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Abstract—We study the discrete-time Poisson channel under
the constraint that its average input power (in photons per
channel use) must not exceed some constant E . We consider the
wideband, high-photon-efficiency extreme where E approaches
zero, and where the channel’s “dark current” approaches zero
proportionally with E . Extending our previous work, we show
that the influence of the dark current on channel capacity is
mainly on the third-order term with respect to E . We also show
that pulse-position modulation with “soft-decision decoding”
achieves data rates that accurately reflect such influence.

I. INTRODUCTION

We consider the discrete-time memoryless Poisson channel
whose input x is in the set R+

0 of nonnegative reals and whose
output y is in the set Z+

0 of nonnegative integers. Conditional
on the input X = x, the output Y has a Poisson distribution
of mean (λ+x), where λ ≥ 0 is called the “dark current” and
is a constant which does not depend on the input x. Hence
the channel law W (·|·) is

W (y|x) = e−(λ+x) (λ + x)y

y!
, x ∈ R

+
0 , y ∈ Z

+
0 . (1)

This channel models pulse-amplitude modulated optical
communication where the transmitter sends light signals in co-

herent states (which are usually produced using laser devices),
and where the receiver employs direct detection (i.e., photon
counting) [1]. The channel input x describes the expected
number of signal photons (i.e., photons that come from the
input light signal rather than noise) to be detected in the pulse
duration, and is proportional to the light signal’s intensity, the
pulse duration, the channel’s transmissivity, and the detector’s
efficiency; the channel output y is the actual number of
photons that are detected in the pulse duration; and λ is the
average number of extraneous counts that appear in y due to
background radiation or to the detector’s “dark clicks”.

We impose an average-power constraint1 on the input

E[X ] ≤ E (2)

for some E > 0.

This work was supported in part by the DARPA InPho program under
Contract No. HR0011-10-C-0159, and by AFOSR under Grant No. FA9550-
11-1-0183.

1Here “power” is in discrete time, means expected number of detected
photons per channel use, and is proportional to the continuous-time physical
power times the pulse duration.

In applications like free-space or outer-space optical com-
munications, the cost of producing and successfully trans-
mitting photons is high, hence high photon efficiency (infor-
mation transmitted per photon) is desirable. As previously
demonstrated [2], [3], this can be achieved in the wideband

regime, where the pulse duration of the input approaches zero
and, assuming that the continuous-time average input power
is fixed, where E approaches zero proportionally with the
pulse duration. Note that in this regime the average number
of detected background photons or dark clicks also tends to
zero proportionally with the pulse duration. Hence we have
the linear relation

λ = cE , (3)

where c is some nonnegative constant that does not change
with E . Asymptotic results in this regime are relevant in
scenarios where E is small and where λ is comparable to or
much smaller than E .

We denote the capacity (in nats) of the channel (1) under
power constraint (2) with dark current (3) by C(E , c), then

C(E , c) = max
E[X]≤E

I(X ;Y ), (4)

where the mutual information is computed from the channel
law (1) and is maximized over input distributions satisfy-
ing (2), with dark current λ given by (3).

Various capacity results for the discrete-time Poisson chan-
nel have been obtained [2]–[8]. In particular, our earlier works
[2], [3] considered the same scenario as the present paper and
showed that [3, Theorem 1]

C(E , c) = E log
1

E
− E log log

1

E
+O(E), c ∈ [0,∞), (5)

and that this asymptotic expression can be achieved using
pulse-position modulation (PPM).

The above result provides a rather accurate approximation
for the capacity C(E , c), as well as its gap to the capacity of the
ideal optical channel equipped with a fully quantum receiver—
which lies in the second-order term—where the latter can be
found in [9]. Furthermore, extending previous results [4], [5],
[10], it suggests PPM as a near-optimal modulation scheme,
which greatly simplifies coding compared to on-off keying as
suggested in [2], as the latter requires a highly skewed input
distribution and is hence difficult to code.
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The result (5) may be surprising in that it does not involve
the constant c. In other words, in our regime of interest, the
dark current influences neither the first- nor the second-order
term in capacity. It is clear, however, that the dark current
must affect capacity, and it is the aim of the current paper to
find out how. Our main result, Theorem 1, shows that the first
term in C(E , c) to be affected by c is the third-order term. It
also shows that this term scales like − log c for large c.

