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Abstract

Digital techniques have had longstanding use in both the operational control and signal

processing efforts associated with phased array antennas. Fundamentally, these techniques

have served to provide additional levels of convenience and performance over the fully

analog counterparts, without specifically addressing the underlying design of the analog

hardware aspects of the arrays. The class of digitally-enhanced hardware has recently

emerged, wherein “digitally aware” design approaches are used for the purpose of alleviating

the high cost and complexity of sophisticated analog devices.

Emergent trends in millimeter wave and low-terahertz circuit technology are enabling

the prospect of physically small, yet electrically large antenna arrays for a host of exciting

new communication, radar, and imaging applications. Still, the high cost of phased arrays

remains a significant bottleneck to any widespread deployment in this regard. In light of

this challenge, we propose two phased array architectures for which the notion of digital

awareness plays a central role in their designs.

The Dense Delta-Sigma Array: Primarily motivated by advancements in low-cost fabri-

cation, this design concept provides the opportunity to replace the expensive RF components

required to control the individual array element excitations with inexpensive phase shifter

components having particularly coarse resolution (as few as 2-bits). This is made possible

by increasing the number of array elements for a given aperture beyond the nominal number

associated with the standard half-wavelength spacing. This approach is inspired by Delta-

Sigma data converters, which employ faster-than-Nyquist sampling with low quantization

resolution.

The Sparse Multi-Coset Array: This design concept exploits the sparsity commonly

found in typical environments to allow for target detection and imaging with significantly

fewer array elements than prescribed by conventional half-wavelength spacing. The result is

a structured periodic non-uniform array composed of a number of distinct subarrays known

as cosets. This approach is inspired by multi-coset sampling, for which the average sampling

rate may be reduced below the Nyquist convention when the spectral components within

the overall bandwidth are limited to some number of sub-bands. In this approach, we view

the underlying engineering design problem as one of compressive sensing.

In this thesis, we develop and apply the underlying mathematical principles and concepts

of the dense and sparse arrays, taking into account the practical constraints and issues that

make the system design, analysis, and performance evaluation rich from an engineering

perspective.

Thesis Supervisor: Gregory W. Wornell

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Digital techniques play a prominent role in nearly all modern phased array systems, enrich-
ing both their operational and signal processing capabilities in ways beyond the possibility
of the original analog designs. The implementation of digital control over the amplitudes
and phases of the array element weights permits the rapid electronic reconfiguration of
the array pattern characteristics. The many developments in digital array processing have
yielded numerous additional tools for the extraction of useful information that would be
impossible or far less practical to implement through fully analog designs.

While these digital approaches complement the phased array system in a number of ways,
these systems still rely on conventional front-end designs having a high level of precision in
the complex signal weights at each of the individual elements. Put another way, while the
algorithmic design must account for the specifics of the analog design, the array is designed
without regard for the digital aspects of the system.

Recently, there has been an emergence of digitally-enhanced hardware designs motivated
by the desire to bridge the gap to cooperative design approaches that emphasize a level of
awareness regarding the utilization of digital techniques such that the requirements for ana-
log device complexity can be relaxed. The existing integration of digital system blocks so
common in phased arrays makes them natural candidates for such enhanced techniques.
Further, as advances in circuit technologies at increasingly higher frequencies surface, new
frontiers for the use of phased arrays become reality. Yet with the existing design conven-
tions, the phased array is normally considered to be a prohibitively costly and complex
antenna option, emphasizing the pressing need for a shift in perspective in order to address
the challenges of making their widespread use a possibility. As such, this thesis presents
two alternative phased array architectures that use digital perspectives in both design and
operation. In both cases, the architecture moves beyond conventional design principles in
a way that provides new opportunities for cost reductions while avoiding the limitations
common to existing array design techniques.

1.1 Motivation

Since the development of phased array antennas, they have been the ideal choice for a
vast range of applications ranging from point-to-point communication to remote sensing
and more recently, to high resolution imaging systems, to name just a few. Unfortunately,
the same design features that allow the performance and flexibility characteristics that
make phased arrays desirable come at such high costs as to preclude their use in all but
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CHAPTER 1. INTRODUCTION

a relatively small number of highly sophisticated systems. Research efforts promoting the
evolution of phased array designs aimed at overcoming this issue have been limited for
several decades, resulting in a general acceptance of the impracticality of a more pervasive
presence. However, as we look to the future, it becomes increasingly clear that the need to
meet these design challenges must be acknowledged.

Recent advances in technology at the millimeter-wave and the low terahertz frequency
ranges—in both the development of circuitry as well as lithography at these scales—has
enabled the potential for a new generation of portable high-end and consumer electronics.
Although size and fabrication issues are more manageable than ever before, the costs associ-
ated with the circuitry required for element level control remains a significant bottleneck to
making this a reality. Though the goal of designing low-cost phased arrays is longstanding,
these new possibilities motivate the need for novel perspectives.

1.2 Research Philosophy

Historically, the attempts in making the phased arrays more affordable have involved ad-
justing hardware designs. More recently, there has been growing interest in the design of
“digitally enhanced” analog circuits to leverage digital techniques and the increasing avail-
ability of low-cost processing power to alleviate the need for high precision, high complexity
analog blocks; see, e.g., [1] and references therein. This philosophy inspires the two novel
array architectures that are the focus of this thesis.

Dense Delta-Sigma Phased Array

The most common of phased array designs use digital phase shifters at each element. A
phase shifter having M -bits of resolution can be used to adjust the phase at an individual
element by one of 2M levels, with the exact shift implemented digitally by a dedicated
processor. For a given beam pattern, this processor determines the ideal phase shift to
be applied for each element, and then selects the nearest quantized phase shift from the
available 2M levels. Consequently, the level of quantization distortion in the overall array
pattern increases as the precision of the phase shifters decrease. As such, most phased arrays
use a minimum of 4- or 5-bits of resolution in order to keep this distortion at acceptably
low levels.

The Delta-Sigma (∆Σ) phased array differs from conventional designs in three primary
ways. Unlike conventional array designs, in which the elements are uniformly spaced by
a distance d0 = λ/2, where λ is the operating wavelength of the array, the ∆Σ array is
dense: a greater number of elements are packed into a given aperture such that the uniform
spacing is d < d0. Instead of the high-precision components used to set the amplitude and
phase adjustments to the signals at the array elements, or array weights, the ∆Σ array uses
only 2-bit phase shifters, limiting the weights to only four possible values. The selection
of the appropriate quantized phase shift no longer selects the “closest value” to the ideal
phase shift.

It is well known from conventional array theory that this dense element spacing does
not add to the array performance in the case of ideal weights. However, in practical set-
tings where the array weights are quantized, this close element spacing affords additional
flexibility in controlling the amount of distortion caused by this quantization. By making
use of the digitally controlled analog architecture, the availability of inexpensive processing
power is used to account for the effects of quantization by selecting the weights in a manner
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1.2. RESEARCH PHILOSOPHY

Figure 1-1: Illustration of range-dependent sparsity.

that uses neighboring elements to cancel out distortion. As the distance between the ele-
ments decreases, the effectiveness of this cancellation technique improves. As we will see,
the distortion caused by the use of the 2-bit phase shifters can be made arbitrarily small.

Sparse Multi-Coset Imaging Array

In a traditional linear imaging array, when the elements are arranged with uniform element
spacing d0 = λ/2, where λ is the wavelength of the received signal, the image resolution
improves in direct proportion to the number of elements N0. In the multi-coset imaging
array, the same aperture lengthN0d0 usesN < N0 elements to produce an image at the same
resolution as the conventional imaging array. When fewer than N0 elements are uniformly
spaced by d > d0, this leads to spatial aliasing, or grating lobes, producing images with
copies of the targets appearing at additional incorrect locations. In the multi-coset array,
the elements are positioned in a recurrent nonuniform arrangement in such a manner that
the presence of such grating lobes can be avoided.

The ability to obtain the correct image using a reduced number of elements is based on
the observation that target scenes are themselves sparse in most cases. That is, the image
will contain a certain number of locations that are empty of any targets. While this is not
necessarily the case when considering the fraction of directions in which targets are located,
the existence of scene sparsity is apparent when one considers the ability to distinguish
the distance to targets by sorting their responses into a number of range cells. In light of
this, scene sparsity can be regarded as the portion of directions occupied by targets within
each range cell. As a simple example, Figure 1-1 illustrates this effect. In the illustration,
the array, shown in green, faces a large object, shown in grey, with the faces shown in red
representing the surface of this object in the field of view of the array. The complete surface
surrounds the array such that the scene taken as a whole exhibits no sparsity whatsoever.
However, if the scene is sorted into separate range cells, as shown by the concentric blue
half-circles, it is only the intersection of the red surface with the individual cells that defines
the relevant level of sparsity.

The multi-coset architecture permits a reduction in the required number of elements to
an array density ratio N/N0 provided this relative density remains above the scene density
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over all range cells. Rather than using conventional imaging—a digital implementation
of analog beamforming—the digital processing is enhanced through the use of an imaging
algorithm that first examines the received signal data to determine the angular regions in
which targets are located, and then utilizes the knowledge of this reduced angular subspace
to solve for the image response within this region.

1.3 Related Work

This research builds on a number of contributions from a range of communities. In this
section, we summarize some of the related works from the fields of antenna theory, signal
processing, circuit design, and compressive sensing to provide context for the contributions
of this thesis.

Cost Effective Array Designs and Delta-Sigma Applications

The developments in millimeter-wave technology have led to a resurgence of interest in
practical phased array designs tailored to this new frequency regime; see, e.g., [2–7] and the
references therein. Within the broader realm of ongoing research, some efforts are focused
primarily on exploiting increasing levels of silicon integration, while other efforts primarily
seek to exploit the increasing availability of inexpensive digital circuitry and processing.
Moreover, some of the most promising efforts leverage both jointly.

In spite of recent progress, the components required for accurate phase control at each
element in such arrays continue to be expensive, precluding the use of phased arrays in many
otherwise compelling applications. Simply replacing high-end, high-resolution components
with low-cost, coarsely discretized phase shifters in traditional designs sharply degrades
performance, limiting the quality of the beams that can be formed by the array. As a result,
addressing the need for adequate phase control in beamforming remains a key challenge in
the pursuit of widespread deployment of millimeter-wave phased arrays.

There has been a variety of research exploring this issue. For example, some research has
focused on characterizing the capabilities of phased array systems utilizing low resolution
phase shifters to meet the needs of current and proposed millimeter-wave applications [8,9].
At the same time, other research has focused on developing novel approaches for sharing a
smaller number of phase shifters (and other components) among antenna elements [10].

In this design, we explore a rather different approach. Specifically, instead of pursuing
designs with a smaller number of accurate phase shifters, we develop a high-performance
architecture based on efficient utilization of a larger number of coarse phase shifters. To
accomplish this, we repurpose the established theory of delta-sigma analog-to-digital con-
verters (ADCs) [11], applying it in the spatial domain to determine an appropriate phase for
each of the densely packed elements to create a desired array pattern. In temporal domain
∆Σ as used in ADCs, coarsely discretized faster-than-Nyquist sampling, or oversampling, is
used to force the quantization error to appear at higher frequencies than the original signal.
This, in turn, allows the original signal to be retrieved by low-pass filtering, removing the
undesired error. Exploiting a direct correspondence between temporal domain and spatial
domain sampling, we observe that faster-than-Nyquist sampling in ADCs is the equivalent
of sub-half-wavelength element spacing in uniform arrays. Moreover, the shaping of quanti-
zation noise into the high frequencies in ADCs is equivalent to the steering of beam pattern
quantization error into the so-called invisible region of space, while leaving the intended
pattern throughout the (visible) area of interest.
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From a broader perspective, our architecture can be viewed as exploring potential at-
tractive technology tradeoffs enabled by inexpensive digital processing. In particular, the
architecture allows for making tradeoffs between phase shifter design complexity and denser
antenna implementations. And with ongoing evolutions in antenna fabrication and integra-
tion technology, such tradeoffs may turn out to be quite favorable. For example, using mod-
ern lithography there is the potential to etch cost-effective dense arrays of patch antennas
antennas, which with increasing levels of density effectively become simple printed dipoles.
From this perspective, the ∆Σ architecture represents a generalization of the traditional
phased array architecture that allows a designer, with specific implementation technology
at his/her disposal, to choose from a spectrum of tradeoffs between array density on one
hand, and analog circuit complexity on the other.

The ∆Σ data encoding process continues to be adapted for use in a growing number
of fields and applications that exploit oversampling in the temporal domain in order to
mitigate noise while using relatively simple sensors for measurement; see, e.g., [12–14].
Additionally, ∆Σ techniques have been applied to phased arrays and imaging arrays in a
number of instances; see, e.g., [15–18]. However, these techniques have focused on the use
of ∆Σ techniques in the more traditional temporal domain for such arrays, in contrast with
our focus on exploiting spatial oversampling.

Spatial domain versions of∆Σ have received attention in applications other than antenna
array design; examples include image processing, wave computing, and pattern recognition
[19, 20]. For instance, in the context of image processing, an approach known as error
diffusion uses ∆Σ quantization to reproduce images from low-resolution but oversampled
data. However, these methods are in the same spirit as the traditional application of
∆Σ principles in the temporal domain. In particular, they apply it to the data itself, whereas
in our approach it is applied to the actual sensors/transducers, i.e., the antenna elements.
Finally, in [21], a spatio-temporal∆Σ quantization scheme is developed for transmit antenna
arrays. While there are some superficial similarities to the methods described in this thesis,
the goals are quite different, and how the ∆Σ methodology is exploited diverges sharply.
In particular, whereas the architecture in [21] aims to reduce the temporal oversampling
requirements of the time domain waveforms, ours seeks to produce specified antenna beam
patterns with simpler structure and hardware.

Array Thinning and Multi-Coset Sampling

Recent advances in millimeter-wave technology, including the advent of terahertz comple-
mentary metal-oxide semiconductor (CMOS) circuits, have the potential to enable, for the
first time, a host of low-cost imaging and “personal radar” applications. Indeed, at these
higher frequencies, typical resolution requirements can be met with comparatively compact
arrays, which are especially attractive for applications requiring some degree of mobility.
Moreover, such arrays can be implemented with inexpensive integrated circuit and antenna
technologies, and digital implementations.

However, with such technology comes significant new challenges, an important example
of which is the large number of array elements typically required to construct a phased array
in such applications. As an illustration, in a vehicle collision avoidance system, obtaining
sufficient resolution might require an aperture of roughly 2 m. But in this case a traditional
phased array operating at 100 GHz with half-wavelength element spacing would require
roughly 1000 antennas, which is daunting to implement. Indeed, such arrays are costly and
complex to design and calibrate, and, moreoever, since the system processing requirements
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scale in proportion to the number of elements, the needed computational bandwidth quickly
becomes impractically large.

As a result, there is renewed interest in developing sparse antenna array architectures.
Sparse arrays, characterized by average inter-element spacings of greater than one half of
the operating wavelength, have been of interest throughout much of the history of phased
arrays, garnering a great deal of attention in the early 1960’s; see, e.g., [22] and references
therein.

The design of general-purpose sparse arrays has typically entailed making basic per-
formance tradeoffs. A well-known example is the use of “density tapering,” which uses a
gradually increasing spacing profile as one moves from the center toward the edges of the
aperture. These arrays are representative of a class of “thinned” arrays that stretch the
aperture associated with a given number of elements to achieve a desired resolution by nar-
rowing the width of the main lobe without introducing additional grating lobes. However,
this is obtained at the cost of a significant increase in the sidelobe level. In certain appli-
cations for which resolution is the key performance metric, these provide a useful design
solution. However, in the context of imaging arrays this introduces an unacceptable noise
floor.

Another class of sparse arrays, referred to as limited scan arrays, accommodate sparse-
ness by constraining the field-of-view of the array to a commensurately narrow range of
angles [23]. This may be accomplished through the use of lens or reflector systems designed
to increase the directive properties of the array elements such that grating lobes are sup-
pressed outside of the angular region of interest. However, such arrays must be rotated
physically in order to provide wide angle coverage, requiring relatively static environments
as well as increased mechanical complexity.

An extension of the limited scan array is seen in overlapped subarray antennas [24], in
which the array elements are connected to multiple subarrays. Each subarray acts as an
analog beamformer, suppressing signals outside of the desired sector. By connecting digital
receivers to the subarrays, full coverage throughout the sector is accomplished in the digital
domain. With this architecture, the number of required receivers decreases linearly with
the size of the sector. In turn, full coverage can be achieved through a combination of
element-level phase shifters and subarray-level digital receivers.

In this work, we take a different approach, whereby rather than constraining the func-
tionality or performance of the array, we exploit structure in the scene being imaged. In
particular, we seek to exploit sparsity in the scene to allow the number of antenna elements
to be reduced, i.e., when the scene being imaged is sparse in an appropriate sense—even
without knowing where it is sparse—then it is possible to commensurately reduce the num-
ber of elements in an imaging array. Moreover, such sparseness is quite common in typical
applications.1

This approach also has a rich history. Consider, for example, the classical problem of
direction-finding with multiple sources, for which the MUSIC algorithm [25], among others,
was developed. In this case, it is possible to achieve high-resolution with relatively few
antenna elements because of the sparse nature of the scene. Indeed, the number of elements
required is typically on the order of the number of sources. Hence, the presence of structure
in the environment allows the number of elements to be reduced.

1Note that in a typical scene while there are objects at some range in any particular direction, when we
use enough bandwidth to sufficiently resolve range as well, we find significant sparseness in the range-azimuth
plane.
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For arrays containing just a few elements, the array design and image reconstruction can
often be fairly straightforward and exploit classical techniques. However, for arrays of even
a few dozen elements, such direct approaches quickly become computationally infeasible to
design, and impractical to implement. As a result, there is a need to impose useful structure
on the array to enable efficient design and processing.

There has been growing recent interest in nonuniform arrays with structure, and how
such structure can be exploited by efficient array processing to support forms of sparse sens-
ing; see, e.g., [26–32]. Ulimately, these developments leverage perspectives and techniques
from the field of compressive sensing (CS) [33,34]. For example, the co-prime sampling tech-
nique in [28] develops a nonuniform design from a pair of uniform sparse samplers, allowing
the exploitation of this underlying structure to enable efficient design and processing.

In our development, we focus on particular structured sparse antenna designs that are
comparatively easy to design and for which efficient array processing algorithms can be
developed to perform the image reconstruction. Specifically, we focus on “multi-coset”
arrays, defined as comprising a collection of interleaved sparse uniform arrays such that the
elements are laid out in a periodic nonuniform pattern over the aperture.

This special structure has important computational implications. In particular, as will
become apparent, the complexity of the associated array processing for such arrays is ef-
fectively governed by the number of elements in one period of the array, not by the total
number of elements—i.e., the complexity does not significantly depend on the number of
periods of the pattern in the array. As a result, the practicality of our architecture is not
limited to arrays consisting of only very small numbers of elements, as has historically often
been the case with less judiciously structured nonuniform arrays. This array architecture,
introduced in [26], follows from exploiting the close mathematical relationship between the
problem of imaging from a discrete array, and that of reconstructing a bandlimited time-
domain waveform from samples. Indeed, our architecture is the counterpart of multi-coset
sampling [35].

1.4 Contributions and Thesis Structure

From a high level perspective, the translation to the spatial domain of the ∆Σ and multi-
coset concepts results in a number of fundamental similarities in the analysis and develop-
ment of the array designs. As the practical details of implementing these ideas into fully
realized architectures are considered at a deeper level, the story diverges from that of the
original time domain applications, highlighting important distinctions. The primary objec-
tives of this research are to detail the repurposing of the underlying concepts and to create
a framework to address the characteristics unique to phased array systems. To this end,
the thesis is laid out as follows.

In Chapter 2 we describe the foundational array concepts related to the subsequent
development of the design innovations in the proposed arrays. This includes a review of
standard topics such as array patterns, beam scanning, and conventional design practices.
Special attention is given to effects of mutual coupling on the formation of patterns and
power efficiency due to the particular relevance of this topics to the densely populated
∆Σ array.

Chapter 3 begins the development of the ∆Σ array with an introduction of the notion of
phase quantization in the excitation of array weights. Relating this to signal discretization
in analog-to-digital converters, we extend the concept of ∆Σ ADCs to form the basis of
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the proposed design. Chapter 4 continues the development using the more evolved free
excitation array model to include the effects of mutual coupling and power efficiency. Our
analysis investigates the robustness of the ∆Σ beamforming technique under the potentially
severe electromagnetic environment inherent to arrays of tightly packed elements. We then
consider the effects of both the dense physical architecture as well as the ∆Σ quantization
technique on the array efficiency, including the implementation of a scan impedance based
matching network that provides the potential for wideband performance benefits compared
with conventional designs. Then, in Chapter 5 we describe experimental measurements
performed to validate the ∆Σ array development and analysis.

In Chapter 6 we switch our focus to the multi-coset array, describing the idea of beam-
forming in the context of image formation and defining the central concepts of how the
sparsity and structure of the scene and array are characterized. This chapter details the
two-stage image reconstruction algorithm for the sparse array, examines the specific manner
in which the system is affected by noise, and introduces a computationally simple failure
indication stage to the algorithm based on the concept of back projection error. Chapter
7 discusses the various considerations regarding the specific layout of the multi-coset ar-
ray and presents a novel design technique shown to optimize the aggregate performance
of the array in noisy environments. Following this design procedure, we use the idea of
range-dependent sparsity alongside the combined reconstruction and failure detection al-
gorithm, forming two dimensional images from synthesized radar data. Chapter 8 details
the process of performing experimental measurements to demonstrate the robustness of our
development in a practical setting.

Finally, in Chapter 9 we conclude with a discussion of our results and describe a number
of interesting directions for future research.
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Chapter 2

Conventional Phased Array
Concepts

This chapter provides an overview of the basic characteristics of linear arrays needed for

this thesis.

2.1 Linear Arrays of Isotropic Elements

Our development begins with the linear array geometry shown in Figure 2-1.

2.1.1 Array patterns

Consider N ideal isotropic elements arranged with uniform spacing d along the z axis as in

Figure 2-1. For time-harmonic sources with angular frequency ω and associated free space

wavelength λ, when the complex weights {wn}N−1
n=0 are applied to the array elements, the

beam pattern in the direction given by kz = k cos θ, where k = 2π/λ is the spatial angular

frequency of the waves and the angle θ is measured from the +z axis, may be written as [36]

f(kz) =
N−1�

n=0

wne
jnkzd. (2.1)

The region of kz-space corresponding to real values of θ, V = {kz : |kz| ≤ k} is referred

to as the visible region, or real space. Outside of this region, θ takes on purely imaginary

values, and as such, V⊥ is referred to as imaginary space.

2.1.2 Beam scanning

The main beam is scanned to kz0 when a progressive phase shift across the array ∠wn =

−nkz0d coherently combines signals along this direction. Since the beam pattern is 2π/d-
periodic in kz-space, the main beam direction may be uniquely specified for any kz0 in the

alias-free region V0 = {kz : |kz| ≤ π/d}. If d > π/k, V0 is a subset of V, and it is possible

to have an alias of the main beam within real space, known as a grating lobe.
The relative power density, or power pattern, of an array is given by P (kz) = |f(kz)|2.

For a transmitting array, this pattern represents the relative radiation intensity in the

direction kz. When a grating lobe is present in real space, a part of the power intended for
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Figure 2-1: Uniform linear array geometry

the main lobe direction is instead transmitted to the grating lobe direction. For a receiving
array, the power pattern gives the relative power gain of a signal arriving from kz. With
grating lobes, signals from unintended directions are amplified by the same level as the
main lobe, leading to directional ambiguities and reduced signal-to-noise ratios.

An illustration of the effect of element spacing on the power pattern is shown in Figure
2-2 for uniform linear arrays of fixed length L = 20λ scanned to kz0 = k/2 (at an angle of
30◦ from the broadside direction normal to the array). In each plot, a portion of imaginary
space is shown to highlight the grating lobe behavior. For d = λ/4, the first main lobe
alias lies well outside the visible region and does not appear within the displayed range of
kz. At a spacing of d = λ/2, we can see that the beam can be scanned nearly to the edge
of the visible region before the first grating lobe begins to appear at the opposite edge. In
the case of d = λ, an exact copy of the main lobe appears within V and we see that this is
unavoidable at any scan angle kz0.

As we see in Figure 2-2a, when d < π/k, V0 extends beyond the visible region. In this
case, it is possible to scan the main lobe entirely outside of real space. In the transmit
case, this has the physical interpretation that the array is attempting to direct power into
imaginary space, and as a consequence very little power will actually propagate away from
the array. The receiving array has an analogous interpretation: it is attempting to focus
on signals coming from imaginary space, thus causing any signal from real space to be
combined incoherently.

With no apparent benefit gained from choosing a particularly small element spacing,
conventional array design generally dictates that the spacing be set at or just slightly less
than d0 = π/k = λ/2. Based on this convention, a linear array with aperture length
L = Nd is referred to as a standard uniform linear array when the number of elements is
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Figure 2-2: Power patterns for L = 20λ linear array scanned to kz0 = k/2. The edges of

the visible region are marked with vertical dotted lines.
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N = N0 = L/d0. When the same aperture is filled uniformly with more than N0 elements,
the resultant array is described as a dense array. As will be shown, while there is no benefit
to using such an array with idealized components, a dense array has the potential to be
useful for practical phased array implementation.

