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ABSTRACT

Large-scale distributed computing systems divide a job into
many independent tasks and run them in parallel on differ-
ent machines. A challenge in such parallel computing is that
the time taken by a machine to execute a task is inherently
variable, and thus the slowest machine becomes the bottle-
neck in the completion of the job. One way to combat the
variability in machine response is to replicate tasks on multi-
ple machines and waiting for the machine that finishes first.
While task replication reduces response time, it generally
increases resource usage. In this work, we propose a theo-
retical framework to analyze the trade-off between response
time and resource usage. Given an execution time distribu-
tion for machines, our analysis gives insights on when and
how replication helps. We also propose efficient scheduling
algorithms for large-scale distributed computing systems.

1. INTRODUCTION

One of the typical scenarios in cloud computing is large
scale computation in a data centers with a large number
of computers, which is pioneered by companies like Google
with the support from distributed computing frameworks
such as MapReduce [5]. An important category of large
scale computation in data center is called “embarrassingly
parallel” computation, where the computation can be easily
separated into a number of parallel tasks, that are executed
on separate machines.

For an embarrassingly parallel job, the completion time
is determined by the slowest computing node, as one needs
to wait for all parallel tasks to finish. However, machine
response time in data centers are inherently variable due to
factors such as co-hosting, virtualization, network conges-
tion, etc. As the computing scale increases, waiting for the
slowest machine to finish its assigned task delays the job
completion significantly. For example, [4, Table 1] shows
that while the 99%-percentile finishing time for each task is
10ms, the 99%-percentile finishing time for the slowest task
in a large computation job could take up to 140ms.
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One of the techniques used by system designers to com-
bat variability in machine response time is task replication,
i.e., sending the same task to multiple machines and taking
the result from whichever finishes first. The idea of repli-
cating tasks was recognized by system designers for parallel
commutating [3, 6], and first adopted in cloud computing
via the “backup tasks” in MapReduce [5]. A line of system
work [1,2,10,12] further develop this idea to handle various
performance variability issues in data centers.

While this approach of replicating tasks reduces task com-
pletion time, it may cause additional resource usage in terms
of machine running time. In this paper, we introduce a
stylized yet realistic system model to analyze this trade-off
between completion time and resource usage. Our analysis
reveals when and how task replication works, and provides
insights into the design of scheduling algorithms in practical
distributed computing systems.

To the best of our knowledge, this is the first theoretical
analysis of task replication in distributed computing. A few
theoretical works [7-9] have investigated the use of replica-
tion or redundancy to reduce latency, but in the context of
content download from distributed storage.

2. SYSTEM MODEL

We consider the problem of executing a set of n embar-
rassingly parallel tasks in a data center. Due to randomness
in execution time, replicating a task at multiple machines
can significantly improve its completion time.

A scheduling policy m assigns the starting times of each
task at different machines,
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where 7 is the task of interest, and ¢; ; is the start time for
the j-th replica of task i.

We consider that the scheduler receives an instantaneous
notification when any machine finishes its assigned task.
When the earliest replica of task ¢ finishes, the scheduler ter-
minates all the replicas of task i. We assume that the sched-
uler cannot preferentially terminate some replicas while keep-
ing others running. Further, we consider only static policies,
where all the starting times ¢;,; are chosen at time 0 and not
changed afterwards. Although there is loss of generality in
static launching, it may be of interest in practice because it
allows more time for resource provisioning.

Let X; ; be the running time of the j-th replica of task
i. We assume Xj; ; are i.i.d. discrete random variables, with
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probability mass function (PMF),

or, Px(a;) =Pr(X =a;) =pi, 1<i<], (1)
where p; € [0,1] and ', p; = 1.

We can use log files or traces to estimate the execution
time distribution, for example, by finding a histogram of

the execution times with certain bin size (e.g., 10 seconds).

2.1 Performance metrics

We evaluate the performance of a scheduling policy 7 by
the following two performance metrics:

e completion time T'(w): the time when at least one
replica of each of the tasks finishes;

T(x) 2 maxmin(t:,; + Xi.;) (2)
i
e machine time C(7): sum of the running times for all
machines, normalized by the number of tasks n;
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where |z| 0,z
The machir‘le'time 7T§ c’an}be viewed as the cost of using

a cloud service, such as Amazon Web Service (AWS), which
charges user per hour of machine usage. Intuitively, task
replication reduces T', but may increase C'.

We investigate the trade-off between T'(7) and C(7) using
the cost function

Ia(m) = AR [T (m)] + (1 = ME[C(m)], (4)

where 0 < A < 1 reflects the relative importance of reducing
E[T(w)]. Given ), the optimal scheduling policy 7™ is

7 = arg min J, ().

3. OUR CONTRIBUTIONS

Our analysis shows that:

1. While in general there is a trade-off between expected
completion time E [T'(7)] and expected machine time
E [C(r)], there exist scenarios where task replication
simultaneously reduces E [T'(7)] and E [C(n)].

2. Given the execution time distribution Px, the optimal
scheduling policy that minimizes the cost function Jy
has starting times ¢; ; that are integer combinations of
a1, aa, ... qp, the possible values of the execution time.
Thus we reduce the search space for the optimal policy
to a discrete and finite set of policies.

3. When the machine execution time follows a bimodal
distribution, we find the optimal single-task scheduling
policy for the special case of two machines. In the
optimal policy we start the task at one machine at
time 0. The other machine is started at time «;, or not
started at all, depending on A in (4), and the system
parameters.

4. We propose a heuristic algorithm to choose the schedul-
ing policy for both single-task and multi-task cases.
The algorithm adds new machines one-by-one by look-
ing ahead at the next k possible starting times, and
chooses from among them the starting time that min-
imizes the cost function Jj.
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5. When scheduling multiple tasks, it is useful to take the
interaction of completion times among different tasks
into account, i.e., scheduling each task independently
can be strictly suboptimal.

The detailed analysis and results are in [11], the extended
version of this paper. A future research direction is to de-
velop a strategy that can learn the execution time distribu-
tion while simultaneously scheduling jobs. It would also be
useful to consider how queueing of requests impacts system
performance.
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