In this paper we also address the coding question: how
useful is PPM when c is large? This question has two parts.
First, is PPM still near optimal in terms of capacity in this
case? Second, does PPM still simplify coding? We answer the
first part of the question in the affirmative, again in Theorem 1.
However, unlike in [3] where the decoder needs only to record
one pulse per PPM frame, here the decoder must make a “soft
decision” by recording up to two pulses per frame to achieve
the aforementioned − log c behavior of the third-order term.
As for the second part of the question, we cannot fully answer
it within this paper, but shall briefly discuss it in Section V.

The rest of this paper is arranged as follows. Section II
introduces our notation and formally describes our setting
for PPM. Section III presents our main result with some
discussions. Section IV outlines the proof of the achievability
part of our main result. Finally, Section V concludes the paper
with some numerical results and remarks on future directions.

II. NOTATION AND PPM

We usually use a lower-case letter like x to denote a
constant, and an upper-case letter like X to denote a random
variable.

We use natural logarithms, and measure information in nats.

We use the usual o(·) and O(·) notation to describe behav-
iors of functions of E in the limit where E approaches zero
with other parameters, if any, held fixed. We emphasize that,
in particular, we do not use o(·) and O(·) to describe how
functions behave with respect to c.

We adopt the convention

0 log 0 = 0. (6)

We next formally describe what we mean by PPM. On the
transmitter side:

• The channel uses are divided into frames of equal lengths;
• In each frame, there is only one channel input that is

positive (the “pulse”), while all the other inputs are zeros;
• The pulses in all frames have the same amplitude.

On the receiver side, we distinguish between two cases, which
we call simple PPM and soft-decision PPM, respectively. In
simple PPM, the receiver records at most one pulse in each
frame; if more than one pulse is detected in a frame, then
that frame is recorded as an “erasure”, as if no pulse were
detected at all. In soft-decision PPM, the receiver records up

to two pulses in each frame; frames containing no or more
than two detected pulses are treated as erasures.

III. MAIN RESULT

Let CPE(E , c) denote the photon efficiency of the channel:

CPE(E , c) !
C(E , c)

E
. (7)

Clearly, it is equivalent to the capacity C(E , c) up to normal-
ization with respect to E . Henceforth we may choose to use
C(E , c) or CPE(E , c) as convenient. Note that (5) is equivalent
to

CPE(E , c) = log
1

E
− log log

1

E
+O(1). (8)

The main result of this paper is a characterization of the
O(1) term in (8):

Theorem 1: The O(1) term in (8) scales like − log c for
large c:

lim
c→∞

lim
E↓0

CPE(E , c)− log
1

E
+ log log

1

E
log c

= lim
c→∞

lim
E↓0

CPE(E , c)− log
1

E
+ log log

1

E
log c

= −1. (9)

Furthermore, the limits in (9) are achievable with soft-decision
PPM.

The proof of Theorem 1 has two parts. The achievability
part asserts that soft-decision PPM can achieve a rate that
satisfies

lim
c→∞

lim
E↓0

CPE-PPM(SD)(E , c)− log
1

E
+ log log

1

E
log c

≥ −1 (10)

and is sketched in Section IV. The converse part is omitted due
to space limitation; it uses the same method as the converse
proof in [3] (the duality bound [11]) but involves more careful
analyses. For the complete proof, we refer to [12].

To better understand our main result, Theorem 1, we make
the following remarks.

• Theorem 1 shows that the first term in CPE(E , c) that c—
or the dark current—affects is the third, constant term.
Indeed, though we have not given an exact expression for
the constant term, (9) shows that c affects the constant
term in such a way that, for large c, the constant term
is approximately − log c. Equivalently, the first term in
C(E , c) that is affected by c is the third, O(E) term.

