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Toward Photon-Efficient Key Distribution
Over Optical Channels

Yuval Kochman, Member, IEEE, Ligong Wang, Member, IEEE, and Gregory W. Wornell Fellow, IEEE

Abstract— This paper considers the distribution of a secret key
over an optical (bosonic) channel in the regime of high photon
efficiency, i.e., when the number of secret key bits generated
per detected photon is high. While, in principle, the photon
efficiency is unbounded, there is an inherent tradeoff between
this efficiency and the key generation rate (with respect to
the channel bandwidth). We derive asymptotic expressions for the
optimal generation rates in the photon-efficient limit, and propose
schemes that approach these limits up to certain approximations.
The schemes are practical, in the sense that they use coherent or
temporally entangled optical states and direct photodetection, all
of which are reasonably easy to realize in practice, in conjunction
with off-the-shelf classical codes.

Index Terms— Information-theoretic security, key distribution,
optical communication, wiretap channel.

I. INTRODUCTION

INFORMATION-THEORETIC key distribution [1], [2]
involves the generation of a sequence between the partici-

pating terminals, such that the mutual information between this
sequence and any data obtained by other terminals is close to
zero in an appropriate sense. Unlike secure communication
through the wiretap channel [3], the sequence need not be
known a priori to any of the terminals. Like the latter,
however, the information-theoretic approach to key distribu-
tion hinges on knowledge of the channel through which an
adversarial terminal listens to the communication, as opposed
to computational approaches where the assumption is the
inability of the adversary to perform certain computations
in reasonable time. The computational hardness assumption
may no longer be valid when future technology, e.g., quan-
tum computers, becomes available, causing the computational
approaches to fail. But the information-theoretic approach also
has its drawback: the information obtained by the legitimate
terminals cannot prove or disprove the channel assumption
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on which the key-distribution protocol is based, inhibiting
security in a realistic setting.

The situation is much different when a quantum channel
is employed [4], [5]. Loosely speaking, the “no-cloning”
theorem [6] guarantees that information “stolen” by an eaves-
dropper will not reach the legitimate terminal, thus the
situation where the adversary is stronger than initially assumed
can be detected. In fact, even eavesdroppers that can actively
transmit into the quantum channel can be detected, at the cost
of key-rate loss, using measurements based on local random-
ness. We shall come back to these issues in the discussion at
the end of the paper. For the main part of the paper, we rely
on the existence of good detection methods to assume that
the eavesdropper is passive, and that the complete statistical
characterization of the eavesdropper’s channel is known to the
legitimate terminals.

Two-terminal quantum key distribution (QKD) protocols
can be roughly divided into two classes. In “prepare and
measure” protocols, one legitimate terminal (Alice) prepares
quantum states that are sent via a quantum channel to the other
terminal (Bob) and to the eavesdropper (Eve). In contrast, in
entanglement-based protocols, a quantum source emits entan-
gled states, which are observed by all terminals via quantum
channels. These two classes are parallel to the “C” (channel)
and “S” (source) models of [1]; in this work we shall use the
C/S notation. In either approach, the quantum stage is followed
by the use of a classical communication channel. This channel
is assumed to be public, i.e., all information sent is received
by Eve; however, it is assumed that Eve cannot transmit into
this public channel. The performance of a QKD scheme is
measured in terms of the size of the secret key normalized by
the quantum-channel resources used. The classical channel is
thus “free”, although its use is limited by the assumption that
Eve has full access to this channel.

A quantum channel most often encountered in practice is
the optical channel, which is modeled in quantum mechanics
as a bosonic channel. When used for communicating classical
data at low average input power, it is asymptotically optimal to
use a direct-detection receiver, which ignores the phase of the
optical signal. This results in an equivalent classical channel
where the output has a Poisson distribution whose mean is
proportional to the channel’s input [7]. Some of the first
important works on this channel model are in [8]–[10]. The
low-input-power regime can be thought of as a “photon-
efficient regime”. This is because, in the limit of low average
photon number per channel use, the communication rate per
photon is unbounded.
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In this work we consider QKD over the bosonic channel in
the photon-efficient regime. We consider both C and S models,
and show that in both, as happens in communication, the
photon efficiency is unbounded and direct-detection receivers
are asymptotically optimal. We further consider specific QKD
protocols. We discuss the difficulty of finding code construc-
tions that allow us to approach the theoretical performance
limits, since in the photon-efficient regime they have to
operate over highly-skewed sequences. We present protocols
that overcome this difficulty: in the C model we use pulse-
position modulation (PPM), while in the S model we parse
the sequence of detections into frames. In both cases, coding
over frames is an easier task than coding directly over the
detection sequence.

The rest of the paper is organized as follows. We intro-
duce our notation in Section II. In Section III we formally
describe the problem setting. Then in Section IV we dis-
cuss, as a point of reference, photon-efficient communication.
Sections V and VI include our main results for key distribu-
tion, regarding the C and S models, respectively. We conclude
this paper in Section VII by discussing the gap between our
results and fully quantum security proofs.

II. NOTATION

We use a font like A to denote a Hilbert space. Throughout
this paper we shall focus on bosonic Hilbert spaces. We adopt
Dirac’s notation to use |ψ〉 to denote a unit vector in a Hilbert
space, which can describe a pure quantum state, and use 〈ψ|
to denote the conjugate of |ψ〉. We follow most of the physics
literature to slightly abuse our notation: we shall not make
typographical distinctions between number states and coherent
states. Hence |n〉, n ∈ Z+

0 , (usually) denotes the number state
that contains n photons; while |α〉, α ∈ C, (almost everywhere)
denotes a coherent state, whose exact characterization is given
later. This abuse of notation will not cause confusion within
the scope of this paper. We use a Greek letter like ρ to denote
a density operator (i.e., a trace-one semidefinite operator) on
a Hilbert space, which can describe a pure or mixed quantum
state. Note that the density-operator description of a pure
state |ψ〉 is |ψ〉〈ψ|. When considering a system such as a
beamsplitter, we reserve the letters |ψ〉 and ρ for input states,
and |φ〉 and σ for output states. Sometimes, to be explicit,
we add a superscript to a state to indicate its Hilbert space
so it looks like |ψ〉A or σB. We use the notation â to denote
the annihilation operator on A (so â† is the creation operator
on A); similarly, b̂ denotes the annihilation operator on B, etc.

For a quantum state σAB on the Hilbert spaces A and B,
we use H (σA), H (σA|σB), and I (σA; σB) to denote the
corresponding entropy, conditional entropy, and mutual infor-
mation, respectively. These quantities are defined as follows
(see [11] for more details):

H (σA) ! −tr
{
σA log σA

}
(1)

H (σA|σB) ! H (σAB) − H (σB) (2)

I (σA; σB) ! H (σA) + H (σB) − H (σAB). (3)

For classical or mixed classical-quantum states, we simply
replace the density operator by the classical random variable

for the classical part in these expressions, so they look like,
e.g., H (X), H (X |σB), and I (σA; Y ). Sometimes, to be more
precise, we also write the mutual information as I (A; B)|σ ,
indicating that it is the mutual information between space A
and B evaluated for the joint state σ .

Throughout this paper, we use natural logarithms, and
measure information in nats, though sometimes we do talk
about “bits” and “binary representation”.

We use the usual notation O(·) and o(·) to describe behav-
iors of functions of E in the limit where E approaches zero
with other variables, if any, held fixed. Specifically, given a
reference function f (·) (which might be the constant 1), a
function denoted as O( f (E)) satisfies

lim
E↓0

∣∣∣∣
O( f (E))

f (E)

∣∣∣∣ < ∞, (4)

while a function denoted as o( f (E)) satisfies

lim
E↓0

o( f (E))

f (E)
= 0. (5)

III. PROBLEM SETTING

In this section we describe our setups for optical commu-
nication and key distribution. To do so, we first recall some
basic results in quantum optics.

A. Beamsplitting and Direct Detection

We briefly describe how number (Fock) states and coherent
states evolve when passed through a beamsplitter, and what
outcomes they induce when fed into a direct-detection receiver,
i.e., a photon counter. We refer to [12] for more details.
For some background in quantum physics and in quantum
information theory, we refer to [11].

Let A and V be the two input spaces to a single-mode
beamsplitter, and B and E be the two output spaces. Let the
beamsplitter’s transmissivity from A to B be η ∈ [0, 1]. Then
this beamsplitter is characterized in the Heisenberg picture
by

b̂ = √
η â +

√
1 − η v̂ (6a)

ê =
√

1 − η â − √
η v̂ . (6b)

Throughout this paper we shall only consider situations where
the second input space V (the “noise mode”) is in its vacuum
state |0〉.

