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Abstract— This paper examines how to achieve high 
bandwidth efficiency while remaining robust to partial-band 
noise jamming (PBNJ).  The main conclusion is that using higher 
order modulation with moderate code rates (HMMC) results in 
less PBNJ loss compared to using lower order modulation and 
high code rates close to unity (LMHC). For example, to achieve a
bandwidth efficiency of R = 1.8 bits/sym, the modulation and 
code rate combination (ModCod) of 8PSK 3/5 has less PBNJ loss 
than QPSK 9/10. Similarly, to achieve R = 2.66 bits/sym, 16APSK 
2/3 has less PBNJ loss than 8PSK 8/9.  In the examples shown in 
this paper, the HMMC options suffer less than 0.5 dB PBNJ loss, 
while the LMHC options suffer PBNJ loss up to 5 dB. 

This paper also presents a theoretical analysis tool for 
estimating the amount of PBNJ loss, which is then validated via 
simulation. The analytical approach takes much less computation 
time and predicts about 80% of the PBNJ loss, averaged over the 
four cases studied. The theoretical model starts with the Shannon 
limit for Additive White Gaussian Noise (AWGN) channel for 
both infinite and finite constellations and then extends to include 
1) PBNJ effects on average channel capacity, 2) the effect of 
interleaving over finite number of hops using a method based on 
binomial distribution, and 3) the effects of various parameters on 
PBNJ loss, including number of interleaving hops, jammer 
power, and required code word error rate. The analysis assumes 
perfect SNR knowledge at the receiver. Simulations are 
performed using DVB-S2 forward error correction (FEC) codes.

Keywords— jamming; partial-band noise jamming; frequency 
hopping; interleaving; modulation; coding; code rate; FEC;
bandwidth efficiency; capacity; mutual information;  

I. INTRODUCTION

While achieving good protection, especially against partial-
band-noise-jamming (PBNJ), has always been important for 
military communication, users are now also demanding higher 
data rates. To achieve high data rates in limited spectrum, high 
bandwidth efficiency is required.  

High bandwidth efficiency may be achieved through high 
order modulations, such as 8PSK with 3 bits per symbol and 
16APSK with 4 bits per symbol. Alternatively, it could also be 
achieved with high forward error correction (FEC) code rates, 
such as rate 8/9 or rate 9/10.  

This paper compares these two methods of achieving high 

bandwidth efficiency while remaining robust to PBNJ. Results 
show that using higher order modulation with moderate code 
rates (HMMC) results in less PBNJ loss compared to using 
lower order modulation with high code rates close to unity 
(LMHC). 

On the surface, this conclusion seems intuitive – when the 
code rate is higher, the jammer only has to disrupt a smaller 
fraction of a code word, therefore, less robust. However, to 
understand the jammer’s optimal strategy and the amount of 
PBNJ loss, more analysis is needed. For example, for a rate 2/3 
code, one might think the jammer should jam 1/3 of the band 
or less. However, results show that the optimal strategy is full 
band jamming in the infinite interleaving case. The reason is 
that, in addition to considering the fraction of symbols jammed, 
how much more information may be carried by the unjammed 
symbols due to less jammer noise must also be considered,
which is limited by the modulation constellation size. 
Furthermore, the amount of interleaving also impacts the 
optimal jammer strategy and the amount of PBNJ loss.  

This paper presents a theoretical analysis tool that models
the finite constellation and finite interleaving effects. 
Simulation results show that the analytical tool predicts about 
80% of the PBNJ loss, averaged over the four cases studied.   

This paper is organized as follows. Section II introduces the 
channel model and defines the PBNJ loss metric. Section III 
looks at average capacity achieved under PBNJ assuming 
infinite interleaving and concludes that for finite constellations, 
there is a PBNJ loss at high code rates close to unity due to the 
concavity of the capacity curve. Section IV incorporates the 
effects of interleaving over finite number of hops using the 
binomial distribution and explores how PBNJ loss changes 
with modulation and code rate, the number of interleaving 
hops, jammer power, and required code word error rate. 
Section V verifies theoretical results presented with simulation.  