For our development, it is important to emphasize the distinction between the impacts
of varying the array aperture size versus varying the number of array antennas, as these
parameters are independently chosen in our architecture. To first order, the aperture size
determines the fundamental pattern characteristics such as beamwidth and directivity. In a
traditional array with element spacings near a half-wavelength, changing the aperture size is
equivalent to changing the number of antennas. However, with the ∆Σ array architecture
we focus on a fixed, but arbitrary array aperture within which the number of antennas is
increased by reducing the element spacing throughout the aperture, resulting in a greater

2.2 Mutual Coupling

Physically, the array weights in (2.1) represent voltage or current excitations applied to
the individual elements. For example, in an array of thin-wire dipoles, these weights are
the currents across the terminals of the two dipole halves. Implicit in this expression for
the beam pattern is the assumption of direct control over these terminal currents. This is
known as the forced excitation model.

A more accurate representation of a practical array system is the free excitation model,
characterized by the equivalent circuit shown in Figure 2-3. In this model, the weights
{wn} represent the complex voltages generated by individual sources, each with internal
impedance Z0. The array is described as an N -port network with impedance matrix Z ∈
CN×N such that v = Zi [37], where v and i are length-N vectors containing the voltages
{vn} and currents {in} at the terminals of the array elements. The terminal currents in
Figure 2-3 are related to the weights w ∈ CN according to

w = Z0i+ v = (Z0I+ Z)i, (2.2)

where I is the N × N identity matrix. Defining the coupling matrix as C = (Z0I + Z)−1,
such that i = Cw, the effects of the feed network and mutual coupling may be accounted
for by replacing the wn in (2.1) with in =

�N−1
m=0 Cnmwm. The resultant beam pattern with

mutual coupling is then

fMC(kz) =
N−1�

n=0

N−1�

m=0

Cnmwmejnkzd. (2.3)

The model described above is commonly used in traditional mutual coupling analysis—
see, e.g., [38]. We may obtain a useful form for the purpose of our analysis by exploiting
certain structure in the coupling. In particular, it is useful to express (2.3) in terms of the
embedded element patterns, which are the patterns due to a unit excitation at a specified
element while in the presence of the remaining array elements. While these will vary among
the elements near the edges of the array, most elements behave similarly to the elements of
an infinite array. In the infinite array model, the physical coupling environment is constant
for all elements and as such, the coupling matrix C has a Toeplitz structure, with identical
entries along each diagonal cp = Cm+p,m. Thus, the complete coupling matrix may be
represented by the set {cp}, which we refer to as the infinite array coupling coefficients.
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Figure 2-3: Equivalent circuit diagram for the antenna array. The beamformer output is

described by a set of voltage sources {wn}, each with internal impedance Z0. The mutual

coupling among the array elements is modeled as a N -port network with impedance matrix

Z.
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Making the substitution p = n−m in (2.3), the beam pattern for the infinite array is

fMC(kz) =
�

m

�

p

cpwmej(m+p)kzd

=
�

m

wmejmkzd
�

p

cpe
jpkzd

= f(kz) fc(kz). (2.4)

In (2.4), we have rewritten the free excitation beam pattern (2.3) as the product of the
forced excitation beam patterns due to {wm} and {cp}, the latter, which we refer to as the
coupling pattern of the array fc(kz). From (2.4), we can see that the coupling pattern is the
beam pattern of the array when a unit excitation is applied to the element located at the
origin. Note that this is precisely the embedded pattern shared by all the array elements
(up to a phase term). This useful factorization of the beam pattern allows for a convenient
separation of the coupling effects from the simpler forced excitation relation used when
mutual coupling is ignored.

2.3 Power Efficiency

Under perfect conditions, an array will radiate all the available power delivered by the
source. When the power radiated by the array Prad is less than the incident power sent
from the source Pinc, the array is said to have a loss in the power efficiency

η =
Prad

Pinc
. (2.5)

If the array is composed of lossless materials, efficiency loss is due to impedance mismatches
between the source and the array elements. Since the impedance of each element is the
ratio of the voltage to the current across the element terminals, mutual coupling causes
these mismatches to vary with each particular array excitation.

For a particular choice of source excitations w, the power radiated by element n is
Re{i∗nvn}. The total power radiated is then

Prad =
N−1�

n=0

Re{i∗nvn}

= Re{i†v}
= i†Re{Z}i
= w†(Z0I+ Z)−1,†Re{Z}(Z0I+ Z)−1w. (2.6)

The power efficiency will be maximized when the array is perfectly impedance matched
such that v = Zi = Z0i. Hence, the total available incident power can be deduced from
(2.6) by noting that Pinc = Prad when Z = Z0I, with the result

Pinc =
1

4Z0
w†w. (2.7)

Combining (2.6) and (2.7) with (2.5), we obtain, with some rearranging of terms, the
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following expression for the array efficiency in terms of the array excitations:

η =
w†(I− S†S)w

w†w
= 1− �Sw�2

�w�2
, (2.8)

where S = (Z0I− Z)(Z0I+ Z)−1 is the standard scattering matrix of the array [37].
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Chapter 3

Delta-Sigma Quantization for

Phased Arrays

In this chapter we consider the issue of pattern distortion caused by phase quantization
in the excitation of phased arrays. Traditionally, the only recourse available for reducing

this distortion has been to decrease the level of quantization error through the use of phase

shifters with higher resolution, a primary driver of the high cost of phased arrays. The first

of the two array designs proposed in this thesis employs an alternative approach for efficient

quantization inspired by the Delta-Sigma modulation technique originally developed for use

in analog-to-digital converters.

3.1 Traditional Delta-Sigma Quantization Concepts

In practice, the phases of the complex array weights are restricted to some finite set of quan-

tized values defined by the resolution of the phase shifters used in the network connecting

the array to the source. Phase shifters with M -bits of resolution can provide any of 2M val-

ues uniformly distributed over the range [0, 2π). For a desired excitation wn = anejφn , the

realized excitation is ŵn = Q[wn] = anejφ̂n , where the quantization operator Q selects ŵn

such that the phase is the available value closest to φn. Consequently, this adds undesired

distortion to the far-field beam pattern.

The issue of phase quantization in the excitation of array elements draws a close anal-

ogy to the difficulty that arises in the implementation of conventional analog-to-digital

converters. At each sampling instance, the input signal xi is mapped to one of a number

of discretized values yi. This introduces an additive error ei, as shown by the equivalent

circuit in Figure 3-1. To keep distortion levels low in the output signal, the circuits in this

type of converter require high-accuracy analog components.

3.1.1 Oversampling

Consider a signal bandlimited to 0 ≤ f < f0 sampled at frequency fs. When fs is greater

than the Nyquist frequency 2f0, the signal is said to be oversampled by a factor defined as

the oversampling ratio (OSR)

OSR =
fs
2f0

. (3.1)
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xi
+

yi

ei

Figure 3-1: Sampled-data equivalent circuit of a conventional analog-to-digital converter.

At the sampling frequency fs, all of the quantized signal power in yi is contained within
the frequency band 0 ≤ f < fs/2. If the quantization error e is modeled as white noise,
uncorrelated with the signal x, then the spectral density of the sampled noise is evenly
distributed over this band, given by

E(f) = σe

�
2

fs
, 0 ≤ f < fs/2, (3.2)

where σ2
e is the mean-square value of e.

By oversampling, the signal-to-noise ratio of the output signal y is reduced through the
use of a low-pass filter for frequencies above f0, thereby retaining the entirety of the signal
power while limiting the noise power to the portion that falls into the signal band

n2
0 =

� f0

0
E2(f)df = σ2

e

�
2f0
fs

�
=

σ2
e

OSR
. (3.3)

This result shows that oversampling reduces the in-band noise in proportion to the over-
sampling ratio. As such, each doubling of the sampling frequency results in an increase of
the signal-to-noise ratio of 3 dB.

3.1.2 Noise shaping

While simple oversampling does reduce in-band noise, a more efficient use of the increased
expense of the higher sampling rate can be obtained through the use of noise shaping. For
this, we will now describe the Delta-Sigma modulator, represented by the equivalent circuit
shown in Figure 3-2.

The input signal xi passes first through an integrator, shown in the equivalent circuit
as the delay loop. The output of the integrator wi then feeds to the quantizer, and the
quantized output yi is fed back and subtracted from the input signal. Whereas the output of
the conventional analog-to-digital converter constantly tracks the input signal, this feedback
forces the average value of the quantized output to track the average input. As these values
differ, the error builds up in the integrator and in time will correct itself.

The input-output relation can be shown as follows. The integrator output is given by

wi = xi−1 − yi−1 + wi−1

= xi−1 − (wi−1 + ei−1) + wi−1

= xi−1 − ei−1. (3.4)
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xi
+ + Delay

wi
+

yi

+

− ei

Figure 3-2: Equivalent circuit of the ∆Σ analog-to-digital converter.

This term is then quantized, adding error ei to give

yi = xi−1 + (ei − ei−1) . (3.5)

The resultant output contains the original (delayed) signal plus an effective error, which is

in this case the first-difference of the quantization error:

ni = ei − ei−1. (3.6)

Employing the same white noise model for e as before, we can compare the power

spectral densities of the ∆Σ and conventional data converters in order to see the noise

shaping effect

|N(f)|2 = |E(f)|2
���1− e−j2πf/fs

���
2

=

�
2σ2

e

fs

�
4 sin

2 πf

fs
. (3.7)

From this expression it can be seen that the noise is suppressed at low frequencies and

increased at higher frequencies. This is illustrated in Figure 3-3 for OSR = 8. By applying

a low-pass filtering of frequencies above f0 to the output signal yi (not depicted in Figure

3-2), only the noise to the left of the dashed line will remain.

The resultant in-band noise power for the ∆Σ quantization is

n2
0 =

� f0

0
|N(f)|2df

=

�
8σ2

e

fs

�� f0

0
sin

2 πf

fs
df

=

�
4σ2

e

fs

�� f0

0

�
1− cos

2πf

fs

�
df

=
4σ2

e

fs

�
f0 −

fs
2π

sin
2πf0
fs

�
. (3.8)
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Figure 3-3: Power spectral density of the noise |N(f)|2 from ∆Σ quantization compared
with that of conventional quantization |E(f)|2, OSR = 8.

For fs � f0, the small angle formula sinx ≈ x− x3/6 applies, giving

n2
0 ≈

4σ2
e

fs

�
f0 − f0 +

1

6

fs
2π

�
2πf0
fs

�3
�

=
σ2
eπ

2

3

�
2πf0
fs

�3

=
σ2
eπ

2

3
(OSR)−3 . (3.9)

So now, with the ∆Σ modulator, each doubling of the sampling frequency results in a
gain of 9 dB—an improvement of 6 dB over when oversampling is used alone without the
∆Σ feedback structure.

3.2 ∆Σ Phased Arrays

We now return our attention to the problem of array phase quantization. As mentioned in
the beginning of this chapter, for a desired excitation with phase φn = ∠wn ∈ [0, 2π), the
M-bit phase shifters restrict the actual excitations ŵn to have quantized phase

φ̂n ∈ {0,∆φM , 2∆φM , . . . , (2M − 1)∆φM}, (3.10)

where ∆φM = 2π/2M is the resolution of the phase shifter. Drawing a parallel to the
sampling problem discussed in Section 3.1, the problem of array phase quantization is to
determine a digital representation of an analog phase input.

While analog-to-digital converters sample a continuous signal in the temporal domain,
an array samples a continuous aperture in the spatial domain. For this reason, it is preferable

34



3.2. ∆Σ PHASED ARRAYS

+

ŵ0 = w0 + q0

q0

w0

+

ŵ1 = w1 + q1

q1

w1

+

ŵ2 = w2 + q2

q2

w2

Figure 3-4: Equivalent circuit for conventional phase quantization.

to express the spatial sampling rate in terms of the array density ratio

R =
1/d

1/d0
=

d0
d
, (3.11)

where d0 = λ/2 is the conventional spacing between elements, such that

1

d0
=

2

λ
=

k

π
(3.12)

is the spatial Nyquist (angular) frequency associated with far-field pattern f(kz) over the

visible region of space |kz| < k, as developed in Chapter 2.

In this section, we develop the ∆Σ phased array first by describing the relationship and

mathematical similarities to the ∆Σ modulator. Later, we will explore the nature of this

design directly from an array perspective.

3.2.1 Conventional phase quantization

Conventional phase quantization can be illustrated by the equivalent circuit in Figure 3-4.

The similarity to the conventional analog-to-digital converter in Figure 3-1 is clear, with the

multiple circuit blocks distinguishing the spatial sampling of the array. The M-bit phase

shifter is represented by the phase quantization block, which adds quantization error qn to

the desired excitation weight wn resulting in the phase-quantized output

ŵn = wn + qn. (3.13)
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Instead of the intended beam pattern, the array now has the quantized beam pattern

f̂(kz) =
N−1�

n=0

ŵne
jnkzd

=
N−1�

n=0

wne
jnkzd +

N−1�

n=0

qne
jnkzd. (3.14)

The first term in (3.14) is the desired pattern f(kz) and the second term is the pattern
distortion or quantization error pattern

fq(kz) = f̂(kz)− f(kz) =
N−1�

n=0

qne
jnkzd. (3.15)

Signal-to-quantization noise ratio

In Section 3.1, the noise power n2
0 was used to characterize the effects of oversampling

and noise shaping [cf. (3.3) and (3.9)]. For the analysis of the effect of quantization errors
on arrays, the related signal-to-quantization-noise ratio (SQNR) will be used as a general
measure of the relative pattern distortion

SQNR =
Psignal

Pnoise
. (3.16)

The signal power Psignal refers to the power pattern magnitude in the desired scan direction
due to the desired array weights,

Psignal = |f(kz0)|2 =
�

N−1�

n=0

|wn|
�2

, (3.17)

while the noise power Pnoise is the average noise power distributed throughout the visible
region due to the quantization errors in the array weights

Pnoise =
1

2k

� k

−k
|fq(kz)|2dkz. (3.18)

Although the value of Pnoise will be a deterministic function of the specific array weights and
the particular quantization levels, a more general interpretation of the noise power considers
the expected value over some distribution of weights. In that sense, a white noise model for
the quantization errors can be used, as was done for the analog-to-digital converter analysis.
It is convenient to normalize the array weights such that the signal power remains fixed at
Psignal = 1, such that SQNR = 1/Pnoise and the quantization error model may be expressed
as

E [q∗mqn] =
σ2
q

N2
δmn, (3.19)

where σ2
q/N

2 is the average noise at the individual elements (fixing Psignal), and where

δmn �
�
1 m = n

0 otherwise.
(3.20)

36



3.2. ∆Σ PHASED ARRAYS

Using (3.15) in (3.18) and taking the expected value we obtain the following:

Pnoise = E



 1

2k

� k

−k

�����

N−1�

n=0

qne
jnkzd

�����

2

dkz





=
1

2k

� k

−k

N−1�

n=0

σ2
q

N2
dkz

=
σ2
q

N
. (3.21)

The noise power decreases linearly with N , a natural consequence of the averaging effect

when the same amount of power is distributed over an increasing number of elements and

the quantization terms combine incoherently in the far-field. For a fixed aperture length,

N = N0R, where N0 is the number of elements with uniform spacing d0. Thus the SQNR

can be written as

SQNR =
N0R

σ2
q

. (3.22)

The process of obtaining the result in (3.22) closely follows the analysis of the conven-

tional analog-to-digital converter, with the similar conclusion that a doubling of the density

ratio R yields a 3 dB improvement in the SQNR. However, a notable distinction in this

case is that rather than necessitating a low-pass filtering of the noise spectrum above the

signal band, this filtering occurs naturally as the close element spacing pushes a portion of

the quantization noise pattern outside of the visible region while leaving Psignal unchanged.

3.2.2 ∆Σ phase quantization

As we saw with the data converters, it is possible to improve the efficacy of spatial over-

sampling through the use of noise shaping. The ∆Σ array phase quantization technique is

analogous to the ∆Σ modulation described in Section 3.1.2. In this case, the purpose is

to shape the quantization noise pattern to higher values of |kz| by implementing the phase

quantization as shown by the equivalent circuit in Figure 3-5.

In this implementation, the feedback loop is represented by the difference between the

input to the quantizer and its output. This difference is added to the quantizer input at the

next element, achieving the effect of the integrator in the ∆Σ modulator. As before, the

average value of the quantized output tracks the average input, and any persistent difference

between these values accumulates in the feed forward path and eventually corrects itself.

The input-output relation between the desired weight and the ∆Σ quantized weight is

ŵn = Q[wn − qn−1] = wn − (qn − qn−1). (3.23)

This result is mathematically equivalent to (3.5), the only exception being the one-step

delay in the ∆Σ modulator implementation.
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Figure 3-5: Equivalent circuit for ∆Σ phase quantization.

With the ∆Σ excitations, the quantization error pattern is given by

fq(kz) =
N−1�

n=0

(qn − qn−1)e
jnkzd

=
N−1�

n=0

qne
jnkzd −

N−2�

n�=−1

qn�ej(n
�+1)kzd

= (1− ejkzd)
N−2�

n=0

qne
jnkzd + qN−1e

j(N−1)kzd. (3.24)

Here we see our first divergence from the ∆Σ modulator development: the finite aperture
length of the array makes it such that only the first N −1 elements make appropriate use of
the ∆Σ excitations, as the final element has no following element to which the error term
is fed.

SQNR in ∆Σ arrays

The SQNR for the ∆Σ array can be analyzed using the framework developed in Section
3.2.2 by replacing the quantization error pattern in (3.21) with (3.24). To begin, we can
ignore the finite aperture effect and assume that the summation in (3.24) is taken over all
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N elements in order to keep the relation to the analog-to-digital converters clear.

Pnoise = E



 1

2k

� k

−k

���1− ejkzd
���
2
�����

N−1�

n=0

qne
jnkzd

�����

2

dkz





=
1

2k

� k

−k

�
4 sin2

kzd

2

�N−1�

n=0

σ2
q

N2
dkz

=
2σ2

q

N

1

2k

� k

−k
(1− cos kzd) dkz

=
2σ2

q

N

�
1− 1

kd
sin kd

�
. (3.25)

For d � π/k, we use the small angle approximation for the sine term to obtain

Pnoise ≈
2σ2

q

N

�
1− 1

kd

�
kd− 1

6
(kd)3

��
=

σ2
q

N

k2d2

3
. (3.26)

The first term in this result σ2
q/N is the noise power for the conventional phase quantization.

The second term is proportional to R−2 since d = d0/R, and we see that as with the
∆Σ modulator, the noise shaping reduces the noise by an extra 6 dB with each doubling of
the array density, in addition to the 3 dB improvement due to the averaging effect.

We can include the finite array effect directly by scaling the above result by a factor
of (N − 1)/N to account for the fraction of the total power that goes to the final element,
which adds an additional σ2

q/N
2 to the final expression

Pnoise =
N − 1

N

σ2
qπ

2

3N0
R−3 +

σ2
q

N2
0

R−2, (3.27)

where k = π/d0 was substituted to highlight the similarity to (3.9). In principle, as R grows
very large, the effect of the ∆Σ cancellations will continue to eliminate the noise due to
the rest of the array to the point that the noise caused by this single element becomes the
dominant source of quantization noise. However, in nearly all practical settings this edge
contribution will be negligible. As an example, for an array of length L = 2λ (N0 = 4),
a density ratio of R = 12.9 is required for the two terms in (3.27) to be comparable in
magnitude.

3.3 Delta-Sigma Implementation

When designating the complex array weights, a beam-steering computer (BSC) computes
the desired weights and sends a control signal to the phase shifters indicating which of the 2M

quantized phase shifts to apply to the incoming or outgoing signal. This may be performed
in an analog sense, where the the steering signal takes any value—not necessarily confined to
the same discrete set as the phase shifter—and the phase shifter applies the closest possible
shift. Alternatively, the computer can communicate directly to the phase shifter using an
M -bit message corresponding to which of the quantized shifts is to be applied.

The ∆Σ array uses 2-bit phase shifters and a uniform amplitude â for the weight of each
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array element, and as such these weights take one of only four possible values:

ŵn = Q[wn − qn−1] ∈ { â√
2
(1 + j),

â√
2
(1− j),

â√
2
(−1− j),

â√
2
(−1− j)}. (3.28)

One benefit of this architecture is that it allows the bulk of the operational complexity
to be performed digitally. The BSC determines the ∆Σ weights according to the following
simple algorithm.

1 function weights ds = quantize delta sigma(weights,amplitude)
2

3 weights ds = zeros(size(weights));
4 q ds = zeros(size(weights));
5

6 weights ds(1,:) = amplitude*quantize2bits(weights(1,:));
7 q ds(1,:) = weights ds(1,:)−weights(1,:);
8

9 for nn = 2:length(weights(1,:))
10 weights ds(nn,:) = amplitude*quantize2bits(weights(nn,:)−q ds(nn−1,:));
11 q ds(nn,:) = weights ds(nn,:)−weights(nn,:)+q ds(nn−1,:);
12 end
13

14 %%
15 function output = quantize2bits(input)
16

17 output = (sign(real(input)) + 1j*sign(imag(input)))/sqrt(2);

Last, we need to determine how to set â relative to the magnitude of the desired weights
an = |wn|. This same issue arises in determining the quantization levels in the ∆Σ ADC.
There is no known “best” solution in terms of optimizing the output SQNR for a given
input, yet there is an answer to the problem of ensuring stability. For the case of 1-bit
∆Σ quantization of a real-valued bounded input signal |x[n]| < a for all n, output stability
is guaranteed for quantized output levels y[n] = ±b when b ≥ 2a [11].

In the case of the ∆Σ array, we have the additional consideration of the array efficiency,
as described in Section 2.3. From (2.7), the power sent to each element is proportional to
|wn|2. Considering the case an = a for all n, if we choose to follow the stability guarantee—
for both real and imaginary components—we have â = 2

√
2a, and as a result it would take

8 times the power to obtain approximately the same pattern. Fortunately, the stability
guarantee requirement is overly strict in nearly all cases. Further, the digital implementation
of the ∆Σ weights allows the BSC to determine an appropriate value of â and can adjust
when necessary to avoid any unbounded situations.

The value of â plays a role beyond ensuring stability. It also affects how closely the
quantization errors hold to the white noise model given by (3.19). This can be illustrated
with an example to show how the SQNR dependence on the density ratio also depends on â.
Using numerical simulations, exact values of Pnoise were determined over a range of density
ratios for the case of a length L = 20λ linear array of ideal isotropic elements, designed to
scan uniformly throughout real space with uniform amplitude weighting for all elements.
At each value of R the desired array weights were normalized to fix the peak signal at
Psignal = 1,

an =
1

N
=

1

40R
. (3.29)
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Figure 3-6: ∆Σ SQNR results for uniform amplitude scanning array of length L = 20λ.

For the case of uniform amplitude weighting, we can express the relative amplitude of the
∆Σ weights as

γ =
â

a
, (3.30)

so that the incident power to the array is simply γ2 times greater for the ∆Σ weights than
for the desired weights. For this example, we use γ = 1.26. The noise power was calculated
directly from (3.18) by averaging the noise power over the visible region at a given scan
angle, then evaluating the mean value over 500 scan angles. In addition, the predicted
value of Pnoise from (3.27) was calculated from the resultant sample values of σ2

q for each
R. With the array weights properly normalized, these results were inverted, yielding the
simulated and predicted SQNR at each R, as depicted in Figure 3-6, which shows close
agreement between the two curves. However, if we compare the SQNR at R = 2 to R = 4,
we see an improvement of 6 dB, 3 dB less than our analysis predicted would be associated
with a doubling of the array density. From R = 4 to R = 8, we see even less of an
increase, indicating the likely culprit is not the small angle approximation used to obtain
the R−3 dependence. The actual cause is due to the sample value of σ2

q evaluated within the
simulations, which happens to be increasing with R—in disagreement with the assumption
that wn and qn are independent. We will return to this discussion in Chapter 4.

3.4 Phase Errors

In addition to the effects of quantization, a number of other factors can cause pattern distor-
tions. These include errors in the amplitudes and phases of the array weights, positioning
and orientation errors, element pattern variations, and inoperative or missing elements. To
a certain degree, it is possible to compensate for systematic errors through careful calibra-
tion. Even so, the presence of some level of random errors is unavoidable. Such errors can
lead to decreased directivity, increased sidelobe levels, and shifts in the main beam location
from the desired scan angle [39].

A statistical analysis of these errors and their effects may be found in most standard

41



CHAPTER 3. DELTA-SIGMA QUANTIZATION FOR PHASED ARRAYS

texts concerning arrays (e.g., [23, 40, 41]). In this section we limit our attention to random
phase errors in order to facilitate a practical comparison of the quantization noise in ∆Σ and
conventionally quantized phased arrays.

The issue of phase errors becomes increasingly important at higher frequencies as the
effect of mild changes in the signal path lengths can result in significant changes in the
phase. As phase errors increase, the utility of high-resolution phase shifters lessens. For
some perspective, consider the 5-bit phase shifter with phase resolution of 2π/25 radians
(11.25◦). At a frequency of f = 100 GHz, a change in the feed path of slightly less than 0.1
mm yields a phase error equal to the resolution of this phase shifter.

The difficulties beyond the issue of phase quantization in ensuring accurate phase control
at high frequencies have important implications to the ∆Σ array design. Namely, the
∆Σ array is more suited to deal with such errors for two reasons. First, the performance of
the array is inherently less dependent on accurate phase control; and second, the pattern
distortion due to these phase errors naturally decreases for dense arrays as a result of the
averaging effect.

By adding random gaussian phase errors to the SQNR simulations performed in the
previous section, a comparison can be made between the conventional and ∆Σ arrays,
yielding the results shown in Figure 3-7.