• Theorem 1 suggests the approximation

CPE(E , c) ≈ log
1

E
− log log

1

E
− log c. (11)

The correction terms, roughly speaking, are either van-
ishing for small E , or small compared to log c for large c.
Note that if we fix the dark current, i.e., if we fix
the product cE , then the first and third terms on the
right-hand side of (11) cancel. This is intuitively in
agreement with [2, Proposition 2], which states that, for
fixed dark current, photon efficiency scales like some
constant times log log(1/E) and hence not like log(1/E).
We note, however, that (9) cannot be derived directly
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using (8) together with [2, Proposition 2], because we
cannot change the order of the limits. In (9) we do not
let E tend to zero and c tend to infinity simultaneously.
Instead, we first let E tend to zero to close down onto the
constant term in CPE(E , c) with respect to E , and then let
c tend to infinity to study the asymptotic behavior of this
constant term with respect to c.

• The approximation (11) is good for large c, but diverges
as c tends to zero. We hence need a better approximation
for the constant term, which behaves like − log c for
large c, but which does not diverge for small c. As both
the nonasymptotic bounds and the numerical simulations
we show later will suggest, − log(1 + c) is a good
approximation:

CPE(E , c) ≈ log
1

E
− log log

1

E
− log(1 + c). (12)

• In [3] we showed that PPM is optimal up to the second-
order term in photon efficiency (equivalently, in capacity).
Now we see that, even when the third-order term is
taken into account, (soft-decision) PPM is still not far
from optimal, in the sense that it achieves the optimal
asymptotic behavior of this term with respect to c.

• In Section IV we show that

CPE-PPM(E , c) ≥ log
1

E
− log log

1

E
− c−

3

2
− log(1 + c) + o(1). (13)

A careful analysis will confirm that the bound (13) is
tight in the regime of interest, in the sense that simple
PPM cannot achieve a constant term that is better than
linear in c (while being second-order optimal). This is
in contrast to soft-decision PPM, which can achieve a
constant term that is logarithmic in c. In particular, simple
PPM is clearly not third-order optimal.2

IV. PROOF OF ACHIEVABILITY (10)

In this section we derive the achievability bound (10) for
soft-decision PPM. To this end, we first derive a lower bound
on the photon efficiency achievable with simple PPM that
is slightly tighter than the one in [3], and then base our
soft-decision PPM bound on it. Due to space limitation, we
only provide the key steps in our calculations, but we try
to highlight the difference between simple and soft-decision
PPM. For complete derivations of these bounds, see [12].

A. Simple PPM

Consider the following simple PPM scheme:

Scheme 1:

• The channel uses are divided into frames of length b, so
each frame contains b input symbols x1, . . . , xb and b

2A scheme between simple and soft-decision PPM is the following. When
detecting multiple pulses in a frame, the receiver randomly selects and records
one of the positions (possibly together with a “quality” flag). This scheme
outperforms simple PPM in photon efficiency, but its third-order term is still
linear in c: it scales like −c/2 instead of −c.

corresponding output symbols y1, . . . , yb. We set

b =

⌊

1

E log 1
E

⌋

. (14)

• Within each length-b frame, there is always one input that
equals η, and all the other (b− 1) inputs are zeros. Each
frame is then fully specified by the position of its unique
nonzero symbol, i.e., its pulse position. We consider each
frame as a “super input symbol” x̃ that takes value in
{1, . . . , b}. Here x̃ = i means

xi = η (15)

xj = 0, j '= i. (16)

To meet the average-power constraint (2) with equality,
we require

η = bE . (17)

• The b output symbols y1, . . . , yb are mapped to one
“super output symbol” ỹ that takes value in {1, . . . , b, ?}
in the following way: ỹ = i, i ∈ {1, . . . , b}, if yi is the
unique nonzero term in {y1, . . . , yb}; and ỹ = ? if there
is more than one or no nonzero term in {y1, . . . , yb}.

