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Abstract—Secret key extraction, the task of extracting a
secret key from shared information that is partially known by
an eavesdropper, has important applications in cryptography.
Motivated by the requirements of high-speed quantum key
distribution, we study secret-key extraction methods with simple
and efficient hardware implementations, in particular, linear
transformations based on low-density random matrices. We show
that this method can achieve the information-theoretic upper
bound (conditional Shannon entropy) on efficiency for a wide
range of key-distribution systems. In addition, we introduce a
numerical method that allows us to tightly estimate the quality
of the generated secret key in the regime of finite block length,
and use this method to demonstrate that low-density random
matrices achieve very high performance for secret key extraction.

I. INTRODUCTION

Secret key extraction, also known as privacy amplification,
introduced by Bennett, Brassard and Bobert [3], is the task of
extracting a secret key from a shared random sequence that is
partially known by an eavesdropper. It plays an essential role
in secret key distribution and a broad range of cryptographic
applications. Specifically, let X ∈ {0, 1}n be the common
random sequence shared by Alice and Bob in a secret-key
distribution protocol, and let Z be the information known by
an eavesdropper Eve. The goal of secret key extraction is to
extract a secret key Y ∈ {0, 1}m that is virtually uniformly
distributed given all the information known by Eve. Formally,

H(Y |G,Z) ≥ m− ε (1)

for specified small ε [4], where G : {0, 1}n → {0, 1}m
is the function selected to map X to Y . This information-
theoretical security requirement, known as strong secrecy [9],
is widely used in the studies of information theoretically (or
unconditionally) secure systems, and usually stronger than the
statistical-distance requirement used in randomness extractors
[11]. This strong secrecy ensures that information the eaves-
dropper obtains about the secret key is negligibly small in
an absolute sense. For instance, if we apply the key Y in the
well-known one-time-pad scheme [12] for cryptographic com-
munication, then (1) guarantees that the mutual information
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between the transmitted content and all possible information
known by an eavesdropper is at most ε, i.e., the total amount
of possible leaked information is upper bounded by ε bits.

An important technique for secret key extraction is universal
hashing [4], [7], which was introduced by Carter and Wegman
[6]. Randomness extractors [11] are another type of construc-
tion that possibly could be used. However, many existing
constructions are not feasible for high-speed quantum key
distribution, which requires a simple and efficient hardware
implementation of secret key extraction [14]. Our interest falls
into linear transformations based on sparse matrices, i.e., the
extracted secret key Y is MX for a sparse m× n matrix M
over GF (2). In contrast to the other approaches, this approach
should have an efficient hardware implementation based on
FPGAs [15]. We demonstrate that the sparse matrix M can
be randomly constructed, and it can achieve the information-
theoretical upper bound on efficiency for a wide range of key-
distribution systems.

We consider a widely used scenario for key distribution
described in [1], [8]. It is assumed that Alice and Bob observe
two memoryless sequences A ∈ AN and B ∈ BN from a
secret channel, such as a quantum channel. Meanwhile, an
eavesdropper Eve may observe a sequence E ∈ EN , which
is correlated with A and B. For instance, Eve may passively
listen to the secret channel and she gets a memoryless se-
quence E; or Eve actively selects a fraction of symbols in
A to listen, hence she knows at most t symbols in A. As a
generalization of both cases, we let E be an independent se-
quence, in which the distribution of each symbol is controlled
by Eve. In a protocol of secret key distribution, Alice and
Bob communicate over a public channel, and we assume that
every message communicated between Alice and Bob can be
eavesdropped by Eve. A simple scheme for key distribution is
based on Slepian-Wolf coding [13], namely, Alice generates
a message R ∈ {0, 1}r based on A and sends it to Bob. By
jointly decoding B and R, Bob can obtain the sequence A with
a probability almost 1. Hence the key-distribution problem is
converted into the problem of secret key extraction, where A is
the shared memoryless sequence between Alice and Bob, and
(E,R) is the information known by Eve. It is assumed that
R = h(X) for an arbitrary function h : {0, 1}n → {0, 1}r.

In this paper, we study the application of low-density ran-
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dom matrices to the secret-key-extraction problem described
above. Specifically, let M be an m × n low-density random
matrix over GF (2), and compute the secret key as Y = MX .
We show that as n becomes large enough, the number of
secret bits that can be extracted by this method approaches
mine H(A|E = e)− r, where r is the length of the message
R. In addition, fixing n and m, a numerical upper bound of
m − H(Y |M,Z) is provided that can be used to guarantee
the security required by practical key-distribution applications.
Note that the method requires the independence of M and E,
i.e., M needs to be constructed after E has been observed.
Otherwise, the eavesdropper may attack the system based on
the matrix M . However, it is not efficient for Alice and Bob
to reconstruct M for every block, and it is desired to reuse
the same construction. In practical high-speed key-distribution
systems, one can store data for a certain number of blocks, and
then construct a new matrix M for extracting secret bits from
these cached blocks (e.g. based on FPGAs).