II. CHANNEL MODEL AND PBNJ LOSS METRIC

A. Channel Model 
We assume a frequency hopped system with a total 

operating bandwidth of W and a partial band noise jammer 
with total energy J0W and concentrates its energy in a fraction 

* This work is sponsored by the Department of the Air Force under Air 
Force Contract #FA8721-05-C-0002.  Opinions, interpretations, conclusions, 
and recommendations are those of the author and are not necessarily endorsed 
by the United States Government

2013 IEEE Military Communications Conference

978-0-7695-5124-1/13 $31.00 © 2013 IEEE

DOI 10.1109/MILCOM.2013.195

1133

2013 IEEE Military Communications Conference

978-0-7695-5124-1/13 $31.00 © 2013 IEEE

DOI 10.1109/MILCOM.2013.195

1133



of the frequency band of width !W, 0 < ! ≤ 1. Thus, the 
jammer signal has spectral density of J0/! in the jammed band.  

User data are FEC encoded and modulated using a PSK 
modulation, such as QPSK, 8PSK, or 16APSK. Symbols are 
interleaved evenly over H hops. With frequency hopping, each 
hop is equally likely to be transmitted anywhere in the total 
bandwidth of W and has a likelihood of !"of being jammed. It 
is assumed that the signal bandwidth is small compared to !W,
so a hop is either entirely jammed or not jammed at all. 

In particular, for symbol i of hop h, the received symbol is 

" yh,i = xh,i + nh,i" #$%"

where x is the transmitted symbol and n is the combination of 
jammer power and background noise. Let Es denote the 
average transmitted symbol energy and let N0 denote the 
background noise spectral density, the signal-to-noise ratio 
(SNR) of each hop, for all symbols in that hop, is  
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where the superscripts U and J denote unjammed and jammed. 
Throughout this paper, it is assumed that the receiver has 
perfect knowledge of the per-hop SNR. 

B. Definition of PBNJ Loss Metric 
A user wants to communicate reliably at a certain data rate 

using a certain combination of modulation and FEC code rate. 
The required Es/N0, denoted by Es,req/N0 is a function of the 
modulation and code rate (ModCod) used, the required code 
word error rate (CWER), jammer-to-noise ratio (JNR=J0/N0),
and the fraction of band jammed (!). The PBNJ loss metric is 
defined as the additional power in dB required to overcome the 
worse case PBNJ over full-band noise jamming (FBNJ), i.e.   
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III. AVERAGE CAPACITY UNDER PBNJ 
Capacity under AWGN is well understood [1,2]. For 

Gaussian input distribution, the channel capacity is  

" CAWGN(SNR) = log2(1+SNR)" #6%"

For finite constellations, capacity can be computed using 
the definition of mutual information and numerical integration 
[1,2]. Fig. 1 (similar to Fig. 1 in [2]) shows capacity as 

functions of SNR in dB for various PSK constellations, as well 
as for Gaussian input distribution, i.e., the Shannon limit.   

When there is PBNJ, the parts of a code word not jammed 
experience the higher SNR of SNRU, while the parts that are 
jammed experience the lower SNR of SNRJ, as defined in (2). 
Let 7 denote the realized fraction of symbols in a code word 
that experience jamming. 7 is a random variable with mean !.

The realized capacity experienced by a sufficiently long 
code word is the average of the capacity of each channel use 

" CPBNJ(7) = 7 • CAWGN (SNRJ) + (1-7) • CAWGN (SNRU)" #8%"

We first examine the case of infinite interleaving in this 
section; finite interleaving is treated in the next section. With 
sufficiently large H, 7 approaches ! in probability. So the 
realized channel capacity is always CPBNJ(!).  

Let the capacity associated with full band noise jamming be 
CFBNJ = CPBNJ(! = $) = CAWGN(Es/(N0+J0)). To understand the 
relationship between CFBNJ and CPBNJ(!), we define noise- 
to-signal ratio NSR = 1/SNR and C’(NSR) = C(SNR).   
C’ AWGN (NSR) is shown in Fig. 2.  