3.5 Array Theory Perspective

Our development thus far has built upon the mathematical similarities between the notions
of sampling in the temporal and spatial domains. Alternatively, it is illustrative to examine
this design directly from the principles of antenna array theory. To understand the mecha-
nism by which the ∆Σ array reduces pattern distortion, we consider a simple two-element
array with opposing excitation weights w0 = 1 and w1 = −1. From (2.1), the beam pattern
is

f(kz) = 1− ejkzd, (3.31)

and the associated power pattern

P (kz) = 4 sin2 (kzd/2) (3.32)

vanishes at kz = 0, increasing monotonically to peak values at kz = ±π/d. For standard
spacing d = d0 = λ/2, this places the peaks at the edges of the visible region V. The power
pattern of (3.32) is shown for d = d0, d0/2, and d0/4 in Figure 3-8. As the spacing is
decreased, the peaks are steered outside of V, while at the same time flattening the pattern
inside. In the limit as d → 0, the array becomes increasingly similar to a single antenna
with a weighting of zero and P (kz) becomes vanishingly small. In the ∆Σ array, the original
array weights in (3.23) behave as intended, but the quantization errors combined with the
purposely subtracted terms at the neighboring elements behave like this two-element array,
and their contributions to the array pattern throughout real space diminishes as the spacing
between elements is decreased.

The relation of the ∆Σ array to the two-element array patterns can be seen in the
example patterns shown in Figure 3-9. In each plot, the desired and ∆Σ quantized patterns
are shown for scan direction kz0 = k/22. Comparing the two patterns for the case of R = 1,
we can see that the distortion falls under an envelope that increases away from the origin
throughout the visible region in a manner consistent with the behavior of the λ/2 spaced
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Figure 3-7: Comparison of effects of random phase errors with standard deviation σφ radians
on SQNR for (a) conventional quantization and (b) ∆Σ quantization.
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Figure 3-8: Power pattern for a two-element array with excitation weights w0 = 1 and
w1 = −1. The edges of the visible region are marked with vertical dotted lines.

pattern of Figure 3-8. Similarly, the behavior of the ∆Σ array continues to accord with the
general behavior of the two-element array as the spacing is decreased.

Comparing (3.31) with the first additive term in (3.24), we can interpret the quantization
error pattern as the array pattern corresponding to array weights given by {qn}—with the
isotropic elements replaced by elements having patterns given by (3.31). As such, the
∆Σ error passing scheme shown in Figure 3-10 can be visualized in terms of the pattern
associated with the ∆Σ kernel, composed of the two opposite excitations seen in Figure
3-11. This perspective will be useful in the following section.

3.6 Delta-Sigma Planar Arrays

Extensions of the ∆Σ quantization technique to planar arrays may be grouped roughly into
two categories of design approaches. The simpler approach is to design the two-dimensional
array such that elements are spaced closely along a single dimension in order to exploit the
∆Σ cancellation of the quantization errors, thus allowing for standard element spacing along
the other dimension. A more interesting approach can be applied to arrays of elements that
may be closely spaced along both dimensions. As an example, consider an electrically small
patch antenna with an impedance match to account for the non-resonant element size. In
contrast to the 1-D ∆Σ scheme, where the quantization error imposed at each element is
subtracted in whole at the input of the neighboring element, a 2-D scheme may be employed
that subtracts a fraction of the quantization error along each dimension. In this case, the
2-D counterpart to Figure 3-10 is illustrated in Figure 3-12, which shows the quantization
error for each element being passed to the right by a factor α and being passed upward by
a factor β, where α+ β = 1, and the ∆Σ quantized excitation is given by

ŵm,n = Q [wm,n − αqm−1,n − βqm,n−1] = wm,n − αqm−1,n − βqm,n−1 + qm,n. (3.33)

For a planar rectangular array with excitation weight wmn applied to the element at
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Figure 3-9: Power patterns P (kz) (ideal weights) and P̂ (kz) (∆Σ weights) for arrays of
length L = 20λ scanned to kz0 = 0.045k for density factors (a) R = 1 (b) R = 2 and (c)
R = 4.
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Figure 3-10: 1-D error passing.
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d

Figure 3-11: 1-D error kernel.

location x = md and y = nd, the pattern is

f(kx, ky) =
N−1�

n=0

M−1�

m=0

wmne
j(mkx+nky)d, (3.34)

where kx = k sin θ cosφ and ky = k sin θ sinφ denote the direction over the half-sphere given
by k2x+k2y ≤ k2. Using the error terms from (3.33), the quantization error pattern associated
with Figure 3-12 is

fq(kx, ky) =
�

n,m

(qm,n − αqm−1,n − βqm,n−1)e
j(mkx+nky)d. (3.35)

Ignoring edge effects in this analysis, the above can be manipulated to obtain the following
form

fq(kx, ky) =
�
1− αejkxd − βejkyd

��

n,m

qm,ne
j(mkx+nky)d. (3.36)

As with the linear array, this expression can be used to find the expected value of Pnoise by
integrating E

�
|fq(kx, ky)|2

�
over the half-sphere. Like before, the result will be determined

by the terms preceding the summation, which represents the equivalent kernel pattern
associated with the ∆Σ scheme in Figure 3-12. By symmetry, the resultant noise power will
be minimized for α = β = 1/2, in which case the ∆Σ kernel is as shown in Figure 3-13, with
the kernel power pattern shown for a density ratio of R = 4 (d = λ/8) as seen in Figure
3-14. Compared to the linear array kernel pattern given by the d = λ/8 curve in Figure
3-8, which has peak value in visible space of P (kz = k) = 0.59, the peak value for this 2-D
result is reduced by a factor of approximately 1/2. This result is intuitive, as this passing
scheme separates the error into orthogonal element pairs, which can be seen by considering
the “+1” element of the 2-D kernel as the superposition of two “+1/2” excitations, each
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Figure 3-12: 2-D error passing.
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Figure 3-13: 2-D error kernel associated with Figure 3-12.

with opposing terms along distinct axes.
In Figure 3-14, the noise shaping is notably more effective on the symmetry axis given

by kx = ky than for kx = −ky. This behavior is to be expected from the underlying kernel
geometry, and suggests the possibility of other, perhaps more optimal ∆Σ error passing
techniques. One such alternative is shown in Figure 3-15. In this passing scheme, the error
is subtracted equally to both the upward and right side neighbor, and then added to the the
element diagonally across in order to compensate for the extra subtracted term, resulting
in a symmetric ∆Σ kernel. The kernel power pattern in this case is shown in Figure 3-16
for R = 4.

The relative noise power (normalized by σ2
q and the total number of elements MN) for

both 2-D ∆Σ kernels is shown in Figure 3-17. At very small density ratios, the advantage
of separating the quantization error into orthogonal terms results in better noise power
performance for the first ∆Σ kernel type, evidenced by the 3 dB difference between the
curves at R = 1. However, the symmetrical second type quickly outperforms the first, with
the noise power decreasing with R4 as opposed to R2 in the first case.
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Figure 3-14: 2-D ∆Σ kernel pattern for R = 4.
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Figure 3-15: Alternative symmetric 2-D error kernel.
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Figure 3-16: Alternative 2-D ∆Σ kernel pattern for R = 4.
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Figure 3-17: Relative noise power for both 2-D ∆Σ kernels.
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Chapter 4

Mutual Coupling Effects

In the design of a dense array, the close proximity of the elements makes it particularly

important to understand and account for the effects of mutual coupling. The results pre-

sented in Chapter 3 were determined based on the forced excitation model. We now will

consider the more realistic free excitation model and determine whether the ∆Σ array con-

tinues to perform as desired. Our treatment in this chapter first examines the effect of

mutual coupling on the ∆Σ array pattern. Following the analysis approach described in

Chapter 2, we will initially consider the infinite array case and treat the edge effects due to

finite array lengths separately. In the latter portion of this chapter, we turn our attention

to the ∆Σ array efficiency performance and the ability to design an effective impedance

matching network. To this end, we use the narrowband perspective to provide a detailed

description of the mechanisms that affect the ∆Σ array efficiency and then continue with a

demonstration of the wideband performance benefits over conventional array designs.

4.1 Mutual Coupling in Dense Arrays

Recall from (2.4) that under the free excitation model, the beam pattern of the infinite ar-

ray can be decoupled into the product of the corresponding forced excitation pattern f(kz)
and the coupling pattern fc(kz), which is an inherent property of the array, independent of

the particular excitations. Consequently, the ∆Σ beam pattern in any direction f̂MC(kz)
may be thought of as the ∆Σ beam pattern analyzed in Section 3.2.2 multiplied by a pro-

portionality constant given by the coupling pattern. From this viewpoint, the interactions

among the array elements—regardless of spacing—should have a problematic effect only if

fc(kz) generally tends to be of greater magnitude in the regions of real space for which the

∆Σ pattern distortions are the most extreme, that is, towards larger values of |kz|. Fur-

ther, the likelihood of this being the case may be addressed intuitively by considering the

forced excitation idealization as a special case of the free excitation model with coupling

coefficients cp = δp,0, corresponding to fc(kz) = 1. More generally, we expect cp to decay

smoothly with |p|. Based on a standard result from Fourier analysis [42], this more gradual

decay of the coupling coefficients implies that fc(kz) should decrease away from the origin,

unlike the “flat” coupling pattern associated with forced excitation model. This observation

suggests that mutual coupling has the effect of actually suppressing the most troublesome

pattern distortions located near the extents of the visible region.

To simulate the effects of mutual coupling, the model given by Wasylkiwskyj et al. [43]

for the mutual impedance of two thin-wire dipole antennas was used. In this model, the
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system impedance is normalized such that Z0 = 1 and the impedance matrix entries are
given by

Zmn =

�
1 m = n

H
(2)
0 (kd|n−m|) m �= n,

(4.1)

where H
(2)
0 (·) is the zeroth-order Hankel function of the second kind. While the analysis

in [43] is specific to the case of two isolated thin-wire dipoles, the results apply rather directly
to our array setup. Indeed, the presence in the array environment of the additional open-
circuited dipoles in the determination of the impedance matrix elements has negligible effect
as the two separated dipole halves are far from resonant and appear relatively transparent
to the electromagnetic fields.

Using (4.1), the coupling matrix C was determined for the array of length L = 20λ
with density ratio R = 4. For an array of this size, the entries of the coupling matrix
corresponding to an element near the center of the array are nearly identical to the non-
trivial coupling coefficients {cp} of an infinite array element. The magnitudes of these values
|cp| are shown in Figure 4-1a versus the element separation index p. The associated coupling
pattern fc(kz) is shown in Figure 4-1b, in which we see the expected decrease away from
the origin, with particularly sharp drop-offs beyond |kz/k| = 0.9.

To illustrate the overall effect of mutual coupling, the pattern calculations performed
to create Figure 3-9 were repeated based on the free excitation model using (2.3) with
coupling matrix entries determined by (4.1). The quantization error patterns for both the
forced and free excitation models, fq(kz) and f

MC
q (kz), are shown in Figure 4-2 for R = 1,

2, and 4. In each of the three cases, the distortion near the edges of the visible region,
where ∆Σ noise shaping alone is least effective, is decreased when the calculation accounts
for mutual coupling, as implied by Figure 4-1b.

While the infinite array analysis explains the effect of mutual coupling near the edges
of visible space, the slight increase in the pattern distortion near the origin seen in the case
of R = 4, for example, is not accounted for by this approach, as the infinite array analysis
predicts no modification along this direction. From this observation, we may surmise that
edge effects have slightly greater significance due to mutual coupling. This result is un-
surprising since in the case of the finite array, the embedded element patterns in actuality
exhibit more variations for the elements near the array edges. As a result, the opposing
∆Σ quantization errors do not cancel quite as effectively as elements with identical embed-
ded patterns. However, these effects appear to be relatively benign, appearing only when
the pattern distortion is decreased to about 30 dB below the main lobe level.

When the SQNR calculations used to generate Figure 3-6 are repeated for the free
excitation model, the results are as shown in Figure 4-3. The simulated results for the
forced excitation model are also shown to illustrate that the effects of coupling add only a
small amount of additional error, consistent with the above discussion.

4.2 Narrowband Efficiency

The power efficiency of the ∆Σ array is affected by both the increased array density and the
unique nature of the ∆Σ excitations. We begin with a description of a simple yet effective
approach for maintaining acceptable array efficiencies for general dense scanning arrays,
and then apply this concept specifically to the ∆Σ array.
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Figure 4-1: (a) Magnitude of the coupling coefficients {cp} for a central element in an array

of length L = 20λ, with R = 4. (b) Power pattern response Pc(kz) = |fc(kz)|2 for an array

excited by the coupling coefficients.
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Figure 4-2: Quantization error (power) patterns for the ∆Σ array of length L = 20λ using
both the forced and free excitation models with density ratios (a) R = 1 (b) R = 2 and (c)
R = 4.
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Figure 4-3: Comparison of SQNR versus density ratio R for ∆Σ arrays based on the forced

and free excitation models. L = 20λ.

Impedance Matching for Dense Arrays

Impedance mismatch losses can be reduced by placing a matching network between the

source and the array. For a single antenna, a perfect match may be obtained by using

a series reactance and a quarter-wavelength of transmission line to match the imaginary

and real parts of the antenna impedance, respectively, to the source impedance. With a

phased array, the presence of mutual coupling makes matching much more complicated,

necessitating the use of complex matching networks to avoid efficiency losses. Examples

include the use of dynamically varying components that modify the network characteristics

for every set of array excitations or a web of interconnections between the array elements.

A far more practical alternative is based on the notion of scan impedance, defined as the

effective impedance (sometimes referred to as the active impedance) of each element when

scanned to a particular direction kz0 [41]

Zscan
n (kz0) =

vn(kz0)

in(kz0)
. (4.2)

For the particular set of excitations corresponding to scan angle kz0, it follows that v(kz0) =
Z i(kz0) = Zscan(kz0)i(kz0), where Zscan(kz0) is a diagonal matrix with entries given by (4.2).

Because of this, the scattering matrix at this scan angle can also be replaced by substituting

Z with Zscan(kz0) such that

Sscan
(kz0) = (Zscan

(kz0)− Z0I) (Z
scan

(kz0) + Z0I)
−1 . (4.3)

Since for each scan angle the matrix in (4.3) is diagonal, it may be decoupled into N scalar

equations of the form

Γ
scan
n (kz0) =

Zscan
n (kz0)− Z0

Zscan
n (kz0) + Z0

, (4.4)

with the scan reflection coefficient Γscan
n (kz0) for element n (at scan angle kz0) corresponding

to the nth diagonal entry of Sscan(kz0). This term captures the effective ratio of the signal
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returned back along the feed line to the original signal wn. Because the scan reflection
coefficient is a function of Zscan

n (kz0), which includes the effects of coupling for all N array
elements, this reflection is in reality a superposition of both the incident signal at the
element as well as the coupled signals from the other N − 1 elements. As such, (2.8) can
be expressed as the array scan efficiency

ηscan(kz0) = 1− �Sscan(kz0)w(kz0)�2

�w(kz0)�2

= 1−
�N−1

n=0 |Γscan
n (kz0)wn(kz0)|2�N−1

n=0 |wn(kz0)|2
. (4.5)

Using the scalar equivalent for the element impedance in (4.2), it is possible to match
each element such that Zscan

n (kz0) = Z0 in the same way one would match a single antenna.
However, since this scan impedance is only valid at kz0, when the beam is scanned to any
other angle, the change in scan impedance results in a loss of efficiency. As element spacing
decreases, it is to be expected that mutual coupling effects become more prevalent, yet
these effects are not necessarily disadvantageous to the power efficiency. In fact, as the
array scans from one direction to another, the incremental phase change between neigh-
boring elements is inversely proportional to their spacing, and thus we can expect the scan
impedance to be less sensitive to changes in the scan direction. This motivates the use
of scan impedance matching, in which the array is matched to the scan impedance in one
specified direction. This sub-optimal matching technique is applied with the expectation
that the scan impedance does not vary greatly over the entire range of potential scan angles.
Based on the above observation, this implies that this very simple approach is particularly
well suited for use with dense arrays.

To develop the idea, the scan impedance matching approach was applied to an array of
length L = 20λ using the impedance matrix values obtained from (4.1) for several density
ratios. The scan impedances of the unmatched array elements were calculated using (4.2)
for the broadside scan direction of the array, kz0 = 0, and an individual matching network
consisting of a series reactance and a quarter-wave transmission line was applied at each
element to match these impedances to the normalized system impedance Z0 = 1. The
resulting average matched scan impedances are shown in Figure 4-4 for both a standard
(R = 1) and dense (R = 2) array. At kz0 = 0, both arrays have scan impedances with
real parts equal to the system impedance Z0 and zero imaginary parts, corresponding to a
perfect match. However, away from broadside, the standard array scan impedance exhibits
a greater sensitivity to changes in scan angle than seen for the dense array, as expected.

Efficiency Effects Due to ∆Σ Weights

In addition to the effect of the increased element density on the power efficiency, we must
consider the effect of using the ∆Σ weights instead of the ideal array weights. In particular,
we characterize the fractional reduction of the ∆Σ array efficiency η̂ from the efficiency η
of the equivalent array excited by ideal (unquantized) weights

ρ =
η

η̂
. (4.6)

Consider an array with the matching network in place, some set of ideal weights {wn}
with associated ∆Σ weights {ŵn}, and assume that the array is sufficiently dense such that
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Figure 4-4: (a) Real part and (b) imaginary part of the average scan impedance of elements

in an array of length L = 20λ, for density ratios R = 1 and R = 2. Calculations include

scan impedance matching network designed for perfect match to Z0 = 1 at kz0 = 0.
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the beam patterns are nearly identical. Since the total power radiated is proportional to
the power pattern integrated over real space, it follows that P̂rad ≈ Prad. To obtain similar
patterns, the ratio of the magnitudes of the ∆Σ weights to those of the ideal weights,
γ = â/a, must be greater than unity in order to steer the pattern distortions into imaginary
space. Therefore, from (2.7) it follows that P̂inc > Pinc. Using the definition of the power
efficiency in (2.5), we can estimate the efficiency loss in the case of low pattern noise as

ρest =
â2

a2
= γ2 > 1. (4.7)

Put simply, the ∆Σ excitations as expressed in (3.23) radiate the same amount of power
as in the case of the ideal excitations due to the wn terms, while the quantization terms
qn radiate zero power once their beam pattern contributions are effectively steered from
real space. Hence, we can expect the efficiency of the ∆Σ array to be less than that of an
identical array excited with ideal weights. The exact amount depends on the choice of γ,
which as we will discuss shortly, also plays a role in how quickly the ∆Σ pattern converges
to the desired pattern.

For example, in the patterns and SQNR results presented thus far, the ∆Σ weights were
determined by setting γ = 1.26. When the quantization noise is relatively small, such as in
Figure 3-9(c), the power radiated using both the ideal and ∆Σ weights is nearly identical,
while the total power incident on the array is a factor of γ2 ≈ 1.59 greater in the ∆Σ case.

Eq. (4.7) implies we should expect to see a reduction in the ∆Σ power efficiency of γ2,
corresponding to a 2 dB power efficiency loss. Exact efficiency results calculated for R = 4
are shown as a function of scan angle for both the ideal and the ∆Σ weights in Figure 4-5.
These results were calculated directly from (2.8) with a scan impedance match network
tuned to a perfect match for the ideal weights at kz0 = 0. We first note from the ideal
excitation results that the scan impedance matching works quite well for the dense array,
with nearly negligible efficiency losses for scan angles throughout the region |kz0| ≤ 0.5k
(corresponding to ±60◦ from the array broadside). Further, the predicted power efficiency
reduction of 2 dB shows a very good agreement with the ∆Σ array results. The fluctuations
seen in the ∆Σ results are due to varying levels of pattern noise for different scan angles,
which affect the assumption that the radiated power is equal to that of the ideal weights.
Similar calculations for increased density ratios had less variations, since the quantization
noise was lower throughout the visible region.

Inclusion of a matching network has the additional effect of altering the coupling matrix
C relating the free excitations to the currents across the terminals of the array elements.
As such, it is necessary to revisit the SQNR performance of the ∆Σ array to reflect these
changes. Analysis of the combined network (see 4.A for a detailed derivation) yields the
matched coupling matrix

CM = −j
�
Zt + Z0Z

−1
t (Z− jXs)

�−1
, (4.8)

where Zt is a diagonal matrix containing the characteristic impedances of the quarter-wave
transmission lines used to match the real part of the element impedances and Xs is a
diagonal matrix containing the reactances of the components used to match the imaginary
part of the element impedances.

When the matched coupling matrix is used in place of the original coupling matrix in
the SQNR calculations, the results are as shown in Figure 4-6. Interestingly, the matching
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Figure 4-5: Power efficiency as a function of scan angle kz0, L = 20λ, R = 4, with scan
impedance matching network designed for perfect match at kz0 = 0. Results for the ∆Σ ar-
ray obtained by setting â = 1.26a such that the nominal efficiency is within approximately
2 dB of the ideal result.

network appears to have the added benefit of improving the ability of the ∆Σ array to pro-
duce desired beam patterns. Closer inspection of the embedded element patterns with and
without the matching network verifies that the matched array embedded element patterns
show considerably less variation near the edge of the array than in the unmatched case.
This observation supports the earlier conjecture that such variations were responsible for
the slight decrease in the SQNR for the unmatched free excitations seen in Figure 4-3.

Based on (4.7), it may be tempting to select an arbitrarily low value for γ in order
to minimize efficiency losses. However, since this estimate is obtained by assuming that
P̂rad = Prad, it is necessary to determine the array efficiencies directly from (2.8) to obtain
the exact dependence of ρ on the choice of γ. Exact values of ρ were calculated for different
density ratios R with the value of γ varying from 1 to

√
2 (0 to 3 dB estimated power

efficiency loss). Figure 4-7 shows the resulting nominal value of ρ, averaged over uniformly
distributed scan angles, over the range of γ. These results demonstrate that as γ approaches
unity, the exact efficiency loss values are quite different that the estimated loss found using
(4.7). This indicates not only that the efficiency loss cannot be made arbitrarily small, but
also that small values of γ result in greater pattern distortion, thereby affecting the SQNR
as well as ρ.

The results in Figure 4-7 also demonstrate that the relationship between the ∆Σ array
efficiency and γ depends on the particular value of R. Specifically, the value of γ at which
each curve intersects with the estimated result increases with R, implying that it may be
necessary to accept additional efficiency loss to obtain the maximum achievable SQNR
as the density ratio of the ∆Σ array is increased. This interpretation is verified by the
results shown in Figure 4-8, in which the SQNR for the L = 20λ array is plotted against
the efficiency loss ρ as γ is varied over the same range as in Figure 4-7 for a number of
density ratios. The horizontal dashed grey line shows the SQNR of a standard array of
the same length utilizing the same two-bit phase shifters used in the ∆Σ array. As would
be expected, this value represents a lower bound on the ∆Σ results for low density ratios.
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Figure 4-6: SQNR dependence on density ratio R for ∆Σ arrays using forced excitations
and free excitations with matching network designed for ideal match at kz0 = 0. Array
length L = 20λ.

The asymptotic limit shared by all values of R as ρ decreases, shown by the slanted light
grey dashed line, represents the maximum signal-to-quantization-noise level SQNRmax

ρ that
can be obtained for a specified efficiency loss, regardless of how large the density ratio is.
Comparison of the results in Figure 4-8 with those generated for other array lengths show
both dashed lines having a vertical shift proportional to the fractional change in length.
This is to be expected, based simply on the linear change in the number of elements in both
cases. Since the vertical shift maintains the slope of the line representing the SQNRmax

ρ ,
found by a linear fit to be ∆SQNRmax

ρ (dB)/∆ρ(dB) = 10.8, we may express the dependence
of SQNRmax

ρ on both ρ and L (in linear scale) as

SQNRmax
ρ = 2.3ρ10.8L. (4.9)

Similarly, we define SQNRmax
R as the maximum SQNR achievable for a given density

ratio. This can be expressed in a similar fashion as in (4.9), i.e.,

SQNRmax
R = cRαL (4.10)

for some c. However, the complex dependence on the array edge effects, the specific value
of γ, and a constraint on the efficiency loss to somewhat reasonable values given by ρ ≤ 2
causes the exponent α to vary from about 2 at lengths of just a few wavelengths to about
2.5 at L = 20λ, increasing slowly for greater lengths. A more appropriate indication of
the behavior of SQNRmax

R can be found from the relation given by (3.27), in which the
array length L = N0d0 and associated edge effects are treated explicitly, while the effect
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magnitudes γ = â/a. The dashed grey line shows the corresponding estimated value of ρ
given by (4.7).
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Table 4.1: Comparison of several array configurations for ∆Σ arrays of length L = 20λ.

R N γ SQNR (dB) ρ (dB)

2 80 1.07 23.6 0.9

3 120 1.09 26.8 1.2

4 160 1.15 28.9 1.4

5 200 1.19 30.7 1.6

6 240 1.23 32.6 1.8

of γ is captured by the average quantization excitation noise σ2
q . From simulated results,

at lengths greater than L = 4λ, the calculated value of SQNRmax
R is closely approximated

using the result given by (3.27) with σ2
q = 0.9.

While the particular aspects of the intended application of any system ultimately gov-
erns the relative value of such important metrics as hardware costs, pattern precision, and
power efficiency, the results shown in Figure 4-8 clearly suggest that each particular density
ratio has some range of natural operating points, outside of which the tradeoff required
to improve one metric requires an unreasonable sacrifice with regard to the other. As an
example, consider the curve corresponding to R = 4 at the point where ρ = 1.4 dB. In
the neighborhood surrounding this operating point, the choice of γ may be adjusted to
accommodate an improvement in either the SQNR or the power efficiency at a reasonable
cost with regard to the other. However, such costs increase rapidly as the curve approaches
either of the maximum SQNR asymptotes described above. As such, if it appears necessary
to operate near one of these boundaries, this simply suggests that selecting an alternative
density ratio is likely to be a more efficient use of resources. Several candidate designs for
R = 2 to R = 6 are illustrated in Table 4.1 in which the particular choices of γ correspond
to operational points close to the center of this natural tradeoff range for each density ratio.

