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Abstract

Digital techniques have had longstanding use in both the operational control and signal
processing efforts associated with phased array antennas. Fundamentally, these techniques
have served to provide additional levels of convenience and performance over the fully
analog counterparts, without specifically addressing the underlying design of the analog
hardware aspects of the arrays. The class of digitally-enhanced hardware has recently
emerged, wherein “digitally aware” design approaches are used for the purpose of alleviating
the high cost and complexity of sophisticated analog devices.

Emergent trends in millimeter wave and low-terahertz circuit technology are enabling
the prospect of physically small, yet electrically large antenna arrays for a host of exciting
new communication, radar, and imaging applications. Still, the high cost of phased arrays
remains a significant bottleneck to any widespread deployment in this regard. In light of
this challenge, we propose two phased array architectures for which the notion of digital
awareness plays a central role in their designs.

The Dense Delta-Sigma Array: Primarily motivated by advancements in low-cost fabri-
cation, this design concept provides the opportunity to replace the expensive RF components
required to control the individual array element excitations with inexpensive phase shifter
components having particularly coarse resolution (as few as 2-bits). This is made possible
by increasing the number of array elements for a given aperture beyond the nominal number
associated with the standard half-wavelength spacing. This approach is inspired by Delta-
Sigma, data converters, which employ faster-than-Nyquist sampling with low quantization
resolution.

The Sparse Multi-Coset Array: This design concept exploits the sparsity commonly
found in typical environments to allow for target detection and imaging with significantly
fewer array elements than prescribed by conventional half-wavelength spacing. The result is
a structured periodic non-uniform array composed of a number of distinct subarrays known
as cosets. This approach is inspired by multi-coset sampling, for which the average sampling
rate may be reduced below the Nyquist convention when the spectral components within
the overall bandwidth are limited to some number of sub-bands. In this approach, we view
the underlying engineering design problem as one of compressive sensing.

In this thesis, we develop and apply the underlying mathematical principles and concepts
of the dense and sparse arrays, taking into account the practical constraints and issues that
make the system design, analysis, and performance evaluation rich from an engineering
perspective.

Thesis Supervisor: Gregory W. Wornell
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Chapter 1

Introduction

Digital techniques play a prominent role in nearly all modern phased array systems, enrich-
ing both their operational and signal processing capabilities in ways beyond the possibility
of the original analog designs. The implementation of digital control over the amplitudes
and phases of the array element weights permits the rapid electronic reconfiguration of
the array pattern characteristics. The many developments in digital array processing have
yielded numerous additional tools for the extraction of useful information that would be
impossible or far less practical to implement through fully analog designs.

While these digital approaches complement the phased array system in a number of ways,
these systems still rely on conventional front-end designs having a high level of precision in
the complex signal weights at each of the individual elements. Put another way, while the
algorithmic design must account for the specifics of the analog design, the array is designed
without regard for the digital aspects of the system.

Recently, there has been an emergence of digitally-enhanced hardware designs motivated
by the desire to bridge the gap to cooperative design approaches that emphasize a level of
awareness regarding the utilization of digital techniques such that the requirements for ana-
log device complexity can be relaxed. The existing integration of digital system blocks so
common in phased arrays makes them natural candidates for such enhanced techniques.
Further, as advances in circuit technologies at increasingly higher frequencies surface, new
frontiers for the use of phased arrays become reality. Yet with the existing design conven-
tions, the phased array is normally considered to be a prohibitively costly and complex
antenna option, emphasizing the pressing need for a shift in perspective in order to address
the challenges of making their widespread use a possibility. As such, this thesis presents
two alternative phased array architectures that use digital perspectives in both design and
operation. In both cases, the architecture moves beyond conventional design principles in
a way that provides new opportunities for cost reductions while avoiding the limitations
common to existing array design techniques.

1.1 Motivation

Since the development of phased array antennas, they have been the ideal choice for a
vast range of applications ranging from point-to-point communication to remote sensing
and more recently, to high resolution imaging systems, to name just a few. Unfortunately,
the same design features that allow the performance and flexibility characteristics that
make phased arrays desirable come at such high costs as to preclude their use in all but
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CHAPTER 1. INTRODUCTION

a relatively small number of highly sophisticated systems. Research efforts promoting the
evolution of phased array designs aimed at overcoming this issue have been limited for
several decades, resulting in a general acceptance of the impracticality of a more pervasive
presence. However, as we look to the future, it becomes increasingly clear that the need to
meet these design challenges must be acknowledged.

Recent advances in technology at the millimeter-wave and the low terahertz frequency
ranges—in both the development of circuitry as well as lithography at these scales—has
enabled the potential for a new generation of portable high-end and consumer electronics.
Although size and fabrication issues are more manageable than ever before, the costs associ-
ated with the circuitry required for element level control remains a significant bottleneck to
making this a reality. Though the goal of designing low-cost phased arrays is longstanding,
these new possibilities motivate the need for novel perspectives.

1.2 Research Philosophy

Historically, the attempts in making the phased arrays more affordable have involved ad-
justing hardware designs. More recently, there has been growing interest in the design of
“digitally enhanced” analog circuits to leverage digital techniques and the increasing avail-
ability of low-cost processing power to alleviate the need for high precision, high complexity
analog blocks; see, e.g., [1] and references therein. This philosophy inspires the two novel
array architectures that are the focus of this thesis.

Dense Delta-Sigma Phased Array

The most common of phased array designs use digital phase shifters at each element. A
phase shifter having M-bits of resolution can be used to adjust the phase at an individual
element by one of 2M levels, with the exact shift implemented digitally by a dedicated
processor. For a given beam pattern, this processor determines the ideal phase shift to
be applied for each element, and then selects the nearest quantized phase shift from the
available 2M levels. Consequently, the level of quantization distortion in the overall array
pattern increases as the precision of the phase shifters decrease. As such, most phased arrays
use a minimum of 4- or 5-bits of resolution in order to keep this distortion at acceptably
low levels.

The Delta-Sigma (AY) phased array differs from conventional designs in three primary
ways. Unlike conventional array designs, in which the elements are uniformly spaced by
a distance dy = A/2, where A is the operating wavelength of the array, the AY array is
dense: a greater number of elements are packed into a given aperture such that the uniform
spacing is d < dg. Instead of the high-precision components used to set the amplitude and
phase adjustments to the signals at the array elements, or array weights, the AY array uses
only 2-bit phase shifters, limiting the weights to only four possible values. The selection
of the appropriate quantized phase shift no longer selects the “closest value” to the ideal
phase shift.

It is well known from conventional array theory that this dense element spacing does
not add to the array performance in the case of ideal weights. However, in practical set-
tings where the array weights are quantized, this close element spacing affords additional
flexibility in controlling the amount of distortion caused by this quantization. By making
use of the digitally controlled analog architecture, the availability of inexpensive processing
power is used to account for the effects of quantization by selecting the weights in a manner
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1.2. RESEARCH PHILOSOPHY

Figure 1-1: Illustration of range-dependent sparsity.

that uses neighboring elements to cancel out distortion. As the distance between the ele-
ments decreases, the effectiveness of this cancellation technique improves. As we will see,
the distortion caused by the use of the 2-bit phase shifters can be made arbitrarily small.

Sparse Multi-Coset Imaging Array

In a traditional linear imaging array, when the elements are arranged with uniform element
spacing dy = A/2, where A is the wavelength of the received signal, the image resolution
improves in direct proportion to the number of elements Ny. In the multi-coset imaging
array, the same aperture length Nodp uses N < Ny elements to produce an image at the same
resolution as the conventional imaging array. When fewer than Ny elements are uniformly
spaced by d > dg, this leads to spatial aliasing, or grating lobes, producing images with
copies of the targets appearing at additional incorrect locations. In the multi-coset array,
the elements are positioned in a recurrent nonuniform arrangement in such a manner that
the presence of such grating lobes can be avoided.

The ability to obtain the correct image using a reduced number of elements is based on
the observation that target scenes are themselves sparse in most cases. That is, the image
will contain a certain number of locations that are empty of any targets. While this is not
necessarily the case when considering the fraction of directions in which targets are located,
the existence of scene sparsity is apparent when one considers the ability to distinguish
the distance to targets by sorting their responses into a number of range cells. In light of
this, scene sparsity can be regarded as the portion of directions occupied by targets within
each range cell. As a simple example, Figure 1-1 illustrates this effect. In the illustration,
the array, shown in green, faces a large object, shown in grey, with the faces shown in red
representing the surface of this object in the field of view of the array. The complete surface
surrounds the array such that the scene taken as a whole exhibits no sparsity whatsoever.
However, if the scene is sorted into separate range cells, as shown by the concentric blue
half-circles, it is only the intersection of the red surface with the individual cells that defines
the relevant level of sparsity.

The multi-coset architecture permits a reduction in the required number of elements to
an array density ratio N/Ny provided this relative density remains above the scene density
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CHAPTER 1. INTRODUCTION

over all range cells. Rather than using conventional imaging—a digital implementation
of analog beamforming—the digital processing is enhanced through the use of an imaging
algorithm that first examines the received signal data to determine the angular regions in
which targets are located, and then utilizes the knowledge of this reduced angular subspace
to solve for the image response within this region.

1.3 Related Work

This research builds on a number of contributions from a range of communities. In this
section, we summarize some of the related works from the fields of antenna theory, signal
processing, circuit design, and compressive sensing to provide context for the contributions
of this thesis.

Cost Effective Array Designs and Delta-Sigma Applications

The developments in millimeter-wave technology have led to a resurgence of interest in
practical phased array designs tailored to this new frequency regime; see, e.g., [2-7] and the
references therein. Within the broader realm of ongoing research, some efforts are focused
primarily on exploiting increasing levels of silicon integration, while other efforts primarily
seek to exploit the increasing availability of inexpensive digital circuitry and processing.
Moreover, some of the most promising efforts leverage both jointly.

In spite of recent progress, the components required for accurate phase control at each
element in such arrays continue to be expensive, precluding the use of phased arrays in many
otherwise compelling applications. Simply replacing high-end, high-resolution components
with low-cost, coarsely discretized phase shifters in traditional designs sharply degrades
performance, limiting the quality of the beams that can be formed by the array. As a result,
addressing the need for adequate phase control in beamforming remains a key challenge in
the pursuit of widespread deployment of millimeter-wave phased arrays.

There has been a variety of research exploring this issue. For example, some research has
focused on characterizing the capabilities of phased array systems utilizing low resolution
phase shifters to meet the needs of current and proposed millimeter-wave applications [8,9].
At the same time, other research has focused on developing novel approaches for sharing a
smaller number of phase shifters (and other components) among antenna elements [10].

In this design, we explore a rather different approach. Specifically, instead of pursuing
designs with a smaller number of accurate phase shifters, we develop a high-performance
architecture based on efficient utilization of a larger number of coarse phase shifters. To
accomplish this, we repurpose the established theory of delta-sigma analog-to-digital con-
verters (ADCs) [11], applying it in the spatial domain to determine an appropriate phase for
each of the densely packed elements to create a desired array pattern. In temporal domain
AY. as used in ADCs, coarsely discretized faster-than-Nyquist sampling, or oversampling, is
used to force the quantization error to appear at higher frequencies than the original signal.
This, in turn, allows the original signal to be retrieved by low-pass filtering, removing the
undesired error. Exploiting a direct correspondence between temporal domain and spatial
domain sampling, we observe that faster-than-Nyquist sampling in ADCs is the equivalent
of sub-half-wavelength element spacing in uniform arrays. Moreover, the shaping of quanti-
zation noise into the high frequencies in ADCs is equivalent to the steering of beam pattern
quantization error into the so-called invisible region of space, while leaving the intended
pattern throughout the (visible) area of interest.
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From a broader perspective, our architecture can be viewed as exploring potential at-
tractive technology tradeoffs enabled by inexpensive digital processing. In particular, the
architecture allows for making tradeoffs between phase shifter design complexity and denser
antenna implementations. And with ongoing evolutions in antenna fabrication and integra-
tion technology, such tradeoffs may turn out to be quite favorable. For example, using mod-
ern lithography there is the potential to etch cost-effective dense arrays of patch antennas
antennas, which with increasing levels of density effectively become simple printed dipoles.
From this perspective, the AX. architecture represents a generalization of the traditional
phased array architecture that allows a designer, with specific implementation technology
at his/her disposal, to choose from a spectrum of tradeoffs between array density on one
hand, and analog circuit complexity on the other.

The AXY data encoding process continues to be adapted for use in a growing number
of fields and applications that exploit oversampling in the temporal domain in order to
mitigate noise while using relatively simple sensors for measurement; see, e.g., [12-14].
Additionally, AY. techniques have been applied to phased arrays and imaging arrays in a
number of instances; see, e.g., [15-18]. However, these techniques have focused on the use
of AY techniques in the more traditional temporal domain for such arrays, in contrast with
our focus on exploiting spatial oversampling.

Spatial domain versions of AY. have received attention in applications other than antenna
array design; examples include image processing, wave computing, and pattern recognition
[19,20]. For instance, in the context of image processing, an approach known as error
diffusion uses AY. quantization to reproduce images from low-resolution but oversampled
data. However, these methods are in the same spirit as the traditional application of
AY principles in the temporal domain. In particular, they apply it to the data itself, whereas
in our approach it is applied to the actual sensors/transducers, i.e., the antenna elements.
Finally, in [21], a spatio-temporal AY, quantization scheme is developed for transmit antenna
arrays. While there are some superficial similarities to the methods described in this thesis,
the goals are quite different, and how the AY methodology is exploited diverges sharply.
In particular, whereas the architecture in [21] aims to reduce the temporal oversampling
requirements of the time domain waveforms, ours seeks to produce specified antenna beam
patterns with simpler structure and hardware.