Fig. 2 Constellation constraint capacity as functions of  NSR

Fig. 1 Constellation constraint capacity as functions of SNR.
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Note that !4NSRJ + (1-!)4NSRU = (N0+J0)/Es, which is 
independent of !. CFBNJ and CPBNJ(!) can be expressed as 

CFBNJ = C’AWGN(!"• NSRJ + (1-!) • NSRU)" "

" CPBNJ(!) = ! • C’AWGN(NSRJ) + (1-!) • C’AWGN(NSRU)." #9%"

Equation (6) shows that CFBNJ averages the inputs to the 
function C’AWGN, while CPBNJ(!) averages the outputs of the 
function C’AWGN with the same weights. Thus, when the 
function C’ AWGN (NSR) is concave, CPBNJ(!) is less, i.e., it is 
more advantageous for the jammer to perform PBNJ.
Otherwise, CFBNJ is less, and the jammer should use FBNJ.  

This is also illustrated graphically in Fig. 3, which is a 
portion of Fig. 2. At R = 1.8 bits/sym, the QPSK (red) curve is 
concave. Therefore, CPBNJ(!), which averages the outputs of 
the C’AWGN function, indicated by the red square on the red 
dashed line, is less than CFBNJ, indicated by the red circle on the  
red solid curve. In contrast, the 8PSK (green) curve is convex, 
so CFBNJ is less. This shows that while operating with QPSK 
9/10 suffers from PBNJ, 8PSK 3/5 does not, while both 
achieves the bandwidth efficiency of 1.8 bits/sym. Moving 
from QPSK 9/10 to 8PSK 3/5 takes us from the concave part of 
the QPSK curve to the convex part of the 8PSK curve,
avoiding the PBNJ loss. In contrast, the Shannon capacity 
curve (black dashed) in Fig. 2 is always convex, therefore, 
would not suffer from PBNJ loss. 

Another way to compare operating using LMHC vs. using 
HMMC is by evaluating the PBNJ loss metric as defined in (3). 
This is done by plotting Es,req/N0 as a function of ! as shown in 
Fig. 4. The x-axis, !: goes from 0 to 1, so the right edge 
corresponds to FBNJ. The two red curves are for R = 1.8 
bits/sym. The higher one with × marker is for QPSK 9/10, 
while the lower one with ○ marker is for 8PSK 3/5, 
corresponding to the two cases in Fig. 3. Using the definition 
of PBNJ loss in (3), 8PSK 3/5 suffers no PBNJ loss as it attains 

its maximum with FBNJ; while QPSK 9/10 suffers a 1.7 dB 
loss at ! = 0.2. The pair of blue curves are for  R = 2.66 
bits/sym with 8PSK 8/9 (×) and16APSK 2/3 (○). Again, while 
the HMMC option, 16 APSK 2/3, suffers no PBNJ loss, the 
LMHC option, 8PSK 8/9, suffers a PBNJ loss of 0.7 dB at ! =
0.4. The PBNJ loss results are summarized in Table 1.  

Fig. 3 and Fig. 4 demonstrate the main conclusion of this 
paper in the ideal infinite hop case, i.e., using HMMC leads to 
less PBNJ loss compared to using LMHC. This loss is due to 
the constellation-constraint capacity curve becoming concave 
for high enough code rate as the curve is forced to bend flat 
and deviate from Shannon capacity, as shown in Fig.2 and 
Fig.3. In contrast, for higher order modulation, the unjammed 
symbols are able to carry more information, stay closer to the 
Shannon limit.  

IV. MODELING FINITE NUMBER OF HOPS

This section builds upon the previous section and adds 
modeling for finite number of hops. The key difference 
between having finite number of hops vs. infinite number of 
hops is in the distribution of 7, the realized fraction of symbols 
in a code word that experiences jamming. With infinite hops, 7
approaches ! in probability; with finite number of hops, 7 is 
sometimes greater than ! and sometimes less.  

A. Binomial Distribution 
Under the assumption that each hop is jammed 

independently and identically according to (2), 7 follows a 
binomial distribution:  
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where a = 0, 1, 2, …, H is the actual number of hops jammed. 

Fig. 4 Comparison of PBNJ loss between using lower order modulation 
with high code rate (×) vs. using higher order modulation with moderate 
code rate (○) for R = 2.66 bits/sym (blue) and R = 1.8 bits/sym (red). 
JNR=20dB.

