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Abstract—Motivated by distributed storage applications, we
investigate the degree to which capacity achieving codes can be
efficiently updated when a single information symbol changes,
and the degree to which such codes can be efficiently repaired
when a single encoded symbol is lost.

Specifically, we first develop conditions under which optimum
error-correction and update-efficiency are possible. We establish
that the number of encoded bits that should change in response
to a change in a single information bit must scale logarithmically
in the block-length of the code, if we are to achieve any nontrivial
rate with vanishing probability of error over the binary erasure
or binary symmetric channels. Moreover, we show that there
exist capacity-achieving codes with this scaling.

With respect to local repairability, we develop tight upper and
lower bounds on the number of remaining encoded bits that are
needed to recover a single lost encoded bit. In particular, we
show that when the rate of an optimal code is ε below capacity,
the maximum number of codeword symbols required to recover
one lost symbol must scale as log 1/ε.

Several variations on—and extensions of—these results are
also developed, including to the problem of rate-distortion coding.

Index Terms—error-correcting codes, linear codes, update-
efficiency, locally repairable codes, low-density generator matrix
codes, low-density parity check codes, channel capacity

I. INTRODUCTION

THERE is a growing need to provide reliable distributed
data storage infrastructure in highly dynamic and un-

reliable environments. Storage nodes (servers) can switch
between on- and off-line frequently, due to equipment failures,
breaks in connectivity, and maintenance activity. Corruptions
of the data can also arise. Furthermore, the data itself is often
changing frequently, requiring the constant updating of storage
nodes.
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These characteristics place additional demands on the error-
control coding typically considered for such systems, and
there are important questions about the degree to which those
demands can be accommodated, which the community has
begun to investigate in recent years.

In this paper, we focus on two specific such demands, for
a scenario in which each symbol of an encoded message
is stored at a different node in the network.1 The first is
that the coding be update-efficient or locally updatable, i.e.,
that small changes in the data require only small changes
in its coded representation. The second is that the coding
be locally repairable or recovery-efficient, i.e., that small
portions of the coded representation that are lost can be
recovered from correspondingly small portions of the rest of
the encoded symbols. The degree to which these demands can
be accommodated affects the bandwidth, energy, and/or other
resource consumption characteristics of such infrastructure.

There is considerable flexibility in terms of how to model
the notion of “portion” when investigating such questions, and
the choice in practice is typically dictated by the application.
For example, in the context of update-efficiency one can ask:
if a single bit in the message changes, how many bits, in
aggregate, of the symbols in the associated codeword must
change in response? Analogously, in the context of recovery-
efficiency, one can ask: if a single symbol in the encoding of
a message is lost, how many bits of information, in aggregate,
are required from the remaining symbols to specify how to
repair the encoding?

Such formulations have received significant attention in the
literature. They are appropriate in scenarios, e.g., where the
resource cost in the system is proportional to the communi-
cation bandwidth between storage nodes. Examples of work
in this vein include [1], which develops a class of locally
“regenerative codes,” and [2], which shows that it is possible to
have “good” codes that are both update-efficient and minimize
the repair bandwidth.

As an alternative model, in the context of update-efficiency
we can ask how many symbols in the message must change in
response to a single-symbol change in the message, in order
to update the encoding. In the context of recovery-efficiency,
as the counterpart, in response to the loss of a single encoded
symbol we can ask how many of the remaining symbols are
needed to be able to reconstruct it.2 This formulation is more

1Since the symbol alphabet is unconstrained, a symbol could represent a
packet or block of bits of arbitrary size.

2It is worth emphasizing that in general neither model is necessarily more
restrictive than the other, since in each case we have some flexibility in the
choice of symbol alphabet.
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natural in a scenario where the dominant resource cost is that
of simply establishing a link, regardless of its size, between
storage nodes (such as when such nodes take the form of
servers).

This alternative model, which has attracted much attention
in the community, is the focus of the present paper. Moreover,
to simplify the exposition, our treatment will largely focus on
a special case of this model in which the codeword symbols
are, themselves, bits, i.e., binary-valued, in which it of course
also corresponds to a special case of the first model.

A. Update-Efficiency

While the broader notion of update-efficiency is implicit in
work on array codes—see, e.g., [3], [4]—the first substantial
analysis of update-efficiency appears in [5].

When changes in the data are significant, updating a linear
(in the blocklength of the code) number of the encoded
symbols is unavoidable for any code. However, when the
changes are incremental, updating a sublinear number of the
symbols can be sufficient. For example, [5] considers codes
over a binary alphabet and shows the existence of a linear code
that achieves the capacity of the binary erasure channel (BEC)
with the property that any single-bit change in the message
requires only a logarithmic (in the block-length) number of
bits to be updated in the codeword.

In this paper, we begin with a brief discussion of update-
efficient codes that can correct arbitrary sets of (adversarial)
errors/erasures, since such adversarial models are common
in current storage applications. In this case, update-efficiency
and error-correctability are directly conflicting objectives. In
particular, it is not possible to correct more than (roughly)
t/2 errors (or roughly t erasures) with a code that needs at
most t bits of update for any single-bit change in the message.
This is because the minimum pairwise distance between the
codewords (i.e., the minimum distance of the code) is upper
bounded by t. We mention properties of linear codes that are
useful for constructing good update-efficient adversarial-error-
correcting codes, i.e., codes that achieve the best possible
tradeoff. Perhaps the most interesting observation for this
scenario is that if there exists a linear code with a given rate
and minimum distance, then there exists another linear code
with same parameters that is as update-efficient as possible.

The remainder of our development focuses on the random
failure model, where much better average performance is
possible. We begin with a simple derivation of one of the
main propositions of [5], i.e., that there exist linear codes that
achieve the capacity of the BEC such that for any single-bit
change in the message, only O(log n) bits have to be updated
in a codeword of length n. However, our main result is the
converse statement: we show that if a linear code of positive
rate achieves arbitrarily small probability of error over a BEC,
then a single-bit change in the message must incur an updating
of Ω(logn) bits in the codeword. In addition, we estimate
γ > 0 such that there cannot exist a linear code with positive
rate and arbitrarily small probability of error that requires
fewer than γ logn bit updates in the codeword per single bit
change in the message.

B. Local Repairability
The potential for a code to be locally repairable—which is,

in some sense, a notion dual to that of update-efficiency—was
first investigated in [6].

For significant losses of codeword symbols, the minimum
distance properties of the code naturally characterize the
worst-case requirements to repair the encoding. However, the
ability to repair smaller losses depends on other properties of
the code. Accordingly, [6] investigates code structure allowing
any single symbol of any codeword to be recovered from at
most a constant number of other symbols of the codeword,
i.e., from a number of symbols that does not grow with the
length of the code.

From this perspective, in practice one might hope to have
codes with both a large minimum distance and structure that
enables recovery from the single symbol losses using the
fewest possible number of remaining symbols.

To this end, [6], [7] consider locally repairable codes that
also correct a prescribed number of adversarial errors (or era-
sures), and develop a trade-off between the local repairability
and error-correctability. In particular, it is shown that for a
q-ary linear code (q ≥ 2) of blocklength n, the minimum
distance d satisfies

d ≤ n− k −
⌈
k

r

⌉
+ 2,

where k is the code dimension and r is the number of symbols
required to reconstruct a single symbol of the code (referred
to as the local repairability).