Array Thinning and Multi-Coset Sampling

Recent advances in millimeter-wave technology, including the advent of terahertz comple-
mentary metal-oxide semiconductor (CMOS) circuits, have the potential to enable, for the
first time, a host of low-cost imaging and “personal radar” applications. Indeed, at these
higher frequencies, typical resolution requirements can be met with comparatively compact
arrays, which are especially attractive for applications requiring some degree of mobility.
Moreover, such arrays can be implemented with inexpensive integrated circuit and antenna
technologies, and digital implementations.

However, with such technology comes significant new challenges, an important example
of which is the large number of array elements typically required to construct a phased array
in such applications. As an illustration, in a vehicle collision avoidance system, obtaining
sufficient resolution might require an aperture of roughly 2 m. But in this case a traditional
phased array operating at 100 GHz with half-wavelength element spacing would require
roughly 1000 antennas, which is daunting to implement. Indeed, such arrays are costly and
complex to design and calibrate, and, moreoever, since the system processing requirements
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scale in proportion to the number of elements, the needed computational bandwidth quickly
becomes impractically large.

As a result, there is renewed interest in developing sparse antenna array architectures.
Sparse arrays, characterized by average inter-element spacings of greater than one half of
the operating wavelength, have been of interest throughout much of the history of phased
arrays, garnering a great deal of attention in the early 1960’s; see, e.g., [22] and references
therein.

The design of general-purpose sparse arrays has typically entailed making basic per-
formance tradeoffs. A well-known example is the use of “density tapering,” which uses a
gradually increasing spacing profile as one moves from the center toward the edges of the
aperture. These arrays are representative of a class of “thinned” arrays that stretch the
aperture associated with a given number of elements to achieve a desired resolution by nar-
rowing the width of the main lobe without introducing additional grating lobes. However,
this is obtained at the cost of a significant increase in the sidelobe level. In certain appli-
cations for which resolution is the key performance metric, these provide a useful design
solution. However, in the context of imaging arrays this introduces an unacceptable noise
floor.

Another class of sparse arrays, referred to as limited scan arrays, accommodate sparse-
ness by constraining the field-of-view of the array to a commensurately narrow range of
angles [23]. This may be accomplished through the use of lens or reflector systems designed
to increase the directive properties of the array elements such that grating lobes are sup-
pressed outside of the angular region of interest. However, such arrays must be rotated
physically in order to provide wide angle coverage, requiring relatively static environments
as well as increased mechanical complexity.

An extension of the limited scan array is seen in overlapped subarray antennas [24], in
which the array elements are connected to multiple subarrays. Each subarray acts as an
analog beamformer, suppressing signals outside of the desired sector. By connecting digital
receivers to the subarrays, full coverage throughout the sector is accomplished in the digital
domain. With this architecture, the number of required receivers decreases linearly with
the size of the sector. In turn, full coverage can be achieved through a combination of
element-level phase shifters and subarray-level digital receivers.

In this work, we take a different approach, whereby rather than constraining the func-
tionality or performance of the array, we exploit structure in the scene being imaged. In
particular, we seek to exploit sparsity in the scene to allow the number of antenna elements
to be reduced, i.e., when the scene being imaged is sparse in an appropriate sense—even
without knowing where it is sparse—then it is possible to commensurately reduce the num-
ber of elements in an imaging array. Moreover, such sparseness is quite common in typical
applications.!

This approach also has a rich history. Consider, for example, the classical problem of
direction-finding with multiple sources, for which the MUSIC algorithm [25], among others,
was developed. In this case, it is possible to achieve high-resolution with relatively few
antenna elements because of the sparse nature of the scene. Indeed, the number of elements
required is typically on the order of the number of sources. Hence, the presence of structure
in the environment allows the number of elements to be reduced.

!Note that in a typical scene while there are objects at some range in any particular direction, when we
use enough bandwidth to sufficiently resolve range as well, we find significant sparseness in the range-azimuth
plane.
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For arrays containing just a few elements, the array design and image reconstruction can
often be fairly straightforward and exploit classical techniques. However, for arrays of even
a few dozen elements, such direct approaches quickly become computationally infeasible to
design, and impractical to implement. As a result, there is a need to impose useful structure
on the array to enable efficient design and processing.

There has been growing recent interest in nonuniform arrays with structure, and how
such structure can be exploited by efficient array processing to support forms of sparse sens-
ing; see, e.g., [26-32]. Ulimately, these developments leverage perspectives and techniques
from the field of compressive sensing (CS) [33,34]. For example, the co-prime sampling tech-
nique in [28] develops a nonuniform design from a pair of uniform sparse samplers, allowing
the exploitation of this underlying structure to enable efficient design and processing.

In our development, we focus on particular structured sparse antenna designs that are
comparatively easy to design and for which efficient array processing algorithms can be
developed to perform the image reconstruction. Specifically, we focus on “multi-coset”
arrays, defined as comprising a collection of interleaved sparse uniform arrays such that the
elements are laid out in a periodic nonuniform pattern over the aperture.

This special structure has important computational implications. In particular, as will
become apparent, the complexity of the associated array processing for such arrays is ef-
fectively governed by the number of elements in one period of the array, not by the total
number of elements—i.e., the complexity does not significantly depend on the number of
periods of the pattern in the array. As a result, the practicality of our architecture is not
limited to arrays consisting of only very small numbers of elements, as has historically often
been the case with less judiciously structured nonuniform arrays. This array architecture,
introduced in [26], follows from exploiting the close mathematical relationship between the
problem of imaging from a discrete array, and that of reconstructing a bandlimited time-
domain waveform from samples. Indeed, our architecture is the counterpart of multi-coset
sampling [35].

1.4 Contributions and Thesis Structure

From a high level perspective, the translation to the spatial domain of the AY and multi-
coset concepts results in a number of fundamental similarities in the analysis and develop-
ment of the array designs. As the practical details of implementing these ideas into fully
realized architectures are considered at a deeper level, the story diverges from that of the
original time domain applications, highlighting important distinctions. The primary objec-
tives of this research are to detail the repurposing of the underlying concepts and to create
a framework to address the characteristics unique to phased array systems. To this end,
the thesis is laid out as follows.

In Chapter 2 we describe the foundational array concepts related to the subsequent
development of the design innovations in the proposed arrays. This includes a review of
standard topics such as array patterns, beam scanning, and conventional design practices.
Special attention is given to effects of mutual coupling on the formation of patterns and
power efficiency due to the particular relevance of this topics to the densely populated
AY array.

Chapter 3 begins the development of the AY. array with an introduction of the notion of
phase quantization in the excitation of array weights. Relating this to signal discretization
in analog-to-digital converters, we extend the concept of AYX ADCs to form the basis of
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the proposed design. Chapter 4 continues the development using the more evolved free
excitation array model to include the effects of mutual coupling and power efficiency. Our
analysis investigates the robustness of the AY beamforming technique under the potentially
severe electromagnetic environment inherent to arrays of tightly packed elements. We then
consider the effects of both the dense physical architecture as well as the AY, quantization
technique on the array efficiency, including the implementation of a scan impedance based
matching network that provides the potential for wideband performance benefits compared
with conventional designs. Then, in Chapter 5 we describe experimental measurements
performed to validate the AY array development and analysis.

In Chapter 6 we switch our focus to the multi-coset array, describing the idea of beam-
forming in the context of image formation and defining the central concepts of how the
sparsity and structure of the scene and array are characterized. This chapter details the
two-stage image reconstruction algorithm for the sparse array, examines the specific manner
in which the system is affected by noise, and introduces a computationally simple failure
indication stage to the algorithm based on the concept of back projection error. Chapter
7 discusses the various considerations regarding the specific layout of the multi-coset ar-
ray and presents a novel design technique shown to optimize the aggregate performance
of the array in noisy environments. Following this design procedure, we use the idea of
range-dependent sparsity alongside the combined reconstruction and failure detection al-
gorithm, forming two dimensional images from synthesized radar data. Chapter 8 details
the process of performing experimental measurements to demonstrate the robustness of our
development in a practical setting.

Finally, in Chapter 9 we conclude with a discussion of our results and describe a number
of interesting directions for future research.
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Chapter 2

Conventional Phased Array
Concepts

This chapter provides an overview of the basic characteristics of linear arrays needed for
this thesis.

2.1 Linear Arrays of Isotropic Elements

Our development begins with the linear array geometry shown in Figure 2-1.

2.1.1 Array patterns

Consider N ideal isotropic elements arranged with uniform spacing d along the z axis as in
Figure 2-1. For time-harmonic sources with angular frequency w and associated free space
wavelength A, when the complex weights {wn}nN;01 are applied to the array elements, the

beam pattern in the direction given by k, = kcosf, where k = 27 /) is the spatial angular
frequency of the waves and the angle € is measured from the 4z axis, may be written as [36]

N-1
Fllz) =) wpel™=d. (2.1)
n=0

The region of k,-space corresponding to real values of 0, V = {k, : |k.| < k} is referred
to as the wvisible region, or real space. Outside of this region, 6 takes on purely imaginary
values, and as such, V= is referred to as imaginary space.

2.1.2 Beam scanning

The main beam is scanned to k.o when a progressive phase shift across the array Jw, =
—nk,od coherently combines signals along this direction. Since the beam pattern is 27 /d-
periodic in k.-space, the main beam direction may be uniquely specified for any kg in the
alias-free region Vo = {k, : |k.| < w/d}. If d > 7/k, Vo is a subset of V, and it is possible
to have an alias of the main beam within real space, known as a grating lobe.

The relative power density, or power pattern, of an array is given by P(k.) = |f(k.)|?.
For a transmitting array, this pattern represents the relative radiation intensity in the
direction k,. When a grating lobe is present in real space, a part of the power intended for
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Figure 2-1: Uniform linear array geometry

the main lobe direction is instead transmitted to the grating lobe direction. For a receiving
array, the power pattern gives the relative power gain of a signal arriving from k,. With
grating lobes, signals from unintended directions are amplified by the same level as the
main lobe, leading to directional ambiguities and reduced signal-to-noise ratios.

An illustration of the effect of element spacing on the power pattern is shown in Figure
2-2 for uniform linear arrays of fixed length L = 20\ scanned to k.o = k/2 (at an angle of
30° from the broadside direction normal to the array). In each plot, a portion of imaginary
space is shown to highlight the grating lobe behavior. For d = A\/4, the first main lobe
alias lies well outside the visible region and does not appear within the displayed range of
k.. At a spacing of d = A\/2, we can see that the beam can be scanned nearly to the edge
of the visible region before the first grating lobe begins to appear at the opposite edge. In
the case of d = A, an exact copy of the main lobe appears within V and we see that this is
unavoidable at any scan angle k.g.

As we see in Figure 2-2a, when d < 7w /k, Vy extends beyond the visible region. In this
case, it is possible to scan the main lobe entirely outside of real space. In the transmit
case, this has the physical interpretation that the array is attempting to direct power into
imaginary space, and as a consequence very little power will actually propagate away from
the array. The receiving array has an analogous interpretation: it is attempting to focus
on signals coming from imaginary space, thus causing any signal from real space to be
combined incoherently.

With no apparent benefit gained from choosing a particularly small element spacing,
conventional array design generally dictates that the spacing be set at or just slightly less
than dy = w/k = A/2. Based on this convention, a linear array with aperture length
L = Nd is referred to as a standard uniform linear array when the number of elements is
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Figure 2-2: Power patterns for L = 20\ linear array scanned to k.o = k/2. The edges of
the visible region are marked with vertical dotted lines.
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N = Ny = L/dy. When the same aperture is filled uniformly with more than Ny elements,
the resultant array is described as a dense array. As will be shown, while there is no benefit
to using such an array with idealized components, a dense array has the potential to be
useful for practical phased array implementation.

For our development, it is important to emphasize the distinction between the impacts
of varying the array aperture size versus varying the number of array antennas, as these
parameters are independently chosen in our architecture. To first order, the aperture size
determines the fundamental pattern characteristics such as beamwidth and directivity. In a
traditional array with element spacings near a half-wavelength, changing the aperture size is
equivalent to changing the number of antennas. However, with the AY array architecture
we focus on a fixed, but arbitrary array aperture within which the number of antennas is
increased by reducing the element spacing throughout the aperture, resulting in a greater

2.2  Mutual Coupling

Physically, the array weights in (2.1) represent voltage or current excitations applied to
the individual elements. For example, in an array of thin-wire dipoles, these weights are
the currents across the terminals of the two dipole halves. Implicit in this expression for
the beam pattern is the assumption of direct control over these terminal currents. This is
known as the forced excitation model.

A more accurate representation of a practical array system is the free excitation model,
characterized by the equivalent circuit shown in Figure 2-3. In this model, the weights
{wy} represent the complex voltages generated by individual sources, each with internal
impedance Zy. The array is described as an N-port network with impedance matrix Z €
CN*N such that v = Zi [37], where v and i are length-N vectors containing the voltages
{vn} and currents {i,} at the terminals of the array elements. The terminal currents in
Figure 2-3 are related to the weights w € CV according to

w = Zoi+v = (ZoI + Z)i, (2.2)

where I is the N x N identity matrix. Defining the coupling matriz as C = (Zol + Z) 1,
such that i = Cw, the effects of the feed network and mutual coupling may be accounted
for by replacing the w,, in (2.1) with 4,, = Z;\i;é CrymWm,. The resultant beam pattern with
mutual coupling is then

N—-1N-1

fMC(kz) = Z Z Cnmwmejnkzd~ (23)

n=0 m=0

The model described above is commonly used in traditional mutual coupling analysis—
see, e.g., [38]. We may obtain a useful form for the purpose of our analysis by exploiting
certain structure in the coupling. In particular, it is useful to express (2.3) in terms of the
embedded element patterns, which are the patterns due to a unit excitation at a specified
element while in the presence of the remaining array elements. While these will vary among
the elements near the edges of the array, most elements behave similarly to the elements of
an infinite array. In the infinite array model, the physical coupling environment is constant
for all elements and as such, the coupling matrix C has a Toeplitz structure, with identical
entries along each diagonal ¢, = Cy,qpm. Thus, the complete coupling matrix may be
represented by the set {c,}, which we refer to as the infinite array coupling coefficients.
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Figure 2-3: Equivalent circuit diagram for the antenna array. The beamformer output is
described by a set of voltage sources {w,}, each with internal impedance Zy. The mutual
coupling among the array elements is modeled as a N-port network with impedance matrix
Z.
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Making the substitution p = n —m in (2.3), the beam pattern for the infinite array is

fMC(kz) = Z Z prmej(m+p)kzd
m p

= Z Wy el =4 Z cpejpkzd
m P
= f(kz) fc(kz)' (2'4)

In (2.4), we have rewritten the free excitation beam pattern (2.3) as the product of the
forced excitation beam patterns due to {wy,} and {cp}, the latter, which we refer to as the
coupling pattern of the array f.(k,). From (2.4), we can see that the coupling pattern is the
beam pattern of the array when a unit excitation is applied to the element located at the
origin. Note that this is precisely the embedded pattern shared by all the array elements
(up to a phase term). This useful factorization of the beam pattern allows for a convenient
separation of the coupling effects from the simpler forced excitation relation used when
mutual coupling is ignored.