Fig. 3 Comparison of full band noise jamming capacity CFBNJ (circles)
and partial band noise jamming capacity CPBNJ(!) (squares) for QPSK 
(red) and 8PSK (green) at R = 1.8 bits/sym.  
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Fig. 5 shows the binomial distribution corresponding to the 
parameters H = 100 hops and ! = 0.2. The mean of the 
distribution is H·! = 20, i.e., on average 20 out of the 100 hops 
are jammed. However, unlike the infinite interleaving case, this 
distribution has a noticeable spread. While the probability that 
7 is 30 or less is 99.4%, there is still a small probability that 7
is even larger. This introduces an additional element of 
randomness.  

B. Evaluate Es/N0 Required 
This subsection evaluates the Es/N0 required to achieve a 

required CWER using a particular ModCod with H hops, and 
under a jammer operating with JNR=J0/N0 and !. 

To model the error performance under finite hop 
interleaving, this section assumes that the FEC used is capacity 
achieving, so that the resulting CWER is  

"
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# %'
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where R is the bandwidth efficiency corresponding to the 
ModCod choice, and CPBNJ(7) is the capacity achievable when 
the realized fraction of symbols jammed is 7.

Since CPBNJ(7) monotonically decreases as 7 increases, (8) 
may be rewritten as  
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where 7* is defined via CPBNJ(7*) = R.  

By the definition of CPBNJ(7) in (5), it increases with Es/N0.
Therefore, Es/N0 must be high enough, such that 7* is large 
enough (tolerate enough jammed hops), such that Pr[7G7*] is 
less than the required CWER.  

The following procedure illustrates how to compute the 
Es/N0 required to achieve a particular combination of CWER, 
ModCod, H, JNR, and !.

1. From H and !, compute the binomial distribution 
Pr[7=a/H] using (7) 

2. Given a required CWER, identify the smallest 7*

such that Pr[7G7*] is less than the required CWER 

3. Find the Es/N0 such that CPBNJ(7*) = R. Note that 
CPBNJ(7*) is also a function of JNR, !:"and the 
modulation. 

Example: Consider the case of required CWER = 10-3,
ModCod QPSK 9/10, R = 1.8 bits/sym, H = 100 hops, and 
a jammer with 20dB JNR=J0/N0 and ! = 0.2. Following the 
three steps 

1. Fig. 5 shows the binomial distribution for H = 100 
and ! = 0.2 

2. Pr[7 > 33/100] = Pr[7 ≥ 34/100] = 0.0007 < 10-3,
while Pr[7 ≥ 33/100] = 0.0016 > 10-3, so 7* is 
33/100 

3. Found that at Es/N0 = 29.6 dB, which results in 
SNRU = 29.6 dB and SNRJ = 2.6 dB, CPBNJ(0.33) 
= 0.33 ∙ CAWGN,Q(2.6dB) + 0.67 ∙ CAWGN,Q(29.6dB) 
= 0.33 ∙ 1.38 + 0.67 ∙ 2 = 1.8 bits/sym

Note that the 33% jammed symbols still contribute to about 
25% (=0.33*1.38/1.8) of the information.  

C. PBNJ Loss with Finite Number of Hops 
Using the method for evaluating the Es/N0 required laid out 

in Section VI.B, Fig. 6 shows the Es/N0 required to achieve 10-3

CWER, using 100 hop interleaving, under 20dB JNR, for the 
same four ModCod options as in Fig. 4. The original curves in 
Fig. 4 corresponding to infinite interleaving are reproduced as 
dashed lines for comparison.  

Focusing on the solid lines first, comparison of the pair of 
blue solid curves and comparison of the pair of red solid curves 
both confirm the earlier conclusion of LMHC suffering more 
PBNJ loss. In particular, QPSK 9/10 suffers 4.3 dB PBNJ loss 

Fig. 6 Comparison of PBNJ loss between using infinite hops (dashed, 
previously shown in Fig. 4) and using finite number of hops (solid, 100 
hops, required code word error rate of 10-3). JNR = 20dB.

Fig. 5 Distribution of 7, the realized fraction of symbols in a codeword 
that experience jamming, for the case of interleaving over 100 hops and 
20% of the spectrum jammed
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at ! = 0.1, while 8PSK 3/5 only suffers 0.3 dB loss; 8PSK 8/9 
suffers 2.7 dB PBNJ loss at ! = 0.2, while 16APSK 2/3 only 
suffers 0.4 dB loss. These results are summarized in Table 1. 

