
A Simple Class of Efficient Compression Schemes
Supporting Local Access and Editing

Hongchao Zhou, Da Wang, and Gregory Wornell
Research Laboratory of Electronics

Massachusetts Institute of Technology
Cambridge, MA 02139

{hongchao, dawang, gww}@mit.edu

Abstract—In this paper, we study the problem of compressing
a collection of sequences of variable length that allows us to
efficiently add, read, or edit an arbitrary sequence without
decompressing the whole data. This problem has important appli-
cations in data servers, file-editing systems, and bioinformatics.
We propose a novel and practical compression scheme, which
shows that, by paying a small price in storage space (3% extra
storage space in our examples), we can retrieve or edit a sequence
(a few hundred bits) by accessing compressed bits close to the
entropy of the sequence.

I. INTRODUCTION

Compression is a well studied subject with fruitful results
on both fundamental limits and practical algorithms. However,
traditional compression research mostly concerns with mini-
mizing the coding rate, while in practice, other performance
metrics such as the ease of partial retrieval and editing are
also of great importance. For example, social networks and
email services need to maintain a long list of sequences (such
as user profiles, messages, emails, etc.) for millions of users.
These sequences are highly redundant, and hence, compression
is beneficial. Meanwhile, it is highly desired to be able to
access or edit each individual sequence efficiently. Since the
sequences are typically not long, it may not be efficient to
manage them with conventional file systems, especially when
the changes of sequences are very frequent. In this paper,
we address this problem by proposing an architecture that
compresses a large number of sequences with support for
efficient add, read, or edit (update) operations for arbitrary
sequence. While this architecture is general and applied for a
wide range of sources, we use simple source models for the
purpose of analysis and verify the practical applicability via
simulations.

The problem of retrieval-efficient compression is investi-
gated in [1]–[5]. In [1], Bloom filters were introduced as data
structures for storing a set in a compressed form that allows
membership query in constant time. In [3], a compression
technique based on succinct data structure was provided,
where source string is partitioned into segments, compressed
separately based on arithmetic coding, and concatenated to-
gether. Here succinct data structure is applied to locate each
compressed sequence. Another data structure based on tables
for storing the positions of compressed sequences was investi-
gated in [4]. However, their design is unsuitable for updating,
because compressed sequences are placed in a concatenated

This work was supported in part by AFOSR under Grant No. FA9550-11-
1-0183, and by NSF under Grant No. CCF-1017772.

form, and hence it does not support changing the length of
compressed sequences, which may happen after updating as
the compressed output of the updated sequence may change.
The theoretical analysis, or in particular, the bounds on the
number of bits that need to be read for retrieving a single
source bit, was given in [5].

Another line of work focuses on compression that supports
efficient local updating. The constructions are mainly based on
sparse linear codes [6] or sparse graph codes. The basic idea of
compressing an input string is to compute its syndrome with
a sparse parity-check matrix, and the decompression process
is to decode the syndrome based on the prior knowledge
about the distribution of the input string. In [7], a “counter
braids” scheme is developed that enables efficient updating
(increment or decrement) for a set of integers (counters). In
[8], this framework is extended to support efficient retrieval of
an integer. Beyond integer sources, [9] provides construction
for i.i.d. sources, but this construction is not very retrieval-
efficient. One limitation of these schemes based on sparse
graph codes is that it is “lossless” for a vanishing error
probability, while in certain data storage applications zero-
error compression is required. In addition, while [6], [9] are
efficient for updating a bit, they are in general inefficient for
updating a sequence, and they do not support other editing
operations such as insertions and deletions.

Recently, Jansson et al. [10] and Grossi et al. [11] studied
compression schemes that support both local retrieval and
updating, which can be tailored to handle the problem of
compressing a list of sequences. Attractively, they showed that
the reading and updating can be done on blocks of logn bits
in O(1) time per bit while keeping the compression asymptoti-
cally optimal. In order to further support insertion and deletion
operations, the time is increased to O(log n/ log log n) per bit.
The limitation of these schemes is that they do not allow the
dynamic expansion of the size of the sequence list [10], which
is important in web applications. Furthermore, these schemes
have to maintain several tables as auxiliary data structure,
which affects the overall storage efficiency and retrieving
efficiency when the sequences are not long. For example, in
experiment 1 of [10], the auxiliary data structure uses about
15% of the storage space, a non-negligible amount. In this
paper, we introduce simpler and more practical schemes for
compressing a large number of sequences that uses a very
small amount extra storage space and allows us to add, read,
or edit an arbitrary sequence very efficiently. And, we perform
evaluations based on both ideal Bernoulli sources and real data

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 2489

from the social network Twitter, which achieve 97% and 93%
storage efficiencies, respectively, and allow one to read or edit
a sequence by accessing the amount of bits a little more than
the entropy of the sequence.