2.3 Power Efficiency

Under perfect conditions, an array will radiate all the available power delivered by the
source. When the power radiated by the array P,,q is less than the incident power sent
from the source P, the array is said to have a loss in the power efficiency

Prad
= —. 2.5
"7 P (25)

If the array is composed of lossless materials, efficiency loss is due to impedance mismatches
between the source and the array elements. Since the impedance of each element is the
ratio of the voltage to the current across the element terminals, mutual coupling causes
these mismatches to vary with each particular array excitation.

For a particular choice of source excitations w, the power radiated by element n is
Re{iXv,}. The total power radiated is then

N-1
Paa =Y Re{ifvn}
n=0

= Re{i'v}

=il Re{Z}i

=wi(Zol + Z) VT Re{Z}(ZoI + Z) 'w. (2.6)
The power efficiency will be maximized when the array is perfectly impedance matched

such that v = Zi = Zyi. Hence, the total available incident power can be deduced from
(2.6) by noting that Py = Praq when Z = ZyI, with the result

1

Pipe = TZOW

fw. (2.7)
Combining (2.6) and (2.7) with (2.5), we obtain, with some rearranging of terms, the
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following expression for the array efficiency in terms of the array excitations:

wh(I-SfS)w . |Sw]|?
lw|*

= wiw

where S = (Zo1 — Z)(Zol + Z)~! is the standard scattering matriz of the array [37].

(2.8)
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Chapter 3

Delta-Sigma Quantization for
Phased Arrays

In this chapter we consider the issue of pattern distortion caused by phase quantization
in the excitation of phased arrays. Traditionally, the only recourse available for reducing
this distortion has been to decrease the level of quantization error through the use of phase
shifters with higher resolution, a primary driver of the high cost of phased arrays. The first
of the two array designs proposed in this thesis employs an alternative approach for efficient
quantization inspired by the Delta-Sigma modulation technique originally developed for use
in analog-to-digital converters.

3.1 Traditional Delta-Sigma Quantization Concepts

In practice, the phases of the complex array weights are restricted to some finite set of quan-
tized values defined by the resolution of the phase shifters used in the network connecting
the array to the source. Phase shifters with M-bits of resolution can provide any of 2M val-
ues uniformly distributed over the range [0,27). For a desired excitation w, = a,e’®", the

realized excitation is W, = Q[w,] = ane’®, where the quantization operator Q selects by,
such that the phase is the available value closest to ¢,. Consequently, this adds undesired
distortion to the far-field beam pattern.

The issue of phase quantization in the excitation of array elements draws a close anal-
ogy to the difficulty that arises in the implementation of conventional analog-to-digital
converters. At each sampling instance, the input signal z; is mapped to one of a number
of discretized values ;. This introduces an additive error e;, as shown by the equivalent
circuit in Figure 3-1. To keep distortion levels low in the output signal, the circuits in this
type of converter require high-accuracy analog components.

3.1.1 Oversampling

Consider a signal bandlimited to 0 < f < fy sampled at frequency fs. When fs is greater
than the Nyquist frequency 2fp, the signal is said to be oversampled by a factor defined as

the oversampling ratio (OSR)

OSR = J= (3.1)

2fo
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Figure 3-1: Sampled-data equivalent circuit of a conventional analog-to-digital converter.

At the sampling frequency fs, all of the quantized signal power in y; is contained within
the frequency band 0 < f < fs/2. If the quantization error e is modeled as white noise,
uncorrelated with the signal x, then the spectral density of the sampled noise is evenly
distributed over this band, given by

B(f) = a\/f7 0<f<f)2 (3.2)

where o2 is the mean-square value of e.

By oversampling, the signal-to-noise ratio of the output signal y is reduced through the
use of a low-pass filter for frequencies above fy, thereby retaining the entirety of the signal
power while limiting the noise power to the portion that falls into the signal band

fo 2, 2
2 2 2 0 Oc
b= [ =at (3) - oo (3.3
This result shows that oversampling reduces the in-band noise in proportion to the over-
sampling ratio. As such, each doubling of the sampling frequency results in an increase of
the signal-to-noise ratio of 3 dB.

3.1.2 Noise shaping

While simple oversampling does reduce in-band noise, a more efficient use of the increased
expense of the higher sampling rate can be obtained through the use of noise shaping. For
this, we will now describe the Delta-Sigma modulator, represented by the equivalent circuit
shown in Figure 3-2.

The input signal z; passes first through an integrator, shown in the equivalent circuit
as the delay loop. The output of the integrator w; then feeds to the quantizer, and the
quantized output y; is fed back and subtracted from the input signal. Whereas the output of
the conventional analog-to-digital converter constantly tracks the input signal, this feedback
forces the average value of the quantized output to track the average input. As these values
differ, the error builds up in the integrator and in time will correct itself.

The input-output relation can be shown as follows. The integrator output is given by

Wi = Ti—1 — Yi—1 + Wi—1
=1 — (wi—1 + €i—1) + wi—1
= T;—1 — €;_1. (34)
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Delay
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®

Figure 3-2: Equivalent circuit of the AY analog-to-digital converter.

This term is then quantized, adding error e; to give
yi = xi—1 + (€5 —ei—1) . (3.5)

The resultant output contains the original (delayed) signal plus an effective error, which is
in this case the first-difference of the quantization error:

n, =e€;, —€—1. (36)

Employing the same white noise model for e as before, we can compare the power
spectral densities of the AY and conventional data converters in order to see the noise
shaping effect

IN(H)I? = |E(f)P (1 _ iemflg|

= (2;5) 4 sin? 7}{ (3.7)

From this expression it can be seen that the noise is suppressed at low frequencies and
increased at higher frequencies. This is illustrated in Figure 3-3 for OSR = 8. By applying
a low-pass filtering of frequencies above fy to the output signal y; (not depicted in Figure
3-2), only the noise to the left of the dashed line will remain.

The resultant in-band noise power for the AY. quantization is

fo
ng = / N(f)Pdr

0

B 802 f0-2ﬂ
_<fs>/o g

fo
()L (o)

_402{ fs . 277'fO:|
= 0 n .
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Power Spectral Density

0 Jo Frequency fs/2

Figure 3-3: Power spectral density of the noise |N(f)[* from AY. quantization compared

with that of conventional quantization |E(f)[?, OSR = 8.

For fs > fo, the small angle formula sinz ~ x — 23 /6 applies, giving

4o 1fs (2 3
i oo 15 ()

_03772 27 fo 3
‘3( fs)

2,2
- 063” (OSR) ™. (3.9)

So now, with the A3 modulator, each doubling of the sampling frequency results in a
gain of 9 dB—an improvement of 6 dB over when oversampling is used alone without the
AY feedback structure.

3.2 A Phased Arrays

We now return our attention to the problem of array phase quantization. As mentioned in
the beginning of this chapter, for a desired excitation with phase ¢,, = Zw,, € [0,27), the
M-bit phase shifters restrict the actual excitations w, to have quantized phase

bn € {0, Adpr, 20¢ns, ..., (2M — DAL, (3.10)

where A¢y; = 27/2M is the resolution of the phase shifter. Drawing a parallel to the
sampling problem discussed in Section 3.1, the problem of array phase quantization is to
determine a digital representation of an analog phase input.

While analog-to-digital converters sample a continuous signal in the temporal domain,
an array samples a continuous aperture in the spatial domain. For this reason, it is preferable
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W = wo + qo W = w1 +q1 W2 = w2 + g2

Wo w1 w2

Figure 3-4: Equivalent circuit for conventional phase quantization.

to express the spatial sampling rate in terms of the array density ratio

_ld _do

= = 3.11
Tdo ~ 4 (3.11)
where dy = \/2 is the conventional spacing between elements, such that
1 2k
—=—=— 3.12
d() A T ( )

is the spatial Nyquist (angular) frequency associated with far-field pattern f(k,) over the
visible region of space |k.| < k, as developed in Chapter 2.

In this section, we develop the AY, phased array first by describing the relationship and
mathematical similarities to the AY modulator. Later, we will explore the nature of this
design directly from an array perspective.

3.2.1 Conventional phase quantization

Conventional phase quantization can be illustrated by the equivalent circuit in Figure 3-4.
The similarity to the conventional analog-to-digital converter in Figure 3-1 is clear, with the
multiple circuit blocks distinguishing the spatial sampling of the array. The M-bit phase
shifter is represented by the phase quantization block, which adds quantization error g, to
the desired excitation weight w,, resulting in the phase-quantized output

Wy, = Wy + Gn. (3.13)
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Instead of the intended beam pattern, the array now has the quantized beam pattern

N-—1
f(kz) _ Z W e]’l’Lk}Zd
n=0
N-1 N-1
= wyel ™= 4 Z qneimh=d, (3.14)
n=0 n=0

The first term in (3.14) is the desired pattern f(k,) and the second term is the pattern
distortion or quantization error pattern

N-1
fQ(kz> = f(kz) - f(kz) = Z QTLejnkZd' (315)
n=0

Signal-to-quantization noise ratio

In Section 3.1, the noise power n% was used to characterize the effects of oversampling
and noise shaping [cf. (3.3) and (3.9)]. For the analysis of the effect of quantization errors
on arrays, the related signal-to-quantization-noise ratio (SQNR) will be used as a general
measure of the relative pattern distortion

P, signal

SQNR = (3.16)

Pnoise
The signal power Pyjgna refers to the power pattern magnitude in the desired scan direction
due to the desired array weights,

N-1 2
Psignal = |f(k7z0)|2 = (Z |wn|> ) (317)
n=0

while the noise power Ppoise is the average noise power distributed throughout the visible
region due to the quantization errors in the array weights

1 k
Pnoise = Qk/ |fq(kz)‘2dkz' (318)
—k

Although the value of P,ise Will be a deterministic function of the specific array weights and
the particular quantization levels, a more general interpretation of the noise power considers
the expected value over some distribution of weights. In that sense, a white noise model for
the quantization errors can be used, as was done for the analog-to-digital converter analysis.
It is convenient to normalize the array weights such that the signal power remains fixed at
Pggnal = 1, such that SQNR =1 / Phoise and the quantization error model may be expressed

as
2

* Gq
E [Qan} = ﬁémna (3.19)

where ag /N? is the average noise at the individual elements (fixing Pjigna1), and where

1 m=n

Sn = { (3.20)

0 otherwise.
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Using (3.15) in (3.18) and taking the expected value we obtain the following:

1 L |N—-1
Pni =F / QnejnkZd
oise ok T nz:;)
1 r N—-1 0_3
= — —dk,
TR
n=0
0.2

=4 (3.21)

2
dk,

=

The noise power decreases linearly with NV, a natural consequence of the averaging effect
when the same amount of power is distributed over an increasing number of elements and
the quantization terms combine incoherently in the far-field. For a fixed aperture length,
N = NgR, where Ny is the number of elements with uniform spacing dy. Thus the SQNR

can be written as
NoR
5 -
94

SQNR = (3.22)

The process of obtaining the result in (3.22) closely follows the analysis of the conven-
tional analog-to-digital converter, with the similar conclusion that a doubling of the density
ratio R yields a 3 dB improvement in the SQNR. However, a notable distinction in this
case is that rather than necessitating a low-pass filtering of the noise spectrum above the
signal band, this filtering occurs naturally as the close element spacing pushes a portion of
the quantization noise pattern outside of the visible region while leaving Pijgna unchanged.

3.2.2 AY phase quantization

As we saw with the data converters, it is possible to improve the efficacy of spatial over-
sampling through the use of noise shaping. The AY array phase quantization technique is
analogous to the AY modulation described in Section 3.1.2. In this case, the purpose is
to shape the quantization noise pattern to higher values of |k,| by implementing the phase
quantization as shown by the equivalent circuit in Figure 3-5.

In this implementation, the feedback loop is represented by the difference between the
input to the quantizer and its output. This difference is added to the quantizer input at the
next element, achieving the effect of the integrator in the AY modulator. As before, the
average value of the quantized output tracks the average input, and any persistent difference
between these values accumulates in the feed forward path and eventually corrects itself.
The input-output relation between the desired weight and the AY quantized weight is

Wy, = Q[wn - Qn—l} = Wp — (Qn - QH—1)~ (323)

This result is mathematically equivalent to (3.5), the only exception being the one-step
delay in the AY modulator implementation.
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wo = wo + qo w1 = w1 —qo+ q1 we = wy — q1 + @2

Wo w1 w2

Figure 3-5: Equivalent circuit for AY phase quantization.

With the A excitations, the quantization error pattern is given by

N-1

fq(kz> = Z (QR - anl)ejnkZd

n=0

N-1 N-2
_ Z qne]nkzd _ Z qnlej(n +1)k.d
n=0 n'=—1
N—-2
_ (1 o e]kzd) Z qne]nkzd + QN—lej(N_l)kZd- (324)
n=0

Here we see our first divergence from the AY modulator development: the finite aperture
length of the array makes it such that only the first N —1 elements make appropriate use of
the AY excitations, as the final element has no following element to which the error term
is fed.