The approach based on low-density random matrices can
be treated as an extension of the approach based on uniform
random matrices, a standard construction of universal hash
functions. In [4], it is shown that the number of secret bits
that can be extracted by universal hashing is approximately
minz∈Z R(X|Z = z), where R(X|Z = z) is the Rényi
entropy (of order two) of X conditioned on Z = z. It is
also demonstrated that there is a gap between Rényi entropy
and Shannon entropy (i.e., the information-theoretical limit),
even when the Rényi entropy is replaced by the tighter smooth
Rényi entropy introduced by Renner and Wolf [10]. With some
constraints on the distribution PXZ , certain techniques can be
applied to close the gap. In particular, two types of constraints
on PXZ have been studied [4]. If X is uniformly distributed on
{0, 1}n and Z = h(X) for an arbitrary eavesdropping function
h : {0, 1}n → {0, 1}r, then the number of secret bits that can
be extracted by universal hashing is approximately n − r; if
X is uniformly distributed on {0, 1}n and Z is a sequence
received by Eve by transmitting X over a binary symmetric
channel with bit-error probability ε, then the number of secret
bits that can be extracted by universal hashing is asymptoti-
cally h(ε)n, where h(ε) is the binary entropy function. In this
paper, these results are generalized: the constraint on PXZ we
consider is relaxed such that it can describe many practical
key-distribution systems, and the number of extractable secret
bits still approaches the information-theoretic limit specified
by Shannon entropy.

II. ASYMPTOTIC ANALYSIS

In this section, we study the asymptotic performance of
low-density random matrices for secret key extraction. We
first consider the case that r = 0. Then given E, A is an
independent sequence.

Definition 1. We say a source X ∈ Xn has the asymptotic
semi-equipartition property if and only if for all ε > 0, there
exists large enough n and a set S such that

P (X ∈ S) ≥ 1− ε

n
(2)

and
log2

1

P (X = x)
≥ H(X)(1− ε), ∀x ∈ S. (3)

We claim that if a source is independent, then it has the
asymptotic semi-equipartition property. When the distribution
of each symbol of the source is identical, it is easy to prove
this claim. However, although the source we consider is
independent, the symbols may not be distributed identically.
To show that an arbitrary independent source has this property,
we first consider a simplified binary source.

Lemma 1. Let X ∈ {0, 1}n be an independent source such
that P (Xi) ∈ [p− δ

2 , p+
δ
2 ] with p ≤ 1

2 , and given any ε > 0,
we let S = {x ∈ {0, 1}n : |x| ≥ n(p− δ

2 )(1− ε)}. Then for n
large enough,

P (X ∈ S) ≥ 1− 1

2
e−2nε2(p− δ

2 )
2

.

The lemma can be proved based on the Hoeffding’s inequal-
ity, and we can get a similar result when p ≥ 1

2 .

Lemma 2. Let X ∈ {0, 1}n be a binary independent source,
i.e., P (X) =

∏n
i=1 P (Xi). If H(X) = Θ(n), then X has the

asymptotic semi-equipartition property.

Proof. By permutating all the bits in X , we let P (Xi = 1) ≤
P (Xj = 1) for all i < j. This operation does not affect the
asymptotic semi-equipartition property of X .

For any δ > 0, we partition X into strings
X(1), X(2), ..., X( 1

δ ) such that P (X(i)
j = 1) ∈ [pi− δ

2 , pi+
δ
2 ]

for all 1 ≤ j ≤ |X(i)|, where X(i)
j is the jth bit in X(i).

As n → ∞, if |X(i)| = Θ(n), then |X(i)| → ∞. In this
case, we get a set S(i) such that

S(i) =
{

{x ∈ {0, 1}n : |x| ≥ n(pi − δ
2 )(1− ε)} if pi ≤ 1

2 ,
{x ∈ {0, 1}n : |x| ≤ n(pi +

δ
2 )(1 + ε)} if pi > 1

2 .

According to Lemma 1, P (X ∈ S(i)) ≥ 1 − ε
|Xi|3 ≥ 1 − ε

n2

for n→∞.
If |X(i)| = o(n), we let S(i) = {0, 1}|X(i)|.
Then we define a set for X ∈ {0, 1}n, which is

S = S(1) × S(2) × ...× S 1
δ .