Comparing the solid and dashed curves, using finite hops 
always require higher Es/N0 as expected. The resulting PBNJ 
losses are also higher (see Table 1). Furthermore, the ! values 
at which the worst case PBNJ loss occurs, !’, move to the left 
for the finite-hop cases (e.g., from 0.4 to 0.2 for 8PSK 8/9,
from 0.3 to 0.1 for QPSK 9/10). The smaller !’ is, the longer 
Es/N0 keeps increasing starting from the right end at ! = 1. 

D. PBNJ Loss Trends 
Using the tools established, changes in PBNJ loss as 

functions of number of hops, jammer power, required CWER, 
may be examined. One benefit of this theoretical method 
proposed is that for most scenarios, finding the Es/N0 required 
only takes seconds on a typical desktop computer, much 
quicker than running full FEC simulations. As a result, a large 
multi-dimensional grid of scenarios may be run in just hours.
The following results are run with a full grid of four ModCod, 
eight values of !"as in Fig. 4, five values of H from 25 to 400 at 
factor of 2 steps, nine JNR levels from -10 dB to 30 dB at 5 dB 
steps, six CWER levels from 10-1 to 10-6 at factor of 10 steps, 
totaling 4×8×5×9×6 = 8640 scenarios, finished in six hours.  

Fig. 7 shows PBNJ loss as functions of number of hops, H,
for the cases with JNR=20 dB and CWER = 10-3. Similar to 
Fig. 4, the pair of blue curves are for R = 2.66 bits/sym and the 
pair of red curves are for R = 1.8 bits/sym. The curves with × 
markers use LMHC; the curves with ○ markers use HMMC.
All four curves have a downward trend, meaning more 
interleaving hops reduces PBNJ loss, as it is well known. At 
both bandwidth efficiency levels (red and blue), the LMHC 
options (× markers) suffer significantly more PBNJ loss than 
the HMMC options (○ markers). In particular, while 16APSK 
2/3 and 8PSK 3/5 suffer less than 2 dB loss with as little as 25 
hop interleaving, QPSK 9/10 suffers about 3 dB loss even with 
400 hops of interleaving.  

Fig. 8 shows PBNJ loss as functions of JNR for the same 
four ModCod as in Fig. 7, with H = 100 and CWER = 10-3. All 
four curves have an upward trend, meaning higher jammer 
power leads to more PBNJ loss, which is as expected. Again, 
the curves with × markers are much higher than the curves with 
○ markers showing that LMHC suffer more PBNJ loss. In 
particular, while 16APSK 2/3 and 8PSK 3/5 suffer less than 
0.5 dB PBNJ loss under a 30 dB JNR jammer (1000 times as 
strong as the background noise), QPSK 9/10 suffers more than 
3 dB loss under just a 5 dB JNR jammer (3.16 times as strong 
as the background noise). 

Fig. 9 shows PBNJ loss as functions of CWER with  
H = 100 and JNR = 20dB. All four curves have a downward 
trend, meaning tolerating higher CWER leads to less PBNJ 
loss. Again, LMHC options (× markers) suffer significantly 
more PBNJ loss than HMMC options (○ markers). In 
particular, while 16APSK 2/3 and 8PSK 3/5 suffer less than 1 
dB PBNJ loss with a 10-6 CWER, QPSK 9/10 suffers more 
than 3 dB PBNJ loss even at a poor CWER of 10-2. 

V. SIMULATION RESULTS

To validate the theoretical results presented in Section IV,
simulations were performed using DVB-S2 (Digital Video 
Broadcasting, 2nd generation) standard [3]. The FEC coding is 
a low-density-parity-check (LDPC) code with a BCH code as 
an outer code. The output code word block length is 64800 
bits; this long code length allows this FEC to achieve 

Fig. 9 PBNJ loss in dB as functions of code word error rate

Fig. 8 PBNJ loss in dB as functions of jammer-to-noise ratio JNR =J0/N0

Fig. 7 PBNJ loss in dB as functions of number of hops for interleaving.
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performance within 1 dB of theoretical capacity. The same four 
ModCod presented in earlier sections are simulated, namely, 
QPSK 9/10, 8PSK 3/5, 8PSK 8/9, and 16APSK 2/3. The 
16APSK constellation used here and in the previous sections is 
the one defined in the DVB-S2 standard for rate 2/3 operation.  