Such results can be generalized to nonlinear codes of any
desired alphabet size. Indeed, [8] shows that for any q-ary code
with size M , local repairability r, and minimum distance d,
we have

logM ≤ min
1≤t≤$ n

r+1%

[
tr + logAq(n− t(r + 1), d)

]
, (1)

where Aq(n, d) is the maximum size of a q-ary code of length
n and distance d.

It should be noted that, in contrast to the case of update-
efficiency, which requires a number of codewords to be close
to each other, there is no immediate reason that a code
cannot have both good local repairability and good error-
correctability. Perhaps not surprisingly, there has, in turn, been
a growing literature exploring locally repairable codes with
other additional properties; see, e.g., [9]–[11].

In this paper, we focus on probabilistic channel models
that take into account the statistics of node failure, and
optimize average performance. To the best of our knowledge
the associated capacity results for locally repairable codes have
yet to be developed. Indeed, the analysis of local repairability
in the existing literature is almost invariably restricted to
an adversarial model for node failure. While combinatorially
convenient, there is no guarantee the resulting codes are good
in an average sense.

In our development, we first show that it is possible to
construct codes operating at a rate within ε of the capacity
of the BEC that have both local repairability O(log 1/ε) and
an update-efficiency scaling logarithmically with the block-
length. However, our main result in this part of the paper is
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a converse result establishing that the scaling O(log 1/ε) is
optimal for a BEC—specifically, we establish that if the rate
of a code that achieves arbitrarily small probability of error
over a BEC is ε below capacity, then the local repairability is
Ω(log 1/ε).

C. Channels with Errors

Most of our development focuses on the case of hard node
failures that result in data loss. However, in some less common
scenarios of distributed storage, node failures are undetected,
resulting in data corruption. While the BEC is a natural model
for the former, it is the binary symmetric channel (BSC) that
is the corresponding model for the latter. Much, but not all,
of our development carries over to the case of the BSC.

In particular, our results on the existence of capacity-
achieving codes that are both update-efficient and locally
repairable also hold for the BSC. Likewise, our converse
result for update-efficient linear codes also holds the BSC.
However, we have an additional converse result for general
codes that applies only to the BSC, and our converse result
for local repairability applies only to the BEC (indeed, local
repairability perhaps makes little sense for BSC).

D. Source Coding

We note that the notions of update-efficiency and local
repairability are also applicable to source coding, i.e., data
compression. In the context of lossless source coding, update-
efficient codes have been considered before in papers such
as [12]; see also [13] and the references therein. However,
the lossy source coding version of the update-efficient coding
problem does not appear to have been formalized previously.

Some preliminary results regarding the update-efficiency
and local repair properties are summarized towards the end
of the paper, where we also summarize some open questions
in this area.

E. Organization

The organization of the paper is as follows. After Sec-
tion II establishes the concepts and notation that will be
used throughout the paper, Section III describes the worst-
case error-correction capability of an update-efficient code.
In Section IV we show that there exist linear codes of
length n and rate ε less than capacity, with update-efficiency
logarithmic in blocklength and local repairability O(log 1/ε).
In Section V, we develop our main impossibility results for
capacity-achieving update-efficient codes. In Section VI we
turn to the local repairability of capacity-achieving codes,
and develop our converse. In Section VII, we describe a
generalization of update efficiency beyond single-bit updates,
and discuss the existence of good codes for such scenarios. In
Section VIII we introduce and comment on update-efficiency
and local repairability in the context of the dual problem
of lossy source coding. Finally, Section IX contains some
concluding remarks on extensions of the results to larger
alphabets.

II. CONCEPTS AND NOTATION

First, we use BEC(p) to denote a binary erasure channel
with loss probability p, which has capacity 1−p. Analogously,
we use BSC(p) to denote a binary symmetric channel with
crossover probability p, which has capacity 1− hB(p) where
hB(p) = −p log2(p)−(1−p) log2(1−p) is the binary entropy
function.3

Next, for our purposes a code C ∈ Fn
2 is a collection

of binary n-vectors. The support of a vector x (written as
supp(x)) is the set of coordinates where x has nonzero values.
By the weight of a vector x we mean the size of its support,
which we denote using wt(x).

Let M be the set of all possible messages. Usually ac-
companied with the definition of the code, is an injective
encoding map φ : M → C, which defines how the messages
are mapped to codewords. In the following discussion, let
us assume M = Fk

2 . In an update-efficient code, for all
x ∈ Fk

2 , and for all e ∈ Fk
2 such that wt(e) ≤ u, we have

φ(x+e) = φ(x)+e′, for some e′ ∈ Fn
2 such that wt(e′) ≤ t.

A special case of this, captured in the following definition, is
of primary interest in this paper.

Definition 1: The update-efficiency of a code C and the
encoding φ, is the maximum number of bits that needs to
be changed in a codeword when a single bit in the message
is changed. A code (C,φ) has update-efficiency t if for all
x ∈ Fk

2 , and for all e ∈ Fk
2 : wt(e) = 1, we have

φ(x+ e) = φ(x) + e′, for some e′ ∈ Fn
2 : wt(e′) ≤ t.

A linear code C ∈ Fn
2 of dimension k is a k-dimensional

subspace of the vector space Fn
2 . By an [n, k, d] code we

mean a linear code with length n, dimension k and minimum
distance between codeword pairs of d. Linear codes are of par-
ticular interest given their attractive representation, encoding,
and decoding complexity.

For linear codes, the encoding is linear if the mapping φ :
Fk
2 → C can be expressed in the form φ(x) = xTG, for any

x ∈ Fk
2 . The k × n matrix G is called a generator matrix of

the code. Also associated with such a code is its parity-check
matrix H , a generator matrix of the nullspace of C, whence
Hx = 0 for all x ∈ C.

For a linear encoding, when changing a single bit in the
message, the maximum number of bits that need to be changed
in the codeword is the maximum over the weights of the
rows of the generator matrix, as the following proposition
establishes.

Proposition 1: A linear encoding given by a k×n generator
matrix G will have update-efficiency t if and only if G has
maximum row weight t.

Proof: It is easy to see that if the maximum number of
ones in any row is bounded above by t, then at most t bits
need to be changed to update one bit change in the message.

On the other hand, if the code has
update-efficiency t then each of the vectors
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0 . . . , 1) ∈ Fk

2 must
produce codeword of weight at most t under φ. Therefore,
the generator matrix given by φ will have row weight at most
t.

3Throughout the paper, all logarithms are base-2 unless otherwise indicated.
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Hence, to optimize update-efficiency in a linear code, we seek
a representation in which the maximum weight of the rows of
the generator matrix is low. A linear code with a sparse basis
is informally called a low density generator matrix (LDGM)
code. Evidently, to test for update-efficiency, we need to be
able to identify the sparsest basis for the code.

Turning to local repairability, there are multiple possible
formal definitions. We will use what is perhaps the simplest,
which insists that for each codeword symbol, there is a set of
at most r codeword positions that need to be queried to recover
the given symbol with certainty. The formal definition is as
follows.4

Definition 2: A code C ⊂ Fn
2 has local repairability r, if

for any 1 ≤ i ≤ n, there exists a function fi : Fr
2 → F2 and

indices 1 ≤ i1, . . . , ir ≤ n, ij *= i, 1 ≤ j ≤ r, such that for
any x = (x1, . . . , xn) ∈ C, xi = fi(xi1 , . . . , xir ).