SQNR in AY arrays

The SQNR for the AY array can be analyzed using the framework developed in Section
3.2.2 by replacing the quantization error pattern in (3.21) with (3.24). To begin, we can
ignore the finite aperture effect and assume that the summation in (3.24) is taken over all
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N elements in order to keep the relation to the analog-to-digital converters clear.

1 k
Proise = F %/ ’ ]kd qujnkd
- 2
z Oq
)Y

1 [* 5 k.d
=5 | (45111
20 1
= /(1 cos k.d) dk,

Z

—20 1- L inkd 3.25
= —@sm (3.25)

For d < 7/k, we use the small angle approximation for the sine term to obtain

20 1 1 op 2 k242
Pnoise ~N—1—-— - = 3 = . 2
i { L (m L (k) )] SO (3.26)

The first term in this result ag /N is the noise power for the conventional phase quantization.
The second term is proportional to R~2 since d = dy/R, and we see that as with the
AY. modulator, the noise shaping reduces the noise by an extra 6 dB with each doubling of
the array density, in addition to the 3 dB improvement due to the averaging effect.

We can include the finite array effect directly by scaling the above result by a factor
of (N —1)/N to account for the fraction of the total power that goes to the final element,
which adds an additional 03 /N? to the final expression

N-1 02”2 q 2
T NQR (3.27)

B noise —

where k = 7/dy was substituted to highlight the similarity to (3.9). In principle, as R grows
very large, the effect of the AY cancellations will continue to eliminate the noise due to
the rest of the array to the point that the noise caused by this single element becomes the
dominant source of quantization noise. However, in nearly all practical settings this edge
contribution will be negligible. As an example, for an array of length L = 2\ (Ny = 4),
a density ratio of R = 12.9 is required for the two terms in (3.27) to be comparable in
magnitude.

3.3 Delta-Sigma Implementation

When designating the complex array weights, a beam-steering computer (BSC) computes
the desired weights and sends a control signal to the phase shifters indicating which of the 2M
quantized phase shifts to apply to the incoming or outgoing signal. This may be performed
in an analog sense, where the the steering signal takes any value—mnot necessarily confined to
the same discrete set as the phase shifter—and the phase shifter applies the closest possible
shift. Alternatively, the computer can communicate directly to the phase shifter using an
M-bit message corresponding to which of the quantized shifts is to be applied.

The AY. array uses 2-bit phase shifters and a uniform amplitude a for the weight of each
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array element, and as such these weights take one of only four possible values:

a

i = Qlwn — gus] € {%mm%u —j%%(—l S S ) NECES

One benefit of this architecture is that it allows the bulk of the operational complexity
to be performed digitally. The BSC determines the A weights according to the following
simple algorithm.

1 function weights.ds = quantize_delta_sigma (weights,amplitude)
2

3 weilghts.ds = zeros(size(weights));

4 g.ds = zeros(size(weights));

5

6 weights.ds(l,:) = amplitudexquantizel2bits(weights(1l,:));

7 g-ds(l,:) = weights.ds(l,:)—weights (1, :);

8

9 for nn = 2:length(weights(1,:))

10 weights_ds (nn, :) = amplitudexquantize2bits (weights (nn,:)—g-ds (nn—1,:));
11 g-ds (nn, :) = weights_ds (nn, :)—weights (nn, :)+g.ds (nn—1,:);
12 end

13

14 %%

15 function output = quantize2bits (input)

16

17 output = (sign(real (input)) + 1jxsign (imag (input)))/sqgrt(2);

Last, we need to determine how to set a relative to the magnitude of the desired weights
an = |wy|. This same issue arises in determining the quantization levels in the AX ADC.
There is no known “best” solution in terms of optimizing the output SQNR for a given
input, yet there is an answer to the problem of ensuring stability. For the case of 1-bit
AY. quantization of a real-valued bounded input signal |z[n]| < a for all n, output stability
is guaranteed for quantized output levels y[n] = £b when b > 2a [11].

In the case of the AY. array, we have the additional consideration of the array efficiency,
as described in Section 2.3. From (2.7), the power sent to each element is proportional to
|wp|?. Considering the case a,, = a for all n, if we choose to follow the stability guarantee—
for both real and imaginary components—we have @ = 2v/2a, and as a result it would take
8 times the power to obtain approximately the same pattern. Fortunately, the stability
guarantee requirement is overly strict in nearly all cases. Further, the digital implementation
of the AY weights allows the BSC to determine an appropriate value of @ and can adjust
when necessary to avoid any unbounded situations.

The value of a plays a role beyond ensuring stability. It also affects how closely the
quantization errors hold to the white noise model given by (3.19). This can be illustrated
with an example to show how the SQNR dependence on the density ratio also depends on a.
Using numerical simulations, exact values of P, Were determined over a range of density
ratios for the case of a length L = 20\ linear array of ideal isotropic elements, designed to
scan uniformly throughout real space with uniform amplitude weighting for all elements.
At each value of R the desired array weights were normalized to fix the peak signal at
Psignal =1,

N (3.29)
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Figure 3-6: AY SQNR results for uniform amplitude scanning array of length L = 20\.

For the case of uniform amplitude weighting, we can express the relative amplitude of the
AY weights as

: (3.30)

so that the incident power to the array is simply 72 times greater for the AY weights than
for the desired weights. For this example, we use v = 1.26. The noise power was calculated
directly from (3.18) by averaging the noise power over the visible region at a given scan
angle, then evaluating the mean value over 500 scan angles. In addition, the predicted
value of Ppise from (3.27) was calculated from the resultant sample values of 02 for each
R. With the array weights properly normalized, these results were inverted, yielding the
simulated and predicted SQNR at each R, as depicted in Figure 3-6, which shows close
agreement between the two curves. However, if we compare the SQNR at R =2 to R =4,
we see an improvement of 6 dB, 3 dB less than our analysis predicted would be associated
with a doubling of the array density. From R = 4 to R = 8, we see even less of an
increase, indicating the likely culprit is not the small angle approximation used to obtain
the R~3 dependence. The actual cause is due to the sample value of 03 evaluated within the
simulations, which happens to be increasing with R—in disagreement with the assumption
that w, and g, are independent. We will return to this discussion in Chapter 4.

3.4 Phase Errors

In addition to the effects of quantization, a number of other factors can cause pattern distor-
tions. These include errors in the amplitudes and phases of the array weights, positioning
and orientation errors, element pattern variations, and inoperative or missing elements. To
a certain degree, it is possible to compensate for systematic errors through careful calibra-
tion. Even so, the presence of some level of random errors is unavoidable. Such errors can
lead to decreased directivity, increased sidelobe levels, and shifts in the main beam location
from the desired scan angle [39].

A statistical analysis of these errors and their effects may be found in most standard
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texts concerning arrays (e.g., [23,40,41]). In this section we limit our attention to random
phase errors in order to facilitate a practical comparison of the quantization noise in AY. and
conventionally quantized phased arrays.

The issue of phase errors becomes increasingly important at higher frequencies as the
effect of mild changes in the signal path lengths can result in significant changes in the
phase. As phase errors increase, the utility of high-resolution phase shifters lessens. For
some perspective, consider the 5-bit phase shifter with phase resolution of 27/2° radians
(11.25°). At a frequency of f = 100 GHz, a change in the feed path of slightly less than 0.1
mm yields a phase error equal to the resolution of this phase shifter.

The difficulties beyond the issue of phase quantization in ensuring accurate phase control
at high frequencies have important implications to the AY array design. Namely, the
AY array is more suited to deal with such errors for two reasons. First, the performance of
the array is inherently less dependent on accurate phase control; and second, the pattern
distortion due to these phase errors naturally decreases for dense arrays as a result of the
averaging effect.

By adding random gaussian phase errors to the SQNR simulations performed in the
previous section, a comparison can be made between the conventional and AY. arrays,
yielding the results shown in Figure 3-7.

3.5 Array Theory Perspective

Our development thus far has built upon the mathematical similarities between the notions
of sampling in the temporal and spatial domains. Alternatively, it is illustrative to examine
this design directly from the principles of antenna array theory. To understand the mecha-
nism by which the AY. array reduces pattern distortion, we consider a simple two-element
array with opposing excitation weights wy = 1 and w; = —1. From (2.1), the beam pattern
is

fks) =1— ¢4, (3.31)

and the associated power pattern
P(k,) = 4sin? (k,d/2) (3.32)

vanishes at k, = 0, increasing monotonically to peak values at k, = £7/d. For standard
spacing d = dy = \/2, this places the peaks at the edges of the visible region V. The power
pattern of (3.32) is shown for d = dy, dp/2, and dy/4 in Figure 3-8. As the spacing is
decreased, the peaks are steered outside of V, while at the same time flattening the pattern
inside. In the limit as d — 0, the array becomes increasingly similar to a single antenna
with a weighting of zero and P(k,) becomes vanishingly small. In the AY array, the original
array weights in (3.23) behave as intended, but the quantization errors combined with the
purposely subtracted terms at the neighboring elements behave like this two-element array,
and their contributions to the array pattern throughout real space diminishes as the spacing
between elements is decreased.

The relation of the AY array to the two-element array patterns can be seen in the
example patterns shown in Figure 3-9. In each plot, the desired and AY quantized patterns
are shown for scan direction k,q = k/22. Comparing the two patterns for the case of R =1,
we can see that the distortion falls under an envelope that increases away from the origin
throughout the visible region in a manner consistent with the behavior of the \/2 spaced
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Figure 3-7: Comparison of effects of random phase errors with standard deviation o4 radians

on SQNR for (a) conventional quantization and (b) AX quantization.
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Figure 3-8: Power pattern for a two-element array with excitation weights wy = 1 and
w1 = —1. The edges of the visible region are marked with vertical dotted lines.

pattern of Figure 3-8. Similarly, the behavior of the AY: array continues to accord with the
general behavior of the two-element array as the spacing is decreased.

Comparing (3.31) with the first additive term in (3.24), we can interpret the quantization
error pattern as the array pattern corresponding to array weights given by {¢, }—with the
isotropic elements replaced by elements having patterns given by (3.31). As such, the
AY error passing scheme shown in Figure 3-10 can be visualized in terms of the pattern
associated with the AX kernel, composed of the two opposite excitations seen in Figure
3-11. This perspective will be useful in the following section.

3.6 Delta-Sigma Planar Arrays

Extensions of the AY. quantization technique to planar arrays may be grouped roughly into
two categories of design approaches. The simpler approach is to design the two-dimensional
array such that elements are spaced closely along a single dimension in order to exploit the
AY. cancellation of the quantization errors, thus allowing for standard element spacing along
the other dimension. A more interesting approach can be applied to arrays of elements that
may be closely spaced along both dimensions. As an example, consider an electrically small
patch antenna with an impedance match to account for the non-resonant element size. In
contrast to the 1-D AY. scheme, where the quantization error imposed at each element is
subtracted in whole at the input of the neighboring element, a 2-D scheme may be employed
that subtracts a fraction of the quantization error along each dimension. In this case, the
2-D counterpart to Figure 3-10 is illustrated in Figure 3-12, which shows the quantization
error for each element being passed to the right by a factor o and being passed upward by
a factor 3, where o + 8 = 1, and the AY quantized excitation is given by

'UA)m,n = Q [wm,n — OQm—1,n — 6qm,n—1] = Wmmn — @dm—1,n — qu,n—l + dm,n- (333)
For a planar rectangular array with excitation weight wy,, applied to the element at
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Figure 3-9: Power patterns P(k,) (ideal weights) and P(k.) (AX weights) for arrays of
length L = 20\ scanned to k.o = 0.045k for density factors (a) R =1 (b) R = 2 and (c)
R =4.
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Figure 3-10: 1-D error passing.
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Figure 3-11: 1-D error kernel.

location * = md and y = nd, the pattern is

N—-1M-1

f(sz ky) - Z Z '(Umnej(mkl—i_nky)d, (334)

n=0 m=0

where k, = ksin 6 cos ¢ and k, = ksinfsin ¢ denote the direction over the half-sphere given
by k§+k§ < k2. Using the error terms from (3.33), the quantization error pattern associated
with Figure 3-12 is

fq(kza ky) = Z(Qm,n — 0dm—1,n — ﬁQm,n—l)ej(mkIJrnky)d- (335)

n,m

Ignoring edge effects in this analysis, the above can be manipulated to obtain the following
form

Fulkasky) = (1= aeltsd — geitod) S g, edmbetnb)d, (3.36)

As with the linear array, this expression can be used to find the expected value of Ppoise by
integrating E [| fq(kz, ky)|?] over the half-sphere. Like before, the result will be determined
by the terms preceding the summation, which represents the equivalent kernel pattern
associated with the AY scheme in Figure 3-12. By symmetry, the resultant noise power will
be minimized for & = 8 = 1/2, in which case the AY. kernel is as shown in Figure 3-13, with
the kernel power pattern shown for a density ratio of R = 4 (d = A\/8) as seen in Figure
3-14. Compared to the linear array kernel pattern given by the d = A/8 curve in Figure
3-8, which has peak value in visible space of P(k, = k) = 0.59, the peak value for this 2-D
result is reduced by a factor of approximately 1/2. This result is intuitive, as this passing
scheme separates the error into orthogonal element pairs, which can be seen by considering
the “41” element of the 2-D kernel as the superposition of two “+1/2” excitations, each
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Figure 3-13: 2-D error kernel associated with Figure 3-12.

with opposing terms along distinct axes.

In Figure 3-14, the noise shaping is notably more effective on the symmetry axis given
by k; = k, than for k, = —k,. This behavior is to be expected from the underlying kernel
geometry, and suggests the possibility of other, perhaps more optimal A error passing
techniques. One such alternative is shown in Figure 3-15. In this passing scheme, the error
is subtracted equally to both the upward and right side neighbor, and then added to the the
element diagonally across in order to compensate for the extra subtracted term, resulting
in a symmetric AY kernel. The kernel power pattern in this case is shown in Figure 3-16
for R = 4.

