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Multi-Coset Sparse Imaging Arrays
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Abstract—We develop an efficient structured sparse antenna
array architecture for coherent imaging of sparse but otherwise
unknown scenes. In this architecture, the array elements are
configured in a periodic nonuniform pattern that can be viewed as
the superposition of multiple sparse uniform subarrays. For such
structure, we develop an efficient pattern design procedure using
co-array analysis, and we describe robust and efficient algorithms
implementing the required associated array processing, which
comprise scene support recovery, followed by image reconstruc-
tion. In addition, we develop a practical method for detecting
reconstruction failures when the scene density exceeds the level
for which the array was designed, so that false images are not
produced. As a demonstration of its viability, the architecture is
used to reconstruct a simulated natural scene.

Index Terms—Compressed sensing, millimeter-wave imaging,
MUSIC algorithm, phased-array antennas, sparse arrays.

I. INTRODUCTION

R ECENT advances in millimeter-wave technology, in-
cluding the advent of terahertz CMOS circuits, have the

potential to enable, for the first time, a host of low-cost imaging
and “personal radar” applications. Indeed, at these higher
frequencies, typical resolution requirements can be met with
comparatively compact arrays, which are especially attractive
for applications requiring some degree of mobility. Moreover,
such arrays can be implemented with inexpensive integrated
circuit and antenna technologies, and digital implementations.
However, with such technology come significant new chal-

lenges, an important example of which is the large number of
array elements typically required to construct a phased array
in such applications. As an illustration, in a vehicle collision
avoidance system, obtaining sufficient resolution might require
an aperture of roughly 2 m. But in this case a traditional
phased array operating at 100 GHz with half-wavelength
element spacing would require roughly 1000 antennas, which
is daunting to implement. Indeed, such arrays are costly and
complex to design and calibrate, and, moreover, since the
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system processing requirements scale in proportion to the
number of elements, the needed computational bandwidth
quickly becomes impractically large.
As a result, there is renewed interest in developing sparse

antenna array architectures. Sparse arrays, characterized by av-
erage inter-element spacings greater than one half of the oper-
ating wavelength, have been of interest throughout much of the
history of phased arrays, garnering a great deal of attention in
the early 1960’s; see, e.g., [1] and references therein.
The design of general-purpose sparse arrays has typically en-

tailed making basic performance tradeoffs. A well-known ex-
ample is the use of “density tapering,” which uses a gradually
increasing spacing profile as one moves from the center toward
the edges of the aperture. These arrays are representative of
a class of “thinned” arrays that stretch the aperture associated
with a given number of elements to achieve a desired resolution
by narrowing the width of the main lobe without introducing
additional grating lobes. However, this is obtained at the cost
of a significant increase in the side lobe level. For certain ap-
plications in which resolution is the key performance metric,
these provide a useful design solution. However, in the context
of imaging arrays this introduces an unacceptable noise floor.
Another class of sparse arrays, referred to as limited scan ar-

rays, accommodate sparseness by constraining the field-of-view
of the array to a commensurately narrow range of angles [2].
This may be accomplished through the use of lens or reflector
systems designed to increase the directive properties of the array
elements such that grating lobes are suppressed outside of the
angular region of interest. However, such arrays must be rotated
physically in order to provide wide angle coverage, requiring
relatively static environments as well as increased mechanical
complexity.
The need for mechanical steering of limited scan arrays

can be avoided without requiring additional digital processing
through the use of overlapped subarray antennas [3], in which
the array elements are connected to multiple subarrays. Each
subarray acts as an analog beamformer, suppressing signals
outside of the desired sector. By connecting digital receivers
to the subarrays, full coverage throughout the sector is ac-
complished in the digital domain. With this architecture, the
number of required receivers decreases linearly with the size
of the sector. In turn, full coverage can be achieved through a
combination of element-level phase shifters and subarray-level
digital receivers.
In this paper, we take a different approach, whereby rather

than constraining the functionality or performance of the array,
we exploit structure in the scene being imaged. In particular,
we seek to exploit sparsity in the scene to allow the number of
antenna elements to be reduced. Specifically, when the scene
being imaged is sparse in an appropriate sense—even without
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knowing where it is sparse—it is possible to proportionally re-
duce the number of elements in an imaging array. Moreover,
such sparseness is quite common in typical applications.1
This approach also has a rich history. Consider, for example,

the classical problem of direction-finding with multiple sources,
for which the MUSIC algorithm [4], among others, was devel-
oped. In this case, it is possible to achieve high resolution with
relatively few antenna elements because of the sparse nature of
the scene. Indeed, the number of elements required is typically
on the order of the number of sources. Hence, the presence of
structure in the environment allows the number of elements to
be reduced.
For arrays containing just a few elements, the array design

and image reconstruction can often be fairly straightforward and
exploit classical techniques. However, for arrays of even a few
dozen elements, the implementation of such direct approaches
quickly becomes computationally impractical. As a result, there
is a need to impose useful structure on the array to enable effi-
cient design and processing.
There has been growing recent interest in nonuniform arrays

with structure, and how such structure can be exploited by effi-
cient array processing to support forms of sparse sensing; see,
e.g., [5]–[11]. Ultimately, these developments leverage perspec-
tives and techniques from the field of compressive sensing (CS)
[12], [13].
In our development, we focus on particular structured sparse

antenna designs that are comparatively easy to design and for
which efficient array processing algorithms can be developed
to perform the image reconstruction. Specifically, we focus
on “multi-coset” arrays, defined as a collection of interleaved
sparse uniform subarrays such that the elements are laid out in
a periodic nonuniform pattern over the aperture.
This special structure has important computational implica-