Ideal direct detection (i.e., photon counting) measures an
optical state in the number-state basis. For direct detec-
tion on A, the observable is the Hermitian operator â†â.
On state ρ, a photon counter gives outcome n ∈ Z+

0 with
probability 〈n|ρ|n〉.

Obviously, when a number state |n〉, n ∈ Z+
0 , is fed into an

ideal photon counter, the outcome is n with probability one.
But passing |n〉 through a beamsplitter is more complicated:
if space A in (6) is in state |n〉, then the output state is an
entangled state on B and E:

|φ〉BE =
n∑

i=0

√(
n
i

)
ηi/2(1 − η)(n−i)/2|i〉B|n − i〉E. (7)
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This implies that performing direct detection on the output
of this beamsplitter will yield a binomial distribution on the
outcome: the probability of detecting m photons on space B
is

〈m|σB|m〉 =
(

n
m

)
ηm(1 − η)n−m (8)

for 0 ≤ m ≤ n, and is zero otherwise. It also implies that, if
direct detection is performed both on B and on E, then with
probability one the sum of the two outcomes is equal to n.

A coherent state |α〉, α ∈ C, can be written in the number-
state basis as

|α〉 = e−|α|2/2
∞∑

n=0

αn
√

n!
|n〉. (9)

Thus, when fed into a photon counter, the probability of n
photons being observed in |α〉 is

〈n|α〉〈α|n〉 = |〈n|α〉|2 = e−|α|2 |α|2n

n! . (10)

Namely, the number of photons in |α〉 has a Poisson distrib-
ution of mean |α|2.

Coherent states have the nice property that, when passed
through a beamsplitter, the outcomes remain in coherent states.
If |α〉 is fed into the beamsplitter (6), the output state is

|φ〉BE = |√η α〉B ⊗ |
√

1 − η α〉E. (11)

Therefore, if direct detection is performed both on B and
on E, the outcomes will be two independent Poisson random
variables of means η|α|2 and (1 − η)|α|2, respectively.

B. Optical Communication

A single-mode pure-loss optical (i.e., bosonic) channel can
be described using the beamsplitter (6a), where we ignore
the output space E and assume the noise space V to be in
its vacuum state. In this formula, A is the input space
controlled by the transmitter which, in consistency with the
key-distribution part, we call Alice; B is the output space
obtained by the receiver, Bob; and η is the transmissivity of
the channel. Equivalently, the channel may be described in the
Schrödinger picture as a completely-positive trace-preserving
(CPTP) map from the input state ρA to the output state σB:

σB = C(ρA). (12)

The explicit characterization of C is complicated and omitted.
We denote the blocklength of a channel code by k. Alice

has a message of k R nats1 to convey to Bob. In order to do
this, she prepares a state ρk over Ak , subject to an average-
photon-number constraint E per channel use:

tr

{( k∑

i=1

â†
i âi

)

ρk

}

≤ kE (13)

where âi is the annihilation operator on the input space of the
i th channel use. The channel is assumed to be memoryless,
so the output is given by

σ k = C⊗k(ρk). (14)

1We ignore the fact that the number of values that the message can take is
not an integer.

Bob may perform any positive-operator valued measure
(POVM) on σ k to reconstruct the message. As usual, the
capacity of the channel is defined as the supremum of rates
for which there exist sequences of schemes with increasing
blocklengths and with the error probabilities approaching zero.

We define the photon efficiency of transmission as the rate
normalized by the expected number of photons that Bob
receives per channel use:2

r(η, E) ! R(η, E)

ηE
. (15)

This quantity is upper-bounded by the channel’s capacity
divided by ηE .

C. Key Distribution Using an Optical Channel (Model C)

We next consider the problem where Alice and Bob use the
channel of (6) to generate a secret key between them. The
channel from Alice to Bob is still characterized by (6a) or
by the CPTP (12), but we now assume that an eavesdropper,
Eve, obtains the Hilbert space E. Note that this is a worst-case
assumption in the sense that Eve obtains the whole ancilla
system of the channel. Also note that we assume Eve to be
passive, so she cannot interfere with the communication; she
can only try to distill useful information from her observations.
This setting can be seen as a special case of the quantum
version of “Model C” discussed in [1].

The aim of Alice and Bob is to use this channel, together
with a two-way, public, but authentic classical channel, to
generate a secret key. Let k denote the total number of uses
of the optical channel. We impose the same average-photon-
number constraint (13) on Alice’s inputs. We assume the
public channel is free so we can use it to transmit as many bits
as needed, though all these bits will be known to Eve. By the
end of a key-distribution protocol, Alice should be able to
compute a bit string SA and Bob should be able to compute
SB such that

• The probability that SA = SB tends to one as k tends to
infinity;

• The key SA (or SB ) is almost uniformly distributed and
independent of Eve’s observations, in the sense that

H (SA|ρEve)

log |S|
tends to one as k tends to infinity, where ρEve summarizes
all of Eve’s observations, and where S denotes the
alphabet for SA and SB .

We define the secret-key rate of a scheme to be

R(η, E) ! log |S|
k

(16)

nats per use of the optical channel. The parameter E is the
average photon number in (13).

A typical (and rather general) protocol to accomplish this
task consists of the following steps:

2We adopt this definition rather than normalizing by transmitted photons,
because this allows us to derive expressions which are less influenced by the
transmissivity of the channel.
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Step 1: Alice generates random variables X1, X2, . . . which
are known to neither Bob nor Eve. She then prepares an optical
state ρk on Ak based on X and sends the state into the channel,
spread over k channel uses.

Step 2: Bob makes measurements on his output state to
obtain a sequence Y1, Y2, . . ..3

Step 3: (Information Reconciliation) Alice and Bob
exchange messages M1, M2, . . . using the public channel.
Then Alice computes her raw key K A as a function of (X, M),
and Bob computes his raw key K B as a function of (Y, M).
They try to ensure that K A = K B with high probability, but
Eve might have partial information about the raw key.

Step 4: (Privacy Amplification) Alice and Bob randomly
pick one from a set of universal hashing functions. They apply
the chosen function to their raw keys K A and K B to obtain
the secret keys SA and SB , respectively.

Privacy amplification has been extensively studied in liter-
ature. Denote the quantum state that Eve obtained in Step 1
from the optical channel by σEk

. It is shown in [13] that,
provided K A = K B with probability close to one, the privacy
amplification step (i.e., Step 4) can be accomplished success-
fully with high probability, and the length of the secret key in
nats, i.e., log |S|, can be made arbitrarily close to4

H (K A|M, σEk
). (17)

Hence, in this paper, we shall not discuss how to accomplish
Step 4. As we shall see, in some cases Step 4 can be omitted.
If not, then we shall concentrate on Steps 1 to 3, try to
maximize (17), and compute the secret-key rate as

R(η, E) = H (K A|M, σEk
)

k
. (18)

As mentioned previously, in Step 1, we impose the same
average-photon-number constraint on Alice (13) as in the
communications case. Consequently, we define the photon
efficiency (of key distribution) r(η, E) in the same way as in
communications, namely, as in (15), except that now R(η, E)
is the secret-key rate.

D. Key Distribution Using a Photon Source (Model S)

In some key-distribution protocols, Alice and Bob make
use of a random source, rather than Alice preparing states,
to generate a secret key, as in the “Model S” discussed
in [1]. In optical applications one can, for instance, generate a
uniform stream of random, temporally-entangled photon pairs,
which are very useful for key distribution; see [14].

An accurate model for such temporally-entangled photon
sources divides the timeline into very fine temporal modes,
where each temporal mode is in a pure, entangled state on
its two output Hilbert spaces, with the number of photon
pairs having a geometric (Bose-Einstein) distribution of a very
small mean. Such a model, however, would be intractable
for precise key-rate analyses. We hence choose a simplified

3We do not consider feedback from Bob to Alice during the first two steps.
As in channel coding, feedback cannot increase the maximum key rate.

