

symmetric channel (BSC) with cross-over probability p. Indeed, the inferential decoder for
SEP has graphical structure identical to the LDPC decoder for the BSC:

• (Decoder A.) The Bern(p) decoder solves for the source data sequence s ∼ Bern(p)
satisfying Hs = x by setting

φiA ⇐ [1− p; p]

and running BP in accordance with Section 3.2.3.3.

• (Decoder B.) The BSC decoder solves for the codeword c satisfying Hc = 0 from the
received word y = c+ w, w ∼ Bern(p), by setting

φiB ⇐

[1− p; p] if yi = 0
[p; 1− p] if yi = 1

and running BP as if x = 0.

Due to the nature of the factors fa in the code subgraph, where the effect of inverting any
input message can be nullified by the inversion of the parity value xa (Section 4.6), Decoder
B can be transformed into Decoder A, by a series of steps inverting each φiB for which yi = 1
and simultaneously inverting its attached xa. This gives an equivalent decoder for w, in
exactly the same form as Decoder A.
Given that LDPC decoding for the BSC is well understood, we appeal to those results in

addition to what follows for the behavior of compressing Bern(p) sources using SEP.

4.2.1 Results
In Fig. 4.3, we observe that SEP-thresh can reach the entropy rate of Bern(p), even at
fairly short data lengths. The coding rate itself (SEP-prot) is within 16-20% of the threshold
rate of the code (SEP-thresh), and better in absolute terms at lower rates than at higher
rates. These characteristics are well known from channel coding analogs, and good codes
selected already for channel coding (cf. Section 2.2) can indeed be productively applied to
this source.
Of the other systems, ARITH performs better than GZIP because it captures the full data

model for this source without learning.

5h(x) , −x log x− (1− x) log(1− x).

48

4.3 Binary Markov sources

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
ARITH
SEP−prot
SEP−thresh
entropy

(a) n = 1000

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
ARITH
SEP−prot
SEP−thresh
entropy

(b) n = 10000

Figure 4.3: Compression performance for the Bern(p) source family over a range of p values.
rdope = 0.

4.3 Binary Markov sources

s1 s2

· · ·
sn

ψ2
1 ψ3

2 ψnn−1

Figure 4.4: Source subgraph for Markov(q), with ψji =
[

q 1− q
1− q q

]
.

Markov sources are perhaps the simplest sources with memory. A binary homogeneous
symmetric Markov chain sn ∼Markov(q) has distribution 6

psn(sn) = 1
2

n∏
i=2

[
q 1− q

1− q q

]
(si−1, si) (4.4)

and entropy rate
H(s) = h(q) (4.5)

This source is also pairwise, has O(n) edges and only ψji factors on them, called edge poten-
tials.
Compressing a larger-alphabet version of this source is the subject of Section 8.1.

6
[
α γ
β δ

]
(x, y) , [α;β](y)1{x=0}(x) + [γ; δ](y)1{x=1}(x).

49

4 Compressing Binary Sources

4.3.1 Results

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

q

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
CTW
SEP−prot
SEP−thresh
entropy

(a) n = 1000

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

q
ou

tp
ut

 b
its

 p
er

 in
pu

t b
it

GZIP
CTW
SEP−prot
SEP−thresh
entropy

(b) n = 10000

Figure 4.5: Compression performance for the Markov(q) source family over a range of q
values. rdope = 0.1.

Fig. 4.5 shows that Markov(q) has more difficulty to reach entropy than i.i.d. sources.
For one, decoding of Markov(q) requires non-trivial initialization such as doping, as there
are no biased node potentials to begin the iterative process. In this case, ∼ 10% doping
gives good results. The doping rate is the primary residual that SEP-thresh maintains over
the entropy rate at lower rates, whereas at higher rates doping acts much more in concert
with the code.
Of the other systems, CTW is able to capture the Markovian data structure better than

GZIP at the same data length, but only reaches performance similar to SEP-thresh at longer
data lengths.

4.4 Binary Ising model
The Ising model is a 2D extension of the Markov chain, with neighbor affinity properties.
It is common in vision research as an image model. The homogeneous Ising model sh×w ∼
Ising(p, q) is defined over the h× w lattice graph G = (S, E) by

psn(sn) = 1
Z

∏
i∈S

φ(si)
∏

(i,j)∈E
ψ(si, sj)

= 1
Z

∏
i∈S

[1− p; p](si)
∏

(i,j)∈E

[
q 1− q

1− q q

]
(si, sj) (4.6)

50

4.4 Binary Ising model

s(1,1)

φ

s(1,2)

φ

· · ·
s(1,w)

φ

s(2,1)

φ

s(2,2)

φ

· · ·
s(2,w)

φ

· · · · · · · · · · · ·

s(h,1)

φ

s(h,2)

φ

· · ·
s(h,w)

φ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

Figure 4.6: Source subgraph for Ising(p, q), with φ = [1− p; p], ψ =
[

q 1− q
1− q q

]
.

The source is again pairwise, having n = hw nodes (resp. node potentials), and an edge
between every neighbor pair in the four cardinal directions for a total of 2hw− (h+w) edges
(resp. edge potentials), which scales as O(n).
In the following, we are only interested in the symmetric Ising model with p = 1/2. Some

samples are shown in Fig. 4.7.
There is a phase transition around the parameter threshold q =

√
2/2 (exact for n large),

such that long-range correlations are low (resp. high) below (resp. above) the threshold.
A significant amount of compression can be achieved above the threshold, where the source
begins to resemble shape-like natural images.

(a) (b) (c) (d) (e)

Figure 4.7: 100 × 100 Gibbs sampled images according to Eq. 4.6 of Ising(1
2 , q). From left

to right, q = 0.5, 0.6, 0.7, 0.8, 0.9.

51

4 Compressing Binary Sources

4.4.1 Entropy rate

In order to have a lower bound on the rate, we derive an entropy rate for the finite-size and
infinite-size Ising models.

Putting p = 1/2, we have two calculable entropy rates for the symmetric Ising model.
Letting p(s) denote the distribution of an arbitrarily sized model, we note that

p(s) ∝
∏

(i,j)∈E
ψ(si, sj)

= q#SE(s)(1− q)#DE(s)

∝ exp
{

#DE(s) log
(

1− q
q

)}
= exp{−2θ#DE(s)}
, π(s; θ)

where θ = tanh−1(2q − 1) is a parameter of p(s) when written in exponential family form,
and #SE(s) (resp. #DE(s)) is the number of edges in E that connect two nodes with the
same value (resp. different values) for the sample s.

Now, suppose logZ = log∑s π(s; θ) for proper normalization, then,

∂ logZ
∂θ

= 1
Z

∂Z

∂θ
= 1

Z

∑
s

∂π(s; θ)
∂θ

= 1
Z

∑
s

exp{−2θ#DE(s)} × (−2#DE(s))

=
∑
s

p(s)× (−2#DE(s))

=
∑
s

p(s)× 1
θ

log π(s; θ)

Thus the finite entropy rate for a particular sized model can be extracted from logZ as

Hh,w ,
1
n
H(sh×w)

= − 1
n

∑
s

p(s)× {log π(s; θ)− logZ}

= −θ∂{logZ/n}
∂θ

+ {logZ/n} (4.7)

Empirically, the function ∂{logZ/n}/∂θ = E{−2#DE(s)}/n (and therefore logZ and Hh,w)
can be approximated from samples of s by substituting an average for the expectation. Finite
lattices have higher entropy (for q 6= 1/2) due to boundary values.

52

4.4 Binary Ising model

For h,w →∞, we quote a result from statistical physics [54, 55, 56]:

logZ/n = log 2
1− θ2 + 1

2(2π)2ˆ π

−π

ˆ π

−π
dqxdqy log

{
(1 + θ2)2 − 2θ(1− θ2)(cos qx + cos qy)

}
from which we get the usual (asymptotic) entropy rate H∞ = H(s) from Eq. 4.7. Both
entropy bounds will be used as performance references.

4.4.2 Results
For this source, JBIG2 is given the data as a bitmap image, with each node si representing
a pixel. For GZIP and CTW, data is given in scanline order.

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

q

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

 GZIP
CTW
JBIG2
SEP−prot
SEP−thresh
entropy H

h,w

entropy H∞

(a) (h,w) = (32, 32)

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

q

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

 GZIP
CTW
JBIG2
SEP−prot
SEP−thresh
entropy H

h,w

entropy H∞

(b) (h,w) = (100, 100)

Figure 4.8: Compression performance for the Ising(p, q) source family for p = 1
2 and a range

of q values. rdope = 0.04.

Since p = 1/2, a non-trivial initialization is required just like for Markov(q). Here, ∼ 4%
doping (lower than the Markov(q) case) works well. Referring to Fig. 4.8, SEP-thresh
beats GZIP and CTW, rivals JBIG2, and is close to the finite entropy rate Hh,w over most
values of q. Particularly in the low-rate regime with shape-like images (q nearer to 1),
the coding-to-threshold rate gap is small enough that coding choices are of lesser concern.
However, the residual attributed to the doping rate may still benefit from optimizations.
Of the other systems, JBIG2 only begins to approach SEP performance at longer data

lengths, while GZIP and CTW have substantially similar performance, being able to capture
only the 1D features of Ising(p, q) well, and less able to exploit the 2D correlations as JBIG2
does. Furthermore, traditional context-based compressors always encode causally, thus they

53

4 Compressing Binary Sources

refer to a portion of the data already encoded, thereby losing the performance attributable
to the true unrestricted context, which SEP naturally has.

4.5 Summary
SEP shows good performance over several source families with distinctive model structures
and a range of parameter values. At medium to lower rates, the unoptimized example of
SEP-prot nearly suffices, but indeed, it is also important that SEP-thresh is close to the
entropy rate in many cases, suggesting such nearly optimal performance is realizable with
coding and system optimizations. For example, starting from the basic SEP-prot design,
additional gains can be made on the coding-to-threshold rate gap at higher rates and the
doping residual at lower rates.
Beyond absolute performance merits, SEP also benefits from the model-code separation

architecture in the way in which it can embed and apply a good-faith data model at any
data length. This is more important especially at shorter data lengths and for data that are
ill represented by causal models.

4.6 Appendix: Parity lemma*
Definition 4.1. A binary message m = [1− p; p] is called inverted to m̄ if m̄ = [p; 1− p]. A
0-1 tensor f (perhaps representing a factor node function) is called inverted to a tensor f̄ if
f + f̄ = 1, the all-1 tensor.
Lemma 4.2. Given a C component as in Table 3.2, with factor nodes fa as defined in Section
3.2.3.1, an inversion of the external message input [M i←]C at si has no effect on any factor
node output (and therefore any external message output), if all fa to which si is connected
are inverted.
Proof. Note that the only messages that are possibly affected in one iteration of the C
component are, mi→a for all fa to which si is attached, and mk←a for all sk to which each
such fa is connected in turn. Applying the indicated inversions on the affected messages:

mi←∼a
[
M̄ i←

]
C
⇒ m̄i→a

f̄k∼km̄
i→am∼k\i→a = fk∼km

∼k→a ⇒ mk←a (4.8)

where the equality of Eq. 4.8 is because

f̄k∼km̄
i→a = f̄k∼k

[
0 1
1 0

]i
i

mi→a

and
[

0 1
1 0

]i
i

is the inversion operator for either f̄k∼k or mi→a.

54

4.6 Appendix: Parity lemma*

Note that inverting fa is equivalent to inverting xa.

55

5 Coding Details
Practical implementation of SEP requires designers to make tuning choices in the system.
An important set of tuning values relate to the code component and its interaction with the
rest of the decoder. In this chapter, we discuss details regarding selecting the code ensemble
H (n, k) and choosing the doping rate rdope. These choices ultimately are to be evaluated for
compression performance. Therefore, we also identify the summary quantities in decoding
that are important for identifying how the decoder behaves — whether it converges or not,
how fast, and how to know. Finally we propose some analytical tools drawn from traditional
LDPC channel coding analysis, but adapted here for the compression problem.

5.1 Code selection
The selection of a code ensemble H (n, k) bears strongly on the performance of an LDPC
coding system. This problem has been examined for channel coding, and how the results
are relevant for compression is the subject of this section. The basic idea is to derive a rela-
tionship between a performance metric on the coding system and some parameters defining
a code ensemble, after which we can optimize for the code ensemble.

5.1.1 Degree distribution and threshold
One result is that code ensembles parameterized by their degree distributions are easily
related to certain performance metrics called decoding thresholds. We alluded to a BP
decoding threshold εBP in Section 4.1.1 and throughout Chapter 4. We define it more
precisely now in relation to a channel coding analog.

5.1.1.1 Degree distribution*

Definition 5.1. As in ([41], Chapter 3), a binary linear code with coding matrix Hk×n
having Λi columns of weight i and Pj rows of weight j, has degree distributions encoded
by the generating functions Λ(x) ,

∑
i Λix

i and P (x) ,
∑
j Pjx

j. It has normalized degree
distributions L(x) , Λ(x)/Λ(1) and R(x) , P (x)/P (1) and normalized edge distributions
λ(x) , Λ′(x)/Λ′(1) and ρ(x) , P ′(x)/P ′(1).1

1A′(x) , d
dxA(x).

57

5 Coding Details

Example 5.2. A quasi-regular-(λ̄ = 3, ρ̄) code as used in SEP-prot has degree distributions
Λ(x) = x3 and P (x) = (n− bn frac(ρ̄)e)xbρ̄c + bn frac(ρ̄)exdρ̄e.2

5.1.1.2 Channel coding thresholds*

Channel coding thresholds are minimum channel qualities at which an ensemble H (n, k)
can be successfully decoded by various decoders. The first useful threshold is the erasure
threshold, i.e. the largest fraction of erasures a binary erasure channel (BEC) can have to
permit successful decoding of an LDPC code with a certain degree distribution. The higher
this number, the better the code/decoder pair is for the BEC.

Fact 5.3. Given a code with λ(x) and ρ(x), let f(ε, x) = ελ(1− ρ(1− x)). The BP erasure
threshold for the BEC,

εBP , sup{ε : f(ε, x)− x < 0, ∀x ∈ (0, 1]} (5.1)

is the largest fraction of erasures that can be corrected by BP decoding with this code.

Similarly, the same code under ML decoding also has a performance limit.

Fact 5.4. Given a code with λ(x), ρ(x), L(x), and R(x), let ε(x) = x/(λ(1−ρ(1−x))), and
let x∗ ∈ (0, 1] either solve

0 = ε(x)L(1− ρ(1− x)) + L′(1)xρ(1− x)− L′(1)
R′(1)(1−R(1− x))

or be set to x∗ = 1, then the ML erasure threshold for the BEC,

εML , ε(x∗) (5.2)

is the largest fraction of erasures that can be corrected by ML decoding with this code.

The largest erasure threshold for any ensemble H (n, k) of its rate can only be k/n because
the information rate of the code is set at Icode = 1 − k/n. Thus for the BEC, we have
generally εBP ≤ εML ≤ 1− Icode = k/n. Applying the BEC capacity relation C = 1− ε gives
a corresponding sequence of capacity thresholds, CBP ≥ CML ≥ Icode = 1− k/n. This second
sequence is applicable also to other channels. It means that though we expect to code at an
information rate Icode approaching channel capacity from below, the actual situation may be
that for this ensemble the information rate needs to be lowered by CML − Icode even for the
best decoder, and by CBP − Icode with a suboptimal BP decoder.

5.1.1.3 Source coding thresholds

Although thresholds are first developed for channel coding, we can use them for source
coding. Appealing to the duality of channel coding for a channel with additive-noise psn

2bxe is the rounding of x; frac(x) is the fractional part of x.

58

5.1 Code selection

1−ε
2 0 0

ε ∗

1−ε
2 1 1

1
2

1
2

Figure 5.1: A binary doping source BDS(ε) modeled as being generated from an observed
pre-source on the left. The pre-source takes the entropic state (∗) with probability
ε, and the doping states (0, 1) with overall probability 1− ε.

and source coding for a source with distribution psn , the capacity thresholds CBP ≥ CML ≥
Icode = 1 − k/n correspond exactly to the entropy thresholds hBP ≤ hML ≤ rcode = k/n,
which are the maximum source entropies allowed for compression with an ensemble H (n, k)
to succeed under various decoders. That is, a source code may have a rate rcode, but the
entropy rates that are decodable may be lower. rcode − hML measures the gap due to the
code, while rcode−hBP measures the gap due to the code and BP decoding. It is in this sense
that entropy thresholds are the “utilizable” rates of a source code.
Generally, there is a slightly different set of thresholds for each different source (as for

channels). However, we would like to have one metric for a code/decoder pair. Just like the
BEC threshold is often used to quote LDPC code performance, so consider a special source
that is dual to the BEC — call it the binary doping source (BDS) (Fig. 5.1). In a BDS
sn ∼ BDS(ε), entropy is confined within some subset ε of bits which are each equiprobably 0
or 1; the remaining 1−ε bits are provided by an oracle (i.e. as if doped) without costing rate.
SEP decoding for the BDS(ε) then corresponds to LDPC channel decoding for the BEC(ε),
and for the same codes, the erasure thresholds εBP, εML, etc., are also the entropy thresholds
for the BDS. It is one of these entropy thresholds (εBP) that we use to define SEP-thresh
performance in Section 4.1.1:

Definition 5.5. Given a code with degree distribution parameters λ(x), ρ(x), L(x), R(x),
such that εBP is its BP erasure threshold (Eq. 5.1), then let εBP also be the BP decoding
(entropy) threshold for compression with the code. Similarly, let εML (Eq. 5.1) be the ML
decoding (entropy) threshold.

The BDS entropy thresholds are easy to calculate and useful due to certain extremal
properties (see e.g. [41], Theorem 4.141) that make them generally conservative estimates
for code/decoder quality. That is to say, because the BDS is an “easy” source to compress,
the excess rates on it reflect truths about the coding machinery that we can hope to make
improvements on, while additional excess rates may be something source-specific — we could
make improvements for each source, too, but it would be far less practical.

59

5 Coding Details

5.1.2 Coding improvements
The meaning of entropy decoding thresholds for coding improvements is twofold. First we
can use hML or its proxy εML to screen for a good code whose ML decoding performance
coincides with the coding rate rcode (generally it means ensuring H has full rank). For LDPC
ensembles this is not so difficult at sufficient data length. The greater performance gap is
the coding-to-threshold gap rcode−hBP (or rcode− εBP) due to suboptimal iterative decoding.
No fewer than three approaches to close this gap are found in literature:

• Degree-distribution optimization: Degree distributions Λ(x) and P (x) can be adjusted
through the function f(ε, x) to raise the BP threshold [57].

• Spatial coupling: Spatially coupled LDPC codes can have the same BP and ML thresh-
olds [58, 18, 26, 59].

• Decoder modification: The BP decoding algorithm itself can be modified in various
ways, usually with some complexity tradeoff, to bypass decoding difficulties at bottle-
necks [60, 61].

Other approaches, e.g. expander graphs and related constructions, with additional graph-
topological properties [44], may translate from compressed sensing problems to general com-
pression.
The specifics of these approaches decouple with respect to the compression application,

so they are less relevant to the present discussion. Suffice it to say that by identifying the
threshold phenomenon of source coding with that of channel coding, we allow ourselves to
gain from the still developing field of modern coding.

5.2 Doping
In Section 3.2.4, we introduced doping as part of the SEP decoder. Here we examine exactly
what its functions are and what range of rates may be appropriate for rdope.
There are two functions for doping: to initialize the decoding process, and to improve the

decoding of certain sources.

5.2.1 Initialization function
Unless the source model provides biased initial marginals, such as in Bern(p) or compressible
i.i.d. sources in general, all initial messages in the SEP decoder are null and BP has no
dynamics. It is certainly the case that a random initialization of the messages can generate
dynamics, and for some well behaved sources along with sufficient rate, this may proceed to
successful decoding. However, such aggressive initialization with unfounded beliefs generally
puts the decoding in one of many incorrect search spaces from which it does not easily find
an escape via iterative means. Thus in SEP, doping is the preferred and chosen method to
practically begin the decoding process in the neighborhood of the solution.