4.3 Wideband Performance

The impedance characteristics of densely packed arrays are less sensitive to changes in
frequency. As a result, a dense array can be utilized as a means of obtaining a greater
operational bandwidth than would be achieved with a standard array. However, this benefit
is typically not exploited due to the additional costs associated with the increase in the
number of array elements. This observation provides a separate motivation for the∆Σ array,
namely, a low cost approach for building dense arrays. Further, while the narrowband
efficiency analysis described in Section 4.2 indicates an unavoidable loss for the ∆Σ array
when compared to a standard array, a wideband view tells a different story.

In order to investigate this frequency dependent behavior, the mutual impedance be-
tween two parallel thin-wire dipoles of the same length l with spacing d along the same axis
is modeled using [41]

Z =
15

S2

2�

m=−2

�

n∈{−1,1}

Am exp[−jknml/2]E(kβ) (4.11)
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where
β =

�
(ml/2)2 + d2 − nml/2 (4.12)

and

A−2 = A2 = 1,

A−1 = A1 = −4 cos kl/2,

A0 = 2(1 + 2 cos2 kl/2),

S = sin kl/2

and E(·) is the exponential integral (Ei(x) = Ci(x) − jSi(x)). The frequency dependence
is contained in k = 2π/λ.

The impedance matrix Z is formed and a matching network is designed for scan direction
kz0 = 0 at the center frequency f0 by first determining the scan impedances

Zs
n =

vn
in

=

�
m Znmim
in

(4.13)

with in = exp jnkz0d = 1, then connecting series reactances Xs,n = Im(Zs
n) and quarter-

wave transmission line with characteristic impedance Zt,n =
�

Re(Zs
n)Z0 resulting in the

new matched impedance matrix

Zm = (cosαI+ j sinα(Z− jXs)Z
−1
t )−1(j sinαZt + cosα(Z− jXs)) (4.14)

with Zt and Xs both diagonal and α = πf
2f0

.
Numerical simulations were run for an array of length L = 20λ to calculate the average

scan efficiency using both ideal (unquantized) excitations and ∆Σ excitations. Referring
to the results shown in Figure 4-9, the standard array (R = 1) with ideal excitations
is relatively narrow band, having a 3 dB fractional bandwidth of about 17%, while for
the dense (R = 4) ideal excitation case this rises well above 50%. For the ∆Σ case, the
excitations were chosen with a quantization amplitude corresponding to a nominal loss of
about 1.5 dB. As such, its performance falls below the standard array case at the center
frequency f0. However, the variation with frequency is quite similar to the ideal case with
the resulting bandwidth being about 45% — nearly three times greater than the standard
dipole array.

66



4.3. WIDEBAND PERFORMANCE

0.8 0.9 1 1.1 1.2
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Normalized Frequency f/f
0

M
e
a
n
 S

ca
n
 E

ff
ic

ie
n
cy

 (
d
B

)

 

 

Ideal excitations, R=1

Ideal excitations, R=4

∆Σ excitations, R=4

Figure 4-9: Wideband efficiency performance results from numerical simulations for array
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4.A Matched Array Coupling Matrix Derivation

Referring to Figure 2-3, the matching network at element n is introduced by connecting
a quarter wavelength transmission line with characteristic impedance Ztn to source wn,
followed by a series reactance −jXsn, which in turn connected to the antenna terminals.
Following standard microwave network analysis (see, e.g., [37] for additional details), the
voltage and current at the input to the network are related to the voltage and current at
the antenna terminals by

vinn = jZtnin (4.15)

iinn = jZ−1
tn (vn − jXsnin), (4.16)

and to the source excitations by

wn = vinn + Z0i
in
n . (4.17)

Letting w, vin, iin, v, and i be length-N complex vectors associated with the above
scalar quantities, and similarly organizing the the match network quantities into N × N
diagonal matrices Zt and Xs, these relations may be combined to include the complete
array

vin = jZti, (4.18)

iin = jZ−1
t (v − jXsi), (4.19)

w = vin + Z0i
in. (4.20)

As the matching network will not effect the impedance relations occurring outside of
the array, the original impedance relation v = Zi remains valid. Using this additional
relationship, we can make the following operations

w = jZti+ jZ0Z
−1
t (v − jXsi)

= j
�
Zt + Z0Z

−1
t (Z− jXs)

�
i. (4.21)

Having eliminated all other voltage and current terms, this last expression may be rewritten
as i = CMw, where

CM = −j
�
Zt + Z0Z

−1
t (Z− jXs)

�−1
. (4.22)
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Chapter 5

Delta-Sigma Measurements

Measurements were taken to demonstrate the practical viability of the ∆Σ array with

the objective of showing that ∆Σ beamforming behaves in a manner consistent with our

development and analysis. The test array, shown in Figure 5-1, and measurement facilities

were made available by MIT Lincoln Laboratory.

To facilitate the ability to compare any number of parameters, our measurements in-

cluded the individual element patterns as well as the mutual coupling between each pair

of elements, given by the array S-parameters. From these, it is possible to determine the

beamformed pattern and power efficiency for arbitrary excitations. In order to keep the

number of measurements at a manageable level, the measurements were limited to a single

column of elements. From the measured results we examined the beamformed patterns for

both the ideal and ∆Σ excitations at a number of scan directions and used these results to

determine whether the dependence of the 2-bit ∆Σ quantization technique on the density

ratio behaved in a manner constant with the analysis developed in the preceding chapters.

5.1 Measurement Description

The 12 element by 12 element array was originally designed to provide coverage over a

scan region of ±25
◦
in both azimuth and elevation over an operational bandwidth of 6-18

GHz. In order to utilize this existing hardware as a dense array, our measurements were

performed below the intended frequency bandwidth over the band from 4 to 6 GHz. The

uniform spacing between the array elements is d0 = 200 mil, corresponding to a λ/2 spacing

at f0 = 14.76 GHz. With this element spacing, our results represent a density ratio that

varies from R = 2.46 at 6 GHz to R = 3.69 at 4 GHz.

For these measurements, the array was attached to a conductive ground plane and

mounted on a gimbaled post in an anechoic antenna measurement chamber, as shown in

Figure 5-2. To obtain the pattern within the plane containing the 12x1 column of elements,

the array was rotated 90
◦
from the layout shown in Figure 5-1. (This choice was made due

to a damaged connection in a single element in both of the central horizontal rows of the

array.)

A separate set of measurements was taken for each of the 12 elements. In each case,

the test element was connected to measurement facility hardware with the remaining 11

elements match-terminated with a 50 Ω load – the appropriate match connection to allow

for the use of superposition from which the beamforming capability of the array will be

analyzed.

69



CHAPTER 5. DELTA-SIGMA MEASUREMENTS

Figure 5-1: 12 x 12 array used for measurements.

Figure 5-2: Mounted test array in anechoic antenna measurement chamber.
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5.1. MEASUREMENT DESCRIPTION

Figure 5-3: Single element gain measurement connection.
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Prior to these measurements, a calibration antenna was mounted to determine the signal
attenuation and phase variations over our measurement bandwidth. With this calibration
the measurement was able to record the element gain pattern as well as the element phase
pattern. The gain pattern is proportional to the power pattern of the array, but it is a
more useful metric in a practical sense, as it accounts for both the directive properties of
the beam pattern as well as the power efficiency of the array.

The raw measured element gain and phase patterns for the 12 elements at f =4, 5, and
6 GHz are shown in Figures 5-4, 5-5, and 5-6. In each case, the legend refers to the patterns
of the upper half of the array, elements 1 through 6, shown as solid lines. Elements 7 to
12 are shown as dashed lines with each element having the same color as its symmetric
counterpart (e.g. elements 1 and 12 both shown in red). The units of gain, dBi, specifies
the gain as compared to the hypothetical isotropic antenna.

From these gain patterns, it is clear to see that the array elements are not originally
intended for use at these frequencies. In particular, many of the patterns are strongest in
directions more than 60◦ from the array broadside. However, this is not troublesome for
our present purpose of demonstrating ∆Σ beamforming. On the other hand, the variations
between the patterns of adjacent elements will affect the ability to cancel the quantization
errors. In fact, while the patterns at 4 GHz have particularly poor gains at broadside,
they are the most consistent from element to element, implying that this frequency is more
favorably suited than the higher frequencies for effective error cancellation in this sense. It
is also worth noting that the behavior of the phase patterns differs from the linear phase
responses associated with isotropic elements. Consequently, the phases required for coherent
beamforming need be adjusted accordingly, as will be discussed in the following section.

5.2 Analysis and Results

For a given set of element weights wn and element patterns with gain Gn(θ) and phase
ϕn(θ), the combined array gain is given by (see Appendix 5.A for details)

G(θ) =
|
�

nwn

�
Gn(θ)ejϕn(θ)|2�
n |wn|2

. (5.1)

When scanning the main beam to θ0, instead of the linear phase progression that was used
in the case of the arrays of isotropic elements, it is preferable to apply the conjugate phase
match to the element phase pattern at the specified scan angle. In particular, we apply the
(normalized) uniform amplitude array weights

wn =
1

N
e−jϕ(θ0), n = 0, 1, . . . , N − 1. (5.2)

As discussed earlier, the ∆Σ quantized weight selection algorithm requires both the set
of weights {wn} and the fixed magnitude of the quantized weights |ŵn| = â. For the case
of uniform amplitude array weights, as in (5.2), this was specified by the amplitude ratio
γ = â/a, where a = |wn| = 1/N in this case. Recall that the choice of γ was manifest
as a trade off between the array efficiency and the SQNR, and that we used γ = 1.26 in
the numerical simulations, unless otherwise noted. This was chosen to yield good SQNR
performance over a wide range of density ratios, while holding the ∆Σ efficiency loss to
about 2 dB.
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Figure 5-4: Measured element (a) gain and (b) phase patterns at 4 GHz.

73



CHAPTER 5. DELTA-SIGMA MEASUREMENTS

−80 −60 −40 −20 0 20 40 60 80
−25

−20

−15

−10

−5

0

θ (deg.)

G
a
in

 (
d
B

i)

 

 

1
2
3
4
5
6

(a)

−80 −60 −40 −20 0 20 40 60 80

−150

−100

−50

0

50

100

150

θ (deg.)

P
h
a
se

 (
d
e
g
.)

 

 

1
2
3
4
5
6

(b)

Figure 5-5: Measured element (a) gain and (b) phase patterns at 5 GHz.
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Figure 5-6: Measured element (a) gain and (b) phase patterns at 6 GHz.
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Figure 5-7: Average quantization noise power dependence on the ∆Σ amplitude ratio γ for

the measured array.

Using the measured element gain patterns for 4, 5, and 6 GHz, the mean quantization

noise power Pnoise was determined from the mean square error between the patterns of the

ideal (unquantized) and ∆Σ weights, averaged over 200 scan angles θ0 selected at random.

Repeating this calculation while varying the ∆Σ weight amplitude over the range 1 ≤ γ ≤ 2,

we obtain the results shown in Figure 5-7.

The results at each frequency indicate that a more modest value of approximately γ = 1.1
(with an expected efficiency loss of 0.83 dB) appears optimal, which is most probably due

to the following reasons. First, the utility of larger values of γ is apparent only for high

density ratios, as evidenced by Figure 4-8. At the frequency range of these measurements,

the density ratio falls within the range 2.46 ≤ R ≤ 3.69, at which the improvement in

SQNR with γ sees diminishing returns well before the 2 dB efficiency loss point. Second, the

reasoning behind the need for higher values of γ was that as the element spacing is decreased,

the small, constant linear phase progression applied to the isotropic array elements led to

non-trivial correlation between w and q. With the measured results, the nonlinear phase

variations help to break up this structure, making these practical elements less susceptible

to such correlation. Third, since these patterns are determined using the array gain, the
effect of efficiency losses is reflected in the beamformed patterns. Consequently, as γ is

increased, the loss in the ∆Σ efficiency is manifest as a scaling of the pattern (i.e. a vertical

shift), thus pulling apart the ideal and ∆Σ patterns and increasing the overall error.

Fixing γ = 1.1 for the remainder of this section, we now wish to demonstrate that not

only does the ∆Σ technique provide the ability to form desired patterns, but also that the

dependence of quantization noise power on the density ratio is consistent with the overall

development of the ∆Σ array. To begin, we compare the beamformed patterns for the ideal

and quantized weights at 4, 5, and 6 GHz shown in Figures 5-8, 5-9, and 5-10, respectively.

From a cursory glance at the main lobe regions, it appears that ∆Σ patterns fit most closely

to the ideal patterns at 6 GHz. However, upon closer inspection, the results outside of the

main lobe are more revealing. At 4 GHz, the sidelobe structure of the ∆Σ patterns tends to

resemble that of the ideal patterns, with the exception of the θ0 = 25
◦
curve beyond about

76



5.2. ANALYSIS AND RESULTS

−80 −60 −40 −20 0 20 40 60 80
−40

−30

−20

−10

0

10

θ (deg.)

G
a
in

 (
d
B

i)

Figure 5-8: 12 x 1 array beamformed gain patterns for the ideal (solid) and ∆Σ (dashed)

array weights at scan angles θ0 = {−25
◦,−15

◦,−5
◦, 5◦, 15◦, 25◦} at 4 GHz.

θ = 70
◦
. The results at 5 GHz begin to show more prominent distinctions, such as the

green curve (θ0 = −15
◦
), which shows a poor match near θ = 15

◦
and then entirely misses

the deep null near θ = 50
◦
. At 6 GHz, the errors begin to become destructive, creating

“quantization lobes” at levels relative to the peak gain that are above the natural side lobes

of the array pattern (e.g. the purple θ0 = 15
◦
curve at θ = −30

◦
and the green θ0 = −15

◦

curve at θ = 20
◦
).

These observations are consistent with the intuition regarding the quantization noise as

related to the electrical distance between elements. Still, it is worth revisiting the same

type of analysis to explain the expected noise power as in Section 3.2.2. Recall that (3.27)

was obtained from (3.26) by substituting d0 = Rd and N0R = N at fixed frequency, making

k a constant in that expression. In this case, the array geometry remains fixed such that

d = d0 = λ0/2 and N = N0, while the density variation is exhibited by k = 2π/λ = 2π/λ0R.

Hence the expected noise power may be written as

Pnoise =

�
π2

3N

N − 1

N
R−2

+
1

N2

�
σ2
q . (5.3)

From this form, we expect to see the average quantization noise power decrease with R2

(plus the fixed edge element term), though two additional practical considerations will affect

the behavior of these measured results. First, the finite array length results in significant

element pattern variations, as we saw in Figures 5-4, 5-5 and 5-6, thus reducing the ability

of the ∆Σ excitations to cancel the quantization errors effectively. In fact, while the element

patterns at 4 GHz are somewhat less than desirable due to their high gain levels at directions

well away from the array broadside, they remain relatively consistent for each element. In

contrast, at 5 and 6 GHz, the variations between neighboring elements are more severe.

This indicates the likely presence of additional contribution to the noise power that will

also increase with frequency. Second, our results are determined from the array gain, not

the normalized array patterns implicitly used in our analysis. Consequently, the inclusion
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Figure 5-9: 12 x 1 array beamformed gain patterns for the ideal (solid) and ∆Σ (dashed)

array weights at scan angles θ0 = {−25
◦,−15

◦,−5
◦, 5◦, 15◦, 25◦} at 5 GHz.
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Figure 5-10: 12 x 1 array beamformed gain patterns for the ideal (solid) and ∆Σ (dashed)

array weights at scan angles θ0 = {−25
◦,−15

◦,−5
◦, 5◦, 15◦, 25◦} at 6 GHz.
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Figure 5-11: Frequency dependence of ∆Σ quantization noise power from measured results.

of the array efficiency will affect the results due to variations in the ideal and ∆Σ efficiencies
relative to each other, as discussed earlier, as well as variations in the absolute efficiencies
in both cases at different frequencies.

Calculating the noise power from the measured gain patterns over the 4 to 6 GHz
frequency range, we obtain the results shown in 5-11. Noting that f = f0/R, the expression
in (5.3) indicates the result should increase with f2. This would imply that an increase
in frequency from 4 to 5 GHz should result in an increase in Pnoise of 20 log10 5/4 = 1.94
dB and similarly an additional 1.58 dB from 5 to 6 GHz. The difference seen in the
actual results are consistent with the practical considerations described above. Although
the somewhat larger overall variation in the Pnoise results could be interpreted as a more
rapid reduction in the quantization noise with respect to the density ratio than the R2

dependence suggested by (5.3), this is more likely due to the frequency dependent behavior of
the element pattern variations as mentioned earlier. The role played by the array efficiencies
is elucidated by Figure 5-12, which shows the average power efficiency associated with the
ideal and∆Σ array weights used in the calculations of Pnoise, found by using the S-parameter
measurements to form the scattering matrix in (2.8). These efficiency results explain the
more anomalous behavior seen in Figure 5-11 which fall outside of the typical ripples one
would expect in this practical setting. For example, at frequencies just below 6 GHz, the
noise power appears to have an inflection point above which shows a more rapid increase.
Observing the efficiencies at these frequencies, we see a divergence between the two curves
which accounts for the additional discrepancy between the gain patterns. At the lower end
of the band in the neighborhood of 4.25 GHz, the “dip” in the noise power occurs at the
same point where both efficiency curves drop off, meaning the gain magnitudes and thus
the associated mean square error should drop off as well. Accordingly, the behavior of the
array efficiencies is clearly reflected in the noise power results.
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Figure 5-12: Frequency dependence of ideal and ∆Σ power efficiencies from measured re-

sults.

5.3 Remarks

When the practical characteristics of these measurements are accounted for, the results

appear consistent with the analysis model developed for the ∆Σ array of isotropic elements.

In fact, these additional considerations can be seen as moderate extensions of the system

features that appeared in our model after the inclusion of mutual coupling. The effects of

element pattern variations was seen in Section 4.1 in the form of the embedded element

patterns; while from Section 4.2 it was evident that the differences in the beamformed gain

patterns due to power efficiency issues – as opposed to quantization errors – was to be

expected.

The available test hardware was not well suited to examine the wideband analysis in

Section 4.3. In that analysis, the ∆Σ array was proposed as a means of obtaining wideband

performance from an array of inherently narrowband elements (thin-wire dipoles), whereas

in our measurements we had the very different situation of operating an ultra-wideband

design outside of the intended frequency range. Not only did our results remain relatively

well matched even within the measured frequency band, as was shown in Figure 5-12, but

also, when simulations were run to implement the scan impedance matching network at a

particular frequency, the resultant match worked well only at that frequency, thus narrowing

the band of an already wideband array.

In the future, it would be of great interest to perform additional experimental measure-

ments with array hardware specifically dedicated to the ∆Σ effort. This would allow for

the examination of the wideband performance and would illustrate whether any assump-

tions, either implicit or explicit, regarding the behavior of our model and the nature of

these experiments ignored any further practical considerations. Yet as they are, the present

measurements provide several complementary insights to our analytical developments.

Perhaps most encouraging is the implication regarding the quantization amplitude γ.
Even with the relatively modest efficiency losses predicted by the isotropic model and the

compensatory wideband nature of the dense arrays, any such inherent losses remain unde-
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sirable. Based on the observation that the decrease in γ stems from the distinction between

the nonlinear phase progression required to scan the main beam in this case to the linear

progression used in the isotropic case, some caution should be taken in relating these exper-

imental results to the behavior of larger designs, in which there will be a greater uniformity

among the elements. Though it can be expected that practical arrays will exhibit some

level of variations due to small fabrication errors, particularly in the case of high frequency

millimeter wave systems, the system design should take care to consider the potential for

the tone-like nature of the phase excitations. Similar issues arise in ∆Σ analog-to-digital

converters to which he technique of adding small amounts of noise to the signal input, or

dithering, is commonly practiced [11]. With the digital selection of the phases in the ∆Σ ar-

ray, the implementation of some type of dithering technique could be easily implemented,

allowing for the mitigation of the efficiency loss concerns.

Finally, the potential effects of element pattern variations and power efficiency seen in

the measured results should be considered by the system designer when determining the

density ratio appropriate for meeting a particular SQNR specification. However, the results

of these experiments are not indicative of the expected performance of larger arrays, as

these effects are exaggerated by the small number of elements and the operation of the

array outside of its intended frequency band.
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5.A Gain Measurements and Superposition

From the electromagnetic superposition principle, electric fields can be added. Our element
pattern data is measured in gain and phase. We now briefly discuss how these are correctly
used in beamforming.

The power pattern we have used thus far is, physically, a measure of the relative power
intensity of the electromagnetic wave with electric field E(θ,φ), where (θ,φ) specifies the
location on a sphere of radius r in the far-field of an antenna. By restricting our attention
to this sphere, attenuation due to propagation distance is constant in all directions and may
be ignored. In terms of the electric field, the power intensity pattern is given by

P (θ,φ) =
|E(θ,φ)|2

ξ
, (5.4)

where ξ is the intrinsic impedance of the medium through which the wave is traveling,
approximately 120π ohms in dry air.

The directivity pattern of an antenna is a more absolute measure of the radiating or
receiving characteristics in that it is normalized by the average power intensity over the
sphere (i.e. the power intensity relative to an isotropic element with the same total radiated
power Prad)

D(θ,φ) =
P (θ,φ)

1
4π

� 2π
0 dφ

� π
0 dθ sin θP (θ,φ)

=
4πP (θ,φ)

Prad
. (5.5)

Proportional to directivity pattern is the gain pattern, which accounts for any power
losses in the antenna

G(θ,φ) = ηD(θ,φ) =
Prad

Pinc
D(θ,φ), (5.6)

where η is the antenna efficiency and Pinc is the total available incident power.

Combining the above expressions gives

G(θ,φ) =
4π

ξ

|E(θ,φ)|2

Pinc
(5.7)

As such, the unit-power element pattern

En(θ,φ) =

�
ξ

4π
Gn(θ,φ)e

jϕn(θ,φ) (5.8)

gives the electric field under the condition

wn = 2
�

Z0δnm, m = 0, 1, . . . , 11 (5.9)

such that by (2.7), Pinc = 1. Thus for any excitation,

E(θ,φ) =
1

2
√
Z0

�

n

wnEn(θ,φ), (5.10)

and

Pinc =
1

4Z0

�

n

|wn|2. (5.11)
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Combining the above we arrive at the final expression for the beamformed gain

G(θ,φ) =
|
�

nwn

�
G(θ,φ)ejϕn(θ,φ)|2�
n |wn|2

. (5.12)
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Chapter 6

Sparse Multi-Coset Arrays

In the last few chapters, we developed the use of one type of digital-enhancement in which

cooperative design of the array hardware and the associated digital control algorithms

allowed for a relaxation of the requirement for high precision analog circuitry. We now

turn our attention to another type of digitally-enhanced design in the form of the sparse

multi-coset array.

We develop the multi-coset array from the perspective of linear imaging arrays. The

concept of array imaging is quite similar to the standard notion of beamforming introduced

in Chapter 2. Consider a single signal arriving at a linear array of elements at an angle

θ from the axis perpendicular to the array as illustrated in Figure 6-1. For a signal with

complex magnitude X(θ) at the origin, the response at position p away from the origin

along the array axis is x(p) = X(θ)e−jkp sin θ
. For an array of N elements at locations pn,

the “delay and sum” beamformer collimates the signal from θ by adjusting the response of

each element by ejkpn sin θ
and then combining the phase-delayed responses, resulting in a

beamformer output of

1

N

N−1�

n=0

x(pn)e
jkpn sin θ

=
1

N

N−1�

n=0

X(θ)e−jkpn sin θejkpn sin θ
= X(θ). (6.1)

In general, signals can arrive from any number of directions, and accordingly the beam-

former phases can be varied to focus over a range of directions, building up information

regarding the surrounding environment. This of course is simply the beam scanning pro-

cess from Chapter 2. In the case of digital beamforming, each element connects directly

to a receiver, which captures the response x(pn) at each element prior to beamforming, at

which point scanning can be performed in the digital domain, allowing nearly instantaneous

coverage over a wide range of angles.

An active radar imaging system is based on the above principles along with the addition

of a transmitting source that radiates away from the array to illuminate the coverage area.

When these fields interact with a target object at a direction θ, a certain portion of the field

is scattered back to the receive array with a complex magnitude X(θ), which in this case

depends on the total travel distance as well as the object size, shape, and orientation relative

to the array. Hence, in radar imaging, rather than scanning the surrounding environment for

incoming signals, the beamforming process captures information regarding the distribution

of target objects throughout the region to form an representation, or image, of the particular
scene.
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θ

p

Figure 6-1: Imaging array geometry.

6.1 Array Structure and Scene Model

Throughout the development of the multi-coset array, we focus on linear arrays of elements
located on some subset of collinear lattice points with uniform spacing d = λ/2, where
λ is the operating wavelength of the array. We assume ideal isotropic elements and limit
our attention to the half-plane such that the directional characteristics of the array are
completely specified by the angle θ, measured from the broadside direction of the array.

A standard linear array refers to any array having uniform element spacing of λ/2.
Substituting ψ = sin θ/2, we see the array response and far-field pattern for a standard
array with N → ∞ elements forming the usual Fourier transform pair

x[n] =

� 1

0
X(ψ)ej2πψn dψ, n ∈ Z (6.2)

X(ψ) =
N−1�

n=0

x[n]e−j2πψn, ψ ∈ [0, 1). (6.3)

From the view of array imaging, (6.2) describes x[n] as the response at element n to a
scene consisting of complex valued objects X(ψ). Standard reconstruction (delay-and-sum
beamforming) of the scene in a given direction ψ is carried out using (6.3).

