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Abstract—High-dimensional quantum key distribution (QKD)
systems that exploit temporal correlation among entangled pho-
tons are of growing practical interest. In such systems, the
observation time is typically partitioned into frames of fixed
duration, with pulse-position modulation (PPM) coding used
within each frame, via which a secret key is established between
the parties. Such schemes can be very inefficient in their use
of photons, since only a fraction of the frames can be used. As
an alternative, we describe an efficient class of schemes with
adaptive frame size whose performance can converge to the
fundamental limit much more quickly. We analyze and compare
the performances of both fixed and adaptive PPM schemes,
taking into account photon transmission and detection losses.
Further numerical results reveal the significant performance gain
of adaptive PPM relative to fixed PPM.

I. INTRODUCTION

Quantum key distribution (QKD) aims at establishing a
secret key between two parities Alice and Bob with provably
security and high bandwidth. Recently, there has been grow-
ing interest in QKD systems with high-dimensional quantum
states, due to their increased sensitivity to eavesdropping
and decreased sensitivity to noise [1], [3]. A system for
high-dimensional QKD is demonstrated in Fig. 1, in which
a photon-entanglement source, co-located with Alice, emits
entangled photon pairs based on a Poisson process. In this
system, the time is discretized, namely, the time is divided
into small units called time-bins. The rate of the Poisson pro-
cess for photon-pair emission is λ photon-pairs per time-bin.
Detectors at Alice or Bob can detect whether there are photons
in each time-bin, but they can not determine the exact number
of photons as well as their arriving times. The binary (time-
pulse) sequences observed by Alice and Bob are different
due to several factors including photon transmission losses,
photon detection losses and dark current at detectors. Photon
transmission losses happen when a photon is transmitted from
the source to Bob, and we assume that each photon has a
probability η to be successfully transmitted. Photon detection
losses happen at both the detectors of Alice and Bob, and
each photon arriving at a detector has a probability ηD to be
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Fig. 1. A scenario for high-dimensional quantum key distribution.

detected. We call η the transmission efficiency and ηD the
detection efficiency.

In the key-distribution system, we assume that there is
a third party Eve, who is trying to eavesdrop the quantum
communications between Alice and Bob by placing a beam
splitter on the path of photon transmission. 1 To guarantee the
security of the system, we consider the worst case, i.e., all the
lost photons in transmission are detected by Eve. In order to
establish a secret key based on the correlated time-pulse obser-
vations, Alice and Bob communicate over a public channel. It
is assumed that every message communicated between Alice
and Bob over the public channel can be captured by Eve.

The problem of high-dimensional QKD is formulated as
follows. Let A ∈ {0, 1}n be the binary sequence observed by
Alice. A indicates whether there are photons detected by Alice
in each time-bin. If Ai = 1, it means that there are at least one
photons detected by Alice in the ith time-bin, and we call this
time-bin a photon-bin; otherwise, Ai = 0, and we call it an
empty-bin. Similarly, we let B and E be the binary sequences
observed by Bob and Eve, respectively. The goal of QKD is
to establish a secret key S between Alice and Bob (based on
their observations A and B) such that S is almost uniformly
distributed and Eve knows little information about S. The
difficulty of high-dimensional QKD comes from the sparsity
of A and B, hence traditional techniques such as Slepian-Wolf
coding [6] cannot be directly applied for efficiently generating

1Eve may also perform nondemolition measurement on incoming photons.
This activity, causing quantum collapse, can be observed by Alice and Bob
in principle, e.g., by using Franson interferometer [1]. However, it is beyond
the scope of the current paper.
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a secret key.
Pulse-position modulation (PPM) is a common technique

that converts the binary time-pulse sequences into large-
alphabet sequences of fixed alphabet size; hence it enables us
to transfer the high-dimensional key-distribution problem into
a studied problem named large-alphabet secret key distribution
[7], for which near-optimal key-distribution schemes exist.
Although simple PPM has been proposed [4], it is not efficient
for preserving useful information. In this paper, we introduce
a more efficient scheme, called adaptive PPM, which makes
good use of the information discarded by the simple PPM.
Compared to simple PPM, the performance of adaptive PPM
can converge to the theoretical limit much more quickly. In
addition, in contract to previous study on simple PPM, we
analyze and evaluate the performances of both the schemes
based on a more realistic model, i.e, taking into account photon
transmission losses, detection losses and multi-pair events.
Numerical results reveal the significant performance gain of
adaptive PPM relative to simple PPM.