60

5.3 Decoding mechanics

5.2.2 Coding function
That doping can make inferential decoding “easier” has been recognized in various guises,
from the “degree-1 bits” of [62] to the “reference variables” of [63]. In compression too,
explicit use of doping, sometimes in large quantities, are found in [24, 37], while implicit
uncoded transmission of partial data upon which other correlative structures are built [45, 35]
is similar to doping in function if not in conception.
As acknowledged previously, producing doping symbols in the encoder is equivalent to

appending unit-weight checksum rows to the coding matrix to form H4, thus its choices are
inherently part of coding optimization. In this form, unit-weight checksums also play a role
within degree distribution and spatial coupling optimization methods.3
Since doping improves convergence but increases rate, its overall effect is a priori unclear.

Absent a unified theory of code construction and optimization, we are left to consider doping
separately and empirically observe its effects on coding various sources. Unsurprisingly,
different amounts of doping are good for different situations.
Fig. 5.2 shows two examples from the sources in Chapter 4. Displayed are the minimal

total coding rates r = rcode+rdope for SEP-prot, at different rdope values. With the given code
ensemble of SEP-prot, there appears to be an r∗dope at which performance is best across the
range of source parameters. However, the best doping rates are different for different sources
and it appears that the 1D Markov(q) sources require relatively more doping (∼ 10%) than
the 2D Ising(p, q) sources (∼ 4%). We conjecture that r∗dope is model structure related,
scaling inversely with the number of neighbor nodes (i.e. the source “dimension”) within
some radius of the source subgraph.

5.3 Decoding mechanics
Another way to understand the effect of coding is to observe the decoding process at finer
grain. This helps us to get deeper insight about what makes a good or bad code for com-
pression. In this section, we present two internal facets of the decoding process: the rate
characteristics and the convergence dynamics.

5.3.1 Rate characteristics
By rate characteristics we mean the decoder behavior around the critical coding rate r∗code
separating successful and unsuccessful decoding (Eq. 4.1). Recall that in the SEP-prot re-
sults of Chapter 4, for each data sample, we conducted a number of trial BP decodings using
LDPC codes at different coding rates rcode. Further recall that BP terminates in one of three
ways: (1) convergence to the correct result with all constraints satisfied, (2) non-convergence

3Incidentally, H4 can be simplified after rows for doping have been added, by removing the other 1’s in the
same column as each doping symbol — say, for each doped si, those in the λ rows corresponding to the
factors fa1 , fa2 , ..., faλ ∈ N Ci — and pre-computing adjustments to xa1 , xa2 , ..., xaλ by means of Lemma
4.2 (Section 4.6).

61

5 Coding Details

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

q

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

r
dope

=0.01

r
dope

=0.04

r
dope

=0.07

r
dope

=0.1

r
dope

=0.13

entropy

(a) Markov(q), n = 1000

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

q

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

 r
dope

=0.01

r
dope

=0.04

r
dope

=0.07

r
dope

=0.1

r
dope

=0.13

entropy H
h,w

entropy H∞

(b) Ising(1
2 , q), (h,w) = (32, 32)

Figure 5.2: SEP-prot compression performance at different doping rates. No one doping rate
is good for all situations.

with messages converged but some constraints unsatisfied, or (3) non-convergence with mes-
sages unconverged and reaching the maximum allowed iteration count. Upon termination,
we always obtain a triplet (rcode, ε◦s, I), where rcode is the coding rate, ε◦s is the terminal
(residual) error rate

ε◦s ,
1
n

n∑
i=1

1{ŝi 6= si} = 1
n
‖ŝn − sn‖0 (5.3)

and I is the number of iterations elapsed. Since only the first case reports ε◦s = 0, it is
the only case termed “successful decoding.” The minimal coding rate for which there is
successful decoding was reported previously. That corresponds to the critical coding point
(rcode, ε◦s, I) = (r∗code, 0, I∗). However, it is worthwhile to look at the other points.

Fig. 5.3 plots the traces of trial decoding each source sample of the Markov(q) sources
of Section 4.3. Each colored trace is a representative from among those trials belonging to
the same source parameter value q. The terminal error rate ε◦s shows stereotypical water-
fall behavior around the critical coding point, transitioning abruptly from no error above
rcode = r∗code to plentiful errors below it. The terminal iteration count shows a double wa-
terfall behavior, where above or below the critical coding point, decoding either becomes
exceedingly easy or it becomes quickly evident that decoding will not succeed. However,
approaching the critical point closely on either side requires increasing complexity. These
are well known behaviors of LDPC codes with BP decoding. Taken together, they suggest
heuristics for locating the critical rate r∗code with limited complexity and for designing well
founded termination criteria.

62

5.3 Decoding mechanics

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r
code

te
rm

in
al

 e
rr

or
 r

at
e

ε s°

(a) terminal error rate

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

r
code

#i
te

ra
tio

ns

(b) terminal iteration count

Figure 5.3: Decoding Markov(q) sources of various entropy rates (0.1 to 0.9). n = 10000.
Traces each show the decoding of one sample at various coding rates. Circles
mark critical coding points.

5.3.2 Convergence dynamics
To study what drives convergence in the BP decoding of SEP, we use Ising(p, q) as a model
source. We first show examples, then develop a method inspired by EXIT function analysis
of channel coding [64, 65] to summarize the evolution of messages on the joint source-code
graph of SEP.

5.3.2.1 Examples

The three classes of messages passing through the controller (Table 3.2) are the source-side
external message input

[
M i←G

]
, the code-side external message input

[
M i←C

]
, and its own

doping messages di (Eq. 3.15). Let us choose to attach doping messages to the code-side
messages in the following.

Definition 5.6. We identify biG ,
[
M i←G

]
as the source belief , biC = di

[
M i←C

]
as the code

belief , and bi , biGb
i
C = di

[
M i←G

] [
M i←C

]
as the total belief . For each belief, we define an

entropy representing its equivocation, thus we have 4
h(biG), h(biC), and h(bi) at the node

si. Finally, define h̄G , (1/n)∑n
i=1 h(biG), h̄C , (1/n)∑n

i=1 h(biC), and h̄U , (1/n)∑n
i=1 h(bi)

respectively as the source uncertainty, code uncertainty, and total uncertainty.
Taking the uncertainty h̄U as an example, it is 1 if and only if its associated marginal

beliefs bi are the identity message 1(s) indicating total ignorance, and 0 if and only if bi are
deterministic messages indicating full knowledge. The two cases correspond to initial and

4
h(b) = −

∑
s∈S b̃(s) log b̃(s), where b̃(s) = b(s)/

∑
s∈S b(s).

63

5 Coding Details

final decoder states, respectively. Beyond these, uncertainty values are less meaningful. Par-
ticularly, intermediate uncertainty values are best interpreted as marginal entropy averages
as defined, and not as entropies of the joint beliefs unless strong conditional independence
properties are satisfied such as for long LDPC codes and i.i.d. sources.

Fig. 5.4 shows the convergence process of decoding an Ising(p, q) sample (Fig. 5.5(a)) at
three coding rates. Plotted are the belief uncertainties h̄G, h̄C, h̄U , the source error rate εs
(cf. Eq. 5.3), and the checksum error rate

εx ,
1
k

k∑
a=1

1{Ha,·ŝn 6= xa} = 1
k

∥∥∥H ŝn − xk
∥∥∥

0
(5.4)

Also plotted in Fig. 5.4 are gray curves representing h(biG), h(biC), and h(bi) at one undoped
si. Fig. 5.5(b)-(e) further show the initial and terminal total beliefs as grayscale images.
The SEP performance of this source was reported in Fig. 4.8(a) previously, where the

mean critical coding rate was found to be r∗code ≈ 0.6949. (For individual samples it may be
higher or lower — e.g., higher on this sample.) Different behaviors are observed for below
(rcode = 0.6), around (rcode = 0.7), and above (rcode = 0.8) the critical rate. In particular,
these three regimes correspond to the three cases of BP termination outlined in Section 5.3.1,
respectively rcode = 0.8 is case 1, rcode = 0.6 is case 2, and rcode = 0.7 is case 3.5
In all cases, there is a general decoding trajectory that begins with a doping initialization

where h̄C ≤ 1 − rdope and h̄G = (1/n)∑n
i=1H(si|D\si), and proceeds toward more certain

source and code beliefs. With sufficient coding rate, the process reaches a point where
h̄C = 0 and h̄G = (1/n)∑n

i=1H(si|s∼i) ≤ H(s), representing full decoding. If coding rate is
not sufficient, however, the process is “stuck” along the way, and either reaches a stable false
solution (very rare) or oscillates in regions with many plausible solutions concordant with
the source model but far away from the true solution.

5.3.2.2 Message ensemble evolution

In Section 5.4, we develop an EXIT function analysis for the evolution of message ensembles
on the SEP decoder. Using it, we can learn about the microstructure of the convergence
dynamics of SEP without the complexity of actually running it.
In particular, we can examine the entropy update quantities hS←X and hS←S , which are

EXIT analogs of the SEP decoder quantities

h̄i←a ,

∑n
i=1

∑
a∈NCi

h(mi←a)∑n
i=1 |N Ci |

5Cases 2 and 3 are truly distinct only for idealized sources, e.g., those with disjoint correlation neighborhoods
around doped bits — roughly, sources with short-range correlation. Here, with the Ising model operating
above its parameter threshold (Section 4.4), correlation is long-range, so rcode = 0.6 and rcode = 0.7 differ
only in the degree of message stability.

64

5.3 Decoding mechanics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code uncertainty

so
ur

ce
 u

nc
er

ta
in

ty

10 20 30 40 50 60 70 80 90 100
0

0.5

1

to
ta

l u
nc

er
ta

in
ty

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

iteration

er
ro

r
ra

te
s

 —
 ε

s
−

 −
 ε

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code uncertainty

so
ur

ce
 u

nc
er

ta
in

ty

10 20 30 40 50 60 70 80 90 100
0

0.5

1
to

ta
l u

nc
er

ta
in

ty

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

iteration

er
ro

r
ra

te
s

 —
 ε

s
−

 −
 ε

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code uncertainty

so
ur

ce
 u

nc
er

ta
in

ty

10 20 30 40 50 60 70 80 90 100
0

0.5

1

to
ta

l u
nc

er
ta

in
ty

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

iteration

er
ro

r
ra

te
s

 —
 ε

s
−

 −
 ε

x

Figure 5.4: Convergence process of decoding a sample from Ising(1
2 , 0.7), (h,w) = (32, 32),

using SEP-prot, rdope = 0.04, and (top to bottom) rcode = 0.6, 0.7, 0.8. Plotted
are source uncertainty h̄G vs. code uncertainty h̄C (left), and total uncertainty
h̄U along with source and checksum error rates εs and εx vs. iteration (right).

65

5 Coding Details

(a) (b) (c) (d) (e)

Figure 5.5: Decoding a sample from Ising(1
2 ,

7
10), (h,w) = (32, 32), using SEP-prot, rdope =

0.04: (a) ground truth sh×w; (b) doping initialization d(sh×w = 1); (c)-(e) total
beliefs b(sh×w = 1) at termination for rcode = 0.6, 0.7, 0.8, respectively.

and

h̄i←j ,

∑n
i=1

∑
j∈NG′i

h(µi←j)∑n
i=1

∣∣∣N G′i ∣∣∣
These are related to the belief uncertainties of Section 5.3.2.1 — since beliefs accumulate
from messages — but more fine-grained.
Fig. 5.6 and 5.7 demonstrate the EXIT quantities with actual SEP simulations overlaid.

On the left, the gradients of the EXIT quantities hS←X and hS←S under update rules are
shown as a vector field in black with sample flows in blue. The trajectory of the analogous
empirical quantities h̄i←a and h̄i←j from decoding a sample in SEP is overlaid in red. On the
right is a contour plot of the magnitude change in the uncertainty vector (hC, hG) during one
EXIT evolution step; it indicates how dynamic a state space region is. Also plotted are the
zero gradient curves of hC (cyan) and hG (yellow), and the same SEP simulation trace.
The main feature to note is that successful decoding proceeds in regions where both hC

and hG (likewise hS←X , hS←S) have negative gradients. Such region is above the yellow curve
(source model active) and below the cyan curve (coding constraints active). Thus we see the
general behavior of SEP decoding is (1) to be activated initially by the gap in the top-right
between the two curves granted by any compressible source, (2) to move toward the yellow
curve via the source model and, in doing so, (3) activating the coding constraints and, if the
coding rate is sufficient to allow a path, (4) to finally be driven to successful decoding.
There is much to be learned from these analyses: about initialization, about the interaction

between code and model, and code design and doping choices. This tool provides a starting
point for further inquiries.

5.4 Appendix: EXIT analysis*

Traditionally, the extrinsic information transfer (EXIT) function h(h) is defined for the
decoders of binary symmetric DMC’s ([41], Chapter 4). Namely, provided a virtual DMC
W (y = W(c)) from an h-parameterized collection W(h), a received word y, and a marginal

66

5.4 Appendix: EXIT analysis*

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) rcode = 0.8

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) rcode = 0.6

Figure 5.6: Message entropy evolution for Ising(1
2 , 0.7). EXIT vs. SEP.

67

5 Coding Details

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) rcode = 0.1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

code−to−source h
S← X

so
ur

ce
−

to
−

so
ur

ce
 h

S
←

 S

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) rcode = 0.01

Figure 5.7: Message entropy evolution for Ising(1
2 , 0.9). EXIT vs. SEP.

68

5.4 Appendix: EXIT analysis*

extrinsic estimator that produces ĉi(y; h) = Estimate(ci|y∼i; W ∈ W(h)),6 we have

hi(h) , H(ĉi(y; h))

h(h) , 1
n

n∑
i=1

hi(h)

W ∈ W(h) is defined to have capacity 1− h; after applying Estimate, a new virtual channel
W′ is formed between ĉ and y, with a different (larger) capacity. The attention of EXIT
function analysis is then focused on considering whether a particular decoder provides a
path from y(0) = W(0)(c) of the initial (physical) DMC W(0) ∈ W(h(0) = 1−C) to eventually
arrive at y(I) = c of the noiseless virtual DMC W(I) ∈ W(h(I) = 0) representing complete
decoding after some I iterations.
Let us now specialize to the additive-noise DMC’s, whose duals are the DMS’s. Let W(h)

denote instead channel noise distributions, e.g. y = c+w, w ∼W(h). Such a channel having
capacity 1− h means H(w) = h.
For iterative decoders whose action can be modeled as repeatedly applying the marginal

extrinsic estimator, a convergence dynamics is generated. If we rewrite the estimator as
ĉi(y; h) = yi − ŵi(w; h) with ŵi(w; h) , Estimate(wi|w∼i; w ∼ W(h)), then after each ap-
plication, the entropy of w can be considered as updated to (1/n)∑n

i=1H(ŵi(w;h)) = h(h),
under some independence approximations. Thus we interpret h 7→ h(h) as tracking the
stepwise evolution of H(w) under the application of the estimator. So far as DMS’s are con-
cerned, EXIT function analysis can be borrowed nearly verbatim, substituting total belief
b(s) for pw(w) and total uncertainty h̄ for H(w).7

5.4.1 EXIT with sources
For sources with memory, let us view EXIT function analysis not as an exact method for
asymptotic regimes, but as a set of rules that stylize full BP decoding. Instead of passing
individual messages, we pass average entropies representing message ensembles between styl-
ized nodes. The following is a treatment of extending the method to the SEP decoder with a
homogeneous pairwise model having edge potential ψ.

Definition 5.7. Let a,b be mixture binary distributions.8 Let BEC(h) be the mixture
binary distribution {(h, [1

2 ; 1
2]), (1 − h, [0; 1])}, called the BDS mixture. Let BSC(h) be the

6W is a stochastic function implementing a conditional law py|c. Estimate produces a marginal random
variable (n.b., not deterministic) from a specific distribution. For a uniform input distribution on c,
H(c|y) = 1 − I(c; y) characterizes the equivocation introduced by the channel. If such c is capacity (C)
achieving, then H(c|y) = 1− C.

7For Bern(p) sources for example, the initial beliefs b(0) are the node potentials, which give h̄(0) = h(p); at
the termination of decoding with SEP, h̄(I) is a combination of the node potentials and wholly satisfied
checksum constraints, thus equals zero.

8A mixture binary distribution a is an object representing a collection of pairs {(li, [1 − ui;ui])}i where l
is a function summing to 1.

69

5 Coding Details

mixture binary distribution {(p, [1; 0]), (1 − p, [0; 1])} where h(p) = h, called the Bernoulli
mixture.

Remark 5.8. For convenient data structures and a calculus on mixture binary distributions,
along with reasons for choosing BEC(h) and BSC(h), we refer to [41].

Definition 5.9. Let S and X be stylized source and factor nodes. Let λ be the code-side
degree distribution of S,9 let γ be its source-side degree distribution. Let ρ be the degree
distribution of X . Let a ◦b be the accumulation of distributions, f(⊗...) be filtration by the
checksum constraint, and ψ(a) be filtration by the pairwise edge potential.

Now, define as shorthand

[M(hS←X)] ,
∑
i

λiBSC(hS←X)◦i

M−(hS←X) ,
∑
i

λiBSC(hS←X)◦(i−1)

[M(hS←S)] ,
∑
i

γiBSC(hS←S)◦i

M−(hS←S) ,
∑
i

γiBSC(hS←S)◦(i−1)

d , BEC(1− rdope)

Finally, define the entropy update operations:

• X -node output computation:

hS←X ⇐ h

(∑
i

ρif(⊗i−1BEC(hS→X))
)

• S-node output computation — source side:

hS←S ⇐ h

(
ψ
(
d ◦M−(hS←S) ◦ [M(hS←X)]

))
• S-node output computation — code side:

hS→X ⇐ h

(
d ◦M−(hS←X) ◦ [M(hS←S)]

)
We can run these with the same schedule as the SEP decoder and obtain the evolution of these
quantities. If we wish, we can also compute the EXIT versions of the belief uncertainties of
Section 5.3.2.1 from message ensembles,

9A degree distribution λ is a function summing to 1, with each term λi indicating the proportion of edges
in a collection that belongs to degree-i nodes.

70

5.4 Appendix: EXIT analysis*

hC = h (d ◦ [M(hC)])

hG = h ([M(hG)])

hU = h (d ◦ [M(hG)] ◦ [M(hC)])

71

6 Modeling Details
Data compression rests on the assumption that we have a good model to capture the data
characteristics of interest, but sometimes the data model is not as perfectly known as we
would like. Traditionally, this is where separate universal compression systems are called
for (Domain II of Table 1.1). In contrast, in model-code separation we consider uncertainty
as extended data model questions. We begin this chapter by giving an interpretation of
the codebook as a form of model representation, and argue why strong universality implies
impractical compression. Then we distinguish two practical cases relevant to SEP and find
that: (1) when there is a mismatch between the “true” model and the assumed model,
practical performance operationalizes theory; and (2) when the “true” model is “partially
known,” i.e., as belonging to a parametric family among which one model is true, uncertainty
can be expressed within graphical model representation.

6.1 Model representation revisited
So far we have seen the algebraic form psn and the source graph G as representations of a
data model. They are “representations” because they can express the same underlying prior
knowledge. For the purpose of compression, the codebook Cn that psn or G generates is also
a representation.

6.1.1 Enumerative representation
To see this, consider that in the entropy-achieving schemes of source coding theory (Section
2.1), psn only plays a role in the generation of Cn, then psn is itself discarded. Since the
codebook remains the only piece of prior knowledge shared, assumed, or otherwise uncon-
veyed within the system, it is, ipso facto, what holds the data model. More to the point,
where AEP holds, Cn is an explicit enumeration of some suitably defined notion of a typical
set, thus it is nothing more than an enumerative representation of “all” the typical exam-
ples of data that may come up for compression. We have alluded to such an enumerative
representation in Section 2.3.
Because Cn is exponentially large in n, it is not usually the native representation used in

practical compression. However, having this representation in mind helps us to understand
situations when Cn does not hold exactly the typical sequences of the true model.

73

6 Modeling Details

6.1.1.1 Codebook information

An important question about representation is the cost of describing a model within it. The
cost in the enumerative representation is the information value of a codebook, which we
compute next.