4To be precise, to achieve (17), Alice and Bob should repeat Steps 1 to 3
many times, and then do Step 4 on all the raw keys together.

model as follows. Let the timeline be divided into slots, where
each slot can be thought of as one “use” of the source. Each
slot contains many, e.g., a thousand, temporal modes. This
results in the number of photon pairs in each slot having a
Poisson distribution, whose mean E equals the total number of
temporal modes times the mean photon number in each mode.
We ignore the fine structures inside each slot and describe it
with only two Hilbert spaces, C and D. We also ignore the
entanglement between the two spaces and simplify the optical
state to a mixed one with classical correlation only. The optical
state emitted by the source in every source use is thus given
by

ρCD =
∞∑

i=0

E i e−E

i ! |i〉〈i |C ⊗ |i〉〈i |D. (19)

To justify the simplification we make, note the following.
• Discretization: In our schemes, Alice and Bob will never

measure the arrival time of a photon with higher accuracy
than the duration of one slot. In this case, it is easy to
show that Eve cannot have any advantage by making finer
measurements.

• Classical correlation: When Alice and Bob only make
direct detection with the given time accuracy and Eve is
listening passively via a beamsplitter, entanglement does
not play any role. Note that this would not be the case if
we were interested in a secrecy proof against a general
(possibly active) Eve; see Section VII.

We assume that the source is collocated with Alice, who
keeps C; while the photons in D are sent to Bob through a
lossy optical channel. To account for coupling losses, we can
assume that Alice also only has access to a lossy version of C.
Specifically, ρC is passed through a beamsplitter, like the one
in (6), of transmissivity ηA before it reaches Alice:

â = √
ηA ĉ +

√
1 − ηA v̂ (20a)

f̂ =
√

1 − ηA ĉ − √
ηA v̂. (20b)

But, except for Section VI-D, we shall ignore coupling losses
and take ηA = 1. Similarly ρD is passed through a beamsplitter
of transmissivity ηB before it reaches Bob:

b̂ = √
ηB d̂ +

√
1 − ηB û (21a)

ê =
√

1 − ηB d̂ − √
ηB û. (21b)

We assume ηB < 1 throughout. Both noise modes V and U
are assumed to be in their vacuum states. Note that the two
beamsplitters behave independently of each other.

Since the source is collocated with Alice, we know the
photons that are lost from C to A (in case ηA < 1) should not
reach Eve; Eve only has access to the Hilbert space E.

It is useful to describe the output states when ρD passes
through the beamsplitter on Bob’s side. We first write down
ρD by taking partial trace of (19):

ρD =
∞∑

i=0

E i e−E

i ! |i〉〈i |, (22)

which can be equivalently written as

ρD = 1
2π

∫ 2π

0
dθ |α(θ)〉〈α(θ)| (23)
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where
α(θ) =

√
E eiθ . (24)

From (23) and (21) it is straightforward to obtain the output
optical state on BE:

σBE = 1
2π

∫ 2π

0
dθ |√η α(θ)〉〈√η α(θ)|B

⊗ |
√

1 − η α(θ)〉〈
√

1 − η α(θ)|E. (25)

By taking partial traces of (25) we obtain Bob’s and Eve’s
states:

σB = 1
2π

∫ 2π

0
dθ |√η α(θ)〉〈√η α(θ)| (26)

=
∞∑

i=0

(ηE)i e−ηE

i ! |i〉〈i | (27)

σE = 1
2π

∫ 2π

0
dθ |

√
1 − ηα(θ)〉〈

√
1 − ηα(θ)| (28)

=
∞∑

i=0

((1 − η)E)i e−(1−η)E

i ! |i〉〈i |. (29)

The joint state σBE is not a tensor state, i.e., B and E are not
independent. However, if direct detection—namely, projective
measurement in the number-state basis—is performed on B
(or on E), the post-measurement state on E (or on B) is
independent of the measurement outcome; in particular, the
photon numbers in B and in E are independent. Indeed,
conditional on the measurement outcome on B being i , the
post-measurement state on E is

trB
{
|i〉〈i |BσBE}

tr
{
|i〉〈i |BσB}

=

1
2π

∫ 2π

0
dθ |〈i |√η α(θ)〉|2|

√
1 − η α(θ)〉〈

√
1 − η α(θ)|

1
2π

∫ 2π

0
dθ |〈i |√η α(θ)〉|2

(30)

= 1
2π

∫ 2π

0
dθ |

√
1 − η α(θ)〉〈

√
1 − η α(θ)| (31)

= σE (32)

where (31) follows because

|〈i |√η α(θ)〉|2 = (ηE)i e−ηE

i ! (33)

does not depend on θ .
We now describe a scheme (which is again rather general)

for Alice and Bob to use this source k times to generate a
secret key. In this scheme, Steps 3 and 4 are exactly the same
as in Section III-C, but Steps 1 and 2 are now replaced by:

Step 1’: Alice makes measurements on her state σAk
to

obtain the sequence X1, X2, . . ..
Step 2’: Bob makes measurements on his state σBk

to obtain
the sequence Y1, Y2, . . ..

As in Section III-C, we shall concentrate on Steps 1’, 2’,
and 3. The secret-key rate, denoted by R(ηA, ηB , E), is again

given by the right-hand side of (18), with unit “nats per source
use”. But the photon efficiency in this setting is defined as

r(ηA, ηB , E) ! R(ηA, ηB , E)

ηAηBE
. (34)

We choose this definition because ηAηBE is the expected
number of photon pairs in each source use that reach both
Alice and Bob,5 and because these photon pairs are those that
contain correlated information that can be used to generate the
secret key. When ηA = 1, we omit the subscript in ηB , and
denote the secret-key rate and photon efficiency simply by
R(η, E) and r(η, E), respectively. Obviously, they are again
related by (15).

IV. BACKGROUND: PHOTON-EFFICIENT COMMUNICATION

USING PULSE-POSITION MODULATION

Before we address key distribution, we give some results
regarding communications over the bosonic channel described
in Section III-B. These results serve as a point of reference,
and the derivation provides tools later used in key distribution.
See also [15]–[17].

The capacity of a quantum channel is characterized by
the formula found by Holevo [18] and by Schumacher and
Westmoreland [19]. For the pure-loss bosonic channel (6a)
under constraint (13), this capacity is g(ηE) nats per channel
use [20], where

g(x) ! (x + 1) log(x + 1) − x log x, x > 0. (35)

This immediately implies that the photon efficiency (15)
satisfies:

rquantum(η, E) = g(ηE)

ηE
= log

1
ηE

+ 1 + o(1). (36)

Note that the efficiency is unbounded, that is,

lim
E↓0

rquantum(η, E) = ∞. (37)

Hence, in terms of [21], [22], the capacity per unit cost
supE r(η, E) of the channel (12) is infinite.

The capacity g(ηE) is achievable by Alice using product
(i.e., nonentangled), pure input states

|ψk〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉. (38)

Indeed, in this paper we limit our attention to such mode of
operation, where the average-photon-number constraint (13)
becomes

1
k

k∑

i=1

〈ψi |â†
i âi |ψi 〉 ≤ E . (39)

For the degenerate case η = 1, a simple capacity-
achieving codebook consists only of number states, where
the photon numbers’ empirical distribution is independent and
identically distributed (i.i.d.) geometric (i.e., Bose-Einstein).

5We interpret this quantity in a semi-classical way: each photon pair reaches
Alice with probability ηA, and reaches Bob with probability ηB independently
of whether it reaches Alice or not, hence the fraction of photon pairs that
reach both Alice and Bob is ηAηB . We do not know if there exists a physical
observable, i.e., a Hermitian operator that corresponds to this value.
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Bob’s optimal measurement for this codebook is simply per-
channel-use direct detection. We shall see in Section IV-A that,
in the photon-efficient regime, this code construction can be
further simplified and can be used also when η < 1, without
sacrificing much photon efficiency.

For the general case where η may not be one, the capacity
can be achieved if Alice’s codebook consists of coherent states

|ψk〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αk〉, (40)

and if Bob performs a general (not per-channel-use) POVM
on the output state, which is

|φk〉 = |√η α1〉 ⊗ |√η α2〉 ⊗ · · · ⊗ |√η αk〉. (41)

In this case, the average-photon-number constraint (13)
becomes

k∑

i=1

|αi |2 ≤ kE . (42)

It is known that capacity-achieving codebooks of coherent
states should have empirical distributions that resemble i.i.d.
complex-Gaussian with mean zero and variance E [20]. The
main problem with such a code is that Bob’s POVM is almost
impossible to implement using today’s technology. Hence we
are interested in “practical” schemes, in particular, in schemes
where Bob uses per-channel-use direct detection while Alice
sends coherent states. As we shall see in Section IV-B,
this restriction induces a second-order-term loss in photon
efficiency.