II. BASIC COMPRESSION SCHEME

We assume that all the sequences are drawn independently
from a distribution, which can be learned or estimated from
enough samples of sequences. We compress each sequence
based on this distribution with an efficient compression al-
gorithm, and store compressed sequences in a compact form
that allows us to retrieve or update any one of the sequences
efficiently. We consider the regime that the length of each
sequence is about a few hundred bits or at most several
thousand bits. In this regime, little redundancy is introduced
by the underlying compression algorithm, e.g., based on arith-
metic coding, the expected length of a compressed sequence
is at most H + 2, where H is the entropy of the sequence.
Meanwhile, this length allows us to achieve practically good
locality: to read or edit a sequence (or part of a sequence), we
only need to access a little more than H compressed bits. If
the input sequences are too short, we can concatenate multiple
sequences to form a new sequence of an appropriate length.

The difficulty of efficient updating comes from the fact
that the length of a compressed sequence may change during
updating. In contrast to previous schemes that dynamically
modify auxiliary data structure to achieve efficient retrieval
and updating [10], [11], we consider a very simple idea:
we compress independent sequences X1, X2, ..., Xt to t com-
pressed sequences of lengthes l1, l2, ..., lt, and then we store
the t compressed sequences into t blocks with fixed size k.

Although this idea is simple, we show that this idea can
lead to surprisingly good performance. In order to achieve
the best performance, it requires us carefully designing the
storage-management scheme (including the selection of the
parameter k), and incorporating the underlying compression
algorithm with the storage-management scheme, which is not
straightforward.

We define the storage efficiency ηs of a scheme as the ratio
between the entropy of the source and the total storage cost.
Then

ηs =
H(X)

k
=

H(X)

E(l) · E(l)
k

, (1)

where H(X) is the entropy of a sequence X , and E(l) is
the expected length of a compressed sequence. It is clear
that the upper bound of ηs is 1. Specifically, the overall
storage efficiency attributes to two terms, H(X)/E(l) and
E(l)/k, corresponding to the efficiencies of the underlying
compression algorithm and the storage of the compressed
sequences, respectively.

III. NEIGHBOR-BASED SCHEME

According to (1), in order to make the scheme storage-
efficient, we need to utilize each size k storage block effi-
ciently. In this section, we introduce a neighbor-based scheme,
which compresses each sequence with length-prefix compres-
sion, and stores the overflows efficiently by using the extra
space in neighboring blocks due to underflows.

!"

#"
$"

%" &"

(a) Sequences to store.

!" '" (""" #" $#%"$"%"

(b) Storage result.
Fig. 1. Neighbor-based scheme: storage example.

A. Length-Prefix Compression

Here we introduce length-prefix compression as the un-
derlying compression algorithm, namely, each sequence Xi

is compressed into f(Xi) = |g(Xi)| · g(Xi), i.e., the con-
catenation of |g(Xi)| and g(Xi), where g : A∗ → {0, 1}∗ is a
variable-length lossless compression without prefix constraints
(g is not necessarily a uniquely decodable code), and |g(Xi)|
is the binary representation of the length of g(Xi).

An optimal variable-length lossless compression without
prefix constraints [12], denoted by g∗, lists all possible se-
quences in decreasing probabilities, and maps them, starting
with the most probable one, to binary sequences of increasing
lengths {φ, 0, 1, 00, 01, 000, 001, 010, 011, ...}. For instance,
let x0, x1, x2, ... be all the possible sequences in decreasing
probabilities, then x0 is mapped to φ and x5 is mapped to
000. In [12], [13], Szpankowski and Verdú showed that the
minimum expected length of the compressed sequence for
a finite-alphabet memoryless source of fixed length m with
known distribution is minE(l) = mH− 1

2 logm+O(1), where
H is the entropy of each symbol. For our problem, the length
of an input sequence may not be fixed, and we let m be the
maximum possible length. In this case, the maximum length
of g∗(x) is #log2(

∑m
i=0 |A|i+1)$−1, and the number of bits

needed to represent the prefix |g∗(x)| is

sprefix = #log2(#log2(
m∑

i=0

|A|i + 1))$. (2)

In the next subsection, we will show how length-prefix
compression helps us to store, add, retrieve or update com-
pressed sequences. Note that for some sequences that are
not from memoryless sources or Markov sources, it might be
computationally difficult to implement g∗. In practice, we can
have a length-prefix compression by prepending a length field
to an arbitrary source code such as a Lempel-Ziv code or an
arithmetic code.