tions. In particular, as will become apparent, the complexity of
the associated array processing for such arrays is effectively
governed by the number of elements in a period of the array,
not by the total number of elements—i.e., the complexity does
not significantly depend on the number of periods of the pattern
in the array. As a result, the practicality of our architecture is
not limited to arrays consisting of only very small numbers of
elements, as has historically often been the case with less judi-
ciously structured nonuniform arrays.
This array architecture, introduced in [5] for our application,2

follows from exploiting the close mathematical relationship be-
tween the problem of imaging from a discrete array, and that of
reconstructing a bandlimited time-domain waveform from sam-
ples. Indeed, our architecture is the counterpart of multi-coset
sampling [14]. And while [5] focuses on making the mathemat-
ical connection between these domains, the present paper repre-
sents a more complete development of the design and analysis
of multi-coset sparse imaging arrays in their own right.
The paper is organized as follows. Section II defines the array

structure and scene model of interest. Section III develops the
basic multi-coset imaging principles and concepts for the paper.
1Note that in a typical scene while there are objects at some range in any par-

ticular direction, when we use enough bandwidth to sufficiently resolve range
as well, we find significant sparseness in the range-azimuth plane.
2See also [6] for related applications.

Section IV analyzes the effects of noise in multi-coset imaging,
and develops suitable robust multi-coset array processing tech-
niques. Section V then develops a co-array framework for the
design of multi-coset arrays, and uses this framework to iden-
tify a diverse family of effective patterns. Section VI develops a
methodology for reliably detecting reconstruction failures when
the scene density exceeds the level for which an array is de-
signed. As an illustration of potential, Section VII develops and
demonstrates the use of multi-coset imaging in a realistic sce-
nario. Finally, Section VIII contains some concluding remarks.

II. ARRAY STRUCTURE AND SCENE MODEL

Throughout this paper, we focus on linear arrays of elements
located on some subset of collinear lattice points with uniform
spacing , where is the operating wavelength of the
array. We assume ideal isotropic elements and limit our atten-
tion to the half-plane such that the directional characteristics of
the array are completely specified by the angle , measured from
the broadside direction of the array.
A standard linear array refers to any array having uniform

element spacing of . Substituting , we see the
array response and far-field pattern for a standard array with

elements forming the usual Fourier transform pair

(1)

(2)

From the view of array imaging, (1) describes as the
response at element to a scene consisting of complex valued
objects . Standard reconstruction (delay-and-sum beam-
forming) of the scene in a given direction is carried out
using (2).
The multi-coset arrays of interest in this work are subsets of

a standard linear array. Specifically, for an integer parameter
, we can partition the elements of any standard array into
cosets. Each coset is a uniform linear subarray with inter-

element spacing times greater than the nominal spacing. We
index the cosets by the position of their first element relative to
the first element of the full array. A multi-coset array comprises
a subset of these cosets. In particular, for , a
multi-coset array is an array formed by including of these
cosets. The selected cosets are denoted via

with , and referred to as the
coset pattern of the array. Note that the resulting array has a re-
current uniform pattern with period , and thus we refer to as
the coset period. As further notation, there are such
periods in the array. As an example, Fig. 1 depicts the layout of
a multi-coset array with coset pattern su-
perimposed on the lattice of the associated standard linear array
from which it was derived.
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Fig. 1. multi-coset array with coset pattern
and coset periods.

The response for coset is defined via

(3)
for , where

otherwise.
The corresponding coset image in the angular domain is given
by the Fourier transform of the coset response, i.e.,

(4)

The individual coset images in (4) contain uniformly
shifted copies of the original scene due to the aliasing effect
caused by the increased element spacing . As a result, the
coset image appears as sectors, each containing grating lobes
from the other sectors in addition to the correct response.
Combining (1), (3), and (4), the coset image in the first sector
can be written as a linear combination of the grating lobes of
the original scene

(5)
The goal in multi-coset image reconstruction is to extract the

entire correct image from the images of multiple cosets in a
single sector. While this is in general not possible, it is possible
in scenarios where there are imaging targets in only a subset of
the sectors in the original scene, which we refer to as sector
sparsity. More specifically, for any pair of integers , we
say that a scene is -sparse if for all ,
where

(6)

where the are integer-valued elements satisfying
. The set

is referred to as the (sector) support of the scene. An example
of a -sparse scene is shown in Fig. 2.
The array structure and scene model above is the spatial

counterpart of temporal framework originally introduced [14],

Fig. 2. -sparse scene with support .

which developed the use of multi-coset sampling for signals
with sparse spectral support.
In the sequel, we describe when and how image reconstruc-

tion is possible with multi-coset arrays for sector sparse scenes.

III. MULTI-COSET IMAGING PRINCIPLES
In this section, we summarize the basic principles underlying

multi-coset imaging of sector sparse scenes, and introduce our
notation for the remainder of the paper. Subsequent sections will
then build on this foundation, incorporating the effects of noise
and developing robust system design.
In our architecture, imaging proceeds in two phases: the first

phase recovers the sector support of the scene, while the second
phase reconstructs the signal values (targets) in the active sec-
tors identified in the first phase.

A. Reconstruction With Known Support
We begin by developing the properties of scene reconstruc-

tion when the sector support is known, corresponding to the
second phase of the imaging process. This reconstruction can be
expressed as the solution to a set of (possibly) redundant linear
equations.
To see this, we first define, for ,

(7)

(8)

with

otherwise,

from which we can express (5) in the form

(9)

or, equivalently, , where ,
, and .

From (9) we see that the may be directly recovered
from the complete set of coset responses . And once
these quantities are recovered, image reconstruction is com-
pleted via

(10)
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Fig. 3. Multi-coset reconstruction processing chain.