The relative noise power (normalized by o7 and the total number of elements MN) for
both 2-D AX kernels is shown in Figure 3-17. At very small density ratios, the advantage
of separating the quantization error into orthogonal terms results in better noise power
performance for the first AY kernel type, evidenced by the 3 dB difference between the
curves at R = 1. However, the symmetrical second type quickly outperforms the first, with
the noise power decreasing with R* as opposed to R? in the first case.
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Figure 3-15: Alternative symmetric 2-D error kernel.
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Figure 3-16: Alternative 2-D AX kernel pattern for R = 4.
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Figure 3-17: Relative noise power for both 2-D AY. kernels.
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Chapter 4

Mutual Coupling Effects

In the design of a dense array, the close proximity of the elements makes it particularly
important to understand and account for the effects of mutual coupling. The results pre-
sented in Chapter 3 were determined based on the forced excitation model. We now will
consider the more realistic free excitation model and determine whether the AY array con-
tinues to perform as desired. Our treatment in this chapter first examines the effect of
mutual coupling on the A array pattern. Following the analysis approach described in
Chapter 2, we will initially consider the infinite array case and treat the edge effects due to
finite array lengths separately. In the latter portion of this chapter, we turn our attention
to the AY array efficiency performance and the ability to design an effective impedance
matching network. To this end, we use the narrowband perspective to provide a detailed
description of the mechanisms that affect the AY. array efficiency and then continue with a
demonstration of the wideband performance benefits over conventional array designs.

4.1 Mutual Coupling in Dense Arrays

Recall from (2.4) that under the free excitation model, the beam pattern of the infinite ar-
ray can be decoupled into the product of the corresponding forced excitation pattern f(k,)
and the coupling pattern f.(k,), which is an inherent property of the array, independent of
the particular excitations. Consequently, the AY beam pattern in any direction fMC(k:Z)
may be thought of as the AY beam pattern analyzed in Section 3.2.2 multiplied by a pro-
portionality constant given by the coupling pattern. From this viewpoint, the interactions
among the array elements—regardless of spacing—should have a problematic effect only if
fe(kz) generally tends to be of greater magnitude in the regions of real space for which the
AY. pattern distortions are the most extreme, that is, towards larger values of |k,|. Fur-
ther, the likelihood of this being the case may be addressed intuitively by considering the
forced excitation idealization as a special case of the free excitation model with coupling
coefficients ¢, = 0,0, corresponding to f.(k.) = 1. More generally, we expect ¢, to decay
smoothly with [p|. Based on a standard result from Fourier analysis [42], this more gradual
decay of the coupling coefficients implies that f.(k.) should decrease away from the origin,
unlike the “flat” coupling pattern associated with forced excitation model. This observation
suggests that mutual coupling has the effect of actually suppressing the most troublesome
pattern distortions located near the extents of the visible region.

To simulate the effects of mutual coupling, the model given by Wasylkiwskyj et al. [43]
for the mutual impedance of two thin-wire dipole antennas was used. In this model, the
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system impedance is normalized such that Zy = 1 and the impedance matrix entries are

given by
Ty =1 men (4.1)
mee Hé2)(kd|n —mj) m #n, '

where HSQ)(-) is the zeroth-order Hankel function of the second kind. While the analysis
in [43] is specific to the case of two isolated thin-wire dipoles, the results apply rather directly
to our array setup. Indeed, the presence in the array environment of the additional open-
circuited dipoles in the determination of the impedance matrix elements has negligible effect
as the two separated dipole halves are far from resonant and appear relatively transparent
to the electromagnetic fields.

Using (4.1), the coupling matrix C was determined for the array of length L = 20\
with density ratio R = 4. For an array of this size, the entries of the coupling matrix
corresponding to an element near the center of the array are nearly identical to the non-
trivial coupling coefficients {c, } of an infinite array element. The magnitudes of these values
|cp| are shown in Figure 4-1a versus the element separation index p. The associated coupling
pattern f.(k,) is shown in Figure 4-1b, in which we see the expected decrease away from
the origin, with particularly sharp drop-offs beyond |k, /k| = 0.9.

To illustrate the overall effect of mutual coupling, the pattern calculations performed
to create Figure 3-9 were repeated based on the free excitation model using (2.3) with
coupling matrix entries determined by (4.1). The quantization error patterns for both the
forced and free excitation models, f,(k,) and févlc(k:z), are shown in Figure 4-2 for R = 1,
2, and 4. In each of the three cases, the distortion near the edges of the visible region,
where AY noise shaping alone is least effective, is decreased when the calculation accounts
for mutual coupling, as implied by Figure 4-1b.

While the infinite array analysis explains the effect of mutual coupling near the edges
of visible space, the slight increase in the pattern distortion near the origin seen in the case
of R = 4, for example, is not accounted for by this approach, as the infinite array analysis
predicts no modification along this direction. From this observation, we may surmise that
edge effects have slightly greater significance due to mutual coupling. This result is un-
surprising since in the case of the finite array, the embedded element patterns in actuality
exhibit more variations for the elements near the array edges. As a result, the opposing
AY. quantization errors do not cancel quite as effectively as elements with identical embed-
ded patterns. However, these effects appear to be relatively benign, appearing only when
the pattern distortion is decreased to about 30 dB below the main lobe level.

When the SQNR calculations used to generate Figure 3-6 are repeated for the free
excitation model, the results are as shown in Figure 4-3. The simulated results for the
forced excitation model are also shown to illustrate that the effects of coupling add only a
small amount of additional error, consistent with the above discussion.

4.2 Narrowband Efficiency

The power efficiency of the AY. array is affected by both the increased array density and the
unique nature of the AY, excitations. We begin with a description of a simple yet effective
approach for maintaining acceptable array efficiencies for general dense scanning arrays,
and then apply this concept specifically to the AX array.
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Figure 4-1: (a) Magnitude of the coupling coefficients {c,} for a central element in an array
of length L = 20\, with R = 4. (b) Power pattern response P.(k.) = |f.(k.)|? for an array
excited by the coupling coefficients.
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Figure 4-2: Quantization error (power) patterns for the AY array of length L = 20\ using
both the forced and free excitation models with density ratios (a) R =1 (b) R =2 and (c)
R =4
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Figure 4-3: Comparison of SQNR versus density ratio R for AY. arrays based on the forced
and free excitation models. L = 20\.

Impedance Matching for Dense Arrays

Impedance mismatch losses can be reduced by placing a matching network between the
source and the array. For a single antenna, a perfect match may be obtained by using
a series reactance and a quarter-wavelength of transmission line to match the imaginary
and real parts of the antenna impedance, respectively, to the source impedance. With a
phased array, the presence of mutual coupling makes matching much more complicated,
necessitating the use of complex matching networks to avoid efficiency losses. Examples
include the use of dynamically varying components that modify the network characteristics
for every set of array excitations or a web of interconnections between the array elements.

A far more practical alternative is based on the notion of scan impedance, defined as the
effective impedance (sometimes referred to as the active impedance) of each element when
scanned to a particular direction ko [41]

7590 (o) = . (4.2)

For the particular set of excitations corresponding to scan angle kg, it follows that v(k,g) =
Zi(k,) = 25" (k,0)i(k,0), where Z5°"(k,() is a diagonal matrix with entries given by (4.2).
Because of this, the scattering matrix at this scan angle can also be replaced by substituting
Z with Z5®"(k,g) such that

Ssean(fo) = (Z5 (ko) — ZoT) (Z5° (ko) + ZoT) L. (4.3)

Since for each scan angle the matrix in (4.3) is diagonal, it may be decoupled into N scalar

equations of the form

. Zscan(kzo) _ ZO
5 (keo) = mv (4.4)

with the scan reflection coefficient T5°*"(k,o) for element n (at scan angle ko) corresponding
to the nth diagonal entry of S5" (ko). This term captures the effective ratio of the signal
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returned back along the feed line to the original signal w,. Because the scan reflection
coefficient is a function of Z5"(k,q), which includes the effects of coupling for all N array
elements, this reflection is in reality a superposition of both the incident signal at the
element as well as the coupled signals from the other N — 1 elements. As such, (2.8) can
be expressed as the array scan efficiency

s (kao)w (k) |
[[w (ko)1

N-1 n 2
= 1— Zn:O |F7$1Ca (kzo)wn(k20)| ) (45)

SN fwn (kz0)

Using the scalar equivalent for the element impedance in (4.2), it is possible to match
each element such that Z5"(k,o) = Zy in the same way one would match a single antenna.
However, since this scan impedance is only valid at k5, when the beam is scanned to any
other angle, the change in scan impedance results in a loss of efficiency. As element spacing
decreases, it is to be expected that mutual coupling effects become more prevalent, yet
these effects are not necessarily disadvantageous to the power efficiency. In fact, as the
array scans from one direction to another, the incremental phase change between neigh-
boring elements is inversely proportional to their spacing, and thus we can expect the scan
impedance to be less sensitive to changes in the scan direction. This motivates the use
of scan impedance matching, in which the array is matched to the scan impedance in one
specified direction. This sub-optimal matching technique is applied with the expectation
that the scan impedance does not vary greatly over the entire range of potential scan angles.
Based on the above observation, this implies that this very simple approach is particularly
well suited for use with dense arrays.

To develop the idea, the scan impedance matching approach was applied to an array of
length L = 20\ using the impedance matrix values obtained from (4.1) for several density
ratios. The scan impedances of the unmatched array elements were calculated using (4.2)
for the broadside scan direction of the array, k.o = 0, and an individual matching network
consisting of a series reactance and a quarter-wave transmission line was applied at each
element to match these impedances to the normalized system impedance Zy = 1. The
resulting average matched scan impedances are shown in Figure 4-4 for both a standard
(R = 1) and dense (R = 2) array. At k,o = 0, both arrays have scan impedances with
real parts equal to the system impedance Zy and zero imaginary parts, corresponding to a
perfect match. However, away from broadside, the standard array scan impedance exhibits
a greater sensitivity to changes in scan angle than seen for the dense array, as expected.

nscan(kzo) — 1

Efficiency Effects Due to AY Weights

In addition to the effect of the increased element density on the power efficiency, we must
consider the effect of using the A weights instead of the ideal array weights. In particular,
we characterize the fractional reduction of the AY. array efficiency 7 from the efficiency 7
of the equivalent array excited by ideal (unquantized) weights

_ 1
p= 7 (4.6)

Consider an array with the matching network in place, some set of ideal weights {w,,}
with associated AY weights {w, }, and assume that the array is sufficiently dense such that
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Figure 4-4: (a) Real part and (b) imaginary part of the average scan impedance of elements
in an array of length L = 20, for density ratios R = 1 and R = 2. Calculations include
scan impedance matching network designed for perfect match to Zg =1 at kg = 0.
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the beam patterns are nearly identical. Since the total power radiated is proportional to
the power pattern integrated over real space, it follows that Prad ~ P.q- To obtain similar
patterns, the ratio of the magnitudes of the AY weights to those of the ideal weights,
~v = a/a, must be greater than unity in order to steer the pattern distortions into imaginary
space. Therefore, from (2.7) it follows that ]A%nc > Pipe. Using the definition of the power
efficiency in (2.5), we can estimate the efficiency loss in the case of low pattern noise as
~2
Dest = % =~%>1. (4.7)

Put simply, the AY excitations as expressed in (3.23) radiate the same amount of power
as in the case of the ideal excitations due to the w, terms, while the quantization terms
gn radiate zero power once their beam pattern contributions are effectively steered from
real space. Hence, we can expect the efficiency of the AY array to be less than that of an
identical array excited with ideal weights. The exact amount depends on the choice of 7,
which as we will discuss shortly, also plays a role in how quickly the AY. pattern converges
to the desired pattern.

For example, in the patterns and SQNR results presented thus far, the AY weights were
determined by setting v = 1.26. When the quantization noise is relatively small, such as in
Figure 3-9(c), the power radiated using both the ideal and AY weights is nearly identical,
while the total power incident on the array is a factor of v? ~ 1.59 greater in the AY case.

Eq. (4.7) implies we should expect to see a reduction in the AY power efficiency of 2,
corresponding to a 2 dB power efficiency loss. Exact efficiency results calculated for R = 4
are shown as a function of scan angle for both the ideal and the AY weights in Figure 4-5.
These results were calculated directly from (2.8) with a scan impedance match network
tuned to a perfect match for the ideal weights at k,o = 0. We first note from the ideal
excitation results that the scan impedance matching works quite well for the dense array,
with nearly negligible efficiency losses for scan angles throughout the region |k.qo| < 0.5k
(corresponding to +60° from the array broadside). Further, the predicted power efficiency
reduction of 2 dB shows a very good agreement with the AY array results. The fluctuations
seen in the AY results are due to varying levels of pattern noise for different scan angles,
which affect the assumption that the radiated power is equal to that of the ideal weights.
Similar calculations for increased density ratios had less variations, since the quantization
noise was lower throughout the visible region.

Inclusion of a matching network has the additional effect of altering the coupling matrix
C relating the free excitations to the currents across the terminals of the array elements.
As such, it is necessary to revisit the SQNR performance of the AY array to reflect these
changes. Analysis of the combined network (see 4.A for a detailed derivation) yields the
matched coupling matrix

. _ . —1
Cu=—j(Ze+ Z0Z; Y (Z - jXJ)) ™, (4.8)

where Z; is a diagonal matrix containing the characteristic impedances of the quarter-wave
transmission lines used to match the real part of the element impedances and X; is a
diagonal matrix containing the reactances of the components used to match the imaginary
part of the element impedances.