It follows immediately that the local repairability of a code
is related to the maximum of the weights of the rows in the
parity-check matrix. Specifically, we have the following.

Proposition 2: If the maximum row-weight of a parity-
check matrix of a code is r, then the code has local repairabil-
ity at most r.

From this proposition, it follows that low density parity-
check (LDPC) codes—i.e., linear codes with a parity check
matrix whose rows each have a small (constant) number
of nonzero entries—are locally repairable. It turns out that
this property is not quite a necessary condition for local
repairability. To make this a necessary condition, one needs to
consider not just rows of the parity-check matrix, but the entire
dual code (of the linear code). In particular, when the recovery
functions fis are linear, a necessary and sufficient condition
for local repairability of linear codes is that the dual code
contains low-weight codewords whose supports cover any of
the n coordinates.

III. ADVERSARIAL CHANNELS

The adversarial error model is ubiquitous in the storage
analysis literature. In an adversarial error model, the channel
is allowed to introduce up to s errors (or 2s erasures), and
the location of these errors can be chosen by an adversary. It
is known that to correct s errors (2s erasures), the minimum
distance of the code needs to be at least 2s+1. However, if a
code has update-efficiency t, then there must exist two (in fact,
many more) codewords that are within distance t of each other.
Hence, small update-efficiency implies poor adversarial error
correction capability, and we cannot hope to find good codes
if we adopt an adversarial error model. Nevertheless, before
moving on to the main results of the paper, as a reference point
we make some observations of foundational nature regarding
adversarial error models.

In a code with minimum pairwise distance between code-
words d, the update-efficiency has to be at least d, because

4A weaker definition could allow adaptive queries, i.e., the choice of which
r positions to query could depend on the values of previously queried symbols.
As another variation, one could consider relaxing our requirement that we be
able to recover the codeword symbol with certainty, and require only that we
recover it with some probability significantly greater than 1/2, corresponding
to probabilistic recovery. Our results can be extended to these adaptive and
probabilistic recovery without much work.

the nearest codeword is at least distance d away. That is, if
the update-efficiency of the code C is denoted by t(C), then

t(C) ≥ d(C),

where d(C) is the minimum distance of the code. Our main
observation is that the above bound is in fact achievable with
the best possible parameters of a linear code.

To develop our result, in light of Proposition 1, the follow-
ing theorem from [14] is useful.

Theorem 3: Any binary linear code of length n, dimension
k and distance d has a generator matrix consisting of rows of
weight ≤ d+ s, where

s =
(
n−

k−1∑

j=0

⌈ d

2j

⌉)

is a nonnegative integer.
The fact that s is a non-negative integer also follows from the
well-known Griesmer bound [15], which states that for any
linear code with dimension k, distance d, and length n must
satisfy n ≥

∑k−1
j=0 $d/2j%.

Corollary 4: For any linear [n, k, d] code C with update-
efficiency t,

d ≤ t ≤ d+
(
n−

k−1∑

j=0

⌈ d

2j

⌉)
.

It is clear that for codes achieving the Griesmer bound
with equality, the update-efficiency is precisely the minimum
distance, i.e., the best possible. There are a number of families
of codes that achieve the Griesmer bound. For examples of
such families and their characterizations, see [16], [17].

Example: Suppose C is a [n = 2m−1, k = 2m−1−m, 3]
Hamming code. For this code

t(C) ≤ 3+ (n− 3− 2− (k− 2)) = n− k = m = log(n+1).

One can easily achieve update-complexity 1 + log(n + 1)
for Hamming codes: simply bring any k × n generator
matrix of Hamming code into systematic form, resulting in
the maximum weight of a row being bounded above by
1+(n−k) = 1+log(n+1). This special case was mentioned
in [5]. Reasoned another way, since the generator polynomial
of a Hamming code (cyclic code) has degree m, the maximum
row-weight of a generator of a Hamming code is at most
m+ 1 = log(n+ 1) + 1.

However, we can do even better by explicitly constructing
a generator matrix for the Hamming code in the following
way. Let us index the columns of the generator matrix by
1, 2, . . . , 2m − 1, and use the notation (i, j, k) to denote the
vector with exactly three 1’s, located at positions i, j, and k.
Then, the Hamming code has a generator matrix given by the
row vectors (i, 2j, i+2j) for 1 ≤ j ≤ m−1, 1 ≤ i < 2j . This
shows that for all n, Hamming codes have update-efficiency
only 3.

To prove the above result without explicitly constructing a
generator matrix, and to derive some other consequences, the
following theorem from [18] is convenient.

Theorem 5: Any [n, k, d] binary linear code can be trans-
formed into a code with the same parameters that has a
generator matrix consisting of only weight d rows.
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The implication of this theorem is the following: if there exists
an [n, k, d] linear code, then there exists an [n, k, d] linear code
with update-efficiency d.

The proof of [18] can be expressed as an algorithm that
transforms any linear code, given its parameters [n, k, d] and a
generator matrix, into an update-efficient linear code (a code
with update-efficiency equal to the minimum distance). The
algorithm, in time possibly exponential in n, produces a new
generator matrix with all rows having weight d. It is of interest
to find a polynomial time (approximation) algorithm for the
procedure, that is, a generator matrix with all rows having
weight within d(1 + ε) for some small ε.

On the other hand, the above theorem says that there exists
a linear [n = 2m − 1, k + 2m − 1 − m, 3] code that has
update-efficiency only 3. All codes with these parameters are
equivalent to the Hamming code with the same parameters up
to a permutation of coordinates [19], providing an alternate
proof that Hamming codes have update-efficiency 3.

More generally, analysis of update-efficiency for BCH codes
and other linear codes is of independent interest. In general,
finding a sparse basis for a linear code given its generator
matrix appears to be a hard problem, although the actual
complexity class of the problem merits further investigation.
Recently, a sparse basis is presented for 2-error-correcting
BCH codes in [20].

We emphasize that the previous remarks, although of the-
oretical interest, are fairly strong negative results suggesting
that update efficiency and error correction are fundamentally
incompatible requirements. Although this is the case for
adversarial models, if we allow randomization so that the code
can be chosen in a manner unknown to the adversary, then it
is possible to fool the adversary. In fact, with a randomized
code it is possible to correct roughly pn adversarial errors
with a code rate close to the capacity of BSC(p) using ideas
put forward in [21]. The randomized code can be chosen to
simultaneously have good update efficiency, as shown in the
case of erasure channels by [5].

In the rest of the paper, instead of choosing a code at random
to fool an adversary, we consider the classical information
theoretic scenario of a random, rather than an adversarial,
channel, although we note that our results easily extend to
the case of using randomization to defeat an adversary.

IV. EXISTENCE OF GOOD CODES

In this section, we show, in a rather simple way, that there
exist linear codes of length n that

1) have rate ε less than capacity, ε > 0,
2) achieve arbitrarily small probability of error,
3) have update-efficiency O(log n) and
4) have local repairability O(log 1/ε).
It is relatively easy to construct a code with local repairabil-

ity O(log 1/ε) that achieves capacity over the BSC or BEC
with an ε gap. One can in principle choose the rows of the
parity-check matrix randomly from all low weight vectors, and
argue that this random ensemble contains many codes that
achieve the capacity of the binary symmetric channel (BSC)
up to an additive term ε. Indeed, LDPC codes achieve the
capacity of the binary symmetric channel [22].