Definition 6.1. Without loss of generality, assume log |S| = 1 (i.e., binary alphabet). Let
N , 2n be the total number of n-bit sequences. Let NC , 2nH be the size of a codebook Cn

for a model compressing to rate H.

In the manner of type classes on strings [66], let us assume the size of a codebook, NC ,
is also a “free” parameter that is sub-exponential in N and costs “nothing” to describe. To
construct Cn of size NC , we choose NC sequences from among N . Thus there are 1

(
N

NC

)
.= 2Nh(NC /N) (6.1)

codebooks of size NC . Letting RC , 1− (logNC)/n = 1−H, such a codebook requires

lim
n→∞

1
nNC

Nh(NC /N) = lim
n→∞

1
nNC

2n
{
nRC 2−RC

−(1− 2−nRC) log(1− 2−nRC)
}

= lim
n→∞

1
NC

2nRC 2−nRC

= RC (6.2)

bits per codebook symbol to specify. We interpret this to mean that an arbitrary codebook
Cn of size NC representing a model holds roughly nNCRC bits of information.

6.1.1.2 Compression

With an enumerative model, we can obtain data compression by conveying a codebook index
rather than the full sequence. Let us neglect the computational complexity, and merely
observe the rate performance implications.
In Eq. 6.2, the codebook information rate RC = 1 − H and the compression rate H are

complementary in the following sense: the data model Cn has just the amount of information
to equal the rate reduction obtained by compressing all the strings in Cn, using Cn. This
immediately implies a breakeven point between two obvious approaches to compressing n-bit
strings sn:

• Fully uncoded: Spend n bits to describe each sn directly; and
1With n (or N) understood, we write a(n) .= b(n) to mean limn→∞ log a(n)/ log b(n) = 1 + o(ε).

h(x) , −x log x− (1− x) log(1− x).

74

6.1 Model representation revisited

• Fully modeled: Spend nNCRC = n2nH(1 − H) bits of one-time overhead to specify a
codebook of size NC , then spend nH bits to describe each sn.

The breakeven occurs when Cn is used 2nH times, i.e., the total number of typical sequences.
By the time we begin to make compression gain with the second (fully modeled) method,
we will have described all useful sequences at full rate at least once. We could have equally
well used the first (fully uncoded) method.
What about an intermediate method with a partial codebook? The situation is not im-

proved:

Definition 6.2. A partial codebook of Cn of 2nR entries, where R ≤ H, is denoted by
C −n (R). Define also N−C (R) , 2nR.

• Partially modeled: Spend n2nR(1 − R) bits of one-time overhead to specify a partial
codebook C −n (R) of size N−C (R), then spend nR bits to describe each sn if found in it,
and spend n bits to describe sn uncoded if not found.

Proposition 6.3. The partially modeled method breaks even in total rate with the uncoded
method (and therefore the fully modeled method) when the codebook is used on average 2nH
times.

Proof. With probability 2n(R−H), sn is found in C −n (R), so it is coded with nR bits. With
probability 1 − 2n(R−H), sn is not found in the codebook, so it is coded with n bits. After
K usages, the uncoded method expends Kn bits, while using C −n (R) expends on average
K2n(R−H)nR + K(1 − 2n(R−H))n + n2nR(1 − R) bits. Setting K = 2nH gives 2nHn bits for
both methods.

Thus all three methods only produce net compression after NC = 2nH usages. Clearly this
can only be useful if NC is small.

6.1.1.3 Learning

The partially modeled method of Section 6.1.1.2 can be converted to a learning scheme:

• Enumerative model learning: Begin with C −n (0). Whenever a sequence sn is not found
in the codebook C −n (Ri), describe it uncoded with n bits and add it to form the new
codebook C −n (Ri+1). If sn is found in C −n (Ri), then describe it with nRi bits.

We can compute the compression rate arising from it. Put N−C (Ri)/NC as the probability
of finding a source sequence in the partial codebook C −n (Ri) of size N−C (Ri) ≤ NC . The
expected coding rate with C −n (Ri) is

r(i) = N−C (Ri)
NC

logN−C (Ri) +
(

1− N−C (Ri)
NC

)
n (6.3)

75

6 Modeling Details

bits. However, N−C (Ri) ⇒ N−C (Ri+1) = N−C (Ri) + 1 with probability 1 − N−C (Ri)/NC . The
average waiting time at i is NC /(NC − N−C (Ri)), thus the expected total rate spent while
learning the full codebook is

rincremental =
NC−1∑
i=0

NC

NC − i
r(i) (6.4)

We can compare this to the cases of Section 6.1.1.2 where the best total rate is

rfixed = nNCRC +
NC−1∑

i=0

NC

NC − i

−NC

nH (6.5)

over the same number of uses, and find that the learning method is a negligible improvement
over them. In other words, learning for an enumerative data model is no different from
uncoded description, i.e. no compression, until all the typical sequences have been seen
once.
Notice that enumerative model learning describes a process essentially identical to dictionary-

learning universal compression such as Lempel-Ziv.

6.1.2 Choice of representation
It should be pointed out that even for the same data model, each representation may use
a different (nominal) amount of information to convey the model (e.g. [67, 68] for certain
graphical models). The reason is that the choice of representation itself has information
value. It implies a model on sequences that puts a prior on which data models are likely and
thus are given succinct descriptions.
For example, in Kolmogorov complexity theory, an area of computational complexity the-

ory intersecting with information theory [69, 70, 71], the boundary between data model and
compressed data is fluid. In this theory, the compressed output of sn is the shortest pro-
gram x that generates sn on a universal Turing machine U with some constant amount of
pre-stored data. This pre-stored data in fact is a data model (a complexity model) that
allows certain classes of strings to be generated with shorter programs. We can always add
to or remove from this store to change assumptions. If the store is a program that interprets
graphical models, then it is no different from choosing graphical models as representation.
This theory also says that almost all strings are incompressible, thus almost all models are

not describable succinctly besides by listing the content of their enumerative representations,
i.e. codebooks. Otherwise, those codebooks, once flattened into strings, can be compressed.
Thus the enumerative representation is optimal for almost all models.
Finally, it is known that universal learning is impossible, because the “universal” source

model
pU(sn) =

∑
x:U(x)=sn

2−|x| (6.6)

cannot be rejected by learning ([72], Chapter 7). There is always a risk of model mismatch

76

6.2 Unknown model

by assuming any other model to be the true model.
Taken together, it means nothing magical happens simply by switching representations,

and that whatever gains made on model description cost and model learning over the enu-
merative representation come from additional informative assumptions, amounting also to
a data model. This puts uncertainty in data model on the same footing as uncertainty in
data.

6.2 Unknown model
Section 6.1 tells us that we cannot get practical compression with very little data model, a
regime we call strong universality.
Indeed, such systems as Lempel-Ziv (LZ) [51, 50], context-tree weighting (CTW) [52],

prediction by partial matching (PPM) [73], dynamic Markov coding (DMC) [74], and a vari-
ety of other switching, learning, and adaptive compression algorithms [75] operate far from
strong universality [76]. The assurance that they approach the entropy rate at asymptoti-
cally long data length by learning cannot be relied upon, because the operative “length” is
on the order of n2nH for general models with entropy rate H (Section 6.1.1.3). In reality,
they achieve compression only for models preferred by their representation and even among
those, only for the least complex ones, e.g. finite-state-machine sources with few states for
LZ, context-tree sources with small tree size for CTW, parametric family or switched collec-
tion of sources with a small parameter space or collection size in some other cases. To be at
all practical, they must assume enough prior knowledge so that the remaining data model
ambiguity is small and learnable at reasonable data length.
We conclude that the only models that can be compressed practically are those with

explicit low-complexity representation, either a small codebook that can be enumerated, or
a large codebook generated by parametric representation over a small parameter space. In
that sense, practical (non-strongly) universal compression is not vastly different from non-
universal compression after all. The only distinction is that the data model assumed, Cknown,
may differ from the true data model Ctrue, a form of mismatch. There are three scenarios:

1. Cknown ⊂ Ctrue, the case of partial model that is generally impractical, so we must
accept mismatch, addressed in Section 6.3;

2. Cknown ⊃ Ctrue, the case of parameter estimation, addressed in Section 6.4; and

3. Cknown ∩ Ctrue 6= Ctrue and Cknown ∩ (Sn\Ctrue) 6= ∅, the case that can be split into the
first two cases.

Next we address the two practical cases for compression with model uncertainty using SEP.

6.3 Model mismatch
The simplest approach to compression with uncertain data models is to assume a specific
one, and find out the cost of being wrong. We show that putting the incorrect model into our

77

6 Modeling Details

Typical » qTypical » qTypical » psnTypical » psn
SnSn

q(sn)2nH(q)q(sn)2nH(q)
q(sn)2nR(psn ;q)q(sn)2nR(psn ;q)

11

Figure 6.1: In this sketch, the vertical axis is the expected number of times an sn occurs in
a codebook. The curves are q(sn) |Dn|. A codebook generated according to q
needs a much larger size to cover the red set than the blue set; many duplicate
entries are also generated.

decoder of Section 3.2.3 results in the performance degradation suggested by large deviation
theory.
Given a source sn distributed as psn(sn) but compressing using a random codebook Dn for

a source distributed as q(sn), theory [72] suggests coding takes place at rate no less than 2

R(psn , q) , lim
n→∞

1
n
E(− log q(sn)) = H(s) + 1

n
D(psn||q) (6.7)

Briefly, the codebook Dn provides the sequences drawn according to q, and therefore for some
sn to occur in Dn incurs an informational surprise of − log q(sn) instead of − log psn(sn), thus
requiring the much larger codebook of rate R(psn , q) to include sn with high probability (Fig.
6.1).
Note that this characterization of rate allows redundant entries to occur in Dn, each with

a unique index, as it is necessary when the codebook grows beyond the size of the typical
set according to q. This does not make sense from an efficient codebook construction point
of view, but it has concrete meaning in our decoder — the redundant entries represent more
likely words in the hash constraint set than the true realization (Fig. 2.1) that needs a larger
hash size to eliminate.
Specifically, in our decoder, the analog to coding with Dn is using the source subgraph

modeling q(sn) for decoding. BP decoding is equivalent to approximate maximization of

u′(sn) , c(sn)q(sn) (6.8)

Compared to Eq. 3.4, the only difference is in the relative probabilities of the words in the
hash constraint set. In that sense, R(psn , q) plays the same role in mismatch as H(s) does in
no mismatch for sizing the hash constraint set, and we expect similar relative performance
in practice.

2D(p||q) , Ep log(p(sn)/q(sn)). Absolute continuity requirements need to be satisfied, i.e., q(sn) = 0 ⇒
psn(sn) = 0, or else no zero-error coding is possible.

78

6.4 Parameter estimation

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

p

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

SEP−prot
SEP−thresh
entropy h(p)
h(p)+d(p||q)

Figure 6.2: Performance of SEP on compressing a Bern(p) source with a Bern(q) source
graph. rdope = 0, n = 1000. For each value p, q = p + 0.1, p + 0.2 (bottom to
top) are shown.

6.3.1 Results
Applying the foregoing, a Bern(p) source compressed using a Bern(q) random codebook
requires a nominal rate of 3

h(p) + d(p||q) = −p log q − (1− p) log(1− q) (6.9)

Note that for h(p) + d(p||q) > 1, we no longer need to be concerned with redundant code-
book entries because each hash constraint set is expected to have at most one source word,
therefore, in practice the rate required should never be greater than for direct description,
i.e. min{1, h(p) + d(p||q)}.
Fig. 6.2 shows the result of using the source graph of a Bern(q) source in the decoder to

decode the compressed bits from Bern(p) samples. The performance of SEP-thresh matches
the theoretical best rate, just as happened with the matched model in Section 4.2.

6.4 Parameter estimation
Partially specified models may take myriad forms, but one type are parametric models that
provide prior knowledge in the form of a family of fully specified models — equivalently, a
collection of codebooks {Cn}θ — from which the true model is but one. The reason that
parameterization is useful is that some codebooks in the collection {Cn}θ may be exponen-
tially smaller than others, implying we should not use an undistinguished model of the entire
family for compression.

3d(p||q) , p log(p/q) + (1− p) log((1− p)/(1− q)).

79

6 Modeling Details

B±(1)B±(1)

B±(2)B±(2)

B±(3)B±(3)
µ(0)µ(0)
µ(1)µ(1) µ

(2)µ(2)
µ(I)µ(I)

±(1)±(1)

Figure 6.3: Parametric decoding begins with an initial guess of the parameter at θ0 and
searches a neighborhood Bδ(1)(θ(0)) within the parameter space. The scope of the
search narrows in subsequent iterations, finally converging on θ(I).

Compressing for these models requires a degree of learning. We can estimate parameters
(if they do not change) by training on multiple data samples — this is a standard machine
learning problem. However, for a single sample for which the parameters are fixed, what we
need is a way to compress in the absence of offline training. Given that additional effort
is expended to estimate parameters, and there may be uncertainty in that estimate, there
could well be a cost in rate.

6.4.1 Parametric decoding

We first give a heuristic, depicted in Fig. 6.3, that jointly estimates parameters within the
decoding loop itself.
Suppose s is drawn from a distribution p(s; θ) where θ denotes unknown parameters. Define

the checksum-correctness objective

F (ŝ) = 1
k
‖Hŝ− x‖ (6.10)

where ‖·‖ is some appropriate norm (e.g. `0). At each iteration t of the decoding algorithm
(Section 3.2.3.3), evaluate F (·) on the contemporary source estimate ŝ(t)(θ) obtained from
the total belief update (Eq. 3.13). The value θ∗ that minimizes F (ŝ(t)(θ)) among choices
in a neighborhood Bδ(t)(θ(t−1)), for some diminishing sequence δ(1) > δ(2) > · · · > 0 of
bounded sum (e.g. δ(t) = δ/αt for δ > 0, α > 1), is chosen as the parameter estimate θ(t) for
that iteration. At the end of decoding, the sequence of estimates for θ are also converged
within some neighborhood. This works well in many cases, but it requires sampling the
neighborhood Bδ(t) well and experimenting with its annealing.

80

6.4 Parameter estimation

6.4.2 Augmented graphical model
The parametric decoding heuristic makes a hard parameter estimation decision from a re-
stricted set at each step of decoding. This heuristic points to a more general way to deal
with parametric models, which is to augment the graphical source model with parameter
nodes.
Remark 6.4. Suppose we have a Bern(θ) source with unknown θ ∈ [0, 1]. How many addi-
tional bits does it take to compress? Is the excess related to specifying the value θ? Note
that we cannot specify the real number θ with a finite number of bits even if we have it.
However, one can easily be convinced that for finite n, the compression of sn should not
need the full precision of θ, because a sequence of that length can only distinguish between
n+ 1 models corresponding to n+ 1 type classes; in other words, the model specification —
and the estimation of θ — should be able to have error without consequence, so it would be
wrong to make a hard parameter decision.
Without loss of generality, let us now consider compressing for this Bern(θ) source using

the model-code separation architecture.4
It turns out explicit estimation of θ is not necessary, because compression is itself a way to

“determine” and “specify” an unknown parameter θ up to the required precision. The main
thing to realize is that, while θ is deterministic, we can construct a Bayesian belief pΘ(θ) for
it. We also do not know what pΘ(θ) is, but we assume the true θ is drawn from a random
variable Θ ∼ pΘ. Thus we can write the joint distribution (sn,Θ) as

psnΘ(sn, θ) = pΘ(θ)
n∏
i=1

psi|Θ(si|θ) (6.11)

whereby using the same notation as in Section 4.2, we have

psi|Θ(si|θ) = [1− θ; θ](si, θ)

If we compare this to the original Eq. 4.2,

psn(sn) =
n∏
i=1

φ(si) =
n∏
i=1

[1− p; p](si)

we notice that the unary function φ(si) = [1 − p; p](si) at each si has been replaced by a
binary function

π(si, θ) , [1− θ; θ](si, θ) = (1− θ)1{si=0}(si) + θ1{si=1)(si)

and an additional term pΘ(θ) appears.
Recall the graph G for this source (Fig. 4.2). If we simply augment the nodes S =
{s1, ..., sn} by a node Θ, connected to all of them via π(si, θ) as edge potential as replacement

4Using a mixture ML construction, [77] has shown that LDPC codes achieve the entropy universally for
stationary memoryless sources in the limit of large n, so it hints at a lower complexity method using BP.

81

6 Modeling Details

Θ

s1 s2

· · ·
sn

π π π

Figure 6.4: Augmented source subgraph G4 for Bern(θ), with π = [1− θ; θ].

for node potential φ(si), then we have the augmented graphical model G4 for (sn,Θ) (Fig.
6.4). If we apply the same trick of combining G4 with the code graph C, we can run BP to
optimize over the new objective

u4(sn, θ) , c(sn)psnΘ(sn, θ) (6.12)

We will marginalize over both each si and Θ, but of course we only care about the former
— the latter is a side effect.
Let us now write the update equations. Since Θ and si are different node types and

message types differ (over GF(2) for si, potentially over R for Θ), we must use the edge
potential π to couple them. The best way to understand it is to take the pairwise potentials
as factor nodes explicitly (not drawn). We will also call these factor nodes π ∈ Π and index
them by their neighbors (i, θ). Thus, new messages µi←(i,θ), µi→(i,θ) and µθ←(i,θ), µθ→(i,θ) will
pass along edges connecting Θ and si. µi←(i,θ) merely replaces φi, so its function is clear.
µi→(i,θ) is trivial. So what remains is to state the conversion between si-type and Θ-type
messages and the update at Θ. For completeness, we also list the remaining identities for
this particular source:

Π node output (conversion): µθ←(i,θ) ⇐ πθi µ
i→(i,θ)

µi←(i,θ) ⇐ πiθµ
θ→(i,θ)

Θ node output: µθ→(i,θ) ⇐ µθ←(∼i,θ)

Θ belief computation (diagnostic): bθ = µθ←(∗,θ)

S node output: µi→(i,θ) ⇐
[
M i←

]
G4

S external message output:
[
M i→

]
G4
⇐ µi←(i,θ)

Table 6.1: Node computations on the extended (top) and existing (bottom) parts of the
augmented graph G4.

82

6.4 Parameter estimation

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

SEP−prot
SEP−thresh
entropy

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

θ

es
tim

at
io

n
va

lu
es

θ estimate
θ belief variance
true θ

Figure 6.5: Performance of compressing Bern(θ) with SEP and the augmented graphical
model G4 (left). Estimation diagnostic is shown, with estimation mean and
normalized variance (right). n = 1000, rdope = 0.001.

Note that we can always still have other independent priors, including on Θ itself, but we
do not consider those cases here.
The function π(si, θ) is linear in θ ∈ [0, 1] and can be considered as a pair of kernels for

estimating θ based on whether si = 0 or si = 1. The Θ update accumulates these estimates.
Messages over θ can be represented in various ways, but since no more than a precision of
1/n can be obtained on θ, one possibility is to discretize the space, in which case π(si, θ) has
tensor form,

πθi =

1 0
n−1
n

1
n... 2
n

1
n

...
0 1

 (si, θ) (6.13)

6.4.3 Results

Fig. 6.5 shows the performance of compressing the Bern(θ) source with this decoder. Since
no initial beliefs are available, we must use doping, but we use the least possible — just 1
bit. We see a loss compared to Fig. 4.3, the case with a fully specified model, but the loss
is slight except at the lowest rates.
If we are interested in the estimation of θ, we also have it, since we obtain a marginal

belief bθ on Θ for free. One should be convinced that the θ propagated in µi←(i,θ) messages

83

6 Modeling Details

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

θ

pr
ob

ab
ili

ty

initial
terminal
θ true
θ empirical

Figure 6.6: Convergence of Θ beliefs from the 1-bit doping initialization to the final form at
decoding success (every 5 iterations plotted). The true θ ≈ 0.7570 differs from
the empirical type-class of the sample (728 1’s out of 1000).

to each si converges to the mean belief

E[bθ] ,
ˆ

[0,1]
dθ bθ(θ)θ

and that E[bθ] and
V ar[bθ] ,

ˆ
[0,1]

dθ bθ(θ)(θ − E[bθ])2

are respectively the θ estimation and estimation error variance. Referring to Fig. 6.5 for the
estimation diagnostic, the belief means appear highly accurate (n.b., when rate is insufficient,
wild estimates are seen). The belief variance, once normalized by the theoretical error
variance

V ar[θ̂unbiased] = 1
n
θ(1− θ)

of the unbiased estimator
θ̂unbiased = 1

n

n∑
i=1

si

is also nearly 1 for the entire range of θ, except at the lowest rates. Thus the joint estimation
of θ with compression is optimal given the observed data, as expected.