When the matched coupling matrix is used in place of the original coupling matrix in
the SQNR calculations, the results are as shown in Figure 4-6. Interestingly, the matching
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Figure 4-5: Power efficiency as a function of scan angle k.9, L = 20\, R = 4, with scan
impedance matching network designed for perfect match at ko = 0. Results for the AY ar-
ray obtained by setting @ = 1.26a such that the nominal efficiency is within approximately
2 dB of the ideal result.

network appears to have the added benefit of improving the ability of the AY array to pro-
duce desired beam patterns. Closer inspection of the embedded element patterns with and
without the matching network verifies that the matched array embedded element patterns
show considerably less variation near the edge of the array than in the unmatched case.
This observation supports the earlier conjecture that such variations were responsible for
the slight decrease in the SQNR for the unmatched free excitations seen in Figure 4-3.

Based on (4.7), it may be tempting to select an arbitrarily low value for 7 in order
to minimize efficiency losses. However, since this estimate is obtained by assuming that
Prad = Pyad, it is necessary to determine the array efficiencies directly from (2.8) to obtain
the exact dependence of p on the choice of 7. Exact values of p were calculated for different
density ratios R with the value of v varying from 1 to v/2 (0 to 3 dB estimated power
efficiency loss). Figure 4-7 shows the resulting nominal value of p, averaged over uniformly
distributed scan angles, over the range of «v. These results demonstrate that as v approaches
unity, the exact efficiency loss values are quite different that the estimated loss found using
(4.7). This indicates not only that the efficiency loss cannot be made arbitrarily small, but
also that small values of v result in greater pattern distortion, thereby affecting the SQNR
as well as p.

The results in Figure 4-7 also demonstrate that the relationship between the AXY. array
efficiency and v depends on the particular value of R. Specifically, the value of v at which
each curve intersects with the estimated result increases with R, implying that it may be
necessary to accept additional efficiency loss to obtain the maximum achievable SQNR
as the density ratio of the AXY array is increased. This interpretation is verified by the
results shown in Figure 4-8, in which the SQNR for the L = 20\ array is plotted against
the efficiency loss p as v is varied over the same range as in Figure 4-7 for a number of
density ratios. The horizontal dashed grey line shows the SQNR of a standard array of
the same length utilizing the same two-bit phase shifters used in the AY array. As would
be expected, this value represents a lower bound on the AY. results for low density ratios.
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Figure 4-6: SQNR dependence on density ratio R for AY. arrays using forced excitations
and free excitations with matching network designed for ideal match at k,g = 0. Array
length L = 20A.

The asymptotic limit shared by all values of R as p decreases, shown by the slanted light
grey dashed line, represents the maximum signal-to-quantization-noise level SQNRE“‘X that
can be obtained for a specified efficiency loss, regardless of how large the density ratio is.
Comparison of the results in Figure 4-8 with those generated for other array lengths show
both dashed lines having a vertical shift proportional to the fractional change in length.
This is to be expected, based simply on the linear change in the number of elements in both
cases. Since the vertical shift maintains the slope of the line representing the SQNR;’“‘X,
found by a linear fit to be ASQNR**(dB)/Ap(dB) = 10.8, we may express the dependence
of SQNRJ*™ on both p and L (in linear scale) as

SQNRJ™ = 2.3p'08L. (4.9)

Similarly, we define SQNRE* as the maximum SQNR achievable for a given density
ratio. This can be expressed in a similar fashion as in (4.9), i.e.,

SQNRIE = cROL (4.10)

for some c. However, the complex dependence on the array edge effects, the specific value
of 7, and a constraint on the efficiency loss to somewhat reasonable values given by p < 2
causes the exponent « to vary from about 2 at lengths of just a few wavelengths to about
2.5 at L = 20, increasing slowly for greater lengths. A more appropriate indication of
the behavior of SQNRE* can be found from the relation given by (3.27), in which the
array length L = Nydy and associated edge effects are treated explicitly, while the effect
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Figure 4-7: Nominal power efficiency loss versus the ratio of the AX and ideal array weight
magnitudes v = a/a. The dashed grey line shows the corresponding estimated value of p
given by (4.7).
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4.3. WIDEBAND PERFORMANCE

Table 4.1: Comparison of several array configurations for AY arrays of length L = 20\.

R| N | v [SQNR (dB) | p (dB)
2 [ 80 [1.07 23.6 0.9
311201 1.09 26.8 1.2
41160 | 1.15 28.9 1.4
5 {200 1.19 30.7 1.6
6 | 240 | 1.23 32.6 1.8

of v is captured by the average quantization excitation noise 02. From simulated results,

at lengths greater than L = 4\, the calculated value of SQNRE® is closely approximated
using the result given by (3.27) with o2 = 0.9.

While the particular aspects of the intended application of any system ultimately gov-
erns the relative value of such important metrics as hardware costs, pattern precision, and
power efficiency, the results shown in Figure 4-8 clearly suggest that each particular density
ratio has some range of natural operating points, outside of which the tradeoff required
to improve one metric requires an unreasonable sacrifice with regard to the other. As an
example, consider the curve corresponding to R = 4 at the point where p = 1.4 dB. In
the neighborhood surrounding this operating point, the choice of v may be adjusted to
accommodate an improvement in either the SQNR or the power efficiency at a reasonable
cost with regard to the other. However, such costs increase rapidly as the curve approaches
either of the maximum SQNR asymptotes described above. As such, if it appears necessary
to operate near one of these boundaries, this simply suggests that selecting an alternative
density ratio is likely to be a more efficient use of resources. Several candidate designs for
R =2 to R =6 are illustrated in Table 4.1 in which the particular choices of v correspond
to operational points close to the center of this natural tradeoff range for each density ratio.

4.3 Wideband Performance

The impedance characteristics of densely packed arrays are less sensitive to changes in
frequency. As a result, a dense array can be utilized as a means of obtaining a greater
operational bandwidth than would be achieved with a standard array. However, this benefit
is typically not exploited due to the additional costs associated with the increase in the
number of array elements. This observation provides a separate motivation for the AY. array,
namely, a low cost approach for building dense arrays. Further, while the narrowband
efficiency analysis described in Section 4.2 indicates an unavoidable loss for the A array
when compared to a standard array, a wideband view tells a different story.

In order to investigate this frequency dependent behavior, the mutual impedance be-
tween two parallel thin-wire dipoles of the same length [ with spacing d along the same axis
is modeled using [41]

2

Z:% > Y Apexpl—jknml/2|E(kp) (4.11)

m=—2ne{-1,1}
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where
B =/ (ml/2)?+d* —nml/2 (4.12)

and

Ao=Ay=1,
A_1 = A1 = —4coskl/2,
Ag = 2(1 + 2cos? kl/2),
S =sinkl/2

and E(-) is the exponential integral (Fi(x) = Ci(x) — jSi(x)). The frequency dependence
is contained in k = 27 /.

The impedance matrix Z is formed and a matching network is designed for scan direction
k.o = 0 at the center frequency fy by first determining the scan impedances

an 'm
78 = U0 — Zom Znmim (4.13)

in in
with i, = exp jnk.od = 1, then connecting series reactances X, = Im(Z;) and quarter-
wave transmission line with characteristic impedance Z;,, = \/Re(Z3)Z resulting in the
new matched impedance matrix

Zm = (cosal + jsina(Z — jX4)Z; 1) (jsinaZy + cos a(Z — jX,)) (4.14)

with Z; and X, both diagonal and o = %

Numerical simulations were run for an array of length L = 20\ to calculate the average
scan efficiency using both ideal (unquantized) excitations and AY. excitations. Referring
to the results shown in Figure 4-9, the standard array (R = 1) with ideal excitations
is relatively narrow band, having a 3 dB fractional bandwidth of about 17%, while for
the dense (R = 4) ideal excitation case this rises well above 50%. For the AY case, the
excitations were chosen with a quantization amplitude corresponding to a nominal loss of
about 1.5 dB. As such, its performance falls below the standard array case at the center
frequency fo. However, the variation with frequency is quite similar to the ideal case with
the resulting bandwidth being about 45% — nearly three times greater than the standard
dipole array.
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Figure 4-9: Wideband efficiency performance results from numerical simulations for array

length L = 20A.
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4.A Matched Array Coupling Matrix Derivation

Referring to Figure 2-3, the matching network at element n is introduced by connecting
a quarter wavelength transmission line with characteristic impedance Z;, to source wy,
followed by a series reactance —jXg,, which in turn connected to the antenna terminals.
Following standard microwave network analysis (see, e.g., [37] for additional details), the
voltage and current at the input to the network are related to the voltage and current at
the antenna terminals by

v%n = JZtnin (4.15)
Z:zn = th;l (vn - sznin)) (4.16)

and to the source excitations by

wy, = v+ Zoil". (4.17)
Letting w, v, i, v, and i be length-N complex vectors associated with the above
scalar quantities, and similarly organizing the the match network quantities into N x N
diagonal matrices Z; and X, these relations may be combined to include the complete
array

Vit = 74, (4.18)
i = §Z7 (v — jX,i), (4.19)
w = v+ Zi™, (4.20)

As the matching network will not effect the impedance relations occurring outside of
the array, the original impedance relation v = Zi remains valid. Using this additional
relationship, we can make the following operations

W = jZi+ j 2oL (v — jX,i)
— j (Zi + Z0Z; "(Z — jX,)) i (4.21)

Having eliminated all other voltage and current terms, this last expression may be rewritten
as i = Cyw, where
. _ . -1
Cu = —j (Z¢e + Z0Z; 1 (Z — jX4)) . (4.22)
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Chapter 5

Delta-Sigma Measurements

Measurements were taken to demonstrate the practical viability of the AY array with
the objective of showing that AY beamforming behaves in a manner consistent with our
development and analysis. The test array, shown in Figure 5-1, and measurement facilities
were made available by MIT Lincoln Laboratory.

To facilitate the ability to compare any number of parameters, our measurements in-
cluded the individual element patterns as well as the mutual coupling between each pair
of elements, given by the array S-parameters. From these, it is possible to determine the
beamformed pattern and power efficiency for arbitrary excitations. In order to keep the
number of measurements at a manageable level, the measurements were limited to a single
column of elements. From the measured results we examined the beamformed patterns for
both the ideal and AY. excitations at a number of scan directions and used these results to
determine whether the dependence of the 2-bit AY. quantization technique on the density
ratio behaved in a manner constant with the analysis developed in the preceding chapters.

5.1 Measurement Description

The 12 element by 12 element array was originally designed to provide coverage over a
scan region of +25° in both azimuth and elevation over an operational bandwidth of 6-18
GHz. In order to utilize this existing hardware as a dense array, our measurements were
performed below the intended frequency bandwidth over the band from 4 to 6 GHz. The
uniform spacing between the array elements is dg = 200 mil, corresponding to a A/2 spacing
at fo = 14.76 GHz. With this element spacing, our results represent a density ratio that
varies from R = 2.46 at 6 GHz to R = 3.69 at 4 GHz.

For these measurements, the array was attached to a conductive ground plane and
mounted on a gimbaled post in an anechoic antenna measurement chamber, as shown in
Figure 5-2. To obtain the pattern within the plane containing the 12x1 column of elements,
the array was rotated 90° from the layout shown in Figure 5-1. (This choice was made due
to a damaged connection in a single element in both of the central horizontal rows of the
array.)

A separate set of measurements was taken for each of the 12 elements. In each case,
the test element was connected to measurement facility hardware with the remaining 11
elements match-terminated with a 50 € load — the appropriate match connection to allow
for the use of superposition from which the beamforming capability of the array will be
analyzed.
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Figure 5-1: 12 x 12 array used for measurements.

2: Mounted test array in anechoic antenna measurement chamber.

Figure 5
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MEASUREMENT DESCRIPTION

Figure 5-3: Single element gain measurement connection.
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Prior to these measurements, a calibration antenna was mounted to determine the signal
attenuation and phase variations over our measurement bandwidth. With this calibration
the measurement was able to record the element gain pattern as well as the element phase
pattern. The gain pattern is proportional to the power pattern of the array, but it is a
more useful metric in a practical sense, as it accounts for both the directive properties of
the beam pattern as well as the power efficiency of the array.

The raw measured element gain and phase patterns for the 12 elements at f =4, 5, and
6 GHz are shown in Figures 5-4, 5-5, and 5-6. In each case, the legend refers to the patterns
of the upper half of the array, elements 1 through 6, shown as solid lines. Elements 7 to
12 are shown as dashed lines with each element having the same color as its symmetric
counterpart (e.g. elements 1 and 12 both shown in red). The units of gain, dBi, specifies
the gain as compared to the hypothetical isotropic antenna.

From these gain patterns, it is clear to see that the array elements are not originally
intended for use at these frequencies. In particular, many of the patterns are strongest in
directions more than 60° from the array broadside. However, this is not troublesome for
our present purpose of demonstrating AY beamforming. On the other hand, the variations
between the patterns of adjacent elements will affect the ability to cancel the quantization
errors. In fact, while the patterns at 4 GHz have particularly poor gains at broadside,
they are the most consistent from element to element, implying that this frequency is more
favorably suited than the higher frequencies for effective error cancellation in this sense. It
is also worth noting that the behavior of the phase patterns differs from the linear phase
responses associated with isotropic elements. Consequently, the phases required for coherent
beamforming need be adjusted accordingly, as will be discussed in the following section.