In this case,

P (X ∈ S) ≥ (1− ε

n2
)

1
δ ≥ 1− ε

δn2
≥ 1− ε

n
. (4)

Now, let’s consider a sequence X ∈ S. For X(i) ∈ S(i) with
|X(i)|→∞, if pi ≤ 1

2 , then

log2
1

P (X(i))
≥ |X(i)|((p− δ

2
)(1− ε) log2

1

p+ δ
2

+((1− (p− δ

2
)(1− ε)) log2

1

1− p+ δ
2

).

Let ε, δ → 0, then
log2

1

P (X(i))

H(X(i))
→ 1.

Similarly, if pi ≥ 1
2 , we can get the same conclusion.
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Let ε, δ be small enough, as n → ∞, based on the
assumption that H(X) = Θ(n), we can get

log2
1

P (X = x|X ∈ S) → H ≥ H(X)(1− ε). (5)

It shows that X has the asymptotic semi-equipartition
property, following (4) and (5).

The proof above can extend to an arbitrary large-alphabet
independent source. The idea is that, instead of partitioning
a probability space [0, 1] into small segments with each of
length δ, we partition the distribution space on X into small
cubic, each with column δ|X |−1.

Theorem 3. Let X ∈ Xn be an independent source with
an alphabet X of finite size, i.e., P (X) =

∏n
i=1 P (Xi). If

H(X) = Θ(n), then the binary representation of X has the
asymptotic semi-equipartition property.

Theorem 4. Let X ∈ {0, 1}n be the binary representation
of an independent source with finite alphabet, and let M be
an m× n random matrix on GF (2) where each entry equals
one with probability p and m = Θ(n). Let Y = MX . If
1
2 ≥ p > K log2 n

n for any constant K and m
H(X) < 1, then

lim
n→∞

m−H(Y |M) = 0.

Proof. According to Lemma 3, an independent source has
the asymptotic semi-equipartition property, so does its binary
representation X . As a result, we can find a set S that satisfies
(2) and (3), where ε can be arbitrarily small.

Let us use XS denote the random sequence X given the
condition that X ∈ S, i.e., for all x ∈ {0, 1}n, P (XS =
x) = P (X = x|X ∈ S). The min-entropy of XS, defined by
minx∈{0,1}n log2

1
P (XS=x) , is at least

k = H(X)(1− ε) + log2(1−
ε

n
).

If we only consider the sequences in S, then

H(Y |M,X ∈ S)

=
∑

M,y

P (M)P (y|M,X ∈ S) log2
1

P (y|M,X ∈ S)

≥ log2
1∑

M,y P (M)P (Y = y|M,X ∈ S)2

= log2
1

P (MXS = MX ′
S)
,

where XS and X ′
S are identical and independent samples from

S.
According to the proof of Theorem 1 in [5], if

p = min{ 1

m
log2

m

δ′
ln

K ′n

m
,
1

2
}

with a sufficiently large constant K ′ and 0 < δ′ < 1, then

P (MXS = MX ′
S) ≤

1 + δ′ +K ′2−k+m

2m
, (6)

where k is the min-entropy of XS obtained above. Hence,

H(Y |M,X ∈ S) ≥ m− log2(1 + δ′ +K ′2−k+m).

Furthermore, we can get that for any ε > 0, there exists
large enough n such that

H(Y |M) ≥ H(Y |M, IX∈S)

≥ P (X ∈ S)H(Y |M,X ∈ S)
≥ (1− ε

n
)(m− log2(1 + δ′ +K ′2−k+m)).

If 1
2 ≥ p > K log2 n

n for any constant K, then we can let δ′

be arbitrarily small and K ′ be a large constant. In this case,
if m

H(X) < (1− 2ε), it is easy to prove that

m−H(Y |M)→ 0.

This completes the proof.

Theorem 5. Let X ∈ {0, 1}n be the binary representation of
an independent source with finite alphabet, and let R = h(X)
for an arbitrary function h : {0, 1}n → {0, 1}r. Assume that
Y = MX with an m×n random matrix M on GF (2) where
each entry equals one with probability p and m = Θ(n). If
1
2 ≥ p > K log2 n

n for any constant K and m
H(X)−r < 1, then

lim
n→∞

m−H(Y |M,R) = 0.

Proof. Similar to the proof of Theorem 4, we first consider
the set S that satisfies (2) and (3). Based on the value of R,
we divide S into 2r sets, such that for all h ∈ {0, 1}r,

Sh = {x ∈ S, h(x) = h}.