A. Alice Sends Binary Number States

Consider the case where the sequence of states sent by
Alice consists only of the number states |0〉 and |1〉, and
where Bob uses direct detection. Recalling (8), for input |0〉
Bob will always detect no photon, while for input |1〉 Bob
detects one photon with probability η, and detects no photon
otherwise. Thus the scheme induces a classical Z channel. The
maximum achievable rate is, according to the classical channel
coding theorem [23], the maximum mutual information over
this channel.

Let
IZ(q, µ) ! H2(qµ) − q H2(µ) (43)

be the mutual information over a Z channel with input prob-
ability PX (1) = q and transition probability PY |X (1|1) = µ,
where H2(·) is the binary entropy function

H2(x) ! x log
1
x

+ (1 − x) log
1

1 − x
, 0 < x < 1. (44)

Due to the photon-number constraint, the input distribution
must satisfy q ≤ E .6 It is easy to see that IZ(q, µ) is
monotonically increasing in q for small enough q , and hence,
in the regime of interest, we should choose q = E , achieving
rate IZ(E, η). The resulting photon efficiency can be readily
shown to satisfy:

rnum,Z(η, E) = IZ(E, η)

ηE
= rquantum(η, E) − H2(η)

η
+ o(1),

(45)

6The expected number of photons translates to a per-codeword constraint
via a standard expurgation argument.

reflecting a constant efficiency loss with respect to the opti-
mum (36).

For the scheme described above, the task of (classical)
coding is difficult: one needs mutual-information-approaching
codes for a Z channel with a highly skewed input. We can
solve this problem by replacing the i.i.d. binary codebook by
PPM: the input sequence consists of “frames” of length *1/E+,
where each frame includes exactly one photon, whose position
is uniformly chosen inside the frame. (If the blocklength is
not divisible by *1/E+, then we ignore the remainder.) This
scheme converts the channel to a *1/E+-ary erasure channel.
By computing the capacity of this erasure channel, we easily
see that the photon efficiency of the PPM scheme is:

rnum,PPM(η, E) = log
1
E

+ o(1), (46)

which again reflects only a constant loss compared to the
optimal efficiency (36). The large-alphabet erasure channel is
much like a packet-erasure channel encountered in internet
applications, and good off-the-shelf codes are available.

B. Alice Sends Binary Coherent States

Generating the number state |1〉 is hard in practice.
We hence turn to coherent states, which are a good model
for light coming out of laser sources [7].

We consider a simple binary-coherent-state scheme. In this
scheme, Alice first generates a classical binary codebook
where the probability of 1 is q . She then maps 0 and 1 to
the coherent states |0〉 and |E/q〉, respectively. Note that doing
this satisfies the average-power constraint (42). Bob uses direct
detection that is not photon-number resolving (PNR), i.e., he
views a measurement with no photon as a logical 0, and views
any measurement with at least one photon as a logical 1. (Such
a detector is easier to build than a PNR detector, which outputs
the exact number of detected photons.) This results again in a
classical Z channel, with

PY |X (1|1) = µcoh(q, E) ! 1 − exp
(

−ηE
q

)
. (47)

We can thus achieve IZ(q, µcoh) nats per channel use, where
q should be chosen to maximize IZ(q, µcoh). The exact ana-
lytical optimization is complicated, but in the photon-efficient
regime the approximate optimum (which yields the best rate
up to the approximation of interest) is given by

q∗(E) = ηE
2

log
1
E

. (48)

The resulting photon efficiency is given by:

rcoh,Z(η, E) = IZ
(
q∗(E), µcoh(q∗(E), E)

)

ηE
(49)

= log
1
ηE

− log log
1
E

+ log 2 − 1 + o(1). (50)

Comparing to the quantum limit (36), we see that the effi-
ciency loss of the coherent-state-and-direct-detection scheme
with respect to the optimal performance grows as log log 1/E as
E decreases in the photon-efficient regime. This loss is inher-
ent to any “classical” transmission scheme, even if general
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Fig. 1. Photon efficiency in the different cases discussed in Section IV.
Efficiency in the quantum case rquantum is computed from (36); efficiency for
coherent-state inputs and Z-channel model rcoh,Z from (49); and efficiency
for coherent-state inputs and PPM rcoh,PPM from (51). For all three we let
the channel be lossless, i.e., we choose η = 1.

(non-binary) coherent states are sent [17], or if the receiver is
allowed to use feedback between measurements [24].

Similarly to the case of Alice sending number states,
we can alleviate the difficulty of coding by replacing the
i.i.d. codebooks with PPM frames, an idea already exploited
in [25], [26]. Indeed, using PPM frames of length b with
the optimum (to the approximation order) choice of (48) and
b = *1/q∗(E)+, this efficiency is

rcoh,PPM(E) = µcoh
(
q∗(E), E

)
log b

ηbE
, (51)

and has the same expression as on the right-hand side of (50),
i.e., the further efficiency loss incurred by restricting to PPM
is o(1).

Figure 1 depicts the photon efficiency in the different cases
discussed in this section. It can be appreciated that, while the
loss of using coherent states with direct detection is large,
the further loss of PPM is small. As we shall see, similar
phenomena are also observed in key-distribution scenarios.

V. KEY DISTRIBUTION IN MODEL C

In this section we study the key-distribution problem in
Model C, which we set up in Section III-C.

To the best of our knowledge, the maximum secret-key rate,
and hence also the maximum photon efficiency, in this setting
are not yet known. However, in the photon-efficient regime we
have the following asymptotic upper bound. (Later we show
that this upper bound is tight within a constant term).

Proposition 1: The maximum photon efficiency for key dis-
tribution in Model C as described in Section III-C satisfies

rmax(E) ≤ log
1
ηE

+ 1 + o(1). (52)

Proof: We use the fact that the maximum secret-key
rate over a quantum channel cannot exceed the com-
munication capacity of the same channel. This follows,

e.g., from [27, Chapter I, Theorem 5.1]. Recalling (36), the
proof is completed.

As in the communication setting, we shall mostly focus on
key-distribution schemes in which Bob only employs direct
detection. As we shall see in Section V-A, if Alice can send
number states—even only binary number states—the photon-
efficiency loss of direct detection is at most a constant term
in the photon-efficient regime. However, in Section V-B we
show that if Alice can only send coherent states, then the
loss in photon efficiency scales like log log 1/E . These results
are similar to their optical-communication counterparts. Also
similar to the communication scenario is the fact that PPM is
nearly optimal in terms of photon efficiency; in the context of
key distribution, PPM allows us to greatly simplify the coding
task in the information-reconciliation step.

A. Alice Sends Binary Number States

Consider the following key-distribution scheme.
Scheme C-1:
1) Let b ! *1/E+. We divide the whole block of k channel

uses into frames each consisting of b consecutive uses
(and ignore the remainder).

2) Alice generates a sequence of integers X̃1, X̃2, . . . i.i.d.
uniformly in {1, . . . , b}. These are the “pulse positions”.
Within the i th frame, i ∈ {1, 2, . . .}, she sends the
number state |1〉 in the X̃i th channel use, and sends
|0〉 in all other channel uses.

3) Bob makes direct detection on every channel output.
Since Alice sends one photon per frame, Bob will either
detect a single photon or no photon per frame. Let the
set of frames where Bob had a detection be denoted
as {i1, i2, . . .}, and denote the detection positions inside
these bins by Ỹi1 , Ỹi2 , . . .. Bob tells Alice the values of
i1, i2, . . . using the public channel.

4) Alice generates the secret key from X̃i1 , X̃i2 , . . ., and
Bob generates the secret key from Ỹi1 , Ỹi2 , . . ., both
by directly taking the binary representation of these
integers.

The average-photon-number constraint (13) is clearly satis-
fied. Scheme C-1 is rather simple in the sense that

• Alice’s input states are either |0〉 or |1〉;
• Bob’s detector can be non-PNR;
• The information-reconciliation step is uncoded, and only

involves one-way communication from Bob to Alice;
• There is no privacy-amplification step.
As the next proposition shows, this simple scheme

performs very well in the photon-efficient regime: it is at
most a constant term away from optimum. Compared to the
communication case (36), this proposition also shows that the
loss in photon efficiency due to the secrecy requirement is at
most a constant term.