In the case of a sparse multi-coset array, we must con-
sider instead the length- vector , composed of the en-
tries of indexed by the coset pattern . Similarly, we de-
fine the matrix containing the rows of indexed
by . This results in the relation

(11)

In this form, we now have an undetermined system, having an
infinite number of possible solutions.
For a -sparse scene with support , the elements of

not indexed by this support are zero-valued, and thus do
not contribute to the coset responses. Hence, we may define the

measurement matrix , composed of the columns of
indexed by , and the length- vector containing

the nonzero entries of . The updated relation becomes

(12)

If is full rank, the correct image may be reconstructed as

(13)

where is the Moore-Penrose
pseudo-inverse of the matrix , with denoting the conju-
gate-transpose operator.
In practice, it is straightforward to ensure that the reconstruc-

tion (13) exists. In particular, the rank of depends on both
and . A pattern that ensures is full rank for any sup-

port of length is called a universal pattern. As shown in [14],
such patterns exist whenever . For example, the so-called
“bunched” pattern, in which the first cosets are selected, i.e.,

, is generally universal, though we will
ultimately be interested in still better patterns.
1) System Implementation: The basic architecture described

in this section admits a convenient implementation. In partic-
ular, the required processing is straightforward to carry out on
the coset responses directly in the array domain, and
takes the form depicted in Fig. 3.
As the first step, corresponding to (7), the coset responses

are passed through a linear time-invariant filter with unit-sample
response (whose Fourier transform is ), to form the
entries of the output vector sequence . From this array

domain perspective, we see that the entries of are the
interpolated coset responses, generating values between
each coset element via the interpolating filter .
As the second step, corresponding to expressing (12) in the

following array domain form

(14)

we generate the reconstruction by ap-
plying the matrix to obtain the .
As the final step, corresponding to the following array domain

version of (10)

(15)

we have that the complete array response may be formed
in the array domain by modulating and summing the contri-
butions from .

B. Support Recovery
We next consider the first phase of imaging, corresponding

to determining the active sectors in the scene, i.e., the sectors
containing nonzero signal content. In this phase, is treated as
known, and we seek to recover the sector support .
Since for all when , the re-

covery of via (11) can be viewed as an infinite-dimensional
version of what is known in the CS literature as a multiple mea-
surement vector (MMV) problem. However, it is straightfor-
ward to reduce the problem to a finite-dimensional one through
a representation in terms of correlation matrices. In particular,
with

(16)

denoting the coset correlation matrix, we have

(17)

where each column of the scene correlation matrix

(18)

shares the sparsity structure of . Namely, the rows of
that are non-identically zero are limited to those indexed by .
Since the coset correlation matrix is positive semi-definite,

the eigenvalue decomposition can be used to
form the size matrix , composed of the
nonzero columns of such that . Similarly,
let the size matrix satisfy . It follows
that each row of will contain nonzero entries if and only if
the same holds for —i.e., by identifying the nonzero rows
of , the sector support is recovered. Thus, we seek to deter-
mine the unknown from the available . Substituting these
matrix factorizations into (17), we have

(19)

Since is a matrix with , the matrix
is not uniquely determined by the system

(20)
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The CS problem seeks the solution that minimizes the
number of rows having nonzero entries. This particular -min-
imization problem may be replaced by the computationally
preferable (specifically, convex) -minimization problem. In
this MMV setting, this can be accomplished using the mixed

matrix norm

(21)

with denoting the th row of . The aim is then to solve
the optimization problem

(22)

If the solution to (22) is unique, the recovered support com-
prising the indices of the nonzero rows of will be correct
and can be used in (13) to complete the image reconstruction.
A sufficient condition guaranteeing a unique recovery is given
by [15]

(23)

For a more detailed discussion of this formulation, and addi-
tional perspectives, see, e.g., [16]. More generally, there is a
broader literature on algorithms for the solution of MMV prob-
lems; see, e.g., [15], [17].
The uniqueness condition of (23) tells us that the required

number of cosets depends not only on the number of occupied
sectors, but also upon the cross-correlation of the scene content
among the different sectors (for example, due to multi-path).
This implies that in the worst-case we may
require cosets, as compared with when the
sector support is known, as discussed in Section III-A. Hence,
not knowing the sector support a priori can incur a factor of two
increase in the minimum number of array elements required for
successful image reconstruction. However, when for each the
rows of form a linearly independent set, has rank
and it follows from (23) that cosets are sufficient
for recovery. In this case, the price of needing to learn the sector
support is the requirement of a single additional coset.
Solutions to the -minimization problem may still require

more computation than may be practical in a dynamic imaging
application. For such scenarios, a computationally less expen-
sive solution is the alternative originally proposed in [14] based
on the MUSIC direction finding algorithm [4]. The basic algo-
rithm is as follows. In the absence of noise, the correlation ma-
trix has of its eigenvalues nonzero. Accordingly, the
eigenvector matrix is partitioned as , where the

matrix contains the eigenvectors corresponding to the
nonzero eigenvalues. These eigenvectors form an orthonormal
basis for the range of the measurement matrix , tradition-
ally referred to as the signal subspace. The orthogonal subspace
spanned by the columns of the matrix is
known as the noise subspace. In this scenario, the zero-valued
eigenvalues associated with this subspace reflect the noise-free
idealization. To determine the support, each of the columns
of is projected onto the noise subspace. The columns corre-
sponding to the active sectors contained within the support lie

in the orthogonal subspace spanned by and hence will have
zero projection onto . The recovered support contains the
indices of these columns. Thus, with and expressed in
terms of their columns via the notation
and (where the are ordered by
eigenvalue size), the algorithm evaluates the null spectrum

(24)

and selects as the values of such that .
For the case in which , the MUSIC ap-

proach is particularly attractive, being a polynomial-time
algorithm satisfying the lower bound of (23)[14]. However, it
is well-known that the MUSIC algorithm is unreliable in sce-
narios corresponding to the case in which is rank deficient
[4]. For such cases, a hybrid MMV algorithm referred to as
subspace-augmented MUSIC, which combines MUSIC with
orthogonal matching pursuit techniques, may be used to more
efficiently handle rank deficiencies [18]. For additional results
on the relationship between traditional CS MMV algorithms,
MUSIC, and the issue of rank may be found in, e.g., [19], [20].
1) System Implementation: While not shown in Fig. 3, the

sector support is recovered from prior to the remaining
steps of the reconstruction. For this recovery procedure, the re-
quired correlation matrix can also be computed from the
coset responses directly in the array domain according to [cf.
Equation (16)]

(25)

The estimated support is then utilized in the remaining recon-
struction steps.