II. PRELIMINARY

Given a system described in the introduction, we define the
key rate of a protocol as the expected number of secret key
bits generated per time-bin. The maximal key rate of a key-
distribution protocol was studied in [5]. Specifically, given a
time-bin, we let a = 1 denote the event that Alice has non-zero
photon detections in the time-bin; otherwise, a = 0. Similarly,
b indicates whether Bob has photon detections in the time-bin,
and e indicates whether Eve has photon detections in the time-
bin. Let r∗ be the maximal key rate, according to Theorem
2 and Theorem 3 in [5] as well as the fact that b and e are
independent, we get r∗ = I[a; b], where I[a; b] is the mutual
information between a and b.

Given the photon-emission rate λ, transmission efficiency η
and detection efficiency ηD, the joint probability distribution
of a, b, e, i.e., P (a, b, e), can be uniquely determined. For the
sake of simplicity, we use pabe to denote P (a, b, e) and use
pab to denote P (a, b). For instance,

p11 =
∑

w≥1

Pemit(w)(1− (1− ηD)w)(1− (1− ηηD)w),

where Pemit(w) =
e−λλw

w! is the probability of emitting w pairs
in a time-bin. The details of calculating all pab and pabe are
omitted.

It is known that near-optimal protocols exist for large-
alphabet secret key distribution [7]. Specifically, let Xn ∈
Xn, Y n ∈ Xn be two memoryless sequences observed by
Alice and Bob respectively, and let Zn ∈ Zn be a memoryless
sequence observed by Eve. According to Theorem 3 in [5], the
lower bound on the maximal key rate is

max(I[X;Y ]− I[X;Z], I[X;Y ]− I[Y ;Z]).

In order to fairly evaluate and compare the performances
of PPM schemes, we assume that large-alphabet secret-key-
distribution protocols achieving this theoretical lower bound
exist.

III. PPM FOR PHOTON TRANSMISSION LOSSES

In this section, we consider the ideal case that the difference
between A and B is purely caused by photon transmission
losses, i.e., the detectors at Alice and Bob can detect all the
incoming photons correctly and successfully. In this case, PPM
schemes result in a common sequence between Alice and Bob,
and no further error correction is required.

A. Simple PPM
Simple PPM has been proposed to eliminate the effect of

photon transmission losses in high-dimensional QKD [4]. In
simple PPM, all the time-bins are divided into frames, each
consists of k time-bins. Given a frame, we let NA denote
the number of photon-bins observed by Alice and NB denote
the number of photon-bins observed by Bob. Only frames
with NA = NB = 1 are used for key distribution, and we
call them active frames. Note that if we only consider photon
transmission losses, then given an active frame, the position of
the photon-bin observed by Alice is the same as that observed
by Bob in that frame. So based on the positions of photon-bins
in active frames, Alice and Bob can get a common sequence
of alphabet size k, where k is the frame length.

The probability for a frame being active is P (NA =
1, NB = 1) =

(k
1

)
p11p

k−1
00 , where pab is the joint probability

distribution of a and b observed Alice and Bob in a time-bin. In
each active frame, there is a single photon-bin, and its position
is uniformly distributed. So based on each active frame, Alice
and Bob can share log2 k common bits. However, they are
not perfectly secure: It is possible that Alice, Bob and Eve all
have photon detections in the same time-bin, when there are
multiple photon-pairs emitted at the same time. In this case,
Eve also knows the position of the photon-bin, which has been
observed by Alice and Bob, so the common bits generated by
this active frame is completely insecure. It is easy to calculate
the probability that an active frame is secure, which is equal
to

P (e = 0|a = 1, b = 1) = e−λ(1−η).

In the simple PPM scheme, an optimal frame length k can
be selected to maximize the key rate. In this case, the key rate
of the simple PPM scheme can be written as

rs(λ, η) = max
k≥2

e−λ(1−η)p11p
k−1
00 log2 k.