Similarly, one may try to construct a low row-weight
generator matrix randomly to show that the ensemble average
performance achieves capacity. In this direction, some steps
have been taken in [23]. However, these constructions fail
to achieve local repairability and update-efficiency simulta-
neously. Also, in [24], parallel to a part of our work [25],
a rateless code construction was proposed that achieves both
O(log k) update-efficiency and local repairability, k being the
dimension of the code. Below, we describe one simple and
intuitive construction that simultaneously achieves O(log k)
update efficiency and O(log 1/ε) local repairability, where ε
is the gap to capacity.

It is known that for for every ε > 0 and any sufficiently
large m, there exists a linear code of length m and rate
1 − hB(p) − ε that has probability of incorrect decoding at
most 2−E(p,ε)m. There are numerous evaluations of this result
and estimates of E(p, ε) > 0. We refer the reader to [26] as
an example. Below, m,n,mR, nR, n/m are assumed to be
integers. Floor and ceiling functions should be used where
appropriate. However, we avoid using them to maintain clarity
in the argument, unless the meaning is not obvious from the
context.

Let m = (1 + α)/E(p, ε) logn, with ε,α > 0. We know
that for sufficiently large n, there exists a linear code Ĉ given
by the mR×m generator matrix Ĝ with rate R = 1−hB(p)−ε
that has probability of incorrect decoding at most 2−E(p,ε)m.

Let G be the nR× n matrix that is the Kronecker product
of Ĝ and the n/m× n/m identity matrix In/m, i.e.,

G = In/m ⊗ Ĝ.

Clearly a codeword of the code C given by G is given by
n/m codewords of the code Ĉ concatenated side-by-side. The
probability of error of C is therefore, by the union bound, at
most

n

m
2−E(p,ε)m =

nE(p, ε)

(1 + α)n1+α logn
=

E(p, ε)

(1 + α)nα logn
.

However, notice that the generator matrix has row weight
bounded above by m = (1 + α)/E(p, ε) logn. Hence,
we have constructed a code with update-efficiency (1 +
α)/E(p, ε) logn, and rate 1 − hB(p) − ε that achieves a
probability of error less than E(p, ε)/[(1+α)nα logn] over a
BSC(p).

We modify the above construction slightly to produce codes
that also possess good local repairability. It is known that
LDPC codes achieve a positive error-exponent. That is, for
every ε > 0 and any sufficiently large m, there exist an LDPC
code of length m and rate 1 − hB(p) − ε that has check
degree (number of 1’s in a row of the parity-check matrix)
at most O(log 1/ε), and probability of incorrect decoding at
most 2−EL(p,ε)m, for some EL(p, ε) > 0.5 This code will
be chosen as Ĉ in the above construction, and Ĝ can be any
generator matrix for Ĉ.

The construction now follows without further modifications.
We have, m = (1 + α)/EL(p, ε) logn, an integer, ε,α > 0,
and G = In/m ⊗ Ĝ. This generator matrix has row weight

5There are several works, such as [22], [27], that discuss this result. For
example, we refer the reader to [27, Thm. 7 and Eq. (17)] for a derivation of
the fact.
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bounded above by m = (1 + α)/EL(p, ε) logn, so the code
has update-efficiency (1+α)/EL(p, ε) logn, rate 1−hB(p)−
ε, and achieves probability of error less than EL(p, ε)/[(1 +
α)nα logn] over a BSC(p).

With respect to repairability, the parity-check matrix H of
the resulting code will be block-diagonal, with each block
being the parity-check matrix of the code Ĉ. The parity-
check matrix of the overall code has row-weight O(log 1/ε).
Hence, any codeword symbol can be recovered from at most
O(log 1/ε) other symbols by solving one linear equation.
Therefore, we have the following result.

Theorem 6: There exists a family of linear codes Cn of
length n and rate 1 − hB(p) − ε, that have probability of
error over BSC(p) going to 0 as n → ∞. These codes
simultaneously achieve update-efficiency O(log n/EL(p, ε))
and local repairability O(log 1/ε).

Hence, it is possible to simultaneously achieve local re-
pairability and update-efficiency with a capacity-achieving
code on BSC(p). Note, however, that this comes with a
price. Namely, the decay of probability of error with the
blocklength is only polynomial, not exponential. A similar
result is immediate for BEC(p).

V. IMPOSSIBILITY RESULTS FOR UPDATE-EFFICIENCY

In this section, we show that for suitably small γ, no
code can simultaneously achieve capacity and have update-
efficiency better than γ logn, where n denotes the blocklength.
More precisely, we give the following converse results.

1) Linear codes. Linear codes of positive rate cannot
have arbitrarily small probability of error and update-
efficiency better than γ1(p) log n, γ1(p) > 0 when used
over the BEC (Thm. 7). Since a BSC is degraded
with respect to a BEC, this result implies same claim
for BSC as well. To see that BSC(p) is a degraded
version of a BEC with erasure probability 2p, one can
just concatenate BEC(2p) with a channel with ternary
input {0, 1, ?} and binary output {0, 1}, such that with
probability 1 the inputs {0, 1} remain the same, and with
uniform probability ? goes to {0, 1}.

2) General codes. Any (possibly non-linear) code with
positive rate cannot have update-efficiency better than
γ2(p) logn, γ2(p) > 0, and vanishing probability of
error when transmitted over BSC. The value of γ2(p)
that we obtain in this case is larger than γ1(p) of linear
codes; moreover this result applies to more general
codes than the previous (Thm. 8), but we have not been
able to extend it to the BEC. It could be interesting to
explore whether nonlinear codes of positive rate must
have at least logarithmic update efficiency for the BEC.

3) LDGM ensemble. We also show that for the en-
semble of LDGM codes with fixed row-weight
γ3(p) logn, γ3(p) > 0, almost all codes have probability
of error approaching 1 when transmitted over a BSC
(Thm. 10). The value of γ3(p) in this case is much larger
than the previous two cases.

A plot providing the lower bound on update-efficiency
of “good” codes is presented in Fig. 1. In this figure, the
values of α, the constant multiplier of lnn, as a function of
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Fig. 1. The plot of constant factors of lnn from Theorems 7, 8 and 10.
The fact that the bound for linear codes appears below the bound for general
codes is a artifact of the bounding technique: the bound for general codes is
not extendable to the BEC, but the bound for linear codes is.

BSC flip probability p is plotted. The plot contains results
of Theorems 7, 8 and 10. Note that γ1(p), γ3(p) → ∞ as
p → 1/2 for general codes (Theorem 8) and the LDGM
ensemble (Theorem 10).

A. Impossibility result for linear codes

The converse result for linear codes used over a binary
erasure channel is based on the observation that when the
update-efficiency is low, the generator matrix G is very sparse,
i.e., every row of G has very few non-zero entries. Let the
random subset I ∈ {1, . . . , n} denote the coordinates not
erased by the binary erasure channel. Let GI denote the
submatrix of G induced by the unerased received symbols,
i.e., the columns of G corresponding to I . Then, because G is
sparse, it is quite likely that GI has several all zero rows, and
the presence of such rows implies a large error probability.
We formalize the argument below.