Proposition 2: Scheme C-1 generates a secret key between
Alice and Bob, and its photon efficiency is

rC-1(η, E) = log
1
E

+ o(1) (53)

for all η ∈ (0, 1].
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Proof: We first verify that Scheme C-1 indeed generates
a secret key. To this end, first note that X̃i j = Ỹi j for all
j ∈ {1, 2, . . .}. This is because Alice sends only one non-
vacuum state in each frame, and because Bob cannot detect
any photon in a channel use where Alice sends |0〉. Hence
the keys obtained by Alice and by Bob are the same. Second,
by the way Alice chooses X̃, every X̃i j (or, equivalently, Ỹi j )
is uniformly distributed in {1, . . . , b}, independently of X̃i j ′
where j ′ .= j . This shows that the key is uniformly distributed.
It now remains to verify that the key is dependent neither
on Eve’s output states from the optical channel nor on the
messages which Bob sends to Alice. It is independent of Eve’s
optical states because, in every selected frame, Bob detects the
only photon that Alice transmits, so Eve’s post-measurement
state in this frame is the all-vacuum state. It is independent
of Bob’s messages because Bob only sends the labels of the
selected frames to Alice, and because Alice chooses the pulse
positions independently of the frame labels.

We next compute the photon efficiency achieved by
Scheme C-1. Let N(k) be the total number of frames selected
by Bob within k channel uses. Since each frame is selected
when Bob detects a photon in that frame, which happens with
probability η, we have from the Law of Large Numbers that

lim
k→∞

N(k)

k
= lim

k→∞
η0k/b1

k
= ηE (54)

with probability one. Each detected photon (or, equivalently,
each selected frame) provides log b nats of secret key. So, as
k tends to infinity, the achieved photon efficiency tends to

lim
k→∞

N(k) log b
kηE

= log b = log
1
E

+ o(1). (55)

B. Alice Sends Coherent States

We now restrict Alice to sending coherent states since, as
discussed previously, generating the number state |1〉 is hard
in practice. Under this restriction, Alice generates a sequence
of complex numbers α1,α2, . . . ,αk satisfying (42), prepares
the coherent states |α1〉, |α2〉, . . . , |αk〉, and sends them over
the channel. As the next proposition shows, this restriction
induces a loss of log log 1/E in the photon efficiency, even if
the scheme employed is more sophisticated than Scheme C-1.

Proposition 3: The maximum photon efficiency in Model C
when Alice sends only coherent states and when Bob uses only
direct detection satisfies

rcoh(η, E) ≤ log
1
E

− log log
1
E

+ O(1) (56)

for all η ∈ (0, 1].
Proof: We note that, when Alice sends the coherent

state |α〉, Bob’s measurement outcome Y has a Poisson distri-
bution of mean η|α|2. We can bound the achievable secret-key
rate as

Rcoh(η, E) ≤ max
E[|X |2]≤E

I (X; Y ) (57)

= max
E[|X |2]≤E

I (|X |2; Y ), (58)

where (57) follows because the secret-key rate over a channel
cannot be larger than the communication capacity of the
channel (see [1]); and where (58) follows because |X |2 is
a deterministic function of X , and because X"−−|X |2"−−Y
forms a Markov chain. Finally, the right-hand side of (58),
which is the maximum mutual information over a Poisson
channel under an average-photon-number constraint, is shown
in [17] to satisfy

max
E[|X |2]≤E

I (|X |2; Y ) ≤ ηE
{

log
1
E

− log log
1
E

+ O(1)

}
. (59)

We do not specify the O(1) term, as the derivation of (59)
in [17] yields expressions that are rather involved. In the sequel
we show that the bound (56) is tight within a constant term.

As in Section IV-B, to simplify the coding task for the
information-reconciliation step, Alice and Bob can use a PPM-
based scheme. We choose the PPM frame-length to be:

b !
⌈

1
E log 1/E

⌉
. (60)

This choice is optimal up to the order of approximation of
interest. Note that b in (60) is half the frame-length chosen
for the communication setting, where the latter is *1/q∗(E)+
with q∗(E) given in (48).

Scheme C-2:
1) We divide the whole block of k channel uses into frames

each consisting of b consecutive uses (and ignore the
remainder).

2) Alice generates a sequence of integers X̃1, X̃2, . . . i.i.d.
uniformly in {1, . . . , b}. Within the i th frame, i ∈
{1, 2, . . .}, she sends the coherent state |

√
bE〉 in the

X̃i th channel use, and sends the vacuum state |0〉 in all
other channel uses.

3) Bob makes direct detection on every channel-output.
Since all channel input-states but one are in vacuum
state, he will have detections in at most one output. Let
the set of frames where Bob had a detection be denoted
as {i1, i2, . . .}, and denote the detection positions inside
these bins by Ỹi1 , Ỹi2 , . . .. He tells Alice the values of
i1, i2, . . . using the public channel.

4) Alice generates the raw key K A from X̃i1 , X̃i2 , . . ., and
Bob generates the raw key K B from Ỹi1 , Ỹi2 , . . ., both
by directly taking the binary representation of these
integers.

5) Alice and Bob perform privacy amplification on their
raw keys to obtain the secret keys.

The average-photon-number constraint (13) or (42) is
clearly satisfied. Also note that, in this scheme,

• Alice’s input states are binary: either |0〉 or |
√

bE〉;
• Bob’s detector can be non-PNR;
• The information-reconciliation step is uncoded, and only

involves one-way communication from Bob to Alice.
In contrast to the restriction on Alice to sending only coherent
states, which results in a loss of log log 1/E in photon efficiency,
the further simplifications employed in Scheme C-2 induce at
most a constant-term loss.
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Proposition 4: Scheme C-2 achieves photon efficiency

rC-2(η, E) ≥ log
1
E

− log log
1
E

− (1 − η) + o(1) (61)

for all η ∈ (0, 1].
The proof, which appears in Appendix A, is more involved

than that of Scheme C-1, since in the case of coherent
states, the raw key depends upon Eve’s optical states (since,
if Bob and Eve both see detections in some frame, then
they must be in the same location). However, we bound the
information leakage and show that it leads to at most a constant
key-efficiency loss.

VI. KEY DISTRIBUTION IN MODEL S

In this section we study the key-distribution problem in
Model S, which we set up in Section III-D. Apart from
Section VI-D, we shall focus on the case where ηA = 1.
In this case, we omit the subscript of ηB to denote it simply
as η.

Proposition 5: The maximum photon efficiency achievable
in Model S satisfies

rquantum(η, E) ≤ log
1
ηE

+ 1 + o(1). (62)

Proof: We note that, without further constraints, the
secret-key rate and hence the photon efficiency achievable in
Model S cannot exceed those achievable in Model C. This
is because any measurement Alice performs in Step 1’ in
Model S, which is described in Section III-D, can be sim-
ulated in Model C in the following way. Alice first generates
random numbers that have the same statistics as the outcomes
of the measurement that she would perform in Model S.
Then, for each number, she generates the corresponding post-
measurement state on D and sends it to Bob. Doing these will
generate the same correlation between Alice, Bob, and Eve as
the corresponding strategy in Model S would do. The claim
now follows immediately from Proposition 1.

Note: The above proof says that, when Alice and Bob
can both use fully quantum devices, there is no advantage in
Model S over Model C. However, as we later show, this need
not be the case when Alice and Bob are restricted, e.g, to
direct detection.

For practicality, for the rest of this section we restrict both
Alice and Bob to using only direct detection on their quantum
states. In fact, Alice and Bob will only use non-PNR direct
detection. In contrast, we do not impose any constraint on
Eve’s measurement, thus our schemes are secure against a
fully-quantum (though passive) Eve.

A. Direct Detection Combined With Optimal Binary
Slepian-Wolf Codes

After Alice and Bob perform direct detection on their optical
states, each of them has a binary sequence where 1 indicates
photons are detected in the corresponding source use. Denote
their sequences by A and B, respectively. Due to our source
model, A and B are distributed i.i.d. in time, while each pair

(A, B) has joint distribution according to a Z channel with

q ! PA(1) = 1 − e−E (63a)

µ ! PB|A(1|1) = 1 − e−ηE

1 − e−E . (63b)

Bob can help Alice to know B by sending her a
Slepian-Wolf code [28]. For the moment, we assume that
Alice and Bob have an optimal Slepian-Wolf code for the joint
distribution PAB (Later we drop this assumption to find more
realistic code constructions.) Then they can use the following
key-distribution scheme.