B. Storage of Compressed Strings

Here, we propose the neighbor-based storage scheme, which
stores overflow in the neighboring blocks that have space avail-
able after storing its own sequence. In this scheme, retrieval
and update can be achieved by searching sequentially in the
neighboring blocks with the help of length-prefix compression.
We store compressed sequences of different lengths within
blocks of fixed size according to the following rules, as
demonstrated in Fig. 1:

1) If a sequence does not overflow, i.e., is shorter than the
block size k, it is placed in the corresponding block
directly. See sequence 1, 4 and 5 in Fig. 1.

2) If a sequence overflows, i.e., is longer than the block
size k, its first k bits are stored in the current block, and
its overflow part is stored in the next few neighboring
blocks that have extra storage space (we assume that the

2014 IEEE International Symposium on Information Theory

2490

!" '" (""" #" $#%"$"%"

(a) Before updating

!" '" (""" #)" $#%"$"%"$"%"

(b) Rewrite and move

!" '" (""" #)" $"%"

(c) Clean
Fig. 2. Neighbor-based scheme: update (shrink)

blocks are cyclic, i.e., the next block of the end block
is the first block).

3) The overflows are stored based on the nearest-neighbor-
first order. This rule is important for efficient local
updating and retrieval. For instance, for the extra space
of the 4th block in Fig. 1, we first store the overflow
of sequence 3, denoted by subsequence (3). If there are
still extra space afterwards, we store the overflow of
sequence 2, denoted by subsequence (2).

In order to support local retrieval, we compress all the
original sequences based on length-prefix compression, so that
the length of each compressed sequence can be obtained by
reading the first sprefix bits (prefix) of its corresponding block.

1) Retrieval: Assume sequence i is stored spanning over
block i to block j with j ≥ i. If we know the lengths of
sequence i to sequence j, i.e., li, li+1, ..., lj , then the locations
of storing sequence i can be uniquely determined.

To retrieve sequence i, we first get its length li by reading
its prefix in block i, by which, we determine whether it
has overflow. If there is no overflow, we simply retrieve the
sequence; otherwise, we move to block i + 1, read li+1, and
then decide if we need to read data from block i + 1, which
in turn depends on if sequence i + 1 has overflow or not.
Repeating this procedure, eventually all data for sequence i
will be read, while we incur the overhead of reading the
length prefixes in some later blocks. For the example in Fig.
1, to retrieve sequence 2, we first read l2 and realize there is
overflow and the overflow size is o2 = l2−k. Then we move to
block 3 and read l3, and realize there is overflow for sequence
3 as well. At block 4, we read l4, skip the data for sequence
4 and overflow data for sequence 3, and then read the rest of
sequence 2 (o2 bits) by starting from the l4 + o3 + 1th bit of
block 4.

2) Update: The update process is further divided into
shrinking and expanding, which involve different operations.
In order to support efficient local updating, we further modify
the storage structure described above: if a block is full, we set
its last bit as 1; if a block is not full, we fill its empty part
with 100...0, hence, its last bit is naturally 0. Note that with
this modification, the available storage space of each block
becomes k − 1.

Fig. 2 demonstrates the shrinking process (Expanding a
sequence i is the inverse process of shrinking it). To shrink a
sequence i, we need not only to rewrite the content of sequence
i, but also to handle the overflows that come from sequences
before sequence i. Fortunately, these overflows can be located
based on the lengths of a few sequences after i and the storage
statuses (full or non-full) of their corresponding blocks. In Fig.
2, to update sequence 3 to sequence 3′ with a shorter length,
we can locate subsequence (3) with the length of sequence
3 and the length of sequence 4. We can further locate (2) if

we know the length of the empty part in block 4 (or the first
non-full block if block 4 is full). This can be achieved by
reading inversely from the end of block 4 until meeting the
first 1, since the empty part is in the form of 100..0. After
locating (3) and (2), we rewrite sequence 3 with sequence
3′, and move the overflow part (2) forward according to the
amount shank. Finally, we clean the original space of storing
sequence 3 and overflow (2), so that the empty part of each
block is in the form of 100..00.