5.2 Analysis and Results

For a given set of element weights w,, and element patterns with gain G, (#) and phase
©n(0), the combined array gain is given by (see Appendix 5.A for details)

Wn n el n(9))2

When scanning the main beam to 6y, instead of the linear phase progression that was used
in the case of the arrays of isotropic elements, it is preferable to apply the conjugate phase
match to the element phase pattern at the specified scan angle. In particular, we apply the
(normalized) uniform amplitude array weights

Wy, = iefj“”(eoh n=0,1,...,N —1. (5.2)
N

As discussed earlier, the AY, quantized weight selection algorithm requires both the set
of weights {wy} and the fixed magnitude of the quantized weights |, | = a. For the case
of uniform amplitude array weights, as in (5.2), this was specified by the amplitude ratio
= a/a, where a = |w,| = 1/N in this case. Recall that the choice of v was manifest
as a trade off between the array efficiency and the SQNR, and that we used v = 1.26 in
the numerical simulations, unless otherwise noted. This was chosen to yield good SQNR
performance over a wide range of density ratios, while holding the AY efficiency loss to

about 2 dB.
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Figure 5-4: Measured element (a) gain and (b) phase patterns at 4 GHz.
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Figure 5-5: Measured element (a) gain and (b) phase patterns at 5 GHz.
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Figure 5-6: Measured element (a) gain and (b) phase patterns at 6 GHz.
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— 6 GHz

1 1.2 1.4 1.6 1.8 2

Figure 5-7: Average quantization noise power dependence on the AY amplitude ratio v for
the measured array.

Using the measured element gain patterns for 4, 5, and 6 GHz, the mean quantization
noise power Ppgise Was determined from the mean square error between the patterns of the
ideal (unquantized) and AY. weights, averaged over 200 scan angles 0y selected at random.
Repeating this calculation while varying the AY weight amplitude over the range 1 <y < 2,
we obtain the results shown in Figure 5-7.

The results at each frequency indicate that a more modest value of approximately v = 1.1
(with an expected efficiency loss of 0.83 dB) appears optimal, which is most probably due
to the following reasons. First, the utility of larger values of « is apparent only for high
density ratios, as evidenced by Figure 4-8. At the frequency range of these measurements,
the density ratio falls within the range 2.46 < R < 3.69, at which the improvement in
SQNR with v sees diminishing returns well before the 2 dB efficiency loss point. Second, the
reasoning behind the need for higher values of v was that as the element spacing is decreased,
the small, constant linear phase progression applied to the isotropic array elements led to
non-trivial correlation between w and g. With the measured results, the nonlinear phase
variations help to break up this structure, making these practical elements less susceptible
to such correlation. Third, since these patterns are determined using the array gain, the
effect of efficiency losses is reflected in the beamformed patterns. Consequently, as ~ is
increased, the loss in the AY efficiency is manifest as a scaling of the pattern (i.e. a vertical
shift), thus pulling apart the ideal and AX. patterns and increasing the overall error.

Fixing v = 1.1 for the remainder of this section, we now wish to demonstrate that not
only does the AY. technique provide the ability to form desired patterns, but also that the
dependence of quantization noise power on the density ratio is consistent with the overall
development of the AY array. To begin, we compare the beamformed patterns for the ideal
and quantized weights at 4, 5, and 6 GHz shown in Figures 5-8, 5-9, and 5-10, respectively.
From a cursory glance at the main lobe regions, it appears that AY, patterns fit most closely
to the ideal patterns at 6 GHz. However, upon closer inspection, the results outside of the
main lobe are more revealing. At 4 GHz, the sidelobe structure of the AY patterns tends to
resemble that of the ideal patterns, with the exception of the 8y = 25° curve beyond about
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Figure 5-8: 12 x 1 array beamformed gain patterns for the ideal (solid) and AY (dashed)
array weights at scan angles 0y = {—25°, —15°, —5°,5°,15°,25°} at 4 GHz.

0 = 70°. The results at 5 GHz begin to show more prominent distinctions, such as the
green curve (6p = —15°), which shows a poor match near § = 15° and then entirely misses
the deep null near § = 50°. At 6 GHz, the errors begin to become destructive, creating
“quantization lobes” at levels relative to the peak gain that are above the natural side lobes
of the array pattern (e.g. the purple 6y = 15° curve at § = —30° and the green 6y = —15°
curve at 6 = 20°).

These observations are consistent with the intuition regarding the quantization noise as
related to the electrical distance between elements. Still, it is worth revisiting the same
type of analysis to explain the expected noise power as in Section 3.2.2. Recall that (3.27)
was obtained from (3.26) by substituting dy = Rd and NoR = N at fixed frequency, making
k a constant in that expression. In this case, the array geometry remains fixed such that
d =dy = Xo/2 and N = Ny, while the density variation is exhibited by k = 27 /A = 27/ Ao R.
Hence the expected noise power may be written as

P N-1__, 1Y\ ,
Phoise = (BNNR +]\72) opp (5.3)

From this form, we expect to see the average quantization noise power decrease with R?
(plus the fixed edge element term), though two additional practical considerations will affect
the behavior of these measured results. First, the finite array length results in significant
element pattern variations, as we saw in Figures 5-4, 5-5 and 5-6, thus reducing the ability
of the AY excitations to cancel the quantization errors effectively. In fact, while the element
patterns at 4 GHz are somewhat less than desirable due to their high gain levels at directions
well away from the array broadside, they remain relatively consistent for each element. In
contrast, at 5 and 6 GHz, the variations between neighboring elements are more severe.
This indicates the likely presence of additional contribution to the noise power that will
also increase with frequency. Second, our results are determined from the array gain, not
the normalized array patterns implicitly used in our analysis. Consequently, the inclusion
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Figure 5-9: 12 x 1 array beamformed gain patterns for the ideal (solid) and AY. (dashed)
array weights at scan angles 6y = {—25°, —15°, —5°,5°,15°,25°} at 5 GHz.

Gain (dBi)

Figure 5-10: 12 x 1 array beamformed gain patterns for the ideal (solid) and AY (dashed)
array weights at scan angles 6y = {—25°, —15°, —5° 5°,15°,25°} at 6 GHz.
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Figure 5-11: Frequency dependence of AY quantization noise power from measured results.

of the array efficiency will affect the results due to variations in the ideal and A efficiencies
relative to each other, as discussed earlier, as well as variations in the absolute efficiencies
in both cases at different frequencies.

Calculating the noise power from the measured gain patterns over the 4 to 6 GHz
frequency range, we obtain the results shown in 5-11. Noting that f = fy/R, the expression
in (5.3) indicates the result should increase with f2. This would imply that an increase
in frequency from 4 to 5 GHz should result in an increase in Ppgise 0f 2010g;5/4 = 1.94
dB and similarly an additional 1.58 dB from 5 to 6 GHz. The difference seen in the
actual results are consistent with the practical considerations described above. Although
the somewhat larger overall variation in the Py results could be interpreted as a more
rapid reduction in the quantization noise with respect to the density ratio than the R?
dependence suggested by (5.3), this is more likely due to the frequency dependent behavior of
the element pattern variations as mentioned earlier. The role played by the array efficiencies
is elucidated by Figure 5-12, which shows the average power efficiency associated with the
ideal and AX array weights used in the calculations of Pyise, found by using the S-parameter
measurements to form the scattering matrix in (2.8). These efficiency results explain the
more anomalous behavior seen in Figure 5-11 which fall outside of the typical ripples one
would expect in this practical setting. For example, at frequencies just below 6 GHz, the
noise power appears to have an inflection point above which shows a more rapid increase.
Observing the efficiencies at these frequencies, we see a divergence between the two curves
which accounts for the additional discrepancy between the gain patterns. At the lower end
of the band in the neighborhood of 4.25 GHz, the “dip” in the noise power occurs at the
same point where both efficiency curves drop off, meaning the gain magnitudes and thus
the associated mean square error should drop off as well. Accordingly, the behavior of the
array efficiencies is clearly reflected in the noise power results.
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Figure 5-12: Frequency dependence of ideal and AY power efficiencies from measured re-
sults.

5.3 Remarks

When the practical characteristics of these measurements are accounted for, the results
appear consistent with the analysis model developed for the AY array of isotropic elements.
In fact, these additional considerations can be seen as moderate extensions of the system
features that appeared in our model after the inclusion of mutual coupling. The effects of
element pattern variations was seen in Section 4.1 in the form of the embedded element
patterns; while from Section 4.2 it was evident that the differences in the beamformed gain
patterns due to power efficiency issues — as opposed to quantization errors — was to be
expected.

The available test hardware was not well suited to examine the wideband analysis in
Section 4.3. In that analysis, the AY array was proposed as a means of obtaining wideband
performance from an array of inherently narrowband elements (thin-wire dipoles), whereas
in our measurements we had the very different situation of operating an ultra-wideband
design outside of the intended frequency range. Not only did our results remain relatively
well matched even within the measured frequency band, as was shown in Figure 5-12, but
also, when simulations were run to implement the scan impedance matching network at a
particular frequency, the resultant match worked well only at that frequency, thus narrowing
the band of an already wideband array.

In the future, it would be of great interest to perform additional experimental measure-
ments with array hardware specifically dedicated to the A effort. This would allow for
the examination of the wideband performance and would illustrate whether any assump-
tions, either implicit or explicit, regarding the behavior of our model and the nature of
these experiments ignored any further practical considerations. Yet as they are, the present
measurements provide several complementary insights to our analytical developments.

Perhaps most encouraging is the implication regarding the quantization amplitude ~.
Even with the relatively modest efficiency losses predicted by the isotropic model and the
compensatory wideband nature of the dense arrays, any such inherent losses remain unde-
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sirable. Based on the observation that the decrease in v stems from the distinction between
the nonlinear phase progression required to scan the main beam in this case to the linear
progression used in the isotropic case, some caution should be taken in relating these exper-
imental results to the behavior of larger designs, in which there will be a greater uniformity
among the elements. Though it can be expected that practical arrays will exhibit some
level of variations due to small fabrication errors, particularly in the case of high frequency
millimeter wave systems, the system design should take care to consider the potential for
the tone-like nature of the phase excitations. Similar issues arise in AY analog-to-digital
converters to which he technique of adding small amounts of noise to the signal input, or
dithering, is commonly practiced [11]. With the digital selection of the phases in the AY ar-
ray, the implementation of some type of dithering technique could be easily implemented,
allowing for the mitigation of the efficiency loss concerns.

Finally, the potential effects of element pattern variations and power efficiency seen in
the measured results should be considered by the system designer when determining the
density ratio appropriate for meeting a particular SQNR specification. However, the results
of these experiments are not indicative of the expected performance of larger arrays, as
these effects are exaggerated by the small number of elements and the operation of the
array outside of its intended frequency band.
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5.A Gain Measurements and Superposition

From the electromagnetic superposition principle, electric fields can be added. Our element
pattern data is measured in gain and phase. We now briefly discuss how these are correctly
used in beamforming.

The power pattern we have used thus far is, physically, a measure of the relative power
intensity of the electromagnetic wave with electric field F (6, ¢), where (6, ¢) specifies the
location on a sphere of radius r in the far-field of an antenna. By restricting our attention
to this sphere, attenuation due to propagation distance is constant in all directions and may
be ignored. In terms of the electric field, the power intensity pattern is given by

(5.4)

where £ is the intrinsic impedance of the medium through which the wave is traveling,
approximately 1207 ohms in dry air.

The directivity pattern of an antenna is a more absolute measure of the radiating or
receiving characteristics in that it is normalized by the average power intensity over the
sphere (i.e. the power intensity relative to an isotropic element with the same total radiated
power P,aq)

P9, 9) _ 4xP(0,¢)

D(0,¢) =
(0,9) L2 d¢ [T dOsinOP(0,p) Praa

(5.5)

Proportional to directivity pattern is the gain pattern, which accounts for any power

losses in the antenna P
G(0.6) = nD(6.¢) = 5> D(0, ). (5.6)

mc

where 7 is the antenna efficiency and P, is the total available incident power.

Combining the above expressions gives

As such, the unit-power element pattern

Fa6,6) = | £ Gu(6,9)e7 ) (3

gives the electric field under the condition
Wy = 24/ Z00pm, m=0,1,... 11 (5.9)

such that by (2.7), Pne = 1. Thus for any excitation,
1
E(0,0) = ==Y wnEn(6,0), 5.10

and 1
Rnc— 7 n2- A1
—4 ; En [wn] (5.11)
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Combining the above we arrive at the final expression for the beamformed gain

_ [ wa /GO, 9)edn @22
Zn |'LUn|2 .

G(6,9)

(5.12)
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Chapter 6

Sparse Multi-Coset Arrays

In the last few chapters, we developed the use of one type of digital-enhancement in which
cooperative design of the array hardware and the associated digital control algorithms
allowed for a relaxation of the requirement for high precision analog circuitry. We now
turn our attention to another type of digitally-enhanced design in the form of the sparse
multi-coset array.

We develop the multi-coset array from the perspective of linear imaging arrays. The
concept of array imaging is quite similar to the standard notion of beamforming introduced
in Chapter 2. Consider a single signal arriving at a linear array of elements at an angle
0 from the axis perpendicular to the array as illustrated in Figure 6-1. For a signal with
complex magnitude X () at the origin, the response at position p away from the origin
along the array axis is x(p) = X (0)e %P5 For an array of N elements at locations py,
the “delay and sum” beamformer collimates the signal from 6 by adjusting the response of
each element by e?#P»s? and then combining the phase-delayed responses, resulting in a
beamformer output of

1 = jkpn sin O 1 = —jkpnsin@ _jkpy sin 6
N nz:% x(pn) e’ =~ nzz;) X (0)e™7"PnSIE ) iPn = X(6). (6.1)

In general, signals can arrive from any number of directions, and accordingly the beam-
former phases can be varied to focus over a range of directions, building up information
regarding the surrounding environment. This of course is simply the beam scanning pro-
cess from Chapter 2. In the case of digital beamforming, each element connects directly
to a receiver, which captures the response x(p;,) at each element prior to beamforming, at
which point scanning can be performed in the digital domain, allowing nearly instantaneous
coverage over a wide range of angles.

An active radar imaging system is based on the above principles along with the addition
of a transmitting source that radiates away from the array to illuminate the coverage area.
When these fields interact with a target object at a direction 6, a certain portion of the field
is scattered back to the receive array with a complex magnitude X (6), which in this case
depends on the total travel distance as well as the object size, shape, and orientation relative
to the array. Hence, in radar imaging, rather than scanning the surrounding environment for
incoming signals, the beamforming process captures information regarding the distribution
of target objects throughout the region to form an representation, or image, of the particular
scene.
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Figure 6-1: Imaging array geometry.