Finally, we show the convergence process of bθ in Fig. 6.6. It is notable that the estimate
converges to the empirical θ of the sample type-class, not to the true θ. In some sense, the
true θ is irrelevant, and this differs from what we would do when we had θ.

84

6.4 Parameter estimation

6.4.4 Discussion
The method of the augmented model can be extended to other parameter types in a source
model. For example, we can make the same message updates with a parameter in an edge
potential. Suppose we have a binary Markov(θ) source with unknown transition probability
θ. Then we can augment each edge potential ψi(si, si+1) by connecting to a shared parameter
node Θ via a ternary factor π(si, si+1, θ) = psisi+1|Θ(si, si+1|θ), i.e. π(a, a, θ) = 1 − θ and
π(a, ā, θ) = θ.
It can be extended also to offline or online learning from multiple samples. Suppose model

parameters are stable across multiple samples (e.g. ergodic sources), then we can retain the
final belief for parameters θ of a decoding run, and initialize the next run using those as
prior. The excess rate required to code each subsequent sample is reduced.
Finally, this method is an adaptation of a variety of parameter learning methods over

graphical models, e.g. [78, 79, 80] — which form a rich field in their own right — to the
problem of joint compression and estimation. The added insight in the latter context is
for the estimation to serve the specific interest of minimizing rate. In this sense, a deeper
connection runs between compression and model identification.
Also related are more complex hierarchical data models (e.g. hidden Markov models),

because parameters are indistinguishable from generic hidden variables, except for the fact
that the parameter space is typically sub-exponential in n, while the space of hidden variables
is not.

85

7 Architectural Generalization
While we have presented the model-code separation architecture and its archetypal SEP
system as applied to binary lossless compression (Chapters 3 and 4), realistic compression
scenarios often involve additional processes or constraints that make the system presented
so far not immediately applicable. One such scenario is source data symbols belonging to
a larger-than-binary alphabet. In this chapter, we extend SEP by means of an architectural
generalization to handle this and potentially other elaborate situations that will be seen in
Chapters 9 and 10.

7.1 Large-alphabet sources
The basic compression system of Chapter 3 assumes the data sn and the code as represented
by H are over the same field S = GF(q). While the study of non-binary LDPC coding is
progressing [81, 82], LDPC codes and decoding algorithms are still most well developed over
GF(2). Furthermore, it may not be ideal to need to match the alphabet of each source with
a tailored code. If we work with GF(2) codes, however, we need to handle large-alphabet
data with care.
One traditional method is bit-planing, i.e. treating the bits representing a letter in a larger

alphabet as independent GF(2) sources. However, this is inherently suboptimal, because it
neglects the correlation that may exist between the bit planes:

Example 7.1. Suppose the alphabet is S = {0, 1, 2, 3}, and we compress a 3-vector s =
(s1, s2, s3) where s0 = 0, and si+1 = si or si+1 = si + 1 each with probability 1/2. There are
only 8 (equiprobable) sequences, namely (0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2), (1, 1, 1), (1, 1, 2),
(1, 2, 2), (1, 2, 3), thus the entropy is 3 bits. The first (most significant) bit plane has 4
sequences of (0, 0, 0), 2 sequences of (0, 0, 1), and 2 sequences of (0, 1, 1), for an entropy of
1.5 bits. The second (least significant) bit plane has all 8 possible length-3 sequences, for an
entropy of 3 bits. The total of coding the bit planes separately is at best 4.5 bits.

Are there ways to obtain better compression even when only using binary codes? It turns
out there is:

Example 7.2. If instead we look at the three level sets of s, we find that each has a single
0→ 1 transition, the locations of all of which have a nesting relationship. The l0 = {s > 0}

87

7 Architectural Generalization

level set has 1 sequence of (0, 0, 0), 1 sequence of (0, 0, 1), 2 sequences of (0, 1, 1), and 4
sequences of (1, 1, 1). It can be coded with 1.75 bits. Without going through the details,
conditioned on l0, the l1 = {s > 1} level set can be coded with 1 bit, and conditioned on
both l0 and l1, the l2 = {s > 2} level set can be coded with 0.25 bits. The total is 3 bits,
which is the entropy of the source and cannot be beat.
We do not pursue this level-set idea further in this work, because there is an even greater

philosophical motivation for dealing with other than GF(2) sources in a general way: sources
may have a great deal of complexity in their internal symbol structure, and source models
are defined over those symbols. Consider, for example, floating point numbers or relational
database entries as source symbols. In real systems, even though s may be highly structured
internally, it is often presented to the compression system after it has already been serialized
into an opaque bit-stream z. If coding machinery is to be truly model-free, perhaps it should
not assume the field structure or even the alphabet size of s, and simply work with z.
Next we describe how to compress for large-alphabet sources with model-code separation

by inserting into the SEP decoder an additional subgraph that models how symbols of s are
represented as z.

7.2 Representation and translation
Suppose sn = {s1, ..., sn} is an abstract n-symbol data sequence serialized by symbol-level
representational maps. For ease of discussion, we assume all si belong to the same alphabet
S of size M , and so there is one map for all n symbols, though this need not be the case.
The representation map is a bijective function tM→q : S→ GF(q)B where B ≥ logqM . For
integer symbols si serialized into GF(2), this can be as simple as their machine represen-
tations, or other binary expansions like Gray-coding. Likewise, let tM→q : Sn → GF(q)nB
operate on an n-tuple symbol-by-symbol in the obvious way.
In probabilistic graphical models, symbols are inherently abstract, so we are also inter-

ested in some related functions for BP. When messages are passed to or from source nodes,
there are related messages on their serialized representations. Define a pair of message
translation functions TM→q : (S → R+) → (GF(q) → R+)B and Tq→M : (GF(q) →
R+)B → (S→ R+) that convert between a message m(M) over S and a B-tuple of messages
m(q) = m

(q)
1 , ...,m

(q)
B over GF(q). Assuming messages are properly normalized probabilities,

then for ω ∈ {1, ..., B} and β ∈ GF(q),

TM→q(m(M))ω(β) =
∑
α∈S

m(M)(α)1 {tM→q(α)ω = β} (7.1)

and for α ∈ S,

Tq→M(m(q))(α) =
B∏
ω=1

m(q)
ω (tM→q(α)ω) (7.2)

These conversions just state that m(M) is a product of marginals m(q)
1 , ...,m

(q)
B , which is not

true in general, but we can still use them to do inference.

88

7.3 System construction

7.3 System construction
Now we describe the encoder and decoder constructions to compress abstract sources in the
model-code separation architecture by using representation and translation.

7.3.1 Required inputs
Let sn ∈ Sn be an n-vector source data sequence presumed to be a random sample of sn. To
compress it, we require
• A code: an collection H (nB, k) of k×nB parity matrices of a rate k/nB LDPC code

over GF(q);

• A data model: psn in PGM representation;

• A representational map: tM→q.

7.3.2 Represented encoding
If the data is presented to the encoder as sn, then serialize it first by

znB = tM→q(sn) (7.3)

Otherwise, assume znB is presented to the encoder.
Model-free coding takes place in the represented alphabet of GF(q), which can be naturally

called the coding domain. Setting k to target rcode = k/nB, choose a randomH ∈H (nB, k),
the compressed output is

xk = HznB = HtM→q(sn) (7.4)

7.3.3 Translated decoding
Decoding takes into account the additional serialization step in (or prior to) the encoder.
Let S = {s1, ..., sn}. By an abuse of notation, we will also relate graphical node identities

by tM→q, so that
{zi,1, zi,2, ..., zi,B} ≡ tM→q(si) (7.5)

Z ≡ tM→q(S) =
⋃
s∈S

tM→q(s) (7.6)

are all well defined.
Recall in Section 3.2.3, the code subgraph C = (S ∪ X ,F) and the source subgraph
G ′ = (S,Ψ, E ′) share the n source nodes S in U . This is no longer the case here. Instead,
the code subgraph is C = (Z,X ,F), where Z = tM→q(S). The combined source-code graph
U , (S ∪ Z,Ψ ∪ X , E ′ ∪ F) has an additional layer (Fig. 7.1). The message passing strictly
within each subgraph is still unchanged from Section 3.2.3.3, but whenever messages cross
alphabet/representation boundaries they are translated. Refer to the inset labeled Algorithm
7.1 on specific modifications to the BP computations for a pairwise model.

89

7 Architectural Generalization

Algorithm 7.1 Decoding with message translation for a pairwise model. The highlighted
computations compute message translation.
Let N Ci,ω denote the neighbors of zi,ω ≡ tM→q(si)ω in X ,

• Source message update:

m
(M)
i→j(sj)⇐

∑
si

[
m

(M)
C→i(si)

]
φi(si)ψij(si, sj)

∏
sk∈NGi \sj

m
(M)
k→i(si) (7.7)

where

m
(M)
C→i(si) = Tq→M

 ∏
fa∈NCi,1

m
(q)
a→i,1(zi,1), ...,

∏
fa∈NCi,B

m
(q)
a→i,B(zi,B)

 (si) (7.8)

• Code message update (source to factor):

m
(q)
i,ω→a(zi,ω)⇐

[
m

(q)
G→i,ω(zi,ω)

] ∏
fb∈NCi,ω\fa

m
(q)
b→i,ω(zi,ω) (7.9)

where

m
(q)
G→i,ω(zi,ω) = TM→q

 ∏
sj∈NGi

m
(M)
j→i(si)φi(si)

ω

(zi,ω) (7.10)

and (factor to source):

m
(q)
a→i,ω(zi,ω)⇐

∑
NCa \zi,ω

fa(N Ca)
∏

zj,ω′∈NCa \zi,ω

m
(q)
j,ω′→a(zj,ω′) (7.11)

• Belief update:

ŝi = arg max
si

[
m

(M)
C→i(si)

] ∏
sj∈NGi

m
(M)
j→i(si)φi(si)

 (7.12)

90

7.4 Modular decoder

HH

== == == ==…

…

…

source subgraph Gsource subgraph G

code subgraph Ccode subgraph C

tM!qtM!q

XX

SS

ZZ

Figure 7.1: The structure of the decoder inference graph U for the system in Section 7. The
illustrated model is pairwise, with factor nodes elided.

7.3.4 Doping symbols
The doping process can occur in either domain, but more naturally it occurs in the code
domain unless the representational map is known to the encoder, e.g. it is the encoder
that applies serialization. Whichever domain this takes place in, some nodes in U become
observed variables with deterministic messages, e.g.

d(q)(zD′) = 1{zD′ = zD′}(zD′) (7.13)

and we obtain the equivalent effect in the other domain by message translation, e.g.

d(M)(sD) = Tq→M(d(q)(zD′ = 1)) (7.14)

where D′ = tM→q(D).

7.4 Modular decoder
The decoder with translation (Fig. 7.1) extends the architectural design of the decoder of
Section 3.2.3.3. In the latter decoder (Fig. 3.2), we consider the source and code subgraphs
each as modularly independent components exchanging external messages on virtual ports.
This remains the case here. Indeed, the G and C components are unaware of what is on the
other side of their interfaces.
Instead, the controller must be expanded to encompass both S and Z, and a new layer

representing message translation is inserted between them. An enlarged controller is one
way to view the extension to the generalized decoder, but the message translation function
too can be modularized into its own component (Fig. 7.2). Each representational map tM→q
defines a translator component, and it represents some additional prior knowledge about the
relationship between the source symbols (S) on which the G component is defined, and the

91

7 Architectural Generalization

…

…

tM!qtM!q

SS

ZZ

ControllerController

…

SS

ZZ

ControllerController
…

…

tM!qtM!q

T
ra
n
sl a
t o
r

T
ra
n
sl a
t o
r

Figure 7.2: Message translation is functionally distinct (left), and it can be encapsulated into
a separate component (i.e., not part of the controller), but interfacing with the
controller (right).

“source symbols” (Z) that the C component works with.
In some sense, we can begin to think of the controller as a central manager that holds

all the relevant state nodes of importance to decoding, and that connects to a variety of
components representing independent prior knowledge about the relationship between those
nodes. This design is extensible to a greater number of processing situations than just for
translating between alphabets. For instance,

• Multiple partial models representing independent insights about the data to be com-
pressed can be applied in parallel as source components;

• Multiple codes representing independent constraints on the input can be applied in
parallel as code components;

• Additional components can be applied in serial to represent a chain of processing
stages from input data to compressed output, including e.g. concatenated codes and
hierarchical data models.

Thus we have built a decoder architecture that is truly “process-replicating” and “infer-
ential,” terms which are first propounded in a narrower sense in the opening of Chapter
3.

7.5 Related ideas
Conversion of messages among different alphabets in a graphical setting is realized in a turbo
coding system [83]. Interpretation of correlation and code constraints as functional blocks is
found in the setting of compressing correlated i.i.d. streams [84].

92

8 Compressing Large-Alphabet
Sources

Using the architectural generalization of Chapter 7, we can compress sources with larger-
than-binary alphabets using binary codes.

8.1 Markov sources
Homogenous irreducible aperiodic Markov chains over a cyclic group ZM are among the
simplest large-alphabet sources with memory. Such sources sn ∈ Zn

M have distribution

psn(sn) = τ(s1)
n∏
i=2

q(1,1) q(1,2) · · · q(1,M)
q(2,1) q(2,2) q(2,M)
... . . .

q(M,1) q(M,2) q(M,M)

 (si−1, si) (8.1)

where q(u,v) , P{si = u|si−1 = v}, the edge potential ψ = [q(u,v)] ,
[
q1 q2 · · · qM

]
has

the form of a stochastic transition matrix (columns summing to 1), and τ = max eig(ψ) is
the unique stationary distribution. The bitwise entropy rate (e.g. after serializing) is

H(z) = H(s)/ logM =
M∑
s=1

τ(s)h(qs)/ logM (8.2)

If ψ is further doubly stochastic, then the chain is symmetric with τ = 1/M .

8.1.1 MarkovZ
Here we specialize to a family of Wiener-process-like, smoothly transitioning Markov chains
over ZM by defining transition probabilities of ψ as discretized Gaussian densities of certain
variances centered around the current state, i.e the self transition has the highest probability,
followed by “nearer” neighbors:

q(mi+1,mi) ∝ P
{
|mi+1 −mi| −

1
2 < Z < |mi+1 −mi|+

1
2

}
(8.3)

93

8 Compressing Large-Alphabet Sources

current state

ne
xt

 s
ta

te

50 100 150 200 250

50

100

150

200

250
0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

entropy

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
MF−avg
BP−threshold
entropy−∞

(a)

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

st
at

e
(b)

Figure 8.1: MarkovZ[256](h) sources: (a) A transition matrix for h = 0.9 (brighter value is
higher probability; the bright band would be narrower at lower entropies); (b) a
sample path for h = 0.5.

Here, |mi+1 −mi| , min{|mi+1 −mi| , |M − (mi+1 −mi)|} is understood cyclically (so ψ is
symmetric circulant), and Z ∼ N(0,Σ) for some Σ.
We denote these sources by MarkovZ[M](h), where h parameterizes the bitwise entropy

rate of the source as adjusted via Σ (Fig. 8.1).

8.1.2 Results
We generate sn ∼ MarkovZ[256](h) with length 1000, beginning at steady state. They
are compressed by the system in Section 7, using the Gray-coding representational map. A
range of entropy rates are targeted. There are 20 trials for each entropy rate. We compare
SEP with GZIP and CTW, with the same compressor setup as in Section 4; here, GZIP and CTW
compress the Z256 symbols as a stream of bytes in their canonical representation.
We see in Fig. 8.2 that the SEP performance is very close to the entropy lower bound,

especially when accounting for the BP threshold rates in SEP-thresh. GZIP performance is
poor, and does not improve substantially even when sample length is increased to 100,000.
CTW is somewhat better, and achieves fairly good performance at the longer sample length.
Unlike in Section 4.3, there is relatively little performance loss at lower entropies compared

to at higher entropies. To further demonstrate this, Fig. 8.3 shows the compression of this
source at various bit depths, including the binary case (B = 1) which can also be found in
Fig. 5.2, and the Z256 case (B = 8) just described. We see rapidly improved performance at
moderate bit depths, even as we have not optimized for the doping rate, which remains at
rdope = 0.04 throughout.
This is also a positive result in that, it shows the non-bijective message translation between

different alphabets is not an apparent hindrance to performance, at least for this type of

94

8.1 Markov sources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

h

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
CTW
SEP−prot
SEP−thresh
entropy
GZIP100K
CTW100K

Figure 8.2: Compressing MarkovZ[256](h) by SEP and other systems, compared to source
entropy. rdope = 0.04. For all systems, n = 1000 are plotted; for GZIP and CTW,
n = 100, 000 are also given.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

h

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

1−bit
2−bit
3−bit
4−bit
5−bit
8−bit
entropy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

h

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

1−bit
2−bit
3−bit
4−bit
5−bit
8−bit
entropy

Figure 8.3: Compressing MarkovZ[2B](h) for B = 1, 2, 3, 4, 5, 8. rdope = 0.04, n = 1000. On
the left is the performance of SEP-prot; on the right, that of SEP-thresh.

95

8 Compressing Large-Alphabet Sources

(a) (b) (c) (d) (e)

Figure 8.4: 100 × 100 Gibbs sampled images of PottsZ[256](h). From left to right, h =
0.1, 0.3, 0.5, 0.7, 0.9.

benign serialization. It should also be pointed out that this architecture allows the retention
of the full data model at the alphabet of the source in a way that would be impossible with
such methods as the independent coding of bit planes.

8.2 Potts model
The homogeneous Markov model can be extended to two dimensions, giving rise to the large-
alphabet version of the homogeneous Ising model, or the Potts model [85]. Over an h × w
lattice graph G = (S, E), it has distribution

psn(sn) = 1
Z

∏
i∈S

[p1; p2; ...; pM](si)
∏

(i,j)∈E

q(1,1) q(1,2) · · · q(1,M)
q(2,1) q(2,2) q(2,M)
... . . .

q(M,1) q(M,2) q(M,M)

 (si, sj) (8.4)

where φ = [p1; p2; ...; pM] and ψ = [q(u,v)] is arbitrary.
Unfortunately, we do not have an entropy rate for the Potts model.

8.2.1 PottsZ
Likewise, we can define a family of Potts models over ZM with varying degrees of neighbor
affinity. Put φ = 1 and ψ as in Eq. 8.3, except that now |mi+1 −mi| is understood normally
(so ψ is symmetric Toeplitz). This condition ensures that there is no wrapping around
extremal values of ZM .
We denote these sources by PottsZ[M](h), where h parameterizes the bitwise entropy

rate of the Markov source with the same ψ. This is just a convenient notation, and does not
imply an entropy rate for this source.
Fig. 8.4 shows some examples for PottsZ[256](h). As h increases, the size of bounded

domains of similar color, and the amount of color variation within a domain both increase.
At small h, there are small patches of solid color, while at large h, there is a single noisy
patch. At intermediate h, domain size is such that the color variation within them connect

96

8.2 Potts model

with neighbors so that boundaries are unclear. For values of h around this phase transition,
PottsZ[256](h) resembles natural images, so can be used as a grayscale image model.

8.2.2 Results
We obtain Gibbs sampled images from this source and compress them with SEP, using
the Gray-coding representational map. We compare against a few state-of-the-art image
compressors:1

• SPIHT: A wavelets domain system (“Set partitioning in hierarchical trees”) [86], that
exploits similarities across subbands. We operate it at full rate for lossless mode.

• J2K-LS: The JPEG2000 compressor (ITU-T T.800; 2002) operated in lossless mode,
employing reversible integer-to-integer wavelet transforms. Output length is the com-
pressed file size, less the compressed file size of a 1-pixel image to account for headers.

• BMF: A proprietary lossless image coder that has consistently outperformed most com-
pressors of its class in recent years, and is believed to be based on PPM (prediction by
partial matching).