B. Adaptive PPM
Simple PPM is not efficient for key distribution, since a

big fraction of frames with useful information are discarded
(only frames with NA = 1 and NB = 1 are used). In this
subsection, we introduce a more efficient PPM scheme, called
adaptive PPM, which uses all the frames with NA, NB ≥ 1.
The following procedure shows how to efficiently generate
secret bits from a frame with NA ≥ 1, NB ≥ 1.

1) Alice randomly divide the frame into NA groups (NA is
the number of photon-bins in the frame) such that each
group includes exactly one photon-bin, then she sends
this group information to Bob. Note that the time-bins
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in the same group is not necessary to be adjacent. A
way of determining the groups is described as follows:
Let i1, i2, ..., iNA be the photon-bins detected by Alice,
and let G1, G2, ..., GNA be the groups, i.e., the sets of
bins without overlapping. At the beginning, Alice sets
Gj = {ij} with 1 ≤ j ≤ NA, i.e., each group selects a
photon-bin. After this step, each group randomly select
one unassigned bin to add iteratively until all the bins
have been assigned.

2) Bob replies the indices of the groups that he has
photon detections back to Alice. Assume the groups
Gj1 , Gj2 , ..., GjNB

contain photon-bins detected by Bob,
then those groups can be used to generate a secret key.
For these groups, each includes exactly one photon-bin
detected by Alice and exactly one photon-bin detected
by Bob, at the same position. We call these groups as
active groups.

According to our model, the NA photon-bins detected by
Alice are uniformly distributed in the frame, and the NB

photon-bins detected by Bob are uniformly distributed in
these NA photon-bins. Based on this observation, we get the
following result.

Lemma 1. Let G be an active group in the adaptive PPM
scheme, if Eve does not have any photon detections in this
group, then the position of the photon-bin observed by both
Alice and Bob is uniformly distributed in G.

Given a frame of length k, the number of photon-bins
observed by Alice and the number of photon-bins observed
by Bob have the following distribution,

P (NA, NB) =
( k
NA−NB NB

)
pNB
11 pNA−NB

10 pk−NA
00 .

The size of each group is about k
NA

. From each group Alice
and Bob can extract about log2

k
NA

common bits. So the total
number of common bits generated from this frame is

l(NA, NB) % NB log2
k

NA
.

However, as we discussed above, not all the groups are
secure for generating secret bits; only the groups that Eve
does not have any photon detections are secure. Following
the same argument for the simple PPM scheme, we conclude
that the probability for each active group being secure is
P (e = 0|a = 1, b = 1) = e−λ(1−η).

If we consider all the possible frames with NA, NB ≥ 1,
then we get the key rate of the adaptive PPM scheme,

ra(λ, η) =
1

k

∑

NA,NB≥1

P (NA, NB)e
−λ(1−η)NB log2

k

NA
.

(1)

C. Analytical Approximations

Here, we compare the maximal key rate r∗(λ, η), the key
rate of the simple PPM scheme rs(λ, η), and the key rate of
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Fig. 2. The approximated normalized rates of the PPM schemes when ηD =
1, where o(λ) terms are omitted.

the adaptive PPM scheme ra(λ, η) when the photon density
is low, i.e, λ& 1. In this case, the rates can be written as

r∗ = ηλ log2
1

λ
+ ((1− η) log2(1− η) + log2(e)η)λ+ o(λ),

rs = ηλ log2
1

λ
− ηλ log2 log

1

λ
− ηλ+ o(λ)

ra = ηλ log2
1

λ
+ o(λ).

We see that all the rates r∗(λ, η), rs(λ, η), ra(λ, η) have the
same first term. It implies that as λ → 0, both rs(λ, η) and
ra(λ, η) converge to r∗(λ, η). However, the convergence rate
strongly depends on the other terms, especially the second and
the third terms.

We ignore the o(λ) terms and normalize all the three
rates by dividing them with r∗(λ, η = 1). We see that
the normalized key rates of the simple PPM scheme and
the adaptive PPM scheme are independent of η, and the
normalized maximal key rate is a non-increasing function of
η. Fig. 2 compares the three approximated normalized rates.
It shows that ra(λ, η) can quickly converge to r∗(λ, η), while
the convergence rate of rs(λ, η) is extremely slow.