Scheme S-3:
1) Alice and Bob perform non-PNR direct detection to

obtain binary sequences A and B, respectively.
2) Bob sends Alice an optimal Slepian-Wolf code so that

Alice knows B with high probability. They use B as the
raw key.

3) Alice and Bob perform privacy amplification on B to
obtain the secret key.

The key rate and photon efficiency of Scheme S-3 satisfy
the following.

Proposition 6: Scheme S-3 achieves the key rate

RS-1(η, E) = I (A; B) (64)

where the mutual information is computed on the joint distri-
bution PAB given by (63). Furthermore, for all η ∈ (0, 1], the
photon efficiency of Scheme S-3 satisfies

rS-1(η, E) = log
1
ηE

+ 1 − H2(η)

η
+ o(1). (65)

Proof: We first prove (64). Its converse part follows
immediately from [27, Chapter I, Theorem 5.3], which states
that the secret-key rate cannot exceed I (A; B) even if Eve
possesses no quantum state that is correlated to A and B . Its
achievability part follows from [27, Chapter III, Theorem 2.2]:
when we eliminate the “helper subalgebra”, the theorem says
that the forward key capacity (i.e., the maximum key rate
achievable when Alice does not communicate to Bob) is lower-
bounded by I (A; B) − I (B; E) evaluated for the joint state
consisting of Alice’s and Bob’s measurement outcomes and
Eve’s post-measurement state. As shown in Section III-D,
Bob’s measurement outcome is independent of Eve’s
post-measurement state, so I (B; E) = 0.7

We next prove (65). Direct evaluation for the Z-channel
mutual information (43) for the channel parameters q and µ
of (63) gives:

I (A; B) = IZ (q, µ) (66)

= H2(e−ηE ) −
(

1 − e−E
)

H2

(
1 − e−ηE

1 − e−E

)

(67)

= ηE log
1
ηE

+ ηE − EH2(η) + o(E). (68)

Substituting in (64) and dividing by ηE yields (65).

7In Section III-D we consider the case where Bob performs a complete pro-
jective measurement in the number-state basis, whereas here Bob’s non-PNR
detection only distinguishes between zero and positive photon numbers. But
extending our claim for the former case to the latter is straightforward.
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Hence the conceptually simple Scheme S-3, which only
uses non-PNR direct detection both at Alice and at Bob,
is at most a constant term away from the optimal quantum
efficiency whose upper bound is given in (62) . Comparing
this with (36) and (52) we see that the differences between
the optimal photon efficiencies in communication, in Model C,
and in Model S are at most constants. Interestingly, rS-1(η, E)
is asymptotically the same as the photon efficiency in the
communication scenario where Alice sends binary number
states (45).

The problem with Scheme S-3 is, though, that the source
distribution PAB is highly skewed, which makes it difficult
to find a good Slepian-Wolf code, much like the difficulty
to obtain a channel code in the communication setting of
Section IV. While in communication and in Model C Alice
can use PPM to simplify code design, in Model S this is
no longer possible, as the sequences A and B are gov-
erned by the source, over which neither Alice nor Bob have
control. Nevertheless, Alice and Bob can use a PPM-like
scheme by parsing the sequences into frames, as we next
propose.

B. Simple Frame-Parsing

In a simple PPM-like scheme, Alice and Bob parse
the source uses into frames, and only use the frames
where each of them has exactly one detection to generate
the key.

Scheme S-4:
1) Alice and Bob perform non-PNR direct detection to

obtain binary sequences A and B, respectively.
2) Let b be as in (60). We divide the whole block of k source

uses into frames each consisting of b consecutive uses
(and ignore the remainder).

3) Bob selects all the frames in which he detects at least
one photon (B = 1 for at least one source use). Denote
the labels of these frames by {i1, i2, . . .}. He tells Alice
the values of i1, i2, . . . using the public channel.

4) Alice selects the frames among i1, i2, . . . in which
A = 1 for exactly one source use. Denote the labels
of these frames by {i j1, i j2 . . .}, Alice’s detection posi-
tions within these frames by {Yi j1

, Yi j2
, . . .}, and Bob’s

(unique) detection positions within these frames by
{Xi j1

, Xi j2
, . . .}. She tells Bob the values of j1, j2, . . .

using the public channel.
5) Alice and Bob generate the raw key by taking

the binary representations of {Xi j1
, Xi j2

, . . .} and of
{Yi j1

, Yi j2
, . . .}, respectively.

6) Alice and Bob perform privacy amplification on the raw
key to obtain the secret key.

As in Schemes C-1 and C-2, the information-reconciliation
step in Scheme S-4 is uncoded and hence very simple. The
performance of Scheme S-4 is similar to that of Scheme C-2
where Alice sends coherent states, in the sense that it loses
a log log 1/E term in photon efficiency compared to the
optimum (62). Interestingly, here the loss does not come
from the input states used, as they are identical to those in
Scheme C-1, but rather from the parsing process.

Proposition 7: The photon efficiency of Scheme S-4
satisfies

rS-2(η, E) = log
1
E

− log log
1
E

− 1 + o(1). (69)

The scheme has some information leakage, since Eve can
use her knowledge about the frames which were selected for
key generation (obtained by listening to the public channel), in
conjunction with the measurements she performs on the same
frames. The proof, which appears in Appendix B, shows that
this leakage is vanishing in the photon-efficient limit.

Note: If Alice uses PNR direct detection (which is techni-
cally more difficult than non-PNR), then Scheme S-4 can be
simplified so that it does not contain an privacy-amplification
step. Indeed, Alice can select those frames in which she detects
only one photon. In this case, since Bob also detects photons
(in fact, only one photon) in every such frame, we know that
Eve’s post-measurement states in these frames are all vacuum.
Hence Eve has no information about X̃ , and taking the binary
representation of X̃ already gives Alice and Bob a secret key.

The information loss of Scheme S-4 compared to
Scheme S-3 comes from two sources. First, the sequence
{i1, i2, . . .} itself contains useful information that can be used
to generate secret bits, but is not exploited in Scheme S-4.
Second, frames in which Alice detects photons in two or more
source uses are discarded. As it turns out, the first source of
information loss is dominant in the photon-efficient regime;
we next show how this loss can be recovered. (Loss from the
second source can also be partially recovered, e.g., by varying
the frame-lengths [29].)

C. Enhanced Frame-Parsing

Our idea of enhancing the frame-parsing scheme S-4 is
to extract secret-key bits also from the sequence {i1, i2, . . .},
which indicates the positions of frames selected by Bob. To
this end, instead of sending this sequence uncoded, Bob uses
a binary Slepian-Wolf code to send this information to Alice.
Note that such a code is much easier to construct than the one
in Scheme S-3, as the zeros (frames not selected by Bob) and
ones (frames selected by Bob) are much more balanced than in
the original binary sequence B; recall (60). Assuming that an
optimal Slepian-Wolf can be found, we can completely recover
the log log 1/E term and reduce the loss in photon efficiency
to a constant term.

Scheme S-5:
1) Alice and Bob use non-PNR direct detection to obtain

binary sequences A and B, respectively.
2) Let b be as in (60). We divide the whole block of k source

uses into frames each consisting of b consecutive uses
(and ignore the remainder).

3) Let B̃i be the indicator that Bob detects at least one
photon within the i th frame, and let Ãi be the same
indicator for Alice. Bob sends a Slepian-Wolf code to
Alice using the public channel, so that Alice can recover
B̃ based on the codeword together with Ã with high
probability.

4) Corresponding to every i such that B̃i = 1, Alice sends
a binary symbol Ci to Bob: Ci = 1 if within the i th
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frame there is exactly one source use where A = 1, and
Ci = 0 otherwise. Note that since Alice knows B̃ with
high probability, she can send Ci s simply as a bitstream
in an increasing order in i (and skip the is for which
B̃i = 0).

5) Alice and Bob perform privacy amplification on B̃ to
obtain the first part of the secret key.

6) For every i such that B̃i = Ci = 1, let Xi be the position
where A = 1, and let Yi be the (unique) position where
B = 1. Alice and Bob generate the second part of the
secret key by taking the binary representations of Xi
and of Yi , respectively, for all such is, and by then
performing privacy amplification.

Proposition 8: Scheme S-5 achieves photon efficiency

rS-3(η, E) ≥ log
1
E

− H2(η)

η
+ o(1) (70)

for all η ∈ (0, 1].
The proof, which appears in Appendix C, evaluates the key

rate that Step 5) adds over the rate of Scheme S-4. This part of
the key consists of frame labels, thus it is obviously correlated
with the messages sent over the public channel. However,
we show that in the photon-efficient limit Eve must “lose
synchronization” with the frame locations, thus the leakage
is vanishing.