6.1 Array Structure and Scene Model

Throughout the development of the multi-coset array, we focus on linear arrays of elements
located on some subset of collinear lattice points with uniform spacing d = A\/2, where
A is the operating wavelength of the array. We assume ideal isotropic elements and limit
our attention to the half-plane such that the directional characteristics of the array are
completely specified by the angle 6, measured from the broadside direction of the array.

A standard linear array refers to any array having uniform element spacing of \/2.
Substituting ¢ = sinf/2, we see the array response and far-field pattern for a standard
array with N — oo elements forming the usual Fourier transform pair

1 .
z[n] = /0 X (1p)e??™m dop, nez (6.2)
N-1 _
X(@) = aple ™", 4elo,1). (6.3)
n=0

From the view of array imaging, (6.2) describes z[n] as the response at element n to a
scene consisting of complex valued objects X (). Standard reconstruction (delay-and-sum
beamforming) of the scene in a given direction 1) is carried out using (6.3).

The multi-coset arrays of interest in this work are subsets of a standard linear array.
Specifically, for an integer parameter L, we can partition the N elements of any standard
array into L cosets. Each coset is a uniform linear subarray with inter-element spacing L
times greater than the nominal spacing. We index the cosets by the position of their first
element relative to the first element of the full array. A multi-coset array comprises a subset
of these cosets. In particular, for P < L, a (P, L) multi-coset array is an array formed by
including P of these cosets. The selected cosets are denoted via

P:{p07p17"'7pp—1}7 (64)
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LA L L4 L L [——

Figure 6-2: (P, L) = (4,7) multi-coset array with coset pattern P = {0,1,2,4} and M =6
coset periods.

with 0 < pg <p1 <--- <pp_1 <L —1, and is referred to as the coset pattern of the array.
Note that the resulting array has a recurrent uniform pattern with period L, and thus we
refer to L as the coset period. As further notation, there are M = N/L such periods in the
array. As an example, Figure 6-2 depicts the layout of a (4, 7) multi-coset array with coset
pattern P = {0, 1, 2,4} superimposed on the lattice of the associated standard linear array
from which it was derived. The colors of the elements indicate the different cosets that
comprise the recurrent structure of the array. For example, the green elements make up the
coset indexed by po = 2 and the yellow elements represent the coset indexed by p3 = 4.

The response for coset p is defined via

M-1
2P n) 2 z2[n] Y dln— (mL+p)], pe{0,1,...,L—1}, (6.5)
m=0
forn =0,1,..., where
1 k=
5lk] & o (6.6)
0 otherwise.

The corresponding coset image in the angular domain is given by the Fourier transform of
the coset response, i.e.,

X () =Y " aPn]e ™ pelo,1). (6.7)

The individual coset images in (6.7) contain L uniformly shifted copies of the original
scene due to the aliasing effect caused by the increased element spacing Ld. As a result, the
coset image appears as L sectors, each containing grating lobes from the other L — 1 sectors
in addition to the correct response. Combining (6.2), (6.5), and (6.7), the coset image in
the first sector can be written as a linear combination of the grating lobes of the original
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X ()]?
G
Figure 6-3: (Q, L) = (3,7)-sparse scene with support Q = {1, 2,4}

scene

L-1

o) 1 S—
XO() = 137 X0+ /L), e [0,1/1). (6.
q=0

The goal in multi-coset image reconstruction is to extract the entire correct image from
the images of multiple cosets in a single sector. While this is in general not possible, it is in
scenarios where there are imaging targets in only a subset of the L sectors in the original
scene, which we refer to as sector sparsity. More specifically, for any pair of integers @ < L,
we say that a scene is (Q, L)-sparse if X (¢) =0 for all ¢ ¢ S, where

@t q qr+1
e @
S_kU_o[L’ 7 ) (6.9)

where the ¢, are integer-valued elements satisfying 0 < g < q1 < --- < ¢qg-1 < L —1. The
set

Q: {q07QI7"'aQQ*1}7 (610)

is referred to as the (sector) support of the scene. An example illustration of a (3, 7)-sparse
scene is shown in Figure 6-3.

The array structure and scene model above is the spatial counterpart of temporal frame-
work originally introduced [35], which developed the use of multi-coset sampling for signals
with sparse spectral support.

In the following section, we summarize when and how image reconstruction is possible
with multi-coset arrays for sector sparse scenes.

6.2 Multi-Coset Imaging Principles

In this section, we summarize the basic principles underlying multi-coset imaging of sector
sparse scenes, and introduce our notation for the remainder of our analysis. Subsequent
sections will then build on this foundation, incorporating the effects of noise and developing
robust system design.

In our architecture, imaging proceeds in two phases: the first phase recovers the sector
support of the scene, while the second phase reconstructs the signal values (target ampli-
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tudes and directions) in the active sectors identified in the first phase.

6.2.1 Reconstruction with known support

We begin by developing the properties of scene reconstruction when the sector support is
known, corresponding to the second phase of the imaging process. This reconstruction can
be expressed as the solution to a set of (possibly) redundant linear equations.

To see this, we first define

Yo () £ X () H(3)), (6.11)

X,(v) £ X (¢ +q/L) H(), (6.12)
with X 0 1/L

2 {) Sl 19
from which we can express (6.8) in the form

L—1 1 .

Vo) =) FpXg(w) with Fpy & e/t (6.14)
q=0

or, equivalently, Y (¢) = FX(¢), where [Y(¢)], = Y,(¢), [ X(¥)]q = Xq(¢), and [F],q =
Epy.

From (6.14) we see that the {X,(¢)} may be directly recovered from the complete set
of coset responses {Y,(¢)}. And once these quantities are recovered, image reconstruction

is completed via
L-1

X(¥) = Xyt —q/L). (6.15)

q=0

In the case of a (P, L) sparse multi-coset array, we must consider instead the length-P
vector Yp(1), composed of the entries of Y (¢) indexed by the coset pattern P. Similarly,
we define the P x L matrix Fp containing the P rows of F indexed by P. This results in
the relation

Yp() = FpX(1). (6.16)

In this form, we now have an undetermined system, having an infinite number of possible
solutions.

For a (Q, L)-sparse scene with support Q, the elements of X (1)) not indexed by this
support are zero-valued, and thus do not contribute to the coset responses. Hence, we may
define the P x @ measurement matrix Fpg, composed of the columns of Fp indexed by
Q, and the length-Q vector Xo(¢) containing the nonzero entries of X(¢). The updated
relation becomes

Yp(¥) = FpoXo(v). (6.17)
If Fpg is full rank, the correct image may be reconstructed as

Xo(9) = FroYp(1), (6.18)

where F;Q = (F;)QF’PQ)_IF:;;Q is the Moore-Penrose pseudo-inverse of the matrix Fpo,
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Figure 6-4: Multi-coset reconstruction processing chain.

with T denoting the conjugate transpose operator [44].

In practice, it is straightforward to ensure that the reconstruction (6.18) exists. In
particular, the rank of Fpgo depends on both P and Q. A pattern P that ensures Fpg is
full rank for any support of length @ is called a universal pattern. As shown in [35], such
patterns exist whenever P > . For example, the so-called “bunched” pattern, in which the
first P cosets are selected, i.e., p; =14, ¢=0,1,..., P — 1, is generally universal, though
we will ultimately be interested in still better patterns.

System Implementation

The basic architecture described in this section admits a convenient implementation. In
particular, the required processing is straightforward to carry out on the coset responses
2()[n] directly in the array domain, and takes the form depicted in Figure 6-4.

As the first step, corresponding to (6.11), the coset responses are first passed through
a linear time-invariant filter with unit-sample response h[n] (whose Fourier transform is
H(v)), to form the entries of the output vector sequence yp[n]. From this array domain
perspective, we see that the entries of yp[n] are the interpolated coset responses, generating
L — 1 values between each coset element via the interpolating filter hln].

As the second step, corresponding to expressing (6.17) in the following array domain
form

yp[n] = Fpoxg[n], (6.19)

we generate the reconstruction xg[n| = F;Sgyp [n]. by applying the @ x P matrix F;SQ to
obtain the xg[n].
As the final step, corresponding to the following array domain version of (6.15)

L-1
x[n] = Z x4[n) 72/ (6.20)
q=0
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we have that the complete array response Z[n] may be formed in the array domain by
modulating and summing the @ contributions from Xg[n|.

6.2.2 Support recovery

We next consider the first phase of imaging, corresponding to determining the active sectors
in the scene, i.e., the sectors containing nonzero signal content. In this phase, @ is treated
as known, and we seek to recover Q.

Since if ¢ ¢ Q, then X,(¢») = 0 for all ¥» € [0,1/L), the recovery of Q via (6.16) can
be viewed as an infinite-dimensional version of what is known in the compressive sensing
literature as a multiple measurement vector (MMYV) problem. However, it is straightforward
to reduce the problem to a finite-dimensional one through a representation in terms of
correlation matrices. In particular, with

1/L
Rx = [ X()X'(¢)dy e CMF, (6.21)
0

1/L
Ry, = | Yp@)Yh(y)dy e (6.22)
0

P

denoting the coset correlation matrices, respectively, we have the relation
Ry, = FpRxFL,. (6.23)

We may decompose the coset correlation matrix according to Ry, = VVT with V =
UAY2, where U and A are obtained from the eigenvalue decomposition Ry, = UAU'. In
turn, we can write

V =FpW, (6.24)

where, via (6.23), Rx = WWT. Thus, we seek to determine a suitable W from V.

Since Fp is a P x L matrix with P < L, the matrix W is not uniquely determined by
(6.24). The compressive sensing problem seeks the solution Wy that minimizes the number
of rows having nonzero entries. This particular fyp-minimization problem may be replaced
by a computationally preferable (specifically, convex) ¢;-minimization problem. To this
end, we define the length-L vector w with entries equal to the £o-norm of the corresponding
rows of W. With this, the optimization becomes

minimize ||wl[; subject to V—-FpW = 0. (6.25)

For a more detailed discussion of this formulation, and additional perspectives, see, e.g.,
[45]. More generally, there is a broader literature on algorithms for the solution of MMV
problems; see, e.g., [46,47].

Of particular interest to the design of the multi-coset array is an understanding of the
number of cosets P required to guarantee the recovery of ) support sectors. From [46], a
sufficient condition for unique recovery is given by

P >2@Q — rank(Rx) + 1. (6.26)

This result tells us that the required number of cosets depends not only on the number
of occupied sectors, but also upon the cross-correlation of the scene content among the
different sectors (for example, due to multi-path).
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Eq. (6.26) implies that in the worst-case (rank(Rx) = 1) we may require P > 2@ cosets,
as compared with P > @@ when the sector support is known, as discussed in Section 6.2.1.
Hence, blindness can incur a factor of two increase in the minimum number of array elements
required for successful image reconstruction. However, when the rows of X(¢) form a
linearly independent set, Rx has rank @ and it follows from (6.26) that P > @ + 1 cosets
are sufficient for recovery. In this case, the price of blindness is the requirement of a single
additional coset.

Solutions to the #1-minimization problem may still require more computation than may
be practical in a dynamic imaging application. For such scenarios, a computationally less
expensive solution is the alternative originally proposed in [35] and based on the MUSIC
direction finding algorithm [25]. The basic algorithm is as follows. In the absence of noise,
the correlation matrix Ry, has @ of its P eigenvalues nonzero. Accordingly, the eigenvector
matrix is partitioned as U = [Ug Uy, where the P x ) matrix Ug contains the eigenvectors
corresponding to the nonzero eigenvalues. These eigenvectors form an orthonormal basis for
the range of the measurement matrix Fpg, traditioanlly referred to as the signal subspace.
The orthogonal subspace spanned by the columns of the P x (P — Q) matrix Uy is known
as the noise subspace. In this scenario, the zero-valued eigenvalues associated with this
subspace reflect the noise-free idealization. To determine the support, each of the L columns
of Fp is projected onto the noise subspace. The columns corresponding to the active
sectors contained within the support Q lie in the orthogonal subspace spanned by Ug and
hence will have zero projection onto Uy. The recovered support Q contains the indices of
these columns. Thus, defining the columns of Fp and U as f; and u,, such that Fp =
[fofy -+ fr—1] and U = [uguy -+ up_1] (where the u,, are ordered by eigenvalue size), the
algorithm evaluates the null spectrum

P-1
Dyusio(q) = Y [fiun]? (6.27)
m=Q

and selects as Q the values of ¢ such that Dyusic(q) = 0.

For the case in which rank(Rx) = @, the MUSIC approach is particularly attractive,
being a polynomial-time algorithm satisfying the lower bound of (6.26) [35]. However, it is
well-known that the MUSIC algorithm is unreliable in scenarios corresponding to the case
in which Rx is rank-deficient [25]. For such cases, a hybrid MMV algorithm referred to
as subspace-augmented MUSIC, which combines MUSIC with orthogonal matching pursuit
techniques, may be be used to more efficiently handle rank-deficiencies [48].

More generally, additional results on the relationship between traditional CS MMV
algorithms, MUSIC, and the issue of rank may be found in, e.g., [49,50].

System Implementation

While not shown in Figure 6-4, the sector support Q is recovered from yp[n] prior to the
remaining steps of the reconstruction. For this recovery procedure, the required correlation
matrix Ry, can also be computed from the coset responses directly in the array domain
according to [cf. (6.22)]

Ryl = Z?Jpz [n] y;k [n]. (6.28)

The estimated support is then utilized in the remaining reconstruction steps.
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6.2.3 Coset period selection considerations

For a fixed aperture length corresponding to a standard array of N elements, the choice of
the coset period L in the associated multi-coset array involves a tradeoff between conflicting
objectives.

On one hand, the sector-wise density ps 1, = Q/L of the scene decreases monotonically
with increasing L, converging to the limiting scene density ps. Hence, this favors choosing
a large value for L, so that the sparsest possible array can be used.

On the other hand, 