3) Add: The process of adding a new sequence is very
similar to the process of updating a compressed sequence
perfectly fits a block to a new sequence.

C. Analysis

We now study the cost of retrieving a sequence or updating
a sequence based on the storage mechanism above, and
investigate the effect of the block size k.

We define the cost of retrieving a sequence as the total
number of bits to read. The cost of retrieving sequence i is

γretrieve(i) = li + (wi − 1)sprefix. (3)

where li is the length of the compressed sequence for sequence
i, and wi is the number of blocks that sequence i spans over.
For instance, in Fig. 1, sequence 2 spans over 3 blocks and
sequence 3 spans over 2 blocks. We let l be the length of a
randomly selected compressed sequence and w be the number
of blocks it spans over, then the expected cost of retrieving a
sequence is

γretrieve = E(l) + (E(w)− 1)sprefix, (4)

where E(w) is a non-increasing function of k.
Assume that the lengths of compressed sequences are i.i.d.

distributed, we define Li =
∑i

j=1 li as the total length of i
compressed sequences, then

E(w) ≤ 1 +
∞∑

j=1

P (Lj > j(k − 1)), (5)

which can be computed based on the length distribution of
compressed sequences. If the sequence distribution is given,
we can compute the length distribution of compressed se-
quences:

P (l) =
2(l−sprefix+1)−1∑

i=2(l−sprefix)−1

P [xi] , (6)

where x0, x1, ..., x2m−1 are all possible input sequences in
decreasing probabilities, and P [xi] is the probability of the
sequence xi.

In our scheme, to update a sequence, the number of bits to
read is typically much less than the number of bits to write.
In addition, in storage systems such as HDD and SSD, the
latency and power consumption of write operations are higher
than those of read operations. Hence, we consider the cost of
updating a sequence as the total number of bits to write.

The cost of updating sequence i with compressed sequence
from length li to l′i is

γupdate(i) = max[li, l
′
i] + ri + ξi, (7)

2014 IEEE International Symposium on Information Theory

2491

!" *! +!#" $"

Fig. 3. Pointer-based scheme: storage example, where the white squares are
pointers.

where ri is the length of total overflows that come from
sequences before i and stored at blocks i and after, and ξi is
the number of blocks that change status during the updating
process, either from non-full state to full state or from full
state to non-full state. In general, ξi is much smaller than the
other two terms, hence, we ignore it in our analysis. As a
result, the expected cost of updating a sequence is

γupdate ' E(max[l, l′]) + E(r). (8)

Assume that the lengths of compressed sequences are i.i.d.
distributed, then

E(r) = max[E ∞
max
i=1

(Li − i(k − 1)), 0]. (9)

Based on the above analysis, we can compute γretrieve, γupdate,
i.e, the expected costs to retrieve or update a sequence.

IV. POINTER-BASED SCHEME

As a comparison, we consider another natural idea of
implementing the basic compression scheme that is based
on fixed-length source coding, i.e., mapping each sequence
into a binary sequence of fixed length. Hence, we can store
each compressed sequence into a block respectively, and it
allows us to retrieve or update every sequence very efficiently.
Here, we consider an optimal fixed-length source code that
is constructed as follows. Let x0, x1, ... be all the possible
input sequences in decreasing probabilities. Then a sequence
xi is encoded as the binary representation of i if i < 2k−1;
otherwise, it is an exception. Clearly, not all possible input
sequences can be mapped into compressed sequences of length
k− 1, hence, we need to handle the exceptions, which appear
with a probability ε. It is easy to get that

ε = 1−
2(k−1)−1∑

i=0

Pr(xi). (10)

Let m be the maximum length of the binary representation
of the input sequences. Given a sequence X and a fixed-
length source coding, if X can be mapped into a compressed
sequence of length k − 1, we store the compressed sequence
in the corresponding block of length k with an additional bit
‘0’ as the prefix. If X is an exception, we store X directly
in the corresponding block with an additional bit ‘1’ as the
prefix. However, 1X is too big to be filled into the block, so
we store a part of it in the block of length k, and store the
rest in an additional block of length k′, where the two blocks
are linked to each other with pointers.