Theorem 7: Consider using some linear code of length n,
dimension k and update-efficiency t, specified by generator
matrix G over BEC(p). Hence, all rows of G have weight at
most t. Assume that for some ε > 0,

t <
ln k2

2n ln(1/ε)

2 ln 1
p

.

Then, the average probability of error is at least 1/2− ε.
Proof: For linear codes over the binary erasure channel,

analyzing the probability of error essentially reduces to analyz-
ing the probability that the matrix GI induced by the unerased
columns of G has rank k (note that the rank is computed over
F2). To show that the rank is likely to be less than k for
sufficiently small t, let us first compute the expected number
of all zero rows of GI . Since every row of G has weight
at most t, the expected number of all zero rows of GI is at
least kpt. The rank of GI , rank(GI), is at most k minus the
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number of all zero rows, so the expected rank of GI is at most
k − kpt.

Now, observe that the rank is a 1-Lipschitz functional
of the independent random variables denoting the erasures
introduced by the channel. Therefore, by Azuma’s inequality
[28, Theorem 7.4.2], the rank of GI satisfies

Pr(rank(GI) ≥ E rank(GI) + λ) < e−
λ2

2n .

Therefore,

Pr(rank(GI) ≥ k − kpt + λ) < e−
λ2

2n .

In particular, substituting λ = kpt,

Pr(rank(GI) = k) < e−
k2p2t

2n .

Assuming the value given for t, we see that

Pr(rank(GI) = k) < ε.

Since even the maximum likelihood decoder makes an error
with probability at least 0.5 when rank(GI) < k, this shows
that when

t <
ln k2

2n ln(1/ε)

2 ln 1
p

,

the probability of error is at least 1/2−ε. (In fact, the average
error probability converges to 1. The above argument can
easily be extended to show that the probability of decoding
successfully is at most e−Ω(kδ/ log k) for some δ > 0, but we
omit the details.)

B. Impossibility for general codes
Now, we prove that even nonlinear codes cannot have

low update-efficiency for the binary symmetric channel. The
argument is based on a simple observation. If a code has
dimension k and update-efficiency t, then any given codeword
has k neighboring codewords within distance t, corresponding
to the k possible single-bit changes to the information bits. If t
is sufficiently small, it is not possible to pack k+1 codewords
into a Hamming ball of radius t and maintain a low probability
of error.

Theorem 8: Consider using some (possibly non-linear) code
of length n, size 2k, k ∈ R+, and update-efficiency t over
BSC(p). Assume that t ≤ (1 − α) log k/ log((1 − p)/p), for
some α > 0. Then, the average probability of error is at least
1 − o(1), where o(1) denotes a quantity that goes to zero as
k → ∞.

Proof: First, we show that a code consisting of k + 1
codewords contained in a Hamming ball of radius t has large
probability of error. Instead of analyzing BSC(p), consider the
closely related channel where exactly w uniformly random
errors are introduced, where w + t ≤ n/2. For this channel,
subject to the constraint that the k+1 codewords are contained
in a Hamming ball of radius t, the average probability of error
is at least

1−
(2t+ 1)

(
n

w+t

)

(k + 1)
(n
w

) ≥ 1− 2t(n− w)t

kwt
.

To see this, take x1, . . . ,xk+1 to be the codewords, and
Bi, i = 1, . . . , k+1, to be the corresponding decoding regions.

Without loss of generality, we can assume that 1) the ML
decoder is detetrministic, so the Bi’s are all disjoint, and 2)
the codewords are all contained in a Hamming ball centered
at the zero vector. Now, let Di be the set of possible outputs
of the channel for input xi, i = 1, . . . , k + 1. The average
probability of correct decoding is

1

k + 1

k+1∑

i=1

|Bi ∩Di|(n
w

) =
1

k + 1

| ∪i (Bi ∩Di)|(n
w

) ≤ | ∪i Di|
(k + 1)

(n
w

) .

But

| ∪i Di| ≤
t∑

j=−t

(
n

w + j

)
≤ (2t+ 1)

(
n

w + t

)
.

The first inequality follows because an erroneous vector can
have weight at least w − t and at most w + t. The second
inequality follows because

(
n
i

)
increases with i ≤ n/2.

Now, with probability at least 1−o(1), the number of errors
introduced by the the binary symmetric channel is at least
pn−n2/3 and at most pn+n2/3, and conditioned on the exact
number of errors, the error vector is uniformly distributed over
all strings with this number of errors6.

If t ≤ (1− α) log k/ log((1− p)/p), then for p < 1
2 , pn+

n2/3 + t < n/2, for every sufficiently large n. Therefore, the
probability of error on the binary symmetric channel is at least

1− 2t(1− p)t

kpt
+ o(1) = 1− 2t/kα + o(1).

Now, for each message x of the given (n, k) code with
update-efficiency t, consider the subcode Cx consisting of the
k+1 codewords φ(x),φ(x+e1), . . . ,φ(x+ek), correspond-
ing to the encodings of x and the k messages obtained by
changing a single bit of x. These codewords lie within a
Hamming ball of radius t centered around φ(x). The above
argument shows that even a maximum likelihood decoder has
a large average probability of error for decoding the subcode
Cx. Let us call this probability PCx . We claim that the average
probability of error of the code C with maximum likelihood
decoding, PC, is at least the average, over all x, of the
probability of error for the code Cx, up to some factor. In
particular,

PC ≥ k

n

1

|C|
∑

x∈C

PCx .

We will now prove this claim and thus the theorem. Note that
PC = 1/|C|

∑
x∈C Px, where Px is the probability of error if

codeword x is transmitted. Therefore,

PCx =
1

|Cx|
∑

y∈Cx

Py.

We have,
1

|C|
∑

x∈C

PCx ≤ 1

|C|
∑

x∈C

1

|Cx|
∑

y∈Cx

Py

=
1

(k + 1)|C|
∑

x∈C

∑

y∈Cx

Py

=
1

|C|
∑

x∈C

dx
k + 1

Px,

6This, of course, follows from standard large deviation inequalities such as
Chernoff bound; see, e.g., [29, Thm. 3.1.2].
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where dx = |{y : x ∈ Cy}| ≤ n. Hence,

1

|C|
∑

x∈C

PCx ≤ 1

|C|
∑

x∈C

n

k + 1
Px =

n

k + 1
PC.

We conclude that the original code C has probability of error
at least 1− o(1) when

t ≤ (1− α) log k

log(1−p
p )

.

Remark 1: This argument does not work for the binary
erasure channel. In fact, there exist zero rate codes for the
binary erasure channel with vanishing error probability and
sub-logarithmic update-efficiency. Specifically, consider an
encoding from k bits to 2k bits that maps a message x to the
string consisting of all 0’s except for a single 1 in the position
with binary expansion x. Repeat every symbol of this string c
times to obtain the final encoding φ(x). The update-efficiency
is 2c, since every codeword has exactly c 1’s, and different
codewords never have a nonzero entry in the same position.
Since the location of a nonzero symbol uniquely identifies the
message, the error probability is at most the probability that
all c 1’s in the transmitted codeword are erased, i.e., at most
pc. Therefore, we achieve vanishing error probability as long
as c → ∞, and c can grow arbitrarily slowly.

