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Abstract—Finite-blocklength analysis of lossy compres-
sion can have a variety of different motivations. First,
the source sequence itself may be short. Second, delay
and complexity constraints may require processing of
short source blocks. And finally, user experience may
require low distortion when averaging over short blocks,
which we term fidelity blocks. Existing work on the
subject has largely coupled these issues, i.e., a source
block is compressed taking into account the statistics
of the distortion averaged over that block (usually the
excess-distortion probability). For short source sequences,
this coupling indeed makes sense. In this work, however,
we instead consider the case of a long source sequence,
whose compression performance is set by the interplay
between the comparatively shorter processing and fidelity
blocklengths. We focus on asymptotic analysis of the
excess rate needed to ensure a given excess-distortion
probability, for processing blocks that are shorter than
the fidelity ones. Our main result is that the second-
order performance (dispersion) is relatively unaffected by
choosing a processing blocklength considerably shorter
than the fidelity blocklength. Thus, one may use lower
dimensional quantizers than existing work would otherwise
suggest without sacrificing significant performance.

I. INTRODUCTION

Finite-blocklength analysis of various source and
channel information-theoretic settings has been a subject
of great interest in the last years. But what exactly do
we mean by “finite blocklength”? Various blocklength
constraints, representing very different design consider-
ations, can be imposed.

A rather generic finite-blocklength lossy compression
scenario can be described as follows. A source emits
a sequence of random symbols of length ¢, which we
call the source blocklength. This sequence is fed into a
source encoder. However, this encoder may be subject to
different constraints, representing system delay require-
ments or encoding complexity. We consider a blockwise
encoder which may only process jointly k source sam-
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ples at a time.! We call k the processing blocklength.
For each such processing block, the encoder chooses
one of possible M descriptions of the source. At the
destination, the decoder produces a lossy reconstruction
of the source sequence, to be used by an observer. As
this observer is oblivious to the internal workings of the
encoding/decoding scheme, we measure its experience
by a fidelity measure applied to a block of some length
n, starting at position ng (with respect to the start of
the source sequence). We call n the fidelity blocklength.
Thus, the performance of a scheme is characterized by
the statistics of a fidelity function d(M, ¢, k,n,ng). By
taking a worst-case or average starting point ng, the
fidelity reduces to a function of three blocklengths.

A natural goal is, to characterize the best performance
achievable given a message set size M and the block-
lengths ¢, n and k. As a measure of performance, one
may use single-letter characteristics of the distributions,
such as the excess-distortion probability with respect
to some prescribed threshold. We now note that this
problem in fact covers scenarios of very different nature.

For example, one may be interested in short source
sequences, that is, { < k,n. The source produces a
sequence short enough for the encoder and the decoder
to treat all symbols jointly, and also for the fidelity to
be measured over the whole source and reconstruction
sequences. In this case, there is only one relevant block-
length - the source blocklength. That is, one can take
without loss of generality £k = n = /. Indeed, previous
work gives good understanding of the excess-distortion
probability in this regime [1]-[3]

In this work, we concentrate on the opposite case,
namely long source sequences: ¢ > k,n. The source

'One may also consider a non-blockwise scheme limited by delay,
or consider complexity directly. Such distinctions are beyond the
scope of this work.
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Fig. 1: Schematic view of the processing and fidelity
blocks
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produces a very long sequence, which is parsed by the
encoder into many processing blocks, and also contains
many fidelity blocks. We note that it is a very important
scenario in practice. Consider the compression of a
long video, for example. Practical encoders will not
process the whole video jointly, but use a much shorter
processing blocks. Also, the fidelity is not measured over
the whole source block: lost frames in one part of the
video cannot be compensated for by excellent-quality
reproduction in another part.

In order to facilitate tractable analysis, we ignore edge
effects of the source sequence, and take in this regime
the source blocklength ¢ to be infinite. Thus, we have
two blocklengths at play: the encoder parses the infinite
source sequence into blocks of length n for processing,
while the fidelity is measured over blocks of length k.

Within the long sequence scenario, we choose to con-
centrate on the short-processing low-delay case k£ < n.
After making some definitions, in Section III we derive
the asymptotic behavior when both blocklength grow
together. Then in Section IV, we consider growing fi-
delity blocklength as the processing blocklength remains
constant, e.g. scalar quantization. Finally in Section V
we discuss connections with channel and joint source-
channel coding.