C. Coset Period Selection Considerations
For a fixed aperture length corresponding to a standard array

of elements, the choice of the coset period in the associ-
ated multi-coset array involves a tradeoff between conflicting
objectives.
On one hand, the sector-wise density of the

scene decreases monotonically with increasing , converging
to the limiting scene density . Hence, this favors choosing a
large value for , so that the sparsest possible array can be used.
On the other hand, as increases, the number of coset pe-

riods decreases, causing imaging performance to
suffer. This is due mainly to two reasons. First, the number of
coset periods can be viewed as corresponding to the number
of “snapshots” involved in estimating the scene support, and
fewer snapshots means less noise averaging. Second, with a fi-
nite array aperture, targets in active sectors effectively “spill
over” into neighboring inactive sectors, so that underlying spar-
sity corresponding to (6) is obscured. Moreover, this leakage is
exacerbated as the sectors become narrower.
As will be discussed shortly, the support recovery and scene

reconstruction algorithms can be made robust to the situation
in which (6) is violated by the presence of noise in the inactive
sectors. Furthermore, from the perspective of the associated pro-
cessing, the signal energy leaked into inactive sectors behaves
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like other sources of noise in the system. Hence, its dominant
effect is to increase the noise floor in the measurements, and its
impact can be neglected provided its level is significantly lower
than that due to the combination of other sources of noise in the
system. In practice, we can usually choose small enough to
ensure this.
More generally, the use of standard low-sidelobe tapers from

the array processing literature will mitigate the spillover ef-
fect and help to make possible the use of larger values of
and thus sparser array designs at high SNRs. And for scenarios
where leakage simply cannot be ignored, a refined version of
the array-domain image reconstruction process is described in
[5]. Using this aperture-aware reconstruction, it is shown that
the finite-aperture effects may be reduced to any desired level
by dedicating a suitable portion of the array to the task, which
in turn incurs a corresponding reduction in resolution.

IV. MULTI-COSET ARRAY PROCESSING

Having summarized the basic principles and techniques
governing multi-coset imaging, as the main contribution of the
paper we now turn to the detailed design of robust multi-coset
array processing.
Central to our development is quantifying the impact of noise

on the performance of the imaging system, and identifying how
to best mitigate it. Since noise affects both support recovery and
scene reconstruction phases of the imaging process, we consider
each separately, starting with the latter.

A. Reconstruction Noise Amplification

With respect to scene reconstruction, the second phase of the
imaging process, noise causes a direct degradation in the recon-
struction SNR (RSNR). In this section, we characterize the rela-
tionship between the SNR at the sensor and the resulting RSNR.
Since the SNR at the sensor is the reconstruction SNR for a stan-
dard array, this relationship allows us to assess the impact of
the multi-coset architecture. We focus on the high SNR regime,
where we can assume the support is reliably recovered.
We begin by relating RSNR to the condition number of the

relevant measurement matrix . First, let denote
the array response from the scene as before, but now we let

denote the spatially-white array response due to the noise.
Defining such that is the
associated coset response in the image domain, we then have

(26)

Applying our scene reconstruction procedure (which ignores the
noise), we obtain that the resulting noisy reconstruction is

(27)

which corresponds to the desired image plus an amplified noise
component.
The reference noise level is

(28)

which corresponds to the reconstruction noise level in a standard
array. For the multi-coset array, the reconstruction noise level is,
via (27),

(29)

(30)

(31)

(32)

where in (30) denotes the trace operator, where to obtain
(31) we have use the spatial whiteness of , and where to
obtain (32) we have used that the rows of are taken from
the (inverse) DFT matrix, whence with
denoting the identity matrix.
Comparing (28) with (32), and recognizing that

is the squared Frobenius norm of an arbitrary matrix [21], we
see that the RSNR in the multi-coset imaging system is reduced
by a factor

(33)

where the are the nonzero singular values of
, and where to obtain (33) we have used that the singular

values of a matrix are the reciprocals of the singular values of
its pseudo-inverse.
In the high SNR regime, the condition number of the mea-

surement matrix, , which is the ratio of its maximum to
minimum singular values, accurately reflects the degree of noise
amplification in the reconstruction. To see this, note that since

is a matrix with each entry having magnitude ,
it follows that

(34)

Thus, while the sum in (34) is fixed for a given , , and , the
sum in (33) may vary greatly, depending on the distribution of
the singular values of the measurement matrix. Specifically, the
smaller the minimum , the larger the noise amplifica-
tion. Hence, in the selection of the coset pattern, it is desirable
to select such that takes relatively small values for
all support sets .
We note too that when the noise level is known a priori, the

reconstruction procedure can be modified to take it into account,
via, e.g., a minimum mean-square error estimation formulation.
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Due to space constraints, we do not develop this generalization
here, but remark that this leads to improved RSNR.