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

h

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

SPIHT
J2K−LS
BMF
SEP−prot
SEP−thresh

Figure 8.5: Compression performance for the PottsZ[256](h) source family. (h,w) =
(25, 25), rdope = 0.1.

Fig. 8.5 shows the result. Since there is no known entropy rate to compare to, we do not
know how close to the best performance we have come to. The Potts model is known to
have positive “ground-state” entropy, as can also be observed from the samples in Fig. 8.4,

1SPIHT is found at http://www.cipr.rpi.edu/research/SPIHT/ (v1.0); J2K-LS is implemented in MAT-
LAB’s Image Processing Toolbox (v8.3) as imwrite; BMF is found at http://www.compression.ru/ds/
(v2.0).

97

http://www.cipr.rpi.edu/research/SPIHT/
http://www.compression.ru/ds/

8 Compressing Large-Alphabet Sources

thus we also do not have exhibits of images of very low rate. Nevertheless, the competitive
performance of all systems across h is intriguing. While all compressors perform well above
the phase threshold with edgeless images, SPIHT and J2K-LS are unable to compress solid-
color blocky samples below the threshold well.
On the other hand, SEP performs fairly well across the entire range of h values. It is

worthy to note that even at the higher rates, SEP is able to distinguish between the subtle
model features of PottsZ[M](h) images and truly random images, allowing it to obtain
compression gain even as the other compressors saturate at full rate.
Another example using this model is discussed in Section 10.2.3.

8.3 Summary
The model-code separation architecture embodying a message translator component can
compress large-alphabet sources well, despite the additional layer within the message-passing
path in the decoder. This is very encouraging because it means even as we model our data
fully in its native alphabet, for purposes of coding, we only need to keep a library of good
binary codes.

98

9 Lossy Compression
When the typical set of sn is too large to represent losslessly (e.g. non-finite in size), or we
are unwilling to expend enough bits to represent each of its elements distinctly, we resort to a
non-invertible (e.g. many-to-one) mapping from each source data sn ∈ Sn to a reproduction
output ŝn ∈ Sn, where generally sn 6= ŝn. The mapping is evaluated under a distortion
measure dn : Sn × Sn → R≥0 to assess its average distortion level

d̄n , Edn(sn, ŝn) (9.1)

For a given rate budget, we want to keep the distortion level low, and vice versa.
Systems that fall under Domain III of Table 1.1 implement for this scenario. They are

traditionally designed using a joint architecture (Fig. 9.1) just like their lossless counter-
parts (Fig. 1.3). With the latter, we know that a model-code separation architecture enables
systemic flexibility with negligible effect on performance. Can an analogous separation archi-
tecture be feasible for lossy compression? We show that this is so, if we can leave geometry
information implied by the distortion measure in the encoder.
Now let us again begin by seeking architectural insight from source coding theory.

9.1 Rate-distortion theory*
In rate-distortion theory [87, 72], as in lossless compression (Section 2.1), a string sn =
s1, ..., sn is considered as drawn from a probabilistic source sn ∼ psn , but now the alphabet
S is arbitrary.
The theory defines the rate-distortion function as

R(∆; s) , lim
n→∞

1
n
R(∆; sn) = lim

n→∞

1
n

(
inf

pŝn|sn :d̄n≤∆
I(sn; ŝn)

)
(9.2)

whose value lower bounds the average number of bits required to represent each symbol of
sn to within average distortion level ∆, the tolerance.1

1I(x; y) = D(pxy||pxpy) = E log pxy(x,y)
px(x)py(y) . Notationally, R(∆; s) is more commonly written as R(∆) with the

source s understood.
The theory holds for (1) stationary ergodic sources of bounded total distortion, i.e. Edn(sn, ŝn) <∞,

and (2) finite-span distortion measures dn(sn, ŝn) = (n− g+ 1)−1∑n−g
k=0 d(sk+1,...k+g, ŝk+1,...,k+g), where

99

9 Lossy Compression

Process Quantize Code DECdata reproduction

compressed
data

data model

distortion measure

ENC

Figure 9.1: A common joint architecture for lossy compression systems. The data model
along with the distortion measure are used to design Process, Quantize, and
Code. (Confusingly, the latter two units of the encoder are sometimes together
called the quantizer, but we reserve that term only for Quantize.)

The distribution p∗ŝn that “achieves” the infimum in Eq. 9.2 is called the optimal repro-
duction distribution, while the neighborhood B∆+ε(ŝn) = {sn ∈ Sn : dn(sn, ŝn) < ∆ + ε} is
called the tolerance ball of ŝn.

9.1.1 Achievability
Analogously to lossless coding, a random codebook scheme can approach this bound arbitrar-
ily closely, by building a reproduction codebook Qn of 2n(R(∆;s)+ε) entries, filled with random
draws of ŝn ∼ p∗ŝn . For large n, all the typical sequences of sn are found within a tolerance
ball of a codebook entry, with the remaining ones contributing negligible distortion. Thus
essentially any sequence from sn can be compressed to a ∆-approximation using the R(∆; s)
bits per symbols it takes to specify a codebook entry label.
On the other hand, there is no obvious late-binding system (with respect to the data

model) analogous to the random binning scheme for lossless compression. The closest analog
is known as Wyner-Ziv coding [88, 89], in which the decoder holds additional side information
yn ∈ Sn unavailable to the encoder. In this scheme, the encoder first builds a reproduction
codebook Qn of 2I(sn ;̂sn)+nε1 entries, filled with random draws of some ŝn. It then hashes
all the entries of Qn to 2I(sn ;̂sn)−I(ŝn;yn)+nε2 bins as in lossless Slepian-Wolf coding. If ŝn is
distributed according to pWZ

ŝn , the marginal that “achieves” the infimum in

RWZ(∆; s|y) , lim
n→∞

1
n

(
inf

pŝn|sn :d̄n≤∆
[I(sn; ŝn)− I(ŝn; yn)]

)
(9.3)

then for large n and a typical yn, each bin will on average contain no more than one codebook
entry ŝn ∈ Qn typical of ŝn|yn = yn, and each typical sequence of sn|yn = yn will in turn
be within a tolerance ball of such an ŝn. In this way, essentially all sequences from sn are
compressed to a ∆-approximation using the RWZ(∆; s|y) bits per symbol it takes to specify a

d : Sg × Sg → R≥0.

100

9.2 Separation architecture

bin label. In significant contrast to lossless compression, RWZ(∆; s|y) > R(∆; s|y) generally,
though equality is possible, e.g. with jointly Gaussian (sn, yn) and mean-squared error (MSE)
distortion measure [90].

9.1.2 Applied system design
The main system design insight of the foregoing is with respect to the role of the reproduction
codebook Qn. In lossy compression, two competing criteria are imposed on Qn — it must
be, at the same time, sufficiently space-filling to obtain low distortion, and sufficiently similar
to sn in composition to save on rate. The optimal reproduction distribution p∗ŝn is the one
that fills space in such a way that the elements of Qn are hit with equal probability, so that
no residual entropy is left in the output.
The random codebook scheme encodes directly using such a codebook, having generated

it with the full knowledge of the distortion measure and the data model in an early-binding
design. Its practical realizations are the high-performance vector quantizers whose encoders
are designed by optimization or sample training methods (e.g. Lloyd-Max [91, 92, 93],
clustering [94, 95], neural networks [96, 97]).
In Wyner-Ziv coding, we glimpse a different design in which Qn is an intermediate codebook

that does not result in equiprobable usage if we consider yn to be a parameter in the “full”
data model for sn, e.g. p(s; θ) = psn|yn(·|θ). The random binning that follows can then be
understood as an entropy coding stage. In this design, the distortion measure is still fully
known at the encoder to design Qn, while the data model is only partially known at the
encoder, and fully known at the decoder. This is not a true late-binding system, but highly
suggestive of one in which the encoder entirely divests itself of the data model. However,
the Wyner-Ziv result says that we should expect a performance penalty for such separation,
because even a model-poor (cf. model-free) encoder results in a fundamental rate gap.

9.2 Separation architecture
The key to model-code separation in lossless compression is the model-free hashing encoder
(Section 3.2.2) that uses no prior knowledge. Since lossy compression systems involve two
sources of compression gain, (1) conflating multiple source sequences as one (quantization),
and (2) exploiting the data model (entropy removal), naturally there are two sources of
prior knowledge, respectively, (1) the distortion measure (geometry) and (2) the data model
(typicality). Should we treat the two types of knowledge similarly or differently?

9.2.1 A naive hashing encoder
A first attempt at separation is to treat them similarly, in which case we use the same hashing
encoder as in lossless compression to reduce sn to nR(∆, s) bits, then hope to apply both
the distortion measure and the data model subsequently. This turns out to be impossible
for the distortion measure.

101

9 Lossy Compression

Quantize

distortion measure dn

tolerance ∆

Code

rate r

DEC

data model psn

sn ŝn
(ql) xk

ENC

Figure 9.2: System diagram for a lossy compression architecture featuring model-quantizer
separation and model-code separation. The encoder is model-free but distortion
measure aware.

To see this, take the example of a finite-alphabet, bounded total distortion source sn. Its
typical set has roughly 2nH(s) elements. Suppose we created some 2nR(∆;s) bins according
to a random binning assignment, then into each bin will fall on average N .= 2n(H(s)−R(∆;s))

random elements of the typical set. For ∆ > 0, R(∆; s) < H(s) by the convexity of R(∆; s),
so this number is exponentially large in n. If we code sn to nR(∆; s) bits by random binning,
the best we can do at the decoder is to arbitrarily select one of the N elements as ŝn. Since
the N elements constitute a random sampling of the typical set, the expected distortion level
over all binning assignments is just the zero-rate distortion of sn; in other words, rather than
obtain a lower (and optimal) distortion level of ∆ by spending nR(∆; s) bits, we obtain the
maximum distortion level as if we spent no rate at all.
The fatal flaw of random binning as coding for lossy compression is that it is geometry-

free: an element coded into a bin permanently loses its spatial identity (beyond what is
known about the typical set as a whole), and quantization gain is lost. What we learn here
is that any worthwhile reductive stage for lossy compression must be locality sensitive; or
put another way, it must contain an element of quantization in the presence of the distortion
measure.

9.2.2 Model-quantizer separation
Since the two types of knowledge are inherently different, we need a more nuanced separation
design. Recall the lossless compression architecture of Fig. 3.1. In Section 9.2.1, we argue
that the functional replacement for Code in lossy compression must be quantization-like,
and the distortion measure must accompany it within the encoder to make geometry-aware
decisions. In Section 9.1.2, we learn that the data model however may be severable from
the encoder (though with a potential loss). Thus in addition to model-code separation,
another separation principle emerges in lossy compression between the geometry processing
using the distortion measure and the typicality processing using the data model. We call it
model-quantizer separation.
Additionally, we learn from Wyner-Ziv coding that the encoder may be implementable (if

desired) as a model-free quantization stage followed by a model-free (entropy) coding stage,

102

9.3 Model-free quantization

== == == ==…

…

…

source subgraph Gsource subgraph G

code subgraph Ccode subgraph C

Q Q Q…

QQ

SS

XX

ZZ …

Q Q Q…

SS

QQ QuantizerQuantizer

Figure 9.3: The structure of the decoder inference graph (left), and the modularized quan-
tizer component (right) for separation architecture lossy compression. This left
drawing assumes the full complement of transformations are required, including
alphabet translation and entropy coding — these stages may be omitted in some
settings.

the latter being the same hashing unit as for lossless coding (because it is exactly that).
Let us therefore propose the architecture shown in Fig. 9.2, with the modeling, coding, and
quantization aspects of lossy compression all treated separately. By design, it shares the
same type of systemic flexibility as its lossless counterpart with respect to the data model,
and we can even reuse the coding components from lossless compression.
Remark 9.1. The design principle of separation in lossy compression has been reflected in
the lineage of “practical Wyner-Ziv” systems, particularly in video compression [98, 35, 99,
100, 101], where partial model separation from the encoder in the spirit of side-information
problems (Section 3.4.1) provides scalability and other desirable systemic flexibility.
To fully address the inquiry that opens the chapter though, we need to show designs

for low-complexity model-free quantization, and study how the architecture affects system
performance.

9.3 Model-free quantization
The important practical question for model-free quantization design is how to represent them
in an inferential decoder. Specifically, the decoder must take a form like that of Fig. 9.3, with
an additional graphical layer inserted to represent encoder quantization processing. The Q
factors, similar to = factors of coding, stand for constraints, in this case relating input S
to quantized output Q via the Quantize operation. We show how this may be done for a
number of quantizer designs.

103

9 Lossy Compression

9.3.1 Existing quantizers
If we wish to use existing encoder quantizer components, we usually can. Because current
systems (Fig. 9.1) rely heavily on Process and Code to exploit the data model,2 leaving
relatively little to bind to Quantize, their quantizers may already be model-free.3
Here are a few typical existing quantizers and how inferential decoders can be designed

for them:

• Traditional quantizer : We can use an off-the-shelf traditional quantizer as a black-box
component, as long as the statistics of their output ql ∈ Ql can be characterized, e.g.

pql(ql) =
ˆ

Quantize−1(ql)
psn(sn)

The output ql can be taken as the input of an ordinary lossless compression problem. pql

is likely to be graphically representable with similar complexity as psn if the quantizer
is structured in a way that is spatially faithful (e.g. scalar quantizer, lattice quantizer
with l = n). On the other hand, the output of an unstructured quantizer providing a
single index q ∈ Q is less helpful; in that case, we may need to model the internals of
the quantizer in the decoder, with messages crossing the quantizer processing boundary
translated as appropriate. Complexity can be high.

• Coded quantizer: Certain low-complexity data structures such as trees or linear codes
(e.g. LDGM, LDPC quantizers) with innate graphical representations are nowadays
used to represent output spaces of quantizers. For such quantizers, we can incorporate
their representations into the decoding graph with relatively little effort. (See Section
9.3.1.1.)

• Geometric hashing: Geometry-preserving hashing based on random projections is used
in approximate nearest-neighbor queries and semantic clustering. They have a certain
appeal for the model-quantizer separation architecture, as a direct replacement for the
random binning hash. They are largely representable by graphical methods in concert
with scalar quantizers. (See Section 9.3.1.2.)

9.3.1.1 Coded quantization*

A number of authors have looked at coded quantization using structured (e.g. linear) codes
L = {v : v = Gu} as the reproduction set combined with a low-complexity (possibly

2The mirrors the lossless compression case, but with lossy compression, the pre-processing stage also exploits
the distortion measure to perform a large amount of implicit quantization, i.e., various psycho-perceptual
data models are in fact a data model coupled with a distortion measure.

3Quantizers for speech [102, 103] and to some extent, audio [104, 105, 106], bind weakly to the data model
by training on model parameters, while quantizers for images [107] and videos [108] are essentially model-
free, i.e. purely geometric. The reason is that model-free quantizers are easier to design and use than
quantizers strongly bound to specific data models, even in joint architecture systems.

104

9.3 Model-free quantization

approximate) nearest-neighbor search. These are embedding methods that seek for an input
s a u that generates the optimal embedding, where

u∗ = arg min
u
d(s,Gu)

is the quantized output. Of the most well developed are works using sparse linear codes and
encoding with some stage of iterative message-passing:
• Using the output space of a low-density generator matrix (LDGM) directly as the

reproduction set [109, 42, 110]. This achieves the rate-distortion bound for the Bern(1
2)

source with erasure distortion.

• Modifying the output space by additional constraints such as low-density parity-check
(LDPC) constraints in compound LDGM-LDPC constructions [111, 112]. This achieves
the rate-distortion bound for the Bern(1

2) source with Hamming distortion.

• Non-linear modifications to weakly sparse generator-matrix embeddings [113]. This
achieves the rate-distortion bound for uniform i.i.d. GF(q) sources with Hamming
distortion.

• Non-uniform Bern(p) sources with Hamming distortion can be compressed with GF(q)-
quantized LDGM codes to somewhat better than the Ancheta bound (Section 9.6)
[114]. With multi-level quantization [115], the rate-distortion bound can be achieved
for arbitrary DMS’s with separable and bounded distortion measure. However, both
of these constructions require knowledge of the optimal reproduction distribution at
the quantizer.

These results are promising, but direct coded quantization onto linear subspaces gives poor
coverage of the space except over the typical set of uniform sources. If we strive for model-
quantizer separation and must settle for certain suboptimal reproduction codebooks, we need
to know the performance of such systems, which we examine in Section 9.4.

9.3.1.2 Geometric hashing*

In recent years, a number of locality-sensitive hashing (LSH) schemes have been developed
for nearest-neighbor query problems, e.g. [116, 117, 118, 119]. These all suggest some form
of random projection followed by low-complexity (i.e. scalar, or scalar binary) quantization,
and because they are not targeted at general compression problems, they happen to be
model-free.
In the case of the binary Hamming distortion, the proposed LSH is a collection of 1-bit

coordinate projections, so an l-bit hash is given simply by Hl(sn) = (sj1 , ..., sjl) for some
random selection of j1, ..., jl ∈ {1, ..., n}. Using such an LSH as quantizer implies losslessly
coding a subset of the input bits. This indeed is compatible with model-quantizer separation.
However, note that the processing is entirely linear, thus performance over Bernoulli i.i.d.

sources is limited by the Ancheta bound (Section 9.6), though for sources with memory, this
situation can be somewhat ameliorated.

105

9 Lossy Compression

A more fundamental problem with the LSH is that, due to the small alphabet size, rec-
tilinear halfspaces of GF(2)n do not have the geometry to generate a hashing region that
approaches a Hamming ∆-ball as the hash collection grows. (To contrast, for the MSE dis-
tortion, the proposed LSH is a collection of scalar-quantized 1D projections, and that hashed
region does approach an MSE ∆-ball as the collection size grows.) Taking this insight fur-
ther, we propose a scheme to build a geometric hashing quantizer that operates on more
than one dimension of GF(2)n at a time. This structure both allows to take advantage of
Hamming geometry and begins to approach a true vector quantizer in the limit of large hash
collection.

9.3.2 Low-density hashing quantizer
On the other hand, beginning with the inferential decoder design in mind, we can pro-
pose a new quantizer design that is more directly suitable than existing quantizers in some
combination of ease of implementation, complexity, and performance.
Referring to Fig. 9.3, a full vector quantizer would involve one Q factor that connects to

all S nodes, and producing one large-alphabet output {q} = Q. However, since we would
follow that with an alphabet translator to take Q to binary symbols Z, we can consider
the vector quantizer to be equivalently decomposed into a multitude of bitwise Q factors
each producing one bit qi ∈ Q. Each Q now acts like a one-bit quantizer or hash. For
Q implementing arbitrary functions, the complexity can still be exceedingly high, given its
O(n) neighborhood — a full vector quantizer still has high complexity even to produce 1
bit.
A natural reduction is to connect each Q not to all the S nodes but only to some, giving

rise to a product quantizer structure [120]. If the connection is sparse enough, the collection
of bitwise quantizers may be called a low-density hashing quantizer (LDHQ).
For the rest of this section, we design an LDHQ-supported separation architecture lossy

compression system for the binary Hamming case.