The multi-coset arrays of interest in this work are subsets of a standard linear array.
Specifically, for an integer parameter L, we can partition the N elements of any standard
array into L cosets. Each coset is a uniform linear subarray with inter-element spacing L
times greater than the nominal spacing. We index the cosets by the position of their first
element relative to the first element of the full array. A multi-coset array comprises a subset
of these cosets. In particular, for P ≤ L, a (P,L) multi-coset array is an array formed by
including P of these cosets. The selected cosets are denoted via

P = {p0, p1, . . . , pP−1}, (6.4)
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θ

L L L L L L

Figure 6-2: (P,L) = (4, 7) multi-coset array with coset pattern P = {0, 1, 2, 4} and M = 6

coset periods.

with 0 ≤ p0 < p1 < · · · < pP−1 ≤ L− 1, and is referred to as the coset pattern of the array.

Note that the resulting array has a recurrent uniform pattern with period L, and thus we

refer to L as the coset period. As further notation, there are M = N/L such periods in the

array. As an example, Figure 6-2 depicts the layout of a (4, 7) multi-coset array with coset

pattern P = {0, 1, 2, 4} superimposed on the lattice of the associated standard linear array

from which it was derived. The colors of the elements indicate the different cosets that

comprise the recurrent structure of the array. For example, the green elements make up the

coset indexed by p2 = 2 and the yellow elements represent the coset indexed by p3 = 4.

The response for coset p is defined via

x(p)[n] � x[n]
M−1�

m=0

δ[n− (mL+ p)], p ∈ {0, 1, . . . , L− 1}, (6.5)

for n = 0, 1, . . . , where

δ[k] �
�
1 k = 0

0 otherwise.
(6.6)

The corresponding coset image in the angular domain is given by the Fourier transform of

the coset response, i.e.,

X(p)
(ψ) =

�

n

x(p)[n] e−j2πψn, ψ ∈ [0, 1). (6.7)

The individual coset images in (6.7) contain L uniformly shifted copies of the original

scene due to the aliasing effect caused by the increased element spacing Ld. As a result, the

coset image appears as L sectors, each containing grating lobes from the other L−1 sectors

in addition to the correct response. Combining (6.2), (6.5), and (6.7), the coset image in

the first sector can be written as a linear combination of the grating lobes of the original
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ψ

|X(ψ)|2

Figure 6-3: (Q,L) = (3, 7)-sparse scene with support Q = {1, 2, 4}

scene

X(p)(ψ) =
1

L

L−1�

q=0

X(ψ + q/L) ej2πpq/L, ψ ∈ [0, 1/L). (6.8)

The goal in multi-coset image reconstruction is to extract the entire correct image from
the images of multiple cosets in a single sector. While this is in general not possible, it is in
scenarios where there are imaging targets in only a subset of the L sectors in the original
scene, which we refer to as sector sparsity. More specifically, for any pair of integers Q ≤ L,
we say that a scene is (Q,L)-sparse if X(ψ) = 0 for all ψ /∈ S, where

S =
Q−1�

k=0

�
qk
L
,
qk + 1

L

�
, (6.9)

where the qk are integer-valued elements satisfying 0 ≤ q0 < q1 < · · · < qQ−1 ≤ L− 1. The
set

Q = {q0, q1, . . . , qQ−1}, (6.10)

is referred to as the (sector) support of the scene. An example illustration of a (3, 7)-sparse
scene is shown in Figure 6-3.

The array structure and scene model above is the spatial counterpart of temporal frame-
work originally introduced [35], which developed the use of multi-coset sampling for signals
with sparse spectral support.

In the following section, we summarize when and how image reconstruction is possible
with multi-coset arrays for sector sparse scenes.

6.2 Multi-Coset Imaging Principles

In this section, we summarize the basic principles underlying multi-coset imaging of sector
sparse scenes, and introduce our notation for the remainder of our analysis. Subsequent
sections will then build on this foundation, incorporating the effects of noise and developing
robust system design.

In our architecture, imaging proceeds in two phases: the first phase recovers the sector
support of the scene, while the second phase reconstructs the signal values (target ampli-
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tudes and directions) in the active sectors identified in the first phase.

6.2.1 Reconstruction with known support

We begin by developing the properties of scene reconstruction when the sector support is
known, corresponding to the second phase of the imaging process. This reconstruction can
be expressed as the solution to a set of (possibly) redundant linear equations.

To see this, we first define

Yp(ψ) � X
(p)(ψ)H(ψ), (6.11)

Xq(ψ) � X(ψ + q/L)H(ψ), (6.12)

with

H(ψ) �
�
1 ψ ∈ [0, 1/L)

0 otherwise,
(6.13)

from which we can express (6.8) in the form

Yp(ψ) =
L−1�

q=0

FpqXq(ψ) with Fpq �
1

L
e
j2πpq/L

, (6.14)

or, equivalently, Y(ψ) = FX(ψ), where [Y(ψ)]p = Yp(ψ), [X(ψ)]q = Xq(ψ), and [F]pq =
Fpq.

From (6.14) we see that the {Xq(ψ)} may be directly recovered from the complete set
of coset responses {Yp(ψ)}. And once these quantities are recovered, image reconstruction
is completed via

X(ψ) =
L−1�

q=0

Xq(ψ − q/L). (6.15)

In the case of a (P,L) sparse multi-coset array, we must consider instead the length-P
vector YP(ψ), composed of the entries of Y(ψ) indexed by the coset pattern P. Similarly,
we define the P × L matrix FP containing the P rows of F indexed by P. This results in
the relation

YP(ψ) = FPX(ψ). (6.16)

In this form, we now have an undetermined system, having an infinite number of possible
solutions.

For a (Q,L)-sparse scene with support Q, the elements of X(ψ) not indexed by this
support are zero-valued, and thus do not contribute to the coset responses. Hence, we may
define the P × Q measurement matrix FPQ, composed of the columns of FP indexed by
Q, and the length-Q vector XQ(ψ) containing the nonzero entries of X(ψ). The updated
relation becomes

YP(ψ) = FPQXQ(ψ). (6.17)

If FPQ is full rank, the correct image may be reconstructed as

X̂Q(ψ) = F+
PQYP(ψ), (6.18)

where F+
PQ = (F†

PQFPQ)−1F†
PQ is the Moore-Penrose pseudo-inverse of the matrix FPQ,
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h[n]

exp j2πnq0/L

x
(p0)[n] yp0 [n] x̂q0 [n]

h[n]

exp j2πnq1/L

x
(p1)[n] yp1 [n] x̂q1 [n]

h[n]

exp j2πnqQ−1/L

x
(pP−1)[n] ypP−1 [n] x̂qQ−1 [n]

F+
PQ

...

...

x̂[n]

Figure 6-4: Multi-coset reconstruction processing chain.

with † denoting the conjugate transpose operator [44].
In practice, it is straightforward to ensure that the reconstruction (6.18) exists. In

particular, the rank of FPQ depends on both P and Q. A pattern P that ensures FPQ is
full rank for any support of length Q is called a universal pattern. As shown in [35], such
patterns exist whenever P ≥ Q. For example, the so-called “bunched” pattern, in which the
first P cosets are selected, i.e., pi = i, i = 0, 1, . . . , P − 1, is generally universal, though
we will ultimately be interested in still better patterns.

System Implementation

The basic architecture described in this section admits a convenient implementation. In
particular, the required processing is straightforward to carry out on the coset responses
x
(p)[n] directly in the array domain, and takes the form depicted in Figure 6-4.
As the first step, corresponding to (6.11), the coset responses are first passed through

a linear time-invariant filter with unit-sample response h[n] (whose Fourier transform is
H(ψ)), to form the entries of the output vector sequence yP [n]. From this array domain
perspective, we see that the entries of yP [n] are the interpolated coset responses, generating
L− 1 values between each coset element via the interpolating filter h[n].

As the second step, corresponding to expressing (6.17) in the following array domain
form

yP [n] = FPQ xQ[n], (6.19)

we generate the reconstruction x̂Q[n] = F+
PQyP [n]. by applying the Q× P matrix F+

PQ to
obtain the x̂Q[n].

As the final step, corresponding to the following array domain version of (6.15)

x[n] =
L−1�

q=0

xq[n] e
j2πnq/L

, (6.20)
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we have that the complete array response x̂[n] may be formed in the array domain by
modulating and summing the Q contributions from x̂Q[n].

6.2.2 Support recovery

We next consider the first phase of imaging, corresponding to determining the active sectors
in the scene, i.e., the sectors containing nonzero signal content. In this phase, Q is treated
as known, and we seek to recover Q.

Since if q /∈ Q, then Xq(ψ) = 0 for all ψ ∈ [0, 1/L), the recovery of Q via (6.16) can
be viewed as an infinite-dimensional version of what is known in the compressive sensing
literature as a multiple measurement vector (MMV) problem. However, it is straightforward
to reduce the problem to a finite-dimensional one through a representation in terms of
correlation matrices. In particular, with

RX =

� 1/L

0
X(ψ)X†(ψ) dψ ∈ CL×L, (6.21)

RYP =

� 1/L

0
YP(ψ)Y

†
P(ψ) dψ ∈ CP×P (6.22)

denoting the coset correlation matrices, respectively, we have the relation

RYP = FPRXF†
P . (6.23)

We may decompose the coset correlation matrix according to RYP = VV† with V =
UΛ1/2, where U and Λ are obtained from the eigenvalue decomposition RYP = UΛU†. In
turn, we can write

V = FPW, (6.24)

where, via (6.23), RX = WW†. Thus, we seek to determine a suitable W from V.
Since FP is a P × L matrix with P ≤ L, the matrix W is not uniquely determined by

(6.24). The compressive sensing problem seeks the solution W0 that minimizes the number
of rows having nonzero entries. This particular �0-minimization problem may be replaced
by a computationally preferable (specifically, convex) �1-minimization problem. To this
end, we define the length-L vector w with entries equal to the �2-norm of the corresponding
rows of W. With this, the optimization becomes

minimize �w�1 subject to V − FPW = 0. (6.25)

For a more detailed discussion of this formulation, and additional perspectives, see, e.g.,
[45]. More generally, there is a broader literature on algorithms for the solution of MMV
problems; see, e.g., [46, 47].

Of particular interest to the design of the multi-coset array is an understanding of the
number of cosets P required to guarantee the recovery of Q support sectors. From [46], a
sufficient condition for unique recovery is given by

P ≥ 2Q− rank(RX) + 1. (6.26)

This result tells us that the required number of cosets depends not only on the number
of occupied sectors, but also upon the cross-correlation of the scene content among the
different sectors (for example, due to multi-path).
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Eq. (6.26) implies that in the worst-case (rank(RX) = 1) we may require P ≥ 2Q cosets,
as compared with P ≥ Q when the sector support is known, as discussed in Section 6.2.1.
Hence, blindness can incur a factor of two increase in the minimum number of array elements
required for successful image reconstruction. However, when the rows of X(ψ) form a
linearly independent set, RX has rank Q and it follows from (6.26) that P ≥ Q+ 1 cosets
are sufficient for recovery. In this case, the price of blindness is the requirement of a single
additional coset.

Solutions to the �1-minimization problem may still require more computation than may
be practical in a dynamic imaging application. For such scenarios, a computationally less
expensive solution is the alternative originally proposed in [35] and based on the MUSIC
direction finding algorithm [25]. The basic algorithm is as follows. In the absence of noise,
the correlation matrixRYP has Q of its P eigenvalues nonzero. Accordingly, the eigenvector
matrix is partitioned as U = [USUN], where the P×Q matrix US contains the eigenvectors
corresponding to the nonzero eigenvalues. These eigenvectors form an orthonormal basis for
the range of the measurement matrix FPQ, traditioanlly referred to as the signal subspace.
The orthogonal subspace spanned by the columns of the P × (P −Q) matrix UN is known
as the noise subspace. In this scenario, the zero-valued eigenvalues associated with this
subspace reflect the noise-free idealization. To determine the support, each of the L columns
of FP is projected onto the noise subspace. The columns corresponding to the active
sectors contained within the support Q lie in the orthogonal subspace spanned by US and
hence will have zero projection onto UN. The recovered support Q̂ contains the indices of
these columns. Thus, defining the columns of FP and U as fq and um such that FP =
[f0 f1 · · · fL−1] and U = [u0 u1 · · · uP−1] (where the um are ordered by eigenvalue size), the
algorithm evaluates the null spectrum

DMUSIC(q) =
P−1�

m=Q

|f †qum|2 (6.27)

and selects as Q the values of q such that DMUSIC(q) = 0.

For the case in which rank(RX) = Q, the MUSIC approach is particularly attractive,
being a polynomial-time algorithm satisfying the lower bound of (6.26) [35]. However, it is
well-known that the MUSIC algorithm is unreliable in scenarios corresponding to the case
in which RX is rank-deficient [25]. For such cases, a hybrid MMV algorithm referred to
as subspace-augmented MUSIC, which combines MUSIC with orthogonal matching pursuit
techniques, may be be used to more efficiently handle rank-deficiencies [48].

More generally, additional results on the relationship between traditional CS MMV
algorithms, MUSIC, and the issue of rank may be found in, e.g., [49, 50].

System Implementation

While not shown in Figure 6-4, the sector support Q̂ is recovered from yP [n] prior to the
remaining steps of the reconstruction. For this recovery procedure, the required correlation
matrix RyP can also be computed from the coset responses directly in the array domain
according to [cf. (6.22)]

[RyP ]lk =
�

n

ypl [n] y
∗
pk [n]. (6.28)

The estimated support is then utilized in the remaining reconstruction steps.
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6.2.3 Coset period selection considerations

For a fixed aperture length corresponding to a standard array of N elements, the choice of
the coset period L in the associated multi-coset array involves a tradeoff between conflicting
objectives.

On one hand, the sector-wise density ρs,L = Q/L of the scene decreases monotonically
with increasing L, converging to the limiting scene density ρs. Hence, this favors choosing
a large value for L, so that the sparsest possible array can be used.

On the other hand, as L increases, the number of coset periods M = N/L decreases,
causing imaging performance to suffer. This is due mainly to two reasons. First, the number
of coset periods can be viewed as corresponding to the number of “snapshots” involved in
estimating the scene support, and fewer snapshots means less noise averaging. Second, with
a finite array aperture, targets in active sectors Q effectively “spill over” into neighboring
inactive sectors, so that underlying sparsity corresponding to (6.9) is obscured. Moreover,
this leakage is exacerbated as the sectors become narrower.

As will be discussed shortly, the support recovery and scene reconstruction algorithms
can be made robust to the situation in which (6.9) is violated by the presence of noise in
the inactive sectors. Moreover, from the perspective of the associated processing, the signal
energy leaked into inactive sectors behaves like other sources of noise in the system. Hence,
its dominant effect is to increase the noise floor in the measurements, and its impact can be
neglected provided its level is significantly lower than that due to the combination of other
sources of noise in the system. In practice, we can usually choose L small enough to ensure
this.

More generally, the use of standard low-sidelobe tapers from the array processing litera-
ture will mitigate the spillover effect and help to make possible the use of larger values of L
and thus sparser array designs at high SNRs. And for scenarios where leakage simply cannot
be ignored, a refined version of the array-domain image reconstruction process is described
in [26]. Using this aperture-aware reconstruction, it is shown that the finite-aperture effects
may be reduced to any desired level by dedicating a suitable portion of the array to the
task, which in turn incurs a corresponding reduction in resolution.

6.3 Multi-Coset Array Processing

Having summarized the basic principles and techniques governing multi-coset imaging we
now turn to the detailed design of robust multi-coset array processing. Central to our
development is quantifying the impact of noise on the performance of the imaging system,
and identify how to best mitigate the impact of such noise. Since noise affects both support
recovery and scene reconstruction phases of the imaging process, we consider each separately,
starting with the latter.

6.3.1 Reconstruction noise amplification

With respect to scene reconstruction, the second phase of the imaging process, noise causes a
direct degradation in the reconstruction SNR (RSNR). We will characterize the relationship
between the SNR at the sensor and the resulting RSNR. Since the SNR at the sensor is the
reconstruction SNR for a standard array, this relationship allows us to assess the impact of
the multi-coset architecture. We focus on the high SNR regime, where we can assume the
support is reliably recovered.
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We begin by showing how the RSNR is related to the condition number of the relevant
measurement matrix κ(FPQ). First, let x[n] denote the array response from the scene as
before, but now we let z[n] denote the spatially-white array response due to the noise.
Defining Z(ψ) ∈ CL such that [Z(ψ)]q = Z(ψ + q/L) is the coset response in the image
domain is, we then have

YP(ψ) = FP(X(ψ) + Z(ψ))

= FPQXQ(ψ) + FPZ(ψ). (6.29)

Applying our scene reconstruction procedure (which ignores the noise), we obtain that the
resulting noisy reconstruction is

X̂Q(ψ) = F+
PQYP(ψ)

= XQ(ψ) + F+
PQFPZ(ψ), (6.30)

which corresponds to the desired image plus an amplified noise component.

The reference noise level is

N0 � E
�� 1

0
|Z(ψ)|2 dψ

�
, (6.31)

which corresponds to the reconstruction noise level in a standard array. For the multi-coset
array, the reconstruction noise level is, via (6.30),

Nr = E
�� 1

0
�F+

PQFPZ(ψ)�2 dψ
�

(6.32)

= Tr
�
(F+

PQFP)E [RZ ] (F
+
PQFP)

†
�

(6.33)

= Tr
�
F+
PQFPF

†
PF

+,†
PQ

� N0

L
, (6.34)

= Tr
�
F+
PQF

+,†
PQ

� N0

L2
(6.35)

where to obtain (6.34) we have use the spatial whiteness of z[n], and to obtain (6.35) we
have used that the rows of FP are taken from the L × L (inverse) DFT matrix, whence

FPF
†
P = I/L with I denoting the identity matrix.

Comparing (6.31) with (6.35), and recognizing that

�A�2F � Tr(AA†) (6.36)

is the squared Frobenius norm of an arbitrary matrix A, we see that RSNR in the multi-
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coset imaging system is reduced by a factor

Nr

N0
=

�F+
PQ�2F
L2

=
1

L2

P−1�

j=0

Q−1�

i=0

���
�
F+
PQ

�
ij

���
2

=
1

L2

Q−1�

i=0

��σi(F+
PQ)

��2

=
1

L2

Q−1�

i=0

1

|σi(FPQ)|2
(6.37)

where the {σi(F+
PQ)} are the Q nonzero singular values of F+

PQ, and where to obtain (6.37)
we have used that the singular values of a matrix are the reciprocals of the singular values
of its pseudo-inverse.

In the high SNR regime, the condition number of the measurement matrix, κ(FPQ),
which is the ratio its maximum to minimum singular values, accurately reflects the degree
of noise amplification in the reconstruction. To see this, note that since FPQ is a P × Q
matrix with each entry having magnitude 1/L, it follows that

�FPQ�2F =
Q−1�

i=0

|σi(FPQ)|2 =
PQ

L2
. (6.38)

Thus, while the sum in (6.38) is fixed for a given L, P , and Q, the sum in (6.37) may vary
greatly, depending on the distribution of the singular values of the measurement matrix.
Specifically, the smaller the minimum σi(FPQ), the larger the noise amplification. Hence,
in the selection of the coset pattern, it is desirable to select P such that κ(FPQ) takes
relatively small values for all support sets Q.

6.3.2 Support recovery reliability

With respect to support recovery, the first phase of the imaging process, the presence of
noise means that (6.9) does not strictly holds for any Q < L, and thus there is no exact
sparse solution to (6.16). As a result, modifications to the support recovery algorithm are
required. Ultimately, we will characterize the performance of the support recovery phase
in terms of the threshold SNR (TSNR) above which the correct support Q can be reliably
recovered, and note that this threshold will in general depend on the scene density and
choice of coset pattern P.

Before characterizing the support recovery performance, we first develop how to ac-
commodate noise in the both the �1-minimization and MUSIC-based approaches to the
problem.

With respect to the �1-minimization approach, we note that the optimization (6.25)
must modified. In particular, following standard practice, since the noise precludes the
possibility of an exact sparse solution, we relax the equality constraint in (6.25), yielding

minimize �w�1 subject to �V − FPW�2F < �, (6.39)
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where � is chosen as a function of the SNR. A variety of algorithms suited to this noisy
MMV problem can be found in [51,52].

For the MUSIC algorithm approach, the extension to the noisy case is straightforward
when the number of measurements is large enough such that the eigenvector matrix U
has converged to roughly the noise free case, and the noise power is uniformly distributed
throughout both the signal and noise subspaces [25]. However, difficulties arise when the
number of coset periods is more limited. In particular, US and UN will not accurately
partition the signal and noise subspaces, and the contribution due to noise is no longer
evenly distributed over the P eigenvalues.

A “soft” version of the MUSIC algorithm known as the eigenvalue method [53] accounts
for finite sample sets by weighing the projections onto each subspace direction um more
heavily for smaller eigenvalues. Specifically, the null-spectrum under this method is given
by

DEV(q) =
P−1�

m=Q

1

λm
|f †qum|2, (6.40)

where the eigenvalues λm are the (ordered) diagonal elements ofΛ. In essence, this approach
aims to suppress the signal contribution within the estimate of UN in order to obtain a more
accurate representation of the true noise subspace.

At low SNR, as the threshold between signal and noise eigenvalues becomes less distinct,
the estimated signal eigenvectors can potentially be aligned more closely to the true noise
subspace than the true signal subspace. This point is unaccounted for in (6.40). Based on
this observation, we have found that a still “softer” version of MUSIC, corresponding to
the null-spectrum

DMEV(q) =
P−1�

m=0

�
1

λ1/2
m

− 1

λ1/2
0

�2

|f †qum|2, (6.41)

to be effective at low SNR—a regime in which MUSIC has traditionally been considered
unsuitable. We stress that this version of MUSIC includes contributions from the entire
column space of U, save for the eigenvector associated with the largest eigenvalue λ0.

Numerical simulations were performed to compare the different recovery algorithms.
A representative example of the results is shown in Figure 6-5. In these simulations, a
coset period of L = 19 with P = 9 active cosets was selected. The coset pattern is
fixed at P = {0, 1, 2, 3, 5, 7, 12, 13, 16}, selected by the design algorithm described in the
following section. To gauge the recovery performance of the basic MUSIC, eigenvalue-
MUSIC (soft MUSIC), modified-eigenvalue-MUSIC (softer MUSIC), and �1-minimization
algorithms, each was applied to 1000 randomly generated scenes in which Q = 7 active
sectors supported by Q were selected at random. Gaussian noise was added to each scene,
evenly distributed over the entire range of ψ. This was repeated over a range of SNRs.
A successful recovery was declared when the Q most likely active sectors as estimated by
the respective algorithm matched exactly to the Q sectors contained in Q. While the �1
algorithm gave the best result, our modified MUSIC algorithm performed nearly as well,
reaching a recovery probability of nearly 100% at a similar TSNR, while requiring consid-
erably less computation time. The most striking result is the notable improvement beyond
the established MUSIC algorithms.
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Figure 6-5: Empirical recovery probability versus SNR for L = 19, P = 9, and (a) Q = 6

(b) Q = 7 (c) Q = 8.
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6.4 Support Recovery Failure Detection

In practice, the scene density and SNR may not be known in advance, or may evolve dynam-
ically. As we have shown, both these quantities affect the support recovery reliability in a
multi-coset array imaging system. While we could choose the number of cosets in our array
to cover a worst-case scenario, in the typical case this would be rather wasteful of resources.
An alternative to such an approach would be to use considerably less overprovisioning, and
instead develop a method for detecting when the scene density exceeds the level at which a
reliable image can be formed.

In this section, we develop such an approach. And while methods can be developed for
detection such false images at high levels of abstraction using machine vision techniques, in
our development we focus on the use of low-level techniques that can be easily integrated
into our array processing pipeline.

The technique we develop is based on the concept of back-projection error (BPE). Con-
sider the (P,L) multi-coset array with coset pattern P and a (Q,L)-sparse scene with
support Q, where both Q and Q are unknown. In the support recovery stage, the received
information contained in YP(ψ) is used to obtain an estimate of the support Q̂. Using
the estimated support, the image is reconstructed as X̂Q̂(ψ) = F+

PQ̂
YP(ψ). Since the true

XQ(ψ) is unknown, we use a back-projection onto the space spanned by Q̂ for comparison
to the original coset response

ŶPQ̂(ψ) = FPQ̂X̂Q̂(ψ)

= FPQ̂F
+
PQ̂

YP(ψ). (6.42)

Where the product FPQ̂F
+
PQ̂

is the projection matrix onto the range of FPQ̂.

If Q̂ is correct, the back-projection ŶPQ̂(ψ) should be approximately equal to YP(ψ),
provided the noise level is relatively low. We quantify this through the back-projection error,

BPE =

� 1/L

0
�YP(ψ)− ŶPQ̂(ψ)�

2
2 dψ. (6.43)

6.4.1 Failure detection in the absence of noise

Consider first the case where the noise level is negligible relative to the received signal power.
As discussed in Section 6.2, a multi-coset array with a (P,L)-universal pattern should be
able to recover the support Q of a (Q,L)-sparse scene in most cases given P ≥ Q+1. When
the support estimate is recovered from the response YP(ψ) = FPQXQ(ψ) is (or contains)
the correct support such that Q ⊆ Q̂, the back-projection is

ŶPQ̂(ψ) = FPQ̂X̂Q̂(ψ) = FPQXQ(ψ) = YP(ψ), (6.44)

and the BPE is zero. When the scene is insufficiently sparse for the array, the recovery
stage fails to determine the entirety of the support and Q̂ ⊂ Q. In this case, much of
the energy contained in the unidentified support sectors Q/Q̂ vanishes during the back-
projection operation. This behavior can be seen in Figure 6-6. Each curve represents a
fixed number of cosets P for which the average BPE is plotted as a function of the number
of supported sectors Q. The average BPE was calculated over 1000 trials, each trial having a
random Gaussian scene evenly distributed over a randomly selected supportQ. As expected,
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Figure 6-6: BPE versus Q, L = 19. Results averaged over 1000 trials.

each curve remains at zero for Q < P and rises in nearly linear fashion with Q beyond this
point.