II. DEFINITIONS

The source is an infinite 1i.i.d. sequence

., X0, X1,... where the symbols belong to some
alphabet X and have some distribution . The encoder
is a function X* — {1,... M}, applied to processing
blocks Xgrt1,. .- X(a+1)k for integer a. The decoder
is a function {1,..., M } — X%, used to reconstruct
an infinite sequence . Xo,Xl, .. by placing each
reconstructed processing block in the location of the
original block. The fidelity is measured using a single-
letter function d : X x X — R, averaged over blocks:

no+n

Z d(X;, Xi).

z no+1

g (X, X) (1

The parsing into processing and fidelity blocks is demon-
strated in Figure 1.

The excess-distortion probability of a scheme with
processing blocklength k£ and observation blocklength n
is averaged over the offset between blocks:

k-1
Z Pr{d, .,(X,X) > D).

nOO

pe(n, k, D) 2

The rate-distortion function (RDF) of a source with
an i.i.d. distribution @ is given by R(Q, D). If Q is
the source distribution P, we simply write R(D). The
inverse function is denoted by D(R) or D(Q, R).

III. GROWING PROCESSING BLOCKLENGTH

In this section, we let the processing blocklength & and
fidelity blocklength n grow together, with k& = o(n).?
We derive achievable rates as a function of k£ and n for
a given excess-distortion probability.

We note two important results that are outside the
region of interest, yet they can serve as benchmarks.
For k = n we have the dispersion approximation. Let
R(n,e, D) be the minimum rate needed to guarantee
distortion at most D at blocklength n with excess-
distortion probability e, then [2], [3]
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On the right hand side, the rate-distortion function is
followed by a dispersion term, governed by the source
dispersion V(D) and then a correction term. If we
consider, rather than excess-distortion probability, the
minimum rate of a k-dimensional code such that the
average distortion is at most D, we have [4]:

log k log k
+ % +o0 < 2 ) .
Intuitively speaking, this can be seen as a limiting
behavior of the excess-distortion rate when we take finite
k but infinite n. Our main result below serves as a bridge
between these two.

Theorem 1: Take a discrete memoryless source with
distribution P and distortion level D s.t. V(D) > 0.
Further assume that R(Q, D) is twice differentiable w.r.t.

@ and D in some neighborhood of (P, D). Let 0 <
€ < 1. For any k = o(n) there exists a sequence of

R(n,e, D) =

R(k, D) = R(D)

“4)

2If the inverse is not unique at rate R, we take the lowest distortion
satisfying the equality.

3Recall that we consider an infinite source sequence. Equivalently,
we’ve first taken the source blocklength ¢ to infinity, and only then
we take the k- and n-limit.
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We note that the sequences k(n) = o(n) can be
divided into the following two regimes.
1) Fidelity-limited regime. If
logk 1
ko C n
then the dispersion term remains as in the case
k = n (3). That is, taking a shorter processing
blocklength does not effect performance, to the
dispersion approximation. Clearly, this dispersion is

optimal.
2) Processing-limited regime. If (6) does not hold, then

R(n,k,¢,D) = R(D) + O (1021“) :

That is, to the first order of approximation the fi-
delity blocklength n takes no part, and the behavior
is as if it was “infinite” (4). Thus, this behavior is
optimal; however, we do not make a claim about
the coefficient of the log k/k term.

From the system-designer point of view, the existence
of a non-trivial fidelity-limited regime is especially im-
portant. It means, that the same performance guaranteed
by [2], [3] can be obtained (up to the dispersion approx-
imation) even if the processing blocklength k is taken to
grow almost as slow as \/n.

The key in proving Theorem 1, is using a coding
scheme that approaches the optimal distortion for the
empirical statistics of the source within the processing
block. The following gives the performance of such a
scheme.

Lemma 1: For any discrete alphabets and distortion
measure, denote by D(Q) the maximum distortion (av-
eraged over the processing blocklength) given that the
source type (over the same block) was (). There exists
a single scheme of processing blocklength & and rate R,
such that:

R(n,k,e,D) =

(6)

D(Q) < D(R,Q) + O <loik> . 7

proof outline: The codebook consists of the union
of per-type codebooks for all types over X. By type-
counting arguments, the rate of each codebook can be

H:R_ocfw. ®)

By the refined type-covering lemma [5], there exists
codebooks with maximum distortion D(Q) as long as
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Combining the two we have:

MQD@»ZR—Oka)
which is equivalent to the required result.