B. Support Recovery Reliability

With respect to support recovery, the first phase of the
imaging process, the presence of noise means that (6) does
not strictly hold for any , and thus there is no exact
sparse solution to (11). As a result, modifications to the support
recovery algorithm are required. Ultimately, we characterize
the performance of the support recovery phase in terms of the
threshold SNR (TSNR) above which the correct support
can be reliably recovered with high probability, and note that
this threshold will in general depend on the scene density and
choice of coset pattern .
Before characterizing the support recovery performance, we

first develop how to accommodate noise in the both the -min-
imization and MUSIC-based approaches to the problem.
With respect to the -minimization approach, we note that

the optimization (22) must be modified. In particular, following
standard practice, since the noise precludes the possibility of an
exact sparse solution, we relax the equality constraint in (22),
yielding

(35)

where is chosen as a function of the SNR. A variety of algo-
rithms suited to this noisy MMV problem can be found in, e.g.,
[22], [23].
For theMUSIC algorithm approach, the extension to the noisy

case is straightforward when the number of measurements is
large enough such that the eigenvector matrix has converged
to roughly the noise free case, and the noise power is uniformly
distributed throughout both the signal and noise subspaces [4].
However, difficulties arise when the number of coset periods
is more limited. In particular, and will not accurately
partition the signal and noise subspaces, and the contribution due
to noise is no longer evenly distributed over the eigenvalues.
A “soft” version of theMUSIC algorithm known as the eigen-

value method [24] accounts for finite sample sets by weighing
the projections onto each subspace direction more heavily
for smaller eigenvalues. Specifically, the null-spectrum under
this method is given by

(36)

where the eigenvalues are the (ordered) diagonal elements
of . In essence, this approach aims to suppress the signal con-
tribution within the estimate of in order to obtain a more
accurate representation of the true noise subspace.
At low SNR, as the threshold between signal and noise eigen-

values becomes less distinct, the estimated signal eigenvectors
can potentially be aligned more closely to the true noise sub-
space than the true signal subspace. This point is unaccounted
for in (36). Based on this observation, we have found the still
“softer” version of MUSIC, corresponding to the null-spectrum

(37)

Fig. 4. Empirical recovery probability versus SNR for the MUSIC (24), eigen-
value-MUSIC (36), modified-eigenvalue-MUSIC (37), and -minimization
(35) algorithms, with , , and (a) (b) (c) .

to be effective at low SNR—a regime in which MUSIC has tra-
ditionally been considered unsuitable.We stress that this version
of MUSIC includes contributions from the entire column space
of , save for the eigenvector associated with the largest eigen-
value .
Numerical simulations were performed to compare the dif-

ferent recovery algorithms. A representative example of the re-
sults is shown in Fig. 4. In these simulations, a coset period of

with active cosets was selected. The coset pattern
is fixed at , selected by the de-
sign algorithm to be described in the next section. To gauge the
recovery performance of the basic MUSIC, eigenvalue-MUSIC
(soft MUSIC), modified-eigenvalue-MUSIC (softer MUSIC),
and -minimization algorithms, each was applied to 1000 ran-
domly generated scenes in which and 9 active sectors
supported by were selected at random. Gaussian noise was
added to each scene, evenly distributed over the entire range
of . This was repeated over a range of SNRs. A successful
recovery was declared when the most likely active sectors
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as estimated by the respective algorithm matched exactly to
the sectors contained in . While the algorithm gave the
best result, our modified MUSIC algorithm performed nearly as
well, reaching a recovery probability of nearly at a sim-
ilar TSNR, while requiring considerably less computation time.
The most striking result is the notable improvement beyond the
established MUSIC algorithms.

V. MULTI-COSET ARRAY PATTERN DESIGN

We now develop the design of good multi-coset array pat-
terns over a linear aperture of length measured in half-wave-
lengths. In our development, we assume the coset period has
been chosen based on the considerations in Section III-C. This
means that scenes of a given density are characterized by a
particular value of , which we treat as known. For this sce-
nario, we consider array designs with density corresponding to
a number of active cosets such that , consistent
with our earlier development, but note that in practice the addi-
tion of at least one additional coset (i.e., ) provides
large performance gains in support recovery.
In our development, we pursue the design of multi-

coset array patterns that are uniformly good for all -sparse
scenes, and separately consider the high and low SNR regimes.

A. High SNR Designs

At high SNR, the correct support is recovered with high
probability, so system performance is largely determined by
the RSNR achieved during the scene reconstruction phase of
imaging. Based on the analysis in Section IV-A, which reveals
that the performance is dominated by the smallest eigenvalue
of the measurement matrix , we seek the coset pattern
of size such that the measurement matrix

remains well conditioned for all possible supports satisfying
, i.e.,

(38)

Note, however, that the sets and containing the possible
choices of and grow rapidly with increasing . An ex-
haustive search based on (38) requires calculations
of , which makes this conceptually straightforward de-
sign approach largely impractical from the perspective of com-
putational complexity.

B. Low SNR Designs

At lower SNR, errors in the support recovery become signif-
icant, and thus system performance is determined more by the
TSNR achieved during the support recovery phase of imaging.
In this regime, the design procedure in Section V-A that tackles
the condition number of the induced measurement matrix
is less meaningful. Instead, in this low SNR regime, we develop
an alternate design framework that strives to improve the esti-
mation of the correlation matrix used for support recovery
(recall e.g., (22)).
Consider the correlation matrix associated with all cosets

(39)

For the moment, assume uncorrelated scene sectors, i.e.,

(40)
where is the signal energy from
sector . In this case, the full correlation matrix has a Hermi-
tian-circulant structure

(41)

From (41), the dependence of the matrix entries on the rela-
tive spacing between elements indicates the importance of the
pairwise spacings as represented by the off-diagonals.
Specifically, the information contained in can be obtained
by representing each of the possible spacings a single time.
The symmetries in the Hermitian-circulant structure reduce the
number of unknowns by another factor of four, suggesting the
entire matrix could be represented by only un-
knowns.
Clearly, each of these unknowns can be estimated if and only

if the coset pattern includes the corresponding element spacing.
In particular, we start by defining the followingmodulo-distance
between pairs of elements within a single coset period:

(42)

In turn, we count the number of times each pairwise spacing is
found in a particular pattern . For this purpose, the co-array
weight of is a vector of the number of times each modulo-
distance occurs in the pattern. In particular, the th entry of
is the number of times the distance occurs, i.e.,

(43)

where is the binary selection vector with entries

otherwise, (44)

Now, if we choose just enough elements s.t. the weight vector
has no zeros, we can have (in the ideal setting) the complete
. The resulting pattern design problem is similar to Min-

imum Redundancy Linear Arrays (MRLA), introduced in [25],
where the goal is to design an array where the number of oc-
currences of different spacings is uniform. Indeed, The weight
vector can be viewed as a modulo version of the co-array
originally defined in [25]. In a recent work [6] a similar problem
is addressed from a different perspective. A systematic way
to produce “almost MRLA” designs was introduced, showing
that for large the number of elements required is in the order
of .
Now, for a sparse scene we may not need to estimate the full
, and the number of cosets required may be smaller than that

required for the MRLA design. On the other hand, imperfec-
tions such as noise and correlation may require more elements.
It seems reasonable to still keep the design fairly “balanced”,
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TABLE I
EXAMPLES OF COSET PATTERNS SELECTED ACCORDING TO THE CO-ARRAY

APPROACH.

i.e., to use a design that keeps fairly balanced. This can be
computed by selecting the coset pattern having the co-array
with the smallest -norm, i.e.,

(45)

C. Pattern Computation, Evaluation, and Comparison
A quick comparison of (38) and (45) shows that the co-array

based design approach entails significantly fewer computations
due to the independence of this design on . In this section, we
show that the co-array designs are also optimal—or very close
to optimal—in performance in both low and high SNR regimes.
To begin, we examine a set of pairs for which the

number of unique element pairs is an integer mul-
tiple of the number of possible spacings . This condi-
tion makes it possible, in principle, for a pattern to have a per-
fectly flat co-array distribution: each entry of takes the iden-
tical value . Examples of coset patterns
fitting this description are shown in Table I, along with the array
density , and the associated value of .
Focusing on the -sparse array in this table for purposes

of illustration, note first that this array layout is depicted in
Fig. 1. We emphasize, too, that this coset pattern can be used
with any number of coset periods depending on the array
length, and that the effective array density is approximately
57% of the number of elements contained in a standard array
of the same length. The corresponding co-array is ,
which reflects that there are two element pairs having each of
the (modulo) spacings 1 (element pairs and ), 2 (el-
ement pairs and ), and 3 (element pairs and

).
For the values of and shown in Table I, it is compu-

tationally feasible to determine the condition number of the
measurement matrix over the sets and , cor-
responding to the high SNR regime design framework. From
these results, the maximum condition number over all
of length is determined for each . The worst-case
condition numbers for the high SNR design , low SNR
design , and bunched pattern design are shown
in Table II for each of the pairs in Table I. The bunched
pattern , mentioned in Section III-A, is
included for reference as an example of a universal pattern that
guarantees only that the measurement matrix will have a finite
condition number for all .
As an initial observation, note that the bunched patterns

lead to poor RSNR performance, as we would expect. Next,

TABLE II
MAXIMUM CONDITION NUMBERS, .

Fig. 5. Recovery probability versus SNR for (a) and (b)
.

note that there are many entries in Table II for which
and match, revealing that our high SNR and low SNR
designs often yield identical patterns. Moreover, even when
they differ, our low SNR designs do not sacrifice significant
RSNR performance when used in the high SNR regime. Hence,
we conclude that even at high SNR, the co-array based pattern
designs are at least “near” optimal.
Conversely, we can also evaluate the performance of our high

SNR designs in the low SNR regime in the two instances in
Table II where the designs differ from their low SNR counter-
parts. In particular, in Fig. 5 we plot the recovery probability as a
function of SNR for the and sparse arrays. In this
case, we see that these high SNR designs offer conspicuously
poorer TSNR performance in the low SNR regime.
Equally noteworthy, with these and all other choices of

for which simulations were conducted, the co-array pattern de-
signs consistently yielded the lowest TSNR for reliable sup-
port recovery among all possible patterns, providing additional
evidence that co-array based pattern design framework is well
matched to the low SNR regime.
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TABLE III
EXAMPLES OF COSET PATTERNS FOUND USING MCMC.

While co-array based designs offer attractive performance
characteristics, for coset periods beyond , the exhaus-
tive search for such patterns via (45) over consumes signifi-
cant computation. In this regime, it is natural to replace the brute
force search with an iterative optimization based on the Markov
Chain Monte Carlo (MCMC) method [26]. In our experiments,
we found this approach effective for quickly determining well
designed coset patterns. Several examples with uniform co-ar-
rays obtained from this procedure are shown in Table III.
It is important to emphasize that while the coset pattern

examples shown in Tables I and III can be considered “perfect”
in the sense of our co-array metric, the set of patterns that
are good in a practical sense is considerably larger. Indeed,
small deviations from a uniform co-array generally do not
significantly impact performance. Consequently, within the
process of selecting , emphasis should be placed on arriving
at a pattern for which the elements of are distributed in a
reasonably even fashion. In the simulations of Section VII, we
use such a “near-perfect” pattern for a scenario with parameters

and .