6.4.2 Failure detection in the presence of noise

To understand how the presence of noise impacts the BPE, consider a scene with fixed signal
power distributed over any Q ≤ P − 1 sectors. For noise powers below some threshold level
(specific to the particular values of L, Q, and P), the support recovery will not be adversely
affected. In this region, the supportQ will be recovered successfully and the BPE will be due
solely to the noise within the subspace orthogonal to the range of FPQ, which will increase
in proportion to the total noise power. As a consequence, failures occur with increasing
likelihood for P > Q at lower SNRs. Hence, a useful failure detection mechanism is to
indicate when the BPE exceeds some prescribed threshold.

The choice of this threshold depends on SNR, a Figure 6-7 reflects. This figure shows the
normalized BPE versus Q for different SNR values for a (9, 19) multi-coset array. Rather
than averaging the BPE results over every trial as in Figure 6-6, the averages are instead
taken separately for the cases of successful and failed support recovery estimates. We observe
that independent of Q, the failed cases consistently lie above some threshold, which varies
with SNR. Defining the threshold BPE as the midpoint between the maximum success and
minimum failure BPEs allows a nominal level indicating a probable failure to be determined
at each SNR. Figure 6-8 illustrates the resulting BPE thresholds from this analysis for the
(9, 19) array. Similar analysis can be undertaken for another other particular array pattern.
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Figure 6-7: Normalized BPE versus Q, at different SNR, L = 19, P = 9. The solid and
dashed portion of each curve represent the successful and failed cases, respectively.
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Figure 6-8: Normalized BPE threshold versus SNR, L = 19, P = 9.
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Chapter 7

Multi-Coset Array Design and

Application

In the previous chapter, we detailed the general principles related to the underlying concepts

and performance metrics of the multi-coset array. In this chapter, we tie these principles

to the practical design and operational aspects of the overall multi-coset system. To begin,

we develop our approach for the design of good multi-coset array patterns over a linear

aperture of length N measured in half-wavelengths. In our development, we assume the

coset period L has been chosen based on the considerations in Section 6.2.3. This means

that scenes of a given density are characterized by a particular value of Q, which we treat

as known. For this scenario, we consider array designs with density corresponding to a

number of active cosets P such that P ≥ Q + 1, consistent with our earlier development,

but note that in practice the addition of at least one additional coset P ≥ Q + 2 provides

large performance gains in support recovery.

We now consider the design of (P,L) multi-coset array patterns that are uniformly good

for all (Q,L)-sparse scenes. Our development separately considers the high- and low-SNR

regimes.

7.1 High SNR Designs

At high SNR, the correct support is recovered with high probability, so system performance

is largely determined by the RSNR achieved during the scene reconstruction phase of imag-

ing. Based on the analysis in Section 6.3.1, which reveals the peformance is dominated by

the smallest eigenvalue of the measurement matrix FPQ. Accordingly, we seek the coset pat-

tern P such that |P| = P for which the measurement matrix FPQ remains well conditioned

for all possible supports Q satisfying |Q| ≤ Q, i.e.,

P∗
κ = argmin

P∈CP
max
Q∈CQ

κ (FPQ) . (7.1)

Note, however, that the sets CP and CQ containing the possible choices of P and Q grow

rapidly with increasing L. An exhaustive search based on (7.1) requires |CP |× |CQ| calcula-
tions of κ(FPQ), which makes this design approach, while conceptually natural, unappealing

from the perspective of computational complexity.
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7.2 Low SNR Designs

At lower SNR, errors in the support recovery become significant, and thus system perfor-
mance is more determined by the TSNR achieved during the support recovery phase of
imaging. In this regime, the condition number of the induced measurement matrix FPQ is
less important, and the design procedure in Section 7.1 is less meaningful.

Instead, in this low SNR regime, we develop an alternate design framework inspired by
the Minimum Redundancy Linear Arrays (MRLA) introduced in [54]. MRLA designs have
the defining property that there are no sensor pairs having identical spacings, in an effort
to yield the best representation of the full correlation matrix with the fewest number of
elements.

Our approach can be viewed as a generalization of the MRLA framework that takes into
account the periodicity constraint inherent in multi-coset array. In particular, we start by
defining the following modulo-distance between pairs of elements l, k within a single coset
period:

tlk � min{|l − k|, L− |l − k|}. (7.2)

In turn, we count the number of times each pairwise spacing is found in a particular
pattern P. For this purpose, the co-array for P is a vector of the number of times each
modulo-distance occurs in the pattern. In particular, the tth entry of P is the number of
times the distance t occurs, i.e.,

[cP ]t �
�

{(l,k) : tlk=t}

slsk, 1 ≤ t ≤ L− 1

2
. (7.3)

where sP is the binary selection vector with entries

[sP ]l =

�
1, l ∈ P
0, otherwise,

l = 0, 1, . . . , L− 1. (7.4)

From this perspective, cP can be viewed as a modulo version of the co-array originally
defined in [54].

Finally, our desired pattern is that in which all the different spacings occur as infre-
quently as possible. Since the total number of spacings is the same for all patterns of length
P , this corresponds to a co-array vector that is as close to constant as possible, which can be
computed by selecting the coset pattern having the co-array cP with the smallest �2-norm,
i.e.,

P∗
c = argmin

P∈CP
�cP�2. (7.5)

The rationale for this design approach comes from considering the correlation matrix
associated with all L cosets

RY = FRXF†. (7.6)

For the moment, consider the model with uncorrelated scene sectors, i.e.,

[RX]mn =

� 1/L

0
Xm(ψ)X∗

n(ψ) dψ =

�
σ2
m m = n

0 m �= n,
(7.7)

where σ2
m =

� 1/L
0 |Xm(ψ)|2 dψ is the signal energy from sector m. In this case, the full
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Table 7.1: Examples of coset patterns P∗
c selected according to the co-array approach.

L P ρA P∗
c c∗

7 3 0.43 {0, 1, 3} 1
7 4 0.57 {0, 1, 2, 4} 2
11 5 0.45 {0, 1, 2, 4, 7} 2
11 6 0.55 {0, 1, 2, 4, 5, 7} 3
13 4 0.31 {0, 1, 3, 9} 1
13 9 0.69 {0, 1, 2, 3, 4, 5, 7, 9, 10} 6
19 9 0.47 {0, 1, 2, 3, 5, 7, 12, 13, 16} 4
19 10 0.53 {0, 1, 2, 3, 5, 7, 12, 13, 15, 16} 5

correlation matrix has a Hermitian-circulant structure

[RY]lk =
1

L2

L−1�

q=0

σ2
qe

j2π(l−k)q/L. (7.8)

From (7.8), the dependence of the matrix entries on the relative spacing between elements
indicates the importance of the pairwise spacings as represented by the 2(L−1) off-diagonals.
Specifically, the information contained in RY can be obtained by representing each of the
possible spacings a single time. The symmetries in the Hermitian-circulant structure reduce
the number of unknowns by another factor of four, suggesting the entire matrix could be
represented by only �(L − 1)/2� unknowns. In practice, there will be measurement noise
and some correlation between the different sectors, and as such RY will vary to some extent
along each diagonal. As such, multiple occurrences of a particular pairwise spacing can be
interpreted as multiple samples of noisy data. Hence, this suggests a design with evenly
distributed spacings.

7.3 Pattern Computation, Evaluation, and Comparison

A quick comparison of (7.1) and (7.5) shows that the co-array based design approach entails
significantly fewer computations due to the independence of this design on Q. In this
section, we further show the co-array designs are also optimal—or very close to optimal—in
performance in both low- and high-SNR regimes.

To begin, we examine a set of (L,P ) pairs for which the number of unique element
pairs P (P − 1)/2 is an integer multiple of the number of possible spacings (L− 1)/2. This
condition makes it possible, in principle, for a pattern to have a perfectly flat co-array
distribution: each entry of cP takes the identical value c∗ = P (P − 1)/(L− 1). Examples of
coset patterns fitting this description are shown in Table 7.1, along with the array density
ρA, and the associated value of c∗.

Focusing on the (4, 7)-sparse array in this table for purposes of illustration, note first
that this array layout is depicted in Figure 6-2. We emphasize, too, that this coset pattern
can be used with any number of coset periods M depending on the array length, and that
the effective array density is approximately 57% of the number of elements contained in
a standard array of the same length. The corresponding co-array is cP = [2 2 2], which
reflects that there are two element pairs having each of the (modulo) spacings 1 (element
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Table 7.2: Maximum condition numbers, Q = P − 1.

L P κmax
P∗
κ

κmax
P∗
c

κmax
Pb

7 3 1.31 1.66 2.64
7 4 2.18 2.18 3.60
11 5 4.24 4.24 17.54
11 6 5.17 5.17 20.22
13 4 2.75 3.26 15.85
13 9 6.49 6.49 33.25
19 9 13.54 13.54 1063.63
19 10 13.93 13.93 1154.08

pairs (0, 1) and (1, 2)), 2 (element pairs (0, 2) and (2, 4)), and 3 (element pairs (1, 4) and
(0, 5)).

For the values of L and P shown in Table 7.1, it is computationally feasible to deter-
mine the condition number of the measurement matrix κ(FPQ) over the sets CP and CQ,
corresponding to the high-SNR regime design framework. From these results, the maximum
condition number κmax

P over all Q of length Q = P −1 is determined for each P. The results
for κmax

P∗
κ
, κmax

P∗
c
, and κmax

Pb
are shown in Table 7.2 for each of the (L,P ) pairs in Table 7.1.

Also included in this table are results for the refers to the bunched universal pattern men-
tioned in Section 6.2.1. This pattern, Pb = {0, 1, . . . , P − 1}, is included for the reference,
and is an example of a pattern that only guarantees that the measurement matrix will have
a finite condition number for all Q.

As an initial observation, note that the bunched patterns lead to poor RSNR perfor-
mance, as we would expect.

Next, note that there are many entries in Table 7.2 for which κmax
P∗
κ

and κmax
P∗
c

match,
revealing that our high-SNR and low-SNR designs often yield identical patterns. Moreover,
even when they differ, our low-SNR designs do not sacrifice significant RSNR peformance
when used in the high SNR regime. Hence, we conclude that even at high SNR, the co-array
based pattern designs are “near” optimal.

Conversely, we can also evaluate the performance of our high-SNR designs in the low-
SNR regime in the two instances in Table 7.2 where the designs differ from their low-SNR
counterparts. In particular, in Figure 7-1 we plot the recovery probability as a function
of SNR for the (3, 7) and (4, 13) sparse arrays. In this case, we see that these high-SNR
designs offer conspicuously poorer TSNR performance in the low-SNR regime.

Equally noteworthy, in these and all other choices of (P,L) for which simulations were
conducted, the co-array pattern designs consistently yielded the lowest TSNR for reliable
support recovery among all possible patterns, providing additional evidence that co-array
based pattern design framework is well matched to the low-SNR regime.

While co-array based designs offer attractive performance characteristics, for coset pe-
riods beyond L = 20, the exhaustive search for such patterns via (7.5) over CP consumes
significant computation. In this regime, it is natural to replace the brute force search with
a iterative optimization based on the Markov Chain Monte Carlo (MCMC) method [55].
In our experiments, we found this approach effective for quickly determining well designed
coset patterns. Several examples with uniform co-arrays obtained from this procedure are
shown in Table 7.3.

104



7.3. PATTERN COMPUTATION, EVALUATION, AND COMPARISON

−10 −5 0 5 10
0.2

0.4

0.6

0.8

1

SNR (dB)

e
m

p
ir
ic

a
l r

e
co

ve
ry

 p
ro

b
a

b
ili

ty

 

 

condition number
bunched
co−array

(a)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

SNR (dB)

e
m

p
ir
ic

a
l r

e
co

ve
ry

 p
ro

b
a

b
ili

ty

 

 

condition number
bunched
co−array

(b)

Figure 7-1: Recovery probability vs SNR for (a) (L,P,Q) = (7, 3, 2) and (b) (L,P,Q) =

(13, 4, 3)

Table 7.3: Examples of coset patterns P∗
c found using MCMC.

L P ρA P∗
c c∗

21 5 0.24 {0, 1, 6, 8, 18} 1

21 16 0.76 {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 18, 19} 12

23 11 0.48 {0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17} 5

23 12 0.52 {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} 6

31 6 0.19 {0, 1, 14, 20, 24, 29} 1

31 15 0.48 {0, 1, 2, 3, 5, 7, 11, 14, 15, 16, 22, 23, 26, 28, 29} 7

31 16 0.52 {0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 17, 19, 24, 25, 28} 8

35 17 0.49 {0, 1, 2, 3, 5, 6, 10, 16, 17, 18, 22, 24, 25, 27, 28, 31, 33} 8

37 9 0.24 {0, 1, 3, 9, 13, 14, 21, 31, 35} 2

57 8 0.14 {0, 1, 13, 15, 21, 24, 31, 53} 1
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It is important to emphasize that while the coset pattern examples shown in Tables 7.1
and 7.3 can be considered “perfect” in the sense of our co-array metric, the set of patterns
that are good in a practical sense is considerably larger. Indeed, small deviations from a
uniform co-array generally do not significantly impact performance. Consequently, within
the process of selecting P, emphasis should be placed on arriving at a pattern for which the
elements of cP are distributed reasonably evenly. In the simulations of Section 7.4, we use
such a near-perfect pattern for a scenario with parameters L = 47 and P = 28.

7.4 Range-Azimuth 2-D Imaging Simulations

In this section, the multi-coset imaging techniques are applied to create two-dimensional
range-azimuth images. We first develop our framework to exploit the tendency of scenes
to exhibit range-dependent sparsity. Then, we use a simple electromagnetic simulation to
generate data for an active imaging radar system composed of a single transmit element
and an array of receive elements.

7.4.1 Range-dependent scene sparsity

While many scenes are not strictly sparse when viewed in solely in terms of azimuthal
sectors of arbitrary range, they are often sparse in azimuth when further partitioned into
range cells. In active systems, such range partitioning can be achieved through the use of
standard pulse compression techniques. This suggests a natural architecture where pulse
compression is used to sort content into range cells, after which our multi-coset imaging
techniques are applied separately at each range.

Pulse compression techniques are well understood, and many good treatments are avail-
able in the literature. For our purposes, it suffices to keep in mind the following character-
istics. For a transmitted waveform containing a range of frequencies ∆f about the center
frequency f0, the inverse Fourier transform of the received frequency domain data sorts
the response according to the two-way travel times of the various signals reflected from the
environment. In a typical medium, each of these signals travel at the same speed, hence
sorting by time effectively sorts by distance.

From this perspective, the pulse-compressed range resolution improves linearly with the
bandwidth ∆f . As the scene is divided in finer range cells, the resultant range-dependent
sparsity profile improves, since the density at any range is monotonically non-increasing as
the range cell length∆r decreases. The available fractional bandwidth∆f/f0 of a particular
array design is relatively fixed for any f0. Hence, exploitation of range-dependent sparsity
is inherently well suited for high frequency systems.

In the following simulations, we utilize this approach with a simulated scene that has
nearly full azimuthal occupancy before range partitioning. It should be pointed out that the
image reconstruction at each range is performed based on the narrowband model developed
in Chapter 6 at the center frequency f0. As the fractional bandwidth ∆f increases, it may
be necessary to consider a more careful general treatment, though no apparent diffusion
effects are noticeable in these results.

7.4.2 2-D imaging illustration

As a demonstration of multi-coset range-azimuth imaging, consider the representative appli-
cation of a millimeter-wave vehicular-mounted imaging system. Assume a center frequency
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Figure 7-2: Point source model.

of f0 = 75 GHz and an available aperture length of 2 m. At this frequency, an element spac-
ing of d0 = λ0/2 = 2 mm implies the need for 1000 array elements in order to fully populate
the linear aperture. The simple line-of-sight point target model shown in Figure 7-2 was
used to simulate the array response over a frequency bandwidth of 1 GHz, which provides
a 15 cm range resolution following pulse compression.

Modeling the transmitting source as a single isotropic antenna located at the center
of the aperture, the frequency response was initially determined at the N = 1000 equally
spaced receive element locations. The full standard array image is generated by first sorting
the received data by range using the pulse-compression technique, and then applying (6.3)
at each of the range bins. In the following images, a Hamming window [42] was applied
across the array elements to aid in the suppression of sidelobe leakage, as discussed in
Section 6.2.3.

The image was partitioned into sectors of equal widths ∆ψL = 1/L for increasing values
of L in order to observe maximum sector density ρs,L = Qmax/L over all ranges. Following
a rapid decrease, ρs,L begins to level off at about L = 50. Based on observations that
prime values of L typically yield better conditioned measurement matrices, a coset period
of L = 47 was selected. Adhering to the aperture constraint, this allows M = 21 coset
periods for a total number of array elements N = ML = 987. Using all 987 elements to
generate the standard array image with SNR = 30 dB yields the result shown in Figure 7-3.

At L = 47 the maximum number of occupied sectors is Q = 14. A conservative pick
for the number of cosets is P = 2Q = 28, resulting in an array with a density factor
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Figure 7-3: Standard array image reconstruction, N = 987 elements with spacing d0 = λ0/2.
SNR = 30 dB.

ρA = 0.596. Using the MCMC technique to design the coset pattern for the (28, 47) multi-
coset array with N = 588 elements, the resultant image is shown in Figure 7-4. With this
conservative choice of P , we see that the multi-coset array image reconstruction is nearly
indistinguishable from the full array reconstruction.

For comparison, a uniformly spaced array with this same number of elements (corre-
sponding to d = d0/0.596 = 0.839λ) performs poorly, due to grating lobe effects, as shown
in Figure 7-5. Indeed, this array is unable to distinguish the direction of arrival for targets
outside of |ψ| < 0.30 and copies of image targets appear in multiple locations.

The corresponding “bunched” coset pattern also performs poorly as shown in Figure 7-6,
as we would expect from our analysis. While the bunched pattern is able to determine the
correct support at each range due to the conservative choice of P , it is evident that the poor
conditioning of the associated measurement matrix results in a significant magnification of
the noise within this support.

The noise amplification characteristics associated with the bunched pattern are even
more pronounced at low SNR. To illustrate this, Figures 7-7, 7-8, and 7-9 show the image
reconstructions at SNR = 10 dB for the full 987 element array, the co-array designed multi-
coset array, and the bunched multi-coset array, respectively.

Figure 7-8 also emphasizes a significant feature of the multi-coset reconstruction. In
contrast to the reconstruction from the full array in Figure 7-7, in which the noise appears
relatively uniformly throughout the image, the image in Figure 7-8 has the noise eliminated
in the sectors identified as inactive by support recovery processing.
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Figure 7-4: Reconstructed image for the (28, 47) multi-coset array with coset pattern P =
{0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 15, 16, 19, 21, 22, 25, 26, 27, 30, 32, 34, 38, 39, 41, 42, 44, 45, 46}.
SNR = 30 dB.

Figure 7-5: Reconstructed image from the sparse uniform array of N = 588 elements with
spacing d = d0/0.596 = 0.839λ. SNR = 30 dB.
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Figure 7-6: Reconstructed image for the (28, 47) multi-coset array with “bunched” coset
pattern Pb = {0, 1, . . . , 27}. SNR = 30 dB.

Figure 7-7: Standard array image reconstruction, N = 987 elements with spacing d0 = λ0/2.
SNR = 10 dB.
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Figure 7-8: Reconstructed image for the (28, 47) multi-coset array with coset pattern P as
in Figure 7-4. SNR = 10 dB.

7.4.3 Undersparse arrays

Useful reconstructions can be obtained from multi-coset imaging even when the number
of elements is strictly insufficient for the realized scene density, as we will now illustrate.
In such cases, the associated reconstructions are most useful in conjunction with failure
detection methods as developed in Section 6.4. In this 2-D imaging scenario, our BPE
failure measure is applied at each range. Figure 7-10 shows the reconstructed images for
P ≤ Q = 14. The bar immediately to the right of each reconstruction indicates the BPE
at each range.

Due to the moderately aggressive choice of P = 14 for this scene, the image shown in
Figure 7-10a exhibits a mild degree of error at the ranges with the highest densities. This is
to be expected as the number of cosets begins to be insufficient to accurately determine the
supported sectors. In Figure 7-10b, the array has P = 9 cosets, and more severe errors begin
to occur. A primary utility of having this range-dependent error indication is that when
failures occur, the location can be identified and ignored, or judged with caution, without
discarding results at other ranges that still have sufficiently low densities. In Figure 7-10c,
the array retains P = 5 cosets, having reduced the total number of elements to 105 of the
original N = 987. While the objects are showing noticeable levels of distortion, each target
is still being located by the support recovery algorithm, with the most egregious corruptions
being identified by the error indicator.
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Figure 7-9: Reconstructed image for the (28, 47) multi-coset array with “bunched” coset
pattern Pb = {0, 1, . . . , 27}. SNR = 10 dB.

112



7.4. RANGE-AZIMUTH 2-D IMAGING SIMULATIONS

(a)

(b)

(c)

Figure 7-10: Multi-coset images with failure detection, L = 47 and (a) P = 14, (b) P = 9,
(c) P = 5. SNR = 30 dB.
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Chapter 8

Multi-Coset Array Experimental

Validation

To show the robustness of the multi-coset array in a practical setting, measurements were
performed with the use of equipment and facilities provided by MIT Lincoln Laboratory,
Lexington, MA.

8.1 Hardware description

Our measurements were taken with the use of the small, portable radar platform shown in
Figure 8-1. This platform is made up of four primary components:

1. The radar module, contained within the light gray box near the center of the forward
face of the platform

2. A cylindrical “quadridge” transmit horn antenna

3. An identical receive antenna

4. The physical platform mount

This radar module can be controlled by attaching a laptop through the USB interface
port and sending configuration and measurement commands. When a request for a radar
data measurement is made, a transmit signal is sent through one of the two RF antenna
ports, after which a received signal measured at the other RF port is processed and the
data is delivered to the laptop.

The horn antennas are 11.5” in length and open to a circular aperture 5.25” in diameter.
They support both vertical and horizontal polarization, accessed through feed ports located
on the top and side of the antenna, respectively, located 5/8” from the small end of the
horn. In the configuration used in these measurements, the radar module attaches to the
antennas via a 90◦ hybrid coupler, which in turn attaches in-phase and quadrature ports to
the vertical and horizontal polarization feeds, resulting in circularly polarized waves. The
radar operates at a center frequency fc = 3.1 GHz (λc = c0/fc = 2.81”, where c0 is the
propagation speed of the electromagnetic waves), and employs a waveform with bandwidth
B = 2.2 GHz, providing a range resolution of ∆r = c0/2B = 2.68”.

The platform mount attaches to a straight rail on which it can positioned manually. By
making repeated measurements at uniformly spaced positions along the rail, the measured
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Figure 8-1: Radar antennas used in multi-coset measurements.

data can be used to synthesize the multi-channel response of a uniform linear array with
elements located at the measurement positions.

The rail itself, shown in Figure 8-2, is L = 98” long, with uniformly spaced markings
at 1” intervals. When the full length of the rail is utilized to synthesize the array aperture,
the image resolution is ∆ψ = λc/2L = 0.0146. The choice of the 1” spacing, rather than a
spacing of d = λc/2 = 1.4”, is necessary due to the type of measurements being made. As
opposed to the bistatic type measurements described in the previous chapters, where the
transmitting source antenna is located in a fixed position, these measurements are of the
monostatic type, since the transmit antenna moves with the receive antenna. As a result,
the relative path differences (i.e. phase variations) the for each “element” is increased by
a factor of two, necessitating closer spacings. While this suggests a spacing of 0.7”, the
directive properties of the horn antennas act to suppress the presence of any grating lobes
due to the 1” spacing.

8.2 Test Configuration and Layout

The rail-mounted radar platform was set up as shown in Figure 8-3. For target objects,
four aluminum trihedral corner reflectors were mounted on non-conducting tripods approx-
imately 25’ from the rail. Three of these corner reflectors were of the type shown in Figure
8-4a, with each of the three faces being right isosceles triangles with an edge length of 8.5”.
The remaining corner reflector, shown in Figure 8-4b, had square shaped faces with an edge
length of 9”.

After placing the four targets in the configuration shown in Figure 8-5, a tape measure
was used to record the positions of the reflectors relative to the array and their mounted
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Figure 8-2: Mounting rail with markings indicating measurement locations.

117



CHAPTER 8. MULTI-COSET ARRAY EXPERIMENTAL VALIDATION

Figure 8-3: Rail-mounted radar in experimental setting.

(a) (b)

Figure 8-4: Corner reflectors used as target objects for measurements.
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Figure 8-5: Target setup.

heights. The experimental layout is illustrated in Figure 8-6

8.3 Measurement Description

Once the radar platform and targets were arranged as described above, the attached laptop

was used to interface with the radar hardware. To configure the system, this interface was

used to specify a transmit gain of 0 dB (setting the transmitted power to the minimum level

of -32 dBm), the start and stop times during which the received data is recorded and a delay

time used to calibrate the system to account for the travel time of the signal through the

transmit and receive feed paths. To set the delay time, several calibration measurements

were taken with a single reflector placed at known distances from the radar antennas. The

recording start time was used to suppress the signals which, rather than radiating away from

the antennas, couple directly from the transmit to the receive horn. For these measurements

this was set to correspond to a two-way travel time for a range of 5 meters. The stop time

was set in a similar manner for a range of 14 meters, allowing enough extra time to account

for multi-path reflections while stopping well before any reflections from the surrounding

external objects (such as the vehicles seen in Figure 8-5, located approximately 20 m from

the radar platform) could interfere with the desired measurements.