D. Extension to the Case ηA < 1

The results for the case where ηA in (20) is equal to one
can be extended to the case where ηA < 1, though the expres-
sions become considerably more cumbersome. We hence only
give some heuristic explanations how our schemes should be
modified, and how they perform. Note that for the following
discussions the photon efficiency is defined in (34). Also recall
that we assume that the source is co-located with Alice, such
that the photons lost do not reach Eve.

Quantum Limit: Proposition 5 holds but with a different
constant term. The same proof ideas apply.

Direct Detection: Scheme S-3 can be directly applied to
the case where ηA < 1 without modification, and its photon
efficiency is different from the right-hand side of (65) by a
constant term, i.e., it is again at most a constant away from
the quantum limit.

Simple Frame-Parsing: Scheme S-4 needs some modifica-
tions in order to work when ηA < 1. First, in Step 2) Bob
should select only those frames in which there is exactly
one source use where B = 1. This is because there can
be frames in which Bob has more detections than Alice,
due to the loss to Alice. Second, after Step 3) Bob needs
to send Alice a b-ary Slepian-Wolf code on his detection
positions inside the selected frames, so that Alice will know
these positions with high probability. (This is a large-alphabet
code for symmetric errors, and is relatively easy to construct.)
This step is needed because, since both Alice and Bob only
observe lossy versions of the source, their detection positions
inside the selected frames might be different. Indeed, the
two positions are equal if they come from the same source
photon-pair, and are independent of each other if they come
from two different source photon-pairs. Finally, for Step 5)

(privacy amplification), Eve’s side information needs to be
examined more carefully compared to the case where ηA =
1. After these modifications, one can show that the photon
efficiency is the same as the right-hand side of (69) up to
the second term, i.e., the loss in photon efficiency scales like
log log 1/E.

Enhanced Frame-Parsing: If we incorporate the aforemen-
tioned modifications for Scheme S-4 to Scheme S-5, then
Scheme S-5 also works for the case ηA < 1, and its photon
efficiency is different from the right-hand side of (70) by a
constant.

We finally note that, for all three cases in which we restrict
Alice and Bob to using direct detection, we can also take
detector dark counts into account. Statistically, a dark count
at Alice can be treated as a source photon-pair that reaches
Alice but not Bob; similarly for a dark count at Bob. For
example, when the dark-count rates at Alice and at Bob are
λA and λB counts per slot, respectively, we can model the
system by replacing ηA, ηB , and E with η′

A, η′
B , and E ′ that

are solved from

η′
AE

′ = ηAE + λA (71a)

η′
BE

′ = ηbE + λB (71b)

η′
Aη

′
BE

′ = ηAηbE (71c)

without introducing any new elements to the model. Note that
this replacement of parameters yields the desired correlation
between Alice’s and Bob’s photon counts, but does not yield
the correct form for Eve’s optical states after Alice’s and Bob’s
measurements. However, as our proofs show, information in
Eve’s optical states does not affect the dominant terms in
secret-key rate in the regime of interest. This observation
combined with our results shows that dark counts only affect
the constant term in photon efficiency, which is again similar
to the previous results in optical communications [17].

VII. DISCUSSION: TOWARD SECRECY

WITH A GENERAL ADVERSARY

In this work we have presented schemes that approach the
optimal key rate in the photon-efficient limit, up to a constant
efficiency loss. Moreover, these schemes are practical, both
in the physical sense (utilizing realizable transmissions and
measurements) and in the algorithmic sense (using simple
protocols and off-the-shelf codes). However, throughout the
work we have assumed that Eve is limited to passive eaves-
dropping through a beamsplitter channel. We now comment on
the problems that may arise when this model does not hold,
and point out ways to overcome them.

First, suppose that Eve is still passive, but is free to change
the beamsplitter transmissivity η as a function of time, as long
as it satisfies some average constraint η̄. We now distinguish
between two strategies that Eve can use:

1) Pre-scheduled transmissivity. Take, for example,
Scheme C-2, and imagine that for each PPM frame,
Eve uses η = 0 for half the block, and η = 1 for the
other half. Then she knows that the key pertaining to
this frame must correspond to the part where η = 1,
gaining one bit per detected photon (thus reducing the
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key efficiency by log 2). This kind of attack can go
undetected, provided that Eve randomizes the schedule.
However, it is plausible that the efficiency loss is
bounded by a constant for any schedule.

2) Measurement-dependent transmissivity. In principle, Eve
can change η in a causal manner, based upon her
measurement outcomes. However, we believe that the
gain from using measurements can be shown to vanish
in the photon-efficient limit, by the same techniques used
to show that the information leakage is small.

It however still remains to be investigated whether our
intuitions above are correct, i.e., whether Eve indeed cannot
gain from changing the beamsplitter transmissivity.

If Eve is allowed to transmit as well, other types of attacks
are possible. A very simple and efficient one is “intercept
and resend”: Eve uses direct detection on the channel meant
for Bob, and then upon detection of a photon, transmits a
substitute one to Bob. This way Eve can obtain information
about Bob’s sequence of detections, and if she uses much
higher bandwidth than Bob, the delay will not be detected.

In fact, all QKD protocols face this problem. For example,
in the BB84 protocol [4], the key is generated using the
polarization of a photon; Eve can make a measurement, then
transmit to Bob a photon with the same polarization. The
solution for BB84 is that Alice and Bob measure in either of
two mutually unbiased bases, according to local randomness.
Only if they happened to measure in the same basis, the
measurement results are used, inflicting a rate loss of factor 2.
By sacrificing rate, they can now a posteriori find out whether
they used the same basis, and compare the correlation of the
polarizations to the expected statistics, thus authenticating the
received photons.

Extending this idea to schemes based on photon arrival
times involves an extension of the concept of mutually unbi-
ased bases to continuous variables; see [30]. Specifically, in
Model C the modulation and measurements can be performed
either in the time or in the frequency domain with the help
of dispersive optics; see [31]. Alternatively, in Model S, one
can use interferometry to verify that the photons received by
Alice and Bob are indeed entangled; see [32].

APPENDIX

A. Proof of Proposition 4

By the same argument as in the proof of Proposition 2, we
know that the raw keys generated by Alice and Bob (before
privacy amplification) are the same, and are independent of
Bob’s messages in the information-reconciliation step. It is,
however, dependent on Eve’s optical states. We thus need to
determine how much secret key can be distilled from the raw
key.

The quantum states in different frames are mutually inde-
pendent, so we need only to analyze one frame that is selected
by Bob. We note that, when Alice sends the coherent state
|
√

bE〉, Eve’s output state is |√(1 − η)bE〉, and is independent
of Bob’s measurement outcome conditional on Alice’s input.
Thus, using (17), we know that the number of secret nats we
can obtain in each selected frame can be arbitrarily close to

H (X̃ |ρEb
), where X̃ is uniformly distributed over {1, . . . , b},

and where ρEb
is a b-mode bosonic state described as follows:

conditional on X̃ = i , i ∈ {1, . . . , b}, ρEb
has the coherent

state |√(1 − η)bE〉 in the i th mode and has the vacuum state
|0〉 in all other modes. Note that the total number of photons
in ρEb

is (1 − η)bE , so

H (ρEb
) ≤ b

{(
1 + (1 − η)E

)
log

(
1 + (1 − η)E

)

− (1 − η)E log
(
(1 − η)E

)}
(72)

=
⌈

1
E log 1/E

⌉ {
(1 − η)E log

1
E

+ O(E)

}
(73)

= (1 − η) + o(1). (74)

Here, (72) follows from the well-known fact that the maximum
entropy of a b-mode bosonic state with a certain average
photon number is achieved by the state consisting of b i.i.d.
thermal states [33]. Now the number of secret nats per selected
frame satisfies

H (X̃|ρEb
) = H (X̃) − I (X̃ ; ρEb

) (75)

≥ H (X̃) − H (ρEb
) (76)

= log b − H (ρEb
) (77)

= log
1
E

− log log
1
E

− (1 − η) + o(1). (78)

We next consider the number of frames per k channel uses
that will be selected by Bob, which we denote by N(k). When
Alice sends |