We conjecture that for positive rates, even nonlinear codes
must have logarithmic update complexity for the binary era-
sure channel.

C. Ensemble of LDGM codes

Let us motivate the study of one particular ensemble of
LDGM codes here. Suppose we want to construct a code with
update-efficiency t. From proposition 1, we know that a linear
code with update-efficiency t always has a generator matrix
with maximum row weight t. For simplicity we consider
generator matrices with all rows having weight exactly t. We
look at the ensemble of linear codes with such generator
matrices, and show that almost all codes in this ensemble
are bad for t less than certain value. Note that any k × n
generator matrix with row weight at most t can be extended
to a generator matrix with block-length n + t − 1 and row
weight exactly t (by simply padding necessary bits in the last
t− 1 columns).

Let Γn,k,t be the set of all k×n matrices over F2 such that
each row has exactly t ones. First of all, we claim that almost
all the matrices in Γn,k,t generate codes with dimension k (i.e.,
the rank of the matrix is k). Indeed, we quote the following
lemma from [30].

Lemma 9: Randomly and uniformly choose a matrix G from
Γn,k,t. If k ≤

(
1−e−t/ ln 2−o(e−t)

)
n, then with probability

1− o(1) the rank of G is k.
This lemma, along with the next theorem, which is the main
result of this section, will show the fact claimed at the start
of this section.

Theorem 10: Fix an 0 < α < 1/2. For at least a 1 −
t2n2α/(n − t) proportion of the matrices in Γn,k,t, k ≥ nα,
the corresponding linear code has probability of error at least

1 − e−
nα
√

t
2−λpt

over a BSC(p), for p < 1/2 and λp = −1 −
1/2 log p− 1/2 log(1− p) > 0.
The proof of this theorem is deferred until later in this section.
This theorem implies that for any α < 1/2, most codes in the
random ensemble of codes with fixed row-weight (and hence
update-efficiency) t < α/λp logn have probability of error
bounded away from 0 for any positive rate. Indeed, we have
the following corollary.

Corollary 11: For at least 1 − o(1) proportion of all
linear codes with fixed t-row-weight generator matrix, t <
(α/λp) log n, α < 1

2 , and dimension k > nα, the probability
of error is 1− o(1) over a BSC(p), for 0 < p ≤ 1/2.
In particular, this shows that almost all linear codes with fixed
row weight t < 1/(2λp) logn and rate greater than 1/

√
n are

bad (result in high probability of error).
Proof of Corollary 11: From Lemma 9, it is clear that a

1− o(1) proportion of all codes in Γn,k,t have rank k. Hence,
if a 1−o(1) proportion of codes in Γn,k,t have some property,
a 1 − o(1) proportion of codes with t-row-weight generator
matrix and dimension k also have that property.

Now, plugging in the value of t in the expression for
probability of error in Theorem 10, we obtain the corollary.

To prove Theorem 10, we will need the following series of
lemmas.

Lemma 12: Let x ∈ {0, 1}n be a vector of weight t. Let
the all-zero vector of length n be transmitted over a BSC with
flip probability p < 1/2. If the received vector is y, then

Pr(wt(y) > dH(x,y)) ≥
1√
t
2−λpt,

where λp = −1− 1/2 log p− 1/2 log(1− p) > 0.
Proof: Let I ⊂ [n] be the support of x. We have |I| =

t. Now, wt(y) > dH(x,y) whenever the number of errors
introduced by the BSC in the coordinates I is > t/2. Hence,

Pr(wt(y) > dH(x,y)) =
∑

i>t/2

(
t

i

)
pi(1− p)t−i

>

(
t

t/2

)
pt/2(1− p)t−t/2 ≥ 1√

t
2−λpt.

Lemma 13: Suppose two random vectors x,y ∈ {0, 1}n
are chosen independently and uniformly from the set of all
length-n binary vectors of weight t. Then,

Pr(supp(x) ∩ supp(y) = ∅) > 1− t2

n− t+ 1
.

Proof: The probability in question equals
(n−t

t

)
(n
t

) =
((n− t)!)2

(n− 2t)!n!

=
(n− t)(n− t− 1)(n− t− 2) . . . (n− 2t+ 1)

n(n− 1)(n− 2) . . . (n− t+ 1)

=
(
1− t

n

)(
1− t

n− 1

)
. . .

(
1− t

n− t+ 1

)

>
(
1− t

n− t+ 1

)t
≥ 1− t2

n− t+ 1
.
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In the last step we have truncated the series expansion of(
1− t

n−t+1

)t
after the first two terms. The inequality will be

justified if the terms of the series are decreasing in absolute
value. Let us verify that to conclude the proof. In the following
Xi denote the ith term in the series, 0 ≤ i ≤ t.

Xi+1

Xi
=

( t
i+1

)
(
t
i

) · t

n− t+ 1
=

t− i

i+ 1
· t

n− t+ 1
≤ 1,

for all i ≤ t− 1.
Lemma 14: Let us choose any nα, 0 < α < 1/2, random

vectors of weight t independently and uniformly from the set
of weight-t vectors. Denote the vectors by xi, 1 ≤ i ≤ nα.
Then,

Pr(∀i *= j, supp(xj) ∩ supp(xi) = ∅) ≥ 1− t2n2α

n− t
.

This implies all of the vectors have disjoint supports with
probability at least 1− t2n2α/(n− t).

Proof: Form Lemma 13, for any pair of randomly and
uniformly chosen vectors, the probability that they have over-
lapping support is at most t2/(n − t). The claim follows by
taking a union bound over all

(nα

2

)
pairs of the randomly

chosen vectors.
Now, we are ready to prove Theorem 10.

Proof of Theorem 10: We begin by choosing a matrix
G uniformly at random from Γn,k,t. This is equivalent of
choosing each row of G uniformly and independently from
the set of all n-length t-weight binary vectors. Now, k > nα,
hence there exists nα vectors among the rows of G such that
any two of them have disjoint support with probability at least
1 − t2n2α/(n − t) (from Lemma 14). Hence, for at least a
proportion 1− t2n2α/(n− t) of matrices of Γn,k,t, there are
nα rows with disjoint supports. Suppose G is one such matrix.
It remains to show that the code C defined by G has probability
of error at least nα2−λpt/

√
t over BSC(p).

Suppose, without loss of generality, that the all zero vector
is transmitted over a BSC(p), and y is the vector received. We
know that there exists at least nα codewords of weight t such
that all of them have disjoint support. Let xi, 1 ≤ i ≤ nα,
be those codewords. Then, the probability that the maximum
likelihood decoder incorrectly decodes y to xi is

Pr(wt(y) > dH(xi,y)) ≥
1√
t
2−λpt

from Lemma 12. As the codewords x1, . . .xnα have disjoint
supports, the probability that the maximum likelihood decoder
incorrectly decodes to any one of them is at least

1−
(
1− 1√

t
2−λpt

)nα

≥ 1− e−
nα
√

t
2−λpt

.

Remark 2: Theorem 10 is also true for the random
ensemble of matrices where the entries are independently
chosen from F2 with Pr(1) = t/n.