To remain consistent with the bistatic radar imaging model developed in the previous

chapters, a preliminary conversion was used to synthesize the equivalent response to a

single isotropic transmitter located at the center of the linear aperture. This response was

obtained using conventional array processing techniques by first generating the image using

an appropriate backprojection approach [56], and then projecting the response onto the

array elements directly using (6.2).
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Figure 8-6: Experimental layout and geometry.
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Figure 8-7: Full array image in ψ-range space.

After sorting the response data by range, the image obtained using the full 98 array

elements was found from (6.3) at each range cell. The result in ψ − range space is shown

in Figure 8-7 over a range of 50 dB relative to the peak response level. In this format, we

can see most clearly the range-dependent scene density. The four reflector targets appear

as the primary responses at their expected locations, as can be seen in the image shown

in cartesian coordinates in Figure 8-8. When taking these measurements, the radar takes

a large enough number of repeated samples such that the ambient and receiver noise is

significantly suppressed through averaging. The remaining responses throughout the image

result from residual effects of the monostatic to bistatic conversion as well as the naturally

occurring side lobes. For our purposes, this additional “noise” is useful for demonstrating

the degree of robustness the multi-coset array exhibits with such practical effects. We can

see that the most densely populated ranges are located in the neighborhood around 10

meters from the array, where we can expect to observe reconstruction errors due to support

recovery failures to appear as the multi-coset array utilizes fewer cosets.
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Figure 8-8: Full array image in cartesian coordinates.
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Figure 8-9: Reconstructed image result and range dependent back projection error from
measured data for an array sparsity of 71.4%. L = 7, P = 5, P = {0, 1, 2, 3, 5}.

8.4 Multi-Coset Image Results

In determining an appropriate multi-coset array layout, a coset period of L = 7 was chosen
so that the corresponding L = 7 scene sectors were small enough to allow for the targets to
lie within several different sectors while still having M = 14 coset periods — a large enough
number such that troublesome finite array effects, in particular, any rank deficiencies in the
support recovery stage, would be unlikely. Additionally, the “good” coset patterns P for
any number of active cosets P ≤ L are easily established, with so-called “perfect” patterns
for both P = 3 and P = 4.

Starting with P = 5 cosets, Figure 8-9 shows the multi-coset image using MP = 70 out
of the possible ML = 98 array elements. In this result, we see the clear reconstruction of
the four target objects as well as much of the background responses. The BPE is displayed
to the right of the image and shows a moderate level of error at the ranges containing the
target objects. This is to be expected as the BPE accounts for differences between the
response before and after the sector support is utilized. In the event that a non-trivial level
of response is located outside the support, this adds to the BPE even though the support
may be correct. Hence, in this result, the additional responses due to the target side lobes
outside of the support will in general yield a non-zero BPE.

With P = 4 cosets, we obtain the multi-coset image using MP = 56 of the possible
ML = 98 array elements seen in Figure 8-10. In this case, the BPE at range of 10 meters
indicates a more cautionary likelihood of errors. However, this appears to be due to missing
range-sidelobes, seen most clearly for the target near (X,Y ) = (2.5, 9.5) meters. The image
still provides a good reconstruction of the main response for each target, and there are no
noticeable false targets throughout the image.
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Figure 8-10: Reconstructed image result and range dependent back projection error from
measured data for an array sparsity of 57.1%. L = 7, P = 4, P = {0, 1, 2, 4}.

Using P = 3 cosets results in the image shown in 8-11. At this array sparsity, we begin
to see more troublesome errors. Recall from our development that the multi-coset array
with P cosets can detect a maximum of Q = P − 1 support sectors, meaning in this case,
the array can select only two sectors at each range. Hence, at the ranges containing the
two target objects, there is limited tolerance for the non-trivial response levels outside of
the appropriate sectors. Note that these errors are different in nature than those seen at
higher array densities in that when the reconstruction algorithm misses the correct support
sectors, it can result in an attempt to place the target within an incorrect sector in a manner
that best reflects the data. Here this is occurring as false targets appearing in the sectors
to the left and right of the correct sector.

For the sake of illustrating a “catastrophic” failure, the response for P = 2 is shown in
Figure 8-12. In this result, the algorithm is forced to select a single sector in which it must
determine the response that most closely matches the measured data. This shows up as
both complete support recovery failures, as seen by the entire misplacement of one target,
and an additional target-like response that the reconstruction places alongside the closest
target in the center sector.

8.5 Remarks

The experimental results appear consistent with the expectations given by the analysis
developed for the multi-coset array. As predicted, the image fidelity was maintained as long
as the number of active cosets remained greater than the number of occupied sectors. While
the use of the same reconstruction algorithm as in the case of the synthesized radar data
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Figure 8-11: Reconstructed image result and range dependent back projection error from
measured data for an array sparsity of 42.9%. L = 7, P = 3, P = {0, 1, 3}.
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Figure 8-12: Reconstructed image result and range dependent back projection error from
measured data for an array sparsity of 28.6%. L = 7, P = 2, P = {0, 1}.
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in Section 7.4 demonstrates a level of agreement with our development model, additional
experimentation efforts to determine whether other environments may have characteristics
in which disagreements with the model could become evident.

Of particular interest would be the inclusion of larger distributed, less “point-like” tar-
gets than the corner reflectors used in these measurements. While the likelihood of the
physical contents of separate sectors having enough similarities such that the coherence
issues described in Section 6.2.2 would arise, it may be the case that certain multi-path
responses could lead to the appearance of sector coherence from the perspective of the algo-
rithm. Were such events to result in a breakdown in the use of the MUSIC based support
recovery algorithm this would become evident in the back-projection, suggesting the use
of a secondary algorithm suited to the coherent case in these situations. As such, further
work to understand the need for and the implementation details of this type of system
modification is warranted.

The use of the repeated monostatic radar measurements in place of a full multi-coset
array seems valid. However, as is the case in all engineering endeavors, each layer of assump-
tion distinguishing the model from the final system allows for the possibility of unexpected
consequences. Thus a complete validation of the multi-coset array will necessitate the fab-
rication of a dedicated array in order to determine whether any such consequences affect
the array performance in a meaningful way. One clear distinction is the omission of any
mutual coupling effects in these measurements. While coupling played an important role in
the analysis of the dense ∆Σ array, it is less likely to affect the performance of the sparse
array, in which the electromagnetic interactions between elements will be less severe. In
consideration of the nonuniform array design, it should be noted that if the inactive cosets
are manifest as “missing” elements, this may affect the element patterns in a manner not
considered in our analysis model. Further, with the recurrent nature of the array, this would
mean each coset would be associated with a unique pattern shared by all of its constituent
elements. While it may be possible to compensate for this effect in the reconstruction algo-
rithm, this would then be contingent on the calibration of these patterns, adding complexity
in both the overall design process as well as the additional processing. A more pragmatic
approach can be achieved by including the inactive coset elements as so-called “dummy”
elements. Recall that it is not the physical antennas that lead to the high cost of phased
arrays, but the complicated circuitry behind the front end. The inclusion of the additional
inactive cosets, match-terminated with simple resistive loads at their terminals, would re-
move the issue of nonuniform element patterns without incurring an appreciable increase
in overall costs. In fact, as we visualize large-scale millimeter wave implementations on
apertures that would conventionally require many thousands of elements, it may be the
case that it is more convenient to fabricate the array in this fashion, rather than needing
to specify the particular nonuniform structure.

Due to the moderate number of measurements, the relatively small coset period length
of L = 7 limited the variety of array sparsity levels and particular coset patterns the could
be examined. Larger values of L would permit a greater ability to validate the performance
of the co-array design technique, one of the primary contributions of this thesis. Further,
a longer coset period would allow for a more gradual decrease in the array density as the
number of active cosets is reduced, as well as a smaller fraction of occupied sectors for
the scene. As a result, these experimental results give a somewhat modest indication of
the capability to decrease the array sparsity made possible by the multi-coset array. In
consideration of this and the above comments, we look forward to future experimental
investigation of full-scale, dedicated multi-coset arrays.
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Chapter 9

Conclusions and Future Work

This thesis has presented the architectures and associated algorithms for the design, oper-

ation, and processing of two digitally-enhanced antenna arrays. While the specifics of each

array differ greatly, this research has the common thread of identifying and understanding

the practical aspects related to the application of both designs. To conclude this work, we

now provide an summary of the research and resulting insights, as well as the implications

for future research directions.

The Dense ∆Σ Phased Array

The ∆Σ array was introduced via the notion of phase quantization, a concept which is

related to signal discretization in analog-to-digital converters. From this, we extended the

concept of oversampled∆Σ ADCs to form the foundation of dense∆Σ phased arrays. Under

the model of independent and identically distributed quantization errors, the equivalence

between the ADC and the phased array was demonstrated in terms of the expected quan-

tization noise power and its dependence on the level of temporal or spatial oversampling,

described by the density ratio R. Namely, for a fixed aperture, we saw that the SQNR

improved by 9 dB/octave, where each octave refers to a doubling of the array density ra-

tio. The initial 3 dB/octave is due to the natural averaging associated with the increased

number of array elements, with the remaining 6 dB/octave resulting from the error can-

celing mechanism of the ∆Σ excitations. We then saw from numerical simulations for an

array of isotropic elements that the SQNR increased at a slightly lower rate as the white

noise model became less applicable with the increasing array density—a consequence of

the smaller phase progression applied to the more closely spaced elements. Further, it was

observed that by increasing the amplitude of the quantized excitations relative to the ideal

excitations, the errors held more closely to the white noise model, thereby recovering the

9 dB/octave dependence. However, this came at the cost of reduced power efficiency, a

property unique to the application of ∆Σ to the context of phased arrays.

We then compared the quantization distortion of the 2-bit ∆Σ array to conventional

arrays of up to 5-bits of phase resolution and saw the improved robustness of the ∆Σ array

with respect to phase errors, a particularly significant feature for millimeter wave applica-

tions. This observation is important in establishing the potential utility of the design as

technology pushes into increasingly higher frequency regimes.

We demonstrated the ability to apply the dense ∆Σ technique to planar arrays and

provided two types of ∆Σ excitation schemes for the rectangular lattice geometry. The
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first of these allowed the quantization errors to be decomposed along both array dimen-
sions, resulting in a 3 dB improvement in the SQNR while maintaining the 6 dB/octave
∆Σ dependence of the linear array. This 3 dB advantage is particularly useful at small
density ratios when the potential for increasing the number of elements is limited. For
higher density ratios, the second ∆Σ scheme was even more beneficial: though lacking the
initial 3 dB improvement, this approach resulted in an SQNR improvement in proportion
to 12 dB/octave. In both cases, these SQNR improvements are in addition to the natural
6 dB/octave averaging improvement. The analysis of these planar array results made use
of the idea of the ∆Σ kernel, which provides a foundation for the tractable extension of the
analysis to arbitrary (uniform) array geometries.

By employing the more evolved free excitation array model, we concluded that rather
than affecting the utility of the ∆Σ beamforming technique in a deleterious manner, the
mutual coupling in the dense array environment in fact was seen to be helpful due to more
directive embedded element patterns, which helped suppress the most troublesome pattern
distortions near the extents of real space. A moderate increase in the quantization noise
resulted from variations in the embedded patterns of the elements near the array edges,
though this is of only moderate concern in the intended application space of array lengths
greater than a few wavelengths, for which such effects are relatively benign.

For the isotropic array element model, we found the ∆Σ array to have a moderate
loss in the narrowband power efficiency of 1-2 dB (compared to the equivalently dense
array with ideal excitations) resulting from the increased excitation amplitudes required
by the ∆Σ array to scan the quantization errors into imaginary space. However, it was
demonstrated that with the use of the simple scan impedance matching network, the densely
packed array yielded better efficiency performance than the conventional half-wavelength
spaced array over both wider scan regions and frequency bandwidths.

Using element gain patterns and mutual coupling measurements for a twelve element
linear array, we validated the ∆Σ development and analysis. While the existing array hard-
ware prevented the ability to vary the physical element spacing, the effective density ratio
was varied by adjusting the electrical distance between elements over a range of frequencies.
We observed relatively close agreement with the expectations that the noise power would
decrease with R2, the discrepancy being reasonably explained by variations in the array
efficiency and the nature of the element patterns over the frequency range.

These results are encouraging even before taking into account the issues of operating
outside the intended frequency band of the array, the modest density ratios, and the small
number of elements. We also observed that the issue of setting the amplitude ratio proved
less problematic than previously indicated by the analysis of the isotropic array elements. In
general, the phase patterns of practical array elements will differ from the linear responses
associated with the hypothetical isotropic element, from which we can conclude that the
“inherent” power efficiency reduction indicated by the initial analysis will be less concerning
in practical settings.

The Sparse Multi-Coset Imaging Array

Our development of the multi-coset array expressed the notion of beamforming in the con-
text of image formation. After presenting the core concepts of scene sector sparsity, the
multi-coset array structure, and the two-stage image reconstruction algorithm, we showed
that in high SNR settings, it is possible to produce the identical image attainable by a
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uniform half-wavelength spaced imaging array, provided the multi-coset array density is
greater than the scene sector density.

The initial reconstruction stage, support recovery, in which the algorithm determines
the sectors wherein lie the image targets, can be formulated in a compressive sensing setting
as a multiple measurement vector problem. The solution of such problems requires that
the measurement matrix be of rank greater than the number of occupied sectors. This
implies the need for a minimal number of coset periods equal to this same value. Further,
as the sector sparsity decreases with the length of each coset period—which determines
the number of sectors—the benefit of long coset periods along with the minimal number of
these periods can be used to dictate the appropriate setting of these parameters for a given
overall aperture length.

In consideration of the effects of noise, the reconstruction SNR was shown to be related
to the ambient SNR—equal to the SNR of the image formed by the standard uniform
array—by the condition number of the multi-coset measurement matrix. Consequently,
beyond the requirement for a universal coset pattern, which guarantees a finite condition
number, the reconstruction SNR finding implies the further desire for a minimal condition
number over all possible sector supports.

A more critical aspect of noise was seen through the threshold SNR, that is, the mini-
mum SNR at which the support recovery stage of the reconstruction algorithm can reliably
determine the correct sector support. We saw that this threshold SNR depended on the
particular algorithm choice, and that this had important practical implications. The use of
the MUSIC direction-finding algorithm resulted in a significant reduction in computation
time compared to the convex �1 minimization approach, though this came at the cost of
a several dB increase in the threshold SNR. To address this, a modified direction-finding
type algorithm was discovered within this research which maintained the computational
benefits of the conventional MUSIC algorithm at a much less severe cost with respect to
the threshold SNR. Because the possibility of crossing the threshold SNR persists outside of
the most conservative multi-coset sparse designs, a computationally simple failure indica-
tion stage was introduced, based on the concept of back projection error. This approach is
easily implemented as a third stage in the reconstruction algorithm to provide a measure of
confidence regarding the possibility of erroneous results in the support recovery stage due
to either increases in the scene sparsity or decreases in the SNR below the threshold level.

An improved design technique for selecting the coset pattern, adapted from the co-
array design approach associated with the sparse minimum redundancy linear array, was
presented here. Previous research regarding multi-coset sampling suggested coset pattern
designs based on the minimax optimization of the associated measurement matrix condi-
tion number. While this approach implied optimal reconstruction SNR performance, the
problem of designs optimized for the minimization of the threshold SNR remained open.
Through extensive numerical experimentation, our result was shown to provide optimal
threshold SNR performance in all cases, while maintaining the same, or nearly the same,
reconstruction SNR performance as designs based on the condition number criteria. In ad-
dition, the co-array design procedure represents a significant reduction in design complexity
due to its independence from the sector support, resulting in a reduced optimization search
space by an order of a square root. Further, we found that for large array geometries at
which an exhaustive search over even this reduced space becomes untenable, the Markov
Chain Monte Carlo technique was particularly well suited for determining coset pattern
designs.

Using simple electromagnetic models to generate the radar response to a simulated scene
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of target objects, we demonstrated the reconstruction of two-dimensional (range-angle) im-
ages, employing the concepts of both range-dependent sparsity and back projection error
to examine the behavior of the multi-coset array at a variety of array sparsity and SNR
levels. For further validation of this sparse array design, experimental measurements were
performed to demonstrate these same principles. As in the case of the ∆Σ array experi-
ments, even with the less than perfect operational conditions resultant from the limitations
imposed by the availability of dedicated hardware, the results for the multi-coset array tests
were consistent with our development and analysis.

Future Research Areas

A number of topics for future areas of research follow directly from the material presented
throughout this thesis. For example, it would be of interest to examine the application of the
∆Σ design technique to other common array geometries, such as cylindrical or ring arrays.
Such research would include determining whether the ∆Σ error passing schemes presented
here are appropriate, or if any particular aspects of this geometry suggest a more suitable,
potentially advantageous approach to be exploited. Further, it would be useful to compare
the behavior of any such array to the linear ∆Σ array regarding the relations between
the element density and the resultant pattern distortion. Another interesting example is
the hexagonal (sometimes referred to as triangular) planar array lattice. Beyond the well-
understood characteristics of such planar designs, this geometry permits an extensive variety
of error passing forms that may result in notable reductions in quantization noise even at
very low density ratios.

Another consideration is the feasibility of higher-order ∆Σ structures. In this work, our
∆Σ technique is modeled on the first-order ∆Σ modulator1, due to a concern for stability
in light of the array-specific issue of power efficiency, as well an overall desire for simplicity
throughout our architecture. However, it may be the case that alternative error passing
techniques can improve the array performance under certain conditions, and hence further
investigation could prove to be of value.

One of the major contributions in this research for the multi-coset array was the strong
performance of our modified MUSIC algorithm, which itself leads to a number of questions.
Perhaps most interesting is whether this modified form would be of benefit to other appli-
cations in which the MUSIC algorithm is commonly employed. It is our belief that the joint
utilization of both the “signal” and “noise” subspaces have some potential performance
drawbacks (e.g., in the asymptotic limit in which the estimated subspaces converge to the
correct value with high probability). Any additional estimate variance resulting from this
is likely to be a larger issue in so-called “super-resolution” direction finding applications
than in the relatively low-resolution usage here of determining the target support sectors.
Still, the promising results regarding the notable improvement over the standard MUSIC
algorithm suggests further consideration.

On a related note, recall that although the modified MUSIC algorithm regained much of
the performance lost in the effort of utilizing the simpler polynomial-time direction finding
algorithm, as opposed to the more computationally intensive �1 convex optimization, the
latter technique was still able to provide reliable results at a lower SNR. Depending on the

1The two planar ∆Σ approaches described in Section 3.6 may be interpreted as exhibiting traits of higher-
order ∆Σ modulators, though it was deemed sufficient to develop these ideas directly from the first-order
linear ∆Σ to avoid unnecessary confusion
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specific application needs (i.e. reliability vs. data throughput rate), it would be easy to

implement an additional algorithm feature that, in the event of a likely failure indication,

revisits the support recovery stage using the more reliable optimization. While this would

not be of benefit in the case of a sparsity based failure, such feature could prove useful

in difficult dynamic SNR environments. We will look at a similar type of BPE responsive

architecture later in this chapter.

In addition to these topics, the following sections describe promising directions for future

research into expanding the depth of analysis and the potential benefits of the ∆Σ and

multi-coset arrays.

9.1 Delta-Sigma Amplitude Tapering

Although our attention was focused on the suppression of phase quantization errors, the

∆Σ excitation technique has the additional advantage of being able to recreate the effect

of nonuniform amplitude excitations without the need for any means of controlling the

physical amplitude used to excite each element. The ∆Σ quantizer treats the discrepancy

between the desired and the applied amplitudes in the same way it treats the phase errors.

That is, rather than tracking the intended excitations themselves, it tracks the excitation

errors and effectively works to cancel out these errors in the beam pattern.

A commonly used example of a nonuniform amplitude taper was developed by Taylor

[41,57,58] to produce patterns with a specified sidelobe level. Applying this to the array of

length L = 20λ, we can see the ability of the ∆Σ excitations to decrease the sidelobe level

to −30 dB in Figure 9-1. While the pattern for R = 4 closely resembles the ideal pattern

near the main lobe, the noise shaping effect is insufficient for the suppression of quantization

distortion beyond |kz| > 0.75.2 At a density ratio of R = 6, the pattern is quite close to the

30 dB goal, and by R = 8, any remaining distortion falls below the intended sidelobe level.

In the selection of the appropriate ∆Σ array design, it is reasonable to expect that the

density ratio should be large enough to ensure that the expected noise power falls below

the target sidelobe level. This however does not guarantee the elimination of any spurious

quantization lobes in all cases. On the other hand, overcompensating will lead to potentially

unnecessary increases in overall costs and design complexity. As such, the questions of the

appropriate system needs as addressed for the uniform amplitude setting in this thesis

warrant revisiting for the nonuniform amplitude taper.

Regarding the efficiency of the ∆Σ array relative to the conventional array, the formu-

lation for the uniform amplitude setting suggests that the lack of any physically realized

tapering of the array weights in the ∆Σ case will exacerbate the effective loss in efficiency.

A fair treatment of this topic requires further consideration as to how amplitude tapers are

implemented conventionally. If the particular amplitudes must be allowed to vary, this will

typically be implemented by way of controllable attenuation or amplification of signals at

the individual element level. These approaches are inherently lossy, and hence, much of the

efficiency lost by the ∆Σ array in order to steer the amplitude errors outside of real space

is offset by the losses occurring in the conventional array.

When it is sufficient to keep a fixed amplitude taper, this can be implemented within

the array feed network through the use of unequal power dividers [37] if this initial effort

is deemed worthwhile to avoid the losses described above. This might suggest that the

2As previously stated, this effect will be lessened for the majority of practical array elements.
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Figure 9-1: Power patterns for ideal and ∆Σ arrays of length L = 20λ with 30 dB Taylor
windows.
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difference in efficiency performance for the ∆Σ array is unresolvable; yet this raises the
question of whether a similar feed network can be utilized in the ∆Σ array in a beneficial
way. This idea itself has a number of interesting possibilities.

• The “incident power gap” can be reduced such that the ratio of |ŵn|/|wn| can be made
nearly constant with respect to n. This allows the efficiency considerations to be quite
similar to the uniform amplitude setting (where this ratio was the fixed constant γ),
which we observed from the measured results of Chapter 5 to be a relatively small
concern in practical settings.

• As opposed to the relatively white behavior of {qn} for the uniform taper, the error
would no longer be identically distributed in the sense that σq should scale roughly
with the taper level at each element. Consequently, this would relieve the need to
move to large density ratios to ensure desired pattern responses.

• The increased density of the ∆Σ array implies a commensurate increase in the com-
plexity of the tapered feed network. However, due to the∆Σ error suppression capabil-
ity, the need for a precise representation of the desired amplitude taper is eliminated.
For example, instead of applying the exact Taylor window, a much simpler linear ta-
per could be used to achieve the majority of efficiency and noise reduction benefits,
leaving the “finer grain” tuning of the excitations to the ∆Σ mechanism.

This last point has the additional implication that a class of amplitude tapers could be
supported by a sort of “amplitude envelope” to allow for the improved pattern and efficiency
performance, while maintaining a level of flexibility to apply a variety of amplitude tapers
in the adaptive setting. From a broader perspective, this begins to show the extensive
potential made possible with the ∆Σ concept. While our analysis chose to develop the
∆Σ array in the context of cost effective array design, this is really only one aspect of the
more general contribution of a new perspective in the design and operational characteristics
of the phased array.

9.2 Topics in Random Matrix Theory in Multi-Coset Anal-
ysis

Certain aspects of the multi-coset analysis in this thesis, namely, the topics of the modified
MUSIC algorithm, the coset pattern design optimization, and the threshold SNR, lack a
complete sense of rigor. In each of these cases, the research objective was to determine
either a system design approach or the relevant behavior within the low SNR, limited
sample size (here, the number of coset periods) setting. Unfortunately, the preponderance
of existing analyses on related topics rely on asymptotic techniques [59], singularly unsuited
for reaching meaningful conclusions in this endeavor. However, while outside the scope
of this research, it appears that the field of random matrix theory [60] may provide the
necessary tools to reach the following research objectives.

While the performance of the modified MUSIC algorithm is encouraging, it would be
nice to provide a more rigorous justification than the intuitive reasoning that led to its
conception. Further, there remains the possibility of alternative subspace weightings that
may outperform our current implementation. It is expected that a random matrix theory
approach to the entire problem has the potential to provide the formality required to
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• Justify the improved results as compared to the standard MUSIC algorithm seen in
the experimental simulations

• Determine the regime of conditions in which use of the modified algorithm is appro-
priate

• Prove or disprove the optimality of the modified algorithm and determine, if applica-
ble, a more optimal form

• Utilize this understanding to recognize the potential application space for such mod-
ifications

In much the same manner as the above discussion, the closely related topics of the
coset pattern design and the threshold SNR leave open several questions that, while not
particularly concerning in a practical sense, remain unanswered: although the co-array coset
pattern design technique is based on sound intuition and yielded optimal threshold SNR
levels in each of many numerical experiments, is there a way to prove explicitly that this
is the optimal design? Also, for a specified set of array and scene parameters, is there a
method of calculating the expected threshold SNR analytically?