IV. PPM WITH PHOTON DETECTION LOSSES

In this section, we consider a general case that both photon
transmission losses and detection losses exist. In this case, the
sequences yielded by the PPM schemes are different for Alice
and Bob. Hence, we divide the problem of high-dimensional
QKD into two separate tasks: pulse-position modulation and
large-alphabet secret key distribution.

A. Simple PPM
In this subsection, we study the key rate of the simple PPM

scheme when ηD < 1. Given a frame of length k, we let NA,
NB and NE denote the numbers of photon-bins observed by
Alice, Bob and Eve, respectively. The probability for a frame
being active is

P (NA = 1, NB = 1) =

(
k

1

)
p11p

k−1
00 +

(
k

1 1

)
p10p01p

k−2
00 .

The key question is that, if a, b, e has a joint distribution
pabe, what is the expected number of secret key bits generated
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from an active frame of length k, denoted by ρactive(k)? Based
on ρactive(k), we can get the key rate of the simple PPM scheme

rs(λ, η, ηD) = max
k

P (NA = 1, NB = 1)
ρactive(k)

k
. (2)

According to our assumption that optimal large-alphabet
key-distribution schemes exist, we can write ρactive(k) as

ρactive(k)

=max(H(A|E,NA = NB = 1)−H(A|B,NA = NB = 1),

H(B|E,NA = NB = 1)−H(B|A,NA = NB = 1)). (3)

Given an active frame, where NA = NB = 1, we can write
A and B as integers in {0, 1, ..., k − 1}. The probability that
A (= B is

δ =

(k
2

)
p10p01p

k−2
00(k

1

)
p11p

k−1
00 +

( k
1 1

)
p10p01p

k−2
00

.

Since photon-bins are uniformly distributed in each frame,
given a frame,

H(A|B,NA = NB = 1) = H(B|A,NA = NB = 1)

=(1− δ) log2
1

1− δ
+ δ log2

k − 1

δ
.

Here, we focus on the calculation of H(A|E,NA =
1, NB = 1) for a frame of length k. First, we compute
α(NE) = P (NE , NA = 1, NB = 1) based on

P (NE = w,NA = 1, NB = 1)

=
( k
1 w−1

)
p1111p

w−1
001 pk−w

000 +
( k
1 w

)
p1110p

w
001p

k−w−1
000

+
( k
1 1 w−2

)
p101p011p

w−2
001 pk−w

000

+
( k
1 1 w−1

)
p100p011p

w−1
001 pk−w−1

000

+
( k
1 1 w−1

)
p101p010p

w−1
001 pk−w−1

000

+
( k
1 1 w

)
p100p010p

w
001p

k−w−2
000 .

If Ei = 1 for all i with Ai = 1, then we denote A ⊆ E.
Similarly as above, we get

P (A ⊆ E,NE = w,NA = 1, NB = 1)

=
( k
1 w−1

)
p1111p

w−1
001 pk−w

000

+
( k
1 1 w−2

)
p101p011p

w−2
001 pk−w

000

+
( k
1 1 w−1

)
p101p010p

w−1
001 pk−w−1

000 .

For simplicity, we denote P (A ⊆ E|NE , NA = 1, NB = 1)
as β(NE).

Due to the symmetry of time-bin positions, when A ⊆ E,
the position of the photon-bin in A is uniformly distributed in
{i|Ei = 1}. As a result,

H(A|E,NA = 1, NB = 1) =
∑

NE

P (NE |NA = 1, NB = 1)

[β(NE) log2
NE

β(NE)
+ (1 − β(NE)) log2

k − NE

1 − β(NE)
].

Based on the same method, we can also compute
H(B|E,NA = 1, NB = 1). Finally, we can get the key rate
rs(λ, η, ηD) of the simple PPM scheme based on (2) and (3).

B. Adaptive PPM
When ηD = 1, the adaptive PPM scheme described in

Section III-B divides a frame into groups such that each group
includes at most one photon-bin detected by Alice and at most
one photon-bin detected by Bob. However, this property does
not always hold when ηD < 1. In order to make the adaptive
PPM scheme working for the general case, our idea is to
continue to divide each group into sub-groups randomly, such
that each subgroup includes at most one photon-bin detected
by Alice and at most one photon-bin detected by Bob.