9.3.2.1 Quantization function

Each bitwise quantizer Q implements a specific quantization function, defined next.
Connect Q to a random δ nodes of S: {sj1 , sj2 , ..., sjδ} ⊆ S, so let s = sj1 , sj2 , ..., sjδ . Let

u ∈ Sδ be a random vector called the reference point. Let ū, i.e. the inversion of u, be called
the antipodal point. Then,

Quantize(s;u) =

0 if dδ(s, u) < dδ(s, ū)
1 if dδ(s, u) > dδ(s, ū)
q ∼ Bern(1

2) if dδ(s, u) = dδ(s, ū)

defines a 1-bit stochastic quantizer (we can also use a deterministic tiebreak for the third

106

9.3 Model-free quantization

case). Since dδ(s, u) + dδ(s, ū) = δ, the quantization function can be computed trivially by

Quantize(s;u) = 1{dδ(s, u) R δ

2} (9.4)

9.3.2.2 Encoding algorithm

To compress sn, setting l to target the total number of quantization bits — this sets the
target distortion — choose a random bipartite graph L = (S,Y , ·), where Y , {g1, ..., gl}
denotes the l Q factor functions, and the degree on each gb is δb. Write Ab = N Lb for
the neighborhood of gb on the S side. Choose also a collection of random reference points
U = {u1, u2, ..., ul}, ub ∈ Sδb . Apply

ql = Quantize(sn; U ,L) (9.5)

,

Quantize(sA1 ;u1)
Quantize(sA2 ;u2)

...
Quantize(sAl ;ul)

This is followed by entropy coding. Setting k to target the final compression rate rcode = k/n,
choose a random H ∈H (l, k). Apply

xk = Hql (9.6)

to obtain the compressed result.4

9.3.2.3 Decoding algorithm

Since the source and code components are independent and need not be modified in any way
(cf. Section 7.4), we only describe the quantizer component. This component is much like a
combination of the alphabet translator component (Fig. 7.2) and the code component (Fig.
3.2) in operation.
In similar fashion to Eq. 3.4, we can define the quantizer constraint function,

g(sn, ql) , 1

{
ql = Quantize(sn; U ,L)

}
(sn, ql)

=
l∏

b=1
gb(sAb , qb)

=
l∏

b=1
1 {qb = Quantize(sAb ;ub)} (sAb , qb) (9.7)

4U , L, just as H (and doping, which we neglect here), are generated pseudo-randomly, and likewise need
not be described explicitly to the decoder beyond synchronizing a seed.

107

9 Lossy Compression

Thus the entire decoder now attempts to marginalize

u(sn, ql) , c(ql)g(sn, ql)psn(sn) (9.8)

for maximization over each si.
To obtain the messages, notice the quantizer component sends and receives external mes-

sages on the virtual ports of both sets of variable nodes (S and Q). Let [M i←] and [M i→]
denote respectively the input and output external messages on variables si. Let

[
M b←

]
and[

M b→
]
denote respectively the input and output external messages on variables qb. Denote

by νi→b a message passed from si to gb, and by νi←b one passed from gb to si. Then, the
updates are:

S node output: νi→b ⇐ νi←∼b
[
M i←

]
L

S external message output:
[
M i→

]
L
⇐ νi←∗

Q node ouptut: νi←b ⇐ gi∼i,bν
∼i→b

[
M b←

]
L

Q external message output:
[
M b→

]
L
⇐ gb∗ν

∗→b

Table 9.1: Node computations for the LDHQ quantizer component. The wildcards are taken
over neighbors in the graph L.

If BP converges with ŝn computed as usual, and the inferred values of q̂l = Quantize(ŝn; U ,L) =
ql and x̂k = Hq̂l = xk are correct, then decoding succeeds.

9.3.2.4 Exploratory results

We compress sn ∼ Bern(p), p = 1/2, with Hamming distortion dn(sn, ŝn) , (1/n)∑n
i=1 1{si 6=

ŝi}. The rate-distortion function for this source is, for 0 ≤ ∆ ≤ min{p, 1− p},

R(∆; s) = h(p)− h(∆) (9.9)

The linear processing (Ancheta) bound (Section 9.6) for p = 1/2 is, for 0 ≤ ∆ ≤ p,

RAncheta(∆) = 1− 2∆ (9.10)

This is indeed the time-sharing bound achieved by the type of geometric hashing methods
described in Section 9.3.1.2.

108

9.4 Quantization codebook mismatch

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

LDHQ−prot
LDHQ−thresh
linear processing
R(∆;s)

Figure 9.4: Compressing Bern(1
2) under Hamming distortion with LDHQ. n = 1000, and

rdope = 0.04.

Our goal with LDHQ then is to demonstrate that the linear processing bound can be
breached at low complexity, even within the context of model-quantizer separation. Fig. 9.4
shows a few trials where we set a constant degree on Q of only 3.5 Note that bnrdopec bits
of ql (rather than sn) are doped, and the reported rates include this, thus LDHQ-prot shows
r = r∗code + rdope and LDHQ-thresh shows r∗ = εBP + rdope (cf. Section 4.1). We see that,
particularly at lower rates, decoding succeeds with demonstrably better performance than
the linear processing bound.
The result suggests that forms of low-complexity, geometry-aware hashing may yet provide

the desired performance in lossy compression problems for use in a separation architecture.
A fuller exploration of this approach still awaits further research.

9.4 Quantization codebook mismatch
A joint model-quantizer system such as the random codebook scheme of Section 9.1.1 has the
opportunity to use one codebook — perhaps the rate-distortion optimal one, Q∗n — for both
quantization and entropy removal. In the model-quantizer separation architecture, however,
the encoder handles quantization of the space using a quantization codebook Qn that does
not know the distribution of the typical set within the space. Therefore, there is redundancy
in the quantizer output sequences ql, presenting as their non-uniform rates of occurrence.
This section addresses the rate performance ramifications of quantization codebook mismatch
between the optimal Q∗n and the designed Qn, whether due to model-quantizer separation
or other reasons.

5The quantization graph L is generated using the same library that generates the coding graph C.

109

9 Lossy Compression

9.4.1 Entropy coding
Non-uniform quantizer output is removable by entropy coding. In the high-rate limit, en-
tropy coded quantization (EC*Q) approaches optimal performance for space-filling model-free
quantizers, because the quantization cells are small enough compared to the resolution of
data distribution variation. But at lower rates, there are few quantization cells that must
cover larger parts of the typical set, and optimal compression requires a specific arrangement
of cells, so there is a performance loss even with entropy coding, very much analogous to the
Wyner-Ziv loss seen in Section 9.1.1.

9.4.2 Main results
We want to know how much loss there is to using an arbitrary system codebook Qn, and
how much of it is regained by entropy coding on its output ql ⇔ ŝn, under the specific
condition that we know the original source distribution at the decoder — not a condition
usually considered.
To do this, we explicitly view the quantization codebook as a stochastic collection Qn ,
{(ŝn)1, (ŝn)2, ..., (ŝn)|Qn|} of reproduction words drawn from a design distribution on the words
of Sn.
The performance of lossy compression under codebook mismatch is extensively surveyed

in [121] by large deviation methods. In it, we find the following results:

Definition 9.2. Let P be the source law, i.e. psn . LetW be an arbitrary stochastic encoding
law, i.e. pŝn|sn . Let PW be the joint distribution of the source-reproduction pair under source
law P and encoding law W , i.e. psn ŝn . Let Y be the output distribution under source law
P and encoding law W , which is to say, pŝn =

´
sn
psn(sn)pŝn|sn(ŝn|sn) or Y =

´
P
PW for

short. (We also call Y the effective codebook distribution; it can differ from the design
distribution.) Let Q be an arbitrary codebook design distribution. Let Q∗ be the optimal
codebook distribution according to rate-distortion theory, i.e. p∗ŝn .

Then, with all optimizations subject to Edn(sn, ŝn) ≤ ∆,

• When the encoder has P , it can compute for itself the optimal codebook distribution
by setting the design distribution Q to be the effective distribution Y , giving Q∗.
The optimal rate of compressing a P -source with this codebook is, per rate-distortion
theory,

R(∆; sn) = inf
W :Q=

´
P PW

D(PW ||P ×Q)

= inf
W
D(PW ||P × Y)

= inf
W
I(sn; ŝn)

• When the encoder and the decoder both do not have P , nor know the optimal codebook
distribution Q∗ through other means, then they must quantize using some arbitrary

110

9.4 Quantization codebook mismatch

codebook of design distribution Q. The optimal rate of compressing a P -source now is

RQ(∆) = inf
W
D(PW ||P ×Q)

inf
W

[D(PW ||P × Y) +D(Y ||Q)]

= inf
W

[I(sn; ŝn) +D(Y ||Q)]

≥ R(∆; sn)

The difference RQ(∆) − R(∆; sn) represents the loss for using the suboptimal codebook Q
for quantization. Theoretically, no entropy coding is possible, because we do not “know” the
distribution of the quantization output, either (without learning).
In our architecture, however, it is only the model-free encoder that does not know/use the

source distribution P and therefore cannot assume the optimal codebook distribution Q∗.
Instead, it quantizes using an arbitrary codebook of design distribution Q, as above. How-
ever, the decoder does have the source distribution P , as well as the codebook distribution
Q that the encoder chooses via the quantizer. Thus we need a new result.

Definition 9.3. Let WQ , arg infW D(PW ||P ×Q) denote the optimal encoding law when
coding a P -source with an arbitrary codebook of design distribution Q. Let YQ =

´
P
PWQ

denote the associated effective distribution at the output.

Remark 9.4. YQ is the output distribution of the codebook under usage, and it is as if the
codebook is actually distributed as YQ from the perspective of the system. Indeed, it is
indistinguishable from the case where the codebook is designed with distribution YQ instead
of Q, because the encoding law YQ must be optimal in either case.
A concrete example is if a quantizer uses a (deterministic) codebook Qn (thus Q is uniform

over the entries of Qn), but in usage some entries are used more than others according to
YQ, then, the opportunity to reduce the coding rate from log |Qn| to h(YQ) is exactly the
role of lossless entropy coding, provided YQ is known.

Theorem 9.5. The optimal rate for rate-distortion coding a P -source, using a quantizer with
codebook design distribution Q at the encoder, with knowledge of P and Q at the decoder, is

RQ,EC(∆) = inf
W
D(PW ||P × YQ)

= inf
W

[D(PW ||P ×Q)]−D(YQ||Q)

= RQ(∆)−D(YQ||Q)
≤ RQ(∆)

The term D(YQ||Q) is the rate recovered by entropy coding the quantizer output. Fur-
thermore, the encoder can apply model-free coding (lossless compression) at rate RQ,EC(∆),
knowing the decoder, with P and Q at hand, will “compute” and apply the model for YQ,
the utilized, effective distribution of the codebook Qn, rather than Q itself. Note that this

111

9 Lossy Compression

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

R(∆;s)
linear processing

RQ(∆)

RQ,EC(∆)

(a) Bern(0.3), Hamming distortion

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

∆

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

R(∆;s)

RQ(∆)

RQ,EC(∆)

(b) N(0, 1), MSE distortion

Figure 9.5: Performance comparison of compressing i.i.d. sources with mismatched code-
books: (a) Q = Bern(0.5) when Q∗ = Bern(p 6= 0.5); (b) Q = Unif(−3, 3)
when Q∗ = N(0,Σ < 1).

“computation” need not be an explicit one, since the distribution emerges on the graphical
nodes ql ⇔ sn from the inferential decoder applying the quantizer design L (codebook and
encoding law) and the source model G.

9.4.3 Examples
Fig. 9.5 shows the various rate functions computed for two i.i.d. sources (codebooks are also
i.i.d., thus all quantities refer now to single-letter marginals). For the Bern(p) Hamming
case, the optimal reproduction distribution is

Q∗ = Bern
(
p−∆
1− 2∆

)
(9.11)

while for the N(0,Σ) MSE case, the optimal reproduction distribution is

Q∗ = N(0,Σ−∆) (9.12)

We are particularly interested in the uniform (or other entropy maximizing) distribution for
the quantizer, because a model-free quantizer almost certainly has to use it. In both cases,
we see RQ,EC(∆) converging to R(∆; s) at high rate and also perform well at intermediate
rates. At lower rates, the performance is less satisfying, but note that time-sharing in an
architecturally compatible way with the R(∆; s) zero-rate extremum (i.e. not coding some
symbols) gives performance much closer to R(∆; s).

112

9.5 Summary

9.5 Summary
By drawing on Wyner-Ziv coding from rate-distortion theory and practical lossy compression
systems that feature partial model-code separation, then linking them with entropy-coded
quantizer designs, we obtain a separation architecture that keeps geometry information in
the encoder while moving typicality information into the decoder. A new performance bound
shows such separation architecture incurs no loss in the high-rate limit.
Practically, we show how the architecture can reuse components from lossless compression

by adding a model-free quantizer. Existing quantizers, including traditional, coded, and
geometric hashing quantizers, as well as the low-density hashing quantizer (LDHQ) that we
construct, can be used. The LDHQ in particular gives encouraging performance.
In general, lossy compression systems are much more complex than lossless systems, but

separation also lends us one more tool to manage their complexity, while giving us the
systemic flexibility we expect.

9.6 Appendix: Ancheta bound*
The linear processing lower bound for lossy compression of Bern(p) i.i.d. sources with
Hamming distortion due to Ancheta [23], quoted below, gives the most optimistic rate-
distortion tradeoff for compression systems using linear processing in the encoder. This
bound puts an important limitation on system performance because many lossy compression
algorithms for this source turn out to be linear processing. Better performance than the
Ancheta bound, especially at low complexity, is difficult.
Note that it does not apply to using linear codes, e.g. coded quantization using linear

subspaces as reproduction, but solely to linear processing.

Fact 9.6. The Ancheta bound RAncheta(∆) is the solution for r to

∆ = (1− r)h−1
(
h(p)− r

1− r

)
(9.13)

This is strictly bounded away from the rate-distortion function for p 6= 1/2, and it is
conjectured that the even more pessimistic, time-sharing bound (achieved by losslessly coding
a portion of the bits, discarding the rest) is the tight lower bound for all p.

113

10 Toward Realistic Applications
In this chapter, we consider two compression tasks dealing with real image data to give a
flavor of the type of issues one may encounter when putting the architecture into implemen-
tation. The first is a bi-level image compression task where we use the binary Ising model
as the image model. The second is compressing a grayscale image in the encrypted domain.
These examples are not meant to be the definitive word on these tasks, but are useful to
show the beginning of any development process toward realistic applications.

10.1 Bi-level image compression
Real images have strong characteristics known as image models, but unlike the case of Section
4.4, we do not have a definitive way to create a graphical model for them. Nevertheless, we
can assume the Ising(p, q) model family, apply them to real bi-level image sets, accept the
mismatch, and see how an extremely simple image model fares. It can be considered the
beginning of a development process for more complex image models. We also do not optimize
the code, thus the results represent a realistic look at performance with the material already
in this thesis without additional development.

10.1.1 Experimental setup
Image sets consisting of a large number of similar images are collected, scaled to size, and
thresholded to bi-level images. The rate performance (output bits per input bit) for each
image compressed is reported for SEP-prot, JBIG2, and GZIP (Section 4.1).

10.1.2 Palmprints under the Ising model
We test compression on the CASIA biometric palmprints database (Fig. 10.1) [122].1 We
assume the images are drawn from the Ising(1

2 , q) model and estimate the parameter q
according to Section 6.4.1. In this case, the images have large solid patches, and are thus a
fairly good match to the Ising model at certain parameters. The compression performance
is demonstrative of this (Fig. 10.2), where SEP-prot performance is comparable with JBIG2
performance (the latter a little better), and exceeds GZIP performance by a larger margin.

1We converted the 8-bit grayscale images to 1-bit ones by thresholding at mid-level.

115

10 Toward Realistic Applications

10.1.3 Handwritten digits under the Ising model
We test compression on the MNIST handwritten digits database (Figure 10.1) [123].2 We
again assume the images are drawn from the Ising(1

2 , q) model of Section 4.4 and estimate
the parameter q. This is a greater mismatch in image models than with palmprints. However,
the performance is still reasonably good (Fig. 10.3) compared to JBIG2 and GZIP.

10.1.4 Discussion
The results in the experiments, while encouraging, are based on a rudimentary image model
that is unlikely to perform equally well under all circumstances. For more complex images, we
would prefer a less mismatched image model. A possibility is a context-based model much like
what is used in JBIG2 [124]. We can easily replace the source model in the SEP architecture,
by implementing a contextual probability table, in which each entry p(si|N Gi = c) is the
empirical probability of the center pixel value si conditioned on the context state c of its
neighbor pixels N Gi . A flexibility not afforded to sequential coders like JBIG2 is that we are
not restricted to causal contexts, which should improve performance.
Alternatively, we can retain the Ising model, but augment it with non-homogeneous pa-

rameters across the image, then apply the learning methods of Section 6.4.4.

10.2 Encrypted compression
We now turn to an application that absolutely requires model-code separation: compression
in the encrypted domain. Sometimes the owner of data wishes to retain total secrecy, and
so presents to the encoder a version of the data that has already been encrypted. Refer to
Fig. 10.4 for the system diagram. Upstream from the encoder, the source data sn has been
serialized to a bit-stream, then encrypted by a one-time pad system using an additive binary
key knB to give the encrypted bits znB, which the encoder takes as input. The task is to
compress without the encryption key at the encoder, but at the decoder.

2We converted the 8-bit grayscale images to 1-bit ones by thresholding at mid-level, and combined 16 digits
into a single image to produce a more complex test image.

(a) (b)

Figure 10.1: Example of (a) palmprint and (b) handwritten digits images used in Section
10.1.

116

10.2 Encrypted compression

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

JBIG2 rate
0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

GZIP rate

S
E

P
-p

ro
t r

at
e

S
E

P
-p

ro
t r

at
e

Figure 10.2: Under the Ising(p, q) model, performance of SEP-prot is comparable to JBIG2
and better than GZIP on 80 images (96×128) derived from the CASIA biometric
palmprints database.

0.4 0.5 0.6
0.4

0.45

0.5

0.55

0.6

0.65

0.7

JBIG2 rate

S
E

P
-p

ro
t r

at
e

0.5 0.6 0.7
0.45

0.5

0.55

0.6

0.65

0.7

0.75

GZIP rate

S
E

P
-p

ro
t r

at
e

Figure 10.3: Under the Ising(p, q) model, performance of SEP-prot is comparable to JBIG2
and better than GZIP on 3750 images (50× 50) derived from the MNIST hand-
written digits database.

117

10 Toward Realistic Applications

serialize
+ encrypt

model-free
encoder

decoder

pre-processing

encrypted bits:

compressed bits:

source model:

HHcode:

representation map: tM!2(¢)representation map: tM!2(¢)tM!2(¢)

source:

reproduction:

key:

s1; : : : ; sn 2 Ss1; : : : ; sn 2 S

z1;1; : : : ; z1;B ; : : : ; zn;1; : : : ; zn;B 2 GF(2)z1;1; : : : ; z1;B ; : : : ; zn;1; : : : ; zn;B 2 GF(2)

x1; : : : ; xk 2 GF(2)x1; : : : ; xk 2 GF(2)

ŝ1; : : : ; ŝn 2 Sŝ1; : : : ; ŝn 2 S
psnpsn

k1; :::; knB 2 GF(2)k1; :::; knB 2 GF(2)

Figure 10.4: Compressing an encrypted source with a model-free encoder. The already en-
crypted bits are presented to the encoder to compress, which without the secret
key, is impossible to do traditionally.

10.2.1 Encrypted encoding
In the language of Section 7, the encoder receives

znB = tM→2(sn)⊕ knB (10.1)

Normally, this stream is totally uncompressible without the encoder also having the key.
However, we can simply view ⊕knB as part of the representational map and apply coding to
tM→2(sn)⊕ knB ≡ t′M→2(sn) in the same fashion as Section 7.3.2:

xk = HznB = Ht′M→2(sn) (10.2)

10.2.2 Encrypted decoding
Note that in the joint graph U for this system (Fig. 10.5), the code subgraph is entirely
in the encrypted domain since znB and xk = HznB are encrypted. Note further that the
source subgraph is entirely unencrypted since sn, the object of decoding, is unencrypted.
Therefore the encryption boundary coincides with the representation boundary. Then apply
the decoding of Section 7.3.3, using t′M→2 and the corresponding T ′M→2 and T ′2→M pair.
In practice this means during each iteration of computations (Algorithm 7.1), m(M)

C→i(si) is
obtained by message decryption followed by conventional translation T2→M , andm(q)

G→i,ω(zi,ω)
is obtained by conventional translation TM→2 followed by message encryption, with the rest
of the decoding algorithm unchanged. With the key, message encryption and decryption

118

10.2 Encrypted compression

HH

== == == ==…

…

…

source subgraph Gsource subgraph G

code subgraph Ccode subgraph C

tM!qtM!q

…

©k©k

SS

XX

ZZ

Figure 10.5: The structure of the decoder inference graph for the system in Section 10.2.

simply amount to permuting the labels of bits in binary messages.