VI. IMPOSSIBILITY RESULT FOR LOCAL REPAIRABILITY

In this section, we develop the converse for local repairabil-
ity over the BEC. We show that any code with a given local
repairability must have rate bounded away from capacity to

provide arbitrarily small probability of error, when used over
the BEC. In particular, for any code, including nonlinear
codes, recovery complexity at a gap of ε to capacity on the
BEC must be at least Ω(log 1/ε), proving that the above LDPC
construction is simultaneously optimal to within constant
factors for both update-efficiency and local repairability.

The intuition for the converse is that if a code has low
local repairability complexity, then codeword positions can be
predicted by looking at a few codeword symbols. As we will
see, this implies that the code rate must be bounded away
from capacity, or the probability of error approaches 1. In a
little more detail, for an erasure channel, the average error
probability is related to how the codewords behave under
projection onto the unerased received symbols. Generally,
different codewords may result in the same string under
projection, and without loss of generality, the ML decoder can
be assumed to choose a codeword from the set of codewords
matching the received channel output in the projected coordi-
nates uniformly at random. Thus, given a particular erasure
pattern induced by the channel, the average probability of
decoding success for the ML decoder is simply the number
of different codeword projections, divided by 2Rn, the size
of the codebook. We now show that the number of different
projections is likely to be far less than 2Rn.

Theorem 15:
Let C be a code of length n and rate 1 − p − ε, ε > 0,

that achieves probability of error bounded away from 1, when
used over BEC(p). Then, the local repairability of C is at least
c log 1/ε, for some constant c > 0 and n sufficiently large.

Proof: Let C be a code of length n and size 2nR that has
local recoverability r. Let T be the set of coordinates with
the property that the query positions required to recover these
coordinates appear before them. To show that such an ordering
exists with |T | ≥ n/(r+ 1), we can randomly and uniformly
permute the coordinates of C. The expected number of such
coordinates is then n/(r+1), hence some ordering exists with
|T | ≥ n/(r + 1).

Assume I ⊆ {1, . . . , n} is the set of coordinates erased
by the BEC, and let Ī = {1, . . . , n} \ I. Let x ∈ C be a
randomly and uniformly chosen codeword. xI and xĪ denote
the projection of x on the respective coordinates. We are
interested in the logarithm of the number of different codeword
projections onto Ī , which we denote by logS(xĪ). Note that
this is a random-variable with respect to the random choice
of I by the BEC.

Suppose that the number of elements of T that have all r
of their recovery positions un-erased is u. Then, the number
of different codeword projections is unchanged if we remove
these u elements from T . Hence,

logS(xĪ) ≤ |Ī|− u.

But Eu ≥ (1− p)r|T |. Therefore,

E logS(xĪ) ≤ n(1− p)− (1− p)r
n

r + 1
.

Observe that logS(xĪ) is a 1-Lipschitz functional of in-
dependent random variables (erasures introduced by the chan-
nel). This is because projecting onto one more position cannot
decrease the number of different codeword projections, and at
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most doubles the number of projections. Therefore, we can
use Azuma’s inequality to conclude that

Pr
(
logS(xĪ) > n(1− p)− (1− p)r

n

r + 1
+ εn

)
≤ e−

ε2n
2 .

If we have,

r ≤
log 1

3ε

log 2
1−p

,

then,
(1− p)r

1 + r
≥

(1− p

2

)r
≥ 3ε.

But this implies,

Pr
(
log S(xĪ) > n(1− p− 2ε)

)
≤ e−

ε2n
2 .

This means that for a suitable constant c, if r ≤ c log 1/ε, then
with very high probability logS(xĪ) ≤ n(1−p−2ε). However,
there are 2Rn = 2n(1−p−ε) codewords, so we conclude that
the probability of successful decoding is at most

2−εn + e−
ε2n
2 .

Thus, we have proved that if r ≤ c log 1/ε, the probability
of error converges to 1, and in particular, is larger than any
α < 1, for sufficiently large n.

Remark 3: Rather than considering the number of dif-
ferent codeword projections, we could have considered the
entropy of the distribution of codeword projections onto I ,
which is also a 1-Lipschitz functional. This is a more gen-
eral approach that can be extended to the case where local
repairability can be adaptive and randomized, and only has to
succeed with a certain probability (larger than .5), as opposed
to providing guaranteed recovery. However, one obtains a
bound of n(1−p−2ε) on the the entropy, so Fano’s inequality
only shows that the probability of error must be Ω(ε), while
the above analysis shows that the probability of error must be
close to 1.

VII. GENERAL UPDATE-EFFICIENT CODES

In this section, to develop further insights into the update-
efficiency of codes, we return to the more general definition
of update-efficiency that we mentioned in the introduction.
Specifically, we have the following.

Definition 3: A code is called (u, t)-update-efficient if, for
any u bit changes in the message, the codeword changes by at
most t bits. In other words, the code (C,φ) is (u, t)-update-
efficient if for all x ∈ Fk

2 , and for all e ∈ Fk
2 : wt(e) ≤ u, we

have φ(x+ e) = φ(x) + e′, for some e′ ∈ Fn
2 : wt(e′) ≤ t.

Obviously, an (1, t)-update-efficient code is a code with
update-efficiency t. As discussed earlier, any (u, t)-update-
efficient code must satisfy t > d, the minimum distance of
the code. In fact, we can make a stronger statement.

Proposition 16: Suppose a (u, t)-update-efficient code of
length n, dimension k, and minimum distance d exists. Then,

u∑

i=0

(
k

i

)
≤ B(n, d, t),

where B(n, d, w) is the size of the largest code with distance
d such that each codeword has weight at most w.

Proof: Suppose C is an update-efficient code, where
x ∈ Fk

2 is mapped to y ∈ Fn
2 . The

∑u
i=0

(k
i

)
different

message vectors within distance u from x should map to
codewords within distance t from y. Suppose these codewords
are y1,y2, . . . . Consider the vectors y−y,y1−y,y2−y, . . . .
These must be at least distance d apart from one another and
all of their weights are at most t. This proves the claim.

There are a number of useful upper bounds on the maximum
size of constant weight codes (i.e., when the codewords have a
constant weight t) that can be used to upper bound B(n, d, t).
Perhaps the most well-known bound is the Johnson bound
[31]. An easy extension of this bound says B(n, d, t) ≤
dn/(dn− 2tn+ 2t2), as long as the denominator is positive.
However, this bound is not very interesting in our case, where
we have n 3 t ≥ d. The implications of some other bounds
on B(n, d, t) on the parameters of update-efficiency is a topic
of independent interest.

Note that any code with update-efficiency t is a (u, ut)-
update-efficient code. Hence, from Section IV, we can con-
struct an (u,O(u logn)) update-efficient code that achieves
the capacity of a BSC(p). On the other hand one expects a
converse result of the form

u∑

i=0

(
k

i

)
≤ K(n, t, p),

where K(n, t, p) is the maximum size of a code with code-
words having weight bounded by t that achieves arbitrarily
small probability of error. Indeed, just by emulating the proof
of Theorem 8, we obtain the following result.

Theorem 17: Consider using some (possibly non-linear)
(u, t)-update-efficient code of length n, and dimension (pos-
sibly fractional) k over BSC(p). Assume that

t ≤
(1− α) log

∑u
i=0

(k
i

)

log(1 − p)/p
,

for any α > 0. Then, the average probability of error is at
least 1−o(1), where o(1) denotes a quantity that goes to zero
as k → ∞.