1) Let NA be the number of photon-bins observed by Alice
in the frame. Alice randomly divides the frame into
NA groups such that each group includes exactly one
photon-bin, then she sends this group information to
Bob. The size of each group is about k

NA
.

2) For a group, if Bob has observed MB photon-bins in
the group. He randomly divides the group into MB

subgroups such that each subgroup includes exactly one
photon-bin observed by him, then he sends the subgroup
information to Alice.

3) Alice determines those subgroups in which Alice has
photon detections (the number of photon-bins in the
subgroup is exactly one), and replies the indices of
these subgroups back to Bob. After this process, Alice
and Bob can determine the subgroups with exactly one
photon-bin observed by Alice and exactly one photon-
bin observed by Bob, which are used for key distribu-
tion.

Given a frame of length k, the distribution of NA is given
by P (NA) =

( k
NA

)
pNA
1 pk−NA

0 . Let h(k′) be the expected
number of secret bits generated from a group of size k′, then
the expected number of secret bits generated per frame is

k∑

NA=1

P (NA)[UA · h(* k

NA
+) + (NA − UA) · h(,

k

NA
-)],

where UA = remainder(k,NA).
Let MB be the number of photon-bins observed by Bob in

a group of size k′, then P (MB) is
(

k′

1 MB−1

)
p111p

MB−1
01 pk−MB

00 +
(

k′

1 MB

)
p110p

MB
01 pk−MB−1

00(
k′

1

)
p1p

k−1
0

.

In this case, we get h(k′), which is equal to
k′∑

MB=1

P (MB)[
UB

MB
ρactive("

k′

MB
#) + MB − UB

MB
ρactive($

k′

MB
%)],

where UB = remainder(k′,MB), and ρactive(k′) is the expect-
ed number of secret bits generated from an active subgroup
of size k′. It can be proved that ρactive(k′) can be calculated
based on formula (3).

Finally, we get the key rate ra(λ, η, ηD) of the adaptive
PPM scheme, which is equal to

ra =
1
k

k∑

NA=1

P (NA)[UA · h(" k
NA

#) + (NA − UA) · h($
k
NA

%)].
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Fig. 3. The performance of the simple PPM scheme and the adaptive PPM scheme when ηD = 1 and k = 256.
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Fig. 4. The effect of ηD to the performances of the PPM schemes.

V. NUMERICAL RESULTS

In high-dimensional QKD, the frame length in a PPM
scheme is usually limited by the coherence time of quantum
states. It guarantees that the system cannot be attacked, since
the randomness in the secret key only comes from the Heisen-
berg uncertainty principle [1]. In this section, given a maximal
frame length, we compare the performance of the simple PPM
scheme and the adaptive PPM scheme numerically.

Fig. 3 compares the key rates of the simple PPM scheme
and the adaptive PPM scheme when ηD = 1 and k = 256. For
the simple PPM scheme, k = 256 is the maximal frame length
instead of the actual frame length selected. We see that when
the photon density (emission rate) λ is very small (λ & 1

k ),
the adaptive PPM scheme has almost the same performance
as the simple PPM scheme, since the number of frames is
dominated by the frames with NA ≤ 1, NB ≤ 1 when k is
fixed and λ& 1

k . When 1
k < λ < 0.1, the performance of the

adaptive PPM scheme is close to the theoretical upper bound.
It is the region of practical interests. When λ is not small,
saying λ > 0.1, there is a certain gap between the key rate
of the adaptive PPM scheme and the theoretical limit. But the
performance gain of the adaptive PPM scheme compared to
the simple PPM scheme is still significant.

Fig. 4 studies the effect of ηD to the performances of the
PPM schemes under two different groups of parameters. It
is interesting to see that as ηD decreases, the key rate of

the adaptive PPM scheme converges to the theoretical limit.
The intuition behind this phenomena is that the imperfectness
of detectors at Alice and Bob makes it harder for Eve to
predict Alice or Bob’s observations. In contract to photon
detection losses, where photons are lost at detectors, dark
current has been observed in real quantum systems, and it
causes independent photon detections at Alice or Bob even
when there are no incoming photons. With further study,
we found that both photon detection losses and dark current
in systems do not hurt the performances of PPM schemes
(relative to the theoretical maximal rate).
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