10.2.3 Image data example
In this section, elements in the encrypted domain are underlined for clarity.
In Fig. 10.6, we show an example of compressing an encrypted 8-bit grayscale image

sh×w (Fig. 10.6a). We apply the PottsZ[256](h) model of Section 8.2 as image model
in the decoder. A sample drawn from this model sh×w ∼ PottsZ[256](h) is displayed for
comparison (Fig. 10.6b). As one can see, this is a rather crude model for the natural image.
To encrypt the image, a random encryption key k8hw is applied to the internal bits of the

image, i.e.,
z8hw = t256→2(sh×w)⊕ k8hw (10.3)

The encrypted “image” can be viewed by treating z8hw as unencrypted bits. As expected,

sh×w , t2→256(z8hw) (10.4)

becomes snowflake noise (Fig. 10.6c) without the key, and traditional compression is not
possible.
The data is compressed by encrypted encoding,

xk = Hz8hw (10.5)

Doping is then applied to the encrypted bits corresponding to a selected subset sD of sh×w,
resulting in the initialization in the encrypted domain with node potentials on Z of

d(2)(zD′) = 1{zD′ = zD′}(zD′) (10.6)

where D′ ⊆ Z are the bits corresponding to the symbols of D ⊆ S under the representational

119

10 Toward Realistic Applications

map t′256→2. This encrypted-domain initialization is displayed in image form (Fig. 10.6d) by
setting the initial encrypted beliefs to

b(256)(sD) = T2→256(d(2)(zD′ = 1)) (10.7)

ŝ(i,j) = arg max
s(i,j)

b
(256)
(i,j) (s(i,j)) (10.8)

In this example, rcode = 0.7, and rdope = 0.04, at which settings decoding without encryp-
tion is possible, thus it proceeds exactly the same with encryption. The only difference is
the decoder graph U has a layer modeling encryption/decryption.
Finally, we show two diagnostic examples of missing components in the decoder. Note that

at any time during decoding, we can obtain a decrypted estimate of sh×w from the marginal
beliefs b(256)

(i,j) (s(i,j)) on S,
ŝ(i,j) = arg max

s(i,j)
b

(256)
(i,j) (s(i,j)) (10.9)

If the decoder has the encryption key but does not have the code graph, it decodes relying
only on the image model and doping; then we obtain one type of unstable “solution” (Fig.
10.6e) showing an image that has somewhat the layout of the original image while following
strongly the generic image model applied.
On the other hand, if the decoder has the complete coding components but not the en-

cryption key — supplying a random key or pretending z8hw is in-the-clear, we obtain another
type of unstable “solution” (Fig. 10.6f) showing a nearly random image having the char-
acteristics of the image model. Since the values supplied to the decoding, except for the
locations of the doped symbols, are entirely random, decoding not only does not succeed but
provides no information except what would be obtained by beginning with a set of random
pixel values.

10.2.4 Discussion
In this application, both the image model and the cryptographic scheme are basic designs.
For grayscale (and color) images, though the Potts model has been used in image processing
and vision research, very different models based on transform-domain priors [125] and oc-
clusive patches [126] are also popular and require additional technology to implement them.
Similarly, many existing cryptosystems [127, 128] have been deployed and applied to data,
so we must be prepared to design message-passing decoder components for those systems,
or develop new methods of low-complexity cryptographical inference to serve the important
application of encrypted compression.

120

10.2 Encrypted compression

(a) ground truth sh×w (b) random sh×w sample

(c) encrypted image sh×w (d) doping initialization ŝh×w

(e) no code component (f) with wrong key supplied

Figure 10.6: Compressing an encrypted grayscale image (S = Z256) of size (h,w) = (30, 44),
using the image model PottsZ[256](0.4). rcode = 0.7, and rdope = 0.04.

121

11 Conclusion
Let us review the contributions of this work and look forward to what is to come.

11.1 Review
In this thesis, we proposed a model-code separation architecture for data compression that
gives many advantages of systemic flexibility over current system design. We are able to
incorporate prior knowledge about data and its processing into systems very easily, without
affecting the other parts of the system. In turn, we obtain features in compression that we
are unable to have with current systems.

11.1.1 Requirements
Of the requirements for contemporary and future compression listed in Section 1.1.2, we
have addressed the first two, design flexibility and upgrade flexibility, throughout the thesis,
but in particular in Sections 3.3.1 and 7.4. The utility of model-code separation for these
requirements is clear. It allows us the flexibility to alter the data model and processing
assumptions at any time. Systems for new data types can be designed incrementally with
low barrier to entry. Agents have the means and incentives to compete to improve on
components.
We addressed security in Section 10.2. The remaining requirements are equally evident.

We have created an architecture in which the encoder is lightweight, and which for lossless
compression and high-rate lossy compression, does not sacrifice performance over the joint
architecture — ideal for mobile acquisition and encoding (mobility). Our compressed data on
which systems are standardized is also a true information stream that can be re-ordered, par-
tially lost, accumulated from multiple origins, etc., affording us many modalities of pipeline
design (Section 3.2.5) and the kind of distributivity and robustness that does not require
joint source-channel coding.

11.1.2 Design proposals
Throughout the thesis, we identified the joint model-code architectural style not only with
common practical systems but also with the Shannon random codebook scheme from the

123

11 Conclusion

earliest days of compression research. But we also saw the Slepian-Wolf and Wyner-Ziv
random binning schemes as prototypes (Sections 2.1.2, 9.1.2) on which to build model-code
separation systems like SEP.
Based on these prototypes, we constructed several systems and architectural generaliza-

tions to compress both losslessly and lossily (Section 9.3.2), with models both certain and
uncertain (Section 6.4), and for data that can be over alphabets entirely different from that
of the coding system (Section 7.3). The design choices were not only easily enabled by the
architecture itself but sometimes became self-evident. The same approach can be taken for
numerous other scenarios which have not been explicitly considered in this thesis.

11.2 Future work
It is by purposeful choice that this thesis focuses on architectural issues primarily. There
is much more remaining to be done, and it would be unrealistic to answer every question
regarding e.g. modeling, coding, graphical algorithms, which are important research fields in
their own right. What we have presented is a system architecture that, by its construction,
links the theory of source coding more closely to the practice of compression system design.
Therefore, perching at the threshold of theory and practice, future work is easily accessible
in each direction.

11.2.1 Modeling
As this work has shown, this aspect of compression is perhaps the most important of all. We
seek models for different types of data that now exist or are being generated in large quan-
tities, e.g. financial and biological data. Existing systems have had decades to accumulate
expertise and trials in this area, and a somewhat more robust amount of development than
what can be mustered in this work will be a boon for performance.
We also need to develop representations for complex models and data structures to work

with them. We are intrigued by the possibility of models on graphs that may go beyond
PGM’s, including various computational, sampling, or constraint models that may prove to
better describe data types.

11.2.2 Coding
We seek better code design, not just for better optimized LDPC codes or other graphical
codes, but also for rate-adaptive, streaming, or sequential versions of them.
Although coding has been relegated to somewhat the role of a workhorse component in

the present architecture, it too is very important, inasmuch as we require it to have robust
behavior and good performance across a range of scenarios. We have shown this is the case
for a number of cases, but beyond empirical evidence, a more general analysis to provide
guarantees is also desired.

124

11.2 Future work

11.2.3 Quantizer design
Having also conceptually and architecturally separated the quantizer from code and model
in separation architecture lossy compression, we are left with the problem of finding suitable
geometry-aware hashes for lossy compression. The traditional conception that conflates
geometric requirements with statistical requirements in designing a “code” that works for
both is not without its contradictions, but the separated design of quantizer also has its own
set of challenges.
The low-density hashing quantizer (LDHQ) design as outlined in this work requires further

refinement. For example, we need to consider how to generate a finite number of quantization
regions for spaces that have infinite extent. Though this is one design, there are other, more
exotic direct mapping methods such as space-filling curves [97] that can now be put into
experimentation in this modular architecture.
Lossy compression in general is a highly complex problem, of which the distortion measure

is still retained in its most rudimentary form in our presentation. How to work with non-
idealized distortion is a problem of equal magnitude to how to work with non-idealized data
models, and it is worthwhile to further consider whether this architecture permits the use of
more implicit forms of distortion as in [129].

11.2.4 Communication system design
Since all compressed bits are equally informative, this architecture allows seamless trans-
mission over a symbol erasure channel by adjusting the compression rate. In more general
transmission scenarios, we can consider incorporating channel coding — especially linear
channel coding — within the same architecture, perhaps similar in spirit to e.g. [130, 131].
The inference can be taken over both the source and channel parts in the decoder, yet each
part can be substituted.
We should also note that the results and designs in this work directly carry over to the

important dual problem of channel coding for additive-noise channels with memory, thus
opens another avenue of inquiry.

11.2.5 Algorithms and implementation
The modular design principles and interfaces uncovered in this work can directly map to
functional factorization in code (indeed, we have done so to an extent). There are many other
ways to improve an implementation, though, that may not be readily apparent from this
treatment. For example, better numerical stability and complexity reduction are achievable
through an extensive use of computations in log-likelihood and other distribution spaces.
We also seek complexity reduction in other ways, especially with regard to messages over

larger alphabets, where perhaps particle or sampling methods may be required as model size
grows larger. Too, the judicious removal of unused graph edges and the preservation of mes-
sages during decoding should grant BP a degree of restartability, and a faster determination

125

11 Conclusion

of convergence.

The above are problems where the presented system design can receive and benefit from
a great deal of research already taking place in each area. There are a few more expansive,
higher-level ideas that are relevant.

11.2.6 Hardware acceleration of BP
BP is currently implemented on CPU’s, GPU’s, and some ASIC’s. Since our architecture
relies almost exclusively on large-scale Bayesian inference, and algorithms such as BP re-
peatedly apply accumulation and filtration over messages as atomic operations, it begins to
seem as if the CPU or even GPU instruction sets are not the most suitable. The complexity
of inference is to a large degree an artifact of counting operations over integer or floating
point numbers, rather than over the atomic operations of a Bayesian calculus.
One part of a practical future for compression with the architecture here may well lie

in incorporating into hardware processors computational units that store messages and ap-
ply operations over messages, much as the floating point has become embedded as a basic
hardware type. All inferential algorithms will gain in a fundamental way.

11.2.7 Ecosystem
A greater goal of this work is to open compression systems to improvement in all its sundry
parts. For this to occur, not only need the architecture design be modular and flexible,
but the “architecture” for the sharing of expertise, design, prototype implementations, and
performance evaluations also needs to be well designed.
To be concrete, what are considered as data types need to be well defined, perhaps through

representative training and testing data sets as is sometimes done, so that two competing
parties can agree that they are designing data models for the same type of data. As new
data types become available for which no compression systems exist, such an ecosystem for
introducing and modifying designs quickly in a backward compatible way begins to show its
value.

11.3 Epilogue
Our data demand continues to grow every year. The International Data Corporation (IDC)
estimates that by the year 2020, 40 zettabytes of data will be created, replicated, and
consumed each year, an order of magnitude more than today [132]. Nearly all of the data
then existing will be new data, some of it will be specialized data in enterprise, scientific,
and technology domains, some of it will be user generated media content, some of it will be
measurements and samples from distributed sensors and devices. These are complex data
for complex applications, especially at scale, so the opportunities to create high-performance
data compression systems are truly great, but the challenges are equally daunting.

126

11.3 Epilogue

Whereas current systems are constrained by their joint model-code architecture to mono-
lithic, immutable, and non-reusable designs, a flexible, modular, and extensible model-code
separation architecture for compression frees us to meet the requirements of modern design
we set out with.
This thesis provides the basic tools and insights to work with this new architecture, but

it is only a modest beginning. Data compression lies at the intersection of the theories of
information, learning, coding, complexity, and algorithms. As the various fields from which
this work draws on advance, the compression systems we can design advance with them.
Future research will undoubtedly enrich our understanding of these areas at the same time
that it helps us to build better systems.

127

Index

abstract data compression, 88
accumulation operation, 29
additive-noise DMC’s, 25
antipodal point, 106
ARITH (arithmetic coding), 45
augmented graphical model, 82

bad code loss, 41
BDS mixture, 69
belief-propagation (BP), 28
Bernoulli mixture, 70
binary doping source (BDS), 59
bitwise entropy rate, 93
BMF, 97
BP decoding threshold, 46, 59

code belief, 63
code uncertainty, 63
codebook, 23
codec, 15
coded quantizer, 104
coding, 19
coding domain, 89
coding matrix, 25
combined source-code graph, 35
component state nodes, 92
components, 37
controller, 37
controller messages, 39
critical coding point, 62
CTW (context-tree weighted), 46

data model, 16, 19
decoding thresholds, 57
degree distributions, 57

design distribution of codebook, 110
directed acyclic graphs (DAG’s), 27
discrete memoryless channels (DMC’s), 25
discrete memoryless sources (DMS’s), 26
distortion level, 99
distortion measure, 99
doping symbols, 39

early-binding system, 24
edge potentials, 49
effective distribution of codebook, 110
embedding, 25
encrypted domain, 118
encryption, 116
entropy coded quantization, 110
entropy coding, 18
entropy rate, 23
enumerative model learning, 75
enumerative representation, 73
external message, 37

factor graphs (FG’s), 27, 28
factor node output, 30
factor nodes, 28
filtration operation, 29
fixed-rate system, 39

generator matrix, 25
geometric hashing, 104
Gibbs sampling, 28
Gray-coding, 88
GZIP, 45

hash constraint function, 35
hashing encoder, 33

129

Index

hidden Markov models, 85

identity message, 39
image compression, 53, 97, 115
inferential decoder, 33
interface loss, 42
intermediate codebook, 101
inverted message, 48

J2K-LS (JPEG2000), 97
JBIG2, 46
joint messages, 42
joint model-code architecture, 18
joint objective, 36

late-binding system, 24
linear codes, 25
locality sensitive, 102
locality-sensitive hashing (LSH), 105
low-density hashing quantizer (LDHQ), 106
low-density parity-check (LDPC) codes, 26

marginal estimation, 31
marginal messages, 42
MarkovZ (model), 93
message ensembles, 69
message translation functions, 88
model mismatch loss, 41
model representation, 20, 23
model-code separation architecture, 20
model-free coding, 20, 23
model-free quantization, 102
model-quantizer separation, 102
modeling, 18

node potentials, 48
nominal compression rate, 34

optimal reproduction distribution, 100

pairwise models, 31
parity matrix, 25
phase transition, 51, 97
ports, 28
PottsZ (model), 96

probabilistic graphical models (PGM’s), 27
projection, 25

quantization codebook mismatch, 109
quantizer constraint function, 107

random binning scheme, 24, 100
random codebook scheme, 23, 100
rate-distortion function, 99
rate-distortion theory, 99
rateless system, 40
reference point, 106
representational maps, 88
reproduction codebook, 100

schedule, 31
SEP, 45
serialization, 88
Slepian-Wolf coding, 24, 100
source belief, 63
source data, 34, 89
source model, 23
source uncertainty, 63
source-coding theories, 23
SPIHT, 97
stationary distribution, 93
stochastic transition matrix, 93
strong universality, 77
stylized decoding, 69
stylized nodes, 69

tensor notation, 29
tolerance, 99
tolerance ball, 100
total belief, 30, 63
total coding rate, 39
total threshold rate, 46
total uncertainty, 63

undirected graphs (UG’s), 27

variable node output, 30
variable nodes, 28
variable-rate system, 40
vector quantizers, 101

130

Index

virtual port, 37

Wyner-Ziv coding, 100

131

Bibliography
[1] K. Sayood, Introduction to Data Compression, Fourth Edition. Morgan Kaufmann,

Oct. 2012.

[2] D. Salomon, Data Compression: The Complete Reference. Springer, Feb. 2004.

[3] A. Said, “Introduction to arithmetic coding-theory and practice,” Hewlett Packard
Laboratories Report, 2004.

[4] T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,” ACM Com-
puting Surveys (CSUR), vol. 21, no. 4, pp. 557–591, 1989.

[5] J. Rissanen and J. Langdon, G.G., “Universal modeling and coding,” IEEE Transac-
tions on Information Theory, vol. 27, no. 1, pp. 12–23, Jan. 1981.

[6] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, 623–656, Oct. 1948.

[7] R. Gray and L. Davisson, “Source coding theorems without the ergodic assumption,”
IEEE Transactions on Information Theory, vol. 20, no. 4, pp. 502–516, Jul. 1974.

[8] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE
Transactions on Information Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[9] A. Hitron and U. Erez, “Optimality of linear codes over PAM for the modulo-additive
gaussian channel,” in 2012 IEEE International Symposium on Information Theory
Proceedings (ISIT), Jul. 2012, pp. 1742–1746.

[10] A. G. Sahebi and S. S. Pradhan, “On the capacity of abelian group codes over dis-
crete memoryless channels,” in Information Theory Proceedings (ISIT), 2011 IEEE
International Symposium on. IEEE, 2011, pp. 1743–1747.

[11] R. Dobrushin, “Asymptotic optimality of group and systematic codes for some chan-
nels,” Theory Probab. Appl., vol. 8, no. 1, pp. 47–60, Jan. 1963.

[12] J.-P. Barthelmy, G. Cohen, and A. Lobstein, Algorithmic Complexity and Telecommu-
nication Problems. CRC Press, Jan. 1997.

[13] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Oct. 2003.

133

Bibliography

[14] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information The-
ory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[15] E. Hof, I. Sason, and S. Shamai, “Performance bounds for nonbinary linear block codes
over memoryless symmetric channels,” IEEE Transactions on Information Theory,
vol. 55, no. 3, pp. 977–996, Mar. 2009.

[16] A. Kakhaki, H. Abadi, P. Pad, H. Saeedi, F. Marvasti, and K. Alishahi, “Capacity
achieving linear codes with random binary sparse generating matrices over the binary
symmetric channel,” in 2012 IEEE International Symposium on Information Theory
Proceedings (ISIT), Jul. 2012, pp. 621–625.

[17] S. Kumar, A. Young, N. Maoris, and H. Pfister, “A proof of threshold saturation
for spatially-coupled LDPC codes on BMS channels,” in 2012 50th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Oct. 2012, pp.
176–184.

[18] S. Kudekar, C. Measson, T. Richardson, and R. Urbanke, “Threshold saturation on
BMS channels via spatial coupling,” in 2010 6th International Symposium on Turbo
Codes and Iterative Information Processing (ISTC), Sep. 2010, pp. 309–313.

[19] I. Sason and B. Shuval, “On universal LDPC code ensembles over memoryless symmet-
ric channels,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5182–5202,
Aug. 2011.

[20] J. Lu and J. Moura, “Linear time encoding of LDPC codes,” IEEE Transactions on
Information Theory, vol. 56, no. 1, pp. 233–249, Jan. 2010.

[21] M. H. Taghavi, “Decoding linear codes via optimization and graph-based techniques,”
Ph.D. dissertation, University of California, San Diego, 2008.

[22] I. Csiszár, “Linear codes for sources and source networks: Error exponents, universal
coding,” IEEE Transactions on Information Theory, vol. 28, no. 4, pp. 585–592, Jul.
1982.

[23] J. L. Massey, “Joint source and channel coding,” 1977.

[24] G. Caire, S. Shamai, and S. Verdú, “Noiseless data compression with low-density
parity-check codes,” DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 66, pp. 263–284, 2004.

[25] J. H. Bae and A. Anastasopoulos, “Capacity-achieving codes for finite-state channels
with maximum-likelihood decoding,” Selected Areas in Communications, IEEE Jour-
nal on, vol. 27, no. 6, pp. 974–984, 2009.

134

Bibliography

[26] S. Kudekar and K. Kasai, “Threshold saturation on channels with memory via spatial
coupling,” in 2011 IEEE International Symposium on Information Theory Proceedings
(ISIT), Jul. 2011, pp. 2562–2566.

[27] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and
variational inference,” Foundations Trends in Machine Learning, vol. 1, pp. 1–305,
2008.

[28] P. Clifford, “Markov random fields in statistics,” Disorder in physical systems, pp.
19–32, 1990.

[29] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, Oct. 2007.

[30] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
The MIT Press, Jul. 2009.

[31] B. Potetz and T. S. Lee, “Efficient belief propagation for higher-order cliques using
linear constraint nodes,” Computer Vision and Image Understanding, vol. 112, no. 1,
pp. 39–54, Oct. 2008.