Now, the distortion over the fidelity block is an av-
erage over these processing-block distortions. the proof
of Theorem 1 shows that we can use a linearization
such that this is equivalent to averaging the type; then,
performance is limited by the statistics of that type,
measured over the whole fidelity blocks. The correction
terms for this linearization all fall below the dispersion
term, as long as k grows slow enough. We give the
following proof outline.

Let p = n/k, and for simplicity assume that p is an
integer. We have, then, a sequence of types ()1, ...,Q,,
and a sequence of distortions Dy, ..., D, according to
(7).

By the smoothness assumptions of the theorems, we

have for any @ € Qi (P):
(Q—P)-VR log k
R +0 k

(10)
where the redundancy term is uniformly bounded for
types Q inside a neighborhood: Qi (P) : ||[P — Q|* <
logk/k. Here, Q@ — P is a vector (of the alphabet
size) of the difference between distributions () and P,
and VR and R’ are derivatives of the RDF w.r.t. the
source distribution and distortion, respectively, evaluated
at (P, D).

Combining with (7) and applying to the processing
blocks, we have:

D(R,Q)=D(R,P)+

(Qi— P)-VR log k
——+0

A
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be the type over the observation block. Averaging, we

can achieve distortion
P . 1
(@] )- VR <o]g€k). (11

R/

Now, let

E\H

D(Q) < D(R, P)+




We need to ensure that at a rate R(n, k) the excess-
distortion probability is at most €. By the union bound,

e > pPr{Q1 ¢ U(P)} + Pr{Q: D(Q) > D},

where the latter probability is bounded by (11), assum-
ing that the type in all processing blocks was inside
Q. Invoking a technical lemma from [2] stating that
Pr{Q: ¢ Q.(P)} = O(1/k?), and taking k as in the
Theorem conditions, it remains to ensure that

é(n) £ Pr{Q: D(Q) >D}§e—0< i) .
To that end, we can invert (11) back to terms of rate, and
then note that we have a linearization that is in fact the
first step in proving the rate-redundancy lemma in [2],
with an additional O(logk/k) redundancy term. Using
that lemma we have the required rate with an O(logn/n)
term, which is dominated by the k-dependent one.

Remark 1: In the proof we have used the method of
types, thus the correction terms grow with the alphabet
size. This may not be necessary. As a matter of fact, the
non-typewise analysis used to derive the dispersion in [3]
uses a simple minimum-distortion encoder and a random
codebook; thus, it is already a “best effort” quantizer as
needed. However, in order to follow the proof technique
we have used, one needs a better codebook ensemble,
such that maximum distortion can be guaranteed deter-
ministically for some class of source realizations, as in
the “type-covering lemma”.

Remark 2: An important continuous-alphabet exam-
ple that can be treated similar to the discrete case, is
the quadratic-Gaussian one. An extension of Theorem 1
can be derived, using a quantizer that depends upon
the empirical variance of the source block. Roughly
speaking, the distortion in each k-block will be propor-
tional to the empirical variance in that block, thus when
averaging over the n-block we will also have distortion
proportional to the empirical variance over that block.
However, this derivation is somewhat more cumbersome,
as the source has to be carefully divided into spherical
shells (that is, the empirical variance quantized) in a
judicious manner, as in done in e.g. [6].

Remark 3: Finally, we note that one may be interested
in different asymptotics. Instead of fixing the excess-
distortion probability, one may ask how that probability
decays with the blocklengths for a fixed rate. For k = n,
this leads to the excess-distortion exponent [1]. Adjust-
ing Theorem 1 to this setting, one finds that also the
exponent w.r.t. n remains unchanged even if k grows
much slower.

IV. SCALAR QUANTIZATION

In practice, many times scalar quantizers are used (that
is, the processing blocklength is k = 1), since the gain of
vector quantization does not justify the complexity. We
can still consider the fidelity-blocklength asymptotics of
such schemes.