The min-entropy of the set Sh is

kh = min
x∈Sh

log2
P (Sh)
P (x)

≥ H(X)(1− ε) + log2 P (Sh).

Hence,
P (Sh) ≤ 2kh−H(X)(1−ε).

As a result, for k > 0,
∑

h:kh<k

P (Sh) ≤ 2r2k−H(X)(1−ε).

If p = min{ 1
m log2

m
δ′ ln

K′n
m , 1

2}, following the same proof
as that for Theorem 4, we can get

H(Y |M,R)

≥ P (X ∈ S)H(Y |M,X ∈ S, R)

≥
∑

h

P (X ∈ Sh)H(Y |M,X ∈ Sh)

≥
∑

h:kh≥k

P (X ∈ Sh)H(Y |M,X ∈ Sh)

≥ (1− ε

n
− 2r2k−H(X)(1−ε))

×(m− log2(1 + δ′ +K ′2−k+m)).

When 1
2 ≥ p > K log2 n

n for any constant K as n→∞, we
can let δ′ be arbitrarily small and K ′ be a large constant.

We set k = H(X)(1 − ε)2 − r and m
k < 1. As n → ∞,

we can let ε be arbitrarily small. Hence, based on the above
inequality, we can get m−H(Y |M,R)→ 0.
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Corollary 6. Let X ∈ {0, 1}n be the binary representation
of a memoryless sequence A ∈ AN shared between Alice
and Bob. Let (E,R) be the information known by Eve, where
E ∈ EN is an independent sequence and R = h(X) for
an arbitrary function h : {0, 1}n → {0, 1}r. Assume that
Y = MX with an m×n random matrix M on GF (2) where
each entry equals one with probability p and m = Θ(n). If
1
2 ≥ p > K log2 n

n for any constant K and m
H(A|E=e)−r < 1

for any e ∈ En, then

lim
n→∞

m−H(Y |M,E,R) = 0.

Specifically, when E is a memoryless sequence, it can
be proved that the approach based on low-density random
matrices can extract a secret key of length H(A|E) − r
asymptotically. According to [13], if we can construct an
optimal Slepian-Wolf code, then the shortest length of R is
approximately r = H(A|B). Combining an optimal Slepian-
Wolf code with the secret-key-extraction technique described
in this paper yields a secret key of length

m = H(A|E)−H(A|B)

asymptotically. It achieves the information-theoretical low-
er bound for secret key distribution derived in [8] when
I[A;E] ≤ I[B;E].

III. NUMERICAL EVALUATION

The previous section studies the asymptotic performance of
low-density random matrices in secret key extraction. How-
ever, for practical security-related applications, it is crucial
to know how good the approach is in the regime of finite
block length, i.e., we need to guarantee that little information
about the generated secret key is known by any eavesdropper.
For instance, given a source of length n = 1000, we would
like to know how small the secret-key length m should be to
guarantee that m − H(Y |M,Z) ≤ δ, namely, the maximal
information leaked to Eve is at most δ bits. One idea of
getting an upper bound of δ is based on the Rényi entropy
of A conditioned on E as derived in [4], however, it yields an
upper bound of δ too loose to be used in practical applications
especially when there is a big gap between Rényi entropy and
Shannon entropy.

In this section, we introduce a numerical method to eval-
uate the performance of the approach based on low-density
random matrices in the regime of finite block length when the
distribution PAE is given.

Lemma 7. Let X ∈ {0, 1}n be a source with min-entropy k,
i.e., P (X = x) ≤ 2−k for all x ∈ {0, 1}n, and let R = h(X)
for an arbitrary function h : {0, 1}n → {0, 1}r. We assume
that Y = MX , where M is an m × n random matrix on
GF (2) where each entry equals one with probability p, then

H(Y |M,R) =

{
λ(k) if r = 0,

maxv(1− 2r+v−k)λ(v) otherwise.
(7)

Here

λ(v) = v + log2
2m∑m

j=0

(m
j

)∑
x∈S(v,n)(1− 2p)j|x|

,

and S(v, n) is the subset of {0, 1}n such that |S(v, n)| = 2v

and for all x′ ∈ {0, 1}n/S(v, n), x ∈ S(v, n), |x′| ≥ |x|.

Proof. (1) First, we prove that H(Y |M) ≥ λ(k).
It follows two inequalities:

H(Y |M) ≥ log2
1

P (MXS = MX ′
S)

proved in Theorem 4, and

P (MXS = MX ′
S) ≤

1

2m

m∑

j=0

(
m

j

)∑
x∈S(k,n)(1− 2p)j|x|

|S(k, n)| ,

(8)
which follows the proof of Theorem 1 in [5].