[32] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs,” IEEE Transactions on Information The-
ory, vol. 47, no. 2, pp. 736–744, Feb. 2001.

[33] N. Shulman, “Communication over an unknown channel via common broadcasting,”
Ph.D. dissertation, Tel-Aviv University, 2003.

[34] N. C. Wormald, “Models of random regular graphs,” London Mathematical Society
Lecture Note Series, pp. 239–298, 1999.

[35] A. Aaron, S. D. Rane, E. Setton, and B. Girod, “Transform-domain Wyner-Ziv codec
for video,” in Proceedings of SPIE, vol. 5308, 2004, pp. 520–528.

[36] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchandran, “On
compressing encrypted data,” IEEE Transactions on Signal Processing, vol. 52, no. 10,
pp. 2992–3006, Oct. 2004.

[37] D. Schonberg, S. Draper, and K. Ramchandran, “On compression of encrypted im-
ages,” in Proceedings of the International Conference on Image Processing, 2006, pp.
269–272.

[38] S. Jalali, S. Verdú, and T. Weissman, “A universal scheme for Wyner-Ziv coding of
discrete sources,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1737–
1750, Apr. 2010.

[39] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

135

Bibliography

[40] L. He and L. Carin, “Exploiting structure in wavelet-based bayesian compressive sens-
ing,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3488–3497, 2009.

[41] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press,
Mar. 2008.

[42] M. Wainwright, E. Maneva, and E. Martinian, “Lossy source compression using low-
density generator matrix codes: Analysis and algorithms,” IEEE Transactions on In-
formation Theory, vol. 56, no. 3, pp. 1351–1368, Mar. 2010.

[43] V. Chandar, D. Shah, and G. W. Wornell, “A simple message-passing algorithm for
compressed sensing,” in 2010 IEEE International Symposium on Information Theory
Proceedings (ISIT), Jun. 2010, pp. 1968–1972.

[44] V. B. Chandar, “Sparse graph codes for compression, sensing, and secrecy,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2010.

[45] M. G. Reyes, “Cutset based processing and compression of markov random fields,”
Ph.D. dissertation, The University of Michigan, 2011.

[46] H. D. Pfister, “On the capacity of finite state channels and the analysis of convolutional
accumulate-m codes,” Ph.D. dissertation, University of California, San Diego, 2003.

[47] G. Colavolpe, “On LDPC codes over channels with memory,” IEEE Transactions on
Wireless Communications, vol. 5, no. 7, pp. 1757–1766, 2006.

[48] R. Koetter, A. Singer, and M. Tüchler, “Turbo equalization,” IEEE Signal Processing
Magazine, vol. 21, no. 1, pp. 67–80, Jan. 2004.

[49] J. Langdon, G.G., “An introduction to arithmetic coding,” IBM Journal of Research
and Development, vol. 28, no. 2, pp. 135–149, Mar. 1984.

[50] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[51] ——, “Compression of individual sequences via variable-rate coding,” IEEE Transac-
tions on Information Theory, vol. 24, no. 5, pp. 530–536, Sep. 1978.

[52] F. M. J. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting method:
basic properties,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 653–
664, May 1995.

[53] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. Rucklidge, “The
emerging JBIG2 standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 8, no. 7, pp. 838–848, Nov. 1998.

[54] M. Kardar, “8.334 statistical mechanics II notes, lecture 18.” MIT OCW, 2008.

136

Bibliography

[55] D. Cimasoni, “A generalized Kac-Ward formula,” J. Stat. Mech., 2010.

[56] A. Galluccio, “New algorithm for the ising problem: Partition function for finite lattice
graphs,” 1999.

[57] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” Information Theory, IEEE
Transactions on, vol. 47, no. 2, pp. 619–637, 2001.

[58] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via spatial cou-
pling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE
Transactions on Information Theory, vol. 57, no. 2, pp. 803–834, Feb. 2011.

[59] D. Truhachev, D. G. Mitchell, M. Lentmaier, and D. J. Costello, “New codes on
graphs constructed by connecting spatially coupled chains,” in Information Theory
and Applications Workshop (ITA), 2012, 2012, pp. 392–397.

[60] H. Pfister, I. Sason, and R. Urbanke, “Capacity-achieving ensembles for the binary
erasure channel with bounded complexity,” IEEE Transactions on Information Theory,
vol. 51, no. 7, pp. 2352–2379, Jul. 2005.

[61] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check codes over the
binary erasure channel,” IEEE Transactions on Information Theory, vol. 50, no. 3, pp.
439–454, Mar. 2004.

[62] I. Andriyanova and J. Tillich, “Designing a good low-rate sparse-graph code,” IEEE
Transactions on Communications, vol. 60, no. 11, pp. 3181–3190, Nov. 2012.

[63] D. Burshtein and G. Miller, “An efficient maximum-likelihood decoding of LDPC codes
over the binary erasure channel,” IEEE Transactions on Information Theory, vol. 50,
no. 11, pp. 2837–2844, 2004.

[64] S. ten Brink, “Designing iterative decoding schemes with the extrinsic information
transfer chart,” AEU Int. J. Electron. Commun, vol. 54, no. 6, pp. 389–398, 2000.

[65] C. Measson, A. Montanari, and R. Urbanke, “Maxwell construction: The hidden bridge
between iterative and maximum a posteriori decoding,” IEEE Transactions on Infor-
mation Theory, vol. 54, no. 12, pp. 5277–5307, Dec. 2008.

[66] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless
systems. Academic Press, 1981.

[67] Y. Choi and W. Szpankowski, “Compression of graphical structures: Fundamental lim-
its, algorithms, and experiments,” IEEE Transactions on Information Theory, vol. 58,
no. 2, pp. 620–638, Feb. 2012.

137

Bibliography

[68] Y. Baryshnikov, J. Duda, and W. Szpankowski, “Markov field types and tilings,” in
2014 IEEE International Symposium on Information Theory (ISIT), Jun. 2014, pp.
2639–2643.

[69] M. Li, An Introduction to Kolmogorov Complexity and Its Applications. Springer,
Nov. 2008.

[70] R. G. Downey, D. R. Hirschfeldt, and G. L. Forte, “Randomness and reductibility,”
in Mathematical Foundations of Computer Science 2001. Springer Berlin Heidelberg,
Jan. 2001, no. 2136, pp. 316–327.

[71] G. J. Chaitin, “Information-theoretic computation complexity,” IEEE Transactions on
Information Theory, vol. 20, no. 1, pp. 10–15, Jan. 1974.

[72] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley, 1991.

[73] J. G. Cleary and I. Witten, “Data compression using adaptive coding and partial string
matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp. 396–402, Apr.
1984.

[74] G. V. Cormack and R. N. S. Horspool, “Data compression using dynamic markov
modelling,” The Computer Journal, vol. 30, no. 6, pp. 541–550, 1987.

[75] J. Rissanen, “A universal data compression system,” IEEE Transactions on Informa-
tion Theory, vol. 29, no. 5, pp. 656–664, Sep. 1983.

[76] S. Deorowicz, “Universal lossless data compression algorithms,” Ph.D. dissertation,
Silesian University of Technology, 2003.

[77] T. Matsuta, T. Uyematsu, and R. Matsumoto, “Universal Slepian-Wolf source codes
using low-density parity-check matrices,” in 2010 IEEE International Symposium on
Information Theory Proceedings (ISIT), Jun. 2010, pp. 186–190.

[78] Z. Ghahramani, “Graphical models: parameter learning,” Handbook of Brain Theory
and Neural Networks, vol. 2, pp. 486–490, 2002.

[79] P. Abbeel, D. Koller, and A. Y. Ng, “Learning factor graphs in polynomial time and
sample complexity,” The Journal of Machine Learning Research, vol. 7, pp. 1743–1788,
2006.

[80] L. Ruschendorf, “Convergence of the iterative proportional fitting procedure,” Ann.
Statist., vol. 23, no. 4, pp. 1160–1174, Aug. 1995.

[81] S. Scholl, F. Kienle, M. Helmling, and S. Ruzika, “ML vs. BP decoding of binary
and non-binary LDPC codes,” in Turbo Codes and Iterative Information Processing
(ISTC), 2012 7th International Symposium on. IEEE, 2012, pp. 71–75.

138

Bibliography

[82] N. Chang, “Rate adaptive non-binary LDPC codes with low encoding complexity,” in
2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems
and Computers (ASILOMAR), Nov. 2011, pp. 664–668.

[83] Y. Zhao and J. Garcia-Frias, “Data compression of correlated non-binary sources using
punctured turbo codes,” in Data Compression Conference, 2002. Proceedings. DCC
2002, 2002, pp. 242–251.

[84] D. H. Schonberg, “Practical distributed source coding and its application to the com-
pression of encrypted data,” Ph.D. dissertation, University of California, Berkeley,
2007.

[85] Y. Xu, “Potts model and generalizations: Exact results and statistical physics,” Ph.D.
dissertation, Stony Brook University, 2012.

[86] M. Sakalli, W. Pearlman, and M. Farshchian, “SPIHT algorithms using depth first
search algorithm with minimum memory usage,” in 2006 40th Annual Conference on
Information Sciences and Systems, Mar. 2006, pp. 1158–1163.

[87] T. Berger, Rate Distortion Theory: Mathematical Basis for Data Compression. Pren-
tice Hall, Oct. 1971.

[88] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side infor-
mation at the decoder,” IEEE Transactions on Information Theory, vol. 22, no. 1, pp.
1–10, Jan. 1976.

[89] A. D. Wyner, “The rate-distortion function for source coding with side information at
the decoder-II: General sources,” Information and Control, vol. 38, no. 1, pp. 60–80,
Jul. 1978.

[90] S. Pradhan and K. Ramchandran, “Geometric proof of rate-distortion function of gaus-
sian sources with side information at the decoder,” in IEEE International Symposium
on Information Theory, 2000. Proceedings, 2000, pp. 351–.

[91] P. Chou, T. Lookabaugh, and R. Gray, “Entropy-constrained vector quantization,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 1, pp.
31–42, Jan. 1989.

[92] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[93] M. J. Sabin and R. Gray, “Global convergence and empirical consistency of the gener-
alized lloyd algorithm,” IEEE Transactions on Information Theory, vol. 32, no. 2, pp.
148–155, Mar. 1986.

139

Bibliography

[94] P. Chou, T. Lookabaugh, and R. Gray, “Optimal pruning with applications to tree-
structured source coding and modeling,” IEEE Transactions on Information Theory,
vol. 35, no. 2, pp. 299–315, Mar. 1989.

[95] E. Riskin and R. Gray, “A greedy tree growing algorithm for the design of variable
rate vector quantizers,” IEEE Transactions on Signal Processing, vol. 39, no. 11, pp.
2500–2507, Nov. 1991.

[96] M. R. Carbonara, J. E. Fowler, and S. C. Ahalt, “Compression of digital video data
using artifical neural network differential vector quantization,” Sep. 1992, pp. 422–433.

[97] A. H. Dekker, “Kohonen neural networks for optimal colour quantization,” Network:
Computation in Neural Systems, vol. 5, no. 3, pp. 351–367, 1994.

[98] A. Aaron, E. Setton, and B. Girod, “Towards practical Wyner-Ziv coding of video,”
in 2003 International Conference on Image Processing, 2003. ICIP 2003. Proceedings,
vol. 3, Sep. 2003, pp. III–869–72 vol.2.

[99] D. Rebollo-Monedero and B. Girod, “Generalization of the rate-distortion function for
Wyner-Ziv coding of noisy sources in the quadratic-gaussian case,” in Data Compres-
sion Conference, 2005. Proceedings. DCC 2005. IEEE, 2005, pp. 23–32.

[100] D. Kubasov, K. Lajnef, and C. Guillemot, “A hybrid encoder/decoder rate control for
Wyner-Ziv video coding with a feedback channel,” in IEEE 9th Workshop on Multi-
media Signal Processing, 2007. MMSP 2007, Oct. 2007, pp. 251–254.

[101] D.-k. He, A. Jagmohan, L. Lu, and V. Sheinin, “Wyner-Ziv video compression using
rateless LDPC codes,” in Proc. VCIP, vol. 8, 2008.

[102] A. Buzo, J. Gray, A, R. Gray, and J. Markel, “Speech coding based upon vector
quantization,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 28,
no. 5, pp. 562–574, Oct. 1980.

[103] L. R. Rabiner, M. M. Sondhi, and S. E. Levinson, “Note on the properties of a vector
quantizer for LPC coefficients,” Bell System Technical Journal, vol. 62, no. 8, pp.
2603–2616, Oct. 1983.

[104] S. Mehrotra, W.-g. Chen, and K. Kotteri, “Low bitrate audio coding using generalized
adaptive gain shape vector quantization across channels,” in Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE,
2009, pp. 9–12.

[105] T. Sreenivas and M. Dietz, “Vector quantization of scale factors in advanced audio
coder (AAC),” in Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, 1998, vol. 6, May 1998, pp. 3641–3644 vol.6.

140

Bibliography

[106] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proceedings of the
IEEE, vol. 88, no. 4, pp. 451–515, 2000.

[107] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image com-
pression standard,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36–58, Sep.
2001.

[108] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity trans-
form and quantization in h.264/AVC,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 598–603, Jul. 2003.

[109] E. Martinian, “Dynamic information and constraints in source and channel coding,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2004.

[110] M. Wainwright and E. Maneva, “Lossy source encoding via message-passing and dec-
imation over generalized codewords of LDGM codes,” in International Symposium on
Information Theory, 2005. ISIT 2005. Proceedings, Sep. 2005, pp. 1493–1497.

[111] E. Martinian and M. J. Wainwright, “Analysis of LDGM and compound codes for lossy
compression and binning,” arXiv preprint cs/0602046, 2006.

[112] G. Demay, V. Rathi, and L. K. Rasmussen, “Optimality of LDGM-LDPC compound
codes for lossy compression of binary erasure source,” in Information Theory and its
Applications (ISITA), 2010 International Symposium on. IEEE, 2010, pp. 589–594.

[113] A. Gupta and S. Verdú, “Nonlinear sparse-graph codes for lossy compression,” IEEE
Transactions on Information Theory, vol. 55, no. 5, pp. 1961–1975, May 2009.

[114] L. Cappellari, “Lossy source compression of non-uniform binary sources using GQ-
LDGM codes,” in Information Theory Workshop (ITW), 2010 IEEE. IEEE, 2010,
pp. 1–5.

[115] Z. Sun, M. Shao, J. Chen, K. M. Wong, and X. Wu, “Achieving the rate-distortion
bound with low-density generator matrix codes,” IEEE Transactions on Communica-
tions, vol. 58, no. 6, pp. 1643–1653, Jun. 2010.

[116] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the
curse of dimensionality,” in Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing. ACM, 1998, pp. 604–613.

[117] P. T. Boufounos and S. Rane, “Efficient coding of signal distances using universal
quantized embeddings,” in Data Compression Conference (DCC), 2013. IEEE, 2013,
pp. 251–260.

[118] S. Rane, P. Boufounos, and A. Vetro, “Quantized embeddings: an efficient and uni-
versal nearest neighbor method for cloud-based image retrieval,” vol. 8856, 2013, pp.
885 609–885 609–11.

141

Bibliography

[119] P. Boufounos, “Universal rate-efficient scalar quantization,” IEEE Transactions on
Information Theory, vol. 58, no. 3, pp. 1861–1872, Mar. 2012.

[120] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Springer,
Nov. 1991.

[121] A. Dembo and I. Kontoyiannis, “Source coding, large deviations, and approximate
pattern matching,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1590–1615, Jun. 2002.

[122] Z. Sun, T. Tan, Y. Wang, and S. Li, “Ordinal palmprint representation for personal
identification,” in IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, Jun. 2005, pp. 279–284.

[123] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278 –2324, Nov.
1998.

[124] P. Fränti and E. Ageenko, “On the use of context tree for binary image compression,”
in Proceedings of the International Conference on Image Processing, vol. 3, 1999, pp.
752–756.

[125] Y. Weiss and W. T. Freeman, “What makes a good model of natural images?” in Com-
puter Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 2007, pp.
1–8.

[126] D. Zoran and Y. Weiss, “Natural images, gaussian mixtures and dead leaves,” in
Advances in Neural Information Processing Systems, 2012, pp. 1736–1744.

[127] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–
126, 1978.

[128] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,” 1978.

[129] G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, “Information bottleneck for gaus-
sian variables,” J. Mach. Learn. Res., vol. 6, pp. 165–188, Dec. 2005.

[130] O. Bursalioglu, G. Caire, and D. Divsalar, “Joint source-channel coding for deep-
space image transmission using rateless codes,” IEEE Transactions on Communica-
tions, vol. 61, no. 8, pp. 3448–3461, Aug. 2013.

[131] O. Y. Bursalioglu, M. Fresia, G. Caire, and H. V. Poor, “Lossy joint source-channel
coding using raptor codes,” International Journal of Digital Multimedia Broadcasting,
vol. 2008, p. e124685, Sep. 2008.

[132] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital shad-
ows, and biggest growth in the far east,” IDC iView: IDC Analyze the Future, 2012.

142

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Toy example
	Crisis in compression

	Compression architecture
	The compression landscape
	Joint design: an architectural dilemma
	Separation: an architectural proposal

	Thesis guide
	Highlight
	Organization
	Notation

	Background and Tools
	Source coding theory
	Entropy and achievability
	Applied system design

	Sparse linear coding
	Linear codes
	LDPC codes for error correction
	LDPC codes for compression
	Applied system design

	Probabilistic graphical models
	Graphical model representation
	Iterative algorithms
	Gibbs sampling
	Belief-propagation marginalization

	Pairwise models
	Applied system design

	Summary

	Proposed Scheme
	Toy example
	Basic system construction
	Required inputs
	Encoder
	Decoder
	Code subgraph
	Source subgraph
	Decoding algorithm

	Doping symbols
	Rate selection

	Discussion
	Architecture
	Performance
	Complexity

	Related ideas
	Side information problems
	Graphical algorithms
	Dual problems

	Compressing Binary Sources
	Experimental setup
	Threshold rate
	Expected performance

	Bernoulli i.i.d. sources
	Results

	Binary Markov sources
	Results

	Binary Ising model
	Entropy rate
	Results

	Summary
	Appendix: Parity lemma*

	Coding Details
	Code selection
	Degree distribution and threshold
	Degree distribution*
	Channel coding thresholds*
	Source coding thresholds

	Coding improvements

	Doping
	Initialization function
	Coding function

	Decoding mechanics
	Rate characteristics
	Convergence dynamics
	Examples
	Message ensemble evolution

	Appendix: EXIT analysis*
	EXIT with sources

	Modeling Details
	Model representation revisited
	Enumerative representation
	Codebook information
	Compression
	Learning

	Choice of representation

	Unknown model
	Model mismatch
	Results

	Parameter estimation
	Parametric decoding
	Augmented graphical model
	Results
	Discussion

	Architectural Generalization
	Large-alphabet sources
	Representation and translation
	System construction
	Required inputs
	Represented encoding
	Translated decoding
	Doping symbols

	Modular decoder
	Related ideas

	Compressing Large-Alphabet Sources
	Markov sources
	MarkovZ
	Results

	Potts model
	PottsZ
	Results

	Summary

	Lossy Compression
	Rate-distortion theory*
	Achievability
	Applied system design

	Separation architecture
	A naive hashing encoder
	Model-quantizer separation

	Model-free quantization
	Existing quantizers
	Coded quantization*
	Geometric hashing*

	Low-density hashing quantizer
	Quantization function
	Encoding algorithm
	Decoding algorithm
	Exploratory results

	Quantization codebook mismatch
	Entropy coding
	Main results
	Examples

	Summary
	Appendix: Ancheta bound*

	Toward Realistic Applications
	Bi-level image compression
	Experimental setup
	Palmprints under the Ising model
	Handwritten digits under the Ising model
	Discussion

	Encrypted compression
	Encrypted encoding
	Encrypted decoding
	Image data example
	Discussion

	Conclusion
	Review
	Requirements
	Design proposals

	Future work
	Modeling
	Coding
	Quantizer design
	Communication system design
	Algorithms and implementation
	Hardware acceleration of BP
	Ecosystem

	Epilogue

	Index
	Bibliography