9.3 Nested Multi-Resolution Multi-Coset Arrays

Because the scene sparsity level will vary, the multi-coset array sparsity must be chosen
with care. For a fixed number of elements, this choice represents a design tradeoff between
the resolution level of the array and the maximum scene density for which the array can
give accurate results. If the array design is too sparse, a nonzero failure rate is to be
expected. However, too conservative of a design, while perhaps providing consistently
accurate results, also will provide consistently low resolution results. In a sense, such a
design dedicates a proportionally significant number of elements in preparation for a high
scene density occurrence, regardless of how often this happens. In light of this, it may be
preferable to have the ability for the array resolution to adapt to different scene densities.

A variation on the standard multi-coset array, the multi-resolution multi-coset (MRMC)
array, has the potential to address the desire for adaptability by means of an architecture
composed of the union of multiple nested multi-coset arrays. As an illustration, consider
the example shown in Figure 9-2, in which the MRMC array AMR is formed by the union
of the three basic multi-coset arrays A0, A1, and A2. These nested arrays share a common
coset period of L = 7 with unique lengths and coset periods specified by

A0 : M0 = 6,P0 = {0, 1}
A1 : M1 = 4,P1 = {0, 1, 2, 4}
A2 : M2 = 2,P2 = {0, 1, 2, 3, 4, 5}

AMR = A0 ∪A1 ∪A2. (9.1)

Using this nested structure, the element responses of the longest and sparsest constituent
array A0 can be used to form high-resolution images if the scene is sufficiently sparse. If not,
the BPE technique can be used to indicate a failure at this resolution, at which point the
reconstruction algorithm is repeated with the element responses of the shorter yet denser
A1, and so forth. With this approach, the MRMC array AMR is reliably able to provide
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AMR

A2

A1

A0

Figure 9-2: MRMC array AMR and constituent arrays A0, A1, A2 from (9.1).

low-resolution images for scene sector occupancies of up to Q = 5 out of the L = 7 total

sectors, without sacrificing high-resolution capabilities in the case of less dense scenes.

The MRMC array can be interpreted by comparing the above example to a basic multi-

coset array with the same total number of elements, having the same total length, M = 6,

with a fixed number of cosets P = 4 in each period. If the scene density is expected to

be low for the most part, yet potentially too great for the array to reconstruct at some

times, this system must either tolerate failures at these events, or be redesigned to have, for

example, M = 4 and P = 6. In this latter case, the higher resolution performance is lost

entirely. In contrast, instead of rededicating all of the elements contained in the outermost

coset period, AMR repositions only half of these elements within the inner nested array, thus

dedicating fewer resources to these infrequent high scene density occurrences. This general

behavior is summarized in Figure 9-3. The marked points along the dashed line represent

fixed resolution multi-coset arrays with the same number of elements as the MRMC in (9.1),

while the marked points along the solid line denote the three possible states simultaneously

available to AMR.

While the above is simply intended as an illustrative example, the benefits of the ad-

ditional design flexibility are clear. There remains a number of ways in which this overall

concept requires further development. Most significantly, a design strategy should be for-

mulated which incorporates both a probabilistic model for the scene density and some value

or cost function associated with the resultant image resolution. Additionally, the simplistic

operational approach described above remains inefficient in that each stage of the nested

reconstruction utilizes only a subset of the available information from the array. More so-

phisticated reconstruction algorithms that make use of the sparse outer arrays at high scene

densities as well as the entirety of the dense inner arrays at low scene densities could be used

to improve both the reliability and reconstruction quality made possible by this particular

structure. The key goal here is to find such an approach that retains the ability to exploit

the remaining structure of the MRMC, thus avoiding the need to use more computationally

complex compressive sensing techniques.

9.4 “Ultra-Sparse” Multi-Coset Arrays

In Section 7.4, we saw how the use of the very standard radar technique of separating a

scene into a number of range bins allows an otherwise cluttered scene to be viewed as a
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Figure 9-3: Characterization of array resolution versus maximum scene sector occupancy
(Qmax = P − 1) for the 24 element MRMC array shown in Figure 9-2 [cf. (9.1)]. Circular
markers along the dashed line represent four distinct fixed multi-coset array geometries.
Square markers along the solid line denote the three operational states simultaneously
available to the MRMC array.
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L1

L2

Figure 9-4: Planar multi-coset array on rectangular lattice.

series of individual sparse scenes. In doing this, the opportunity for the use of the sparse

multi-coset array is extended. In this section, we describe additional means of leveraging

existing radar techniques to extend even further the possibility of creating sparse array

designs.

9.4.1 Planar multi-coset arrays

The extensions of multi-coset sampling to the case of two-dimensional signals was introduced

by Feng and Bresler in [61] and received further attention in the subsequent paper by

Venkataramani and Bresler [62]. The application of these techniques to two-dimensional

imaging arrays was developed therein for the class of rectangular-lattice planar arrays by

replacing the linear periodic coset pattern with rectangular tiles. An example of this is

shown in Figure 9-4, in which each tile of twelve lattice points contains three active elements,

shown in distinct colors for the purpose of illustration. With this two-dimensional recurrent

structure, each coset becomes a sparse rectangular array with uniform element spacing of

L1 = 4 along the horizontal dimension and L2 = 3 along the vertical. The associated grating

lobe structure of the individual sparse coset subarrays results in the two-dimensional scene

being represented as divided into twelve sectors.

Roughly speaking, the array sparsity along each dimension yields a multiplicative benefit

in the planar array case. As a result, the overall reduction in the number of elements

is notably more abundant than for the linear array. In addition, the planar multi-coset

array retains the ability to exploit range-dependent sparsity to achieve even further sparsity

improvements.

Beyond the structure described above, in which both the underlying lattice and the

recurrent coset pattern are rectangular, it should be possible to formulate the reconstruction

algorithm for any geometry fitting the two-dimensional tiling structure. In particular, it is

of interest to examine the use of the hexagonal, or equilateral-triangular lattice, commonly

utilized in uniform planar arrays due to a grating lobe design condition resulting in a

reduction in the number of elements by a factor of 15% compared with the rectangular

geometry [63]. A simple example can be seen in Figure 9-5, in which the array Figure

9-4 is mapped onto the hexagonal lattice. This mapping implies a simple extension of
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L1

L2

Figure 9-5: Planar multi-coset array on hexagonal lattice.

the processing technique for this geometry, yet a more complete analysis is warranted to
determine what, if any, modifications to the design rules of the rectangular multi-coset array
are necessary here. Ultimately, it should be determined whether the element reductions
inherent in the uniform hexagonal geometry carry over to the multi-coset array.

9.4.2 Multi-coset MIMO radar

The type of imaging radar discussed in this thesis can be described as a single-input multiple-
output (SIMO) system. In Figure 9-6a, the single-input takes the form of the red element
which transmits some signal S0. When this signal scatters off an object, the reflected
signals reach the three blue receive elements, where the unique propagation distances from
the transmit element to each of the receive elements appear result in phases ϕ0, ϕ1, and ϕ2

in the multiple-output response of the receive array.
An equivalent scenario occurs in the multiple-input single-output (MISO) system shown

in Figure 9-6b. In this case, signals S0, S1, and S2 are transmitted from elements arranged
such that the propagation distances to the single receive antenna are equal to the distances
in Figure 9-6a, yielding a single-output containing a superposition of the three signals with
their corresponding phase shifts. If the Si are chosen such that the individual signal can
be disentangled at the receiver, the ϕi can be extracted, providing the same information
as in the SIMO system. In this sense, the SIMO receive array is termed the virtual array
equivalent to the MISO system.

Themultiple-input multiple-output (MIMO) radar system makes it possible to extend the
MISO concept to obtain equivalent virtual arrays of greater aperture lengths; see e.g. [64,65].
In the example MIMO system shown in Figure 9-7a, an additional receive element is placed
a distance of three element spacings from the original receive element such that the multiple-
output response contains the phases associated with the six unique transmit-receive paths.
When properly disentangled, this system is equivalent to the SIMO system shown in Figure
9-7b.

In general, an N = Nt + Nr element SIMO system comprised of Nt = 1 transmit and
Nr receive elements forms a receive aperture of NtNr = Nr = N − 1 elements (the same
result holds for the virtual receive aperture in the N element MISO system), while the

138



9.4. “ULTRA-SPARSE” MULTI-COSET ARRAYS

S0
ϕ0 ϕ1 ϕ2

(a) SIMO

S0S1S2 {ϕ0,ϕ1,ϕ2}
(b) MISO

Figure 9-6: SIMO radar and equivalent MISO radar systems.
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(a) MIMO
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(b) MIMO virtual equivalent

Figure 9-7: MIMO radar and equivalent virtual SIMO radar systems.
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(a) MIMO multi-coset

(b) MIMO multi-coset virtual equivalent

Figure 9-8: MIMO radar and equivalent virtual MIMO equivalent.

Table 9.1: Total number of elements Nt +Nr in the (SIMO) multi-coset and MIMO multi-
coset systems for M = 21 coset periods of L = 47. Sparsity percentages shown in reference
to total number of elements in the conventional SIMO system, 1 +ML = 988.

Active Cosets, P # multi-coset elements, 1 +MP # MIMO multi-coset elements, P +M
28 589 (60%) 48 (5.0%)
14 295 (30%) 35 (3.5%)
7 148 (15%) 28 (2.8%)
5 106 (11%) 26 (2.6%)

N element MIMO virtual array can contain up to (N/2)2 elements. While the examples
above concern only uniform arrays, the same principles apply whenever the spacing between
receive elements is greater than the length of the transmit array3. This makes the use of
MIMO radar especially appealing in the context of the multi-coset structure. Specifically,
by designing the transmit array as a single coset pattern and the receive array as a sparse
uniform array with a spacing given by the coset period, the resultant virtual array is an
exact representation of a real multi-coset array, as seen in Figure 9-8. In Figure 9-8a,
the red, blue, and green transmit elements are arranged according to the coset pattern
P = {0, 2, 6}, and the three receive elements are uniformly spaced by the coset period
L = 7. In Figure 9-8b, we see the NtNr = 9 element virtual multi-coset receive array. In
this example, the equivalent 10 element SIMO system is replaced by the 6 element MIMO
system; and provided the transmitted waveforms are separable at the receiver, this data
can be used in the exact manner as the SIMO multi-coset system.

This hybridization of the multi-coset and MIMO radar concepts has the potential of
allowing significant additional array sparsity. As an example, Table 9.1 provides the element
counts for the configurations used in the imaging results from Section 7.4. While these
results highlight the remarkable possibilities of such a hybrid technique, additional research
is necessary to ensure whether these system designs are tenable. Most importantly, the
limiting factor is likely to be the maximum number of waveforms that can be reliably
disentangled at the receiver, placing an upper limit on Nt. In addition, the multiple-input
waveform design must be shown to be compatible with any other system requirements, such
as the ability to perform pulse compression to allow range-dependent scene sparsity to be
exploited.

3
While other MIMO configurations may be used, these are not pertinent here.
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9.4.3 Doppler-dependent sparsity

The idea of range dependent sparsity can be viewed more broadly as the sorting of the
image data into a basis of orthogonal subsets. The disjoint nature of these subsets reframes
the idea of angular sparsity to the occupancy level within each subset. This occupancy will
be less than or equal to that of the entire data set, and conceivably, this reduction provides
the ability to achieve a desirable level of array sparsity.

Another common radar use, Doppler radar, produces velocity data about target ob-
jects [66]. When a target moving with some radial velocity relative to the array is illu-
minated, the frequency of the reflected signal will exhibit a Doppler shift in proportion to
this velocity. Upon receiving the reflected signals from some number of targets, the radar
system distinguishes between the signal components having different Doppler frequencies,
thus allowing the data to be sorted into separate velocity bins. As with the range sorting
operation, each of these individual bins will possess a potentially lower occupancy and hence
this provides a means of reducing the required multi-coset array density.

Pulse-Doppler radar allows the scene response to be sorted by both range and velocity.
Application of this to the multi-coset array then redefines the appropriate definition of scene
sparsity from the number of occupied sectors to the maximum number of sectors occupied
by targets within the same range bin and moving at radial velocities relative to the array
within the same Doppler bin. As a result, this has the potential to allow further reductions
in the array element density.

Implementation of the joint range-velocity-dependent sparsity concept will require a
thorough understanding of how such systems will be affected by range-Doppler ambiguities.
This is a natural limitation of pulse Doppler radar that leads to a tradeoff in the fidelity of
the range and velocity results. Hence, it is necessary to ensure that any advantages intro-
duced by the use of velocity sorting are not outweighed by any losses due to compromises
in the range sorting process. This entails an understanding of the appropriate waveform
design tailored to the expected in situ characteristics of the scene.

Further questions arise regarding the significance of these Doppler ambiguities. The
original intention of pulse-Doppler radar is to determine the velocity information in addition
to the position of the targets, whereas here it is proposed as an additional tool for achieving
improved array sparsity. Specifically, if the velocity data is not a desired output, it may
be worthwhile to tolerate some presence of Doppler ambiguities rather than to sacrifice the
range performance of the radar system.

Finally, it may be of advantage in certain situations to use the differential moving-target-
indicator (MTI) radar approach [39] for distinguishing velocities. Rather than sorting re-
sponses into any number of velocity bins, as in the case of Doppler radar, this technique
simply distinguishes between stationary and non-stationary targets. Though the potential
benefits of this may be somewhat less than with Doppler radar, the computational com-
plexities and ambiguity issues become less of a concern. Indeed, for applications in which
targets that are stationary relative to the radar position are unimportant, the use of such
differential cancellation techniques can be used to remove a great deal of targets and allow
for a commensurately less dense multi-coset array.

141



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

142



Bibliography

[1] Boris Murmann, Christian Vogel, and Heinz Koeppl. Digitally enhanced analog circuits:
System aspects. In Circuits and Systems, 2008. ISCAS 2008. IEEE International

Symposium on, pages 560–563. IEEE, 2008.

[2] Saihua Lin, K.B. Ng, H. Wong, K.M. Luk, S.S. Wong, and A.S.Y. Poon. A 60GHz
digitally controlled RF beamforming array in 65nm CMOS with off-chip antennas. In
Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2011.

[3] H. Krishnaswamy, A. Valdes-Garcia, and Jie-Wei Lai. A silicon-based, all-passive,
60GHz, 4-element, phased-array beamformer featuring a differential, reflection-type
phase shifter. In Proc. IEEE Int. Symp. Phased Array Systems and Technology (AR-

RAY), pages 225–232, Oct. 2010.

[4] Dong Gun Kam, Duixian Liu, A. Natarajan, S. Reynolds, and B.A. Floyd. Low-cost
antenna-in-package solutions for 60-GHz phased-array systems. In Proc. IEEE Conf.

Electrical Performance of Electronic Packaging and Systems (EPEPS), pages 93–96,
Oct. 2010.

[5] A. Natarajan, A. Komijani, Xiang Guan, A. Babakhani, and A. Hajimiri. A 77-GHz
phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-
path phase shifting. IEEE J. Solid-State Circuits, 41(12):2807–2819, Dec. 2006.

[6] K. M. Nguyen, A. Accardi, G. W. Wornell, and C. G. Sodini. Digital phase tightening
for millimeter-wave imaging. In Proc. IEEE Custom Integrated Circuits Conf. (CICC),
San Jose, CA, Sep. 2010.

[7] L. Khuon, E. W. Huang, C. G. Sodini, and G. W. Wornell. Integrated transceiver
arrays for multiple antenna systems. In Proc. Vehic. Technol. Conf. (VTC), Stockholm,
Sweden, May 2005.

[8] M. Elkhouly, Chang-Soon Choi, S. Glisic, C. Scheytt, and F. Ellinger. Millimeter-wave
beamforming circuits in SiGe BiCMOS. In Proc. IEEE Bipolar/BiCMOS Circuits and

Technology Meeting (BCTM), pages 129–132, Oct. 2010.

[9] Y. Sato, K. Fujita, H. Sawada, and S. Kato. Design and performance of beam-forming
antenna with discrete phase shifter for practical millimeter-wave communications sys-
tems. In Proc. Asia-Pacific Microwave Conference (APMC), pages 638–641, Dec. 2010.

[10] D. Ehyaie and A. Mortazawi. A new approach to design low cost, low complexity phased
arrays. In IEEE Int. Microwave Symposium (MTT-S) Digest, pages 1270–1273, May
2010.

143



BIBLIOGRAPHY

[11] S.R. Norsworthy, R. Schreier, and G.C. Temes. Delta-Sigma Data Converters: Theory,

Design, and Simulation. IEEE Press, New York, NY, 1996.

[12] B. Almutairi and M. Kraft. Experimental study of single loop sigma-delta and multi-
stage noise-shaping (MASH) modulators for MEMS accelerometer. In Proc. IEEE

Sensors, pages 520–523, Oct. 2011.

[13] W. Almeida, G. Freitas, L. Palma, S. Catunda, R. Freire, H. Aboushady, F. Santos,
and A. Oliveira. A constant temperature thermoresistive sigma-delta anemometer. In
Proc. Instrumentation, Measurement Technol. Conf. (IMTC), May 2007.

[14] S. Thoss, O. Machul, and B.J. Hosticka. A novel architecture for inductive proximity
sensors using sigma delta modulation. In Proc. European Solid State Circuits Conf.

(ESSCIRC), pages 284–287, Sep. 2007.

[15] G.D. Altinok, M. Al-Janabi, and I. Kale. Improved sigma-delta ultrasound beam-
formers with adaptive low-pass decimation filters. In Proc. IEEE Instrumentation,

Measurement Technol. Conf. (IMTC), May 2011.

[16] H.S. Bilge and M. Karaman. Subarray delta-sigma beamforming for ultrasonic imaging.
In Proc. IEEE Ultrasonics Symp., volume 2, pages 1623–1626, Oct. 2002.

[17] P.M. Silva, V. Correia, S. Lanceros Mendez, and J.G. Rocha. Sigma-delta A/D con-
verter for CMOS image sensors. In Proc. Int. Conf. Microelectronics (ICM), pages
94–97, Dec. 2009.

[18] M. Kozak and M. Karaman. Digital phased array beamforming using single-bit delta-
sigma conversion with non-uniform oversampling. IEEE Trans. Ultrasonics, Ferro-

electrics, Freq. Contr., 48(4):922–931, July 2001.

[19] H. Aomori, T. Otake, N. Takahashi, I. Matsuda, S. Itoh, and M. Tanaka. An oversam-
pling 2D sigma-delta converter by cellular neural networks. In Proc. IEEE Int. Symp.

Circ., Syst. (ISCAS), pages 2566–2569, June 2010.

[20] T.D. Kite, B.L. Evans, A.C. Bovik, and T.L. Sculley. Digital halftoning as 2-D delta-
sigma modulation. In Proc. Int. Conf. Image Processing, volume 1, pages 799–802,
Oct. 1997.

[21] D.P. Scholnik, J.O. Coleman, D. Bowling, and M. Neel. Spatio-temporal delta-sigma
modulation for shared wideband transmit arrays. In Proc. IEEE Radar Conf., pages
85–90, April 2004.

[22] Y.T. Lo and S.W. Lee. Antenna Handbook: Antenna Theory. Van Nostrand Reinhold,
New York, NY, 1993.

[23] Robert J Mailloux. Phased array antenna handbook. Artech House Boston, MA, 2005.

[24] J. S. Herd, S. M. Duffy, and H. Steyskal. Design considerations and results for an
overlapped subarray radar antenna. In Proc. IEEE Aerospace Conf., pages 1087–1092,
2005.

[25] R. O. Schmidt. Multipe emitter location and signal parameter estimation. IEEE Trans.

Antennas Propag., 34(3):276–280, Mar. 1986.

144



BIBLIOGRAPHY

[26] Y. Kochman and G. W. Wornell. Finite multi-coset sampling and sparse arrays. In
Proc. ITA, pages 1–7, La Jolla, CA, 2011.

[27] P. Pal and P. P. Vaidyanathan. Nested arrays: A novel approach to array processing
with enhanced degrees of freedom. IEEE Trans. Signal Process., 58(8):4167–4181, 2010.

[28] P. P. Vaidyanathan and P. Pal. Sparse sensing with co-prime samplers and arrays.
IEEE Trans. Signal Process., 59(2):573–586, 2011.

[29] P. Pal and P. P. Vaidyanathan. Coprime sampling and the MUSIC algorithm. In Proc.

IEEE Digital Signal Processing, Signal Processing Education Workshop (DSP/SPE),
pages 289–294, 2011.

[30] S. Shakeri, D. D. Ariananda, and G. Leus. Direction of arrival estimation using sparse
ruler array design. In Proc. IEEE Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), pages 525–529, 2012.

[31] M. E. Dominguez-Jimenez, N. Gonzalez-Prelcic, G. Vazquez-Vilar, and R. Lopez-
Valcarce. Design of universal multicoset sampling patterns for compressed sensing of
multiband sparse signals. In Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process.

(ICASSP), pages 3337–3340, 2012.

[32] D. Romero and G. Leus. Compressive covariance sampling. In Proc. Information

Theory and Applications Workshop (ITA), La Jolla, CA, 2013.

[33] E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal

Process. Mag., 25(2):21–30, 2008.

[34] D.L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306, 2006.

[35] P. Feng and Y. Bresler. Spectrum-blind minimum-rate sampling and reconstruction of
multiband signals. In Proc. ICASSP, volume 3, pages 1688–1691, Atlanta, GA, 1996.

[36] J.A. Kong. Electromagnetic Wave Theory. Higher Education Press, 2002.

[37] D. M. Pozar. Microwave Engineering. J. Wiley, India, 2005.

[38] I. Gupta and A. Ksienski. Effect of mutual coupling on the performance of adaptive
arrays. Antennas and Propagation, IEEE Transactions on, 31(5):785–791, 1983.

[39] Merrill Ivan Skolnik. Radar handbook. 1970.

[40] H. L. Van Trees. Optimum Array Processing (Detection, Estimation, and Modulation

Theory, Part IV). Wiley-Interscience, New York, NY, 2002.

[41] R. C. Hansen. Phased Array Antennas. Wiley Interscience, 2009.

[42] Alan V Oppenheim, Ronald W Schafer, John R Buck, et al. Discrete-time signal

processing, volume 5. Prentice Hall Upper Saddle River, 1999.

[43] W. Wasylkiwskyj and W. Kahn. Theory of mutual coupling among minimum-scattering
antennas. IEEE Trans. Antennas, Propagation, 18(2):204–216, 1970.

[44] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.

145



BIBLIOGRAPHY

[45] M. Mishali and Y. C. Eldar. Blind multiband signal reconstruction: Compressed sens-
ing for analog signals. IEEE Trans. Signal Process., 57(3):993–1009, 2009.

[46] J. Chen and X. Huo. Theoretical results on sparse representations of multiple-
measurement vectors. Signal Processing, IEEE Transactions on, 54(12):4634–4643,
2006.

[47] S.F. Cotter, B.D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to linear
inverse problems with multiple measurement vectors. Signal Processing, IEEE Trans-

actions on, 53(7):2477–2488, 2005.

[48] Kiryung Lee and Y. Bresler. Subspace-augmented MUSIC for joint sparse recovery
with any rank. In Proc. IEEE Workshop on Sensor Array, Multichannel Signal Process.

(SAM), pages 205–208, 2010.

[49] M. E. Davies and Y. C. Eldar. Rank awareness in joint sparse recovery. IEEE Trans.

Inf. Theory, 58(2):1135–1146, 2012.

[50] J. M. Kim, O. K. Lee, and J.-C. Ye. Compressive MUSIC: Revisiting the link between
compressive sensing and array signal processing. IEEE Trans. Inf. Theory, 58(1):278–
301, 2012.

[51] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse
approximation. Part I: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.

[52] J. A. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex re-
laxation. Signal Processing, 86(3):589–602, 2006.

[53] D. Johnson and S. DeGraaf. Improving the resolution of bearing in passive sonar arrays
by eigenvalue analysis. IEEE Trans. Acoust., Speech, Signal Process., 30(4):638–647,
1982.

[54] A. Moffet. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag.,
16(2):172–175, 1968.

[55] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[56] A.F. Yegulalp. Fast backprojection algorithm for synthetic aperture radar. In Radar

Conference, 1999. The Record of the 1999 IEEE, pages 60–65, 1999.

[57] T. T. Taylor. One parameter family of line-sources producing modified sin (πu)/πu
patterns. Hughes Aircraft Co. Tech. Mem, 324, 1953.

[58] T. T. Taylor. Design of line-source antennas for narrow beamwidth and low side lobes.
Antennas and Propagation, Transactions of the IRE Professional Group on, 3(1):16–28,
1955.

[59] Hamid Krim and Mats Viberg. Two decades of array signal processing research: the
parametric approach. Signal Processing Magazine, IEEE, 13(4):67–94, 1996.

[60] Alan Edelman and N Raj Rao. Random matrix theory. Acta Numerica, 14(1):233–297,
2005.

146



BIBLIOGRAPHY

[61] Y. Bresler and Ping Feng. Spectrum-blind minimum-rate sampling and reconstruc-
tion of 2-d multiband signals. In Image Processing, 1996. Proceedings., International

Conference on, pages 701–704 vol.1.

[62] R. Venkataramani and Y. Bresler. Further results on spectrum blind sampling of 2d sig-
nals. In Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference

on, pages 752–756 vol.2.

[63] E. Sharp. A triangular arrangement of planar-array elements that reduces the number
needed. Antennas and Propagation, IRE Transactions on, 9(2):126–129, 1961.

[64] Keith W Forsythe and Daniel W Bliss. Mimo radar: Concepts, performance enhance-
ments, and applications. MIMO Radar Signal Processing, J. Li and P. Stoica, Eds,
pages 65–121, 2008.

[65] Jian Li and Petre Stoica. MIMO radar signal processing. Wiley-IEEE Press, 2008.

[66] Edward J Barlow. Doppler radar. Proceedings of the IRE, 37(4):340–355, 1949.

147