Fig. 10 shows the Es/N0 required to achieve 10-3 CWER, 
using H = 100, under 20 dB JNR, for the same four ModCod 
options as in Fig. 4 and Fig. 6. The solid curves in Fig. 6 
corresponding to the 100-hop theoretical results are reproduced 
as dashed lines for comparison. The distance between each pair 
of solid and dashed curves are about 1 dB for most values of !.
Larger gaps occur at the “knees” of the curves, where the 
required Es/N0 starts to decrease as ! decreases.  In particular, 
for 16APSK 2/3 at ! = 0.2, the gap is ~10dB. However, this 
does not impact the worst case PBNJ loss which occurred at 
higher values of !. For the LMHC options (× markers), as !
decreases, all four curves increase steadily until ! ≤ 0.2, where 
the theoretical curve starts the descent slightly early than the 
simulation curves. It is possible that this difference is due to the
finite-length non-capacity-achieving FEC used. 

Table I summarizes the PBNJ losses for the results 
presented in Fig. 4, Fig. 6, and Fig. 10, for the cases of 
theoretical infinite-hop results, theoretical 100-hop result, and 
simulation 100-hop results, for the four ModCod. Comparing 
the last two columns, the theoretical result is about 80% of the 
simulation values, averaged over the four cases. For 8PSK 3/5 
and 16APSK 2/3, the HMMC options, the gaps are no more 
than 0.1 dB. This small gap is because, as ! decreases, these 
curves start off nearly flat from the FBNJ point. The worst case 
PBNJ loss occurs during this flat portion where the simulation 
and theoretical curves have good agreement. On the other 
hand, for QPSK 9/10 and 8PSK 8/9, the LMHC cases, 
although theoretical results are able to predict most of the 
PBNJ losses seen in the simulation results, there is notable 
differences between the simulation and theoretical results. This 
is because, as ! decreases, the curves keep going up from the 
FBNJ points, the worst case PBNJ losses occur right around 

the “knees” where the gaps get large. Since the simulation 
curves start their descent later, the PBNJ losses are higher.  

TABLE I. TABLE TYPE STYLES

Modulation and Code Rates PBNJ Losses in dB
Modu-
lation Code Rate R

(bits/sym)
Theory 

Inf. Hops
Theory 

100 Hops
Simulation 
100 Hops

QPSK 9/10 1.8 1.7 4.3 5.2

8PSK 3/5 1.8 0 0.3 0.3

8PSK 8/9 2.66 0.7 2.7 4.1

16APSK 2/3 2.66 0 0.4 0.5

While the simulation results presented here assumed perfect 
per-hop SNR knowledge at the receiver, preliminary 
simulation results have shown that with modest number of 
reference symbols, per-hop SNR estimation could be 
performed at the receiver and achieve similar PBNJ losses.

VI. SUMMARY AND CONCLUSIONS

The main conclusion is that to achieve high bandwidth 
efficiency in a partial-band noise jamming environment, using 
higher order modulation with moderate code rates (HMMC) 
suffers less PBNJ loss compared to using lower order 
modulation with high code rates (LMHC) that achieves the 
same bandwidth efficiency. This loss is rooted in the fact that 
the constellation-constraint capacity curve becomes concave 
for higher code rate as the curve is forced to bend flat and 
deviate from Shannon capacity. Two examples were shown.
For R=1.8 bits/sym, 8PSK 3/5 suffers less PBNJ loss than 
QPSK 9/10; for R=2.66 bits/sym, 16APSK 2/3 suffers less 
PBNJ loss than 8PSK 8/9. Thus, code rates close to unity 
should be avoided for operations under PBNJ; while with 
moderate code rates, PBNJ loss can be nearly eliminated. 

This paper also demonstrates the benefit of using a 
theoretical analysis tool based on binomial distribution. Since 
the theoretical tool requires a significantly lower amount of 
computation compared to simulation and provides a reasonably 
good approximation to simulation results, it may be used to 
quickly survey a large number of scenarios, get a sense of 
whether the PBNJ loss would be large or small. Results are 
presented on how PBNJ losses change as functions of number 
of hops, jammer-to-noise ratio, and code word error rate.
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