If we fix some quantizer size M and excess-distortion
probability €, we can consider the behavior of the optimal
distortion threshold D*(M, n, €). * Specifically, as in the
previous section, we can ask about the dispersion. To
that end, let D(M) be the minimal expected distortion
achievable by any scalar quantizer, and let Vp in (M)
and Vp mae(M) be the minimum and maximum (reps.)
distortion variance of M-quantizers achieving D(M).
Then we have the following.

Proposition 1:

D*(M,n, ¢) = D(M) + \/VDflM)Ql(e) L0 (i) ,

where Vp(M) = Vp min(M) for e < 1/2, Vp(M) =
VD maxz (M) otherwise.

Proof outline: These are the excess-distortion asymp-
totics of an average-distortion optimal scalar quantizer,
by standard central-limit theorem (CLT) analysis of the
i.i.d. sequence d(X;,X;). For any other quantizer the
first term will be worse than D(M), thus for large
enough n the performance cannot be better.

Remark 4: The dispersion terms above have the units
of squared distortion, as opposed to squared rate units
normally used in dispersion analysis. We work directly
with distortion, since the quantizer size M is typically a
small integer, unless high-rate quantization is concerned,
thus considering small variations seems unnatural. In
order to emphasize this difference, we have use the
subscript D.

Example 1: One-bit scalar quantization in the
quadratic-Gaussian case. Let the source be Gaussian
with zero mean and unit variance, and let the distortion
be measured by the squared reconstruction error. We
take a scalar quantizer with M = 2. By symmetry,
it suffices to consider reconstruction levels centered
around zero. Denote these levels as . Straightforward
optimization (see e.g. [7]) that the expected distortion
is minimized uniquely by the choice v = \/2/7 2 e
yielding 9

D@2)=1-"~.

s

*The same analysis carries over to any other fixed finite k, by
considering scalar quantization of super-symbols in X'*. Indeed, in
this case we need to average over the offset ng, but this is insignificant
for the sake of asymptotics.
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Fig. 2: One-bit scalar quantization in the quadratic-
Gaussian case: distortion as a function of blocklength,
with excess-distortion probability ¢ = 0.03. The solid
blue curve is the optimal distortion, while the dash-dotted
black curve is the distortion achieved by using the mean-
distortion optimal quantizer v = 7. For reference, the
dashed red curve is the dispersion approximation and the
dotted green straight line shows the infinite-blocklength
expected distortion.

The resulting dispersion is:

o0 2
Vb(2) = 2/ 0((35 — Vo) — D(Q)) fx(x)dx.
o
Beyond asymptotics, we can consider the exact perfor-
mance at finite blocklength n, that is, fix some excess-
distortion probability € and evaluate D*(2,n,¢). We
note, that the choice of quantizer (that is, of ) may
vary with n. For n = 1, one should choose v =
where 2Q)(2y1) = e. For higher n analytic derivation
becomes harder, and we resort to numerical optimization.
The results, shown in Figure 2, demonstrate that indeed
for short fidelity blocklength n, quantizer optimization
can improve the excess-distortion performance.

V. DISCUSSION: BEYOND SOURCE CODING

It is tempting to seek a channel-coding dual for the
results in this work. However, usually in a channel setting
a message error probability is considered, thus the error
event is intimately related to the message blocklength
and it is not clear how to treat the case where the
message blocklength is much larger than the processing
blocklength. In this context, it is worth to mention
the constraint-length exponent [8], and in general the

distinction between blocklength and delay [9]. Further,
an element that does introduce a non-trivial interplay
between blocklengths is an input constraint. Similar to
the discussion in the introduction, such a constraint
comes from considerations that do not have to do with
coding (e.g., the characteristics of power amplifiers, or
limiting interference to other communication systems),
thus they should be measured over some resource block
of length m, in a manner oblivious to the parsing of
information into processing blocks.

The joint source-channel coding setting is closer in
spirit to this work; indeed, it subsumes channel cod-
ing with a bit-error rate criterion. We note, that for
“matching” source-channel pairs [10], high-performance
short-processing schemes may be more readily available.
Without an input constraint, scalar schemes may have
the same dispersion and exponent w.r.t. the fidelity
blocklength n, as optimal schemes with £ = n [11], [12].
Furthermore, for the quadratic-Gaussian case [12] pro-
poses a scheme which is much in the spirit of Remark 2.
We expect to extend these results, and show that for a
large class of source-channel pairs, joint source-channel
schemes may have a large advantage over separate ones
when short processing blocklength is concerned.
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