VI. SUPPORT RECOVERY FAILURE DETECTION

In practice, the scene density and SNR may not be known
in advance, or may evolve dynamically. As we have shown,
both these quantities affect the support recovery reliability in
a multi-coset array imaging system. While we could choose the
number of cosets in our array to cover a worst-case scenario,
in the typical case this would be rather wasteful of resources.
An alternative to such an approach would be to use consider-
ably less overprovisioning, and instead develop a method for
detecting when the scene density exceeds the level at which a
reliable image can be formed.
In this section, we develop such an approach. And while

methods can be developed for detecting such false images at
high levels of abstraction using machine vision techniques, in
our development we focus on the use of low-level techniques
that can be easily integrated into our array processing pipeline.
The technique we develop is based on the concept of

back-projection error (BPE). Consider the multi-coset
array with coset pattern and a -sparse scene with
support , where both and are unknown. In the support
recovery stage, the received information contained in is
used to obtain an estimate of the support . Using the estimated
support, the image is reconstructed as .
Since the true is unknown, we use a back-projection

Fig. 6. BPE versus , . Results averaged over 1000 trials.

onto the space spanned by for comparison to the original
coset response

(46)

Where the product is the projection matrix onto the
range of .
If is correct, the back-projection should be ap-

proximately equal to , provided the noise level is rela-
tively low. We quantify this through the back-projection error,

(47)

A. Failure Detection in the Absence of Noise
Consider first the case where the noise level is negligible rel-

ative to the received signal power. As discussed in Section III, a
multi-coset array with a -universal pattern should be able
to recover the support of a -sparse scene in most cases
given . When the support estimate recovered from
the response is (or contains) the correct
support such that , the back-projection is

(48)

and the BPE is zero. When the scene is insufficiently sparse for
the array, the recovery stage fails to determine the entirety of the
support and . In this case, much of the energy contained
in the unidentified support sectors vanishes during the
back-projection operation. This behavior can be seen in Fig. 6.
Each curve represents a fixed number of cosets for which the
average BPE is plotted as a function of the number of supported
sectors . The average BPE was calculated over 1000 trials,
each trial having a random Gaussian scene evenly distributed
over a randomly selected support . As expected, each curve
remains at zero for and rises in nearly linear fashion
with beyond this point.

B. Failure Detection in the Presence of Noise
To understand how the presence of noise impacts the BPE,

consider a scene with fixed signal power distributed over any
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Fig. 7. Normalized BPE versus , at different SNR, , . The
solid and dashed portion of each curve represent the successful and failed cases,
respectively.

sectors. For noise powers below some threshold
level (specific to the particular values of , , and ), the sup-
port recovery will not be adversely affected. In this region, the
support will be recovered successfully and the BPE will be
due solely to the noise within the subspace orthogonal to the
range of , which will increase in proportion to the total
noise power. As a consequence, failures occur with increasing
likelihood for at lower SNRs. Hence, a useful failure de-
tection mechanism is to indicate when the BPE exceeds some
prescribed threshold.
The choice of this threshold depends on SNR, as Fig. 7 re-

flects. This figure shows the normalized BPE versus for dif-
ferent SNR values for a multi-coset array. Rather than
averaging the BPE results over every trial as in Fig. 6, the av-
erages are instead taken separately for the cases of successful
and failed support recovery estimates. We observe that indepen-
dent of , the failed cases consistently lie above some threshold,
which varies with SNR. Defining the threshold BPE as the mid-
point between themaximum success andminimum failure BPEs
allows a nominal level indicating a probable failure to be deter-
mined at each SNR. Fig. 8 illustrates the resulting BPE thresh-
olds from this analysis for the array. Similar analysis can
be undertaken for any other particular array pattern, providing
a general approach for calibration of the BPE.

VII. RANGE-AZIMUTH 2-D IMAGING SIMULATIONS
In this section, the multi-coset imaging techniques of the

paper are applied to create a two-dimensional range-azimuth
image from simulated data. In our development, we first develop
the extension of our framework to scenes with range-dependent
sparsity, which is more commonly experienced in applications.

A. Range-Dependent Scene Sparsity
While many scenes are not strictly sparse when viewed solely

in terms of azimuthal sectors of arbitrary range, they are often
sparse in azimuth when further partitioned into range cells. In
active systems, such range partitioning can be achieved through
the use of standard pulse compression techniques. This suggests
a natural architecture where pulse compression is used to sort

Fig. 8. Normalized BPE threshold versus SNR, , .

content into range cells, after which our multi-coset imaging
techniques are applied separately at each range.
Pulse compression techniques are well understood, and many

good treatments are available in the literature. For our purposes,
it suffices to keep in mind the following characteristics. For
a transmitted waveform containing a range of frequencies
about the center frequency , the inverse Fourier transform of
the received frequency domain data sorts the response according
to the two-way travel times of the various signals reflected from
the environment. In a typical medium, each of these signals
travel at the same speed, hence sorting by time effectively sorts
by distance.
From this perspective, the pulse-compressed range resolution

improves linearly with the bandwidth . As the scene is di-
vided into finer range cells, the resultant range-dependent spar-
sity profile improves, since the density at any range is monoton-
ically non-increasing as the range cell length decreases. The
available fractional bandwidth of a particular array de-
sign is relatively fixed for any . Hence, exploitation of range-
dependent sparsity is inherently well suited for high frequency
systems. This is the model we use in our simulations.

B. 2-D Imaging Illustration

As a demonstration of multi-coset range-azimuth imaging,
consider the representative application of a millimeter-wave ve-
hicular-mounted imaging system. Assume a center frequency
of and an available aperture length of 2 m. At
this frequency, an element spacing of im-
plies the need for 1000 array elements in order to fully populate
the linear aperture. The simple line-of-sight point target model
shown in Fig. 9 was used to simulate the array response over a
frequency bandwidth of 1 GHz, which provides a 15 cm range
resolution following pulse compression.
Modeling the transmitting source as a single isotropic antenna

located at the center of the aperture, the frequency response was
initially determined at the equally spaced receive el-
ement locations. The full standard array image is generated by
first sorting the received data by range using the pulse-compres-
sion technique, and then applying (2) at each of the range bins.
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Fig. 9. Point source model.

Fig. 10. Standard array image reconstruction, elements with spacing
. SNR = 30 dB.