Fig. 3 demonstrates a storage example of the pointer-based
scheme, where the t sequences are stored in t blocks of length
k, and t′ (t′ < t) additional blocks of length k′. If a sequence
is stored in a block with index i and an additional block with
index i′, then the pointers record the index i′ and the index
i respectively. With this data structure, it is very easy to add
or retrieve a sequence. For example, to add a new sequence

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Storage Efficiency

R
et

rie
va

l/U
pd

at
in

g
C

os
t

Update
Retrieve

m=1000

m=500

Fig. 4. The unit retrieval/updating cost versus the storage efficiency for
Bernoulli-0.1 sources of length m with the neighbor-based scheme. The
horizontal dotted line is H(0.1), which is the theoretical lower bound for
the unit retrieval/updating cost.

X that is an exception, we store it into a block of length k
with index t+ 1, and a block of length k′ with index t′ + 1.
Updating a sequence is also not difficult. For example, in Fig.
3, assume that we change sequence 3 to a typical sequence
that can be stored within a single block of length k, then we
can release the storage space of the 1st additional block. For
the convenience of management, we move the last additional
block to the released additional block, and update the pointer
linked to it (since its index is changed).

The storage efficiency of the pointer-based scheme is

ηs =
H(X)

k + εk′
, (11)

where H(X) is the entropy of a sample sequence X . The
expected cost of retrieving a sequence is

γretrieve ' k + εk′, (12)

and the expected cost of updating a sequence is

γupdate ' (1− ε)2k + (2ε− ε2)(k + k′). (13)

V. PERFORMANCE EVALUATION

The compression schemes proposed in this paper can work
for very general sources. In this section, we evaluate the
performance of these schemes based on both ideal Bernoulli-p
sources and real data from Internet.

First, we consider a simple case: all the sequences are
Bernoulli-p sequences of length m. We are interested in the
tradeoff between the storage efficiency and the retrieval/update
efficiency. Here, uretrieve = γretrieve/m is the cost per source bit
when retrieving a sequence. It reflects the retrieval efficiency of
our compression scheme, and we define it as the unit retrieval
cost. Similarly, uupdate = γupdate/m is the cost per source bit
when updating a sequence to another one of the same length,
and we define it as the unit update cost. The theoretical lower
bound of both uretrieve and uupdate is H(p), which is the entropy
of a Bernoulli-p bit.

Fig. 4 shows the trade-off between the unit re-
trieval/updating cost and the storage efficiency for Bernoulli-
0.1 sequences with the neighbor-based scheme. Note that the
storage efficiency is proportional to the inverse of the block
length k, so we can get k from the storage efficiency. When

2014 IEEE International Symposium on Information Theory

2492

0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage Efficiency

R
et

rie
va

l/U
pd

at
in

g
C

os
t

Update
Retrieve

pointer−based neighbor−based

Fig. 5. The unit retrieval/updating cost versus the storage efficiency for
Bernoulli-0.1 sequences of length m = 1000 bits. Here, we assume that the
length of each pointer is 10 bits.

the length of each sequence is m = 1000 bits, the proposed
neighbor-based scheme can reach 98% storage efficiency while
the unit retrieval/updating cost is below 0.6 reads/writes per
source bit. Note that this high storage efficiency already takes
the loss introduced by the underlying compression algorithm
into account. For this example, updating a sequence of 125
bytes, we only need to change at most 75 bytes. If we
reduce the sequence length to m = 500 bits, the compression
scheme still can reach 97% storage efficiency while supporting
efficient local operations.

In Fig. 5, we further compare the performance of the
neighbor-based scheme and that of the pointer-based scheme
when the sequences are Bernoulli-0.1 sequences of length
m = 1000 bits. It is a little surprising that there is a big
performance gap between them, revealing the significance of
the neighbor-based scheme: the neighbor-based scheme can
reach 98% storage efficiency while the pointer-based scheme
can only reach 88% storage efficiency (the optimal ε is
0.0173). One of the reasons is that optimal variable-length
source coding is typically much more efficient than optimal
fixed-length coding in the (short) finite block-length regime.
Although the performance of the pointer-based scheme could
be further improved via introducing more levels of fixed-length
block storage (currently we use two levels), this makes the
scheme more complex, and sensitive to the distribution of the
sequences, and hence less practical.