This shows that the (u,O(u logn)) update-efficient code
constructed by the method of Section IV, is almost optimal
for u 4 n.

Remark 4 (Bit error rate and error reduction codes):
Suppose we change our model of update-efficient code in the
following way (limited to only this remark). The encoding
map φ : Fk

2 → Fn
2 and the decoding map θ : Fn

2 → Fk
2 , must

satisfy the property that for a random error vector e induced
by the BSC(p) and any x ∈ Fn

2 , dH(θ(φ(x) + e),x) ∼ o(k)
with high probability. This can be thought of as an error-
reducing code, or a code with low message bit error rate [32].
Under this notion, error-reducing codes are update-efficient.
When the message changes ≤ u bits from the previous state
x ∈ Fk

2 , we do not change the codeword. Then, the decoder
output will be within o(k)+u bits from the original message.

VIII. RATE-DISTORTION COUNTERPARTS

In this paper, we have focused on error correcting codes
possessing good update efficiency and local repairability prop-
erties. In principle, these properties are also applicable to
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the problem of lossy source coding. Informally, lossy source
coding is concerned with optimally compressing a source so
that the source can be reconstructed up to a specified distortion
from its compressed representation. We formulate the problem
more precisely below.

Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables
distributed according to PX , a probability distribution over the
alphabet X. Let Y denote the reconstruction alphabet, and let

d : X× Y → R+ ∪ {0}

denote the distortion function, i.e., d(x, y) is the penalty
incurred by reconstructing a given source symbol x to the
value y. We define a distortion function for sequences as the
average per-symbol distortion, i.e.,

d(Xn, Y n) =
1

n

n∑

i=1

d(Xi, Yi).

The lossy source coding problem considers the following
situation. Given the random sequence Xn, an encoder com-
putes a string of Rn bits. The decoder, based on this string,
computes a reconstruction Y n. An encoder/decoder pair is
admissible if E[d(Xn;Y n)] ≤ D, where D is a parameter
characterizing the tolerable distortion, and the expectation is
with respect to the distribution of Xn and any randomness
used by the encoder and decoder. The goal of lossy source
coding is to minimize the rate R of the encoder over all
admissible encoder/decoder pairs. As usual in information
theory, we consider asymptotic performance as the source
sequence length n → ∞. In this limit, optimal performance
is characterized by the rate-distortion function R(D), which
specifies the minimum possible rate as a function of the
tolerable distortion D. For our purposes, the above brief
introduction to lossy source coding will be sufficient; see, e.g.,
[29] for a more thorough development.

We now turn to defining update-efficiency and local re-
pairability for lossy source codes. Both of these properties
are defined analogously to the earlier definitions given for
error correcting codes. In more detail, update-efficiency is
measured by the maximum number of bits of the Rn bit
encoding of the source that change when the source is changed
slightly. For example, when X is binary, we define update-
efficiency as the maximum number of bits of the encoding that
change when exactly one bit of Xn is changed. Depending
on the application, more general update models might be
appropriate. For example, one could define a broader class of
allowed source distortions than just changing a single element
of Xn, and measure the number of bits of the encoding that
change when the source is distorted according to any of the
allowed source distortions. We leave a thorough investigation
of different formulations of update-efficiency for future work.

We define the local repairability of a lossy source code as
the maximum number of bits of the Rn bit source encoding
that must be queried in order to recover any particular symbol
Yi of the source reconstruction. That is, a lossy source code
has local repairability t if, for all indices i, at most t bits of
the source encoding must be read in order to compute Yi.

The main questions to be asked, in the spirit of this paper,
are 1) if we allow a compression rate slightly above the

optimal rate specified by rate-distortion function, i.e., rate
R(D)+ε, what is the best possible local recoverability, and 2)
what is the best possible update-efficiency (again, as a function
of ε)? As a simple example, we consider these questions in
the context of compressing a uniform binary source under
Hamming distortion. In more detail, this is a special case of
the lossy source coding problem where the Xi are uniformly
distributed random bits, Y = {0, 1}, and the distortion function
is given by d(x, y) = 1 if x *= y, and d(x, y) = 0 if
x = y. In other words, the distortion d(Xn;Y n) is simply
the (fractional) Hamming distance between Xn and Y n.

For this case, we briefly describe known results that allow
us to make some progress on questions 1 and 2. First, it can be
shown that the local repairability must grow as Ω(log(1/ε)),
that is, for some i, at least Ω(log(1/ε)) bits of the source
encoding must be queried in order to recover Yi. This is
a corollary of known results for LDGM codes (e.g., [13,
Theorem 5.4.1]; although the theorem is stated for linear
codes, the proof given there applies to arbitrary (even non-
linear) codes). Regarding achievability, it is known that LDGM
codes can achieve O(log(1/ε)) local repairability (e.g., [13,
Sec. 5.4] or [33, Theorem 1]), so known results characterize
the local repairability up to a constant factor.

Update-efficiency, on the other hand, remains an open
question, even for this simple model. As a crude upper bound,
we observe that update-efficiency of O(1/ε log(1/ε)) can be
achieved via random codes. Specifically, the following lemma
is a straightforward consequence of, e.g., [34, Theorem 1].

Lemma 18: For any 0 ≤ D ≤ .5, there exists a lossy source
code with length n = O(1/ε log(1/ε)) achieving rate at most
R(D)+ ε (in particular, a random code has this property with
high probability).

Armed with this lemma, we copy the strategy from Sec-
tion IV. Given a large n, we construct a length n lossy
source code by splitting the n-bit source into blocks of length
O(1/ε log(1/ε)), and applying the code from Lemma 18 to
each block. Changing one bit of the source only affects
the corresponding block, so changing one bit of the source
requires updating at most O(1/ε log(1/ε)) bits of the source
encoding. The length n code clearly has the same compression
rate R as the base code of Lemma 18. Also, by linearity
of expectation, the distortion achieved by the length n code
is identical to the distortion of the base code. Therefore,
O(1/ε log(1/ε)) update-efficiency is achievable. However, it
is unclear that this is optimal. In particular, we are unaware
of any lower bound showing that the update-efficiency has to
scale with ε at all. A thorough study of local recoverability
and update-efficiency for lossy source coding is left for future
work.

IX. CONCLUDING REMARKS: EXTENSIONS TO LARGER
ALPHABETS

Although our results are derived for binary-input channels,
as opposed to the larger alphabet channel models usually
considered for distributed storage, our proofs generalize in
a straightforward manner. The q-ary generalizations for BSC
and BEC are respectively the q-ary symmetric channel and
q-ary erasure channel; formal definitions appear in, e.g., [35,
Sec. 1.2 and Sec. 1.5.3].
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The existential result of Section IV extends to the case of
q-ary channels. See, [26, Sec. IIIB, Remark 6] for more detail
on how the error-exponent result for BSC extends to q-ary
case. There are also results concerning the error-exponent of
q-ary low density codes that can be used to extend Theorem
6. The result one can most directly use is perhaps [36].

The converse results for Section V and VI, in particular
Theorem 7, Theorem 8 and Theorem 15 can easily be stated
for the case of q-ary channel. The observations regarding
adversarial error case of Section III are also extendable to
q-ary case in a straight-forward manner.
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