The image was partitioned into sectors of equal widths
for increasing values of in order to observe

maximum sector density over all ranges.
Following a rapid decrease, begins to level off at about

. Based on observations that prime values of typically
yield better conditioned measurement matrices, a coset period
of was selected. Adhering to the aperture constraint,
this allows coset periods for a total number of array
elements . Using all 987 elements to generate
the standard array image with SNR = 30 dB yields the result
shown in Fig. 10.
At the maximum number of occupied sectors is

. A conservative choice for the number of cosets is
, resulting in an array with a density factor

. Using the MCMC technique to design the coset
pattern for the multi-coset array with ele-
ments, the resultant image is shown in Fig. 11. With this con-
servative choice of , we see that the multi-coset array image

Fig. 11. Reconstructed image for the multi-coset array with coset
pattern

. SNR = 30 dB.

Fig. 12. Reconstructed image from the sparse uniform array of ele-
ments with spacing . SNR = 30 dB.

reconstruction is nearly indistinguishable from the full array re-
construction.
For comparison, a uniform array with this same number of

elements (corresponding to ) performs
poorly, due to grating lobe effects, as shown in Fig. 12. Indeed,
this array is unable to distinguish the direction of arrival for
targets outside of and copies of image targets appear
in multiple locations.
The corresponding “bunched” coset pattern also performs

poorly as shown in Fig. 13, as we would expect from our
analysis. While the bunched pattern is able to determine the
correct support at each range due to the conservative choice
of , it is evident that the poor conditioning of the associated
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Fig. 13. Reconstructed image for the multi-coset array with
“bunched” coset pattern . SNR = 30 dB.

Fig. 14. Standard array image reconstruction, elements with spacing
. SNR = 10 dB.

measurement matrix results in a significant magnification of
the noise within this support.
The noise amplification characteristics associated with the

bunched pattern are even more pronounced at low SNR. To il-
lustrate this, Figs. 14, 15, and Fig. 16 show the image recon-
structions at for the full 987 element array,
the co-array designed multi-coset array, and the bunched multi-
coset array, respectively.
Fig. 15 also emphasizes a significant feature of the multi-

coset reconstruction. In contrast to the reconstruction from the
full array in Fig. 14, in which the noise is distributed with rela-
tive uniformity throughout the image, the image in Fig. 15 has
the noise eliminated in the sectors identified as inactive by the
support recovery processing.

Fig. 15. Reconstructed image for the multi-coset array with coset pat-
tern as in Fig. 11. SNR = 10 dB.

Fig. 16. Reconstructed image for the multi-coset array with
“bunched” coset pattern . SNR = 10 dB.

C. Undersparse Arrays

Useful reconstructions can be obtained from multi-coset
imaging even when the number of elements is strictly insuffi-
cient for the realized scene density, as we will now illustrate.
In such cases, the associated reconstructions are most useful
in conjunction with failure detection methods as developed in
Section VI. In this 2-D imaging scenario, our BPE failure mea-
sure is applied at each range. Fig. 17 shows the reconstructed
images for . The bar immediately to the right of
each reconstruction indicates the BPE at each range.
Due to the moderately aggressive choice of for this

scene, the image shown in Fig. 17(a) exhibits a mild degree of
error at the ranges with the highest densities. This is to be ex-
pected as the number of cosets begins to be insufficient to accu-
rately determine the supported sectors. In Fig. 17(b), the array
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Fig. 17. Multi-coset images with failure detection, and (a) ,
(b) , (c) . SNR = 30 dB.

has cosets, and more severe errors begin to occur. A pri-
mary utility of having this range-dependent error indication is

that when failures occur, the location can be identified and ig-
nored, or judgedwith caution, without discarding results at other
ranges that still have sufficiently low densities. In Fig. 17(c), the
array retains cosets, having reduced the total number of
elements to 105 of the original . While the objects
are showing noticeable levels of distortion, the gross features of
the image are preserved—e.g., each target still being located by
the support recovery algorithm—with the most egregious dis-
tortions being identified by the error indicator.

VIII. CONCLUDING REMARKS
This paper describes a novel framework based on multi-coset

antennas for computationally efficient imaging from sparse ar-
rays. The imaging architecture developed in this paper is poten-
tially attractive for a range of emerging applications that would
otherwise require significantly more antenna elements and/or
processing chains than can be accommodated in practice.
Ultimately, there are many opportunities for further develop-

ment suggested by this work. For example, much of our evalu-
ation of the techniques has focused on scenes with uncorrelated
sectors. In practice, multipath and other phenomena can give
rise to correlations in the scene. And while we have mentioned
techniques that can be used to enhance the performance of the
system in such scenarios, a more detailed evaluation of such en-
hancements remains to be undertaken.
Additionally, the “soft” MUSIC algorithm developed in this

work for support recovery would appear to have potential appli-
cations well beyond those considered in this paper. As such, it
would be worth exploring how broadly applicable this version
of MUSIC might be.
Similarly, our development leveraged valuable connections

and perspectives from the problem of multi-coset sampling sig-
nals with sparse frequency support. As such, it would appear
that the co-array design techniques developed in the present
paper may directly or indirectly suggest efficient sampling pat-
terns for use with spectrally sparse signals. This warrants further
investigation.
It should also be re-emphasized that there is a growing in-

terest in the use of multi-coset antenna architectures for other
problems. Exploring the degree to which the techniques devel-
oped herein, and to what extent the techniques emerging in other
contexts can be applied to the imaging setting of this paper,
would also be worthwhile. Such an investigation is likely to re-
veal other valuable connections as well.
Finally, while our development has often emphasized

imaging applications, in principle the techniques can be applied
in a wide variety of radar and sonar environments requiring
target detection and tracking. Ultimately, exploring such appli-
cations represents one of richest directions for further research
on this topic.
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