We also implement the neighbor-based scheme on real data
from the social network Twitter, where we are trying to com-
press 70, 000 random English tweets, which are short message
with mean length 91.8 characters (each character consists of 8
bits) and maximum length 164 characters, including the user
names. In this implementation, we use the Rissanen’s context-
tree algorithm [14] to compress each tweet and prepend a
length field to the compressed sequence, as the underlying
length-prefix compression. The context-tree model is created
based on all the tweets. Fig. 6 shows the cost (the number
of bits to read/write) to retrieve or update a tweet versus
the overall compression ratio. Here, updating a tweet means
that a tweet is changed to another randomly selected tweet.
From the figure, we see that the neighbor-based scheme can
achieve a compression ratio 2.4 (defined as the ratio between
the number of the original data bits and the compressed
data bits) while each tweet can be retrieved or updated by

1.6 1.8 2 2.2 2.4 2.6
0

100

200

300

400

500

600

700

800

Compression Ratio

R
et

rie
va

l/U
pd

at
in

g
C

os
t

Update
Retrieve

ZIP program Context−Tree
Algorithm

Fig. 6. The cost to retrieve/update a tweet versus the compression ratio
for storing 70, 000 random tweets from Twitter with the neighbor-based
scheme. The vertical lines are for the compression ratios of the ZIP program
and the Rissanen’s context-tree algorithm, when we compress all the tweets
without considering the locality requirement. The horizontal dotted line is the
estimated entropy of a tweet based on the context-tree model.

accessing a few hundred bits. By contrast, if we compress all
the tweets together as a single string without considering the
locality requirement, the widely used ZIP program can only
achieve a compression ratio 2.1, and the Rissanen’s content-
tree algorithm can achieve a compression ratio slightly smaller
than 2.6. Therefore, the neighbor-based scheme operating at
compression ratio 2.4 has a 7% storage-efficiency loss. Note
that this storage-efficiency loss is higher than that for the
Bernoulli-0.1 sequences, because the variance of the tweet
length is much larger.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] D. Belazzougui, F. Botelho, and M. Dietzfelbinger, “Hash, displace, and
compress,” in Algorithms - ESA 2009, vol. 5757, 2009, pp. 682–693.

[3] M. Patrascu, “Succincter,” in Proc. 49th Annual IEEE FOCS, Oct. 2008,
pp. 305–313.

[4] P. Ferragina and R. Venturini, “A simple storage scheme for strings
achieving entropy bounds,” Theoretical Computer Science 372(1), pp.
115–121, 2007.

[5] M. M. A. Makhdoumi, S.-L. Huang and Y. Polyanskiy, “On locally
decodable source coding,” arXiv:1308.5239, 2013.

[6] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. on Information Theory, vol. 45, no. 2, pp. 399–431,
1999.

[7] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
in Proc. ACM SIGMETRICS, New York, NY, USA, 2008, pp. 121–132.

[8] V. Chandar, D. Shah, and G. Wornell, “A locally encodable and
decodable compressed data structure,” in Proc. 47th Annual Allerton
Conference on Communication, Control, and Computing, 2009, pp. 613–
619.

[9] A. Montanari and E. Mossel, “Smooth compression, gallager bound and
nonlinear sparse-graph codes,” in Proc. IEEE International Symposium
on Information Theory (ISIT), Jul. 2008, pp. 2474–2478.

[10] W. S. J. Jansson, K. Sadakane, “CRAM: Compressed random access
mem- ory,” ICALP (1). Volume 7391 of LNCS, pp. 510–521, 2012.

[11] S. R. R. Grossi, R. Raman and R. Venturini, “Dynamic compressed
strings with random access,” ICALP, pp. 504–515, 2013.

[12] W. Szpankowski and S. Verdú, “Minimum expected length of fixed-to-
variable lossless compression without prefix constraints,” IEEE Trans.
on Information Theory, vol. 57, no. 7, pp. 4017–4025, 2011.

[13] S. Verdú and I. Kontoyiannis, “Lossless data compression rate: Asymp-
totics and non-asymptotics,” in 46th Annual Conference on Information
Sciences and Systems, Princeton University, 2012.

[14] J. Rissanen, “A universal data compression system,” IEEE Trans. on
Information Theory, vol. 29, no. 5, pp. 656–663, 1983.

2014 IEEE International Symposium on Information Theory

2493