We have the following lower bound on the photon efficiency
achieved by the above scheme.

Proposition 1: For small enough E , Scheme 1 achieves
photon efficiency

CPE-PPM(E , c)

≥
(

1−
η

2

)

log b− cη log b−

(

1 +
cE

η

)

log(1 + c)

−

(

1 +
cE

η

)

{

log(1− cη) + log
(

1−
η

2

)}

− 1−
cE

η
(18)

where b and η are given in (14) and (17), respectively.
It is easy to check that Proposition 1 implies (13).

Proof Sketch of Proposition 1: The transition matrix of
the PPM “super channel” is found to be:

W̃ (i|i) = e−(b−1)cE − e−η−bcE ! p0; (19)

W̃ (j|i) = e−η−(b−1)cE − e−η−bcE ! p1, i '= j; (20)

W̃ (?|i) = 1− p0 − (b− 1)p1. (21)

Denote the capacity of this super channel by C̃(E , c, b, η), then

C̃(E , c, b, η) = max
P

X̃

I(X̃ ; Ỹ ). (22)

Note that the total input power (i.e., expected number of
detected signal photons) in each frame equals η. Therefore

CPE-PPM(E , c) ≥
C̃(E , c, b, η)

η
. (23)

It can be easily verified that the optimal input distribution
for (22) is the uniform distribution, which induces the follow-
ing marginal distribution on Ỹ :

PỸ (i) =
p0 + (b− 1)p1

b
, i ∈ {1, . . . , b}; (24)

PỸ (?) = 1− p0 − (b− 1)p1. (25)
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We next explicitly compute C̃(E , c, b, η) to be

C̃(E , c, b, η) = p0 log
bp0

p0 + (b − 1)p1

+ (b− 1)p1 log
bp1

p0 + (b− 1)p1
. (26)

We then lower-bound it as

C̃(E , c, b, η) ≥ p0 log b− p0 log

(

1 +
bp1
p0

)

− p0. (27)

Next note that p0 can be lower- and upper-bounded as

(1 − bcE)

(

η −
1

2
η2
)

≤ p0 ≤ η + cE , (28)

while p1 can be upper-bounded as

p1 ≤ cE . (29)

Plugging (28) and (29) into (27) and making some simplifica-
tions yield (18).

B. Soft-decision PPM

Consider the following soft-decision PPM scheme:

Scheme 2: The transmitter performs the same PPM as in
Scheme 1. The receiver maps the b output symbols to a “super
symbol” ŷ that takes value in {1, . . . , b, ?} ∪

{

{i, j} : i, j ∈
{1, . . . , b}, i '= j

}

. The mapping rule is as follows. Take
ŷ = i if yi is the unique nonzero term in {y1, . . . , yb}; take
ŷ = {i, j} if yi and yj are the only two nonzero terms in
{y1, . . . , yb}; if there are more than two or no nonzero term
in {y1, . . . , yb}, take ŷ = ?.

Proposition 2: For small enough E , Scheme 2 achieves
photon efficiency

CPE-PPM(SD)(E , c)

≥
(

1−
η

2

)

log b− cη log b−

(

1 +
cE

η

)

log(1 + c)

−

(

1 +
cE

η

)

{

log(1− cη) + log
(

1−
η

2

)}

− 1−
cE

η

+
(

1−
η

2

)

(b − 1)

(

cE −
c2E2

2

)

(1− cη) log
b

2

−
c2

2
η − c(η + cE) (30)

where b and η are given in (14) and (17), respectively.

It is easy to check that Proposition 2 implies the desired
achievability bound (10).