√
bE〉, Bob’s output has a Poisson distribution

of mean ηbE , so the probability that Bob detects at least one
photon is 1 − e−ηbE . Hence, by the Law of Large Numbers,

lim
k→∞

N(k)

k
= lim

k→∞
(1 − e−ηbE )*k/b+

k
= 1 − e−ηbE

b
(79)

with probability one. Using

e−x ≤ 1 − x + x2

2
, x ≥ 0, (80)

the right-hand side of (79) can be lower-bounded as

1 − e−ηbE

b
≥ ηE

(
1 − ηbE

2

)
. (81)

The photon efficiency of the proposed scheme can now be
lower-bounded as

rC-2 = 1
ηE

· 1 − e−ηbE

b
· H (X̃ |ρEb

) (82)

≥
(

1 − ηbE
2

) {
log

1
E

− log log
1
E

− (1 − η) + o(1)

}

(83)

=



1 −
η

⌈
1

E log 1/E

⌉
E

2





·
{

log
1
E

− log log
1
E

− (1 − η) + o(1)

}
(84)

= log
1
E

− log log
1
E

− (1 − η) + o(1), (85)

which is as claimed.
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B. Proof of Proposition 7

We first observe that, in every selected frame, the detection
positions of Alice and Bob must be the same. This is because,
due to (63), B = 1 can happen only if A = 1, and because by
our choice each selected frame contains only one source use
where A = 1. We thus know that Alice’s and Bob’s raw keys
are the same with probability one.

To obtain the secret-key rate, we need to compute the
entropy of the raw key conditional on Eve’s observations. Note
that the quantum states inside different frames are mutually
independent. We consider one frame that is selected by Alice
and Bob. Denote the detection position in the frame by X̃ . It is
clear that X̃ is uniformly distributed over {1, . . . , b} and is
independent of the label of this frame. All Eve’s information
about X̃ is in her optical state from the b source uses that
form this frame: if the source use where A = B = 1 contains
more than one photons, then Eve could also detect a photon
in this source use, hence knowing Alice’s and Bob’s detection
position. But, as we next show, this information leakage is
small. To this end, we first note that in source uses where
A = B = 0, Eve’s optical state is vacuum. Indeed, according
to our source model, the number of photons in Alice’s state
equals the sum of the numbers of photons in Bob’s and Eve’s
states with probability one. Therefore, when both Alice and
Bob make direct detections on a source use and observe no
photon, Eve’s post-measurement state in the same source use
becomes the vacuum state. In the (unique) source use where
A = B = 1, Eve’s post-measurement state is the same as her
state without the condition A = B = 1 given in (29). This
is because A = B = 1 means nothing but that Bob’s photon
number is positive, but Eve’s post-measurement state is inde-
pendent of Bob’s photon number, as shown in Section III-D.
Denote Eve’s state over the whole frame by σEb

. We now
know that it consists of b − 1 vacuum states and one state of
the form (29) whose position inside the frame is random. The
expected number of photons in σEb

is (1−η)E , so the entropy
of σEb

is upper-bounded by [33]

H (σEb
) ≤ b · g

(
(1 − η)E

b

)
= o(1). (86)

Thus the amount of secret information extractable from one
selected frame is lower-bounded by

H (X̃|σEb
) = H (X̃) − I (X̃ ; σEb

) (87)

≥ H (X̃) − H (σEb
) (88)

≥ log
⌈

1
E log 1/E

⌉
+ o(1) (89)

= log
1
E

− log log
1
E

+ o(1). (90)

It now remains to compute the probability that a specific
frame will be selected by Alice and Bob. A simple lower
bound on the probability of a frame being selected is the
following: suppose both Bob and Eve make PNR direct
detections on their states, then a frame is selected by Alice
and Bob if (but not only if) Bob detects exactly one photon in
the frame while Eve detects no photon. Bob’s photon number
has a Poisson distribution of mean ηbE , while Eve’s photon

number has a Poisson distribution of mean b(1 −η)E , and the
two photon numbers are independent. Hence the probability a
frame being selected is lower-bounded by

(
ηbE e−ηbE

)
·
(

e−b(1−η)E
)

= ηbE − ηb2E2 + o
(

1
log 1/E

)
.

(91)
Multiplying (91) with H (X̃ |σEb

) gives us the secret-key nats
per frame, where we count both selected and unselected
frames. Simple normalization then yields the photon efficiency

rS-2(η, E) ≥ 1
ηbE

·
(
ηbE − ηb2E2 + o

(
1

log 1/E

))

·
(

log
1
E

− log log
1
E

+ o(1)

)
(92)

= log
1
E

− log log
1
E

− 1 + o(1). (93)

C. Proof of Proposition 8

The second part of the secret key, which is generated in
Step 5) in Scheme S-5, is exactly the (whole) secret key
generated by Scheme S-4, and hence contributes to the total
photon efficiency by the right-hand side of (69). It is clear that
this is independent of the first part of the key, as the latter only
contains information of the frame labels. We thus only need
to evaluate the contribution to the photon efficiency from the
first part of the key which is generated in Step 5).

Consider a block of * length-b frames. To compute the
length of the first part of the key that can be obtained from
these frames, we first consider the information leakage due
to Bob’s message to Alice. Note that ( Ã*, B̃*) is distributed
i.i.d. in time, where each pair (A, B) has joint distribution
according to a Z channel with

q̃ ! PA(1) = 1 − e−bE (94a)

µ̃ ! PB|A(1|1) = 1 − e−ηbE

1 − e−bE . (94b)

The optimal Slepian-Wolf code for Bob to convey B̃*

to Alice should contain, asymptotically, H (B̃| Ã) nats per
frame [28]. Let MB be the message which Bob sends to Alice,
then

H (MB) = *H (B̃| Ã) + *ε (95)

where ε tends to zero as * tends to infinity.
We next bound the information leakage due to the message

which Alice sends to Bob. A simple upper bound is: for each
frame where B̃ = 1, Alice needs to send Bob at most one bit.
From (94) we can obtain

PB̃(1) = 1 − e−ηbE . (96)

Let MA be the message which Bob sends to Alice for * frames,
then

H (MA) ≤ *
(

1 − e−ηbE
)

+ *ε. (97)

We finally consider Eve’s quantum state from the optical
channel. Denote this state over * frames by ρEb*

. Since,
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as shown in Section III-D, it is independent of Bob’s measure-
ment (direct detection) outcomes, and since B̃ is a function of
Bob’s measurement outcomes, we know that

I
(

B̃*; ρEb*
)

= 0. (98)

We now use (96), (97) and (98) to bound the length of the
first part of the key for * frames which, according to (17), is
given by

H (B̃*|MA, MB ,ρEb*
)

= H (B̃*) − I (B̃*; ρEb*
)︸ ︷︷ ︸

=0

− I (MA, MB ; B̃b*|ρEb*
)︸ ︷︷ ︸

≤H(MA)+H(MB)

(99)

≥ H (B̃*)︸ ︷︷ ︸
=*H(B̃)

− H (MA)︸ ︷︷ ︸
≤*(1−e−ηbE)+*ε

− H (MB)︸ ︷︷ ︸
=*H(B̃| Ã)+*ε

(100)

≥ *H (B̃) − *
(

1 − e−ηbE
)

− *H (B̃| Ã) − 2*ε (101)

= *I ( Ã; B̃) + *ηbE − 2*ε + o(E). (102)

Hence, for large enough *, the length of the first part of the
key per frame is given by

I ( Ã; B̃) + *ηbE + o(E). (103)

We next evaluate I ( Ã; B̃). Comparing the parameters (94)
to (63), we see that I ( Ã; B̃) is the same as I (A; B) (68),
replacing E with bE , where, recalling (60),

bE = 1
log 1/E

+ o(E). (104)

Thus,

I ( Ã; B̃)= H2(e−ηbE)−
(

1 − e−bE
)

H2

(
1−e−ηbE

1 − e−bE

)

(105)

= ηbE log log
1
E

+ ηbE − bEH2(η)

+ o
(

1
log 1/E

)
. (106)

We can now compute the photon efficiency coming from the
first part of the secret key in Scheme S-5 by dividing (103) by
ηbE (the average number of photons Bob detects per frame),
and by using (106). This photon efficiency is at least

log log
1
E

+ 1 − H2(η)

η
+ o(1). (107)

Adding (107) to the right-hand side of (69), i.e., to the photon
efficiency coming from the second part of the secret key, we
conclude that

rS-3(η, E) ≥ log
1
E

− H2(η)

η
+ o(1). (108)
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