(2) Using a similar proof as that of Theorem 5, we can get

H(Y |M,R) ≥ max
v

(1− 2r+v−k)λ(v).

This completes the proof.
Based on the above lemma, if the min-entropy of a source

X is k, then we can get a lower bound of H(Y |M,R) as a
function of k,m, r, p, where m is the output length, r is the
message length, and p is the density of the random matrix.
Hence, we denote this bound as B(k,m, r, p).

Now, we study the lower bound of H(Y |M,R) when X
is the binary representation of an independent sequence. For
such a source X , we define a function Φ : [0,∞)→ [0, 1] as

Φ(k) =
∑

x∈{0,1}n

P (X = x)I(P (X=x)≤2−k).

This function can be calculated analytically or estimated based
on Monte-Carlo simulation. Our goal is to get a lower bound
on H(Y |M,R) based on this function Φ (assume it is given).

Our idea is to partition all the sequences in {0, 1}n into
groups, denoted by S0, S1, ..., St. We do this by selecting a
group of values g1, g2, ..., gt with 0 < g1 < g2 < ... < gt <
∞ to divide the probability space into intervals, then for all
0 ≤ i ≤ t,

Si = {x ∈ {0, 1}n|2−gi+1 < P (X = x) ≤ 2−gi},

where g0 = 0 and gt+1 =∞. It is easy to get

P (Si) = Φ(gi)− Φ(gi+1)

and given X ∈ Si, the min-entropy of X is at least ki =
gi + log2 P (Si). Based on which, we can get

H(Y |M,R) ≥
t∑

i=0

P (Si)B(ki,m, r, p),

which is a lower bound of H(Y |M,R). We can maximize this
lower bound by selecting a good combination of t, g1, g2, ..., gt
based on the function Φ.

In our model, X is the binary representation of a memory-
less sequence A, and E is an independent sequence. Hence,
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Fig. 1. The lower bound of H(Y |M,E,R) for the source described in
Example 1.

given E = e with e ∈ EN , A can be treated as an independent
sequence. Based on the approach above, we can calculate a
lower bound for H(Y |M,E = e,R). However, it is impossible
to compute a lower bound for H(H|M,E,R) based on the
expression

H(Y |M,E,R) =
∑

e∈EN

P (E = e)H(Y |M,E = e,R),

since it is too complex to enumerate all e ∈ EN and the
alphabet E may not be finite. A simple method is that one can
generate a group of samples of E, denoted by e1, e2, ..., eM .
If M is large, then

H(Y |M,E,R) ≥
M
min
i=1

H(Y |M,E = ei, R)

with a probability almost one. Hence, we can use the minimal
one of the lower bounds for H(Y |M,E = ei, R) with 1 ≤
i ≤M to estimate a lower bound for H(Y |M,E,R).

Example 1. Let A ∈ {0, 1}n, E ∈ {0, 1}n with n = 1000 be
memoryless sequences such that

P (Ai = 1) =
1

2
, P (Ei )= Ai|Ai) = δ = 0.1.

Given E = e, the function Φ is fixed for all e ∈ {0, 1}n, and
it can be calculated. We partition all the sequences in {0, 1}n
into 101 groups such that for all 0 ≤ i ≤ 99, Si = {x ∈
{0, 1}n|‖x‖ = i}, and for i = 100, Si = {x ∈ {0, 1}n|‖x‖ ≥
i}. Based on this partition, if p = 0.1, r = 100 and m = 300,
then H(Y |M,E,R) = H(Y |M,E = e,R) ≥ 299.53.

In the above example, we let the message length be r = 100.
By setting the density of the random matrix p as 0.05 and
changing m for different values, we get Fig. 1, which shows
that H(Y |M,R,E) can quickly converge to m as m decreas-
es. However, it requires p larger than a threshold. For instance,
if we set p as 0.03, it can not guarantee that H(Y |M,R,E)
converges to m.

To see the phase change caused by p, we fix the value of m
and change p dynamically. As a result, we get Fig. 2. It shows
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Density p of Random Matrix
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m=320
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m=280

Fig. 2. The lower bound of H(Y |M,E,R) for the source described in
Example 1.

that the phase-change point on p, where the performance of
the approach based on random matrices drops dramatically,
does not strongly depends on m. If the density of the random
matrix M is lower than this point, the quality of the generated
secret key may not be acceptable. If the density of the random
matrix M is larger than this point, the quality of the generated
secret key is prone to be stable.
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