Proof Sketch of Proposition 2: We compute the transition
matrix of the super channel that results from Scheme 2. We
first note

Ŵ (i|i) = p0, (31)

Ŵ (j|i) = p1, i '= j, (32)

where p0 and p1 are given in (19) and (20), respectively. For
the remaining elements of the transition matrix we have

Ŵ
(

{i, j}
∣

∣i
)

= (1− e−η−cE)(1 − e−cE) e−(b−2)cE ! p2 (33)

Ŵ
(

{j, k}
∣

∣i
)

= e−η−cE(1− e−cE)2 e−(b−3)cE ! p3 (34)

Ŵ (?|i) = 1− p0 − (b− 1)p1 − (b− 1)p2

−
(b− 1)(b − 2)

2
p3 ! p4 (35)

for all {i, j, k} ⊆ {1, . . . , b}. Choosing a uniform X̃ (which
is again optimal) yields

I(X̃ ; Ŷ ) = p0 log
bp0

p0 + (b− 1)p1

+ (b− 1)p1 log
bp1

p0 + (b − 1)p1

+ (b− 1)p2 log
bp2

2p2 + (b− 2)p3

+
(b− 1)(b− 2)

2
p3 log

bp3
2p2 + (b− 2)p3

. (36)

At this point, note that the first two summands on the right-
hand side of (36) constitute I(X̃ ; Ỹ ), which we analyzed in
Section IV-A. The last two summands together can be lower-
bounded by the expression

(b − 1)p2 log
b

2
−

b2

2
p3 − bp2. (37)

By upper- and lower-bounding p2 and p3 similarly to (28)
and (29) we obtain the following lower bound on the additional
mutual information that is gained by considering output frames
with two detection positions:

I(X̃; Ŷ )− I(X̃; Ỹ )

≥ (b− 1)

(

η −
η2

2

)(

cE −
c2E2

2

)

(1− bcE) log
b

2

−
b2

2
c2E2 − b(η + cE)cE . (38)

Dividing the above by η and adding it to the right-hand side
of (18) yield (30).

V. NUMERICAL COMPARISON AND CONCLUDING

REMARKS

We numerically compare the approximation (12) with
nonasymptotic upper and lower bounds on photon efficiency.
Specifically, the plotted on-off-keying lower bound is obtained
by computing the mutual information of the channel with “on”
signal equaling 1/

(

log(1/E)
)

, and with the receiver ignoring
multiple detected photons. The simple-PPM lower bound is
computed using (26). The soft-decision-PPM lower bound is
computed using (36). Expression for the plotted upper bound
can be found in [12]. We plot these bounds for c = 0.1, c = 1,
and c = 10 in Figure 1. The figures show the following.

• The approximation (12) is reasonably accurate for small
enough E .

• The on-off-keying and the soft-decision-PPM bounds are
consistently close to the approximation (12).
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(a) Case c = 0.1. Note that the lowest three curves almost overlap.
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(b) Case c = 1. The on-off keying and soft-decision PPM curves
overlap.
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(c) Case c = 10.

Fig. 1. Comparing the approximation (12) to nonasymptotic upper bound,
and to lower bounds for simple PPM, soft-decision PPM, and on-off keying
for three cases: c = 0.1, c = 1, and c = 10.

• As c increases, the simple-PPM bound deviates signifi-
cantly from the other lower bounds, and hence also from
the actual value of CPE(E , c).

The capacity bounds as well as the asymptotic results in this
paper show how dark current influences the communication
rates and code design in optical channels in the wideband
regime. As we have demonstrated, PPM is nearly optimal in
this regime. When c is small, the simple PPM super channel
has high erasure probability but low “error” (by which we
mean the receiver detects a single pulse at a position that is
different from the transmitted signal) probability. In this case,
Reed-Solomon codes can perform rather close to the theoreti-
cal limit. However, when c > 1, Reed-Solomon codes can no
longer achieve any positive rates on this channel. Nevertheless,
we believe that, for c > 1, PPM still has its advantages over
on-off keying in terms of code design. This is because the
optimal input distribution for (both simple and soft-decision)
PPM is uniform, whereas the optimal input distribution for on-
off keying for this channel is highly skewed. The uniformity
of PPM inputs allows the usage of more structured codes, in
particular linear codes. One possible direction, for instance,
is to employ the idea of multilevel codes [13], [14] on this
channel.
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